ERIC Educational Resources Information Center
Shull, Richard L.
2005-01-01
The relation between the rate of a response ("B") and the rate of its reinforcement ("R") is well known to be approximately hyperbolic: B = kR/(R + R[subscript o]), where k represents the maximum response rate, and R[subscript o] indicates the rate of reinforcers that will engender a response rate equal to half its maximum value. A review of data…
Analysis of multiple photoreceptor pigments for phototropism in a mutant of Arabidopsis thaliana
NASA Technical Reports Server (NTRS)
Konjevic, R.; Khurana, J. P.; Poff, K. L.
1992-01-01
The shape of the fluence-response relationship for the phototropic response of the JK224 strain of Arabidopsis thaliana depends on the fluence rate and wavelength of the actinic light. At low fluence rate (0.1 micromole m-2 s-1), the response to 450-nm light is characterized by a single maximum at about 9 micromoles m-2. At higher fluence rate (0.4 micromole m-2 s-1), the response shows two maxima, at 4.5 and 9 micromoles m-2. The response to 510-nm light shows a single maximum at 4.5 micromoles m-2. Unilateral preirradiation with high fluence rate (25 micromoles m-2 s-1) 510-nm light eliminates the maximum at 4.5 micromoles m-2 in the fluence response curve to a subsequent unilateral 450-nm irradiation, while the second maximum at 9 micromoles m-2 is unaffected. Based on these results, it is concluded that a single photoreceptor pigment has been altered in the JK224 strain of Arabidopsis thaliana.
Dependence of the phototropic response of Arabidopsis thaliana on fluence rate and wavelength
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konjevic, R.; Steinitz, B.; Poff, K.L.
1989-12-01
In the phototropic response of Arabidopsis thaliana seedlings, the shape of the fluence-response relation depends on fluence rate and wavelength. At low fluence rates, the response to 450-nm light is characterized by a single maximum at about 0.3 {mu}mol{center dot}m{sup {minus}2}. At higher fluence rates, the response shows two distinct maxima, I and II, at 0.3 and 3.5 {mu}mol{center dot}m{sup {minus}2}, respectively. The response to 500-nm light shows a single maximum at 2 {mu}mol{center dot}m{sup {minus}2}, and the response to 510-nm light shows a single maximum at 4.5 {mu}mol{center dot}m{sup {minus}2}, independent of fluence rate. The response to 490-nm lightmore » shows a maximal at 4.5 {mu}mol{center dot}m{sup {minus}2} and a shoulder at about 0.6 {mu}mol{center dot}m{sup {minus}2}. Preirradiation with high-fluence 510-nm light from above, immediately followed by unilateral 450-nm light, eliminates maximum II but not maximum I. Preirradiation with high-fluence 450-nm light from above eliminates the response to subsequent unilateral irradiation with either 450-nm or 510-nm light. The recovery of the response following high-fluence 450-nm light is considerably slower than the recovery following high-fluence 510-nm light. Unilateral irradiation with low-fluence 510-nm light followed by 450-nm light results in curvature that is approximately the sum of those produced by either irradiation alone. Based on these results, it is proposed that phototropism in A. thaliana seedlings is mediated by at least two blue-light photoreceptor pigments.« less
NASA Technical Reports Server (NTRS)
Brock, T. G.; Kaufman, P. B.
1988-01-01
Starch in pulvinus amyloplasts of barley (Hordeum vulgare cv Larker) disappears when 45-day-old, light-grown plants are given 5 days of continuous darkness. The effect of this loss on the pulvinus graviresponse was evaluated by following changes in the kinetics of response during the 5-day dark period. Over 5 days of dark pretreatment, the lag to initial graviresponse and the subsequent half-time to maximum steady state bending rate increased significantly while the maximum bending rate did not change. The change in response to applied indoleacetic acid (100 micromolar) plus gibberellic acid (10 micromolar) without gravistimulation, under identical dark pretreatments, was used as a model system for the response component of gravitropism. Dark pretreatment did not change the lag to initial response following hormone application to vertical pulvini, but both the maximum bending rate and the half-time to the maximum rate were significantly reduced. Also, after dark pretreatment, significant bending responses following hormone application were observed in vertical segments with or without added sucrose, while gravistimulation produced a response only if segments were given sucrose. These results indicate that starch-filled amyloplasts are required for the graviresponse of barley pulvini and suggest that they function in the stimulus perception and signal transduction components of gravitropism.
Microbial endogenous response to acute inhibitory impact of antibiotics.
Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D
2017-06-13
Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).
Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C
2014-11-01
The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p < 0.001). Multiple regression analysis revealed that the maximum impulse and SR in the tethered condition explained 84% of the free swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.
AZARBAYJANI, MOHAMMAD ALI; FATOLAHI, HOSEYN; RASAEE, MOHAMMAD JAVAD; PEERI, MAGHSOD; BABAEI, ROHOLAH
2011-01-01
We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F5, 45=3.15, P=0.02). However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate (t=2.94, P=0.02) and 85% maximum heart rate (t=0.53, P=0.03). Salivary α-amylase significantly varied among exercise sessions (F5, 45=3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill (t=3.55, P=0.006) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed. PMID:27182369
Azarbayjani, Mohammad Ali; Fatolahi, Hoseyn; Rasaee, Mohammad Javad; Peeri, Maghsod; Babaei, Roholah
We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F 5, 45 =3.15, P=0.02) . However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate ( t=2.94, P=0.02 ) and 85% maximum heart rate ( t=0.53, P=0.03 ). Salivary α-amylase significantly varied among exercise sessions (F 5, 45 =3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill ( t=3.55, P=0.006 ) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed.
Dobrow, Mark J; Orchard, Margo C; Golden, Brian; Holowaty, Eric; Paszat, Lawrence; Brown, Adalsteinn D; Sullivan, Terrence
2008-10-16
Internet survey modalities often compare unfavorably with traditional survey modalities, particularly with respect to response rates. Response to Internet surveys can be affected by the distribution options and response/collection features employed as well as the existence of automated (out-of-office) replies, automated forwarding, server rejection, and organizational or personal spam filters. However, Internet surveys also provide unparalleled opportunities to track study subjects and examine many of the factors influencing the determination of response rates. Tracking data available for Internet surveys provide detailed information and immediate feedback on a significant component of response that other survey modalities cannot match. This paper presents a response audit of a large Internet survey of more than 5000 cancer care providers and administrators in Ontario, Canada. Building upon the CHEcklist for Reporting Results of Internet E-Surveys (CHERRIES), the main objectives of the paper are to (a) assess the impact of a range of factors on the determination of response rates for Internet surveys and (b) recommend steps for improving published descriptions of Internet survey methods. We audited the survey response data, analyzing the factors that affected the numerator and denominator in the ultimate determination of response. We also conducted a sensitivity analysis to account for the inherent uncertainty associated with the impact of some of the factors on the response rates. The survey was initially sent out to 5636 health care providers and administrators. The determination of the numerator was influenced by duplicate/unattached responses and response completeness. The numerator varied from a maximum of 2031 crude (unadjusted) responses to 1849 unique views, 1769 participants, and 1616 complete responses. The determination of the denominator was influenced by forwarding of the invitation email to unknown individuals, server rejections, automated replies, spam filters, and 'opt out' options. Based on these factors, the denominator varied from a minimum of 5106 to a maximum of 5922. Considering the different assumptions for the numerator and the denominator, the sensitivity analysis resulted in a 12.5% variation in the response rate (from minimum of 27.3% to maximum of 39.8%) with a best estimate of 32.8%. Depending on how the numerator and denominator are chosen, the resulting response rates can vary widely. The CHERRIES statement was an important advance in identifying key characteristics of Internet surveys that can influence response rates. This response audit suggests the need to further clarify some of these factors when reporting on Internet surveys for health care providers and administrators, particularly when using commercially available Internet survey packages for specified, rather than convenience, samples.
F-region enhancements induced by solar flares
NASA Technical Reports Server (NTRS)
Donnelly, R. F.; Davies, K.; Grubb, R. N.; Fritz, R. B.
1976-01-01
ATS-6 total electron content (NT) observations during solar flares exhibit four types of response: (1) a sudden increase in NT (SITEC) for about 2 min with several maxima in growth rate, then a maximum or a distinct slowing in growth, followed by a slow smooth increase to a flat peak, and finally a slow decay in NT; (2) a SITEC that occurs during ionospheric storms, where NT decays abruptly after the first maximum; (3) slow enhancements devoid of distinct impulsive structure in growth rate; and (4) no distinct response in NT, even for relatively large soft X-ray flares. Flare-induced increases in NT are dominated by low-loss F2 ionization produced by 90-911-A emission. The impulsive flare component is relatively intense in the 90-911-A range, but is short lived and weak for flares near the edge of the visible solar disk and for certain slow flares. The impulsive flare component produces the rapid rise, the sharp maxima in growth rate, and the first maximum in SITECs. The slow flare components are strong in the 1-90-A range but relatively weak in the 90-911-A range and accumulatively contribute to the second maximum in type 1 and 3 events, except during storms when F2 loss rates are abnormally high in type 2 events.
Optimum poultry litter rates for maximum profit vs. yield in cotton production
USDA-ARS?s Scientific Manuscript database
Cotton lint yield responds well to increasing rates of poultry litter fertilization, but little is known of how optimum rates for yield compare with optimum rates for profit. The objectives of this study were to analyze cotton lint yield response to poultry litter application rates, determine and co...
Turnbull, Alison E; O'Connor, Cristi L; Lau, Bryan; Halpern, Scott D; Needham, Dale M
2015-07-29
Survey response rates among physicians are declining, and determining an appropriate level of compensation to motivate participation poses a major challenge. To estimate the effect of permitting intensive care physicians to select their preferred level of compensation for completing a short Web-based survey on physician (1) response rate, (2) survey completion rate, (3) time to response, and (4) time spent completing the survey. A total of 1850 US intensivists from an existing database were randomized to receive a survey invitation email with or without an Amazon.com incentive available to the first 100 respondents. The incentive could be instantly redeemed for an amount chosen by the respondent, up to a maximum of US $50. The overall response rate was 35.90% (630/1755). Among the 35.4% (111/314) of eligible participants choosing the incentive, 80.2% (89/111) selected the maximum value. Among intensivists offered an incentive, the response was 6.0% higher (95% CI 1.5-10.5, P=.01), survey completion was marginally greater (807/859, 94.0% vs 892/991, 90.0%; P=.06), and the median number of days to survey response was shorter (0.8, interquartile range [IQR] 0.2-14.4 vs 6.6, IQR 0.3-22.3; P=.001), with no difference in time spent completing the survey. Permitting intensive care physicians to determine compensation level for completing a short Web-based survey modestly increased response rate and substantially decreased response time without decreasing the time spent on survey completion.
O'Connor, Cristi L; Lau, Bryan; Halpern, Scott D; Needham, Dale M
2015-01-01
Background Survey response rates among physicians are declining, and determining an appropriate level of compensation to motivate participation poses a major challenge. Objective To estimate the effect of permitting intensive care physicians to select their preferred level of compensation for completing a short Web-based survey on physician (1) response rate, (2) survey completion rate, (3) time to response, and (4) time spent completing the survey. Methods A total of 1850 US intensivists from an existing database were randomized to receive a survey invitation email with or without an Amazon.com incentive available to the first 100 respondents. The incentive could be instantly redeemed for an amount chosen by the respondent, up to a maximum of US $50. Results The overall response rate was 35.90% (630/1755). Among the 35.4% (111/314) of eligible participants choosing the incentive, 80.2% (89/111) selected the maximum value. Among intensivists offered an incentive, the response was 6.0% higher (95% CI 1.5-10.5, P=.01), survey completion was marginally greater (807/859, 94.0% vs 892/991, 90.0%; P=.06), and the median number of days to survey response was shorter (0.8, interquartile range [IQR] 0.2-14.4 vs 6.6, IQR 0.3-22.3; P=.001), with no difference in time spent completing the survey. Conclusions Permitting intensive care physicians to determine compensation level for completing a short Web-based survey modestly increased response rate and substantially decreased response time without decreasing the time spent on survey completion. PMID:26223821
Five Methods for Estimating Angoff Cut Scores with IRT
ERIC Educational Resources Information Center
Wyse, Adam E.
2017-01-01
This article illustrates five different methods for estimating Angoff cut scores using item response theory (IRT) models. These include maximum likelihood (ML), expected a priori (EAP), modal a priori (MAP), and weighted maximum likelihood (WML) estimators, as well as the most commonly used approach based on translating ratings through the test…
The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation
Wang, Wenming
2014-01-01
The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157
Jordan, P.R.; Hart, R.J.
1985-01-01
A streamflow routing model was used to calculate the transit losses and traveltimes. Channel and aquifer characteristics, and the model control parameters, were estimated from available data and then verified to the extent possible by comparing model simulated streamflow to observed streamflow at streamflow gaging stations. Transit losses and traveltimes for varying reservoir release rates and durations then were simulated for two different antecedent streamflow (drought) conditions. For the severe-drought antecedent-streamflow condition, it was assumed that only the downstream water use requirement would be released from the reservoir. For a less severe drought (LSD) antecedent streamflow condition, it was assumed than any releases from Marion Lake for water supply use downstream, would be in addition to a nominal dry weather release of 5 cu ft/sec. Water supply release rates of 10 and 25 cu ft/sec for the severe drought condition and 5, 10, and 25 cu ft/sec for the less severe drought condition were simulated for periods of 28 and 183 days commencing on July 1. Transit losses for the severe drought condition for all reservoir release rates and durations ranged from 12% to 78% of the maximum downstream flow rate and from 27% to 91% of the total volume of reservoir storage released. For the LSD condition, transit losses ranged from 7% to 29% of the maximum downstream flow rate and from 10% to 48% of the total volume of release. The 183-day releases had larger total transit losses, but losses on a percentage basis were less than the losses for the 28-day release period for both antecedent streamflow conditions. Traveltimes to full response (80% of the maximum downstream flow rate), however, showed considerable variation. For the release of 5 cu ft/sec during LSD conditions, base flow exceeded 80% of the maximum flow rate near the confluence; the traveltime to full response was undefined for those simulations. For the releases of 10 and 25 cu ft/sec during the same drought condition, traveltimes to full response ranged from 4.4 to 6.5 days. For releases of 10 and 25 cu ft/sec during severe drought conditions, traveltimes to full response near the confluence with the Neosho River ranged from 8.3 to 93 days. (Lantz-PTT)
Autonomic Arousals Related to Traffic Noise during Sleep
Griefahn, Barbara; Bröde, Peter; Marks, Anke; Basner, Mathias
2008-01-01
Aim: To analyze the heart rate (HR) response to traffic noise during sleep and the influence of acoustic parameters, time of night, and momentary sleep stage on these responses. Participants: Twelve women and 12 men (19–28 years). Measurements and Results: The participants slept in the laboratory for 4 consecutive nights in each of 3 consecutive weeks and were exposed to aircraft, road, or rail traffic noise with weekly permutations. The 4 nights of each week consisted of a random sequence of a quiet night (32 dBA) and 3 nights during which aircraft, rail traffic, or road traffic noises occurred with maximum levels of 45–77 dBA. The polysomnogram and the electrocardiogram were recorded during all nights. In case of awakenings, the HR alterations consisted of monophasic elevations for >1 min, with mean maximum HR elevations of 30 bpm. Though obviously triggered by the noise events, the awakenings per se rather than the acoustical parameters determined the extent and pattern of the response. Without awakenings, HR responses were biphasic and consisted of initial accelerations with maximum HR elevations of about 9 bpm followed by decelerations below the baseline. These alterations were clearly influenced by the acoustic parameters (traffic mode, maximum level, rate of rise) as well as by the momentary sleep stage. Conclusions: Cardiac responses did not habituate to traffic noise within the night and may therefore play a key role in promoting traffic noise induced cardiovascular disease. If so, these consequences are more likely for responses accompanied by awakenings than for situations without awakenings. Citation: Griefahn B; Bröde P; Marks A; Basner M. Autonomic arousals related to traffic noise during sleep. SLEEP 2008;31(4):569-577. PMID:18457245
Escape manoeuvres in the spiny dogfish (Squalus acanthias).
Domenici, Paolo; Standen, Emily M; Levine, Robert P
2004-06-01
The locomotor performance of dogfish during escape responses was observed by means of high-speed video. Dogfish show C-type escape responses that are comparable with those shown previously in teleosts. Dogfish show high variability of turning rates of the anterior part of the body (head to centre of mass), i.e. with peak values from 434 to 1023 deg. s(-1). We suggest that this variability may be due to the presence of two types of escape manoeuvres, i.e. responses with high and low turning rates, as previously found in a teleost species. Fast responses (i.e. with high maximum turning rates, ranging between 766 and 1023 deg. s(-1)) showed significantly higher locomotor performance than slow responses (i.e. with low maximum turning rates, ranging between 434 and 593 deg. s(-1)) in terms of distance covered, speed and acceleration, although no differences were found in the turning radius of the centre of mass during the escape manoeuvres. The existence of two types of escape responses would have implications in terms of both neural control and muscular activation patterns. When compared with literature data for the locomotor performance of bony fishes, dogfish showed relatively low speed and acceleration, comparable turning rates and a turning radius that is in the low part of the range when compared with teleosts, indicating relatively high manoeuvrability. The locomotor performance observed in dogfish is consistent with their morphological characteristics: (1) low locomotor performance associated with low thrust developed by their relatively small posterior depth of section and (2) relatively high manoeuvrability associated with their high flexibility.
Williams, David M; Dunsiger, Shira; Emerson, Jessica A; Gwaltney, Chad J; Monti, Peter M; Miranda, Robert
2016-06-01
Affective response to exercise may mediate the effects of self-paced exercise on exercise adherence. Fiftynine low-active (exercise <60 min/week), overweight (body mass index: 25.0-39.9) adults (ages 18-65) were randomly assigned to self-paced (but not to exceed 76% maximum heart rate) or prescribed moderate intensity exercise (64-76% maximum heart rate) in the context of otherwise identical 6-month print-based exercise promotion programs. Frequency and duration of exercise sessions and affective responses (good/bad) to exercise were assessed via ecological momentary assessment throughout the 6-month program. A regression-based mediation model was used to estimate (a) effects of experimental condition on affective response to exercise (path a = 0.20, SE = 0.28, f 2 = 0.02); (b) effects of affective response on duration/latency of the next exercise session (path b = 0.47, SE = 0.25, f 2 = 0.04); and (c) indirect effects of experimental condition on exercise outcomes via affective response (path ab = 0.11, SE = 0.06, f 2 = 0.10). Results provide modest preliminary support for a mediational pathway linking self-paced exercise, affective response, and exercise adherence.
Ukena, Christian; Mahfoud, Felix; Kindermann, Ingrid; Barth, Christine; Lenski, Matthias; Kindermann, Michael; Brandt, Mathias C; Hoppe, Uta C; Krum, Henry; Esler, Murray; Sobotka, Paul A; Böhm, Michael
2011-09-06
This study sought to investigate the effects of interventional renal sympathetic denervation (RD) on cardiorespiratory response to exercise. RD reduces blood pressure at rest in patients with resistant hypertension. We enrolled 46 patients with therapy-resistant hypertension as extended investigation of the Symplicity HTN-2 (Renal Denervation With Uncontrolled Hypertension) trial. Thirty-seven patients underwent bilateral RD and 9 patients were assigned to the control group. Cardiopulmonary exercise tests were performed at baseline and 3-month follow-up. In the RD group, compared with baseline examination, blood pressure at rest and at maximum exercise after 3 months was significantly reduced by 31 ± 13/9 ± 13 mm Hg (p < 0.0001) and by 21 ± 20/5 ± 14 mm Hg (p < 0.0001), respectively. Achieved work rate increased by 5 ± 13 W (p = 0.029) whereas peak oxygen uptake remained unchanged. Blood pressure 2 min after exercise was significantly reduced by 29 ± 17/8 ± 15 mm Hg (p < 0.001 for systolic blood pressure; p = 0.002 for diastolic blood pressure). Heart rate at rest decreased after RD (4 ± 11 beats/min; p = 0.028), whereas maximum heart rate and heart rate increase during exercise were not different. Heart rate recovery improved significantly by 4 ± 7 beats/min after renal denervation (p = 0.009). In the control group, there were no significant changes in blood pressure, heart rate, maximum work rate, or ventilatory parameters after 3 months. RD reduces blood pressure during exercise without compromising chronotropic competence in patients with resistant hypertension. Heart rate at rest decreased and heart rate recovery improved after the procedure. (Renal Denervation With Uncontrolled Hypertension; [Symplicity HTN-2]; NCT00888433). Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Chao, L. Y.; Singh, D.; Shetty, D. K.
1988-01-01
A numerical computational study was carried out to assess the effects of subcritical crack growth on crack stability in the chevron-notched three-point bend specimens. A power-law relationship between the subcritical crack velocity and the applied stress intensity were used along with compliance and stress-intensity relationships for the chevron-notched bend specimen to calculate the load response under fixed deflection rate and a machine compliance. The results indicate that the maximum load during the test occurs at the same crack length for all the deflection rates; the maximum load, however, is dependent on the deflection rate for rates below the critical rate. The resulting dependence of the apparent fracture toughness on the deflection rate is compared to experimental results on soda-lime glass and polycrystalline alumina.
Selective Catalytic Combustion Sensors for Reactive Organic Analysis
NASA Technical Reports Server (NTRS)
Innes, W. B.
1971-01-01
Sensors involving a vanadia-alumina catalyst bed-thermocouple assembly satisfy requirements for simple, reproducible and rapid continuous analysis or reactive organics. Responses generally increase with temperature to 400 C and increase to a maximum with flow rate/catalyst volume. Selectivity decreases with temperature. Response time decreases with flow rate and increases with catalyst volume. At chosen optimum conditions calculated response which is additive and linear agrees better with photochemical reactivity than other methods for various automotive sources, and response to vehicle exhaust is insensitive to flow rate. Application to measurement of total reactive organics in vehicle exhaust as well as for gas chromatography detection illustrate utility. The approach appears generally applicable to high thermal effect reactions involving first order kinetics.
Cardiovascular responses to a high-volume continuous circuit resistance training protocol.
Gotshalk, Lincoln A; Berger, Richard A; Kraemer, William J
2004-11-01
The purpose of this investigation was to determine the level of cardiovascular stress elicited by continuous and prolonged circuit resistance training (CRT). Each of the 11 men who volunteered as a subject were tested to determine oxygen consumption and heart rate responses to a submaximal and maximal treadmill protocol and a CRT session consisting of 10 exercises and 10 repetitions at 40% of 1 repetition maximum (1RM) for each station with 4.6 circuits performed. The physiological stress of the CRT in this study was evident by the sustained heart rate of more than 70% of maximum for 16.6 minutes, with the last 12 minutes at more than 80%. Despite the large anaerobic component in CRT, Vo(2) was sustained at 50% or more of maximum for the final 12 minutes. Treadmill running, involving large muscle groups, increased Vo(2) more rapidly than CRT, where alternating larger and smaller muscle groups were used. In addition, at the same Vo(2) heart rate differed significantly between the 2 modes of activity. Heart rate in CRT was higher (at 165) than the heart rate of 150 found during treadmill running at the same 50% Vo(2). Such workouts may be used in a training cycle in classical linear periodization or in a nonlinear program day targeting local muscular endurance under intense cardiorespiratory conditions, which may help individuals develop enhanced toleration of physiological environments where high cardiovascular demands and higher lactate concentrations are present.
Manter, Daniel K; Kavanagh, Kathleen L; Rose, Cathy L
2005-08-01
High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in 1-year-old Douglas-fir seedlings. After 1 year of N fertilization, total seedling biomass increased with each successive increase in N fertilizer concentration, except in the highest N fertilization treatment. Of the many physiological responses that were analyzed, only photosynthetic capacity (i.e., Vcmax), respiration rates and leaf specific conductance (KL) differed significantly between N treatments. Photosynthetic capacity showed a curvilinear relationship with foliar [N], reaching an apparent maximum rate when needle N concentrations exceeded about 12 mg g(-1). In vitro measurements of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity suggested that photosynthetic capacity was best related to activated, not total, Rubisco content. Rubisco activation state declined as foliar [N] increased, and based on its significant correlation (r2= 0.63) with foliar Mn:Mg ratios, it may be related to Mn inactivation of Rubisco. Respiration rates increased linearly as foliar N concentration increased (r2= 0.84). The value of K(L) also increased as foliar [N] increased, reaching a maximum when foliar [N] exceeded about 10 mg g(-1). Changes in K(L) were unrelated to changes in leaf area or sapwood area because leaf area to sapwood area ratios remained constant. Cumulative effects of the observed physiological responses to N fertilization were analyzed by modeling annual net CO2 assimilation (Anet) based on treatment specific values of Vcmax, dark respiration (Rdark) and KL. Estimates of Anet were highly correlated with measured total seedling biomass (r2= 0.992), suggesting that long-term, cumulative effects of maximum Rubisco carboxylation, Rdark and KL responses to N fertilization may limit seedling production when foliar N exceeds about 13 mg g(-1) or is reduced to less than about 11 mg g(-1).
Robak, Tadeusz; Mainau, Claudia; Pyringer, Barbara; Chojnowski, Krzysztof; Warzocha, Krzysztof; Dmoszynska, Anna; Straub, Jan; Imbach, Paul
2010-10-01
Intravenous immunoglobulin (IVIg) has an established role in the treatment of immune thrombocytopenia (ITP). The safety and efficacy of a new ready-to-use IVIg 10% formulation (octagam(®) 10%) were investigated in a prospective phase III study in 116 adult patients with ITP (platelet count ≤20×10(9)/l). Sixty-six patients had chronic ITP and 49 were newly diagnosed. Patients received octagam 10% 1 g/kg/day on two consecutive days; infusion rate was adjusted according to tolerability to a maximum of 0·12 ml/kg/minute. Eighty per cent of patients attained the primary efficacy endpoint of clinical response (platelet count ≥50×10(9)/l within 6 days of dosing). The median time to response was 2 days and the median duration of response was 12 days; mean response duration was 24·1 days. octagam 10% was well tolerated and effective in this population representative of adult patients with ITP, even at the maximum infusion rate of 0·12 ml/kg/minute, without unexpected safety issues.
Hu, Jiang-Ning; Lee, Jeung-Hee; Zhu, Xue-Mei; Shin, Jung-Ah; Adhikari, Prakash; Kim, Jae-Kyung; Lee, Ki-Teak
2008-11-26
In the lipase (Novozyme 435)-catalyzed synthesis of ginsenoside Rb1 esters, different acyl donors were found to affect not only the degree of conversion but also the regioselectivity. The reaction of acyl donors with short carbon chain was more effective, showing higher conversion than those with long carbon chain. Among the three solvent systems, the reaction in tert-amyl alcohol showed the highest conversion rate, while the reaction in the mixed solvent of t-BuOH and pyridine (1:1) had the lowest conversion rate. To allow the increase of GRb1 lipophilicity, we decided to further study the optimal condition of synthesis of GRb1 with vinyl decanoate with 10 carbon chain fatty acids in tert-amyl alcohol. Response surface methodology (RSM) was employed to optimize the synthesis condition. From the ridge analysis with maximum responses, the maximum GRb1 conversion was predicted to be 61.51% in a combination of factors (40.2 h, 52.95 degrees C, substrate mole ratio 275.57, and enzyme amount 39.81 mg/mL). Further, the adequacy of the predicted model was examined by additional independent experiments at the predicted maximum synthesis conditions. Results showed that the RSM was effective to optimize a combination of factors for lipase-catalyzed synthesis of ginsenoside Rb1 with vinyl decanoate.
Angur, M G; Nataraajan, R; Chawla, S K
1994-01-01
Health and fitness centers are becoming increasingly aware of their importance in the realm of preventive health care. Many hospitals have begun to open and run fitness centers, a trend that seems very likely to continue. In a competitive environment, every center would desire to obtain maximum valid customer information at minimum cost, and this paper addresses this issue. The authors investigate the confluence of both appeal and researcher credibility on mail questionnaire response rates from a metropolitan membership of a large fitness center. Personal appeal with high researcher credibility was found to generate significantly higher response rate followed by the hybrid appeal with low researcher credibility.
Chambers, Jeffrey Q; Silver, Whendee L
2004-01-01
Atmospheric changes that may affect physiological and biogeochemical processes in old-growth tropical forests include: (i) rising atmospheric CO2 concentration; (ii) an increase in land surface temperature; (iii) changes in precipitation and ecosystem moisture status; and (iv) altered disturbance regimes. Elevated CO2 is likely to directly influence numerous leaf-level physiological processes, but whether these changes are ultimately reflected in altered ecosystem carbon storage is unclear. The net primary productivity (NPP) response of old-growth tropical forests to elevated CO2 is unknown, but unlikely to exceed the maximum experimentally measured 25% increase in NPP with a doubling of atmospheric CO2 from pre-industrial levels. In addition, evolutionary constraints exhibited by tropical plants adapted to low CO2 levels during most of the Late Pleistocene, may result in little response to increased carbon availability. To set a maximum potential response for a Central Amazon forest, using an individual-tree-based carbon cycling model, a modelling experiment was performed constituting a 25% increase in tree growth rate, linked to the known and expected increase in atmospheric CO2. Results demonstrated a maximum carbon sequestration rate of ca. 0.2 Mg C per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), and a sequestration rate of only 0.05 Mg C ha(-1) yr(-1) for an interval centred on calendar years 1980-2020. This low rate results from slow growing trees and the long residence time of carbon in woody tissues. By contrast, changes in disturbance frequency, precipitation patterns and other environmental factors can cause marked and relatively rapid shifts in ecosystem carbon storage. It is our view that observed changes in tropical forest inventory plots over the past few decades is more probably being driven by changes in disturbance or other environmental factors, than by a response to elevated CO2. Whether these observed changes in tropical forests are the beginning of long-term permanent shifts or a transient response is uncertain and remains an important research priority. PMID:15212096
NASA Astrophysics Data System (ADS)
Massanelli, J.; Meadows-McDonnell, M.; Konzelman, C.; Moon, J. B.; Kumar, A.; Thomas, J.; Pereira, A.; Naithani, K. J.
2016-12-01
Meeting agricultural water demands is becoming progressively difficult due to population growth and changes in climate. Breeding stress-resilient crops is a viable solution, as information about genetic variation and their role in stress tolerance is becoming available due to advancement in technology. In this study we screened eight diverse rice genotypes for photosynthetic capacity under greenhouse conditions. These include the Asian rice (Oryza sativa) genotypes, drought sensitive Nipponbare, and a transgenic line overexpressing the HYR gene in Nipponbare; six genotypes (Vandana, Bengal, Nagina-22, Glaberrima, Kaybonnet, Ai Chueh Ta Pai Ku) and an African rice O. glaberrima, all selected for varying levels of drought tolerance. We collected CO2 and light response curve data under well-watered and simulated drought conditions in greenhouse. From these curves we estimated photosynthesis model parameters, such as the maximum carboxylation rate (Vcmax), the maximum electron transport rate (Jmax), the maximum gross photosynthesis rate, daytime respiration (Rd), and quantum yield (f). Our results suggest that O. glaberrima and Nipponbare were the most sensitive to drought because Vcmax and Pgmax declined under drought conditions; other drought tolerant genotypes did not show significant changes in these model parameters. Our integrated approach, combining genetic information and photosynthesis modeling, shows promise to quantify drought response parameters and improve crop yield under drought stress conditions.
Natural migration rates of trees: Global terrestrial carbon cycle implications. Book chapter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, A.M.
The paper discusses the forest-ecological processes which constrain the rate of response by forests to rapid future environmental change. It establishes a minimum response time by natural tree populations which invade alien landscapes and reach the status of a mature, closed canopy forest when maximum carbon storage is realized. It considers rare long-distance and frequent short-distance seed transport, seedling and tree establishment, sequential tree and stand maturation, and spread between newly established colonies.
Wen, Qinxue; Chen, Zhiqiang; Wang, Changyong; Ren, Nanqi
2012-01-01
Two acetate-fed sequencing batch reactors (SBR) were operated under an aerobic dynamic feeding (ADF) model (SBR#2) and with anaerobic phase before aerobic phase (SBR#1) to select mixed cultures with a high polyhydroxyalkanoates (PHA) storage response. Although kinetic selection based on storage response should bring about a predominance of floc-formers, a bulking sludge with storage response comparable to well-settled sludge was steadily established. An anaerobic phase was introduced before the aerobic phase in the ADF model to improve the sludge settleability (SBR #1), however, due to the consequent increased feast/famine ratio, the performance of SBR #1, in terms of both the maximum PHB (polyhydroxybutyrate) cell content and deltaPHB, was lower than that of SBR #2. SBR #2 gradually reached a steady state while SBR #1 failed suddenly after 50 days of operation. The maximum specific substrate uptake rate and storage rate for the selected bulking sludge were 0.4 Cmol Ac/(Cmol X x hr) and 0.18 Cmol Ac/(Cmol PHB x hr), respectively, resulting a yield of 0.45 Cmol PHB/(Cmol Ac) in SBR #2 in the culture enrichment phase. A maximum PHB content of 53% of total suspended solids and PHB storage rate of 1.36 Cmol Ac/(Cmol PHB x hr) was achieved at 10.2 hr in batch accumulation tests under nitrogen starvation. The results indicated that it was feasible to utilize filamentous bacteria to accumulate PHA with a rate comparable to well-settled sludge. Furthermore, the lower dissolved oxygen demand of filamentous bacteria would save energy required for aeration in the culture enrichment stage.
Scan-rate-dependent current rectification of cone-shaped silica nanopores in quartz nanopipettes.
Guerrette, Joshua P; Zhang, Bo
2010-12-08
Here we report the voltammetric behavior of cone-shaped silica nanopores in quartz nanopipettes in aqueous solutions as a function of the scan rate, v. Current rectification behavior for silica nanopores with diameters in the range 4-25 nm was studied. The rectification behavior was found to be strongly dependent on the scan rate. At low scan rates (e.g., v < 1 V/s), the rectification ratio was found to be at its maximum and relatively independent of v. At high scan rates (e.g., v > 200 V/s), a nearly linear current-voltage response was obtained. In addition, the initial voltage was shown to play a critical role in the current-voltage response of cone-shaped nanopores at high scan rates. We explain this v-dependent current-voltage response by ionic redistribution in the vicinity of the nanopore mouth.
Methodological aspects of crossover and maximum fat-oxidation rate point determination.
Michallet, A-S; Tonini, J; Regnier, J; Guinot, M; Favre-Juvin, A; Bricout, V; Halimi, S; Wuyam, B; Flore, P
2008-11-01
Indirect calorimetry during exercise provides two metabolic indices of substrate oxidation balance: the crossover point (COP) and maximum fat oxidation rate (LIPOXmax). We aimed to study the effects of the analytical device, protocol type and ventilatory response on variability of these indices, and the relationship with lactate and ventilation thresholds. After maximum exercise testing, 14 relatively fit subjects (aged 32+/-10 years; nine men, five women) performed three submaximum graded tests: one was based on a theoretical maximum power (tMAP) reference; and two were based on the true maximum aerobic power (MAP). Gas exchange was measured concomitantly using a Douglas bag (D) and an ergospirometer (E). All metabolic indices were interpretable only when obtained by the D reference method and MAP protocol. Bland and Altman analysis showed overestimation of both indices with E versus D. Despite no mean differences between COP and LIPOXmax whether tMAP or MAP was used, the individual data clearly showed disagreement between the two protocols. Ventilation explained 10-16% of the metabolic index variations. COP was correlated with ventilation (r=0.96, P<0.01) and the rate of increase in blood lactate (r=0.79, P<0.01), and LIPOXmax correlated with the ventilation threshold (r=0.95, P<0.01). This study shows that, in fit healthy subjects, the analytical device, reference used to build the protocol and ventilation responses affect metabolic indices. In this population, and particularly to obtain interpretable metabolic indices, we recommend a protocol based on the true MAP or one adapted to include the transition from fat to carbohydrate. The correlation between metabolic indices and lactate/ventilation thresholds suggests that shorter, classical maximum progressive exercise testing may be an alternative means of estimating these indices in relatively fit subjects. However, this needs to be confirmed in patients who have metabolic defects.
Constant strain rate experiments and constitutive modeling for a class of bitumen
NASA Astrophysics Data System (ADS)
Reddy, Kommidi Santosh; Umakanthan, S.; Krishnan, J. Murali
2012-08-01
The mechanical properties of bitumen vary with the nature of the crude source and the processing methods employed. To understand the role of the processing conditions played in the mechanical properties, bitumen samples derived from the same crude source but processed differently (blown and blended) are investigated. The samples are subjected to constant strain rate experiments in a parallel plate rheometer. The torque applied to realize the prescribed angular velocity for the top plate and the normal force applied to maintain the gap between the top and bottom plate are measured. It is found that when the top plate is held stationary, the time taken by the torque to be reduced by a certain percentage of its maximum value is different from the time taken by the normal force to decrease by the same percentage of its maximum value. Further, the time at which the maximum torque occurs is different from the time at which the maximum normal force occurs. Since the existing constitutive relations for bitumen cannot capture the difference in the relaxation times for the torque and normal force, a new rate type constitutive model, incorporating this response, is proposed. Although the blended and blown bitumen samples used in this study correspond to the same grade, the mechanical responses of the two samples are not the same. This is also reflected in the difference in the values of the material parameters in the model proposed. The differences in the mechanical properties between the differently processed bitumen samples increase further with aging. This has implications for the long-term performance of the pavement.
Smith, Nicholas G; Dukes, Jeffrey S
2017-11-01
While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.
Physiological responses during continuous work in hot dry and hot humid environments in Indians
NASA Astrophysics Data System (ADS)
Sen Gupta, J.; Swamy, Y. V.; Pichan, G.; Dimri, G. P.
1984-06-01
Studies have been conducted on six young healthy heat acclimatised Indians to determine the physiological changes in prolonged continuous work in thermally neutral and in hot dry and hot humid environments. Physiological responses in maximal efforts i.e. Vo2 max, VE max and Cf max were noted. In addition, duration in continuous work at three sub-maximal rate of work in three simulated environments were also noted. Physiological responses like Vo2, VE and Cf were noted every 15 minutes of work. Besides these responses, rectal temperature (Tre), mean skin temperature (Ts) and mean sweat rate were also recorded during continuous work. Results indicated a significant decrease in maximum oxygen uptake capacity (Vo2 max) in heat with no change in maximum exercise ventilation (VE max) and maximum cardiac frequency. However, the fall in Vo2 max was more severe in the hot humid environment than in the hot dry climate. Cardiac frequency at fixed oxygen consumption of 1.0, 1.5 and 2.0 l/min was distinctly higher in the hot humid environment than in the hot dry and comfortable temperature. The duration in continuous physical effort in various grades of activities decreased in hot dry environment from that in the-comfortable climate and further decreased significantly in hot humid environment. The highest rate of sweating was observed during work in humid heat. The mean skin temperature (Ts) showed a fall in all the three rates of work in comfortable and hot dry conditions whereas in hot humid environment it showed a linear rise during the progress of work. The rectal temperature on the other hand maintained a near steady state while working at 65 and 82 watts in comfortable and hot dry environments but kept on rising during work in hot humid environment. At the highest work rate of 98 watts, the rectal temperature showed a steady increase even in the hot dry condition. It was thus concluded from the study that a hot humid climate imposes more constraints on the thermoregulatory system during work than in the hot dry condition because of less effective heat dissipation so resulting in reduced tolerance to work.
The plasma membrane-associated NADH oxidase of spinach leaves responds to blue light
NASA Technical Reports Server (NTRS)
Morre, D. James; Penel, Claude; Greppin, Hubert; Morre, Dorothy M.
2002-01-01
The plasma membrane-associated NADH oxidase (NOX) of spinach leaf disks is characterized by oscillations in activity with a regular period length of ca. 24 min. Within a single population of plants exposed to light at the same time, NOX activities of all plants function synchronously. Exposure of plants transferred from darkness to blue light (495 nm, 2 min, 50 micromoles m-2 s-1) resulted in a complex response pattern but with a new maximum in the rate of NOX activity 36 (24+12) min after illumination and then with maxima in the rate of NOX activity every 24 min thereafter. Transient maxima in NOX activity were observed as well after 9.3 + /- 1.4 and 20.7 +/- 2.1 min. The blue light response differed from the response to red (650 nm, 10 min, 50 micromoles m-2 s-1) or white light where activity maxima were initiated 12 min after the light exposure followed by maxima every 24 min thereafter. Green or yellow light was ineffective. The light response was independent of the time in the 24-min NOX cycle when the light was given. The net effects of blue and red light were ultimately the same with a new maximum in the rate of NOX activity at 12+24=36 min (and every 24 min thereafter), but the mechanisms appear to be distinct.
Beh, K J
1979-01-01
The output of antibody-containing cells (ACC) was monitored in efferent ileal lymph after continuous infusion of ovalbumin into the ileum of sheep with and without the adjuvant DEAE-dextran. When ovalbumin was infused at the slow rate of 5 ml/h, maximum outputs of 2.9 x 10(5) and 2.4 x 10(5 ACC/h were observed on days 9 and 16 respectively. When infused at the faster rate of 15 ml/h, peak levels of 6.9 x 10(5) and 11.7 x 10(5) ACC/h were recorded on days 10 and 16 respectively. The maximum response was substantially enhanced when ovalbumin was infused simultaneously with DEAE-dextran when a mean output of 51.7 x 10(5) ACC/h occurred on day 10. With all treatments the distribution of ACC amongst various immunoglobulin classes was similar. During the first few days of the response IgM-specific ACC predominated and later IgG1-specific ACC were most abundant. Throughout the response a substantial proportion (10-81%) of ACC in efferent ileal lymph were IgA-specific. PMID:572818
Changes During Recovery from Sodium Deficiency in Atriplex
Brownell, P. F.; Jackman, Margaret E.
1966-01-01
Although the concentration of sodium in leaves of Atriplex plants increased rapidly after receiving sodium, no growth response was detectable for about 6 days. It was found that respiration rate increased to its maximum within 3 days. Chlorophyll content also increased from an early stage, whereas the concentrations of sugars and starch did not increase, and ratios of soluble to total nitrogen did not decrease until later. The respiratory response appears to be specific to sodium as different salts of sodium caused similar responses, and no other univalent cation substituted for sodium. In addition, both growth response and respiration rate tended towards their maxima with the same concentration of applied sodium. The rate of anaerobic CO2 production increased when sodium was fed to leaves, suggesting that the effect of sodium is in the glycolytic sequence. PMID:16656296
Al-Baldawi, Israa Abdul Wahab; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Suja, Fatihah; Anuar, Nurina; Mushrifah, Idris
2014-07-01
This study investigated the optimum conditions for total petroleum hydrocarbon (TPH) removal from diesel-contaminated water using phytoremediation treatment with Scirpus grossus. In addition, TPH removal from sand was adopted as a second response. The optimum conditions for maximum TPH removal were determined through a Box-Behnken Design. Three operational variables, i.e. diesel concentration (0.1, 0.175, 0.25% Vdiesel/Vwater), aeration rate (0, 1 and 2 L/min) and retention time (14, 43 and 72 days), were investigated by setting TPH removal and diesel concentration as the maximum, retention time within the given range, and aeration rate as the minimum. The optimum conditions were found to be a diesel concentration of 0.25% (Vdiesel/Vwater), a retention time of 63 days and no aeration with an estimated maximum TPH removal from water and sand of 76.3 and 56.5%, respectively. From a validation test of the optimum conditions, it was found that the maximum TPH removal from contaminated water and sand was 72.5 and 59%, respectively, which was a 5 and 4.4% deviation from the values given by the Box-Behnken Design, providing evidence that S. grossus is a Malaysian native plant that can be used to remediate wastewater containing hydrocarbons. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft,M.; Jisrawi, N.; Zhong, Z.
High-energy synchrotron X-ray diffraction experiments are used to perform local crack plane strain profiling of 4140 steel compact tension specimens fatigued at constant amplitude, subjected to a single overload cycle, then fatigued some more at constant amplitude. X-ray strain profiling results on a series of samples employing in-situ load cycling are correlated with the crack growth rate (da/dN) providing insight into the da/dN retardation known as the 'overload effect'. Immediately after the overload, the strain under maximum load is greatly reduced but the range of strain, between zero and maximum load, remains unchanged compared to the pre-overload values. At themore » point of maximum retardation, it is the strain range that is greatly reduced while the maximum-load strain has begun to recover to the pre-overload value. For a sample that has recovered to approximately half of the original da/dN value following the overload, the strain at maximum load is fully recovered while the strain range, though partially recovered, is still substantially reduced. The dominance of the strain range in the overload effect is clearly indicated. Subject to some assumptions, strong quantitative support for a crack growth rate driving force of the suggested form [(K{sub max}){sup -p}({Delta}K){sup p}]{sup {gamma}} is found. A dramatic nonlinear load dependence in the spatial distribution of the strain at maximum retardation is also demonstrated: at low load the response is dominantly at the overload position; whereas at high loads it is dominantly at the crack tip position. This transfer of load response away from the crack tip to the overload position appears fundamental to the overload effect for high R-ratio fatigue as studied here.« less
Mewa-Ngongang, Maxwell; du Plessis, Heinrich W; Hutchinson, Ucrecia F; Mekuto, Lukhanyo; Ntwampe, Seteno Ko
2017-06-01
Biological antimicrobial compounds from yeast can be used to address the critical need for safer preservatives in food, fruit and beverages. The inhibition of Candida guilliermondii, a common fermented beverage spoilage organism, was achieved using antimicrobial compounds produced by Candida pyralidae KU736785. The antimicrobial production system was modelled and optimised using response surface methodology, with 22.5 ℃ and pH of 5.0 being the optimum conditions. A new concept for quantifying spoilage organism inhibition was developed. The inhibition activity of the antimicrobial compounds was observed to be at a maximum after 17-23 h of fermentation, with C. pyralidae concentration being between 0.40 and 1.25 × 10 9 CFU ml -1 , while its maximum specific growth rate was 0.31-0.54 h -1 . The maximum inhibitory activity was between 0.19 and 1.08 l contaminated solidified media per millilitre of antimicrobial compound used. Furthermore, the antimicrobial compound formation rate was 0.037-0.086 l VZI ml -1 ACU h -1 , respectively. The response surface methodology analysis showed that the model developed sufficiently described the antimicrobial compound formation rate 1.08 l VZI ml -1 ACU, as 1.17 l VZI ml -1 ACU, predicted under the optimum production conditions.
Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii®
Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato
2015-01-01
[Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii®. [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus® software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe’s test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii® can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii® in physical activity programs. PMID:26504308
Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii(®).
Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato
2015-09-01
[Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii(®). [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus(®) software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe's test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii(®) can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii(®) in physical activity programs.
Pyrotechnic shock measurement and data analysis requirements
NASA Technical Reports Server (NTRS)
Albers, L.
1975-01-01
A study of laboratory measurement and analysis of pyrotechnic shock prompted by a discrepancy in preliminary Mariner Jupiter/Saturn shock test data is reported. It is shown that before generating shock response plots from any recorded pyrotechnic event, a complete review of each instrumentation and analysis system must be made. In addition, the frequency response capability of the tape recorder used should be as high as possible; the discrepancies in the above data were due to inadequate frequency response in the FM tape recorders. The slew rate of all conditioning amplifiers and input converters must be high enough to prevent signal distortion at maximum input voltage; amplifier ranges should be selected so that the input pulse is approximately 50% of full scale; the Bessel response type should be chosen for digital shock analysis if antialiasing filters are employed; and transducer selection must consider maximum acceleration limit, mounted resonance frequency, flat clean mounting surfaces, base bending sensitivity, and proper torque.
de Toledo, M A; Reis, P R; da Silveira, E C; de P Marafeli, P; de Souza-Pimentel, G C
2013-04-01
This study evaluated the predatory capacity of Euseius alatus (DeLeon) as a biological control agent of the pest mite Oligonychus ilicis (McGregor) on coffee leaves under laboratory conditions, using arenas containing 25 O. ilicis per coffee (Coffea arabica) leaf to one specimen of each stage of the predator mite. The functional response and oviposition rate of adult females of E. alatus were evaluated on coffee leaf arenas and offered from 1 to 125 immature stages of O. ilicis per arena. The number of preys killed and the number of eggs laid by the predator were evaluated every 24 h during 8 days. The preys consumed were daily replaced. Male and female adults of E. alatus were the most efficient in killing all developmental stages of O. ilicis. Larvae and nymphs of O. ilicis were the most consumed by all stages of the predatory mite. The functional response and oviposition rates of E. alatus increased as the prey density increased, with a positive and highly significant correlation. Regression analysis suggested a type II functional response, with a maximum predation of 22 O. ilicis/arena and a maximum oviposition rate of 1.7 eggs/day at a density of 70 O. ilicis/arena.
McMinn, Andrew; Lee, Shihong
2018-06-01
Micro glucose biosensors were used to measure net extracellular glucose produced by natural microphytobenthos and three diatom cultures (Amphora coffeaeformis, Navicula menisculus, Nitzschia longissima) from southern Tasmania, Australia. They were exposed to a light gradient in either nutrient-replete or nutrient-limiting conditions. Glucose exudation in the natural communities increased with increased light but the response in the cultures was variable. Similarly, nutrient-replete conditions elicited lower rates of glucose exudation in the natural communities but produced variable species-specific responses in the cultures. Increased glucose exudation mostly correlated with a reduction in maximum quantum yield (F v /F m ). The same trend was observed in the natural communities for relative maximum electron transfer rates (rETR max ) but responses in the cultures were again variable and species-specific. Responses of the three species to increased light and nutrient deficiency were variable, although glucose exudation, F v /F m and rETR max was mostly lower in the nutrient-limited media. In a second set of experiments species/communities were treated with/without antibiotics. In the dark, glucose concentrations in treatments with antibiotics remained unchanged, while in those with bacteria, it fell rapidly. In the sediment communities, glucose consumption in the dark was ~25% the rate of exudation at the highest light level. In culture, exudation rates were up to 100% greater than those with active bacteria. Rates of glucose consumption in the dark in the antibiotic-treated samples were negligible and up to 10 4 times lower than those with active bacteria. These results demonstrate the important role extracellular glucose exudation has on maintaining an active microbial loop. © 2018 Phycological Society of America.
Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Mark, W. D.
1981-01-01
A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.
Sipe, Grayson O; Dearworth, James R; Selvarajah, Brian P; Blaum, Justin F; Littlefield, Tory E; Fink, Deborah A; Casey, Corinne N; McDougal, David H
2011-01-01
Our goal in this study was to examine the red-eared slider turtle for a photomechanical response (PMR) and define its spectral sensitivity. Pupils of enucleated eyes constricted to light by ∼11%, which was one-third the response measured in alert behaving turtles at ∼33%. Rates of constriction in enucleated eyes that were measured by time constants (1.44-3.70 min) were similar to those measured in turtles at 1.97 min. Dilation recovery rates during dark adaptation for enucleated eyes were predicted using line equations and computed times for reaching maximum sizes between 26 and 44 min. Times were comparable to the measures in turtles where maximum pupil size occurred within 40 min and possessed a time constant of 12.78 min. Hill equations were used to derive irradiance threshold values from enucleated hemisected eyes and then plot a spectral sensitivity curve. The analysis of the slopes and maximum responses revealed contribution from at least two different photopigments, one with a peak at 410 nm and another with a peak at 480 nm. Fits by template equations suggest that contractions are triggered by multiple photopigments in the iris including an opsin-based visual pigment and some other novel photopigment, or a cryptochrome with an absorbance spectrum significantly different from that used in our model. In addition to being regulated by retinal feedback via parasympathetic nervous pathways, the results support that the iris musculature is photointrinsically responsive. In the turtle, the control of its direct pupillary light response (dPLR) includes photoreceptive mechanisms occurring both in its iris and in its retina. Copyright © 2010 Elsevier Ltd. All rights reserved.
Killeen, Peter R.; Sitomer, Matthew T.
2008-01-01
Mathematical Principles of Reinforcement (MPR) is a theory of reinforcement schedules. This paper reviews the origin of the principles constituting MPR: arousal, association and constraint. Incentives invigorate responses, in particular those preceding and predicting the incentive. The process that generates an associative bond between stimuli, responses and incentives is called coupling. The combination of arousal and coupling constitutes reinforcement. Models of coupling play a central role in the evolution of the theory. The time required to respond constrains the maximum response rates, and generates a hyperbolic relation between rate of responding and rate of reinforcement. Models of control by ratio schedules are developed to illustrate the interaction of the principles. Correlations among parameters are incorporated into the structure of the models, and assumptions that were made in the original theory are refined in light of current data. PMID:12729968
Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines
Rogiers, Suzy Y.; Clarke, Simon J.
2013-01-01
Background and Aims Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Methods Here nocturnal and daytime leaf gas exchange was quantified in ‘Shiraz’ grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Key Results Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO2 response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. Conclusions In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable. PMID:23293018
Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines.
Rogiers, Suzy Y; Clarke, Simon J
2013-03-01
Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Here nocturnal and daytime leaf gas exchange was quantified in 'Shiraz' grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO(2) response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable.
A Study of the Response of the Human Cadaver Head to Impact
Hardy, Warren N.; Mason, Matthew J.; Foster, Craig D.; Shah, Chirag S.; Kopacz, James M.; Yang, King H.; King, Albert I.; Bishop, Jennifer; Bey, Michael; Anderst, William; Tashman, Scott
2008-01-01
High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests. Peak average maximum principal strain and maximum shear increase with increasing linear acceleration, coup pressure, and coup pressure rate. Linear and angular acceleration of the head are reduced with use of a helmet, but strain increases. These results can be used for the validation of finite element models of the human head. PMID:18278591
Ordaz, Alberto; Sánchez, Mariana; Rivera, Rodrigo; Rojas, Rafael; Zepeda, Alejandro
2017-02-01
A nitrifying consortium was kinetically, stoichiometrically and molecularly characterized via the in situ pulse respirometric method and pyrosequencing analysis before and after the addition of m-cresol (25 mg C L -1 ) in a sequencing batch reactor (SBR). Five important kinetic and stoichiometric parameters were determined: the maximum oxygen uptake rate, the maximum nitrification rate, the oxidation yield, the biomass growth yield, and the substrate affinity constant. An inhibitory effect was observed in the nitrification process with a recovery of this by up to eight SBR cycles after m-cresol was added to the system. However, full recovery of the nitrification process was not observed, as the maximum oxygen uptake rate was 25% lower than that of the previous operation without m-cresol addition. Furthermore, the pyrosequencing analyses of the nitrifying consortium after the addition of only two pulses of 25 mg C L -1 m-cresol showed an important microbial community change represented by a decrease in the nitrifying populations and an increase in the populations degrading phenolic compounds.
Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading
NASA Technical Reports Server (NTRS)
Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.
2005-01-01
The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.
Quality evaluation of millet-soy blended extrudates formulated through linear programming.
Balasubramanian, S; Singh, K K; Patil, R T; Onkar, Kolhe K
2012-08-01
Whole pearl millet, finger millet and decorticated soy bean blended (millet soy) extrudates formulations were designed using a linear programming (LP) model to minimize the total cost of the finished product. LP formulated composite flour was extruded through twin screw food extruder at different feed rate (6.5-13.5 kg/h), screw speed (200-350 rpm, constant feed moisture (14% wb), barrel temperature (120 °C) and cutter speed (15 rpm). The physical, functional, textural and pasting characteristics of extrudates were examined and their responses were studied. Expansion index (2.31) and sectional expansion index (5.39) was found to be was found maximum for feed rate and screw speed combination 9.5 kg/h and 250 rpm. However, density (0.25 × 10(-3) g/mm(3)) was maximum for 9.5 kg/h and 300 rpm combination. Maximum color change (10.32) was found for 9.5 kg/h feed rate and 200 rpm screw speed. The lower hardness was obtained for the samples extruded at lowest feed rate (6.5 kg/h) for all screw speed and feed rate at 9.5 kg/h for 300-350 rpm screw speed. Peak viscosity decreases with all screw speed of 9.5 kg/h feed rate.
High Strain Rate Material Behavior
1985-12-01
data. iii Mr. Dennis Paisely conducted the single plate impact test. Mr. Danny Yaziv is responsible for developing the double flyer plate technique and...neck developed . The sharp rise in the flow stress is due to the increased strain-rates during necking. The maximum observed value of effective stress...for the material modeling. Computer programs and special purpose subroutines were developed to use the Bodner-Partom model in the STEALTH finite
Dey, Pinaki; Rangarajan, Vivek
2017-10-01
Experimental investigations were carried out for Cupriavidus necator (MTCC 1472)-based improved production of poly-3 hydroxy butyrate (PHB) through induced nitrogen limiting fed-batch cultivation strategies. Initially Plackett-Burman design and response surface methodology were implemented to optimize most influencing process parameters. With optimized process parameter values, continuous feeding strategies ware applied in a 5-l fermenter with table sugar concentration of 100 g/l, nitrogen concentration of 0.12 g/l for fed-batch fermentation with varying dilution rates of 0.02 and 0.046 1/h. To get enriched production of PHB, concentration of the sugar was further increased to 150 and 200 g/l in feeding. Maximum concentrations of PHB achieved were 22.35 and 23.07 g/l at those dilution rates when sugar concentration maintains at 200 g/l in feeding. At maximum concentration of PHB (23.07 g/l), productivity of 0.58 g/l h was achieved with maximum PHB accumulation efficiency up to 64% of the dry weight of biomass. High purity of PHB, close to medical grade was achieved after surfactant hypochlorite extraction method, and it was further confirmed by SEM, EDX, and XRD studies.
NASA Astrophysics Data System (ADS)
Zhang, Jingdong; Zhu, Tao; Zheng, Hua; Kuang, Yang; Liu, Min; Huang, Wei
2017-04-01
The round trip time of the light pulse limits the maximum detectable frequency response range of vibration in phase-sensitive optical time domain reflectometry (φ-OTDR). We propose a method to break the frequency response range restriction of φ-OTDR system by modulating the light pulse interval randomly which enables a random sampling for every vibration point in a long sensing fiber. This sub-Nyquist randomized sampling method is suits for detecting sparse-wideband- frequency vibration signals. Up to MHz resonance vibration signal with over dozens of frequency components and 1.153MHz single frequency vibration signal are clearly identified for a sensing range of 9.6km with 10kHz maximum sampling rate.
Effects of acute hyperthermia on the carotid baroreflex control of heart rate in humans
NASA Astrophysics Data System (ADS)
Yamazaki, F.; Sagawa, S.; Torii, R.; Endo, Y.; Shiraki, K.
The purpose of this study was to examine the effect of hyperthermia on the carotid baroreceptor-cardiac reflexes in humans. Nine healthy males underwent acute hyperthermia (esophageal temperature 38.0° C) produced by hot water-perfused suits. Beat-to-beat heart rate (HR) responses were determined during positive and negative R-wave-triggered neck pressure steps from +40 to -65 mm Hg during normothermia and hyperthermia. The carotid baroreceptor-cardiac reflex sensitivity was evaluated from the maximum slope of the HR response to changes in carotid distending pressure. Buffering capacity of the HR response to carotid distending pressure was evaluated in % from a reference point calculated as (HR at 0 mm Hg neck pressure-minimum HR)/HR range ×100. An upward shift of the curve was evident in hyperthermia because HR increased from 57.7+/-2.4 beats/min in normothermia to 88.7+/-4.1 beats/min in hyperthermia (P<0.05) without changes in mean arterial pressure. The maximum slope of the curve in hyperthermia was similar to that in normothermia. The reference point was increased (P<0.05) during hyperthermia. These results suggest that the sensitivity of the carotid baroreflex of HR remains unchanged in hyperthermia. However, the capacity for tachycardia response to rapid onset of hypotension is reduced and the capacity for bradycardia response to sudden hypertension is increased during acute hyperthermia.
Modeling human orthostatic responses on the Moon and on Mars.
Beck, Paula; Tank, Jens; Gauger, Peter; Beck, Luis E J; Zirngibl, Hubert; Jordan, Jens; Limper, Ulrich
2018-06-01
Since manned missions to the Moon and Mars are planned, we conducted active standing tests with lunar, Martian, terrestrial, and 1.8 loads of inertial resistance (+G z ) modeled through defined parabolic flight maneuvers. We hypothesized that the cardiovascular response to active standing is proportional to the +G z load. During partial-+G z parabolic flights, 14 healthy test subjects performed active stand-up maneuvers under 1 +G z , lunar (0.16 +G z ), Martian (0.38 +G z ), and hyper inertial resistance (1.8 +G z ) while heart rate and finger blood pressure were continuously monitored. We quantified amplitudes and timing of orthostatic response immediately following standing up. The maximum early heart rate increase was 21 (SD ± 10) bpm with lunar, 23 (± 11) bpm with Martian, 34 (± 17) bpm with terrestrial +G z , and 40 (± 11) bpm hyper +G z . The time to maximum heart rate increased gradually with increasing loads of inertial resistance. The transient blood pressure reduction was most pronounced with hyper +G z but did not differ significantly between lunar and Martian +G z . The mean arterial pressure nadir was reached significantly later with Martian and lunar compared to 1 +G z . Paradoxically, the time for blood pressure to recover was shortest with terrestrial +G z . While load of inertial resistance directly affects the magnitude of the transient blood pressure reduction and heart rate response to active standing, blood pressure stabilization is most rapidly attained during terrestrial +G z . The observation might suggest that the human cardiovascular system is tuned to cope with orthostatic stress on earth.
Granath, Gustaf; Wiedermann, Magdalena M; Strengbom, Joachim
2009-09-01
Sphagnum, the main genus which forms boreal peat, is strongly affected by N and S deposition and raised temperature, but the physiological mechanisms behind the responses are largely unknown. We measured maximum photosynthetic rate (NP(max)), maximum efficiency of photosystem II [variable fluorescence (F (v))/maximum fluorescence yield (F (m))] and concentrations of N, C, chlorophyll and carotenoids as responses to N and S addition and increased temperature in Sphagnum balticum (a widespread species in the northern peatlands) in a 12-year factorial experiment. NP(max) did not differ between control (0.2 g N m(-2) year(-1)) and high N (3.0 g N m(-2) year(-1)), but was higher in the mid N treatment (1.5 g N m(-2) year(-1)). N, C, carotenoids and chlorophyll concentration increased in shoot apices after N addition. F (v)/F (m) did not differ between N treatments. Increased temperature (+3.6 degrees C) had a small negative effect on N concentration, but had no significant effect on NP(max) or F (v)/F (m). Addition of 2 g S m(-2) year(-1) showed a weak negative effect on NP(max) and F (v)/F (m). Our results suggest a unimodal response of NP(max) to N addition and tissue N concentration in S. balticum, with an optimum N concentration for photosynthetic rate of ~13 mg N g(-1). In conclusion, high S deposition may reduce photosynthetic capacity in Sphagnum, but the negative effects may be relaxed under high N availability. We suggest that previously reported negative effects on Sphagnum productivity under high N deposition are not related to negative effects on the photosynthetic apparatus, but differences in optimum N concentration among Sphagnum species may affect their competitive ability under different N deposition regimes.
Li, Jian; Kirkwood, Robert A; Baker, Luke J; Bosworth, David; Erotokritou, Kleanthis; Banerjee, Archan; Heath, Robert M; Natarajan, Chandra M; Barber, Zoe H; Sorel, Marc; Hadfield, Robert H
2016-06-27
We present low temperature nano-optical characterization of a silicon-on-insulator (SOI) waveguide integrated SNSPD. The SNSPD is fabricated from an amorphous Mo83Si17 thin film chosen to give excellent substrate conformity. At 350 mK, the SNSPD exhibits a uniform photoresponse under perpendicular illumination, corresponding to a maximum system detection efficiency of approximately 5% at 1550 nm wavelength. Under these conditions 10 Hz dark count rate and 51 ps full width at half maximum (FWHM) timing jitter is observed.
In Situ Rates of Sulfate Reduction in Response to Geochemical Perturbations
Kneeshaw, T.A.; McGuire, J.T.; Cozzarelli, I.M.; Smith, E.W.
2011-01-01
Rates of in situ microbial sulfate reduction in response to geochemical perturbations were determined using Native Organism Geochemical Experimentation Enclosures (NOGEEs), a new in situ technique developed to facilitate evaluation of controls on microbial reaction rates. NOGEEs function by first trapping a native microbial community in situ and then subjecting it to geochemical perturbations through the introduction of various test solutions. On three occasions, NOGEEs were used at the Norman Landfill research site in Norman, Oklahoma, to evaluate sulfate-reduction rates in wetland sediments impacted by landfill leachate. The initial experiment, in May 2007, consisted of five introductions of a sulfate test solution over 11 d. Each test stimulated sulfate reduction with rates increasing until an apparent maximum was achieved. Two subsequent experiments, conducted in October 2007 and February 2008, evaluated the effects of concentration on sulfate-reduction rates. Results from these experiments showed that faster sulfate-reduction rates were associated with increased sulfate concentrations. Understanding variability in sulfate-reduction rates in response to perturbations may be an important factor in predicting rates of natural attenuation and bioremediation of contaminants in systems not at biogeochemical equilibrium. Copyright ?? 2011 The Author(s). Journal compilation ?? 2011 National Ground Water Association.
USDA-ARS?s Scientific Manuscript database
In water-stressed soybean primary roots, elongation was maintained at well-watered rates in the apical 4 mm (region 1) but was progressively inhibited in the 4-8 mm region (region 2), which exhibits maximum elongation in well-watered roots. These responses are similar to previous results for the mai...
Morphology-based differences in the thermal response of freshwater phytoplankton.
Segura, Angel M; Sarthou, Florencia; Kruk, Carla
2018-05-01
The thermal response of maximum growth rate in morphology-based functional groups (MBFG) of freshwater phytoplankton is analysed. Contrasting an exponential Boltzmann-Arrhenius with a unimodal model, three main features were evaluated: (i) the activation energy of the rise ( E r ), (ii) the presence of a break in the thermal response and (iii) the activation energy of the fall ( E f ). The whole dataset ( N = 563) showed an exponential increase ( E r ∼ 0.5), a break around 24°C and no temperature dependence after the breakpoint ( E f = 0). Contrasting thermal responses among MBFG were found. All groups showed positive activation energy ( E r > 0), four showed no evidence of decline in growth rate (temperature range = 0-35°C) and two presented a breakpoint followed by a sharp decrease in growth rate. Our results evidenced systematic differences between MBFG in the thermal response and a coherent response significantly related to morphological traits other than size (i.e. within MBFG). These results provide relevant information for water quality modelling and climate change predictions. © 2018 The Author(s).
7 CFR 3565.210 - Maximum interest rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Maximum interest rate. 3565.210 Section 3565.210... AGRICULTURE GUARANTEED RURAL RENTAL HOUSING PROGRAM Loan Requirements § 3565.210 Maximum interest rate. The interest rate for a guaranteed loan must not exceed the maximum allowable rate specified by the Agency in...
Heitmar, R; Varma, C; De, P; Lau, Y C; Blann, A D
2016-11-01
To test the hypothesis of a significant relationship between systemic markers of renal and vascular function (processes linked to cardiovascular disease and its development) and retinal microvascular function in diabetes and/or cardiovascular disease. Ocular microcirculatory function was measured in 116 patients with diabetes and/or cardiovascular disease using static and continuous retinal vessel responses to three cycles of flickering light. Endothelial function was evaluated by von Willebrand factor (vWf), endothelial microparticles and soluble E selectin, renal function by serum creatinine, creatinine clearance and estimated glomerular filtration rate (eGFR). HbA1c was used as a control index. Central retinal vein equivalence and venous maximum dilation to flicker were linked to HbA1c (both p < 0.05). Arterial reaction time was linked to serum creatinine (p = 0.036) and eGFR (p = 0.039); venous reaction time was linked to creatinine clearance (p = 0.018). Creatinine clearance and eGFR were linked to arterial maximum dilatation (p < 0.001 and p = 0.003, respectively) and the dilatation amplitude (p = 0.038 and p = 0.048, respectively) responses in the third flicker cycle. Of venous responses to the first flicker cycle, HbA1c was linked to the maximum dilation response (p = 0.004) and dilatation amplitude (p = 0.017), vWf was linked to the maximum constriction response (p = 0.016), and creatinine clearance to the baseline diameter fluctuation (p = 0.029). In the second flicker cycle, dilatation amplitude was linked to serum creatinine (p = 0.022). Several retinal blood vessel responses to flickering light are linked to glycaemia and renal function, but only one index is linked to endothelial function. Renal function must be considered when interpreting retinal vessel responses.
Physiologic and perceptual responses during treadmill running with ankle weights.
Bhambhani, Y N; Gomes, P S; Wheeler, G
1990-03-01
This study examined the effects of ankle weighting on physiologic and perceptual responses during treadmill running in seven healthy, female recreational runners with a mean maximal aerobic power of 48.4 +/- 4.0 ml/kg/min. Each subject completed four experimental one-mile runs at individually selected treadmill running speeds with 0, 1.6, 3.2 and 4.8 kg weights on their ankles. The subjects selected a speed at which they would run (train) if their objectives were to significantly improve cardiovascular function and induce weight loss. Metabolic and cardiovascular responses were continuously monitored, and ratings of perceived exertion were recorded near the end of the activity. During the unweighted run, the subjects selected a running speed of 6.87 +/- 0.63 mph which resulted in a net energy expenditure of 0.153 kcal/kg/min or 1.34 +/- 0.16 kcal/kg/mile. This corresponded to a training intensity of 76.3% +/- 5.1% of maximum oxygen consumption or 88.1% +/- 9.7% of maximum heart rate. Addition of weight to the ankles caused a significant decrease (p less than .05) in the running speed selected and, therefore, did not result in any significant changes (p greater than .05) in the rate of oxygen consumption, heart rate or ratings of perceived exertion when compared to the unweighted condition. These observations are in contrast to previous studies on ankle weighting which were conducted at fixed treadmill running speeds. However, the use of ankle weights did have a tendency to increase gross and net energy expenditure of running when values were expressed in kcal/mile because of slower self-selected running speeds under these conditions. This increase in energy expenditure could be of physiologic significance if running with ankle weights was performed on a regular basis at a fixed distance.
Xu, Sheng; Chen, Wei; Huang, Yanqing; He, Xingyuan
2012-03-01
Responses of growth, photosynthesis and emission of volatile organic compounds of Pinus tabulaeformis exposed to elevated CO(2) (700 ppm) and O(3) (80 ppb) were studied in open top chambers. Elevated CO(2) increased growth, but it did not significantly (p > 0.05) affect net photosynthetic rate, stomatal conductance, chlorophyll content, the maximum quantum yield of photosystem II, or the effective quantum yield of photosystem II electron transport after 90 d of gas exposure. Elevated O(3) decreased growth (by 42.2% in needle weight and 25.8% in plant height), net photosynthetic rate and stomatal conductance after 90 d of exposure, but its negative effects were alleviated by elevated CO(2). Elevated O(3) significantly (p < 0.05) increased the emission rate of volatile organic compounds, which may be a helpful response to protect photosynthetic apparatus against O(3) damage.
Wang, Hongwu; Liu, Yanqing; Wei, Shoulian; Yan, Zijun
2012-05-01
Supercritical fluid extraction with carbon dioxide (SC-CO2 extraction) was performed to isolate essential oils from the rhizomes of Cyperus rotundus Linn. Effects of temperature, pressure, extraction time, and CO2 flow rate on the yield of essential oils were investigated by response surface methodology (RSM). The oil yield was represented by a second-order polynomial model using central composite rotatable design (CCRD). The oil yield increased significantly with pressure (p<0.0001) and CO2 flow rate (p<0.01). The maximum oil yield from the response surface equation was predicted to be 1.82% using an extraction temperature of 37.6°C, pressure of 294.4bar, extraction time of 119.8 min, and CO2 flow rate of 20.9L/h. Copyright © 2011 Elsevier Ltd. All rights reserved.
Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic.
Stewart, M; Stafford, K J; Dowling, S K; Schaefer, A L; Webster, J R
2008-03-18
The possibility that pain can be detected from changes in eye temperature and heart rate variability (HRV) during disbudding was examined in thirty calves, randomly assigned to four treatments: 1) sham handling (control), 2) local anaesthetic (LA, cornual nerve injection) and sham disbudded, 3) sham LA and disbudded, 4) LA and disbudded. During a 40 min sampling period, maximum eye temperature, behavior and HRV parameters were recorded continuously. One week later, twelve disbudded calves were injected with adrenocorticotrophic hormone (ACTH) or saline and maximum eye temperature was recorded. There was a rapid drop in eye temperature during the 5 min following disbudding without LA (P<0.05). Eye temperature then increased and was higher than baseline over the remaining sampling period following both disbudding procedures (P<0.001), a response which could not be explained by increased physical activity LA increased eye temperature prior to disbudding (P<0.001). Heart rate increased (P<0.001) during the 5 min following disbudding with and without LA, however, LF/HF ratio only increased during this time (P<0.01) following disbudding without LA. Eye temperature did not change following ACTH, suggesting that hypothalamus-pituitary-adrenal axis (HPA) activity is not responsible for the changes in eye temperature following disbudding. The increase in LF/HF ratio following disbudding without LA suggests an acute sympathetic response to pain, which could be responsible for the drop in eye temperature via vasoconstriction. HRV and eye temperature together may be a useful non-invasive and more immediate index of pain than HPA activity alone.
Wogar, M A; Bradshaw, C M; Szabadi, E
1991-01-01
The possible involvement of the ascending 5-hydroxytryptaminergic (5HTergic) pathways in the maintenance of operant behaviour by positive reinforcement was examined using a quantitative paradigm based on Herrnstein's (1970) equation which defines a hyperbolic relationship between steady-state response rate and reinforcement frequency in variable-interval schedules. Nine rats received injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei; 12 rats received sham injections. The rats were trained to steady-state in a series of variable-interval schedules of sucrose reinforcement affording a range of reinforcement frequencies. Herrnstein's equation was fitted to the data obtained from each rat and to the averaged data obtained from the two groups. The value of KH (the parameter expressing the reinforcement frequency needed to obtain the half-maximum response rate) was significantly lower in the lesioned group than in the control group; the values of Rmax (the parameter expressing the maximum response rate) did not differ significantly between the two groups. The levels of 5HT and 5-hydroxyindoleacetic acid in the parietal cortex, hippocampus, nucleus accumbens and hypothalamus were markedly reduced in all four regions in the lesioned group, but the levels of noradrenaline and dopamine were not significantly affected. The results indicate that damage to the central 5HTergic pathways resulted in an increase in the "value" of the sucrose reinforcer, without affecting the animals' response capacity. The results are consistent with the suggestion that the 5HTergic pathways may exert some limiting control on the "values" of certain reinforcers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurik, T.W.; Weber, J.A.; Gates, D.M.
1988-06-01
The response of CO{sub 2} exchange rate (CER) to temperature and light was determined for 14 dominant plant species of a northern deciduous hardwood forest in northern lower Michigan. Leaves at the top of the canopy had temperature optima near 25 C for CER, whereas leaves in the understory had optima near 20 C. There was no change in optimum temperature over the growing season, and overall shapes of response curves were similar among species. The lack of change in temperature optima may be a result of little change in growing conditions rather than a lack of ability to acclimatize.more » Nine of 11 species in the understory had no significant differences in light-saturated, maximum CERs, whereas at the top of the canopy Populus grandidentata had a higher maximum CER than Quercus rubra and Betula papyrifera. The species in the understory also differed little in light-saturation points for CER. Species at the top of the canopy had higher values for maximum CER, light-saturation point for CER, and maximum conductance than did species in the understory.« less
Glaser, Robert; Venus, Joachim
2014-12-01
The aim of this study was to extend the options for screening and characterization of microorganism through kinetic growth parameters. In order to obtain data, automated turbidimetric measurements were accomplished to observe the response of strains of Bacillus coagulans . For the characterization, it was decided to examine the influence of varying concentrations of lignin with respect to bacterial growth. Different mathematical models are used for comparison: logistic, Gompertz, Baranyi and Richards and Stannard. The growth response was characterized by parameters like maximum growth rate, maximum population, and the lag time. In this short analysis we present a mathematical approach towards a comparison of different microorganisms. Furthermore, it can be demonstrated that lignin in low concentrations can have a positive influence on the growth of B. coagulans .
Binning, Sandra A.; Ros, Albert F. H.; Nusbaumer, David; Roche, Dominique G.
2015-01-01
The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology. PMID:25807560
Effect of daily environmental temperature on farrowing rate and total born in dam line sows.
Bloemhof, S; Mathur, P K; Knol, E F; van der Waaij, E H
2013-06-01
Heat stress is known to adversely affect reproductive performance of sows. However, it is important to know on which days or periods during the reproduction cycle heat stress has the greatest effects for designing appropriate genetic or management strategies. Therefore, this study was conducted to identify days and periods that have greatest effects on farrowing rate and total born of sows using 5 different measures of heat stress. The data consisted of 22,750 records on 5024 Dutch Yorkshire dam line sows from 16 farms in Spain and Portugal. Heat stress on a given day was measured in terms of maximum temperature, diurnal temperature range and heat load. The heat load was estimated using 3 definitions considering different upper critical temperatures. Identification of days during the reproduction cycle that had maximum effect was based on the Pearson correlation between the heat stress variable and the reproduction trait, estimated for each day during the reproduction cycle. Polynomial functions were fitted to describe the trends of these correlations and the days with greatest negative correlation were considered as days with maximum effect. Correlations were greatest for maximum temperature, followed by those for heat load and diurnal temperature range. Correlations for both farrowing rate and total born were stronger in gilts than in sows. This implies that heat stress has a stronger effect on reproductive performance of gilts than of sows. Heat stress during the third week (21 to 14 d) before first insemination had largest effect on farrowing rate. Heat stress during the period between 7 d before successful insemination until 12 d after that had largest effect on total born. Correlations between temperatures on consecutive days during these periods were extremely high ( > 0.9). Therefore, for farrowing rate the maximum temperature on 21 d before first insemination and for total born the maximum temperature at day of successful insemination can be used as predictive measures of heat stress in commercial sow farms. Additionally, differences between daughter groups of sires were identified in response to high temperatures. This might indicate possibilities for genetic selection on heat tolerance.
NASA Technical Reports Server (NTRS)
Covington, M. A.
2005-01-01
New tests and analyses are reported that were carried out to resolve testing uncertainties in the original development and qualification of a lightweight ablative material used for the Stardust spacecraft forebody heat shield. These additional arcjet tests and analyses confirmed the ablative and thermal performance of low density Phenolic Impregnated Carbon Ablator (PICA) material used for the Stardust design. Testing was done under conditions that simulate the peak convective heating conditions (1200 W/cm2 and 0.5 atm) expected during Earth entry of the Stardust Sample Return Capsule. Test data and predictions from an ablative material response computer code for the in-depth temperatures were compared to guide iterative adjustment of material thermophysical properties used in the code so that the measured and predicted temperatures agreed. The PICA recession rates and maximum internal temperatures were satisfactorily predicted by the computer code with the revised properties. Predicted recession rates were also in acceptable agreement with measured rates for heating conditions 37% greater than the nominal peak heating rate of 1200 W/sq cm. The measured in-depth temperature response data show consistent temperature rise deviations that may be caused by an undocumented endothermic process within the PICA material that is not accurately modeled by the computer code. Predictions of the Stardust heat shield performance based on the present evaluation provide evidence that the maximum adhesive bondline temperature will be much lower than the maximum allowable of 250 C and an earlier design prediction. The re-evaluation also suggests that even with a 25 percent increase in peak heating rates, the total recession of the heat shield would be a small fraction of the as-designed thickness. These results give confidence in the Stardust heat shield design and confirm the potential of PICA material for use in new planetary probe and sample return applications.
Physiological analysis to quantify training load in badminton.
Majumdar, P; Khanna, G L; Malik, V; Sachdeva, S; Arif, M; Mandal, M
1997-01-01
OBJECTIVE: To estimate the training load of specific on court training regimens based on the magnitude of variation of heart rate-lactate response during specific training and to determine the magnitude of variation of biochemical parameters (urea, uric acid, and creatine phosphokinase (CPK)) 12 hours after the specific training programme so as to assess training stress. METHODS: The study was conducted on six national male badminton players. Maximum oxygen consumption (VO2), ventilation (VE), heart rate, and respiratory quotient were measured by a protocol of graded treadmill exercise. Twelve training sessions and 35 singles matches were analysed. Heart rate and blood lactate were monitored during technical training routines and match play. Fasting blood samples collected on two occasions--that is, during off season and 12 hours after specific training--were analysed for serum urea, uric acid, and CPK. RESULTS: Analysis of the on court training regimens showed lactate values of 8-10.5 mmol/l in different phases. The percentage of maximum heart rate ranged from 82% to 100%. Urea, uric acid, and CPK activity showed significant changes from (mean (SD)) 4.93 (0.75) mmol/l to 5.49 (0.84) mmol/l, 0.23 (0.04) to 0.33 (0.06) mmol/l, and 312 (211.8) to 363 (216.4) IU/l respectively. CONCLUSION: Maximum lactate reported in the literature ranges from 3-6 mmol/l. Comparatively high lactate values and high percentage of maximum heart rate found in on court training show a considerable stress on muscular and cardiovascular system. The training load needs appropriate monitoring to avoid over-training. Workouts that are too intensive may interfere with coordination, a factor that is important in sports requiring highly technical skill such as badminton. PMID:9429015
40 CFR 205.174 - Remedial orders.
Code of Federal Regulations, 2010 CFR
2010-07-01
... power (maximum rated RPM) is developed; and (B) Response characteristics such that, when closing RPM is...-state accuracy of within ±10% at 20 km/h (12.4 mph). (5) A microphone wind screen which does not affect... microphone wind screen must be used. The sound level meter must be calibrated with the acoustic calibrator as...
Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean.
Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Wang, Tobias; Bayley, Mark
2014-03-01
In aquatic environments, rising water temperatures reduce water oxygen content while increasing oxygen demand, leading several authors to propose cardiorespiratory oxygen transport capacity as the main determinant of aquatic animal fitness. It has also been argued that tropical species, compared with temperate species, live very close to their upper thermal limit and hence are vulnerable to even small elevations in temperature. Little, however, is known about physiological responses to high temperatures in tropical species. Here we report that the tropical giant freshwater shrimp (Macrobrachium rosenbergii) maintains normal growth when challenged by a temperature rise of 6°C above the present day average (from 27°C to 33°C). Further, by measuring heart rate, gill ventilation rate, resting and maximum oxygen uptake, and hemolymph lactate, we show that oxygen transport capacity is maintained up to the critical maximum temperature around 41°C. In M. rosenbergii heart rate and gill ventilation rate increases exponentially until immediately below critical temperatures and at 38°C animals still retained more than 76% of aerobic scope measured at 30°C, and there was no indication of anaerobic metabolism at the high temperatures. Our study shows that the oxygen transport capacity is maintained at high temperatures, and that other mechanisms, such as protein dysfunction, are responsible for the loss of ecological performance at elevated temperatures.
NASA Astrophysics Data System (ADS)
Laenen, B.; De Craen, M.
2004-01-01
Horizons with septarian concretions are a salient feature of the marine Boom Clay Formation. At most horizons, the concretions consist of ferroan calcite with variable amounts of pyrite, but at stratigraphic level S60 they also contain siderite. S60 is situated at the centre of an intensely bioturbated zone that is underlain by a pyrite-rich layer. Furthermore, the enclosing clay is strongly enriched in iron, manganese and phosphorous. The sedimentological and chemical zoning is indicative for low sedimentation rates, which allowed the concentration of iron in the aerobic zone of the sediment. Concentration of iron was the prerequisite for the formation of the siderite-containing concretions. The co-precipitation with pyrite is an argument for a formation in the sulphate reduction zone, and is indicative for a high rate of iron-reduction. The latter was due to the rapid burial of the iron-enriched layer below the redox boundary. The abrupt fluctuations in sedimentation rate were a response to the maximum flooding event of the second Rupelian third-order relative sea-level cycle, which caused a brief pushback of the detrital sediment wedge to its source areas. As this response is logically explained by the general sequence stratigraphic model [Spec. Publ.-Soc. Econ. Paleontol. Mineral. 42 (1988) 109], early diagenetic siderite may be widespread at maximum flooding surfaces in rapidly prograding marine mudstones.
Effect of Board Thickness on Sn-Ag-Cu Joint Interconnect Mechanical Shock Performance
NASA Astrophysics Data System (ADS)
Lee, Tae-Kyu; Xie, Weidong
2014-12-01
The mechanical stability of solder joints with Sn-Ag-Cu alloy joints on various board thicknesses was investigated with a high G level shock environment. A test vehicle with three different board thicknesses was used for board drop shock performance tests. These vehicles have three different strain and shock level condition couples per board, and are used to identify the joint stability and failure modes based on the board responses. The results revealed that joint stability is sensitive to board thickness. The board drop shock test showed that the first failure location shifts from the corner location near the standoff to the center with increased board thickness due to the shock wave response. From analysis of the thickness variation and failure cycle number, the strain rate during the pulse strain cycle is the dominant factor, which defines the life cycle number per board thickness, and not the maximum strain value. The failure location shift and the shock performance differentiation are discussed from the perspective of maximum principal strain, cycle frequency and strain rate per cycle.
Materials Database Development for Ballistic Impact Modeling
NASA Technical Reports Server (NTRS)
Pereira, J. Michael
2007-01-01
A set of experimental data is being generated under the Fundamental Aeronautics Program Supersonics project to help create and validate accurate computational impact models of jet engine impact events. The data generated will include material property data generated at a range of different strain rates, from 1x10(exp -4)/sec to 5x10(exp 4)/sec, over a range of temperatures. In addition, carefully instrumented ballistic impact tests will be conducted on flat plates and curved structures to provide material and structural response information to help validate the computational models. The material property data and the ballistic impact data will be generated using materials from the same lot, as far as possible. It was found in preliminary testing that the surface finish of test specimens has an effect on measured high strain rate tension response of AL2024. Both the maximum stress and maximum elongation are greater on specimens with a smoother finish. This report gives an overview of the testing that is being conducted and presents results of preliminary testing of the surface finish study.
44 CFR 208.12 - Maximum Pay Rate Table.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Maximum Pay Rate Table. 208... § 208.12 Maximum Pay Rate Table. (a) Purpose. This section establishes the process for creating and updating the Maximum Pay Rate Table (Table), and the Table's use to reimburse Affiliated Personnel (Task...
Nunes, Rafael Amorim Belo; Barroso, Lúcia Pereira; Pereira, Alexandre da Costa; Krieger, José Eduardo; Mansur, Alfredo José
2014-01-01
Treadmill exercise test responses have been associated with cardiovascular prognosis in individuals without overt heart disease. Neurohumoral and nitric oxide responses may influence cardiovascular performance during exercise testing. Therefore, we evaluated associations between functional genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase, bradykinin receptor B2 and treadmill exercise test responses in men and women without overt heart disease. We enrolled 766 (417 women; 349 men) individuals without established heart disease from a check-up programme at the Heart Institute, University of São Paulo Medical School. Exercise capacity, chronotropic reserve, maximum heart-rate achieved, heart-rate recovery, exercise systolic blood pressure (SBP), exercise diastolic blood pressure (DBP) and SBP recovery were assessed during exercise testing. Genotypes for the α-adrenergic receptors ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C>T (rs553668), ADRA2B Del 301-303 (rs28365031), endothelial nitric synthase (eNOS) 786 T>C (rs2070744), eNOS Glu298Asp (rs1799983) and BK2R (rs5810761) polymorphisms were assessed by PCR and high-resolution melting analysis. Maximum SBP was associated with ADRA1A rs1048101 (p=0.008) and BK2R rs5810761 (p=0.008) polymorphisms in men and ADRA2A rs553668 (p=0.008) and ADRA2B rs28365031 (p=0.022) in women. Maximum DBP pressure was associated with ADRA2A rs553668 (p=0.002) and eNOS rs1799983 (p=0.015) polymorphisms in women. Exercise capacity was associated with eNOS rs2070744 polymorphisms in women (p=0.01) and with eNOS rs1799983 in men and women (p=0.038 and p=0.024). The findings suggest that genetic variants of α-adrenergic receptors and bradykinin B2 receptor may be involved with blood pressure responses during exercise tests. Genetic variants of endothelial nitric oxide synthase may be involved with exercise capacity and blood pressure responses during exercise tests. These responses may be gender-related.
Nunes, Rafael Amorim Belo; Barroso, Lúcia Pereira; Pereira, Alexandre da Costa; Krieger, José Eduardo; Mansur, Alfredo José
2014-01-01
Background Treadmill exercise test responses have been associated with cardiovascular prognosis in individuals without overt heart disease. Neurohumoral and nitric oxide responses may influence cardiovascular performance during exercise testing. Therefore, we evaluated associations between functional genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase, bradykinin receptor B2 and treadmill exercise test responses in men and women without overt heart disease. Methods We enrolled 766 (417 women; 349 men) individuals without established heart disease from a check-up programme at the Heart Institute, University of São Paulo Medical School. Exercise capacity, chronotropic reserve, maximum heart-rate achieved, heart-rate recovery, exercise systolic blood pressure (SBP), exercise diastolic blood pressure (DBP) and SBP recovery were assessed during exercise testing. Genotypes for the α-adrenergic receptors ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C>T (rs553668), ADRA2B Del 301–303 (rs28365031), endothelial nitric synthase (eNOS) 786 T>C (rs2070744), eNOS Glu298Asp (rs1799983) and BK2R (rs5810761) polymorphisms were assessed by PCR and high-resolution melting analysis. Results Maximum SBP was associated with ADRA1A rs1048101 (p=0.008) and BK2R rs5810761 (p=0.008) polymorphisms in men and ADRA2A rs553668 (p=0.008) and ADRA2B rs28365031 (p=0.022) in women. Maximum DBP pressure was associated with ADRA2A rs553668 (p=0.002) and eNOS rs1799983 (p=0.015) polymorphisms in women. Exercise capacity was associated with eNOS rs2070744 polymorphisms in women (p=0.01) and with eNOS rs1799983 in men and women (p=0.038 and p=0.024). Conclusions The findings suggest that genetic variants of α-adrenergic receptors and bradykinin B2 receptor may be involved with blood pressure responses during exercise tests. Genetic variants of endothelial nitric oxide synthase may be involved with exercise capacity and blood pressure responses during exercise tests. These responses may be gender-related. PMID:25544888
Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.
Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M
2016-09-12
The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant 1,2 , but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability 3,4 . We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements 5 or inferences 6,7 .
Holzer, Thomas L.
2010-01-01
Ground deformation was monitored at earth fissures in areas of land subsidence induced by groundwater extraction in the southwestern United States. The ground deformation is consistent with the mechanism that fissures are caused by horizontal strains generated by bending of overburden in response to localized differential compaction. Subsidence profiles indicated that localized differential subsidence occurred across the fissures and that maximum convex-upward curvature was at the fissure. The overall shape of the profile stayed similar with time, and maximum curvature remained stationary at the fissure. Horizontal displacements were largest near the fissure, and generally were small to negligible away from the fissure. Maximum tensile horizontal strains were at the fissure and coincided with maximum curvature in the subsidence profiles. Horizontal tensile strain continued to accumulate at fissures after they formed with rates of opening ranging from 30 to 120 microstrain/year at fissures in Arizona.
Cardiovascular responses during orthostasis - Effect of an increase in maximal O2 uptake
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Montgomery, L. D.; Greenleaf, J. E.
1984-01-01
A study is described which tests the hypothesis that changes in aerobic activity (increases in maximum oxygen uptake) will reduce the effectiveness of cardiovascular reflexes to regulate blood pressure during orthostasis. The hypothesis was tested by measuring heart rate, blood pressure and blood volume responses in eight healthy male subjects before and after an eight-day endurance regimen. The results of the study suggest that the physiologic responses to orthostasis are dependent upon the rate of plasma volume loss and pooling, and are associated with training-induced hypervolemia. It is indicated that endurance type exercise training enhances cardiovascular adjustments during tilt. The implications of these results for the use of exercise training as a countermeasure and/or therapeutic method for the prevention of cardiovascular instability during orthostatic stress are discussed.
Khairuzzaman, Md; Zhang, Chao; Igarashi, Koji; Katoh, Kazuhiro; Kikuchi, Kazuro
2010-03-01
We describe a successful introduction of maximum-likelihood-sequence estimation (MLSE) into digital coherent receivers together with finite-impulse response (FIR) filters in order to equalize both linear and nonlinear fiber impairments. The MLSE equalizer based on the Viterbi algorithm is implemented in the offline digital signal processing (DSP) core. We transmit 20-Gbit/s quadrature phase-shift keying (QPSK) signals through a 200-km-long standard single-mode fiber. The bit-error rate performance shows that the MLSE equalizer outperforms the conventional adaptive FIR filter, especially when nonlinear impairments are predominant.
The heart rate response to nintendo wii boxing in young adults.
Bosch, Pamela R; Poloni, Joseph; Thornton, Andrew; Lynskey, James V
2012-06-01
To determine if 30 minutes of Nintendo Wii Sports boxing provides cardiorespiratory benefits and contributes to the daily exercise recommendations for healthy young adults. Twenty healthy 23- to 27-year-olds participated in two sessions to measure maximum heart rate (HR(max)) via a treadmill test and heart rate (HR) response to 30 minutes of Wii Sports boxing. Heart rate in beats per minute (bpm) was measured continuously, and exercise intensity during each minute of play was stratified as a percentage of HR(max). Mixed designs analysis of variance (ANOVA) and Pearson product moment correlations were used to analyze the data. Mean (SD) HR response to boxing was 143 (15) bpm or 77.5% (10.0%) of HR(max). The mean HR response for experienced participants was significantly lower than inexperienced participants, P = .007. The ANOVA revealed a significant interaction between experience and time spent at various intensities, P = .009. Experienced participants spent more time in light to vigorous intensities, inexperienced participants in moderate to very hard intensities. Fitness was not correlated with mean HR response to boxing, P = .49. Thirty minutes of Nintendo Wii Sports boxing provides a moderate to vigorous aerobic response in healthy young adults and can contribute to daily recommendations for physical activity.
The Heart Rate Response to Nintendo Wii Boxing in Young Adults
Bosch, Pamela R.; Poloni, Joseph; Thornton, Andrew; Lynskey, James V.
2012-01-01
Purpose To determine if 30 minutes of Nintendo Wii Sports boxing provides cardiorespiratory benefits and contributes to the daily exercise recommendations for healthy young adults. Methods Twenty healthy 23- to 27-year-olds participated in two sessions to measure maximum heart rate (HRmax) via a treadmill test and heart rate (HR) response to 30 minutes of Wii Sports boxing. Heart rate in beats per minute (bpm) was measured continuously, and exercise intensity during each minute of play was stratified as a percentage of HRmax. Mixed designs analysis of variance (ANOVA) and Pearson product moment correlations were used to analyze the data. Results Mean (SD) HR response to boxing was 143 (15) bpm or 77.5% (10.0%) of HRmax. The mean HR response for experienced participants was significantly lower than inexperienced participants, P = .007. The ANOVA revealed a significant interaction between experience and time spent at various intensities, P = .009. Experienced participants spent more time in light to vigorous intensities, inexperienced participants in moderate to very hard intensities. Fitness was not correlated with mean HR response to boxing, P = .49. Conclusion Thirty minutes of Nintendo Wii Sports boxing provides a moderate to vigorous aerobic response in healthy young adults and can contribute to daily recommendations for physical activity. PMID:22833705
Size evolution in microorganisms masks trade-offs predicted by the growth rate hypothesis.
Gounand, Isabelle; Daufresne, Tanguy; Gravel, Dominique; Bouvier, Corinne; Bouvier, Thierry; Combe, Marine; Gougat-Barbera, Claire; Poly, Franck; Torres-Barceló, Clara; Mouquet, Nicolas
2016-12-28
Adaptation to local resource availability depends on responses in growth rate and nutrient acquisition. The growth rate hypothesis (GRH) suggests that growing fast should impair competitive abilities for phosphorus and nitrogen due to high demand for biosynthesis. However, in microorganisms, size influences both growth and uptake rates, which may mask trade-offs and instead generate a positive relationship between these traits (size hypothesis, SH). Here, we evolved a gradient of maximum growth rate (μ max ) from a single bacterium ancestor to test the relationship among μ max , competitive ability for nutrients and cell size, while controlling for evolutionary history. We found a strong positive correlation between μ max and competitive ability for phosphorus, associated with a trade-off between μ max and cell size: strains selected for high μ max were smaller and better competitors for phosphorus. Our results strongly support the SH, while the trade-offs expected under GRH were not apparent. Beyond plasticity, unicellular populations can respond rapidly to selection pressure through joint evolution of their size and maximum growth rate. Our study stresses that physiological links between these traits tightly shape the evolution of competitive strategies. © 2016 The Author(s).
Coccolithophore calcification response to past ocean acidification and climate change
O’Dea, Sarah A.; Gibbs, Samantha J.; Bown, Paul R.; Young, Jeremy R.; Poulton, Alex J.; Newsam, Cherry; Wilson, Paul A.
2014-01-01
Anthropogenic carbon dioxide emissions are forcing rapid ocean chemistry changes and causing ocean acidification (OA), which is of particular significance for calcifying organisms, including planktonic coccolithophores. Detailed analysis of coccolithophore skeletons enables comparison of calcite production in modern and fossil cells in order to investigate biomineralization response of ancient coccolithophores to climate change. Here we show that the two dominant coccolithophore taxa across the Paleocene–Eocene Thermal Maximum (PETM) OA global warming event (~56 million years ago) exhibited morphological response to environmental change and both showed reduced calcification rates. However, only Coccolithus pelagicus exhibits a transient thinning of coccoliths, immediately before the PETM, that may have been OA-induced. Changing coccolith thickness may affect calcite production more significantly in the dominant modern species Emiliania huxleyi, but, overall, these PETM records indicate that the environmental factors that govern taxonomic composition and growth rate will most strongly influence coccolithophore calcification response to anthropogenic change. PMID:25399967
Coccolithophore calcification response to past ocean acidification and climate change.
O'Dea, Sarah A; Gibbs, Samantha J; Bown, Paul R; Young, Jeremy R; Poulton, Alex J; Newsam, Cherry; Wilson, Paul A
2014-11-17
Anthropogenic carbon dioxide emissions are forcing rapid ocean chemistry changes and causing ocean acidification (OA), which is of particular significance for calcifying organisms, including planktonic coccolithophores. Detailed analysis of coccolithophore skeletons enables comparison of calcite production in modern and fossil cells in order to investigate biomineralization response of ancient coccolithophores to climate change. Here we show that the two dominant coccolithophore taxa across the Paleocene-Eocene Thermal Maximum (PETM) OA global warming event (~56 million years ago) exhibited morphological response to environmental change and both showed reduced calcification rates. However, only Coccolithus pelagicus exhibits a transient thinning of coccoliths, immediately before the PETM, that may have been OA-induced. Changing coccolith thickness may affect calcite production more significantly in the dominant modern species Emiliania huxleyi, but, overall, these PETM records indicate that the environmental factors that govern taxonomic composition and growth rate will most strongly influence coccolithophore calcification response to anthropogenic change.
Ekhtiari, Seper; Kay, Jeffrey; de Sa, Darren; Simunovic, Nicole; Musahl, Volker; Peterson, Devin C; Ayeni, Olufemi R
2017-05-01
To characterize and assess the methodological quality of patient and physician surveys related to anterior cruciate ligament reconstruction, and to analyze the factors influencing response rate. The databases MEDLINE, Embase, and PubMed were searched from database inception to search date and screened in duplicate for relevant studies. Data regarding survey characteristics, response rates, and distribution methods were extracted. A previously published list of recommendations for high-quality surveys in orthopaedics was used as a scale to assess survey quality (12 items scored 0, 1, or 2; maximum score = 24). Of the initial 1,276 studies, 53 studies published between 1986 and 2016 met the inclusion criteria. Sixty-four percent of studies were distributed to physicians, compared with 32% distributed to patients and less than 4% to coaches. The median number of items in each survey was 10.5, and the average response rate was 73% (range: 18% to 100%). In-person distribution was the most common method (40%), followed by web-based methods (28%) and mail (25%). Response rates were highest for surveys targeted at patients (77%, P < .0001) and those delivered in-person (94%, P < .0001). The median quality score was 12/24 (range = 8.5/24 to 21/24). There was high inter-rater agreement using the quality scale (intraclass correlation coefficient = 0.92), but there was no correlation with the response rate (Rho = -0.01, P = .97). Response rates vary based on target audience and distribution methods, with patients responding at a significantly higher rate than physicians and in-person distribution yielding significantly higher response rates than web or mail surveys. Level IV, systematic review of Level IV studies. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Asymptotic analysis of noisy fitness maximization, applied to metabolism & growth
NASA Astrophysics Data System (ADS)
De Martino, Daniele; Masoero, Davide
2016-12-01
We consider a population dynamics model coupling cell growth to a diffusion in the space of metabolic phenotypes as it can be obtained from realistic constraints-based modeling. In the asymptotic regime of slow diffusion, that coincides with the relevant experimental range, the resulting non-linear Fokker-Planck equation is solved for the steady state in the WKB approximation that maps it into the ground state of a quantum particle in an Airy potential plus a centrifugal term. We retrieve scaling laws for growth rate fluctuations and time response with respect to the distance from the maximum growth rate suggesting that suboptimal populations can have a faster response to perturbations.
NASA Astrophysics Data System (ADS)
Wu, Xiao
2009-12-01
The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant one, which contributed to 56-58% of the total soluble metabolite production, indicative of an acetic acid fermentation system, and acetate-to-butyrate ratio was found to be closely related to hydrogen yield. pH level influenced every aspect of the ASBR performance for hydrogen production. ASBR operation at five pHs ranging from 4.4 to 5.6 (4.4, 4.7, 5.0, 5.3, 5.6) showed distinct dynamic profiles of both biogas production and the changes of H2 and CH4 percentage in the biogas during a running period of 22 days. The H2 content in biogas, H 2 production rate and H2 yield were all pH-dependent, in the range of 5.1-36.9 %, 0.71-8.97 L/d and 0.12-1.50 mol-H2/mol-glucose, respectively, and maximum values for all three responses were simultaneously achieved at pH 5.0. Methanogens appeared to be significantly activated at pH of 5.3 or higher since significant CH4 evolution and concurrent reduction in H2 production was observed at pH 5.3 and 5.6. Acetate, propionate, butyrate, valerate, and ethanol were main aqueous products in all pH tests and their distribution was influenced by pH. Analysis of kinetic models developed from modified Gompertz equations for batch experiments showed that pH had a profound effect on all kinetic parameters for hydrogen production including hydrogen potential, maximum hydrogen production rate and the length of the lag phase, as well as the maximum substrate utilization rate. The low pH of 4.4 gave the highest hydrogen production potential but with the lowest hydrogen production rate. A contrast experiment was conducted with an initial pH of 5.3 but not controlled, came up with a rapid pH decline, leading to a low hexose degradation efficiency of 33.2% and a significantly suppressed H2 production, indicating the importance of pH control and the effect of pH on H2 production and substrate consumption. pH 5.0 was verified as the optimal for the proposed fermentation system by kinetic models. An extremely linear relationship (R2= 0.993) between the maximum H2 production rate and the maximum hexose degradation rate suggested that the pH inhibition on H2 production was a result of the suppression on the bacterial activity for substrate utilization due to an unfavorable pH level. System optimization was realized through experiments conducted according to a response surface methodology, with a central composite design and empirical quadratic response equations obtained for three responses including the hydrogen content in the biogas, hydrogen evolution rate and hydrogen yield, against three independent variables, pH (4.4-5.6), HRT (8-24h) and substrate glucose concentrations (Cg, 0-20 g/L). Contour plots revealed that all three responses were significantly impacted by the variable and squared pH. Furthermore, pH and Cg had a significant interaction effect on H2 production rate, while HRT and glucose concentration were interdependent, or they had a mildly significant interaction effect on H2 production rate. The hydrogen content decreased when pH was greater than 5.0 or less than 4.6 and a largest value of 42.7% could be obtained at pH 4.8, HRT 8 h, and Cg of 18.7 g/L. The highest hydrogen production rate of 26.1 L/d happened under a pH of 4.6, HRT of 8h, and Cg of 20 g/L; Lower HRT and higher Cg was found to benefit the H2 production rate because they provide elevated organic loading and food to microorganism ratio for the system. HRT shorter than 17h resulted in declined hydrogen yield, while the glucose concentration up to 20 g/L did not cause suppression on hydrogen yield. The revised optimal condition of pH 4.8, HRT 11h, and Cg of 20 g/L, which could achieve 85% of the maximum values of all three hydrogen productivity responses, was determined by surface response methodology. Highly reproducible results from confirming experiments at the optimal condition indicated that the results modeled in this study possessed a high reliability, while the results of H2 content, H2 production rate and yield were obtained as 40.3%, 23.16 L/d, and 1.36mol H2/mol hexose, respectively. Results obtained in this study indicated that ASBR system using swine manure based substrate had significant potential of fermentative hydrogen production. Key words: biohydrogen production, hydrogen fermentation, liquid swine manure, anaerobic sequencing batch reactor (ASBR), hydrogen content, hydrogen production rate, hydrogen yield
Hughes, Michelle L.; Baudhuin, Jacquelyn L.; Goehring, Jenny L.
2014-01-01
The purpose of this study was to examine auditory-nerve temporal response properties and their relation to psychophysical threshold for electrical pulse trains of varying rates (“rate integration”). The primary hypothesis was that better rate integration (steeper slope) would be correlated with smaller decrements in ECAP amplitude as a function of stimulation rate (shallower slope of the amplitude-rate function), reflecting a larger percentage of the neural population contributing more synchronously to each pulse in the train. Data were obtained for 26 ears in 23 cochlear-implant recipients. Electrically evoked compound action potential (ECAP) amplitudes were measured in response to each of 21 pulses in a pulse train for the following rates: 900, 1200, 1800, 2400, and 3500 pps. Psychophysical thresholds were obtained using a 3-interval, forced-choice adaptive procedure for 300-ms pulse trains of the same rates as used for the ECAP measures, which formed the rate-integration function. For each electrode, the slope of the psychophysical rate-integration function was compared to the following ECAP measures: (1) slope of the function comparing average normalized ECAP amplitude across pulses versus stimulation rate (“adaptation”), (2) the rate that produced the maximum alternation depth across the pulse train, and (3) rate at which the alternating pattern ceased (stochastic rate). Results showed no significant relations between the slope of the rate-integration function and any of the ECAP measures when data were collapsed across subjects. However, group data showed that both threshold and average ECAP amplitude decreased with increased stimulus rate, and within-subject analyses showed significant positive correlations between psychophysical thresholds and mean ECAP response amplitudes across the pulse train. These data suggest that ECAP temporal response patterns are complex and further study is required to better understand the relative contributions of adaptation, desynchronization, and firing probabilities of individual neurons that contribute to the aggregate ECAP response. PMID:25093283
Li, Chong; Xue, ChunLai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming
2016-06-09
Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer.
Li, Chong; Xue, ChunLai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming
2016-01-01
Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer. PMID:27279426
NASA Astrophysics Data System (ADS)
Jing, Lin; Han, Liangliang
2017-12-01
A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.
Controlling cheatgrass in winter range to restore habitat and endemic fire
Jennifer L. Vollmer; Joseph G. Vollmer
2008-01-01
Habitat managers can better prepare a program for prescribed burns, wildfire management, and maximum forage biomass by understanding the response of key shrubs to the tools utilized to reduce cheatgrass (Bromus spp.) competition. Application of Plateau® herbicide, prior to annual brome germination, at rates up to 8 oz/acre with or without surfactant...
Heart Rate Response in Spectators of the Montreal Canadiens Hockey Team.
Khairy, Leia T; Barin, Roxana; Demonière, Fabrice; Villemaire, Christine; Billo, Marie-Josée; Tardif, Jean-Claude; Macle, Laurent; Khairy, Paul
2017-12-01
To our knowledge, heart rate responses have not previously been assessed in hockey fans. We quantified heart rate increases in spectators of the Montreal Canadiens, compared televised with live games, explored features associated with peak heart rates, and assessed whether increases correlate with a fan passion score. Healthy adults were enrolled, with half attending live games and half viewing televised games. All subjects completed questionnaires and had continuous Holter monitoring. Intensity of the physical stress response was defined according to previously published heart rate index thresholds as mild (< 1.33), moderate (1.33-1.83), or vigorous (> 1.83). In 20 participants, 35% women, age 46 ± 10 years, the heart rate increased by a median of 92% during the hockey game, from 60 (interquartile range, 54-65) beats per minute at rest to 114 (interquartile range, 103-129) beats per minute (P < 0.001). The heart rate increased by 110% vs 75% during live vs televised games (P < 0.001). Heart rate index (2.16 ± 0.27 vs 1.73 ± 0.15; P < 0.001) and percent maximum predicted heart rate attained (75% ± 8% vs 58% ± 7%; P < 0.001) were significantly higher during live vs televised games. Number of premature beats was nonsignificantly higher during live games (5 vs 1; P = 0.181). The fan passion score was not predictive of the heart rate response (P = 0.753). Peak heart rates most commonly occurred during overtime (40%) and scoring opportunities for (25%) and against (15%). It is exciting to watch the Montreal Canadiens! Viewing a live hockey game is associated with a heart rate response equivalent to vigorous physical stress and a televised game to moderate physical stress. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Timoumi, Asma; Cléret, Mégane; Bideaux, Carine; Guillouet, Stéphane E; Allouche, Yohan; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie
2017-01-01
Yarrowia lipolytica, a non-conventional yeast with a promising biotechnological potential, is able to undergo metabolic and morphological changes in response to environmental conditions. The effect of pH perturbations of different types (pulses, Heaviside) on the dynamic behavior of Y. lipolytica W29 strain was characterized under two modes of culture: batch and continuous. In batch cultures, different pH (4.5, 5.6 (optimal condition), and 7) were investigated in order to identify the pH inducing a stress response (metabolic and/or morphologic) in Y. lipolytica. Macroscopic behavior (kinetic parameters, yields, viability) of the yeast was slightly affected by pH. However, contrary to the culture at pH 5.6, a filamentous growth was induced in batch experiments at pH 4.5 and 7. Proportions of the filamentous subpopulation reached 84 and 93 % (v/v) under acidic and neutral conditions, respectively. Given the significant impact of neutral pH on morphology, pH perturbations from 5.6 to 7 were subsequently assayed in batch and continuous bioreactors. For both process modes, the growth dynamics remained fundamentally unaltered during exposure to stress. Nevertheless, morphological behavior of the yeast was dependent on the culture mode. Specifically, in batch bioreactors where cells proliferated at their maximum growth rate, mycelia were mainly formed. Whereas, in continuous cultures at controlled growth rates (from 0.03 to 0.20 h -1 ) even closed to the maximum growth rate of the stain (0.24 h -1 ), yeast-like forms predominated. This pointed out differences in the kinetic behavior of filamentous and yeast subpopulations, cell age distribution, and pH adaptive mechanisms between both modes of culture.
NASA Technical Reports Server (NTRS)
Scott, D. K.; Brakenhoff, K. D.; Clohisy, J. C.; Quinn, C. O.; Partridge, N. C.
1992-01-01
Collagenase is synthesized and secreted by rat osteoblastic cells in response to PTH. We have previously demonstrated that this effect involves a substantial increase in collagenase mRNA via transcription. Northern blots and nuclear run-on assays were performed to further investigate the induction of collagenase by PTH in the rat osteoblastic cell line UMR 106-01. Detectable amounts of collagenase mRNA were not apparent until 2 h of PTH treatment, showed the greatest abundance at 4 h, and declined to approximately 30% of maximum by 8 h. The changes in the rate of transcription of the collagenase gene in response to PTH paralleled and preceded the changes in the steady state mRNA levels. After an initial lag period of about 1 h, collagenase transcription rates increased from very low levels to a maximal response at 2 h, returning to about 50% of maximum by 10 h. The increased transcriptional rate of the collagenase gene was found to be dependent on the concentration of PTH, with a half-maximal response at approximately 7 x 10(-10) M rat PTH-(1-34) and a maximal effect with a dose of 10(-8) M. The PTH-mediated induction of collagenase transcriptional activity was completely abolished by cycloheximide, while transcription of the beta-actin gene was unaffected by the translation inhibitor. These data suggest that a protein factor(s) is required for PTH-mediated transcriptional induction of collagenase. Since PTH increases intracellular levels of several potential second messengers, agents that mimic these substances were employed to determine which signal transduction pathway is predominant in the PTH-mediated stimulation of collagenase transcription.(ABSTRACT TRUNCATED AT 250 WORDS).
ERIC Educational Resources Information Center
Titze, Ingo R.
2006-01-01
Purpose: Maximum flow declination rate (MFDR) in the glottis is known to correlate strongly with vocal intensity in voicing. This declination, or negative slope on the glottal airflow waveform, is in part attributable to the maximum area declination rate (MADR) and in part to the overall inertia of the air column of the vocal tract (lungs to…
NASA Astrophysics Data System (ADS)
Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H.
A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.
Thirthalli, Jagadisha; Harish, Thippeswamy; Gangadhar, Bangalore N
2011-03-01
To compare patients on lithium and those not on lithium with regard to adverse effects while receiving ECT. Inpatients with schizophrenia, non-organic psychosis, mania and depression, who were prescribed ECTs either on (n=27) or not (n=28) on lithium were studied. Clinicians blind to lithium-status recorded seizure parameters, interaction with succinyl choline, cardiovascular response, recovery from ECT and immediate post-ECT complications. The lithium group showed no significant difference in terms of seizure variables, apnea time, and recovery from anaesthesia when compared to the non-lithium group. Average maximum heart rate, average maximum systolic blood pressure and average maximum rate pressure product were significantly lower in patients who had combined lithium and ECT. In lithium patients the average time to post-ECT recovery was directly correlated with serum lithium level. Though concurrent lithium is by and large safe during ECT, it benefits to maintain serum lithium level at lower end of therapeutic range. However, the findings can be applied to relatively young patients with no risk factors for ECT-complications.
The impact of environmental factors on marine turtle stranding rates
Flint, Mark; Limpus, Colin J.; Mills, Paul C.
2017-01-01
Globally, tropical and subtropical regions have experienced an increased frequency and intensity in extreme weather events, ranging from severe drought to protracted rain depressions and cyclones, these coincided with an increased number of marine turtles subsequently reported stranded. This study investigated the relationship between environmental variables and marine turtle stranding. The environmental variables examined in this study, in descending order of importance, were freshwater discharge, monthly mean maximum and minimum air temperatures, monthly average daily diurnal air temperature difference and rainfall for the latitudinal hotspots (-27°, -25°, -23°, -19°) along the Queensland coast as well as for major embayments within these blocks. This study found that marine turtle strandings can be linked to these environmental variables at different lag times (3–12 months), and that cumulative (months added together for maximum lag) and non-cumulative (single month only) effects cause different responses. Different latitudes also showed different responses of marine turtle strandings, both in response direction and timing.Cumulative effects of freshwater discharge in all latitudes resulted in increased strandings 10–12 months later. For latitudes -27°, -25° and -23° non-cumulative effects for discharge resulted in increased strandings 7–12 months later. Latitude -19° had different results for the non-cumulative bay with strandings reported earlier (3–6 months). Monthly mean maximum and minimum air temperatures, monthly average daily diurnal air temperature difference and rainfall had varying results for each examined latitude. This study will allow first responders and resource managers to be better equipped to deal with increased marine turtle stranding rates following extreme weather events. PMID:28771635
Anomalous Lightning Behavior During the 26-27 August 2007 Northern Great Plains Severe Weather Event
NASA Astrophysics Data System (ADS)
Logan, Timothy
2018-02-01
Positive polarity lightning strokes can be useful indicators of thunderstorm behavior. A combination of National Lightning Detection Network and Next Generation Radar retrievals is used to analyze the anomalous positive cloud-to-ground (CG) lightning behavior of a rare, late summer severe weather event that occurred on 26-27 August 2007 in the Northern Great Plains region of the United States and southern Canada. Seven discrete supercells (SC1-SC7) exhibiting frequent and intense lightning were responsible for numerous reports of severe weather (e.g., severe hail and 16 tornadoes) including catastrophic damage to the town of Northwood, North Dakota, caused by SC2. Biomass burning smoke from wildfires in Idaho and Montana was present prior to convective initiation. A positive CG lightning stroke rate of nearly 30 strokes per minute was observed 10 min before the EF4 tornado struck Northwood. SC2 was also responsible for all the reports of tornadoes exceeding an EF2 rating. The strongest peak currents (>200 kA) were observed in SC1-SC4 with SC2 having a maximum value of 280 kA. SC2 dominated the statistics of the line of supercells accounting for 27% of all CG lightning strokes. Positive CG lightning accounted for over 40% of all CG lightning strokes in SC4-SC7 on average, and the maximum exceeded 90% in SC6 and SC7. Increasing positive CG lightning dominance was correlated with an increasing northward gradient of smoke aerosol loading in addition to severe weather being reported before the maximum in positive CG lighting stroke rate (SC5 and SC6). This suggests that a complex combination of synoptic forcing and aerosol perturbation likely led to the observed anomalous positive CG lightning behavior in the supercells.
Cardiac response and anxiety levels in psychopathic murderers.
Serafim, Antonio de Pádua; Barros, Daniel Martins de; Valim, André; Gorenstein, Clarice
2009-09-01
To compare the emotional response and level of anxiety of psychopathic murderers, non-psychopathic murderers, and nonpsychopathic non-criminals. 110 male individuals aged over 18 years were divided into three groups: psychopathic murderers (n = 38); non-psychopathic murderers (n = 37) serving sentences for murder convictions in Maximum Security Prisons in the State of Sao Paulo; and non-criminal, non-psychopathic individuals (n = 35) according to the Psychopathy Checklist-Revised. The emotional response of subjects was assessed by heart rate variation and anxiety level (State-Trait Anxiety Inventory) after viewing standardized pictures depicting pleasant, unpleasant and neutral content from the International Affective Picture System. Psychopathic murderers presented lower anxiety levels and smaller heart rate variations when exposed to pleasant and unpleasant stimuli than nonpsychopathic murderers or non-psychopathic non-criminals. The results also demonstrated that the higher the score for factor 1 on the Psychopathy Checklist-Revised, the lower the heart rate variation and anxiety level. The results suggest that psychopathic murderers do not present variation in emotional response to different visual stimuli. Although the non-psychopathic murderers had committed the same type of crime as the psychopathic murderers, the former tended to respond with a higher level of anxiety and heart rate variation.
Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros
2014-01-01
The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity. PMID:25031685
Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros
2014-03-27
The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity.
Lauria, V T; Sperandio, E F; de Sousa, T L W; de Oliveira Vieira, W; Romiti, M; de Toledo Gagliardi, A R; Arantes, R L; Dourado, V Z
To evaluate the dose-response relationship between smoking load and cardiopulmonary fitness, as measured with cardiopulmonary exercise testing (CPET), in adult smokers free of respiratory diseases. After a complete clinical evaluation and spirometry, 95 adult smokers (35 men and 60 women) underwent CPET on a treadmill. The physiological responses during CPET showed lower cardiorespiratory fitness levels, regardless of smoking load, with a peak [Formula: see text] lower than 100% of the expected value and a lower maximum heart rate. We observed a significant moderate negative correlation between smoking load and peak [Formula: see text] . The smoking load also presented a significant negative correlation with maximum heart rate(r=-0.36; p<0.05), lactate threshold(r=-0.45; p<0.05), and peak ventilation(r=-0.43; p<0.05). However, a dose-response relationship between smoking load quartiles and cardiopulmonary fitness was not found comparing quartiles of smoking loads after adjustment for age, sex and cardiovascular risk. There appears to be no dose-response relationship between SL and cardiopulmonary fitness in adult smokers with preserved pulmonary function, after adjusting the analysis for age and cardiovascular risk. Our results suggest that smoking cessation might be useful as the primary strategy to prevent cardiopulmonary fitness decline in smokers, regardless of smoking load. Thus, even a very low dose of tobacco use must be avoided in preventive strategies focusing on becoming people more physically active and fit. Copyright © 2016 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. All rights reserved.
Process optimization of an auger pyrolyzer with heat carrier using response surface methodology.
Brown, J N; Brown, R C
2012-01-01
A 1 kg/h auger reactor utilizing mechanical mixing of steel shot heat carrier was used to pyrolyze red oak wood biomass. Response surface methodology was employed using a circumscribed central composite design of experiments to optimize the system. Factors investigated were: heat carrier inlet temperature and mass flow rate, rotational speed of screws in the reactor, and volumetric flow rate of sweep gas. Conditions for maximum bio-oil and minimum char yields were high flow rate of sweep gas (3.5 standard L/min), high heat carrier temperature (∼600 °C), high auger speeds (63 RPM) and high heat carrier mass flow rates (18 kg/h). Regression models for bio-oil and char yields are described including identification of a novel interaction effect between heat carrier mass flow rate and auger speed. Results suggest that auger reactors, which are rarely described in literature, are well suited for bio-oil production. The reactor achieved liquid yields greater than 73 wt.%. Copyright © 2011 Elsevier Ltd. All rights reserved.
L-type calcium channels refine the neural population code of sound level
Grimsley, Calum Alex; Green, David Brian
2016-01-01
The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1–1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. PMID:27605536
Systolic and Diastolic Left Ventricular Mechanics during and after Resistance Exercise.
Stöhr, Eric J; Stembridge, Mike; Shave, Rob; Samuel, T Jake; Stone, Keeron; Esformes, Joseph I
2017-10-01
To improve the current understanding of the impact of resistance exercise on the heart, by examining the acute responses of left ventricular (LV) strain, twist, and untwisting rate ("LV mechanics"). LV echocardiographic images were recorded in systole and diastole before, during and immediately after (7-12 s) double-leg press exercise at two intensities (30% and 60% of maximum strength, one-repetition maximum). Speckle tracking analysis generated LV strain, twist, and untwisting rate data. Additionally, beat-by-beat blood pressure was recorded and systemic vascular resistance (SVR) and LV wall stress were calculated. Responses in both exercise trials were statistically similar (P > 0.05). During effort, stroke volume decreased, whereas SVR and LV wall stress increased (P < 0.05). Immediately after effort, stroke volume returned to baseline, whereas SVR and wall stress decreased (P < 0.05). Similarly, acute exercise was accompanied by a significant decrease in systolic parameters of LV muscle mechanics (P < 0.05). However, diastolic parameters, including LV untwisting rate, were statistically unaltered (P > 0.05). Immediately after exercise, systolic LV mechanics returned to baseline levels (P < 0.05) but LV untwisting rate increased significantly (P < 0.05). A single, acute bout of double-leg press resistance exercise transiently reduces systolic LV mechanics, but increases diastolic mechanics after exercise, suggesting that resistance exercise has a differential impact on systolic and diastolic heart muscle function. The findings may explain why acute resistance exercise has been associated with reduced stroke volume but chronic exercise training may result in increased LV volumes.
39 CFR 3010.28 - Maximum size of unused rate adjustment authority rate adjustments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 39 Postal Service 1 2010-07-01 2010-07-01 false Maximum size of unused rate adjustment authority rate adjustments. 3010.28 Section 3010.28 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL REGULATION OF RATES FOR MARKET DOMINANT PRODUCTS Rules for Applying the Price Cap § 3010.28 Maximum size of...
5 CFR 9701.312 - Maximum rates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Maximum rates. 9701.312 Section 9701.312... MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may not pay any employee an annual rate of basic pay in excess of the rate for level III of the Executive...
5 CFR 9701.312 - Maximum rates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Maximum rates. 9701.312 Section 9701.312... MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may not pay any employee an annual rate of basic pay in excess of the rate for level III of the Executive...
5 CFR 9701.312 - Maximum rates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Maximum rates. 9701.312 Section 9701.312... MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may not pay any employee an annual rate of basic pay in excess of the rate for level III of the Executive...
9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...
9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...
9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...
9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...
9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...
Declining hydraulic efficiency as transpiring leaves desiccate: two types of response.
Brodribb, Tim J; Holbrook, N Michele
2006-12-01
The conductance of transpiring leaves to liquid water (Kleaf) was measured across a range of steady-state leaf water potentials (Psileaf). Manipulating the transpiration rate in excised leaves enabled us to vary Psileaf in the range -0.1 MPa to less than -1.5 MPa while using a flowmeter to monitor the transpiration stream. Employing this technique to measure how desiccation affects Kleaf in 19 species, including lycophytes, ferns, gymnosperms and angiosperms, we found two characteristic responses. Three of the six angiosperm species sampled maintained a steady maximum Kleaf while Psileaf remained above -1.2 MPa, although desiccation of leaves beyond this point resulted in a rapid decline in Kleaf. In all other species measured, declining Psileaf led to a proportional decrease in Kleaf, such that midday Psileaf of unstressed plants in the field was sufficient to depress Kleaf by an average of 37%. It was found that maximum Kleaf was strongly correlated with maximum CO2 assimilation rate, while Kleaf = 0 occurred at a Psileaf slightly less negative than at leaf turgor loss. A strong linear correlation across species between Psileaf at turgor loss and Psileaf at Kleaf = 0 raises the possibility that declining Kleaf was related to declining cell turgor in the leaf prior to the onset of vein cavitation. The vulnerability of leaves rehydrating after desiccation was compared with vulnerability of leaves during steady-state evaporation, and differences between methods suggest that in many cases vein cavitation occurs only as Kleaf approaches zero.
Yang, Zhou; Lowe, Chris D; Crowther, Will; Fenton, Andy; Watts, Phillip C; Montagnes, David J S
2013-02-01
We use strains recently collected from the field to establish cultures; then, through laboratory studies we investigate how among strain variation in protozoan ingestion and growth rates influences population dynamics and intraspecific competition. We focused on the impact of changing temperature because of its well-established effects on protozoan rates and its ecological relevance, from daily fluctuations to climate change. We show, first, that there is considerable inter-strain variability in thermal sensitivity of maximum growth rate, revealing distinct differences among multiple strains of our model species Oxyrrhis marina. We then intensively examined two representative strains that exhibit distinctly different thermal responses and parameterised the influence of temperature on their functional and numerical responses. Finally, we assessed how these responses alter predator-prey population dynamics. We do this first considering a standard approach, which assumes that functional and numerical responses are directly coupled, and then compare these results with a novel framework that incorporates both functional and numerical responses in a fully parameterised model. We conclude that: (i) including functional diversity of protozoa at the sub-species level will alter model predictions and (ii) including directly measured, independent functional and numerical responses in a model can provide a more realistic account of predator-prey dynamics.
Jayasinghe, Sisitha U.; Torres, Susan J.; Hussein, Mais; Fraser, Steve F.; Lambert, Gavin W.; Turner, Anne I.
2017-01-01
According to the ‘cross stressor adaptation hypothesis’, regular exercise acts as a buffer against the detrimental effects of stress. Nevertheless, evidence that higher levels of cardiorespiratory fitness moderate hemodynamic responses to acute psychological stress is inconclusive, especially in women. Women aged 30–50 years (in the mid-follicular phase of the menstrual cycle) with higher (n = 17) and lower (n = 17) levels of fitness were subjected to a Trier Social Stress Test (TSST). Continuous, non-invasive measurements were made of beat-to-beat, systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR), stroke volume (SV), cardiac output (CO), left ventricular ejection time (LVET), maximum slope, pulse interval (PI) and total peripheral resistance (TPR). Maximal oxygen consumption was significantly (p<0.001) higher in the ‘higher fit’ women. Lower fit women had higher fasting glucose, resting heart rate, waist to hip ratios and elevated serum triglyceride and cholesterol/ HDL ratios compared with higher fit women (p<0.05 for all). While all measured parameters (for both groups)displayed significant (p<0.001) responses to the TSST, only HR, PI and LVET differed significantly between higher and lower fit women (p<0.001 for all) with the higher fit women having the larger response in each case. It was also found that higher fit women had significantly shorter time to recovery for maximum slope compared with the lower fit women. These findings provide little support for the notion that higher levels of cardiorespiratory fitness result in lower cardiovascular responsivity to psychological stress in women but may indicate that lower fit women have blunted responses to stress. PMID:28081200
Estradiol selectively enhances auditory function in avian forebrain neurons
Caras, Melissa L.; O’Brien, Matthew; Brenowitz, Eliot A.; Rubel, Edwin W
2012-01-01
Sex steroids modulate vertebrate sensory processing, but the impact of circulating hormone levels on forebrain function remains unclear. We tested the hypothesis that circulating sex steroids modulate single-unit responses in the avian telencephalic auditory nucleus, field L. We mimicked breeding or non-breeding conditions by manipulating plasma 17β-estradiol levels in wild-caught female Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Extracellular responses of single neurons to tones and conspecific songs presented over a range of intensities revealed that estradiol selectively enhanced auditory function in cells that exhibited monotonic rate-level functions to pure tones. In these cells, estradiol treatment increased spontaneous and maximum evoked firing rates, increased pure tone response strengths and sensitivity, and expanded the range of intensities over which conspecific song stimuli elicited significant responses. Estradiol did not significantly alter the sensitivity or dynamic ranges of cells that exhibited non-monotonic rate-level functions. Notably, there was a robust correlation between plasma estradiol concentrations in individual birds and physiological response properties in monotonic, but not non-monotonic neurons. These findings demonstrate that functionally distinct classes of anatomically overlapping forebrain neurons are differentially regulated by sex steroid hormones in a dose-dependent manner. PMID:23223283
MAGIC with formaldehyde applied to dosimetry of HDR brachytherapy source
NASA Astrophysics Data System (ADS)
Marques; T; Fernandes; J; Barbi; G; Nicolucci; P; Baffa; O
2009-05-01
The use of polymer gel dosimeters in brachytherapy can allow the determination of three-dimensional dose distributions in large volumes and with high spatial resolution if an adequate calibration process is performed. One of the major issues in these experiments is the polymer gel response dependence on dose rate when high dose rate sources are used and the doses in the vicinity of the sources are to be determinated. In this study, the response of a modified MAGIC polymer gel with formaldehyde around an Iridium-192 HDR brachytherapy source is presented. Experimental results obtained with this polymer gel were compared with ionization chamber measurements and with Monte Carlo simulation with PENELOPE. A maximum difference of 3.10% was found between gel dose measurements and Monte Carlo simulation at a radial distance of 18 mm from the source. The results obtained show that the gel's response is strongly influenced by dose rate and that a different calibration should be used for the vicinity of the source and for regions of lower dose rates. The results obtained in this study show that, provided the proper calibration is performed, MAGIC with formaldehyde can be successfully used to accurate determinate dose distributions form high dose rate brachytherapy sources.
USDA-ARS?s Scientific Manuscript database
Nitrogen fertilizer is critical to optimize short-term crop yield, but its long-term effect on soil organic C (SOC) is actively debated. Using 60 site-years of maize (Zea mays L.) yield response to a wide range of N fertilizer rates in continuous maize and annually rotated maize-soybean [Glycine max...
2014-09-30
and Rmax is the radius of maximum winds . Figure 1 compares two properties of the cold wake, its location and its strength , from 6 storms. The...dimensional response of the underlying ocean including strong surface currents, upwelling of the thermocline, intense mixing across the thermocline, the...mixing determining the rate and character of wake dissipation. The wake is also expected to modify the atmospheric boundary layer and the biology
Ratings of Perceived Exertion of ACSM Exercise Guidelines in Individuals Varying in Aerobic Fitness
ERIC Educational Resources Information Center
Kaufman, Christopher; Berg, Kris; Noble, John; Thomas, James
2006-01-01
The physiological responses of high (HF) and low fit (LF) individuals at given perceived exercise intensities were compared to ranges provided by the American College of Sports Medicine (ACSM). Participants were 7 LF and 8 HF men between the ages of 22 and 26 years. All participants performed a maximum oxygen uptake and lactate threshold test and…
The Acute Effect of Aerobic Exercise on Measures of Stress.
ERIC Educational Resources Information Center
Fort, Inza L.; And Others
The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…
NASA Astrophysics Data System (ADS)
Ferrier, Ken L.; West, Nicole
2017-09-01
Understanding the relationship between chemical erosion rates (W) and physical erosion rates (E) is of wide interest due to their roles in driving landscape evolution, supplying nutrients to soils and streams, and modulating the global carbon cycle. Measured relationships between W and E vary around the globe, with some regions exhibiting positive correlations between W and E, some negative correlations, and others no correlation within uncertainty. Here we use a numerical model for mineral weathering in well-mixed ridgetop regolith to explore how complex W- E relationships can be generated by simple transient perturbations in E. We show that a Gaussian perturbation in E can produce positive or negative responses in W, and can result in a variety of hysteresis loops - clockwise, counterclockwise, or figure-eight - in plots of W against E. The nature of the transient response depends on the shape of the steady-state W- E relationship, which is set by regolith mineralogy, and the ratio of E to the maximum possible regolith production rate. The response time of W is controlled by the response time of soluble mineral concentrations at low E, where soluble mineral concentrations are low, and by the response time of regolith thickness at high E, where regolith thickness is low. These complex W- E relationships arise in the absence of variations in climate and lithology, which suggests that transients may account for some of the observed differences in W- E relationships among field sites, even among sites that share the same climate and lithology.
A comparison between computer-controlled and set work rate exercise based on target heart rate
NASA Technical Reports Server (NTRS)
Pratt, Wanda M.; Siconolfi, Steven F.; Webster, Laurie; Hayes, Judith C.; Mazzocca, Augustus D.; Harris, Bernard A., Jr.
1991-01-01
Two methods are compared for observing the heart rate (HR), metabolic equivalents, and time in target HR zone (defined as the target HR + or - 5 bpm) during 20 min of exercise at a prescribed intensity of the maximum working capacity. In one method, called set-work rate exercise, the information from a graded exercise test is used to select a target HR and to calculate a corresponding constant work rate that should induce the desired HR. In the other method, the work rate is controlled by a computer algorithm to achieve and maintain a prescribed target HR. It is shown that computer-controlled exercise is an effective alternative to the traditional set work rate exercise, particularly when tight control of cardiovascular responses is necessary.
Multiple Export Production and Sulfur Isotope Records over the Paleocene Eocene Thermal Maximum
NASA Astrophysics Data System (ADS)
Gray, E.; Paytan, A.
2007-12-01
The Paleocene Eocene Thermal Maximum (PETM) was a global climatic event that occurred 55 million years ago. δ18O values from benthic foraminifera indicate that temperatures rose 4-5°C coeval with a precipitous drop in δ13C values that indicate a new source of carbon rapidly entered the global carbon cycle. Marine barite (BaSO4) was used to evaluate the 1) barite accumulation rate that serves a proxy for export production and 2) the sulfur isotopic composition of seawater that reflects the mass balance of oceanic sulfate (SO42-). Increased barite accumulation rates at the PETM suggest that increased export production and CO2 sequestration was in direct response to the carbon isotope excursion, although not all of the increases are accounted for. High resolution δ34S values are lower but within reasonable range of previously observed values and indicate a decrease in sulfate removal by pyrite deposition.
Master teachers' responses to twenty literacy and science/mathematics practices in deaf education.
Easterbrooks, Susan R; Stephenson, Brenda; Mertens, Donna
2006-01-01
Under a grant to improve outcomes for students who are deaf or hard of hearing awarded to the Association of College Educators--Deaf/Hard of Hearing, a team identified content that all teachers of students who are deaf and hard of hearing must understand and be able to teach. Also identified were 20 practices associated with content standards (10 each, literacy and science/mathematics). Thirty-seven master teachers identified by grant agents rated the practices on a Likert-type scale indicating the maximum benefit of each practice and maximum likelihood that they would use the practice, yielding a likelihood-impact analysis. The teachers showed strong agreement on the benefits and likelihood of use of the rated practices. Concerns about implementation of many of the practices related to time constraints and mixed-ability classrooms were themes of the reviews. Actions for teacher preparation programs were recommended.
Rogers, Alistair; Serbin, Shawn P; Ely, Kim S; Sloan, Victoria L; Wullschleger, Stan D
2017-12-01
Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (V c,max.25 and J max.25 , respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We measured photosynthetic CO 2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of V c,max and J max were 17% lower than commonly used values. When scaled to 25°C, V c,max.25 and J max.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO 2 assimilation in Arctic vegetation. This study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change. No claim to original US Government works. New Phytologist © 2017 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Alistair; Serbin, Shawn P.; Ely, Kim S.
Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (V c,max.25 and J max.25, respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We then measured photosynthetic CO 2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of Vc,max and Jmax were 17% lower thanmore » commonly used values. When scaled to 25°C, Vc,max.25 and J max.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO 2 assimilation in Arctic vegetation. Our study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change.« less
Rogers, Alistair; Serbin, Shawn P.; Ely, Kim S.; ...
2017-09-06
Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (V c,max.25 and J max.25, respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We then measured photosynthetic CO 2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of Vc,max and Jmax were 17% lower thanmore » commonly used values. When scaled to 25°C, Vc,max.25 and J max.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO 2 assimilation in Arctic vegetation. Our study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change.« less
Valentino, Francesco; Beccari, Mario; Villano, Marianna; Tandoi, Valter; Majone, Mauro
2017-05-25
A pure culture of the filamentous bacterium Thiothrix, strain CT3, was aerobically cultured in a chemostat under continuous acetate feeding at three different culture residence times (RT 6, 12 or 22 d) and the same volumetric organic load rate (OLR 0.12gCOD/L/d). Cells cultured at decreasing RT in the chemostat had an increasing transient response to acetate spikes in batch tests. The maximum specific acetate removal rate increased from 25 to 185mgCOD/gCOD/h, corresponding to a 1.8 to 8.1 fold higher respective steady-state rate in the chemostat. The transient response was mainly due to acetate storage in the form of poly(3-hydroxybutyrate) (PHB), whereas no growth response was observed at any RT. Interestingly, even though the storage rate also decreased as the RT increased, the storage yield increased from 0.41 to 0.50 COD/COD. This finding does not support the traditional view that storage plays a more important role as the transient response increases. The transient response of the steady-state cells was much lower than in cells cultured under periodic feeding (at 6 d RT, from 82 to 247mgCOD/gCOD/h), with the latter cells showing both storage and growth responses. On the other hand, even though steady-state cells had no growth response and their storage rate was also less, steady-state cells showed a higher storage yield than cells cultured under dynamic feeding. This suggests that in Thiothrix strain CT3, the growth response is triggered by periodic feeding, whereas the storage response is a constitutive mechanism, independent from previous acclimation to transient conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Kunert, Norbert
2016-10-20
Daily xylem sap flux values (daily J s ) and maximum xylem sap flux values (max J s ) from 125 tropical trees from different study sites in the Neotropics were compared. A cross species and study site relationship was found between daily and maximum values. The relationship can be expressed as daily J s =6.5x max J s . The geometrical relationship between the maximum xylem sap flux of a given day is thus defining the daily xylem sap flux rates. Assuming a bell-shaped diurnal sap flux course and a relatively constant day length the maximum xylem sap flux is the only possible changing variable to define daily fluxes. Further, this relationship is showing the inertia of the xylem sap flux as a physical object and highlights the delayed response to environmental changes and its subsequent inevitable susceptibility under environmental stress to hydraulic failure. Copyright © 2016 Elsevier GmbH. All rights reserved.
Kern, Madalyn D; Ortega Alcaide, Joan; Rentschler, Mark E
2014-11-01
The objective of this work is to validate an experimental method and nondimensional model for characterizing the normal adhesive response between a polyvinyl chloride based synthetic biological tissue substrate and a flat, cylindrical probe with a smooth polydimethylsiloxane (PDMS) surface. The adhesion response is a critical mobility design parameter of a Robotic Capsule Endoscope (RCE) using PDMS treads to provide mobility to travel through the gastrointestinal tract for diagnostic purposes. Three RCE design characteristics were chosen as input parameters for the normal adhesion testing: pre-load, dwell time and separation rate. These parameters relate to the RCE׳s cross sectional dimension, tread length, and tread speed, respectively. An inscribed central composite design (CCD) prescribed 34 different parameter configurations to be tested. The experimental adhesion response curves were nondimensionalized by the maximum stress and total displacement values for each test configuration and a mean nondimensional curve was defined with a maximum relative error of 5.6%. A mathematical model describing the adhesion behavior as a function of the maximum stress and total displacement was developed and verified. A nonlinear regression analysis was done on the maximum stress and total displacement parameters and equations were defined as a function of the RCE design parameters. The nondimensional adhesion model is able to predict the adhesion curve response of any test configuration with a mean R(2) value of 0.995. Eight additional CCD studies were performed to obtain a qualitative understanding of the impact of tread contact area and synthetic material substrate stiffness on the adhesion response. These results suggest that the nondimensionalization technique for analyzing the adhesion data is sufficient for all values of probe radius and substrate stiffness within the bounds tested. This method can now be used for RCE tread design optimization given a set of environmental conditions for device operation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Park, Myung Gil; Kim, Miran; Kang, Misun
2013-01-01
The gonyaulacalean dinoflagellates Amylax spp. were recently found to contain plastids of the cryptophyte origin, more specifically of Teleaulax amphioxeia. However, not only how the dinoflagellates get the plastids of the cryptophyte origin is unknown but also their ecophysiology, including growth and feeding responses as functions of both light and prey concentration, remain unknown. Here, we report the establishment of Amylax triacantha in culture, its feeding mechanism, and its growth rate using the ciliate prey Mesodinium rubrum (= Myrionecta rubra) in light and dark, and growth and grazing responses to prey concentration and light intensity. The strain established in culture in this study was assigned to A. triacantha, based on morphological characteristics (particularly, a prominent apical horn and three antapical spines) and nuclear SSU and LSU rDNA sequences. Amylax triacantha grew well in laboratory culture when supplied with the marine mixotrophic ciliate M. rubrum as prey, reaching densities of over 7.5 × 10(3) cells/ml. Amylax triacantha captured its prey using a tow filament, and then ingested the whole prey by direct engulfment through the sulcus. The dinoflagellate was able to grow heterotrophically in the dark, but the growth rate was approximately two times lower than in the light. Although mixotrophic growth rates of A. triacantha increased sharply with mean prey concentrations, with maximum growth rate being 0.68/d, phototrophic growth (i.e. growth in the absence of prey) was -0.08/d. The maximum ingestion rate was 2.54 ng C/Amylax/d (5.9 cells/Amylax/d). Growth rate also increased with increasing light intensity, but the effect was evident only when prey was supplied. Increased growth with increasing light intensity was accompanied by a corresponding increase in ingestion. In mixed cultures of two predators, A. triacantha and Dinophysis acuminata, with M. rubrum as prey, A. triacantha outgrew D. acuminata due to its approximately three times higher growth rate, suggesting that it can outcompete D. acuminata. Our results would help better understand the ecophysiology of dinoflagellates retaining foreign plastids. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.
Evaluation of arterial digital blood flow using Doppler ultrasonography in healthy dairy cows.
Müller, H; Heinrich, M; Mielenz, N; Reese, S; Steiner, A; Starke, A
2017-06-06
Local circulatory disturbances have been implicated in the development of foot disorders in cattle. The goals of this study were to evaluate the suitability of the interdigital artery in the pastern region in both hind limbs using pulsed-wave (PW) Doppler ultrasonography and to investigate quantitative arterial blood flow variables at that site in dairy cows. An Esaote MyLabOne ultrasound machine with a 10-MHz linear transducer was used to assess blood flow in the interdigital artery in the pastern region in both hind limbs of 22 healthy German Holstein cows. The cows originated from three commercial farms and were restrained in a standing hoof trimming chute without sedation. A PW Doppler signal suitable for analysis was obtained in 17 of 22 cows. The blood flow profiles were categorised into four curve types, and the following quantitative variables were measured in three uniform cardiac cycles: vessel diameter, pulse rate, maximum systolic velocity, maximum diastolic velocity, end-diastolic velocity, reverse velocity, maximum time-averaged mean velocity, blood flow rate, resistance index and persistence index. The measurements did not differ among cows from the three farms. Maximum systolic velocity, vessel diameter and pulse rate did not differ but other variables differed significantly among blood flow profiles. Differences in weight-bearing are thought to be responsible for the normal variability of blood flow profiles in healthy cows. The scanning technique used in this report for evaluation of blood flow in the interdigital artery appears suitable for further investigations in healthy and in lame cows.
NASA Astrophysics Data System (ADS)
Patole, Pralhad B.; Kulkarni, Vivek V.
2018-06-01
This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.
Hassan, Siti Aishah; Mijin, Salumiah; Yusoff, Umi Kalsom; Ding, Phebe; Wahab, Puteri Edaroyati Megat
2012-06-28
The source and quantity of nutrients available to plants can affect the quality of leafy herbs. A study was conducted to compare quality of Cosmos caudatus in response to rates of organic and mineral-based fertilizers. Organic based fertilizer GOBI (8% N:8% P₂O₅:8% K₂O) and inorganic fertilizer (15% N, 15% P₂O₅, 15% K₂O) were evaluated based on N element rates at 0, 30, 60, 90, 120 kg h⁻¹. Application of organic based fertilizer reduced nitrate, improved vitamin C, antioxidant activity as well as nitrogen and calcium nutrients content. Antioxidant activity and chlorophyll content were significantly higher with increased fertilizer application. Fertilization appeared to enhance vitamin C content, however for the maximum ascorbic acid content, regardless of fertilizer sources, plants did not require high amounts of fertilizer.
Carbonera, Raquel Pinto; Vendrusculo, Fernanda Maria; Donadio, Márcio Vinícius Fagundes
2016-10-01
Interactive video games are recently being used as an exercise tool in cystic fibrosis (CF). This study aimed to assess the literature describing whether video games generate a physiological response similar to the exercise intensity needed for training in CF. An online search in PubMed, Embase, Cochrane, SciELO, LILACS and PEDro databases was conducted and original studies describing physiological responses of the use of video games as exercise in CF were included. In four, out of five studies, the heart rate achieved during video games was within the standards recommended for training (60-80%). Two studies assessed VO 2 and showed higher levels compared to the six-minute walk test. No desaturation was reported. Most games were classified as moderate intensity. Only one study used a maximum exercise test as comparator. Interactive video games generate a heart rate response similar to the intensity required for training in CF patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Freise, K J; Jones, A K; Verdugo, M E; Menon, R M; Maciag, P C; Salem, A H
2017-12-01
Exposure-response analyses of venetoclax in combination with bortezomib and dexamethasone in previously treated patients with multiple myeloma (MM) were performed on a phase Ib venetoclax dose-ranging study. Logistic regression models were utilized to determine relationships, identify subpopulations with different responses, and optimize the venetoclax dosage that balanced both efficacy and safety. Bortezomib refractory status and number of prior treatments were identified to impact the efficacy response to venetoclax treatment. Higher venetoclax exposures were estimated to increase the probability of achieving a very good partial response (VGPR) or better through venetoclax doses of 1,200 mg. However, the probability of neutropenia (grade ≥3) was estimated to increase at doses >800 mg. Using a clinical utility index, a venetoclax dosage of 800 mg daily was selected to optimally balance the VGPR or better rates and neutropenia rates in MM patients administered 1-3 prior lines of therapy and nonrefractory to bortezomib. © 2017 American Society for Clinical Pharmacology and Therapeutics.
Wilson, Thad E; Carter, Robert; Cutler, Michael J; Cui, Jian; Smith, Michael L; Crandall, Craig G
2004-02-01
The purpose of this study was to identify whether baroreceptor unloading was responsible for less efficient heat loss responses (i.e., skin blood flow and sweat rate) previously reported during inactive compared with active recovery after upright cycle exercise (Carter R III, Wilson TE, Watenpaugh DE, Smith ML, and Crandall CG. J Appl Physiol 93: 1918-1929, 2002). Eight healthy adults performed two 15-min bouts of supine cycle exercise followed by inactive or active (no-load pedaling) supine recovery. Core temperature (T(core)), mean skin temperature (T(sk)), heart rate, mean arterial blood pressure (MAP), thoracic impedance, central venous pressure (n = 4), cutaneous vascular conductance (CVC; laser-Doppler flux/MAP expressed as percentage of maximal vasodilation), and sweat rate were measured throughout exercise and during 5 min of recovery. Exercise bouts were similar in power output, heart rate, T(core), and T(sk). Baroreceptor loading and thermal status were similar during trials because MAP (90 +/- 4, 88 +/- 4 mmHg), thoracic impedance (29 +/- 1, 28 +/- 2 Omega), central venous pressure (5 +/- 1, 4 +/- 1 mmHg), T(core) (37.5 +/- 0.1, 37.5 +/- 0.1 degrees C), and T(sk) (34.1 +/- 0.3, 34.2 +/- 0.2 degrees C) were not significantly different at 3 min of recovery between active and inactive recoveries, respectively; all P > 0.05. At 3 min of recovery, chest CVC was not significantly different between active (25 +/- 6% of maximum) and inactive (28 +/- 6% of maximum; P > 0.05) recovery. In contrast, at this time point, chest sweat rate was higher during active (0.45 +/- 0.16 mg.cm(-2).min(-1)) compared with inactive (0.34 +/- 0.19 mg.cm(-2).min(-1); P < 0.05) recovery. After exercise CVC and sweat rate are differentially controlled, with CVC being primarily influenced by baroreceptor loading status while sweat rate is influenced by other factors.
Assessment of the reliability of standard automated perimetry in regions of glaucomatous damage.
Gardiner, Stuart K; Swanson, William H; Goren, Deborah; Mansberger, Steven L; Demirel, Shaban
2014-07-01
Visual field testing uses high-contrast stimuli in areas of severe visual field loss. However, retinal ganglion cells saturate with high-contrast stimuli, suggesting that the probability of detecting perimetric stimuli may not increase indefinitely as contrast increases. Driven by this concept, this study examines the lower limit of perimetric sensitivity for reliable testing by standard automated perimetry. Evaluation of a diagnostic test. A total of 34 participants with moderate to severe glaucoma; mean deviation at their last clinic visit averaged -10.90 dB (range, -20.94 to -3.38 dB). A total of 75 of the 136 locations tested had a perimetric sensitivity of ≤ 19 dB. Frequency-of-seeing curves were constructed at 4 nonadjacent visual field locations by the Method of Constant Stimuli (MOCS), using 35 stimulus presentations at each of 7 contrasts. Locations were chosen a priori and included at least 2 with glaucomatous damage but a sensitivity of ≥ 6 dB. Cumulative Gaussian curves were fit to the data, first assuming a 5% false-negative rate and subsequently allowing the asymptotic maximum response probability to be a free parameter. The strength of the relation (R(2)) between perimetric sensitivity (mean of last 2 clinic visits) and MOCS sensitivity (from the experiment) for all locations with perimetric sensitivity within ± 4 dB of each selected value, at 0.5 dB intervals. Bins centered at sensitivities ≥ 19 dB always had R(2) >0.1. All bins centered at sensitivities ≤ 15 dB had R(2) <0.1, an indication that sensitivities are unreliable. No consistent conclusions could be drawn between 15 and 19 dB. At 57 of the 81 locations with perimetric sensitivity <19 dB, including 49 of the 63 locations ≤ 15 dB, the fitted asymptotic maximum response probability was <80%, consistent with the hypothesis of response saturation. At 29 of these locations the asymptotic maximum was <50%, and so contrast sensitivity (50% response rate) is undefined. Clinical visual field testing may be unreliable when visual field locations have sensitivity below approximately 15 to 19 dB because of a reduction in the asymptotic maximum response probability. Researchers and clinicians may have difficulty detecting worsening sensitivity in these visual field locations, and this difficulty may occur commonly in patients with glaucoma with moderate to severe glaucomatous visual field loss. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Topping, David J.; Rubin, David M.; Nelson, Jonathan M.; Kinzel, Paul J.; Corson, Ingrid C.
2000-01-01
The Colorado River in Marble and Grand Canyons displays evidence of annual supply limitation with respect to sand both prior to [Topping et al, this issue] and after the closure of Glen Canyon Dam in 1963. Systematic changes in bed elevation and systematic coupled changes in suspended‐sand concentration and grain size result from this supply limitation. During floods, sand supply limitation either causes or modifies a lag between the time of maximum discharge and the time of either maximum or minimum (depending on reach geometry) bed elevation. If, at a cross section where the bed aggrades with increasing flow, the maximum bed elevation is observed to lead the peak or the receding limb of a flood, then this observed response of the bed is due to sand supply limitation. Sand supply limitation also leads to the systematic evolution of sand grain size (both on the bed and in suspension) in the Colorado River. Sand input during a tributary flood travels down the Colorado River as an elongating sediment wave, with the finest sizes (because of their lower settling velocities) traveling the fastest. As the fine front of a sediment wave arrives at a given location, the bed fines and suspended‐sand concentrations increase in response to the enhanced upstream supply of finer sand. Then, as the front of the sediment wave passes that location, the bed is winnowed and suspended‐sand concentrations decrease in response to the depletion of the upstream supply of finer sand. The grain‐size effects of depletion of the upstream sand supply are most obvious during periods of higher dam releases (e.g., the 1996 flood experiment and the 1997 test flow). Because of substantial changes in the grain‐size distribution of the bed, stable relationships between the discharge of water and sand‐transport rates (i.e., stable sand rating curves) are precluded. Sand budgets in a supply‐limited river like the Colorado River can only be constructed through inclusion of the physical processes that couple changes in bed‐sediment grain size to changes in sand‐transport rates.
Impact Damage and Strain Rate Effects for Toughened Epoxy Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2006-01-01
Structural integrity of composite systems under dynamic impact loading is investigated herein. The GENOA virtual testing software environment is used to implement the effects of dynamic loading on fracture progression and damage tolerance. Combinations of graphite and glass fibers with a toughened epoxy matrix are investigated. The effect of a ceramic coating for the absorption of impact energy is also included. Impact and post impact simulations include verification and prediction of (1) Load and Impact Energy, (2) Impact Damage Size, (3) Maximum Impact Peak Load, (4) Residual Strength, (5) Maximum Displacement, (6) Contribution of Failure Modes to Failure Mechanisms, (7) Prediction of Impact Load Versus Time, and (8) Damage, and Fracture Pattern. A computer model is utilized for the assessment of structural response, progressive fracture, and defect/damage tolerance characteristics. Results show the damage progression sequence and the changes in the structural response characteristics due to dynamic impact. The fundamental premise of computational simulation is that the complete evaluation of composite fracture requires an assessment of ply and subply level damage/fracture processes as the structure is subjected to loads. Simulation results for the graphite/epoxy composite were compared with the impact and tension failure test data, correlation and verification was obtained that included: (1) impact energy, (2) damage size, (3) maximum impact peak load, (4) residual strength, (5) maximum displacement, and (6) failure mechanisms of the composite structure.
Temperature rise and parasitic infection interact to increase the impact of an invasive species.
Laverty, Ciaran; Brenner, David; McIlwaine, Christopher; Lennon, Jack J; Dick, Jaimie T A; Lucy, Frances E; Christian, Keith A
2017-04-01
Invasive species often detrimentally impact native biota, e.g. through predation, but predicting such impacts is difficult due to multiple and perhaps interacting abiotic and biotic context dependencies. Higher mean and peak temperatures, together with parasites, might influence the impact of predatory invasive host species additively, synergistically or antagonistically. Here, we apply the comparative functional response methodology (relationship between resource consumption rate and resource supply) in one experiment and conduct a second scaled-up mesocosm experiment to assess any differential predatory impacts of the freshwater invasive amphipod Gammarus pulex, when uninfected and infected with the acanthocephalan Echinorhynchus truttae, at three temperatures representative of current and future climate. Individual G. pulex showed Type II predatory functional responses. In both experiments, infection was associated with higher maximum feeding rates, which also increased with increasing temperatures. Additionally, infection interacted with higher temperatures to synergistically elevate functional responses and feeding rates. Parasitic infection also generally increased Q 10 values. We thus suggest that the differential metabolic responses of the host and parasite to increasing temperatures drives the synergy between infection and temperature, elevating feeding rates and thus enhancing the ecological impact of the invader. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Long-wavelength Instability of Trailing Vortices Behind a Delta Wing
NASA Astrophysics Data System (ADS)
Miller, G. D.; Williamson, C. H. K.
1996-11-01
The long-wavelength instability of a vortex pair is studied in the wake of a delta wing. While many previous studies of the instability exist, almost none are accompanied by accurate measurements of the vortex core parameters upon which the theoretical predictions depend. The present measurements of wavelength and maximum growth rate from visualization images are accompanied by extensive DPIV measurements of the distributions of vorticity and axial velocity. Axial velocity was found to be wake-like, with a velocity deficit. The vorticity distribution in the cores is well modeled by an Oseen vortex, as is the downstream growth of the core. The naturally occuring wavelength was measured to be 4.5 times the inter-vortex spacing, which compares very well with the wavelength of maximum growth rate predicted by theory using measured core parameters. Also, the measured value of the growth rate and the lower stability limit correspond well with theory. The response of the wake to forcing is also examined, and reveals that the wake is receptive to forcing at wavelengths near the natural wavelength. We demonstrate control over the rate at which the wake decays by hastening the action of the instabilty with initial forcing. Supported by NDSEG Fellowship for first author.
Static Flow Characteristics of a Mass Flow Injecting Valve
NASA Technical Reports Server (NTRS)
Mattern, Duane; Paxson, Dan
1995-01-01
A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.
The LUX experiment - trigger and data acquisition systems
NASA Astrophysics Data System (ADS)
Druszkiewicz, Eryk
2013-04-01
The Large Underground Xenon (LUX) detector is a two-phase xenon time projection chamber designed to detect interactions of dark matter particles with the xenon nuclei. Signals from the detector PMTs are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. During calibrations, both systems must be able to handle high rates and have large dynamic ranges; during dark matter searches, maximum sensitivity requires low thresholds. The trigger system uses eight-channel 64-MHz digitizers (DDC-8) connected to a Trigger Builder (TB). The FPGA cores on the digitizers perform real-time pulse identification (discriminating between S1 and S2-like signals) and event localization. The TB uses hit patterns, hit maps, and maximum response detection to make trigger decisions, which are reached within few microseconds after the occurrence of an event of interest. The DAQ system is comprised of commercial digitizers with customized firmware. Its real-time baseline suppression allows for a maximum event acquisition rate in excess of 1.5 kHz, which results in virtually no deadtime. The performance of the trigger and DAQ systems during the commissioning runs of LUX will be discussed.
Ictal EEG fractal dimension in ECT predicts outcome at 2 weeks in schizophrenia.
Abhishekh, Hulegar A; Thirthalli, Jagadisha; Manjegowda, Anusha; Phutane, Vivek H; Muralidharan, Kesavan; Gangadhar, Bangalore N
2013-09-30
Studies of electroconvulsive therapy (ECT) have found an association between ictal electroencephalographic (EEG) measures and clinical outcome in depression. Such studies are lacking in schizophrenia. Consenting schizophrenia patients receiving ECT were assessed using the Brief Psychiatric Rating Scale (BPRS) before and 2 weeks after the start of ECT. The patients' seizure was monitored using EEG. In 26 patients, completely artifact-free EEG derived from the left frontal-pole (FP1) channel and electrocardiography (ECG) were available. The fractal dimension (FD) was computed to assess 4-s EEG epochs, and the maximal value from the earliest ECT session (2nd, 3rd or 4th) was used for analysis. There was a significant inverse correlation between the maximum FD and the total score following 6th ECT. An inverse Inverse correlation was also observed between the maximum FD and the total number of ECTs administered as well as the maximum heart rate (HR) and BPRS scores following 6th ECT. In patients with schizophrenia greater intensity of seizures (higher FD) during initial sessions of ECT is associated with better response at the end of 2 weeks. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Greenland ice sheet retreat since the Little Ice Age
NASA Astrophysics Data System (ADS)
Beitch, Marci J.
Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.
L-type calcium channels refine the neural population code of sound level.
Grimsley, Calum Alex; Green, David Brian; Sivaramakrishnan, Shobhana
2016-12-01
The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (Ca L : Ca V 1.1-1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of Ca L to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. Ca L is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, Ca L activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, Ca L boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, Ca L either suppresses or enhances firing at sound levels that evoke maximum firing. Ca L multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. Copyright © 2016 the American Physiological Society.
Solar cycle variability of nonmigrating tides in the infrared cooling of the thermosphere
NASA Astrophysics Data System (ADS)
Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Marsh, D. R.
2017-12-01
Nitric Oxide (NO) at 5.3 μm and Carbon dioxide (CO2) at 15 μm are the major infrared emissions responsible for the radiative cooling of the thermosphere. We study the impact of two important diurnal nonmigrating tides, the DE2 and DE3, on NO and CO2 infrared emissions over a complete solar cycle (2002-2013) by (i) analyzing NO and CO2 cooling rate data from SABER and (ii) photochemical modeling using dynamical tides from a thermospheric empirical tidal model, CTMT. Both observed and modeled results show that the NO cooling rate amplitudes for DE2 and DE3 exhibit strong solar cycle dependence. NO 5.3 μm cooling rate tides are relatively unimportant for the infrared energy budget during solar minimum but important during solar maximum. On the other hand DE2 and DE3 in CO2 show comparatively small variability over a solar cycle. CO2 15 μm cooling rate tides remain, to a large extent, constant between solar minimum and maximum. This different responses by NO and CO2 emissions to the DE2 and DE3 during a solar cycle comes form the fact that the collisional reaction rate for NO is highly sensitive to the temperature comparative to that for CO2. Moreover, the solar cycle variability of these nonmigrating tides in thermospheric infrared emissions shows a clear QBO signals substantiating the impact of tropospheric weather system on the energy budget of the thermosphere. The relative contribution from the individual tidal drivers; temperature, density and advection to the observed DE2 and DE3 tides does not vary much over the course of the solar cycle, and this is true for both NO and CO2 emissions.
Useche, Antonio; Shipley, Bill
2010-02-01
Nitrogen availability varies greatly over short time scales. This requires that a well-adapted plant modify its phenotype by an appropriate amount and at a certain speed in order to maximize growth and fitness. To determine how plastic ontogenetic changes in each trait interact and whether or not these changes are likely to maximize growth, ontogenetic changes in relative growth rate (RGR), net assimilation rate (NAR), specific leaf area (SLA) and root weight ratio (RWR), before and after a decrease in nitrogen supply, were studied in 14 herbaceous species. Forty-four plants of each species were grown in hydroponic culture under controlled conditions in a control treatment where the supply of nitrogen remained constant at 1 mm, and in a stress treatment where the nitrogen supply was abruptly decreased from 1 to 0.01 mm during the growth period. In the treatment series, and in comparison with the control, NAR and RGR decreased, RWR increased, and SLA did not change except for the timing of ontogenetic change. Species having greater increases in the maximum rate of change in RWR also had smaller reductions in RGR; plasticity in RWR is therefore adaptive. In contrast, species which showed a greater decrease in NAR showed stronger reductions in RGR; plasticity in NAR is therefore not adaptive. Plasticity in RGR was not related to plasticity in SLA. There were no significant relationships among the plasticities in NAR, RWR or SLA. Potentially fast-growing species experienced larger reductions in RGR following the nitrogen reduction. These results suggest that competitive responses to interspecific competition for nitrogen might be positively correlated with the plasticity in the maximum rate of change in RWR in response to a reduction in nitrogen supply.
Cave, J; Paschalis, A; Huang, C Y; West, M; Copson, E; Jack, S; Grocott, M P W
2018-06-24
Aerobic exercise improves prognosis and quality of life (QoL) following completion of chemotherapy. However, the safety and efficacy of aerobic exercise during chemotherapy is less certain. A systematic review was performed of randomised trials of adult patients undergoing chemotherapy, comparing an exercise intervention with standard care. From 253 abstracts screened, 33 unique trials were appraised in accordance with PRISMA guidance, including 3257 patients. Interventions included walking, jogging or cycling, and 23 were of moderate intensity (50-80% maximum heart rate). Aerobic exercise improved, or at least maintained fitness during chemotherapy. Moderately intense exercise, up to 70-80% of maximum heart rate, was safe. Any reported adverse effects of exercise were mild and self-limiting, but reporting was inconsistent. Adherence was good (median 72%). Exercise improved QoL and physical functioning, with earlier return to work. Two out of four studies reported improved chemotherapy completion rates. Four out of six studies reported reduced chemotherapy toxicity. There was no evidence that exercise reduced myelosuppression or improved response rate or survival. Exercise during chemotherapy is safe and should be encouraged because of beneficial effects on QoL and physical functioning. More research is required to determine the impact on chemotherapy completion rates and prognosis.
Hao, Xingyu; Li, Ping; Feng, Yongxiang; Han, Xue; Gao, Ji; Lin, Erda; Han, Yuanhuai
2013-01-01
Traditional Chinese medicine relies heavily on herbs, yet there is no information on how these herb plants would respond to climate change. In order to gain insight into such response, we studied the effect of elevated [CO2] on Isatis indigotica Fort, one of the most popular Chinese herb plants. The changes in leaf photosynthesis, chlorophyll fluorescence, leaf ultrastructure and biomass yield in response to elevated [CO2] (550±19 µmol mol(-1)) were determined at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic ability of I. indigotica was improved under elevated [CO2]. Elevated [CO2] increased net photosynthetic rate (P N), water use efficiency (WUE) and maximum rate of electron transport (J max) of upper most fully-expended leaves, but not stomatal conductance (gs), transpiration ratio (Tr) and maximum velocity of carboxylation (V c,max). Elevated [CO2] significantly increased leaf intrinsic efficiency of PSII (Fv'/Fm') and quantum yield of PSII(ΦPS II ), but decreased leaf non-photochemical quenching (NPQ), and did not affect leaf proportion of open PSII reaction centers (qP) and maximum quantum efficiency of PSII (Fv/Fm). The structural chloroplast membrane, grana layer and stroma thylakoid membranes were intact under elevated [CO2], though more starch grains were accumulated within the chloroplasts than that of under ambient [CO2]. While the yield of I. indigotica was higher due to the improved photosynthesis under elevated [CO2], the content of adenosine, one of the functional ingredients in indigowoad root was not affected.
Barrow, C S; Alarie, Y; Stock, M F
1978-01-01
A decrease in respiratory rate in mice during exposure to irritating airborne chemicals has been utilized as a response parameter to characterize the degree of upper respiratory tract irritation (sensory irritation) to the thermal decomposition products of various polymers. These included polystyrene, polyvinyl chloride, flexible polyurethane foam, polytetrafluorethylene, a fiber glass reinforced polyester resin, and Douglas Fir. Each of the materials was thermally decomposed in a low-mass vertical furnace in an air atmosphere at a programmed heating rate of 20 degrees C/min. Mice, in groups of four, were exposed to graded concentrations of the thermal decomposition products of each of the above materials. Dose-response curves were obtained by utilizing the maximum percent decrease in respiratory rate as the response parameter during each exposure. Comparison of these dose-response curves with other sensory irritants such as chlorine, ammonia, hydrogen chloride, sulfur dioxide, and toluene diisocyanate gave an indication of the sensory irrtation potential of the thermal decomposition products of these various polymers versus that of well-known single airborne chemical irritants. Total stress and incapacitation of the organism during exposure to sensory irritants such as from the thermal decomposition products of synthetic polymers is discussed.
Fishbane, Steven; Bolton, W Kline; Winkelmayer, Wolfgang C; Strauss, William; Li, Zhu; Pereira, Brian J G
2012-09-01
Ferumoxytol is a unique intravenous (i.v.) iron therapy. This report examines factors affecting hemoglobin response to i.v. ferumoxytol, and the relationship between hematologic parameters, concomitant erythropoiesis-stimulating agents (ESA), and adverse events (AEs) in nondialysis CKD patients. A series of post-hoc efficacy and safety analyses were performed using pooled data from two identically designed Phase III studies in 608 nondialysis CKD patients randomized to receive two 510 mg i.v. injections of ferumoxytol within 5 ± 3 days versus oral iron. Ferumoxytol resulted in a significant increase in hemoglobin in the presence and absence of ESA, and across a range of baseline hemoglobin, transferrin saturation, ferritin, and reticulocyte hemoglobin content levels. Adverse event rates with ferumoxytol were similar across quartiles of change in hemoglobin; there were no trends suggesting an increased rate of cardiovascular AEs with higher maximum achieved hemoglobin or faster rate of hemoglobin rise. There was no meaningful difference in the rate of AEs, serious AEs, and cardiovascular AEs between patients receiving or not receiving ESA. These analyses add to the knowledge of predictors of response and safety outcomes associated with i.v. iron therapy in nondialysis CKD patients.
Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana
NASA Technical Reports Server (NTRS)
Janoudi, A. K.; Poff, K. L.
1993-01-01
Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of desensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 micromoles m-2 s-1. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 micromole m-2 s-1 than at 0.3 micromole m-2 s-1. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs.
Slew-rate dependence of tracer magnetization response in magnetic particle imaging.
Shah, Saqlain A; Ferguson, R M; Krishnan, K M
2014-10-28
Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ 0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude ( H o ) and frequency ( ω ). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ 0 . For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate ( ωH o ) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.
Slew-rate dependence of tracer magnetization response in magnetic particle imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Saqlain A.; Krishnan, K. M., E-mail: kannanmk@uw.edu; Ferguson, R. M.
2014-10-28
Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ{sub 0} excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (H{sub o}) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particlemore » Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ{sub 0}. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωH{sub o}) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.« less
A comparison of heart rate responses in racquet games.
Docherty, D.
1982-01-01
The present study investigated the heart rate response to playing tennis with special reference to the skill levels and ages of the participants. Data obtained in a similar manner during earlier studies of badminton and squash players were compared with that obtained during tennis. The number of rallies, mean rally time and actual playing time in 30 minutes of play was also compared for the different skill levels and sports. Results showed that playing tennis raised the players' heart rates to 68-70% of their predicted maximum heart rate (PMHR). Playing squash and badminton could raise heart rates to 80-85% of the players' PMHR which was significantly higher than the values obtained for tennis. The actual skill level of the participants within their chosen sport did not have a significant effect in predicting the physical demands of squash or tennis but was important in predicting the heart rate response of badminton players. The more skillful the badminton player the greater the cardiac response as a result of game play. Analysis of time spent in actual play revealed that tennis players were involved in play for only five of the thirty minutes of game play, compared to 15 and 10 min respectively for squash and badminton. Skill level within each sport was only a significant factor in predicting length of play for squash players in which the medium and highly skilled groups played significantly longer than those of a lower level of skill. Images p96-a PMID:7104564
Resta, Lee P.; Pili, Roberto; Eisenberger, Mario A.; Spitz, Avery; King, Serina; Porter, Jennifer; Franke, Amy; Boinpally, Ramesh; Sweeney, Christopher J.
2010-01-01
Purpose To find the maximum tolerated dose (MTD) of OSI-461 in combination with mitoxantrone in patients with advanced solid tumors. Methods This was a Phase I study using cohort dose escalation of OSI-461 dosed orally twice daily in combination with mitoxantrone 12 mg/m2 given on Day 1 of each 21-day cycle. Results OSI-461 dose was escalated to 1,000 mg po bid. One patient experienced a dose-limiting toxicity (DLT). Three patients discontinued the study due to adverse events (AE). Two patients (10%) had a partial response, and ten patients (50%) had stable disease as best response. Conclusion The combination of OSI-461 and mitoxantrone was well tolerated. Dose escalation was stopped because of toxicities in a concurrent Phase I trial. The response rate seen in patients with prostate cancer was comparable to response rates seen in trials of mitoxantrone and prednisone alone, and further studies of the combination of OSI-461 and mitoxantrone were not pursued. PMID:20445979
Ionic electroactive hybrid transducers
NASA Astrophysics Data System (ADS)
Akle, Barbar J.; Bennett, Matthew D.; Leo, Donald J.
2005-05-01
Ionic electroactive actuators have received considerable attention in the past ten years. Ionic electroactive polymers, sometimes referred to as artificial muscles, have the ability to generate large bending strain and moderate stress at low applied voltages. Typical types of ionic electroactive polymer transducers include ionic polymers, conducting polymers, and carbon nanotubes. Preliminary research combining multiple types of materials proved to enhance certain transduction properties such as speed of response, maximum strain, or quasi-static actuation. Recently it was demonstrated that ionomer-ionic liquid transducers can operate in air for long periods of time (>250,000 cycles) and showed potential to reduce or eliminate the back-relaxation issue associated with ionomeric polymers. In addition, ionic liquids have higher electrical stability window than those operated with water as the solvent thereby increasing the maximum strain that the actuator can produce. In this work, a new technique developed for plating metal particulates on the surface of ionomeric materials is applied to the development of hybrid transducers that incorporate carbon nanotubes and conducting polymers as electrode materials. The new plating technique, named the direct assembly process, consists of mixing a conducting powder with an ionomer solution. This technique has demonstrated improved response time and strain output as compared to previous methods. Furthermore, the direct assembly process is less costly to implement than traditional impregnation-reduction methods due to less dependence on reducing agents, it requires less time, and is easier to implement than other processes. Electrodes applied using this new technique of mixing RuO2 (surface area 45~65m2/g) particles and Nafion dispersion provided 5x the displacement and 10x the force compared to a transducer made with conventional methods. Furthermore, the study illustrated that the response speed of the transducer is optimized by varying the vol% of metal in the electrode. For RuO2, the optimal loading was approximately 45%. This study shows that carbon nanotubes electrodes have an optimal performance at loadings around 30 vol%, while PANI electrodes are optimized at 95 vol%. Due to low percolation threshold, carbon nanotubes actuators perform better at lower loading than other conducting powders. The addition of nanotubes to the electrode tends to increase both the strain rate and the maximum strain of the hybrid actuator. SWNT/RuO2 hybrid transducer has a strain rate of 2.5%/sec, and a maximum attainable peak-to-peak strain of 9.38% (+/- 2V). SWNT/PANI hybrid also increased both strain and strain rate but not as significant as with RuO2. PANI/RuO2 actuator had an overwhelming back relaxation.
The evolutionary and behavioral modification of consumer responses to environmental change.
Abrams, Peter A
2014-02-21
How will evolution or other forms of adaptive change alter the response of a consumer species' population density to environmentally driven changes in population growth parameters? This question is addressed by analyzing some simple consumer-resource models to separate the ecological and evolutionary components of the population's response. Ecological responses are always decreased population size, but evolution of traits that have effects on both resource uptake rate and another fitness-related parameter may magnify, offset, or reverse this population decrease. Evolution can change ecologically driven decreases in population size to increases; this is likely when: (1) resources are initially below the density that maximizes resource growth, and (2) the evolutionary response decreases the consumer's resource uptake rate. Evolutionary magnification of the ecological decreases in population size can occur when the environmental change is higher trait-independent mortality. Such evolution-driven decreases are most likely when uptake-rate traits increase and the resource is initially below its maximum growth density. It is common for the difference between the new eco-evolutionary equilibrium and the new ecological equilibrium to be larger than that between the original and new ecological equilibrium densities. The relative magnitudes of ecological and evolutionary effects often depend sensitively on the magnitude of the environmental change and the nature of resource growth. © 2013 Elsevier Ltd. All rights reserved.
Cardiorespiratory functional assessment after pediatric heart transplantation.
Pastore, E; Turchetta, A; Attias, L; Calzolari, A; Giordano, U; Squitieri, C; Parisi, F
2001-12-01
Limited data are available on the exercise capacity of young heart transplant recipients. The aim of this study was therefore to assess cardiorespiratory responses to exercise in this group of patients. Fourteen consecutive heart transplant recipients (six girls and eight boys, age-range 5-15 yr) and 14 healthy matched controls underwent a Bruce treadmill test to determine: duration of test; resting and maximum heart rates; maximum systolic blood pressure; peak oxygen consumption (VO2 peak); and cardiac output. Duration of test and heart rate increase were then compared with: time since transplantation, rejections per year, and immunosuppressive drugs received. The recipients also underwent the following lung function tests: forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). When compared with healthy controls, transplant recipients had tachycardia at rest (126 +/- 3.7 beats/min; p < 0.001); significantly reduced tolerance (9.3 +/- 0.4 min; p < 0.001), a maximum heart rate of 169 +/- 5.4 beats/min (p < 0.05); a cardiac output of 5.65 +/- 0.6 L/min (p < 0.05); and a lower heart-rate increase from rest to peak exercise (p < 0.001) but a similar VO2 peak. The heart-rate increase correlated significantly with time post-transplant (r = 0.55; p < 0.05), number of rejection episodes per year (r = - 0.63; p < 0.05), and number of immunosuppressive drugs (r = - 0.60; p < 0.05). The recipients had normal FVC and FEV1 values. After surgery, few heart transplant recipients undertake physical activity, possibly owing to over-protective parents and teachers and to a lack of suitable supervised facilities. The authors stress the importance of a cardiorespiratory functional evaluation for assessment of health status and to encourage recipients, if possible, to undertake regular physical activity.
NASA Astrophysics Data System (ADS)
Kandemir, Ekrem; Borekci, Selim; Cetin, Numan S.
2018-04-01
Photovoltaic (PV) power generation has been widely used in recent years, with techniques for increasing the power efficiency representing one of the most important issues. The available maximum power of a PV panel is dependent on environmental conditions such as solar irradiance and temperature. To extract the maximum available power from a PV panel, various maximum-power-point tracking (MPPT) methods are used. In this work, two different MPPT methods were implemented for a 150-W PV panel. The first method, known as incremental conductance (Inc. Cond.) MPPT, determines the maximum power by measuring the derivative of the PV voltage and current. The other method is based on reduced-rule compressed fuzzy logic control (RR-FLC), using which it is relatively easier to determine the maximum power because a single input variable is used to reduce computing loads. In this study, a 150-W PV panel system model was realized using these MPPT methods in MATLAB and the results compared. According to the simulation results, the proposed RR-FLC-based MPPT could increase the response rate and tracking accuracy by 4.66% under standard test conditions.
A simple parameterization for the height of maximum ozone heating rate
NASA Astrophysics Data System (ADS)
Zhang, Feng; Hou, Can; Li, Jiangnan; Liu, Renqiang; Liu, Cuiping
2017-12-01
It is well-known that the height of the maximum ozone heating rate is much higher than the height of the maximum ozone concentration in the stratosphere. However, it lacks an analytical expression to explain it. A simple theoretical model has been proposed to calculate the height of maximum ozone heating rate and further understand this phenomenon. Strong absorption of ozone causes the incoming solar flux to be largely attenuated before reaching the location of the maximum ozone concentration. By comparing with the exact radiative transfer calculations, the heights of the maximum ozone heating rate produced by the theoretical model are generally very close to the true values. When the cosine of solar zenith angle μ0 = 1.0 , in US Standard atmosphere, the heights of the maximum ozone heating rate by the theoretical model are 41.4 km in the band 0.204-0.233 μm, 47.9 km in the band 0.233-0.270 μm, 44.5 km in the band 0.270-0.286 μm, 37.1 km in the band 0.286-0.303 μm, and 30.2 km in the band 0.303-0.323 μm, respectively. The location of the maximum ozone heating rate is sensitive to the solar spectral range. In band 1, the heights of the maximum ozone heating rate by the theoretical model are 52.3 km for μ0 = 0.1 , 47.1 km for μ0 = 0.3 , 44.6 km for μ0 = 0.5 , 43.1 km for μ0 = 0.7 , 41.9 km for μ0 = 0.9 , 41.4 km for μ0 = 1.0 in US Standard atmosphere, respectively. This model also illustrates that the location of the maximum ozone heating rate is sensitive to the solar zenith angle.
20 CFR 10.406 - What are the maximum and minimum rates of compensation in disability cases?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false What are the maximum and minimum rates of... Impairment § 10.406 What are the maximum and minimum rates of compensation in disability cases? (a... monthly pay does not include locality adjustments.) Compensation for Death ...
20 CFR 10.406 - What are the maximum and minimum rates of compensation in disability cases?
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true What are the maximum and minimum rates of... Impairment § 10.406 What are the maximum and minimum rates of compensation in disability cases? (a... monthly pay does not include locality adjustments.) Compensation for Death ...
20 CFR 10.406 - What are the maximum and minimum rates of compensation in disability cases?
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true What are the maximum and minimum rates of... Impairment § 10.406 What are the maximum and minimum rates of compensation in disability cases? (a... monthly pay does not include locality adjustments.) Compensation for Death ...
20 CFR 10.406 - What are the maximum and minimum rates of compensation in disability cases?
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false What are the maximum and minimum rates of... Impairment § 10.406 What are the maximum and minimum rates of compensation in disability cases? (a... monthly pay does not include locality adjustments.) Compensation for Death ...
20 CFR 10.406 - What are the maximum and minimum rates of compensation in disability cases?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false What are the maximum and minimum rates of... Impairment § 10.406 What are the maximum and minimum rates of compensation in disability cases? (a... monthly pay does not include locality adjustments.) Compensation for Death ...
5 CFR 9901.312 - Maximum rates of base salary and adjusted salary.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Maximum rates of base salary and adjusted salary. 9901.312 Section 9901.312 Administrative Personnel DEPARTMENT OF DEFENSE HUMAN RESOURCES....312 Maximum rates of base salary and adjusted salary. (a) Subject to § 9901.105, the Secretary may...
47 CFR 1.1507 - Rulemaking on maximum rates for attorney fees.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Rulemaking on maximum rates for attorney fees... § 1.1507 Rulemaking on maximum rates for attorney fees. (a) If warranted by an increase in the cost of... types of proceedings), the Commission may adopt regulations providing that attorney fees may be awarded...
Peyre, Hugo; Leplège, Alain; Coste, Joël
2011-03-01
Missing items are common in quality of life (QoL) questionnaires and present a challenge for research in this field. It remains unclear which of the various methods proposed to deal with missing data performs best in this context. We compared personal mean score, full information maximum likelihood, multiple imputation, and hot deck techniques using various realistic simulation scenarios of item missingness in QoL questionnaires constructed within the framework of classical test theory. Samples of 300 and 1,000 subjects were randomly drawn from the 2003 INSEE Decennial Health Survey (of 23,018 subjects representative of the French population and having completed the SF-36) and various patterns of missing data were generated according to three different item non-response rates (3, 6, and 9%) and three types of missing data (Little and Rubin's "missing completely at random," "missing at random," and "missing not at random"). The missing data methods were evaluated in terms of accuracy and precision for the analysis of one descriptive and one association parameter for three different scales of the SF-36. For all item non-response rates and types of missing data, multiple imputation and full information maximum likelihood appeared superior to the personal mean score and especially to hot deck in terms of accuracy and precision; however, the use of personal mean score was associated with insignificant bias (relative bias <2%) in all studied situations. Whereas multiple imputation and full information maximum likelihood are confirmed as reference methods, the personal mean score appears nonetheless appropriate for dealing with items missing from completed SF-36 questionnaires in most situations of routine use. These results can reasonably be extended to other questionnaires constructed according to classical test theory.
Maternal blood pressure and heart rate response to pelvic floor muscle training during pregnancy.
Ferreira, Cristine H; Naldoni, Luciane M V; Ribeiro, Juliana Dos Santos; Meirelles, Maria Cristina C C; Cavalli, Ricardo de Carvalho; Bø, Kari
2014-07-01
To assess whether maternal blood pressure (BP) and heart rate (HR) change significantly in response to pelvic floor muscle training during pregnancy. Longitudinal exploratory study with repeated measurements. Twenty-seven nulliparous healthy women of mean age 23.3 years (range 18-36) and mean body mass index 23.4 (range 23.1-29.5). Individual supervised pelvic floor muscle training from gestational week 20 till 36 with assessment of BP and HR at gestational weeks 20, 24, 28, 32 and 36. Systolic and diastolic BP was measured before and after each training session and HR was monitored during each session. Pelvic floor muscle training did not change BP. 77% (n = 21) of participants exceeded 70% of estimated maximum HR during at least one session. The time for exceeding 70% of estimated maximum HR was between 2.2 and 3.2 % of the total exercise session. Increases in BP and HR from gestational weeks 20 till 36 were within normal limits for pregnant women. Pelvic floor muscle training in nulliparous sedentary pregnant women does not increase BP. It significantly increases HR during the exercise sessions, but only for a limited period of time and with no negative long-term effect on BP or HR. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.
Why the null matters: statistical tests, random walks and evolution.
Sheets, H D; Mitchell, C E
2001-01-01
A number of statistical tests have been developed to determine what type of dynamics underlie observed changes in morphology in evolutionary time series, based on the pattern of change within the time series. The theory of the 'scaled maximum', the 'log-rate-interval' (LRI) method, and the Hurst exponent all operate on the same principle of comparing the maximum change, or rate of change, in the observed dataset to the maximum change expected of a random walk. Less change in a dataset than expected of a random walk has been interpreted as indicating stabilizing selection, while more change implies directional selection. The 'runs test' in contrast, operates on the sequencing of steps, rather than on excursion. Applications of these tests to computer generated, simulated time series of known dynamical form and various levels of additive noise indicate that there is a fundamental asymmetry in the rate of type II errors of the tests based on excursion: they are all highly sensitive to noise in models of directional selection that result in a linear trend within a time series, but are largely noise immune in the case of a simple model of stabilizing selection. Additionally, the LRI method has a lower sensitivity than originally claimed, due to the large range of LRI rates produced by random walks. Examination of the published results of these tests show that they have seldom produced a conclusion that an observed evolutionary time series was due to directional selection, a result which needs closer examination in light of the asymmetric response of these tests.
NASA Astrophysics Data System (ADS)
Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo
2017-03-01
Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which validates the proposed methods.
NASA Technical Reports Server (NTRS)
Triedman, J. K.; Perrott, M. H.; Cohen, R. J.; Saul, J. P.
1995-01-01
Fourier-based techniques are mathematically noncausal and are therefore limited in their application to feedback-containing systems, such as the cardiovascular system. In this study, a mathematically causal time domain technique, autoregressive moving average (ARMA) analysis, was used to parameterize the relations of respiration and arterial blood pressure to heart rate in eight humans before and during total cardiac autonomic blockade. Impulse-response curves thus generated showed the relation of respiration to heart rate to be characterized by an immediate increase in heart rate of 9.1 +/- 1.8 beats.min-1.l-1, followed by a transient mild decrease in heart rate to -1.2 +/- 0.5 beats.min-1.l-1 below baseline. The relation of blood pressure to heart rate was characterized by a slower decrease in heart rate of -0.5 +/- 0.1 beats.min-1.mmHg-1, followed by a gradual return to baseline. Both of these relations nearly disappeared after autonomic blockade, indicating autonomic mediation. Maximum values obtained from the respiration to heart rate impulse responses were also well correlated with frequency domain measures of high-frequency "vagal" heart rate control (r = 0.88). ARMA analysis may be useful as a time domain representation of autonomic heart rate control for cardiovascular modeling.
Investigation of a high speed data handling system for use with multispectral aircraft scanners
NASA Technical Reports Server (NTRS)
Kelly, W. L.; Meredith, B. D.
1978-01-01
A buffer memory data handling technique for use with multispectral aircraft scanners is presented which allows digital data generated at high data rates to be recorded on magnetic tape. A digital memory is used to temporarily store the data for subsequent recording at slower rates during the passive time of the scan line, thereby increasing the maximum data rate recording capability over real-time recording. Three possible implementations are described and the maximum data rate capability is defined in terms of the speed capability of the key hardware components. The maximum data rates can be used to define the maximum ground resolution achievable by a multispectral aircraft scanner using conventional data handling techniques.
Augmentative effect of pulsatility on the wall shear stress in tube flow.
Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K
1999-08-01
Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.
Optimization of enzyme complexes for efficient hydrolysis of corn stover to produce glucose.
Yu, Xiaoxiao; Liu, Yan; Meng, Jiatong; Cheng, Qiyue; Zhang, Zaixiao; Cui, Yuxiao; Liu, Jiajing; Teng, Lirong; Lu, Jiahui; Meng, Qingfan; Ren, Xiaodong
2015-05-01
Hydrolysis of cellulose to glucose is the critical step for transferring the lignocellulose to the industrial chemicals. For improving the conversion rate of cellulose of corn stover to glucose, the cocktail of celllulase with other auxiliary enzymes and chemicals was studied in this work. Single factor tests and Response Surface Methodology (RSM) were applied to optimize the enzyme mixture, targeting maximum glucose release from corn stover. The increasing rate of glucan-to-glucose conversion got the higher levels while the cellulase was added 1.7μl tween-80/g cellulose, 300μg β-glucosidase/g cellulose, 400μg pectinase/g cellulose and 0.75mg/ml sodium thiosulphate separately in single factor tests. To improve the glucan conversion, the β-glucosidase, pectinase and sodium thiosulphate were selected for next step optimization with RSM. It is showed that the maximum increasing yield was 45.8% at 377μg/g cellulose Novozyme 188, 171μg/g cellulose pectinase and 1mg/ml sodium thiosulphate.
Browne, Nicola K; Tay, Jason K L; Low, Jeffrey; Larson, Ole; Todd, Peter A
2015-04-01
Environmental drivers of coral condition (maximum quantum yield, symbiont density, chlorophyll a content and coral skeletal growth rates) were assessed in the equatorial inshore coastal waters of Singapore, where the amplitude of seasonal variation is low, but anthropogenic influence is relatively high. Water quality variables (sediments, nutrients, trace metals, temperature, light) explained between 52 and 83% of the variation in coral condition, with sediments and light availability as key drivers of foliose corals (Merulina ampliata, Pachyseris speciosa), and temperature exerting a greater influence on a branching coral (Pocillopora damicornis). Seasonal reductions in water quality led to high chlorophyll a concentrations and maximum quantum yields in corals, but low growth rates. These marginal coral communities are potentially vulnerable to climate change, hence, we propose water quality thresholds for coral growth with the aim of mitigating both local and global environmental impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improvement of Aconitum napellus micropropagation by liquid culture on floating membrane rafts.
Watad, A A; Kochba, M; Nissim, A; Gaba, V
1995-03-01
An efficient method was developed using floating membrane rafts (Liferaft(™)) for the micropropagation of Aconitum napellus (Ranunculaceae), a cut flower crop with a low natural propagation rate. This was achieved by introducing shoot tips into culture on Murashige and Skoog's (1962) solid medium, or liquid medium-supported rafts, supplemented by different levels of benzyl adenine (BA). Optimum shoot proliferation on solid medium required 4mg/l BA, whereas for expiants supported on rafts optimal proliferation was achieved at 0.25mg/l BA. Maximum shoot proliferation was found using the floating rafts (propagation ratio of 4.2 per month), 45% higher than the maximum value on solid medium. A similar value could be obtained on solid medium after a period of 2 months. The optimal response to BA was similar for fresh weight gain and shoot length. Growth in a shallow layer of liquid in shake flasks gives a similar shoot multiplication rate to that on floating rafts; however, submerged leaves brown and die.
Atlantic salmon show capability for cardiac acclimation to warm temperatures.
Anttila, Katja; Couturier, Christine S; Overli, Oyvind; Johnsen, Arild; Marthinsen, Gunnhild; Nilsson, Göran E; Farrell, Anthony P
2014-06-24
Increases in environmental temperature predicted to result from global warming have direct effects on performance of ectotherms. Moreover, cardiac function has been observed to limit the tolerance to high temperatures. Here we show that two wild populations of Atlantic salmon originating from northern and southern extremes of its European distribution have strikingly similar cardiac responses to acute warming when acclimated to common temperatures, despite different local environments. Although cardiac collapse starts at 21-23 °C with a maximum heart rate of ~150 beats per min (bpm) for 12 °C-acclimated fish, acclimation to 20 °C considerably raises this temperature (27.5 °C) and maximum heart rate (~200 bpm). Only minor population differences exist and these are consistent with the warmer habitat of the southern population. We demonstrate that the considerable cardiac plasticity discovered for Atlantic salmon is largely independent of natural habitat, and we propose that observed cardiac plasticity may aid salmon to cope with global warming.
Carvalho, Vitor Oliveira; Guimarães, Guilherme Veiga; Ciolac, Emmanuel Gomes; Bocchi, Edimar Alcides
2008-01-01
BACKGROUND Calculating the maximum heart rate for age is one method to characterize the maximum effort of an individual. Although this method is commonly used, little is known about heart rate dynamics in optimized beta-blocked heart failure patients. AIM The aim of this study was to evaluate heart rate dynamics (basal, peak and % heart rate increase) in optimized beta-blocked heart failure patients compared to sedentary, normal individuals (controls) during a treadmill cardiopulmonary exercise test. METHODS Twenty-five heart failure patients (49±11 years, 76% male), with an average LVEF of 30±7%, and fourteen controls were included in the study. Patients with atrial fibrillation, a pacemaker or noncardiovascular functional limitations or whose drug therapy was not optimized were excluded. Optimization was considered to be 50 mg/day or more of carvedilol, with a basal heart rate between 50 to 60 bpm that was maintained for 3 months. RESULTS Basal heart rate was lower in heart failure patients (57±3 bpm) compared to controls (89±14 bpm; p<0.0001). Similarly, the peak heart rate (% maximum predicted for age) was lower in HF patients (65.4±11.1%) compared to controls (98.6±2.2; p<0.0001). Maximum respiratory exchange ratio did not differ between the groups (1.2±0.5 for controls and 1.15±1 for heart failure patients; p=0.42). All controls reached the maximum heart rate for their age, while no patients in the heart failure group reached the maximum. Moreover, the % increase of heart rate from rest to peak exercise between heart failure (48±9%) and control (53±8%) was not different (p=0.157). CONCLUSION No patient in the heart failure group reached the maximum heart rate for their age during a treadmill cardiopulmonary exercise test, despite the fact that the percentage increase of heart rate was similar to sedentary normal subjects. A heart rate increase in optimized beta-blocked heart failure patients during cardiopulmonary exercise test over 65% of the maximum age-adjusted value should be considered an effort near the maximum. This information may be useful in rehabilitation programs and ischemic tests, although further studies are required. PMID:18719758
5 CFR 531.221 - Maximum payable rate rule.
Code of Federal Regulations, 2010 CFR
2010-01-01
... before the reassignment. (ii) If the rate resulting from the geographic conversion under paragraph (c)(2... previous rate (i.e., the former special rate after the geographic conversion) with the rates on the current... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Maximum payable rate rule. 531.221...
[The maximum heart rate in the exercise test: the 220-age formula or Sheffield's table?].
Mesquita, A; Trabulo, M; Mendes, M; Viana, J F; Seabra-Gomes, R
1996-02-01
To determine in the maximum cardiac rate in exercise test of apparently healthy individuals may be more properly estimated through 220-age formula (Astrand) or the Sheffield table. Retrospective analysis of clinical history and exercises test of apparently healthy individuals submitted to cardiac check-up. Sequential sampling of 170 healthy individuals submitted to cardiac check-up between April 1988 and September 1992. Comparison of maximum cardiac rate of individuals studied by the protocols of Bruce and modified Bruce, in interrupted exercise test by fatigue, and with the estimated values by the formulae: 220-age versus Sheffield table. The maximum cardiac heart rate is similar with both protocols. This parameter in normal individuals is better predicted by the 220-age formula. The theoretic maximum cardiac heart rate determined by 220-age formula should be recommended for a healthy, and for this reason the Sheffield table has been excluded from our clinical practice.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the affected units as the difference between NOX mass emissions measured in the common stack and NOX... emissions using the maximum potential NOX emission rate, the maximum potential flow rate, and either the maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...
41 CFR 301-31.10 - How will my agency pay my subsistence expenses?
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicable to the locality .75 times the maximum lodging amount applicable to the locality .5 times the maximum lodging amount applicable to the locality. Payment for lodging, meals, and other per diem expenses The maximum per diem rate applicable to the locality .75 times the maximum per diem rate applicable to...
Zhang, Rui; Xu, Min; Zhang, Qing; Yang, Yin-Tong; Chen, Yanfei
2014-06-01
To observe the effect of acoustic stimulus intensity on air-conducted sound elicited ocular vestibular- evoked myogenic potential (oVEMP) and cervical vestibular-evoked myogenic potential (cVEMP) in normal young Chinese subjects. Thirty-five normal subjects aged 4-40 years (20.80∓8.89 years), including 16 males and 19 females, were recruited for conventional oVEMP and cVEMP examinations. The responses obtained from each side using 500 Hz tone bursts were divided into 6 groups according to different sound intensities (100, 95, 90, 85, 80 and 75dB nHL). The response rate and normal parameters of each stimulus intensity group were calculated. As the acoustic stimulus intensity decreased, the oVEMP response rate decreased from 100% in both 100 dB nHL and 95dB nHL groups to 97.14% (90 dB nHL), 54.29% (85 dB nHL), 14.29% (80 dB nHL), and 2.86% (75 dB nHL), and the response rate of cVEMP, 100% in both 100 dB nHL and 95dB nHL groups, was lowered to 97.14% (90 dB nHL), 84.29% (85 dB nHL), 38.57% (80 dB nHL) and 8.57% (75 dB nHL). The response rate and the parameters were comparable between 100 and 95 dB nHL groups. As the acoustic stimulus intensity decreases, both oVEMP and cVEMP show decreased response rate and amplitude. For Chinese subjects under 40 years of age, we recommend 95dB nHL as the maximum initial stimulus intensity in VEMPs test.
Coldwell, M C; Boyfield, I; Brown, A M; Stemp, G; Middlemiss, D N
1999-01-01
This study characterized pharmacologically the functional responses to agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) zreceptors separately expressed in cloned cells using the cytosensor microphysiometer. Dopaminergic receptor agonists caused increases in extracellular acidification rate in adherent Chinese hamster ovary (CHO) clones expressing hD2, hD3 or hD4 receptors. Acidification rate responses to agonists in other cell lines expressing these receptors were smaller than those in adherent CHO cells. The time courses and maximum increases in acidification rate of the agonist responses in adherent CHO cells were different between the three dopamine receptor clones. Responses were blocked by pretreatment of cells with pertussis toxin or amiloride analogues. Most agonists had full intrinsic activity at each of the dopamine receptor subtypes, as compared to quinpirole, however both enantiomers of UH-232 and (−)3-PPP were partial agonists in this assay system. The functional potency of full agonists at each of the three receptors expressed in CHO cells was either higher than, or similar to, the apparent inhibition constants (Ki) determined in [125I]-iodosulpride competition binding studies. Functional selectivities of the agonists were less than radioligand binding selectivities. The rank orders of agonist potencies and selectivities were similar, but not identical, to the rank orders of radioligand binding affinities and selectivities. The dopamine receptor antagonists, iodosulpride and clozapine, had no effect on basal acidification rates but inhibited acidification responses in CHO cells to quinpirole in an apparently competitive manner. Antagonist potencies closely matched their radioligand binding affinities in these cells. PMID:10455259
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.
The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO 2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils.more » The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO 2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO 2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.« less
O'Day, S J; Gammon, G; Boasberg, P D; Martin, M A; Kristedja, T S; Guo, M; Stern, S; Edwards, S; Fournier, P; Weisberg, M; Cannon, M; Fawzy, N W; Johnson, T D; Essner, R; Foshag, L J; Morton, D L
1999-09-01
Concurrent biochemotherapy results in high response rates but also significant toxicity in patients with metastatic melanoma. We attempted to improve its efficacy and decrease its toxicity by using decrescendo dosing of interleukin-2 (IL-2), posttreatment granulocyte colony-stimulating factor (G-CSF), and low-dose tamoxifen. Forty-five patients with poor prognosis metastatic melanoma were treated at a community hospital inpatient oncology unit affiliated with the John Wayne Cancer Institute (Santa Monica, CA) between July 1995 and September 1997. A 5-day modified concurrent biochemotherapy regimen of dacarbazine, vinblastine, cisplatin, decrescendo IL-2, interferon alfa-2b, and tamoxifen was repeated at 21-day intervals. G-CSF was administered beginning on day 6 for 7 to 10 days. The overall response rate was 57% (95% confidence interval, 42% to 72%), the complete response rate was 23%, and the partial response rate was 34%. Complete remissions were achieved in an additional 11% of patients by surgical resection of residual disease after biochemotherapy. The median time to progression was 6.3 months and the median duration of survival was 11.4 months. At a maximum follow-up of 36 months (range, 10 to 36 months), 32% of patients are alive and 14% remain free of disease. Decrescendo IL-2 dosing and administration of G-CSF seemed to reduce toxicity, length of hospital stay, and readmission rates. No patient required intensive care unit monitoring, and there were no treatment-related deaths. The data from this study indicate that the modified concurrent biochemotherapy regimen reduces the toxicity of concurrent biochemotherapy with no apparent decrease in response rate in patients with poor prognosis metastatic melanoma.
A study of phycophysiology in controlled environments
NASA Technical Reports Server (NTRS)
Krauss, R. W.
1973-01-01
In an attempt to understand the responses of CHLORELLA to various quantities and qualities of light in space flight life support system, studies were designed to give the maximum rates of growth as well as maximum yields at different densities of algae under different light intensities, and under light of different wave lengths. The results of studies on the effects of light on algal growth revealed that the effect was not only positive, as had been assumed in the case of photosynthesis, but that light had a negative action also. Light at the blue end of the spectrum was clearly inhibitory to cell division and vegetative reproduction. Carbon dioxide also limited growth by inhibition of cell divisions in CHLORELLA as well as in the colorless yeast SACCHAROMYCES.
Comparative assessment of prognosis of the stop stimulus and trapezoidal rotation programs
NASA Technical Reports Server (NTRS)
Grigorova, V. K.; Popov, V. K.; Todorova, V. S.
1980-01-01
For prognosis of the diagnostic possibilities of the stop stimulus and trapezoidal rotation programs with respect to the nystagmus response, 24 healthy young persons with normal auditory and vestibular analysers were studied experimentally. The trapezoidal program more accurately reflects the function and tone balance of the vestibular system than the stop stimulus program and causes the subject no unpleasant sensations during the study. Some optimum couples, acceleration and armchair rotation rate, necessary for effective deviation of the cupuloendolymphatic system were determined. The maximum angular velocity of the slow nystagmus component was more informative than nystagmus duration. The trapezoidal program is recommended for otoneurological practice and the maximum angular velocity of the slow nystagmus component as the basic index.
Variability of Thermosphere and Ionosphere Responses to Solar Flares
NASA Technical Reports Server (NTRS)
Qian, Liying; Burns, Alan G.; Chamberlin, Philip C.; Solomon, Stanley C.
2011-01-01
We investigated how the rise rate and decay rate of solar flares affect the thermosphere and ionosphere responses to them. Model simulations and data analysis were conducted for two flares of similar magnitude (X6.2 and X5.4) that had the same location on the solar limb, but the X6.2 flare had longer rise and decay times. Simulated total electron content (TEC) enhancements from the X6.2 and X5.4 flares were 6 total electron content units (TECU) and approximately 2 TECU, and the simulated neutral density enhancements were approximately 15% -20% and approximately 5%, respectively, in reasonable agreement with observations. Additional model simulations showed that for idealized flares with the same magnitude and location, the thermosphere and ionosphere responses changed significantly as a function of rise and decay rates. The Neupert Effect, which predicts that a faster flare rise rate leads to a larger EUV enhancement during the impulsive phase, caused a larger maximum ion production enhancement. In addition, model simulations showed that increased E x B plasma transport due to conductivity increases during the flares caused a significant equatorial anomaly feature in the electron density enhancement in the F region but a relatively weaker equatorial anomaly feature in TEC enhancement, owing to dominant contributions by photochemical production and loss processes. The latitude dependence of the thermosphere response correlated well with the solar zenith angle effect, whereas the latitude dependence of the ionosphere response was more complex, owing to plasma transport and the winter anomaly.
Enhanced modulation rates via field modulation in spin torque nano-oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purbawati, A.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.
Spin Transfer Nano-Oscillators (STNOs) are promising candidates for telecommunications applications due to their frequency tuning capabilities via either a dc current or an applied field. This frequency tuning is of interest for Frequency Shift Keying concepts to be used in wireless communication schemes or in read head applications. For these technological applications, one important parameter is the characterization of the maximum achievable rate at which an STNO can respond to a modulating signal, such as current or field. Previous studies of in-plane magnetized STNOs on frequency modulation via an rf current revealed that the maximum achievable rate is limited bymore » the amplitude relaxation rate Γ{sub p}, which gives the time scale over which amplitude fluctuations are damped out. This might be a limitation for applications. Here, we demonstrate via numerical simulation that application of an additional rf field is an alternative way for modulation of the in-plane magnetized STNO configuration, which has the advantage that frequency modulation is not limited by the amplitude relaxation rate, so that higher modulation rates above GHz are achievable. This occurs when the modulating rf field is oriented along the easy axis (longitudinal rf field). Tilting the direction of the modulating rf field in-plane and perpendicularly with respect to the easy axis (transverse rf field), the modulation is again limited by the amplitude relaxation rate similar to the response observed in current modulation.« less
Climatic effects on decomposing litter and substrate chemistry along climatological gradients.
NASA Astrophysics Data System (ADS)
Berg, B.
2009-04-01
Climatic effects on decomposing litter and substrate chemistry along climatological gradients. B. Berg, Dipartimento Biologia Strutturale e Funzionale, Complesso Universitario, Monte San Angelo, via Cintia, I-80126 Napoli, Italy and Department of Forest Ecology, P.O. Box 27, University of Helsinki, FIN-00014, Helsinki, Finland. Studies of several processes, using climatic gradients do provide new information as compared with studies at e.g. a single site. Decomposition of plant litter in such gradients give response in decomposition rates to natural climate conditions. Thus Scots pine needle litter incubated in a climate gradient with annual average temperature (AVGT) ranging from -0.5 to 6.8oC had a highly significant increase in initial mass-loss rate with R2 = 0.591 (p<0.001) and a 5o increase in temperature doubled the mass-loss rate. As a contrast - needle litter of Norway spruce incubated in the same transect had no significant response to climate and for initial litter a 5o increase increased mass-loss rate c. 6%. For more decomposed Scots pine litter we could see that the effect of temperature on mass-loss rate gradually decreased until it disappeared. Long-term decomposition studies revealed differences in litter decomposition patterns along a gradient, even for the same type of litter. This could be followed by using an asymptotic function that gave, (i) a measure a maximum level of decomposition, (ii) the initial decomposition rate. Over a gradient the calculated maximum level of decomposition decreased with increasing AVGT. Other gradient studies revealed an effect of AVGT on litter chemical composition. Pine needle litter from stands under different climate conditions had nutrient concentrations related to AVGT. Thus N, P, K, and S were positively related to AVGT and Mn negatively, all of them significantly. This information may be used to explain the changing pattern in decomposition over the gradient.
Cabral, Juliano Sarmento; Bond, William J; Midgley, Guy F; Rebelo, Anthony G; Thuiller, Wilfried; Schurr, Frank M
2011-02-01
Wildflower harvesting is an economically important activity of which the ecological effects are poorly understood. We assessed how harvesting of flowers affects shrub persistence and abundance at multiple spatial extents. To this end, we built a process-based model to examine the mean persistence and abundance of wild shrubs whose flowers are subject to harvest (serotinous Proteaceae in the South African Cape Floristic Region). First, we conducted a general sensitivity analysis of how harvesting affects persistence and abundance at nested spatial extents. For most spatial extents and combinations of demographic parameters, persistence and abundance of flowering shrubs decreased abruptly once harvesting rate exceeded a certain threshold. At larger extents, metapopulations supported higher harvesting rates before their persistence and abundance decreased, but persistence and abundance also decreased more abruptly due to harvesting than at smaller extents. This threshold rate of harvest varied with species' dispersal ability, maximum reproductive rate, adult mortality, probability of extirpation or local extinction, strength of Allee effects, and carrying capacity. Moreover, spatial extent interacted with Allee effects and probability of extirpation because both these demographic properties affected the response of local populations to harvesting more strongly than they affected the response of metapopulations. Subsequently, we simulated the effects of harvesting on three Cape Floristic Region Proteaceae species and found that these species reacted differently to harvesting, but their persistence and abundance decreased at low rates of harvest. Our estimates of harvesting rates at maximum sustainable yield differed from those of previous investigations, perhaps because researchers used different estimates of demographic parameters, models of population dynamics, and spatial extent than we did. Good demographic knowledge and careful identification of the spatial extent of interest increases confidence in assessments and monitoring of the effects of harvesting. Our general sensitivity analysis improved understanding of harvesting effects on metapopulation dynamics and allowed qualitative assessment of the probability of extirpation of poorly studied species. ©2010 Society for Conservation Biology.
Dynamics of erosion in a compressional mountain range revealed by 10Be paleoerosion rates
NASA Astrophysics Data System (ADS)
Val, P.; Hoke, G. D.; Fosdick, J. C.; Wittmann, H.
2015-12-01
The temporal evolution of erosion over million-year timescales is key to understanding the evolution of mountain ranges and adjacent fold-and-thrust belts. While models of orogenic wedge evolution predict an instantaneous response of erosion to pulses of rock uplift, stream-power based landscape evolution models predict catchment-wide erosion maxima that lag behind a rock uplift pulse. Here, we explore the relationships between rock uplift, erosion, and sediment deposition in the Argentine Precordillera fold-and-thrust belt at 30°S where extensive previous work documents deformation, climate and sediment accumulation histories. Sandstone samples spanning 8.8 to 1.8 Ma were collected from the previously dated wedge-top (Iglesia) and foredeep basins (Bermejo) for quartz purification and 10Be extraction. 10Be concentrations due to burial and exhumation were estimated and subtracted from the measured concentrations and yielded the inherited 10Be concentrations, which were then corrected for sample magnetostratigraphic age. The inherited concentrations were then used to calculate paleoerosion rates. We modeled various pre-burial and post-burial exposure scenarios in order to assess potential sources of uncertainty in the recovered paleoerosion rates. The modeling results reveal that pre-burial and post-burial exposure periods only marginally affect our results. By combining the 10Be-derived paleoerosion rates and geomorphic observations with detrital zircon provenance, we document the isolation of the wedge-top basin, which was later reconnected by an upstream migrating pulse of erosion in a process that was directly controlled by thrust activity and base level. The data further indicate that the attainment of maximum upland erosion rates lags maximum rates of deformation and subsidence over million-year timescales. The magnitudes and causes of the erosional delays shed new light on the catchment erosional response to tectonic deformation and rock uplift in orogenic wedges.
Physiological Responses to On-Court vs Running Interval Training in Competitive Tennis Players
Fernandez-Fernandez, Jaime; Sanz-Rivas, David; Sanchez-Muñoz, Cristobal; de la Aleja Tellez, Jose Gonzalez; Buchheit, Martin; Mendez-Villanueva, Alberto
2011-01-01
The aim of this study was to compare heart rate (HR), blood lactate (LA) and rate of perceived exertion (RPE) responses to a tennis-specific interval training (i.e., on-court) session with that of a matched-on-time running interval training (i.e., off-court). Eight well-trained, male (n = 4) and female (n = 4) tennis players (mean ± SD; age: 16.4 ± 1.8 years) underwent an incremental test where peak treadmill speed, maximum HR (HRmax) and maximum oxygen uptake (VO2max) were determined. The two interval training protocols (i.e., off- court and on-court) consisted of 4 sets of 120 s of work, interspersed with 90 s rest. Percentage of HRmax (95.9 ± 2.4 vs. 96.1 ± 2.2%; p = 0.79), LA (6.9 ± 2.5 vs. 6.2 ± 2.4 mmol·L-1; p = 0.14) and RPE (16.7 ± 2.1 vs. 16.3 ± 1.8; p = 0.50) responses were similar for off-court and on-court, respectively. The two interval training protocols used in the present study have equivalent physiological responses. Longitudinal studies are still warranted but tennis-specific interval training sessions could represent a time-efficient alternative to off-court (running) interval training for the optimization of the specific cardiorespiratory fitness in tennis players. Key points On-court interval training protocol can be used as an alternative to running interval training Technical/tactical training should be performed under conditions that replicate the physical and technical demands of a competitive match During the competitive season tennis on-court training might be preferred to off-court training PMID:24150630
20 CFR 10.411 - What are the maximum and minimum rates of compensation in death cases?
Code of Federal Regulations, 2011 CFR
2011-04-01
... maximum and minimum rates of compensation in death cases? (a) Compensation for death may not exceed the... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false What are the maximum and minimum rates of compensation in death cases? 10.411 Section 10.411 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS...
20 CFR 10.411 - What are the maximum and minimum rates of compensation in death cases?
Code of Federal Regulations, 2013 CFR
2013-04-01
... maximum and minimum rates of compensation in death cases? (a) Compensation for death may not exceed the... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true What are the maximum and minimum rates of compensation in death cases? 10.411 Section 10.411 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS...
20 CFR 10.411 - What are the maximum and minimum rates of compensation in death cases?
Code of Federal Regulations, 2012 CFR
2012-04-01
... maximum and minimum rates of compensation in death cases? (a) Compensation for death may not exceed the... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false What are the maximum and minimum rates of compensation in death cases? 10.411 Section 10.411 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS...
20 CFR 10.411 - What are the maximum and minimum rates of compensation in death cases?
Code of Federal Regulations, 2014 CFR
2014-04-01
... maximum and minimum rates of compensation in death cases? (a) Compensation for death may not exceed the... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true What are the maximum and minimum rates of compensation in death cases? 10.411 Section 10.411 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS...
20 CFR 10.411 - What are the maximum and minimum rates of compensation in death cases?
Code of Federal Regulations, 2010 CFR
2010-04-01
... maximum and minimum rates of compensation in death cases? (a) Compensation for death may not exceed the... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false What are the maximum and minimum rates of compensation in death cases? 10.411 Section 10.411 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS...
The scaling of maximum and basal metabolic rates of mammals and birds
NASA Astrophysics Data System (ADS)
Barbosa, Lauro A.; Garcia, Guilherme J. M.; da Silva, Jafferson K. L.
2006-01-01
Allometric scaling is one of the most pervasive laws in biology. Its origin, however, is still a matter of dispute. Recent studies have established that maximum metabolic rate scales with an exponent larger than that found for basal metabolism. This unpredicted result sets a challenge that can decide which of the concurrent hypotheses is the correct theory. Here, we show that both scaling laws can be deduced from a single network model. Besides the 3/4-law for basal metabolism, the model predicts that maximum metabolic rate scales as M, maximum heart rate as M, and muscular capillary density as M, in agreement with data.
Papathanasiou, George; Georgakopoulos, Dimitris; Papageorgiou, Effie; Zerva, Efthimia; Michalis, Lampros; Kalfakakou, Vasiliki; Evangelou, Angelos
2013-01-01
There is an established link between smoking, abnormal heart rate (HR) values, and impaired cardiovascular health in middle-aged or older populations. The purpose of this study was to examine the effects of smoking on resting HR and on HR responses during and after exercise in young adults. A sample of 298 young adults (159 men), aged 20-29 years old, were selected from a large population of health-science students based on health status, body mass index, physical activity, and smoking habit. All subjects underwent a maximal Bruce treadmill test and their HR was recorded during, at peak, and after termination of exercise. Smokers had significantly higher resting HR values than non-smokers. Both female and male smokers showed a significantly slower HR increase during exercise. Female smokers failed to reach their age-predicted maximum HR by 6.0 bpm and males by 3.6 bpm. The actual maximum HR achieved (HRmax) was significantly lower for both female smokers (191.0 bpm vs.198.0 bpm) and male smokers (193.2 bpm vs.199.3 bpm), compared to non-smokers. Heart rate reserve was also significantly lower in female (114.6 bpm vs. 128.1 bpm) and male smokers (120.4 bpm vs. 133.0 bpm). During recovery, the HR decline was significantly attenuated, but only in female smokers. Females had a higher resting HR and showed a higher HR response during sub-maximal exercise compared to males. Smoking was found to affect young smokers' HR, increasing HR at rest, slowing HR increase during exercise and impairing their ability to reach the age-predicted HRmax. In addition, smoking was associated with an attenuated HR decline during recovery, but only in females.
Towards SSVEP-based, portable, responsive Brain-Computer Interface.
Kaczmarek, Piotr; Salomon, Pawel
2015-08-01
A Brain-Computer Interface in motion control application requires high system responsiveness and accuracy. SSVEP interface consisted of 2-8 stimuli and 2 channel EEG amplifier was presented in this paper. The observed stimulus is recognized based on a canonical correlation calculated in 1 second window, ensuring high interface responsiveness. A threshold classifier with hysteresis (T-H) was proposed for recognition purposes. Obtained results suggest that T-H classifier enables to significantly increase classifier performance (resulting in accuracy of 76%, while maintaining average false positive detection rate of stimulus different then observed one between 2-13%, depending on stimulus frequency). It was shown that the parameters of T-H classifier, maximizing true positive rate, can be estimated by gradient-based search since the single maximum was observed. Moreover the preliminary results, performed on a test group (N=4), suggest that for T-H classifier exists a certain set of parameters for which the system accuracy is similar to accuracy obtained for user-trained classifier.
Diedrichs, Danilo R; Isihara, Paul A; Buursma, Doeke D
2014-02-01
Using a basic, two transmission level seasonal SIR model, we introduce mathematical evidence for the schedule effect which asserts that major recurring peak infections can be significantly reduced by modification of the traditional school calendar. The schedule effect is observed first in simulated time histories of the infectious population. Schedules with higher average transmission rate may exhibit reduced peak infections. Splitting vacations changes the period of the oscillating transmission function and can confine limit cycles in the proportion susceptible/proportion infected phase plane. Numerical analysis of the phase plane shows the relationship between the transmission period and the maximum recurring infection peaks and period of the response. For certain transmission periods, this response may exhibit period-doubling and chaos, leading to increased peaks. Non-monotonic infectious response is also observed in conjunction with changing birth rate. We discuss how to take these effects into consideration to design an optimum school schedule with particular reference to a hypothetical developing world context. Copyright © 2013 Elsevier Inc. All rights reserved.
Fast Response Polypyrrole Actuators with Auxiliary Electrodes
NASA Astrophysics Data System (ADS)
Zama, Tetsuji; Hara, Susumu; Takashima, Wataru; Kaneto, Keiichi
2005-11-01
Electrochemical polypyrrole (PPy) actuators, prepared electrochemically from a methyl benzoate solution of tetra-n-butylammonium trifluoromethanesulfonate (TBACF3SO3), have been studied to improve the response rate by two methods; 1) a PPy film attached with plural auxiliary electrodes of thin Au coils, 2) a PPy film equipped with a compliant Au electrode on one side of the film. With increasing the number of auxiliary electrodes for the first method, the film responded faster as if it were a shorter film. These results are due to the decrease in the IR voltage drop along the film from the electrodes and also due to the increased current to the whole film via plural electrodes. The PPy film with the Au thin layer (the second method) exhibited up to 8.8%/s strain rate, which was much faster than that (0.5%/s) without the auxiliary electrodes, keeping the maximum strain of 12--13%. The auxiliary electrodes improved not only the response speed of the PPy actuators but also the durability upon cycling electrochemically.
Meurs, Kathryn M; Stern, Josh A; Reina-Doreste, Yamir; Maran, Brian A; Chdid, Lhoucine; Lahmers, Sunshine; Keene, Bruce W; Mealey, Katrina L
2015-09-01
β-Adrenergic receptor antagonists are widely utilized for the management of cardiac diseases in dogs. We have recently identified two deletion polymorphisms in the canine adrenoreceptor 1 (ADRB1) gene.We hypothesized that canine ADRB1 deletions would alter the structure of the protein, as well as the heart rate response to the β-adrenergic receptor antagonist, atenolol. The objectives of this study were to predict the impact of these deletions on the predicted structure of the protein and on the heart rate response to atenolol in a population of healthy adult dogs. Eighteen apparently healthy, mature dogs with (11) and without (seven) ADRB1 deletions were evaluated. The heart rate of the dogs was evaluated with a baseline ambulatory ECG before and 14-21 days after atenolol therapy (1 mg/kg orally q12 h). Minimum, average, and maximum heart rates were compared between groups of dogs (deletions, controls) using an unpaired t-test and within each group of dogs using a paired t-test. The protein structure of ADRB1 was predicted by computer modeling. Deletions were predicted to alter the structure of the ADRB1 protein. The heart rates of the dogs with deletions were lower than those of the control dogs (the average heart rates were significantly lower). ADRB1 deletions appear to have structural and functional consequences. Individual genome-based treatment recommendations could impact the management of dogs with heart disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Qi; Graduate School of Chinese Academy of Sciences, Beijing 100049; Li Daping
2009-04-15
Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l{sup -1} d{sup -1} and 3.84 g COD l{sup -1} d{sup -1}, respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factorsmore » affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t{sup -1} TS d{sup -1} and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t{sup -1} TS d{sup -1} and the inhibition was enhanced with the increase of TON loading.« less
[A Generator of Mono-energetic Electrons for Response Test of Charged Particle Detectors.].
Matsubayashi, Fumiyasu; Yoshida, Katsuhide; Maruyama, Koichi
2005-01-01
We designed and fabricated a generator of mono-energetic electrons for the response test of charged particle detectors, which is used to measure fragmented particles of the carbon beam for cancer therapy. Mono-energetic electrons are extracted from (90)Sr by analyzing the energy of beta rays in the generator with a magnetic field. We evaluated performance parameters of the generator such as the absolute energy, the energy resolution and the counting rates of extracted electrons. The generator supplies mono-energetic electrons from 0.5MeV to 1.7MeV with the energy resolution of 20% in FWHM at higher energies than 1.0MeV. The counting rate of electrons is 400cpm at the maximum when the activity of (90)Sr is 298kBq. The generator was used to measure responses of fragmented-particle detectors and to determine the threshold energy of the detectors. We evaluated the dependence of pulse height variation on the detector position and the threshold energy by using the generator. We concluded this generator is useful for the response test of general charged particle detectors.
5 CFR 531.247 - Maximum payable rate rule for GM employees.
Code of Federal Regulations, 2010 CFR
2010-01-01
... rate is a special rate, the highest previous rate (after any geographic conversion) must be compared... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Maximum payable rate rule for GM... REGULATIONS PAY UNDER THE GENERAL SCHEDULE Determining Rate of Basic Pay Special Rules for Gm Employees § 531...
Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow
Yuan, Fang; Yang, Chen; Zhong, Pei
2015-01-01
Cavitation with bubble–bubble interaction is a fundamental feature in therapeutic ultrasound. However, the causal relationships between bubble dynamics, associated flow motion, cell deformation, and resultant bioeffects are not well elucidated. Here, we report an experimental system for tandem bubble (TB; maximum diameter = 50 ± 2 μm) generation, jet formation, and subsequent interaction with single HeLa cells patterned on fibronectin-coated islands (32 × 32 μm) in a microfluidic chip. We have demonstrated that pinpoint membrane poration can be produced at the leading edge of the HeLa cell in standoff distance Sd ≤ 30 μm, driven by the transient shear stress associated with TB-induced jetting flow. The cell membrane deformation associated with a maximum strain rate on the order of 104 s−1 was heterogeneous. The maximum area strain (εA,M) decreased exponentially with Sd (also influenced by adhesion pattern), a feature that allows us to create distinctly different treatment outcome (i.e., necrosis, repairable poration, or nonporation) in individual cells. More importantly, our results suggest that membrane poration and cell survival are better correlated with area strain integral (∫εA2dt) instead of εA,M, which is characteristic of the response of materials under high strain-rate loadings. For 50% cell survival the corresponding area strain integral was found to vary in the range of 56 ∼ 123 μs with εA,M in the range of 57 ∼ 87%. Finally, significant variations in individual cell’s response were observed at the same Sd, indicating the potential for using this method to probe mechanotransduction at the single cell level. PMID:26663913
Langelotz, C; Koplin, G; Pascher, A; Lohmann, R; Köhler, A; Pratschke, J; Haase, O
2017-12-01
Background Between the conflicting requirements of clinic organisation, the European Working Time Directive, patient safety, an increasing lack of junior staff, and competitiveness, the development of ideal duty hour models is vital to ensure maximum quality of care within the legal requirements. To achieve this, it is useful to evaluate the actual effects of duty hour models on staff satisfaction. Materials and Methods After the traditional 24-hour duty shift was given up in a surgical maximum care centre in 2007, an 18-hour duty shift was implemented, followed by a 12-hour shift in 2008, to improve handovers and reduce loss of information. The effects on work organisation, quality of life and salary were analysed in an anonymous survey in 2008. The staff survey was repeated in 2014. Results With a response rate of 95% of questionnaires in 2008 and a 93% response rate in 2014, the 12-hour duty model received negative ratings due to its high duty frequency and subsequent social strain. Also the physical strain and chronic tiredness were rated as most severe in the 12-hour rota. The 18-hour duty shift was the model of choice amongst staff. The 24-hour duty model was rated as the best compromise between the requirements of work organisation and staff satisfaction, and therefore this duty model was adapted accordingly in 2015. Conclusion The essential basis of a surgical department is a duty hour model suited to the requirements of work organisation, the Working Time Directive and the needs of the surgical staff. A 12-hour duty model can be ideal for work organisation, but only if augmented with an adequate number of staff members, the implementation of this model is possible without the frequency of 12-hour shifts being too high associated with strain on surgical staff and a perceived deterioration of quality of life. A staff survey should be performed on a regular basis to assess the actual effects of duty hour models and enable further optimisation. The much criticised 24-hour duty model seems to be much better than its reputation, if augmented by additional staff members in the evening hours. Georg Thieme Verlag KG Stuttgart · New York.
Arslan, Erşan; Aras, Dicle
2016-01-01
[Purpose] The aim of this study was to compare the body composition, heart rate variability, and aerobic and anaerobic performance between competitive cyclists and triathletes. [Subjects] Six cyclists and eight triathletes with experience in competitions voluntarily participated in this study. [Methods] The subjects’ body composition was measured with an anthropometric tape and skinfold caliper. Maximal oxygen consumption and maximum heart rate were determined using the incremental treadmill test. Heart rate variability was measured by 7 min electrocardiographic recording. The Wingate test was conducted to determine anaerobic physical performance. [Results] There were significant differences in minimum power and relative minimum power between the triathletes and cyclists. Anthropometric characteristics and heart rate variability responses were similar among the triathletes and cyclists. However, triathletes had higher maximal oxygen consumption and lower resting heart rates. This study demonstrated that athletes in both sports have similar body composition and aerobic performance characteristics. PMID:27190476
Jeppesen, Jesper; Beniczky, Sándor; Johansen, Peter; Sidenius, Per; Fuglsang-Frederiksen, Anders
2016-04-01
The semiology of psychogenic non-epileptic seizures (PNES) can resemble epileptic seizures, and differentiation between epileptic seizures with no EEG-correlate and PNES can be challenging even for trained experts. Therefore, there has been a search for a quantitative measure, other than EEG and semiology that could distinguish PNES from epileptic seizures. We used ECG to measure heart rate variability (HRV) in order to compare maximum autonomic activity of epileptic seizures and PNES. These comparisons could potentially serve as biomarkers for distinguishing these types of clinical episodes. Forty-nine epileptic seizures from 17 patients and 24 PNES from 7 patients with analyzable ECG were recorded during long-term video-EEG monitoring. Moving windows of 100 R-R intervals throughout each seizure were used to find maximum values of Cardiac Sympathetic Index (CSI) (sympathetic tonus) and minimum values of Cardiac Vagal Index (CVI), Root-Mean-Square-of-Successive-Differences (RMSSD) and HF-power (parasympathetic tonus). In addition, non-seizure recordings of each patient were used to compare HRV-parameters between the groups. The maximum CSI for epilepsy seizures were higher than PNES (P=0.015). The minimum CVI, minimum RMSSD and HF-power did not show significant difference between epileptic seizures and PNES (P=0.762; P=0.152; P=0.818). There were no statistical difference of non-seizure HRV-parameters between the PNES and epilepsy patients. We found the maximum sympathetic activity accompanying the epileptic seizures to be higher, than that during the PNES. However, the great variation of autonomic response within both groups makes it difficult to use these HRV-measures as a sole measurement in distinguishing epileptic seizures from PNES. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PREPARING TOMORROW'S TEACHERS TO USE TECHNOLOGY § 614.6 What is the maximum indirect cost rate for all... 34 Education 3 2010-07-01 2010-07-01 false What is the maximum indirect cost rate for all consortium members and any cost-type contract? 614.6 Section 614.6 Education Regulations of the Offices of...
Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F
2012-04-01
Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.
Temmink, Ralph J M; Harpenslager, Sarah F; Smolders, Alfons J P; van Dijk, Gijs; Peters, Roy C J H; Lamers, Leon P M; van Kempen, Monique M L
2018-03-13
Azolla spp., a water fern often used for phytoremediation, is a strong phosphorus (P) accumulator due to its high growth rate and N 2 fixing symbionts (diazotrophs). It is known that plant growth is stimulated by P, but the nature of the interactive response of both symbionts along a P gradient, and related changes in growth-limiting factors, are unclear. We determined growth, and N and P sequestration rates of Azolla filiculoides in N-free water at different P concentrations. The growth response appeared to be biphasic and highest at levels ≥10 P µmol l -1 . Diazotrophic N sequestration increased upon P addition, and rates were three times higher at high P than at low P. At 10 µmol P l -1 , N sequestration rates reached its maximum and A. filiculoides growth became saturated. Due to luxury consumption, P sequestration rates increased until 50 µmol P l -1 . At higher P concentrations (≥50 µmol l -1 ), however, chlorosis occurred that seems to be caused by iron- (Fe-), and not by N-deficiency. We demonstrate that traits of the complete symbiosis in relation to P and Fe availability determine plant performance, stressing the role of nutrient stoichiometry. The results are discussed regarding Azolla's potential use in a bio-based economy.
Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad
2018-06-01
The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.
Functional traits help predict post-disturbance demography of tropical trees.
Flores, Olivier; Hérault, Bruno; Delcamp, Matthieu; Garnier, Éric; Gourlet-Fleury, Sylvie
2014-01-01
How tropical tree species respond to disturbance is a central issue of forest ecology, conservation and resource management. We define a hierarchical model to investigate how functional traits measured in control plots relate to the population change rate and to demographic rates for recruitment and mortality after disturbance by logging operations. Population change and demographic rates were quantified on a 12-year period after disturbance and related to seven functional traits measured in control plots. The model was calibrated using a Bayesian Network approach on 53 species surveyed in permanent forest plots (37.5 ha) at Paracou in French Guiana. The network analysis allowed us to highlight both direct and indirect relationships among predictive variables. Overall, 89% of interspecific variability in the population change rate after disturbance were explained by the two demographic rates, the recruitment rate being the most explicative variable. Three direct drivers explained 45% of the variability in recruitment rates, including leaf phosphorus concentration, with a positive effect, and seed size and wood density with negative effects. Mortality rates were explained by interspecific variability in maximum diameter only (25%). Wood density, leaf nitrogen concentration, maximum diameter and seed size were not explained by variables in the analysis and thus appear as independent drivers of post-disturbance demography. Relationships between functional traits and demographic parameters were consistent with results found in undisturbed forests. Functional traits measured in control conditions can thus help predict the fate of tropical tree species after disturbance. Indirect relationships also suggest how different processes interact to mediate species demographic response.
Parametric studies of diethyl phosphoramidate photocatalytic decomposition over TiO2.
Sun, Bo; Vorontsov, Alexander V; Smirniotis, Panagiotis G
2011-02-28
The present study is focused on influences of parameters including pH, temperature, TiO(2) catalyst concentration, and reactant concentration on the rate of photocatalytic diethyl phosphoramidate (DEPA) decomposition with Hombikat UV 100 (HK) and Degussa P25 (P25) TiO(2). Total mineralization of DEPA is observed. Two regimes of pH, namely in acid and near-neutral environments were found where maximum total carbon (TC) decomposition was observed. The electrostatic effects on adsorption over the TiO(2) surface explain the above phenomena. The maximum rate is observed for P25 at DEPA concentration 1.3 mM whereas the rate grows continuously with DEPA concentration rise for HK. The temperature dependence of TC decomposition rate in the range of 15-63°C with both HK and P25 follows the Arrhenius equation. The activation energy for total carbon decomposition with HK and P25 are 29.5±1.0 and 24.3±3.1 kJ/mol, respectively. The decomposition rate of DEPA is larger over P25 than over HK. The rate over P25 increases faster than that with HK for each unit of the titania added when the TiO(2) concentration is less than 375 mg/l. The higher light absorption and particles aggregation of P25 are responsible for the decrease of reaction rate we observed at catalyst concentration above a certain level. In contrast, the rate over HK increases monotonically with the concentration of the photocatalyst used. Copyright © 2010 Elsevier B.V. All rights reserved.
Geophysical Potential for Wind Energy over the Open Oceans
NASA Astrophysics Data System (ADS)
Possner, A.; Caldeira, K.
2017-12-01
Wind turbines continuously remove kinetic energy from the lower troposphere thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is therefore constrained by the rate of kinetic energy replenishment from the atmosphere above. In particular, this study focuses on the maximum sustained transport of kinetic energy through the troposphere to the lowest hundreds of meters above the surface. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 Wm-2 within large wind farms. However, in this study we demonstrate that considerably higher power generation rates may be sustainable over some open ocean areas in giant wind farms. We find that in the North Atlantic maximum extraction rates of up to 6.7 Wm-2 may be sustained by the atmosphere in the annual mean over giant wind farm areas approaching the size of Greenland. In contrast, only a third of this rate is sustained on land for areas of equivalent size. Our simulations indicate a fundamental difference in response of the troposphere and its vertical kinetic energy flux to giant near-surface wind farms. We find that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where large sustained rates of downward transport of kinetic energy and thus rates of kinetic energy extraction may be geophysically possible. While no commercial-scale deep-water wind turbines yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.
Farghaly, Ahmed; Tawfik, Ahmed
2017-01-01
Multi-phase anaerobic reactor for H 2 and CH 4 production from paperboard mill wastewater was studied. The reactor was operated at hydraulic retention times (HRTs) of 12, 18, 24, and 36 h, and organic loading rates (OLRs) of 2.2, 1.5, 1.1, and 0.75 kg chemical oxygen demand (COD)/m 3 day, respectively. HRT of 12 h and OLR of 2.2 kg COD/m 3 day provided maximum hydrogen yield of 42.76 ± 14.5 ml/g COD removed and volumetric substrate uptake rate (-rS) of 16.51 ± 4.43 mg COD/L h. This corresponded to the highest soluble COD/total COD (SCOD/TCOD) ratio of 56.25 ± 3.3 % and the maximum volatile fatty acid (VFA) yield (Y VFA ) of 0.21 ± 0.03 g VFA/g COD, confirming that H 2 was mainly produced through SCOD conversion. The highest methane yield (18.78 ± 3.8 ml/g COD removed ) and -rS of 21.74 ± 1.34 mgCOD/L h were achieved at an HRT of 36 h and OLR of 0.75 kg COD/m 3 day. The maximum hydrogen production rate (HPR) and methane production rate (MPR) were achieved at carbon to nitrogen (C/N) ratio of 47.9 and 14.3, respectively. This implies the important effect of C/N ratio on the distinction between the dominant microorganism bioactivities responsible for H 2 and CH 4 production.
Resource-driven encounters among consumers and implications for the spread of infectious disease
Flynn, Jason M.
2017-01-01
Animals share a variety of common resources, which can be a major driver of conspecific encounter rates. In this work, we implement a spatially explicit mathematical model for resource visitation behaviour in order to examine how changes in resource availability can influence the rate of encounters among consumers. Using simulations and asymptotic analysis, we demonstrate that, under a reasonable set of assumptions, the relationship between resource availability and consumer conspecific encounters is not monotonic. We characterize how the maximum encounter rate and associated critical resource density depend on system parameters like consumer density and the maximum distance from which consumers can detect and respond to resources. The assumptions underlying our theoretical model and analysis are motivated by observations of large aggregations of black-backed jackals at carcasses generated by seasonal outbreaks of anthrax among herbivores in Etosha National Park, Namibia. As non-obligate scavengers, black-backed jackals use carcasses as a supplemental food resource when they are available. While jackals do not appear to acquire disease from ingesting anthrax carcasses, changes in their movement patterns in response to changes in carcass abundance do alter jackals' conspecific encounter rate in ways that may affect the transmission dynamics of other diseases, such as rabies. Our theoretical results provide a method to quantify and analyse the hypothesis that the outbreak of a fatal disease among herbivores can potentially facilitate outbreaks of an entirely different disease among jackals. By analysing carcass visitation data, we find support for our model's prediction that the number of conspecific encounters at resource sites decreases with additional increases in resource availability. Whether or not this site-dependent effect translates to an overall decrease in encounters depends, unexpectedly, on the relationship between the maximum distance of detection and the resource density. PMID:29021163
Mookerjee, Shona A.; Gerencser, Akos A.; Nicholls, David G.; Brand, Martin D.
2017-01-01
Partitioning of ATP generation between glycolysis and oxidative phosphorylation is central to cellular bioenergetics but cumbersome to measure. We describe here how rates of ATP generation by each pathway can be calculated from simultaneous measurements of extracellular acidification and oxygen consumption. We update theoretical maximum ATP yields by mitochondria and cells catabolizing different substrates. Mitochondrial P/O ratios (mol of ATP generated per mol of [O] consumed) are 2.73 for oxidation of pyruvate plus malate and 1.64 for oxidation of succinate. Complete oxidation of glucose by cells yields up to 33.45 ATP/glucose with a maximum P/O of 2.79. We introduce novel indices to quantify bioenergetic phenotypes. The glycolytic index reports the proportion of ATP production from glycolysis and identifies cells as primarily glycolytic (glycolytic index > 50%) or primarily oxidative. The Warburg effect is a chronic increase in glycolytic index, quantified by the Warburg index. Additional indices quantify the acute flexibility of ATP supply. The Crabtree index and Pasteur index quantify the responses of oxidative and glycolytic ATP production to alterations in glycolysis and oxidative reactions, respectively; the supply flexibility index quantifies overall flexibility of ATP supply; and the bioenergetic capacity quantifies the maximum rate of total ATP production. We illustrate the determination of these indices using C2C12 myoblasts. Measurement of ATP use revealed no significant preference for glycolytic or oxidative ATP by specific ATP consumers. Overall, we demonstrate how extracellular fluxes quantitatively reflect intracellular ATP turnover and cellular bioenergetics. We provide a simple spreadsheet to calculate glycolytic and oxidative ATP production rates from raw extracellular acidification and respiration data. PMID:28270511
Correlation analysis of the optics of progressive addition lenses.
Sheedy, James E
2004-05-01
To investigate the relations between selected key optical parameters and the sizes of the clear viewing areas of progressive addition lenses (PALs). The optics of 28 PALs (plano with +2.00 D add) currently on the market were measured with a Rotlex Class Plus lens analyzer. Horizontal cross sections were analyzed in 1 mm vertical steps with respect to the fitting cross. Distance, intermediate, and near viewing zone widths and areas were calculated from the measurements. The maximum amount of unwanted astigmatism, minimum zone width (0.50 DC limit), and maximum power rate in the corridor were also recorded for each lens. Correlation coefficients were determined for all relations. Each of the three viewing zone areas had a significant negative relation with the other (r of -0.4 to -0.8), indicating design tradeoff. Maximum power rate was significantly related to minimum zone width (r = -0.695), which was significantly related to maximum astigmatism (r = -0.616), but there was not a significant relation between maximum power rate and maximum astigmatism. Higher power rates and narrower minimum zones were significantly related to smaller intermediate and larger near zones (r = 0.4 to 0.9). Maximum astigmatism was related to distance zone width (r = 0.42) and to intermediate zone size (r = -0.4 to -0.56), but not significantly related to near viewing zone. Power rate and astigmatism each vary relatively uniformly across each lens. The fundamental relation appears to be between power rate and zone width, each of which is highly related to sizes of the intermediate and near viewing zones. The maximum amount of astigmatism is related to zone width, but not to maximum power rate. The amount of astigmatism is unrelated to the size of the near zone. The pattern of correlations between the optical and viewing zone parameters help identify the underlying optical relations of PALs.
Do the western Himalayas defy global warming?
NASA Astrophysics Data System (ADS)
Yadav, Ram R.; Park, Won-Kyu; Singh, Jayendra; Dubey, Bhasha
2004-09-01
Observational records and reconstructions from tree rings reflect premonsoon (March to May) temperature cooling in the western Himalaya during the latter part of the 20th century. A rapid decrease of minimum temperatures at around three times higher rate, as compared to the rate of increase in maximum temperatures found in local climate records is responsible for the cooling trend in mean premonsoon temperature. The increase of the diurnal temperature range is attributed to large scale deforestation and land degradation in the area and shows the higher influence of local forcing factors on climate in contrast to the general trend found in higher latitudes of the northern Hemisphere.
NASA Astrophysics Data System (ADS)
Abe-Ouchi, A.; Obase, T.
2017-12-01
Basal melting of the Antarctic ice shelves is an important factor in determining the stability of the Antarctic ice sheet. This study used the climatic outputs of an atmosphere?ocean general circulation model to force a circumpolar ocean model that resolves ice shelf cavity circulation to investigate the response of Antarctic ice shelf melting to different climatic conditions, i.e., to an increase (doubling) of CO2 and the Last Glacial Maximum conditions. We also conducted sensitivity experiments to investigate the role of surface atmospheric change, which strongly affects sea ice production, and the change of oceanic lateral boundary conditions. We found that the rate of change of basal melt due to climate warming is much greater (by an order of magnitude) than due to cooling. This is mainly because the intrusion of warm water onto the continental shelves, linked to sea ice production and climate change, is crucial in determining the basal melt rate of many ice shelves. Sensitivity experiments showed that changes of atmospheric heat flux and ocean temperature are both important for warm and cold climates. The offshore wind change together with atmospheric heat flux change strongly affected the production of sea ice and high-density water, preventing warmer water approaching the ice shelves under a colder climate. These results reflect the importance of both water mass formation in the Antarctic shelf seas and subsurface ocean temperature in understanding the long-term response to climate change of the melting of Antarctic ice shelves.
Sato, Keiichiro; Yamawaki, Yoshifumi
2014-08-01
In responses to looming objects, the praying mantis shows a defense behavior, which consists of retracting forelegs under the prothorax. The role of a looming-sensitive neuron in triggering this behavior was investigated by simultaneously recording the activity and behavioral responses of the neuron. The mantis initiated the defense behavior earlier in response to larger and slower looming stimuli. The time remaining to collision at defense initiation was linearly correlated with the ratio of the half-size of an approaching object to its speed (l/|v|), suggesting that the defense behavior occurred a fixed delay after the stimuli had reached a fixed angular threshold. Furthermore, the results suggested that high-frequency spikes of the looming-sensitive neuron were involved in triggering the defense behavior: the distribution of maximum firing rate for trials with defense was shifted to larger rates compared with trials without defense; the firing rate of the neuron exceeded 150 Hz ∼100 ms before the defense initiation regardless of stimulus parameters; when a looming stimulus ceased approach prematurely, high-frequency spikes were removed, and the occurrence of defense was reduced. Copyright © 2014 the American Physiological Society.
Self-Trail, Jean M.; Powars, David S.; Watkins, David K.; Wandless, Gregory A.
2012-01-01
Biotic response of calcareous nannoplankton to abrupt warming across the Paleocene/Eocene boundary reflects a primary response to climatically induced parameters including increased continental runoff of freshwater, global acidification of seawater, high sedimentation rates, and calcareous nannoplankton assemblage turnover. We identify ecophenotypic nannofossil species adapted to low pH conditions (Discoaster anartios, D. araneus, Rhomboaster spp.), excursion taxa adapted to the extremely warm climatic conditions (Bomolithus supremus and Coccolithus bownii), three species of the genus Toweius (T. serotinus, T. callosus, T. occultatus) adapted to warm, rather than cool, water conditions, opportunists adapted to high productivity conditions (Coronocyclus bramlettei, Neochiastozygus junctus), and species adapted to oligotropic and/or cool‐water conditions that went into refugium during the PETM (Zygrablithus bijugatus, Calcidiscus? parvicrucis and Chiasmolithus bidens). Discoaster anartios was adapted to meso- to eutrophic, rather than oligotrophic, conditions. Comparison of these data to previous work on sediments deposited on shelf settings suggests that local conditions such as high precipitation rates and possible increase in major storms such as hurricanes resulted in increased continental runoff and high sedimentation rates that affected assemblage response to the PETM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamo, Masashi; Ono, Kyoko; Nakanishi, Junko
2006-05-15
A meta-analysis was conducted to derive age- and gender-specific dose-response relationships between urinary cadmium (Cd) concentration and {beta} {sub 2}-microglobulinuria ({beta}2MG-uria) under environmental exposure. {beta}2MG-uria was defined by a cutoff point of 1000 {mu}g {beta} {sub 2}-microglobulin/g creatinine. We proposed a model for describing the relationships among the interindividual variabilities in urinary Cd concentration, the ratio of Cd concentrations in the target organ and in urine, and the threshold Cd concentration in the target organ. The parameters in the model were determined so that good agreement might be achieved between the prevalence rates of {beta}2MG-uria reported in the literature andmore » those estimated by the model. In this analysis, only the data from the literature on populations environmentally exposed to Cd were used. Using the model and estimated parameters, the prevalence rate of {beta}2MG-uria can be estimated for an age- and gender-specific subpopulation for which the distribution of urinary Cd concentrations is known. The maximum permissible level of urinary Cd concentration was defined as the maximum geometric mean of the urinary Cd concentration in an age- and gender-specific subpopulation that would not result in a statistically significant increase in the prevalence rate of {beta}2MG-uria. This was estimated to be approximately 3 {mu}g/g creatinine for a population in a small geographical area and approximately 2 {mu}g/g creatinine for a nationwide population.« less
Fracture mechanics and surface chemistry studies of fatigue crack growth in an aluminum alloy
NASA Astrophysics Data System (ADS)
Wei, R. P.; Pao, P. S.; Hart, R. G.; Weir, T. W.; Simmons, G. W.
1980-12-01
Fracture mechanics and surface chemistry studies were carried out to develop further understanding of the influence of water vapor on fatigue crack growth in aluminum alloys. The room temperature fatigue crack growth response was determined for 2219-T851 aluminum alloy exposed to water vapor at pressures from 1 to 30 Pa over a range of stress intensity factors ( K). Data were also obtained in vacuum (at < 0.50 μPa), and dehumidified argon. The test results showed that, at a frequency of 5 Hz, the rate of crack growth is essentially unaffected by water vapor until a threshold pressure is reached. Above this threshold, the rates increased, reaching a maximum within one order of magnitude increase in vapor pressure. This maximum crack growth rate is equal to that obtained in air (40 to 60 pct relative humidity), distilled water and 3.5 pct NaCl solution on the same material. Parallel studies of the reactions of water vapor with fresh alloy surfaces (produced either by in situ impact fracture or by ion etching) were made by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The extent of surface reaction was monitored by changes in the oxygen AES and XPS signals. Correlation between the fatigue crack growth response and the surface reaction kinetics has been made, and is consistent with a transport-limited model for crack growth. The results also suggest that enhancement of fatigue crack growth by water vapor in the aluminum alloys occurs through a “hydrogen embrittle ment” mechanism.
Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D
2011-06-15
The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gregory Lough, R.; Mountain, David G.
A set of vertically stratified MOCNESS tows made on the southern flank of Georges Bank in spring 1981 and 1983 was analyzed to examine the relationship between larval cod and haddock feeding success and turbulent dissipation in a stratified water column. Observed feeding ratios (mean no. prey larval gut -1) for three size classes of larvae were compared with estimated ingestion rates using the Rothschild and Osborn ( Journal of Plankton Research, 10, 1988, 465-474) predator-prey encounter rate model. Simulation of contact rates requires parameter estimates of larval fish and their prey cruising speeds, density of prey, and turbulent velocity of the water column. Turbulent dissipation was estimated from a formulation by James ( Estuarine and Coastal Marine Science, 5, 1977, 339-353) incorporating both a wind a tidal component. Larval ingestion rates were based on swallowing probabilities derived from calm-water laboratory observations. Model-predicted turbulence profiles generally showed that dissipation rates were low to moderate (10 -11-10 -7 W kg -1). Turbulence was minimal at or below the pycnocline (≈ 25 m) with higher values(1-2 orders of magnitude) near the surface due to wind mixing and at depth due to shear in the tidal current near bottom. In a stratified water column during the day, first-feeding larvae (5-6 mm) were located mostly within or above the pycnocline coincident with their copepod prey (nauplii and copepodites). The 7-8 mm larvae were most abundant within the pycnocline, whereas the 9-10 mm larvae were found within and below the pycnocline. Feeding ratios were relatively low in early morning following darkness when the wind speed was low, but increased by a factor of 2-13 by noon and evening when the wind speed doubled. Comparison of depth-specific feeding ratios with estimated ingestion rates, derived from turbulence-affected contact rates, generally were reasonable after allowing for an average gut evacuation time (4 h), and in many cases the observed and estimated values had similar profiles. However, differences in vertical profiles may be attributed to differential digestion time, pursuit behavior affected by high turbulence, vertical migration of the larger larvae, an optimum light level for feeding, smaller-scale prey patchiness, and the gross estimates of turbulence. Response-surface estimation of averaged feeding ratios as a function of averaged prey density (0-50 m) with a minimum water-column turbulence value predicted that 5-6 mm larvae have a maximum feeding response at the highest prey densities (> 30 prey 1 -1) and lower turbulence estimates (<10 -10 W kg -1). The 7-8 mm and 9-10 mm larvae also have a maximum feeding response at high prey densities and low turbulence, but it extends to lower prey densities (> 10 prey 1 -1) as turbulence increases to intermidiate levels, clearly showing an interaction effect. In general, maximum feeding ratios occur at low to intermediate levels of turbulence where average prey density is greater than 10-20 prey 1 -1.
USDA-ARS?s Scientific Manuscript database
The responses of CO2 assimilation to [CO2] (A/Ci) were investigated at two developmental stages (R5 and R6) and in several soybean cultivars grown under two levels of [CO2], the ambient level of 370 µbar versus the elevated level of 550 µbar. The A/Ci data were analyzed and compared using various cu...
H2O and CO2 fluxes at the floor of a boreal pine forest
NASA Astrophysics Data System (ADS)
Kulmala, Liisa; Launiainen, Samuli; Pumpanen, Jukka; Lankreijer, Harry; Lindroth, Anders; Hari, Pertti; Vesala, Timo
2008-04-01
We measured H2O and CO2 fluxes at a boreal forest floor using eddy covariance (EC) and chamber methods. Maximum evapotranspiration measured with EC ranged from 1.5 to 2.0mmol m-2 s-1 while chamber estimates depended substantially on the location and the vegetation inside the chamber. The daytime net CO2 exchange measured with EC (0-2μmol m-2 s-1) was of the same order as measured with the chambers. The nocturnal net CO2 exchange measured with the chambers ranged from 4 to 7μmol m-2 s-1 and with EC from ~4 to ~5μmol m-2 s-1 when turbulent mixing below the canopy was sufficient and the measurements were reliable. We studied gross photosynthesis by measuring the light response curves of the most common forest floor species and found the saturated rates of photosynthesis (Pmax) to range from 0.008 (mosses) to 0.184μmol g-1 s-1 (blueberry). The estimated gross photosynthesis at the study site based on average leaf masses and the light response curves of individual plant species was 2-3μmol m-2 s-1. At the same time, we measured a whole community with another chamber and found maximum gross photosynthesis rates from 4 to 7μmol m-2 s-1.
McKay, R. M. L.; Geider, R. J.; LaRoche, J.
1997-01-01
Flavodoxin is a small electron-transfer protein capable of replacing ferredoxin during periods of Fe deficiency. When evaluating the suitability of flavodoxin as a diagnostic indicator for Fe limitation of phytoplankton growth, we examined its expression in two marine diatoms we cultured using trace-metal-buffered medium. Thalassio-sira weissflogii and Phaeodactylum tricornutum were cultured in ethylenediaminetetraacetic acid-buffered Sargasso Sea water containing from 10 to 1000 nM added Fe. Trace-metal-buffered cultures of each diatom maintained high growth rates across the entire range of Fe additions. Similarly, declines in chlorophyll/cell and in the ratio of photosystem II variable-to-maximum fluorescence were negligible (P. tricornutum) to moderate (T. weissflogii; 54% decline in chlorophyll/cell and 22% decrease in variable-to-maximum fluorescence). Moreover, only minor variations in photosynthetic parameters were observed across the range of additions. In contrast, flavodoxin was expressed to high levels in low-Fe cultures. Despite the inverse relationship between flavodoxin expression and Fe content of the medium, its expression was seemingly independent of any of the indicators of cell physiology that were assayed. It appears that flavodoxin is expressed as an early-stage response to Fe stress and that its accumulation need not be intimately connected to limitations imposed by Fe on the growth rate of these diatoms. PMID:12223732
Limousin, Jean-Marc; Bickford, Christopher P; Dickman, Lee T; Pangle, Robert E; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Osuna, Jessica L; Pockman, William T; McDowell, Nate G
2013-10-01
Leaf gas-exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas-exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon-juniper Pinus edulis-Juniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (-45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas-exchange rates under well-watered conditions, leaf-specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade-off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA. © 2013 John Wiley & Sons Ltd.
13 CFR 107.845 - Maximum rate of amortization on Loans and Debt Securities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Financing of Small Businesses by Licensees Structuring Licensee's Financing of An Eligible Small Business: Terms and Conditions of Financing § 107.845 Maximum... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Maximum rate of amortization on...
Sologubik, Carlos A.; Fernández, María B.; Manrique, Guillermo D.
2018-01-01
The kinetics of polyphenol extraction from brewer’s spent grain (BSG), using a batch system, ultrasound assistance, and microwave assistance and the evolution of antioxidant capacity of these extracts over time, were studied. The main parameters of extraction employed in the batch system were evaluated, and, by applying response surface analysis, the following optimal conditions were obtained: Liquid/solid ratio of 30:1 mL/g at 80 °C, using 72% (v/v) ethanol:water as the solvent system. Under these optimized conditions, ultrasound assistance demonstrated the highest extraction rate and equilibrium yield, as well as shortest extraction times, followed by microwave assistance. Among the mathematical models used, Patricelli’s model proved the most suitable for describing the extraction kinetics for each method tested, and is therefore able to predict the response values and estimate the extraction rates and potential maximum yields in each case. PMID:29570683
Muñiz-Márquez, Diana B; Contreras, Juan C; Rodríguez, Raúl; Mussatto, Solange I; Teixeira, José A; Aguilar, Cristóbal N
2016-08-01
The aim of this work was to improve the production of fructosyltransferase (FTase) by Solid-State Fermentation (SSF) using aguamiel (agave sap) as culture medium and Aspergillus oryzae DIA-MF as producer strain. SSF was carried out evaluating the following parameters: inoculum rate, incubation temperature, initial pH and packing density to determine the most significant factors through Box-Hunter and Hunter design. The significant factors were then further optimized using a Box-Behnken design and response surface methodology. The maximum FTase activity (1347U/L) was obtained at 32°C, using packing density of 0.7g/cm(3). Inoculum rate and initial pH had no significant influence on the response. FOS synthesis applying the enzyme produced by A. oryzae DIA-MF was also studied using aguamiel as substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.
System for and method of freezing biological tissue
NASA Technical Reports Server (NTRS)
Williams, T. E.; Cygnarowicz, T. A. (Inventor)
1978-01-01
Biological tissue is frozen while a polyethylene bag placed in abutting relationship against opposed walls of a pair of heaters. The bag and tissue are cooled with refrigerating gas at a time programmed rate at least equal to the maximum cooling rate needed at any time during the freezing process. The temperature of the bag, and hence of the tissue, is compared with a time programmed desired value for the tissue temperature to derive an error indication. The heater is activated in response to the error indication so that the temperature of the tissue follows the desired value for the time programmed tissue temperature. The tissue is heated to compensate for excessive cooling of the tissue as a result of the cooling by the refrigerating gas. In response to the error signal, the heater is deactivated while the latent heat of fusion is being removed from the tissue while the tissue is changing phase from liquid to solid.
Blood pressure and pain sensitivity in children and adolescents.
Drouin, Sammantha; McGrath, Jennifer J
2013-06-01
Elevated blood pressure is associated with diminished pain sensitivity. While this finding is well established in adults, it is less clear when the relation between blood pressure and pain sensitivity emerges across the life course. Evidence suggests this phenomenon may exist during childhood. Children (N = 309; 56% boys) aged 10-15 years and their parents participated. Blood pressure readings were taken during a resting baseline. Maximum pain intensity was rated using a visual analogue scale (rated 0-10) in response to a finger prick pain induction. Parent-measured resting blood pressure was inversely associated with boys' pain ratings only. Cross-sectionally, lower pain ratings were related to higher SBP, univariately. Longitudinally, pain ratings predicted higher DBP, even after controlling for covariates. Determining when and how the relation between blood pressure and pain sensitivity emerges may elucidate the pathophysiology of hypertension. Copyright © 2013 Society for Psychophysiological Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterwald, C. R.; Anderberg, A.; Rummel, S.
We present an analysis of the results of a solar weathering program that found a linear relationship between maximum power degradation and the total UV exposure dose for four different types of commercial crystalline Si modules. The average degradation rate for the four modules types was 0.71% per year. The analysis showed that losses of short-circuit current were responsible for the maximum power degradation. Judging by the appearance of the undegraded control modules, it is very doubtful that the short-circuit current losses were caused by encapsulation browning or obscuration. When we compared the quantum efficiency of a single cell inmore » a degraded module to one from an unexposed control module, it appears that most of the degradation has occurred in the 800 - 1100 nm wave-length region, and not the short wavelength region.« less
Han, Xiao; Wang, Hai Bo; Wang, Xiao di; Shi, Xiang Bin; Wang, Bao Liang; Zheng, Xiao Cui; Wang, Zhi Qiang; Liu, Feng Zhi
2017-10-01
The photo response curves of 11 rootstock-scion combinations including summer black/Beta, summer black/1103P, summer black/101-14, summer black/3309C, summer black/140Ru, summer black/5C, summer black/5BB, summer black/420A, summer black/SO4, summer black/Kangzhen No.1, summer black/Huapu No.1 were fitted by rectangular hyperbola mo-del, non-rectangular hyperbola model, modified rectangular hyperbola model and exponential model respectively, and the differences of imitative effects were analyzed by determination coefficiency, light compensation point, light saturation point, initial quantum efficiency, maximum photosynthetic rate and dark respiration rate. The result showed that the fit coefficients of all four models were above 0.98, and there was no obvious difference on the fitted values of light compensation point among the four models. The modified rectangular hyperbola model fitted best on light saturation point, apparent quantum yield, maximum photosynthetic rate and dark respiration rate, and had the minimum AIC value based on the akaike information criterion, therefore, the modified rectangular hyperbola model was the best one. The clustering analysis indicated that summer black/SO4 and summer black/420A combinations had low light compensation point, high apparent quantum yield and low dark respiration rate among 11 rootstock-scion combinations, suggesting that these two combinations could use weak light more efficiently due to their less respiratory consumption and higher weak light tolerance. The Topsis comparison method ranked summer black/SO4 and summer black/420A combinations as No. 1 and No. 2 respectively in weak light tolerance ability, which was consistent with cluster analysis. Consequently, summer black has the highest weak light tolerance in case grafted on 420A or SO4, which could be the most suitable rootstock-scion combinations for protected cultivation.
Ruiz-Navarro, Ana; Gillingham, Phillipa K; Britton, J Robert
2016-09-01
Predictions of species responses to climate change often focus on distribution shifts, although responses can also include shifts in body sizes and population demographics. Here, shifts in the distributional ranges ('climate space'), body sizes (as maximum theoretical body sizes, L∞) and growth rates (as rate at which L∞ is reached, K) were predicted for five fishes of the Cyprinidae family in a temperate region over eight climate change projections. Great Britain was the model area, and the model species were Rutilus rutilus, Leuciscus leuciscus, Squalius cephalus, Gobio gobio and Abramis brama. Ensemble models predicted that the species' climate spaces would shift in all modelled projections, with the most drastic changes occurring under high emissions; all range centroids shifted in a north-westerly direction. Predicted climate space expanded for R. rutilus and A. brama, contracted for S. cephalus, and for L. leuciscus and G. gobio, expanded under low-emission scenarios but contracted under high emissions, suggesting the presence of some climate-distribution thresholds. For R. rutilus, A. brama, S. cephalus and G. gobio, shifts in their climate space were coupled with predicted shifts to significantly smaller maximum body sizes and/or faster growth rates, aligning strongly to aspects of temperature-body size theory. These predicted shifts in L∞ and K had considerable consequences for size-at-age per species, suggesting substantial alterations in population age structures and abundances. Thus, when predicting climate change outcomes for species, outputs that couple shifts in climate space with altered body sizes and growth rates provide considerable insights into the population and community consequences, especially for species that cannot easily track their thermal niches. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density B Appendix B to Subpart II to Part 63 Protection of...—Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density EC01MY92.046 ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density B Appendix B to Subpart II to Part 63 Protection of...—Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density EC01MY92.046 ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density B Appendix B to Subpart II of Part 63 Protection of...—Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density EC01MY92.046 ...
Shinba, Toshikazu; Kariya, Nobutoshi; Matsui, Yasue; Ozawa, Nobuyuki; Matsuda, Yoshiki; Yamamoto, Ken-Ichi
2008-10-01
Previous studies have shown that heart rate variability (HRV) measurement is useful in investigating the pathophysiology of various psychiatric disorders. The present study further examined its usefulness in evaluating the mental health of normal subjects with respect to anxiety and depressiveness. Heart rate (HR) and HRV were measured tonometrically at the wrist in 43 normal subjects not only in the resting condition but also during a task (random number generation) to assess the responsiveness. For HRV measurement, high-frequency (HF; 0.15-0.4 Hz) and low-frequency (LF; 0.04-0.15 Hz) components of HRV were obtained using MemCalc, a time series analysis technique that combines a non-linear least square method with maximum entropy method. For psychological evaluation of anxiety and depressiveness, two self-report questionnaires were used: State-Trait Anxiety Inventory (STAI) and Self-Rating Depression Scale (SDS). No significant relation was observed between HR and HRV indices, and the psychological scores both in the resting and task conditions. By task application, HF decreased, and LF/HF and HR increased, and significant correlation with psychological scores was found in the responsiveness to task measured by the ratio of HRV and HR indices during the task to that at rest (task/rest ratio). A positive relationship was found between task/rest ratio for HF, and STAI and SDS scores. Task/rest ratio of HR was negatively correlated with STAI-state score. Decreased HRV response to task application is related to anxiety and depressiveness. Decreased autonomic responsiveness could serve as a sign of psychological dysfunction.
Born, Dennis-Peter; Zinner, Christoph; Sperlich, Billy
2017-01-01
Purpose: The aim of the study was to evaluate the mucosal immune function and circadian variation of salivary cortisol, Immunoglobin-A (sIgA) secretion rate and mood during a period of high-intensity interval training (HIIT) compared to long-slow distance training (LSD). Methods: Recreational male runners ( n = 28) completed nine sessions of either HIIT or LSD within 3 weeks. The HIIT involved 4 × 4 min of running at 90-95% of maximum heart rate interspersed with 3 min of active recovery while the LSD comprised of continuous running at 70-75% of maximum heart rate for 60-80 min. The psycho-immunological stress-response was investigated with a full daily profile of salivary cortisol and immunoglobin-A (sIgA) secretion rate along with the mood state on a baseline day, the first and last day of training and at follow-up 4 days after the last day of training. Before and after the training period, each athlete's running performance and peak oxygen uptake (V · O 2peak ) was determined with an incremental exercise test. Results: The HIIT resulted in a longer time-to-exhaustion ( P = 0.02) and increased V · O 2peak compared to LSD ( P = 0.01). The circadian variation of sIgA secretion rate showed highest values in the morning immediately after waking up followed by a decrease throughout the day in both groups ( P < 0.05). With HIIT, the wake-up response of sIgA secretion rate was higher on the last day of training ( P < 0.01) as well as the area under the curve (AUC G ) higher on the first and last day of training and follow-up compared to the LSD ( P = 0.01). Also the AUC G for the sIgA secretion rate correlated with the increase in V · O 2peak and running performance. The AUC G for cortisol remained unaffected on the first and last day of training but increased on the follow-up day with both, HIIT and LSD ( P < 0.01). Conclusion: The increased sIgA secretion rate with the HIIT indicates no compromised mucosal immune function compared to LSD and shows the functional adaptation of the mucosal immune system in response to the increased stress and training load of nine sessions of HIIT.
Born, Dennis-Peter; Zinner, Christoph; Sperlich, Billy
2017-01-01
Purpose: The aim of the study was to evaluate the mucosal immune function and circadian variation of salivary cortisol, Immunoglobin-A (sIgA) secretion rate and mood during a period of high-intensity interval training (HIIT) compared to long-slow distance training (LSD). Methods: Recreational male runners (n = 28) completed nine sessions of either HIIT or LSD within 3 weeks. The HIIT involved 4 × 4 min of running at 90–95% of maximum heart rate interspersed with 3 min of active recovery while the LSD comprised of continuous running at 70–75% of maximum heart rate for 60–80 min. The psycho-immunological stress-response was investigated with a full daily profile of salivary cortisol and immunoglobin-A (sIgA) secretion rate along with the mood state on a baseline day, the first and last day of training and at follow-up 4 days after the last day of training. Before and after the training period, each athlete's running performance and peak oxygen uptake (V·O2peak) was determined with an incremental exercise test. Results: The HIIT resulted in a longer time-to-exhaustion (P = 0.02) and increased V·O2peak compared to LSD (P = 0.01). The circadian variation of sIgA secretion rate showed highest values in the morning immediately after waking up followed by a decrease throughout the day in both groups (P < 0.05). With HIIT, the wake-up response of sIgA secretion rate was higher on the last day of training (P < 0.01) as well as the area under the curve (AUCG) higher on the first and last day of training and follow-up compared to the LSD (P = 0.01). Also the AUCG for the sIgA secretion rate correlated with the increase in V·O2peak and running performance. The AUCG for cortisol remained unaffected on the first and last day of training but increased on the follow-up day with both, HIIT and LSD (P < 0.01). Conclusion: The increased sIgA secretion rate with the HIIT indicates no compromised mucosal immune function compared to LSD and shows the functional adaptation of the mucosal immune system in response to the increased stress and training load of nine sessions of HIIT. PMID:28744226
30 CFR 75.601-3 - Short circuit protection; dual element fuses; current ratings; maximum values.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Trailing Cables § 75.601-3 Short circuit protection; dual element fuses; current ratings; maximum values... circuit protection of trailing cables as provided in § 75.601, however, the current ratings of such...
The transient response of ice-shelf melting to ocean change
NASA Astrophysics Data System (ADS)
Holland, P.
2017-12-01
Idealised modelling studies show that the melting of ice shelves varies as a quadratic function of ocean temperature. This means that warm-water ice shelves have higher melt rates and are also more sensitive to ocean warming. However, this result is the equilibrium response, derived from a set of ice—ocean simulations subjected to a fixed ocean forcing and run until steady. This study considers instead the transient response of melting, using unsteady simulations subjected to forcing conditions that are oscillated in time with a range of periods. The results show that when the ocean forcing is varied slowly, the melt rates follow the equililbrium response. However, for rapid ocean change melting deviates from the equilibrium response in interesting ways. The residence time of water in the sub-ice cavity offers a critical timescale. When the forcing varies slowly (period of oscillation >> residence time), the cavity is fully-flushed with forcing anomalies at all stages of the cycle and melting follows the equilibrium response. When the forcing varies rapidly (period ≤ residence time), multiple cold and warm anomalies coexist in the cavity, cancelling each other in the spatial mean and thus inducing a relatively steady melt rate. This implies that all ice shelves have a maximum frequency of ocean variability that can be manifested in melting. The results also show that ice shelves forced by warm water have high melt rates, high equilibrium sensitivity, and short residence times, hence a short timescale over which the equilibrium sensitivity is manifest. The most rapid melting adjustment is induced by warm anomalies that are also saline. Thus, ice shelves in the Amundsen and Bellingshausen seas, Antarctica, are highly sensitive to ocean change.
Single toxin dose-response models revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demidenko, Eugene, E-mail: eugened@dartmouth.edu
The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the fourmore » models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... rated for manual propulsion and boats rated for outboard motors of 2 horsepower or less. 183.37 Section... for manual propulsion and boats rated for outboard motors of 2 horsepower or less. (a) The maximum weight capacity marked on a boat that is rated for manual propulsion or for motors of 2 horsepower or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... rated for manual propulsion and boats rated for outboard motors of 2 horsepower or less. 183.37 Section... for manual propulsion and boats rated for outboard motors of 2 horsepower or less. (a) The maximum weight capacity marked on a boat that is rated for manual propulsion or for motors of 2 horsepower or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... rated for manual propulsion and boats rated for outboard motors of 2 horsepower or less. 183.37 Section... for manual propulsion and boats rated for outboard motors of 2 horsepower or less. (a) The maximum weight capacity marked on a boat that is rated for manual propulsion or for motors of 2 horsepower or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... rated for manual propulsion and boats rated for outboard motors of 2 horsepower or less. 183.37 Section... for manual propulsion and boats rated for outboard motors of 2 horsepower or less. (a) The maximum weight capacity marked on a boat that is rated for manual propulsion or for motors of 2 horsepower or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... rated for manual propulsion and boats rated for outboard motors of 2 horsepower or less. 183.37 Section... for manual propulsion and boats rated for outboard motors of 2 horsepower or less. (a) The maximum weight capacity marked on a boat that is rated for manual propulsion or for motors of 2 horsepower or...
Li, Shijia; Lord, Anton; Colic, Lejla; Krause, Anna Linda; Batra, Anil; Kretzschmar, Moritz A; Sweeney-Reed, Catherine M; Behnisch, Gusalija; Schott, Björn H; Walter, Martin
2017-01-01
Abstract Background The increasing use of ketamine as a potential rapid-onset antidepressant necessitates a better understanding of its effects on blood pressure and heart rate, well-known side effects at higher doses. For the subanesthetic dose used for depression, potential predictors of these cardiovascular effects are important factors influencing clinical decisions. Since ketamine influences the sympathetic nervous system, we investigated the impact of autonomic nervous system-related factors on the cardiovascular response: a genetic polymorphism in the norepinephrine transporter and gender effects. Methods Blood pressure and heart rate were monitored during and following administration of a subanesthetic dose of ketamine or placebo in 68 healthy participants (mean age 26.04 ±5.562 years) in a double-blind, randomized, controlled, parallel-design trial. The influences of baseline blood pressure/heart rate, gender, and of a polymorphism in the norepinephrine transporter gene (NET SLC6A2, rs28386840 [A-3081T]) on blood pressure and heart rate changes were investigated. To quantify changes in blood pressure and heart rate, we calculated the maximum change from baseline (ΔMAX) and the time until maximum change (TΔMAX). Results Systolic and diastolic blood pressure as well as heart rate increased significantly upon ketamine administration, but without reaching hypertensive levels. During administration, the systolic blood pressure at baseline (TP0Sys) correlated negatively with the time to achieve maximal systolic blood pressure (TΔMAXSys, P<.001). Furthermore, women showed higher maximal diastolic blood pressure change (ΔMAXDia, P<.001) and reached this peak earlier than men (TΔMAXDia, P=.017) at administration. NET rs28386840 [T] carriers reached their maximal systolic blood pressure during ketamine administration significantly earlier than [A] homozygous (TΔMAXSys, P=.030). In a combined regression model, both genetic polymorphism and TP0Sys were significant predictors of TΔMAXSys (P<.0005). Conclusions Subanesthetic ketamine increased both blood pressure and heart rate without causing hypertensive events. Furthermore, we identified gender and NET rs28386840 genotype as factors that predict increased cardiovascular sequelae of ketamine administration in our young, healthy study population providing a potential basis for establishing monitoring guidelines. PMID:29099972
Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.
Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A
2014-04-01
Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.
Spatial-temporal characteristics of lightning flash size in a supercell storm
NASA Astrophysics Data System (ADS)
Zhang, Zhixiao; Zheng, Dong; Zhang, Yijun; Lu, Gaopeng
2017-11-01
The flash sizes of a supercell storm, in New Mexico on October 5, 2004, are studied using the observations from the New Mexico Lightning Mapping Array and the Albuquerque, New Mexico, Doppler radar (KABX). First, during the temporal evolution of the supercell, the mean flash size is anti-correlated with the flash rate, following a unary power function, with a correlation coefficient of - 0.87. In addition, the mean flash size is linearly correlated with the area of reflectivity > 30 dBZ at 5 km normalized by the flash rate, with a correlation coefficient of 0.88. Second, in the horizontal, flash size increases along the direction from the region near the convection zone to the adjacent forward anvil. The region of minimum flash size usually corresponds to the region of maximum flash initiation and extent density. The horizontal correspondence between the mean flash size and the flash extent density can also be fitted by a unary power function, and the correlation coefficient is > 0.5 in 50% of the radar volume scans. Furthermore, the quality of fit is positively correlated to the convective intensity. Third, in the vertical direction, the height of the maximum flash initiation density is close to the height of maximum flash extent density, but corresponds to the height where the mean flash size is relatively small. In the discussion, the distribution of the small and dense charge regions when and where convection is vigorous in the storm, is deduced to be responsible for the relationship that flash size is temporally and spatially anti-correlated with flash rate and density, and the convective intensity.
7 CFR 3570.66 - Determining the maximum grant assistance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... maximum grant assistance. (a) Responsibility. State Directors are responsible for determining the....63(b); (2) Minimum amount sufficient to provide for economic feasibility as determined in accordance...
Ionizing radiation induces O6-alkylguanine-DNA-alkyltransferase mRNA and activity in mouse tissues.
Wilson, R E; Hoey, B; Margison, G P
1993-04-01
The effect of exposure to whole-body gamma-irradiation or fast electrons on O6-alkylguanine-DNA-alkyltransferase (ATase) activity and mRNA abundance has been examined in mice. In response to gamma-radiation, hepatic ATase activity was significantly raised in BDF1 mice 24 h post-irradiation, reaching a maximum of 2- to 3-fold at 36 h and beginning to decrease by 48-60 h. A small but consistently higher level of induction was achieved when mice were exposed using a low dose rate (0.015 Gy/min) compared to a high dose rate (0.5 Gy/min). ATase activity was also induced approximately 2-fold 48 h post-irradiation in brain, kidney, lung and spleen, with a greater induction again observed in response to the lower dose rate. In response to fast electrons from a linear accelerator hepatic ATase activity was also induced 2- to 3-fold 48 h post-irradiation in BDF1, BALB/c, C57Bl and DBA2 strains. Induction of ATase activity in livers of BDF1 mice was observed 48 h after a total single dose of 5 Gy gamma-radiation (2-fold), increasing to a slightly higher level at 15 Gy, but no induction was observed at doses of 2 Gy and below. Although a maximum 2- to 3-fold induction of ATase activity was observed, mRNA levels were induced 3- to 4-fold by 48 h after a dose of 15 Gy. Furthermore, significant increases in mRNA levels were detected at low doses (1-2 Gy) at which there was no apparent increase in ATase activity. This suggests that ionizing radiation increases ATase levels by a process involving transcriptional upregulation but that strong post-transcriptional and/or translational controls operate to limit induction of enzyme activity to 2- to 3-fold. This is the first report of an in vivo induction of ATase by ionizing radiation in a species other than the rat.
Initial hydrologic and geomorphic response following a wildfire in the Colorado front range
Moody, J.A.; Martin, D.A.
2001-01-01
A wildfire in May 1996 burned 4690 hectares in two watersheds forested by ponderosa pine and Douglas fir in a steep, mountainous landscape with a summer, convective thunderstorm precipitation regime. The wildfire lowered the erosion threshold in the watersheds, and consequently amplified the subsequent erosional response to shorter time interval episodic rainfall and created both erosional and depositional features in a complex pattern throughout the watersheds. The initial response during the first four years was an increase in runoff and erosion rates followed by decreases toward pre-fire rates. The maximum unit-area peak discharge was 24 m3 s-1 km-2 for a rainstorm in 1996 with a rain intensity of 90 mm h-1. Recovery to pre-fire conditions seems to have occured by 2000 because for a maximum 30-min rainfall intensity of 50 mm h-1, the unit-area peak discharge in 1997 was 6.6 m3 s-1 km-2, while in 2000 a similar intensity produced only 0.11 m3 s-1 km-2. Rill erosion accounted for 6 per cent, interrill erosion for 14 per cent, and drainage erosion for 80 per cent of the initial erosion in 1996. This represents about a 200-fold increase in erosion rates on hillslopes which had a recovery or relaxation time of about three years. About 67 per cent of the initially eroded sediment is still stored in the watersheds after four years with an estimated residence time greater than 300 years. This residence time is much greater than the fire recurrence interval so erosional and depositional features may become legacies from the wildfire and may affect landscape evolution by acting as a new set of initial conditions for subsequent wildfire and flood sequences. Published in 2001 by John Wiley and Sons, Ltd.
Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis
2015-11-01
In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.
5 CFR 531.606 - Maximum limits on locality rates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... than or equal to the maximum payable scheduled annual rate of pay for GS-15; or (ii) The rate for level... Section 531.606 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY... of basic pay payable for level IV of the Executive Schedule. (b)(1) A locality rate for an employee...
40 CFR 60.2675 - What operating limits must I meet and by when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... units, maximum charge rate is 110 percent of the average charge rate measured during the most recent..., maximum charge rate is 110 percent of the daily charge rate measured during the most recent performance... scrubber measured during the most recent performance test demonstrating compliance with the particulate...
The adsorption kinetics of metal ions onto different microalgae and siliceous earth.
Schmitt, D; Müller, A; Csögör, Z; Frimmel, F H; Posten, C
2001-03-01
In the present work the adsorption kinetics of the six metal ions aluminum, zinc, mercury, lead, copper, and cadmium onto living microalgae were measured. The freshwater green microalga Scenedesmus subspicatus, the brackish water diatom Cyclotella cryptica, the seawater diatom Phaeodactylum tricornutum, and the seawater red alga Porphyridium purpureum were the subject of investigation. In most cases the adsorption rate of the metals could be well described by using the equation of the Langmuir adsorption rate expression. Inverse parameter estimation allowed the determination of the rate constants of the adsorption process and the maximum metal content of the algae. The highest values for the rate constant were obtained for Porphyridium purpureum followed by Phaeodactylum tricornutum. High values for the maximum content were obtained for Cyclotella cryptica and Scenedesmus subspicatus. The maximum rate constant was 24.21 h-1 for the adsorption of Hg to Porphyridium purpureum whereas the maximum metal content (0.243 g g-1) was obtained for Zn on Cyclotella cryptica. A comparison of these values with those obtained for the mineral siliceous earth exhibiting low maximum content and high adsorption rates reveals that the mechanism of adsorption onto the algae is a mixture of adsorption and accumulation.
NASA Astrophysics Data System (ADS)
Gorgolis, S.; Giannopoulou, A.; Anastassopoulos, D.; Kounavis, P.
2012-07-01
Photocurrent response, optical absorption, and x-ray diffraction (XRD) measurements in pentacene films grown on glass substrates are performed in order to obtain an insight into the mobile photocarriers generation mechanism. For film thickness of the order of 50 nm and lower, the photocurrent response spectra are found to follow the optical absorption spectra demonstrating the so-called symbatic response. Upon increasing the film thickness, the photoresponse demonstrates a transition to the so-called antibatic response, which is characterized by a maximum and minimum photocurrent for photon energies of minimum and maximum optical absorption, respectively. The experimental results are not in accordance with the model of important surface recombination rate. By taking into account the XRD patterns, the experimental photoresponse spectra can be reproduced by model simulations assuming efficient exciton dissociation at a narrow layer of the order of 20 nm near the pentacene-substrate interface. The simulated spectra are found sensitive to the film thickness, the absolute optical absorption coefficient, and the diffusion exciton length. By comparing the experimental with the simulated spectra, it is deduced that the excitons, which are created by optical excitation in the spectral region of 1.7-2.2 eV, diffuse with a diffusion length of the order of 10-80 nm to the pentacene-substrate interface where efficiently dissociate into mobile charge carriers.
Diagnosing the dangerous demography of manta rays using life history theory.
Dulvy, Nicholas K; Pardo, Sebastián A; Simpfendorfer, Colin A; Carlson, John K
2014-01-01
Background. The directed harvest and global trade in the gill plates of mantas, and devil rays, has led to increased fishing pressure and steep population declines in some locations. The slow life history, particularly of the manta rays, is cited as a key reason why such species have little capacity to withstand directed fisheries. Here, we place their life history and demography within the context of other sharks and rays. Methods. Despite the limited availability of data, we use life history theory and comparative analysis to estimate the intrinsic risk of extinction (as indexed by the maximum intrinsic rate of population increase r max) for a typical generic manta ray using a variant of the classic Euler-Lotka demographic model. This model requires only three traits to calculate the maximum intrinsic population growth rate r max: von Bertalanffy growth rate, annual pup production and age at maturity. To account for the uncertainty in life history parameters, we created plausible parameter ranges and propagate these uncertainties through the model to calculate a distribution of the plausible range of r max values. Results. The maximum population growth rate r max of manta ray is most sensitive to the length of the reproductive cycle, and the median r max of 0.116 year(-1) 95th percentile [0.089-0.139] is one of the lowest known of the 106 sharks and rays for which we have comparable demographic information. Discussion. In common with other unprotected, unmanaged, high-value large-bodied sharks and rays the combination of very low population growth rates of manta rays, combined with the high value of their gill rakers and the international nature of trade, is highly likely to lead to rapid depletion and potential local extinction unless a rapid conservation management response occurs worldwide. Furthermore, we show that it is possible to derive important insights into the demography extinction risk of data-poor species using well-established life history theory.
Diagnosing the dangerous demography of manta rays using life history theory
Pardo, Sebastián A.; Simpfendorfer, Colin A.; Carlson, John K.
2014-01-01
Background. The directed harvest and global trade in the gill plates of mantas, and devil rays, has led to increased fishing pressure and steep population declines in some locations. The slow life history, particularly of the manta rays, is cited as a key reason why such species have little capacity to withstand directed fisheries. Here, we place their life history and demography within the context of other sharks and rays. Methods. Despite the limited availability of data, we use life history theory and comparative analysis to estimate the intrinsic risk of extinction (as indexed by the maximum intrinsic rate of population increase rmax) for a typical generic manta ray using a variant of the classic Euler–Lotka demographic model. This model requires only three traits to calculate the maximum intrinsic population growth rate rmax: von Bertalanffy growth rate, annual pup production and age at maturity. To account for the uncertainty in life history parameters, we created plausible parameter ranges and propagate these uncertainties through the model to calculate a distribution of the plausible range of rmax values. Results. The maximum population growth rate rmax of manta ray is most sensitive to the length of the reproductive cycle, and the median rmax of 0.116 year−1 95th percentile [0.089–0.139] is one of the lowest known of the 106 sharks and rays for which we have comparable demographic information. Discussion. In common with other unprotected, unmanaged, high-value large-bodied sharks and rays the combination of very low population growth rates of manta rays, combined with the high value of their gill rakers and the international nature of trade, is highly likely to lead to rapid depletion and potential local extinction unless a rapid conservation management response occurs worldwide. Furthermore, we show that it is possible to derive important insights into the demography extinction risk of data-poor species using well-established life history theory. PMID:24918029
The impact of summer rainfall on the temperature gradient along the United States-Mexico border
NASA Technical Reports Server (NTRS)
Balling, Robert C., Jr.
1989-01-01
The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.
Chang, Hai-Xing; Huang, Yun; Fu, Qian; Liao, Qiang; Zhu, Xun
2016-04-01
Understanding and optimizing the microalgae growth process is an essential prerequisite for effective CO2 capture using microalgae in photobioreactors. In this study, the kinetic characteristics of microalgae Chlorella vulgaris growth in response to light intensity and dissolved inorganic carbon (DIC) concentration were investigated. The greatest values of maximum biomass concentration (Xmax) and maximum specific growth rate (μmax) were obtained as 2.303 g L(-1) and 0.078 h(-1), respectively, at a light intensity of 120 μmol m(-2) s(-1) and DIC concentration of 17 mM. Based on the results, mathematical models describing the coupled effects of light intensity and DIC concentration on microalgae growth and CO2 biofixation are proposed. The models are able to predict the temporal evolution of C. vulgaris growth and CO2 biofixation rates from lag to stationary phases. Verification experiments confirmed that the model predictions agreed well with the experimental results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Endoreversible quantum heat engines in the linear response regime.
Wang, Honghui; He, Jizhou; Wang, Jianhui
2017-07-01
We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal processes. We use the quantum master equation for a system to describe heat transfer current during a thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction. We apply the endoreversibility description to such engine models working in the linear response regime and derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle, we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output, we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.
MEANS FOR CONTROLLING A NUCLEAR REACTOR
Wilson, V.C.; Overbeck, W.P.; Slotin, L.; Froman, D.K.
1957-12-17
This patent relates to nuclear reactors of the type using a solid neutron absorbing material as a means for controlling the reproduction ratio of the system and thereby the power output. Elongated rods of neutron absorbing material, such as boron steel for example, are adapted to be inserted and removed from the core of tae reactor by electronic motors and suitable drive means. The motors and drive means are controlled by means responsive to the neutron density, such as ionization chambers. The control system is designed to be responsive also to the rate of change in neutron density to automatically maintain the total power output at a substantially constant predetermined value. A safety rod means responsive to neutron density is also provided for keeping the power output below a predetermined maximum value at all times.
The maximum growth rate of life on Earth
NASA Astrophysics Data System (ADS)
Corkrey, Ross; McMeekin, Tom A.; Bowman, John P.; Olley, June; Ratkowsky, David
2018-01-01
Life on Earth spans a range of temperatures and exhibits biological growth rates that are temperature dependent. While the observation that growth rates are temperature dependent is well known, we have recently shown that the statistical distribution of specific growth rates for life on Earth is a function of temperature (Corkrey et al., 2016). The maximum rates of growth of all life have a distinct limit, even when grown under optimal conditions, and which vary predictably with temperature. We term this distribution of growth rates the biokinetic spectrum for temperature (BKST). The BKST possibly arises from a trade-off between catalytic activity and stability of enzymes involved in a rate-limiting Master Reaction System (MRS) within the cell. We develop a method to extrapolate quantile curves for the BKST to obtain the posterior probability of the maximum rate of growth of any form of life on Earth. The maximum rate curve conforms to the observed data except below 0°C and above 100°C where the predicted value may be positively biased. The deviation below 0°C may arise from the bulk properties of water, while the degradation of biomolecules may be important above 100°C. The BKST has potential application in astrobiology by providing an estimate of the maximum possible growth rate attainable by terrestrial life and perhaps life elsewhere. We suggest that the area under the maximum growth rate curve and the peak rate may be useful characteristics in considerations of habitability. The BKST can serve as a diagnostic for unusual life, such as second biogenesis or non-terrestrial life. Since the MRS must have been heavily conserved the BKST may contain evolutionary relics. The BKST can serve as a signature summarizing the nature of life in environments beyond Earth, or to characterize species arising from a second biogenesis on Earth.
1999-01-01
fMr- ir ») 5<s © oo vo «o vo vo t- 3 -6 TABLE 3 - 3 . REFERENCE SIGNAL USAGE Reference Frequencies for Tape Speed and Flutter Compensation...maximum frequency response of tables 3 -1 and 3 -2, !K. M. Uglow, Noise and Bandwidth in FM/FM Radio Telemetry. IRE Transaction on Telemetry and...t4 u N s O i Q • I-H D-12 Bit Rate Clock Input ’ r if ir it if , IF RNRZ-L Data 1 2 3 15 - Stage Shift Register 13
Celler, B G; Stella, A; Golin, R; Zanchetti, A
1996-08-01
In ten sino aortic denervated, vagotomized and aneasthetized cats, renal efferent nerves were stimulated for 30 s with trains of constant current pulses at frequencies in the range 5-30 Hz. The arterial pressure, heart rate, urine flow rate (electronic drop counter) and renal blood flow (electromagnetic technique) were recorded. Subsequent computer processing gave the true means of renal artery pressure (MRAP) and renal blood flow (MRBF) and hence the renal vascular resistance (MRVR), over each cardiac cycle. Recovery of MRVR after the end of stimulation exhibited two distinct time constants. The fast component had a time constant of 2.03 +/- 0.26 s and represented 60.2 +/- 1.71% of the recovery. The time constant of the slower component was 14.1 +/- 1.9 s and represented 36.0 +/- 1.6% of the recovery. The relationship between MRVR and stimulus frequency was sigmoidal with maximum sensitivity at stimulus frequencies of 12.6 +/- 0.76 Hz. Changes in urine flow rate, in contrast, followed a hyperbolic function with maximum response sensitivity occurring at very low stimulus frequencies. Changes in urine flow rate were 50% complete at stimulus frequencies of 5 Hz. Identification of two distinct components in the relaxation phase of renal vascular resistance leads to a reasonable hypothesis that 60% of total renal vascular resistance may lie proximal to the glomerulus, whereas 36% may be accounted for by the efferent arterioles.
30 CFR 75.601-3 - Short circuit protection; dual element fuses; current ratings; maximum values.
Code of Federal Regulations, 2011 CFR
2011-07-01
... devices shall not exceed the maximum values specified in this section: Conductor size (AWG or MGM) Single conductor cable Ampacity Max. fuse rating Two conductor cable Ampacity Max. fuse rating 14 15 15 12 20 20 10...
Millhollon, Eddie P.; Williams, Larry E.
1986-01-01
Patterns of leaf carbohydrate partitioning and nodule activity in soybean plants grown under natural conditions and the irradiance level required to produce sufficient carbohydrate to obtain maximum rates of apparent N2-fixation (acetylene reduction) were measured. Soybean plants, grown outdoors, maintained constant levels of leaf soluble sugars while leaf starch pools varied diurnally. When root temperature was kept at 25°C and shoot temperature was allowed to vary with ambient temperature, the plants maintained constant rates of apparent N2-fixation and root+nodule respiration. Results from a second experiment, in which the entire plant was kept at 25°C, were similar to those of the first experiment. Shoot carbon exchange rate of plants from the second experiment was light saturated at photosynthetic photon flux densities between 400 and 600 micromoles per square meter per second. When plants were subjected to an extended 40-hour dark period to deplete carbohydrate reserves, apparent N2-fixation was unaffected during the first 10 hours of darkness, decreased rapidly between 10 and 16 hours, and plateaued at one-third the initial level thereafter. After the extended dark period, plants were exposed to photosynthetic photon flux density from 200 to 1000 micromoles per square meter per second for 10 hours. Photosynthetic photon flux densities of 200 micromoles per square meter per second and greater resulted in maximum leaf soluble sugar content and nodule activity. Leaf starch content increased with irradiance levels up to 600 micromoles per square meter per second with no further increase at higher irradiance levels. Results presented here indicate that maximum nodule activity occurs at irradiance levels that do not saturate the plant's photosynthetic apparatus. This response would allow for maximum N2-fixation to occur in a nodulated legume during periods of inclement weather. PMID:16664789
20 CFR 229.49 - Adjustment of benefits under family maximum for change in family group.
Code of Federal Regulations, 2010 CFR
2010-04-01
... for change in family group. 229.49 Section 229.49 Employees' Benefits RAILROAD RETIREMENT BOARD... Overall Minimum Rate § 229.49 Adjustment of benefits under family maximum for change in family group. (a) Increase in family group. If an overall minimum rate is adjusted for the family maximum and an additional...
Coats, Erik R; Watson, Benjamin S; Brinkman, Cynthia K
2016-12-01
Polyhydroxyalkanoates (PHAs) are biodegradable polymers that can substitute for petroleum-based plastics in a variety of applications. One avenue to commercial PHA production involves coupling waste-based synthesis with the use of mixed microbial consortia (MMC). In this regard, production requires maximizing the enrichment of a MMC capable of feast-famine PHA synthesis, with the metabolic response induced through imposition of aerobic-dynamic feeding (ADF) conditions. However, the concept of PHA production in complex matrices remains unrefined; process operational improvements are needed, along with an enhanced understanding of the MMC. Research presented herein investigated the effect of aeration on feast-famine PHA synthesis, with four independent aeration state systems studied; MMC were fed volatile fatty acid (VFA)-rich fermented dairy manure. Regardless of the aeration state, all MMC exhibited a feast-famine response based on observed carbon cycling. Moreover, there was no statistical difference in PHA synthesis rates, with q PHA ranging from 0.10 to 0.19 CmmolPHA gVSS -1 min -1 ; VFA uptake rates exhibited similar statistical indifferences. PHA production assessments on the enriched MMC resulted in maximum intracellular concentrations ranging from 22.5 to 90.7% (mgPHA mgVSS -1 ); at maximum concentration, the mean hydroxyvalerate mol content was 73 ± 0.6%. While a typical feast-famine dissolved oxygen (DO) pattern was observed at maximum aeration, less resolution was observed at decreasing aeration rates, suggesting that DO may not be an optimal process monitoring parameter. At lower aeration states, nitrogen cycling patterns, supported by molecular investigations targeting AOBs and NOBs, indicate that NO 2 and NO 3 sustained feast-famine PHA synthesis. Next-generation sequencing analysis of the respective MMC revealed numerous and diverse genera exhibiting the potential to achieve PHA synthesis, suggesting functional redundancy embedded in the diverse MMC. Ultimately, results demonstrate that aeration can be controlled in waste-based ADF systems to sustain PHA production potential, while enriching for a diverse MMC that exhibits potential functional redundancy. Reduced aeration could also enhance cost competitiveness of waste-based PHA production, with potential further benefits associated with nitrogen treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yeargin, Susan Walker; Casa, Douglas J; Judelson, Daniel A; McDermott, Brendon P; Ganio, Matthew S; Lee, Elaine C; Lopez, Rebecca M; Stearns, Rebecca L; Anderson, Jeffrey M; Armstrong, Lawrence E; Kraemer, William J; Maresh, Carl M
2010-01-01
Previous researchers have not investigated the thermoregulatory responses to multiple consecutive days of American football in adolescents. To examine the thermoregulatory and hydration responses of high school players during formal preseason football practices. Observational study. Players practiced outdoors in late August once per day on days 1 through 5, twice per day on days 6 and 7, and once per day on days 8 through 10. Maximum wet bulb globe temperature averaged 23 +/- 4 degrees C. Twenty-five heat-acclimatized adolescent boys (age = 15 +/- 1 years, height = 180 +/- 8 cm, mass = 81.4 +/- 15.8 kg, body fat = 12 +/- 5%, Tanner stage = 4 +/- 1). We observed participants within and across preseason practices of football. Measures included gastrointestinal temperature (T(GI)), urine osmolality, sweat rate, forearm sweat composition, fluid consumption, testosterone to cortisol ratio, perceptual measures of thirst, perceptual measures of thermal sensation, a modified Environmental Symptoms Questionnaire, and knowledge questionnaires assessing the participants' understanding of heat illnesses and hydration. Results were analyzed for differences across time and were compared between younger (14-15 years, n = 13) and older (16-17 years, n = 12) participants. Maximum daily T(GI) values remained less than 40 degrees C and were correlated with maximum wet bulb globe temperature (r = 0.59, P = .009). Average urine osmolality indicated that participants generally experienced minimal to moderate hypohydration before (881 +/- 285 mOsmol/kg) and after (856 +/- 259 mOsmol/kg) each practice as a result of replacing approximately two-thirds of their sweat losses during exercise but inadequately rehydrating between practices. Age did not affect most variables; however, sweat rate was lower in younger participants (0.6 +/- 0.2 L/h) than in older participants (0.8 +/- 0.1 L/h) (F(1,18) = 8.774, P = .008). Previously heat-acclimatized adolescent boys (T(GI) < 40 degrees C) can safely complete the initial days of preseason football practice in moderate environmental conditions using well-designed practice guidelines. Adolescent boys replaced most sweat lost during practice but remained mildly hypohydrated throughout data collection, indicating inadequate hydration habits when they were not at practice.
Beyond SaGMRotI: Conversion to SaArb, SaSN, and SaMaxRot
Watson-Lamprey, J. A.; Boore, D.M.
2007-01-01
In the seismic design of structures, estimates of design forces are usually provided to the engineer in the form of elastic response spectra. Predictive equations for elastic response spectra are derived from empirical recordings of ground motion. The geometric mean of the two orthogonal horizontal components of motion is often used as the response value in these predictive equations, although it is not necessarily the most relevant estimate of forces within the structure. For some applications it is desirable to estimate the response value on a randomly chosen single component of ground motion, and in other applications the maximum response in a single direction is required. We give adjustment factors that allow converting the predictions of geometric-mean ground-motion predictions into either of these other two measures of seismic ground-motion intensity. In addition, we investigate the relation of the strike-normal component of ground motion to the maximum response values. We show that the strike-normal component of ground motion seldom corresponds to the maximum horizontal-component response value (in particular, at distances greater than about 3 km from faults), and that focusing on this case in exclusion of others can result in the underestimation of the maximum component. This research provides estimates of the maximum response value of a single component for all cases, not just near-fault strike-normal components. We provide modification factors that can be used to convert predictions of ground motions in terms of the geometric mean to the maximum spectral acceleration (SaMaxRot) and the random component of spectral acceleration (SaArb). Included are modification factors for both the mean and the aleatory standard deviation of the logarithm of the motions.
Homayoonfal, Mina; Khodaiyan, Faramarz; Mousavi, Mohammad
2015-05-01
The major purpose of this study is to apply response surface methodology to model and optimise processing conditions for the preparation of beverage emulsions with maximum emulsion stability and viscosity, minimum particle size, turbidity loss rate, size index and peroxide value changes. A three-factor, five-level central composite design was conducted to estimate the effects of three independent variables: ultrasonic time (UT, 5-15 min), walnut-oil content (WO, 4-10% (w/w)) and Span 80 content (S80, 0.55-0.8). The results demonstrated the empirical models were satisfactorily (p < 0.0001) fitted to the experimental data. Evaluation of responses by analysis of variance indicated high coefficient determination values. The overall optimisation of preparation conditions was an UT of 14.630 min, WO content of 8.238% (w/w), and S80 content of 0.782% (w/w). Under this optimum region, responses were found to be 219.198, 99.184, 0.008, 0.008, 2.43 and 16.65 for particle size, emulsion stability, turbidity loss rate, size index, viscosity and peroxide value changes, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kinetics of the head-neck complex in low-speed rear impact.
Stemper, Brian D; Yoganandan, Naryan; Pintar, Frank A
2003-01-01
A comprehensive characterization of the biomechanics of the cervical spine in rear impact will lead to an understanding of the mechanisms of whiplash injury. Cervical kinematics have been experimentally described using human volunteers, full-body cadaver specimens, and isolated and intact head-neck specimens. However, forces and moments at the cervico-thoracic junction have not been clearly delineated. An experimental investigation was performed using ten intact head-neck complexes to delineate the loading at the base of the cervical spine and angular acceleration of the head in whiplash. A pendulum-minisled apparatus was used to simulate whiplash acceleration of the thorax at four impact severities. Lower neck loads were measured using a six-axis load cell attached between the minisled and head-neck specimens, and head angular motion was measured with an angular rate sensor attached to the lateral side of the head. Shear and axial force, extension moment, and head angular acceleration increased with impact severity. Shear force was significantly larger than axial force (p < 0.0001). Shear force reached its maximum value at 46 msec. Maximum extension moment occurred between 7 and 22 msec after maximum shear force. Maximum angular acceleration of the head occurred 2 to 18 msec later. Maximum axial force occurred last (106 msec). All four kinetic components reached maximum values during cervical S-curvature, with maximum shear force and extension moment occurring before the attainment of maximum S-curvature. Results of the present investigation indicate that shear force and extension moment at the cervico-thoracic junction drive the non-physiologic cervical S-curvature responsible for whiplash injury and underscore the importance of understanding cervical kinematics and the underlying kinetics.
7 CFR 762.106 - Preferred and certified lender programs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... writing why the excessive loss rate is beyond their control; (B) The lender provides a written plan that...) The Agency determines that exceeding the maximum PLP loss rate standard was beyond the control of the... eligible lender under § 762.105; (2) Have a lender loss rate not in excess of the maximum CLP loss rate...
Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janoudi, A.K.; Poff, K.L.
1993-04-01
Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of densensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 [mu]mol m[sup [minus]2] s[sup [minus]1]. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 [mu]mol m[sup [minus]2] s[sup [minus]1] than at 0.3 [mu]mol m[sup [minus]2] s[sup [minus]1]. In addition, seedlings irradiated withmore » blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs. 11 refs., 6 figs.« less
NASA Technical Reports Server (NTRS)
Crandall, C. G.; Shibasaki, M.; Wilson, T. E.; Cui, J.; Levine, B. D.
2003-01-01
Cutaneous vasodilation and sweat rate are reduced during a thermal challenge after simulated and actual microgravity exposure. The effects of microgravity exposure on cutaneous vasodilator capacity and on sweat gland function are unknown. The purpose of this study was to test the hypothesis that simulated microgravity exposure, using the 6 degrees head-down tilt (HDT) bed rest model, reduces maximal forearm cutaneous vascular conductance (FVC) and sweat gland function and that exercise during HDT preserves these responses. To test these hypotheses, 20 subjects were exposed to 14 days of strict HDT bed rest. Twelve of those subjects exercised (supine cycle ergometry) at 75% of pre-bed rest heart rate maximum for 90 min/day throughout HDT bed rest. Before and after HDT bed rest, maximal FVC was measured, via plethysmography, by heating the entire forearm to 42 degrees C for 45 min. Sweat gland function was assessed by administering 1 x 10(-6) to 2 M acetylcholine (9 doses) via intradermal microdialysis while simultaneously monitoring sweat rate over the microdialysis membranes. In the nonexercise group, maximal FVC and maximal stimulated sweat rate were significantly reduced after HDT bed rest. In contrast, these responses were unchanged in the exercise group. These data suggest that 14 days of simulated microgravity exposure, using the HDT bed rest model, reduces cutaneous vasodilator and sweating capacity, whereas aerobic exercise training during HDT bed rest preserves these responses.
Merecz, D; Makowska, Z; Makowiec-Dabrowska, T
1999-01-01
The aim of the study was to explore the role of Big Five Personality Factors and Temperament Domains as the factors influencing cardiovascular response to work, and their moderating effect on the relationship between occupational stress and cardiovascular reactivity. The self-reported data on occupational stress and filled in NEO-Five Factor Inventory by Costa, and McCrae and Pavlovian Temperament Survey by Strelau et al. were collected from 97 bank clerks employed in large bank branches. The subjects also responded to the questionnaire on personal and professional background factors. A 24 hour monitoring of cardiovascular reactivity (heart rate and blood pressure) was also provided. Conscientiousness was found to be the only modifier of cardiovascular response to occupational stress reflected by systolic blood pressure. Several main, independent of stress effects of personality and temperament domains were also found. The ratio of heart rate at work to heart rate during sleep was associated with the strength of excitatory process, the percentage of maximum heart rate index with Conscientiousness, and systolic blood pressure at work was influenced by the strength of inhibitory process. However, generally speaking, physiological indicators of the cardiovascular system functioning were not very sensitive to changes in values of personality and temperament variables at the level of occupational stress reported by the bank clerks who participated in the study.
ERIC Educational Resources Information Center
Magnus, Brooke E.; Thissen, David
2017-01-01
Questionnaires that include items eliciting count responses are becoming increasingly common in psychology. This study proposes methodological techniques to overcome some of the challenges associated with analyzing multivariate item response data that exhibit zero inflation, maximum inflation, and heaping at preferred digits. The modeling…
1980-11-01
the rapid, partial removal or covering of contamination to reduce the radiation exposure rate as quickly as practicable to a point where priority work ...should be responsible for planning and implementing all decontamination activities. He could be a city en- gineer, public works engineer, industrial safety...responsibility for a local civil defense or emergency preparedness program. DisaterAnalysis - A review and determination of the extent of damage sufere bya
NASA Technical Reports Server (NTRS)
Peter, A. D.; Morre, D. J.; Morre, D. M.
2000-01-01
Oxidation of external NADH (NADH is an impermeant substrate) by cells of Tetrahymena pyriformis oscillated with a period of 24-26 min. The period length in darkness (25.6 min) appeared to be slightly longer than the period in light (approximately 24 min). When Tetrahymena were placed in darkness for 30-50 min and then returned to light, a new maximum in the rate of NADH oxidation was observed 36-38 min (13 + 24) min after the beginning of the light treatment. The cell-surface NADH oxidase of human buffy coats (a mixture of white cells and platelets) also was periodic and light responsive.
Towards rational therapy with monoamine oxidase inhibitors.
Tyrer, P
1976-04-01
A rational approach to the use of monoamine oxidase inhibitors (MAOIs) is outlined. Patients suitable for treatment cannot be classified adequately using conventional diagnostic labels. They include those with primary symptoms of hypochondriasis, agoraphobia and social phobias, irritability, somatic anxiety and anergia; those with primary depressed mood, guilt, ideas of reference and personality disorders seldom respond. There is great variation in the interval between the first administration of these drugs and clinical response, and this may account for the inconsistencies in published trials. The type of drug and its dose may affect rate of response, as may biochemical factors, including acetylator and monoamine oxidase status. To obtain maximum benefit, a course of therapy with MAOIs should last for several months.
NASA Technical Reports Server (NTRS)
Tolley-Henry, L.; Raper, C. D. Jr; Granato, T. C.; Raper CD, J. r. (Principal Investigator)
1988-01-01
Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic cultures containing 0.5, 1.0 and 10.0 mol m-3 NO3- was measured daily during a 24-d period of vegetative development to determine if amplitude of maximum and minimum rates of net NO3- uptake are responsive to external concentrations of NO3-. Removal of NO3- from the replenished solutions during each 24-h period was determined by ion chromatography. Neither dry matter accumulation nor the periodicity of oscillations in net uptake rate was altered by the external NO3- concentrations. The maxima of the oscillations in net uptake rate, however, increased nearly 3-fold in response to external NO3- concentrations. The maxima and minima, respectively, changed from 4.0 and 0.6 mmol NO3- per gram root dry weight per day at an external solution level of 0.5 mol m-3 NO3- to 15.2 and -2.7 mmol NO3- per gram root dry weight per day at an external solution level of 10.0 mol m-3 NO3-. The negative values for minimum net uptake rate from 10.0 mol m-3 NO3- solutions show that net efflux was occurring and indicate that the magnitude of the efflux component of net uptake was responsive to external concentration of NO3-.
48 CFR 252.217-7001 - Surge option.
Code of Federal Regulations, 2012 CFR
2012-10-01
... sustainable rate of delivery for items in this contract. This delivery schedule shall provide acceleration by month up to the maximum sustainable rate of delivery achievable within the Contractor's existing... than the maximum sustainable delivery rate under paragraph (b)(2) of this clause, nor will the exercise...
48 CFR 252.217-7001 - Surge option.
Code of Federal Regulations, 2013 CFR
2013-10-01
... sustainable rate of delivery for items in this contract. This delivery schedule shall provide acceleration by month up to the maximum sustainable rate of delivery achievable within the Contractor's existing... than the maximum sustainable delivery rate under paragraph (b)(2) of this clause, nor will the exercise...
48 CFR 252.217-7001 - Surge option.
Code of Federal Regulations, 2014 CFR
2014-10-01
... sustainable rate of delivery for items in this contract. This delivery schedule shall provide acceleration by month up to the maximum sustainable rate of delivery achievable within the Contractor's existing... than the maximum sustainable delivery rate under paragraph (b)(2) of this clause, nor will the exercise...
48 CFR 252.217-7001 - Surge option.
Code of Federal Regulations, 2011 CFR
2011-10-01
... sustainable rate of delivery for items in this contract. This delivery schedule shall provide acceleration by month up to the maximum sustainable rate of delivery achievable within the Contractor's existing... than the maximum sustainable delivery rate under paragraph (b)(2) of this clause, nor will the exercise...
Werner, Jan; Griebeler, Eva Maria
2014-01-01
We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of the two thermoregulation strategies for studied dinosaurs.
Werner, Jan; Griebeler, Eva Maria
2014-01-01
We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of the two thermoregulation strategies for studied dinosaurs. PMID:24586409
Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.
Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir
2017-08-04
Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.
Effects of deer on the photosynthetic performance of invasive and native forest herbs.
Heberling, J Mason; Brouwer, Nathan L; Kalisz, Susan
2017-03-01
Overabundant generalist herbivores can facilitate non-native plant invasions, presumably through direct and indirect modifications to the environment that affect plant performance. However, ecophysiological mechanisms behind ungulate-mediated plant invasions have not been well-studied. At a long-term Odocoileus virginianus (white-tailed deer) exclusion site in a temperate deciduous forest, we quantified deer-mediated ecophysiological impacts on an invasive biennial Alliaria petiolata (garlic mustard) and two palatable native herbaceous perennials, Maianthemum racemosum and Trillium grandiflorum . In mid-summer, we found that leaf-level light availability was higher in unfenced areas compared with areas fenced to exclude deer. Alliaria in unfenced areas exhibited 50 % higher mean maximum photosynthetic rates compared with fenced areas. Further, specific leaf area decreased by 48 % on average in unfenced areas, suggesting leaf structural responses to higher light levels. Similarly, Maianthemum had 42 % higher mean photosynthetic rates and 33 % decreased mean specific leaf area in unfenced areas, but these functional advantages were likely countered by high rates of deer herbivory. By contrast, Trillium exhibited significantly lower (26 %) maximum photosynthetic rates in unfenced areas, but SLA did not differ. Deer-mediated differences in light saturated photosynthetic rates for all three species were only significant during months with overstory tree canopy cover, when light availability in the herb layer was significantly lower in fenced areas. Alliaria 's enhanced photosynthetic rates implicate overabundant deer, a situation that is nearly ubiquitous across its invaded range. Collectively, our results provide empirical evidence that generalist herbivores can alter non-native plant physiology to facilitate invasion.
Turboprop aircraft performance response to various environmental conditions
NASA Astrophysics Data System (ADS)
Ashenden, Russell Allen
1997-10-01
This study evaluated aircraft and airfoil performance response to various environmental conditions. These conditions included clear air, warm rain, ice only, mixed phase and supercooled drops encountered during 19 separate flights. Supercooled droplets consisting of cloud, drizzle and rain sizes were the main focus of this study. Aircraft response was quantified by rates of change in aircraft rate-of-climb capability, lift and drag coefficients and lift over drag ratio. Airfoil degradation due to simulated ice shapes and drizzle ice roughness was measured in a wind tunnel for comparison. The aircraft performance parameters were compared to environmental hydrometeor parameters quantifying the environmental conditions. Results show that encounters with supercooled drizzle drops, or SCDD, resulted in maximum rates of performance degradation. These high rates of degradation forced the pilot to take evasive action within 5 minutes of entering these hazardous conditions. Encounters with supercooled cloud and rain sized drops resulted in minor to low rates of performance degradation whereas encounters with supercooled drops in low ice particle concentrations resulted in only minor rates of degradation. In addition, aircraft response to high ice particle concentrations and low liquid water, following an SCDD encounter, resulted in rapid performance recovery. The airfoil evaluations show similar results where the drizzle drop ice shape and simulated drizzle ice roughness resulted in the highest performance degradation. These evaluations also show that the most sensitive surface location is on the suction side between 6 and at least 11% of airfoil chord. Ice contaminations in this area are beyond the protective de-icing boots of most aircraft and lead to severe degradations in lift and drag characteristics. The results presented herein show a strong relationship between aircraft response and environmental parameters utilizing the larger drops in the hydrometeor distribution. The results suggest that the most severe icing is actually caused by drizzle sized drops as opposed to freezing rain. Furthermore, these results are similar to many twin-turboprop aircraft typically utilized by the commuter fleet.
The power and robustness of maximum LOD score statistics.
Yoo, Y J; Mendell, N R
2008-07-01
The maximum LOD score statistic is extremely powerful for gene mapping when calculated using the correct genetic parameter value. When the mode of genetic transmission is unknown, the maximum of the LOD scores obtained using several genetic parameter values is reported. This latter statistic requires higher critical value than the maximum LOD score statistic calculated from a single genetic parameter value. In this paper, we compare the power of maximum LOD scores based on three fixed sets of genetic parameter values with the power of the LOD score obtained after maximizing over the entire range of genetic parameter values. We simulate family data under nine generating models. For generating models with non-zero phenocopy rates, LOD scores maximized over the entire range of genetic parameters yielded greater power than maximum LOD scores for fixed sets of parameter values with zero phenocopy rates. No maximum LOD score was consistently more powerful than the others for generating models with a zero phenocopy rate. The power loss of the LOD score maximized over the entire range of genetic parameters, relative to the maximum LOD score calculated using the correct genetic parameter value, appeared to be robust to the generating models.
The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture.
Pai, Athma A; Henriques, Telmo; McCue, Kayla; Burkholder, Adam; Adelman, Karen; Burge, Christopher B
2017-12-27
Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning ('intron definition') or exon-spanning ('exon definition') pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila , using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60-70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly low variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.
Mato, Anthony R; Thompson, Meghan; Allan, John N; Brander, Danielle M; Pagel, John M; Ujjani, Chaitra S; Hill, Brian T; Lamanna, Nicole; Lansigan, Frederick; Jacobs, Ryan; Shadman, Mazyar; Skarbnik, Alan P; Pu, Jeffrey J; Barr, Paul M; Sehgal, Alison R; Cheson, Bruce D; Zent, Clive S; Tuncer, Hande H; Schuster, Stephen J; Pickens, Peter V; Shah, Nirav N; Goy, Andre; Winter, Allison M; Garcia, Christine; Kennard, Kaitlin; Isaac, Krista; Dorsey, Colleen; Gashonia, Lisa M; Singavi, Arun K; Roeker, Lindsey E; Zelenetz, Andrew; Williams, Annalynn; Howlett, Christina; Weissbrot, Hanna; Ali, Naveed; Khajavian, Sirin; Sitlinger, Andrea; Tranchito, Eve; Rhodes, Joanna; Felsenfeld, Joshua; Bailey, Neil; Patel, Bhavisha; Burns, Timothy F; Yacur, Melissa; Malhotra, Mansi; Svoboda, Jakub; Furman, Richard R; Nabhan, Chadi
2018-06-07
Venetoclax is a BCL2 inhibitor approved for 17p-deleted relapsed/refractory chronic lymphocytic leukemia with activity following kinase inhibitors. We conducted a multicenter retrospective cohort analysis of patients with CLL treated with venetoclax to describe outcomes, toxicities, and treatment selection following venetoclax discontinuation. A total of 141 chronic lymphocytic leukemia patients were included (98% relapsed/refractory). Median age at venetoclax initiation was 67 years (range 37-91), median prior therapies was 3 (0-11), 81% unmutated IGHV, 45% del(17p), and 26.8% complex karyotype (≥ 3 abnormalities). Prior to venetoclax initiation, 89% received a B-cell receptor antagonist. For tumor lysis syndrome prophylaxis, 93% received allopurinol, 92% normal saline, and 45% rasburicase. Dose escalation to the maximum recommended dose of 400 mg daily was achieved in 85% of patients. Adverse events of interest included neutropenia in 47.4%, thrombocytopenia in 36%, tumor lysis syndrome in 13.4%, neutropenic fever in 11.6%, and diarrhea in 7.3%. The overall response rate to venetoclax was 72% (19.4% complete remission). With a median follow up of 7 months, median progression free survival and overall survival for the entire cohort have not been reached. To date, 41 venetoclax treated patients have discontinued therapy and 24 have received a subsequent therapy, most commonly ibrutinib. In the largest clinical experience of venetoclax-treated chronic lymphocytic leukemia patients , the majority successfully completed and maintained a maximum recommended dose. Response rates and duration of response appear comparable to clinical trial data. Venetoclax was active in patients with mutations known to confer ibrutinib resistance. Optimal sequencing of newer chronic lymphocytic leukemia therapies requires further study. Copyright © 2018, Ferrata Storti Foundation.
Iacarella, Josephine C; Dick, Jaimie T A; Alexander, Mhairi E; Ricciardi, Anthony
2015-04-01
Invasive alien species (IAS) can cause substantive ecological impacts, and the role of temperature in mediating these impacts may become increasingly significant in a changing climate. Habitat conditions and physiological optima offer predictive information for IAS impacts in novel environments. Here, using meta-analysis and laboratory experiments, we tested the hypothesis that the impacts of IAS in the field are inversely correlated with the difference in their ambient and optimal temperatures. A meta-analysis of 29 studies of consumptive impacts of IAS in inland waters revealed that the impacts of fishes and crustaceans are higher at temperatures that more closely match their thermal growth optima. In particular, the maximum impact potential was constrained by increased differences between ambient and optimal temperatures, as indicated by the steeper slope of a quantile regression on the upper 25th percentile of impact data compared to that of a weighted linear regression on all data with measured variances. We complemented this study with an experimental analysis of the functional response (the relationship between predation rate and prey supply) of two invasive predators (freshwater mysid shrimp, Hemimysis anomala and Mysis diluviana) across. relevant temperature gradients; both of these species have previously been found to exert strong community-level impacts that are corroborated by their functional responses to different prey items. The functional response experiments showed that maximum feeding rates of H. anomala and M. diluviana have distinct peaks near their respective thermal optima. Although variation in impacts may be caused by numerous abiotic or biotic habitat characteristics, both our analyses point to temperature as a key mediator of IAS impact levels in inland waters and suggest that IAS management should prioritize habitats in the invaded range that more closely match the thermal optima of targeted invaders.
NASA Astrophysics Data System (ADS)
Pfannkuche, O.
The benthic response to the sedimentation of particulate organic matter (POM) was investigated during 1985-1990 at 47°N, 20°W (BIOTRANS station). The first noticeable annual sedimentation of phytodetritus, as indicated by chlorophyll a concentrations in the sediment, occurred as early as late April-early May. Maximum amounts were found in June-July. Two different sedimentation pulses to the sea bed are described that demonstrate interannual variation: the occurrence of salp faecal pellets early in the year 1988 and the massive fall out of a plankton bloom in summer 1986, which deposited approximately 15 mmol C m -2. The benthic reaction to POM pulses was quite diverse. The mega-, macro- and meiobenthos showed no change in biomass, whereas bacterial biomass doubled between March and July. This corresponds to a seasonal maximum of total adenylate biomass. The relative abundance of Foraminifera among the meiobenthos increased during the summer. Benthic activity (ATP, ratio ATP/ETSA), as well as in situ sediment community oxygen consumption rates (SCOC), showed distinct seasonal maxima in July-August of 0.75 mmol C m -2 day -1. Based on SCOC and the carbon demand for growth, a benthic carbon consumption of 0.94 mmol C m -2 day -1 was estimated. This represents about 1.1% of spring bloom primary production and 9.6% of the export flux beneath the 150 m layer, measured during the North Atlantic Bloom Experiment. Bacteria and protozoans colonizing the epibenthic phytodetrital layer were responsible for 60-80% of the seasonal increase in SCOC. The strong reaction of the smaller benthic size groups (bacteria, protozoans) to POM pulses stresses their particular importance for sediment-water interface flux rates.
Krohn, Thomas; Hänscheid, Heribert; Müller, Berthold; Behrendt, Florian F; Heinzel, Alexander; Mottaghy, Felix M; Verburg, Frederik A
2014-11-01
The determinants of successful (131)I therapy of Graves' disease (GD) are unclear. To relate dosimetry parameters to outcome of therapy to identify significant determinants eu- and/or hypothyroidism after (131)I therapy in patients with GD. A retrospective study in which 206 Patients with GD treated in University Hospital between November 1999 and January 2011. All received (131)I therapy aiming at a total absorbed dose to the thyroid of 250 Gy based on pre-therapeutic dosimetry. Post-therapy dosimetric thyroid measurements were performed twice daily until discharge. From these measurements, thyroid (131)I half-life, the total thyroid absorbed dose, and the maximum dose rate after (131)I administration were calculated. In all, 48.5% of patients were hypothyroid and 28.6% of patients were euthyroid after (131)I therapy. In univariate analysis, nonhyperthyroid and hyperthyroid patients only differed by sex. A lower thyroid mass, a higher activity per gram thyroid tissue, a shorter effective thyroidal (131)I half-life, and a higher maximum dose rate, but not the total thyroid absorbed dose, were significantly associated with hypothyroidism. In multivariate analysis, the maximum dose rate remained the only significant determinant of hypothyroidism (P < .001). Maximum dose rates of 2.2 Gy/h and higher were associated with a 100% hypothyroidism rate. Not the total thyroid absorbed dose, but the maximum dose rate is a determinant of successfully achieving hypothyroidism in Graves' disease. Dosimetric concepts aiming at a specific total thyroid absorbed dose will therefore require reconsideration if our data are confirmed prospectively.
Pawar, Jaywant; Suryawanshi, Dilipkumar; Moravkar, Kailas; Aware, Rahul; Shetty, Vasant; Maniruzzaman, Mohammed; Amin, Purnima
2018-02-09
The current study investigates the dissolution rate performance of amorphous solid solutions of a poorly water-soluble drug, efavirenz (EFV), in amorphous Soluplus® (SOL) and Kollidon® VA 64 (KVA64) polymeric systems. For the purpose of the study, various formulations with varying drug loadings of 30, 50, and 70% w/w were developed via hot-melt extrusion processing and adopting a Box-Behnken design of experiment (DoE) approach. The polymers were selected based on the Hansen solubility parameter calculation and the prediction of the possible drug-polymer miscibility. In DoE experiments, a Box-Behnken factorial design was conducted to evaluate the effect of independent variables such as Soluplus® ratio (A 1 ), HME screw speed (A 2 ), and processing temperature (A 3 ), and Kollidon®VA64 ratio (B 1 ), screw speed (B 2 ), and processing temperature (B 3 ) on responses such as solubility (X 1 and Y 1 ) and dissolution rate (X 2 and Y 2 ) for both ASS [EFV:SOL] and BSS [EFV:KVA64] systems. DSC and XRD data confirmed that bulk crystalline EFV transformed to amorphous form during the HME processing. Advanced chemical analyses conducted via 2D COSY NMR, FTIR chemical imaging, AFM analysis, and FTIR showed that EFV was homogenously dispersed in the respective polymer matrices. The maximum solubility and dissolution rate was observed in formulations containing 30% EFV with both SOL and KVA64 alone. This could be attributed to the maximum drug-polymer miscibility in the optimized formulations. The actual and predicted values of both responses were found precise and close to each other.
Tomkinson, A.; Raeburn, D.
1996-01-01
1. We have examined the effects of the isoenzyme-selective phosphodiesterase (PDE) inhibitors, vinpocetine (type 1), siguazodan (type 3), rolipram (type 4) and zaprinast (type 5) and the non-selective PDE inhibitor enprofylline on methacholine (MCh) contractile concentration-response curves on guinea-pig and rat isolated ileum. 2. In guinea-pig ileum, vinpocetine (10-300 microM), zaprinast (1-300 microM) and enprofylline (100-1000 microM) produced a concentration-dependent depression of the maximum response (Emax) to MCh only without effect on the MCh EC50 values (rank order of potency: zaprinast > vinpocetine > enprofylline). In contrast, siguazodan (10-300 microM) and rolipram (10-300 microM) produced a rightward displacement of the MCh concentration-response curve (increase in EC50: rank order; rolipram > siguazodan), with effects on the MCh maximum seen only at higher concentrations. 3. In the rat ileum, vinpocetine (10-300 microM), zaprinast (0.1-300 microM) and enprofylline (100-1000 microM) caused depression of the MCh maximum contraction (rank order: zaprinast > vinpocetine > enprofylline). Low concentrations of rolipram and siguazodan had no significant effect on the MCh maximum. In the presence of higher concentrations (> 100 microM) of rolipram and siguazodan, a maximum response was not achieved at the highest concentration of MCh tested. As in the guinea-pig ileum, only rolipram (10-300 microM) and siguazodan (10-300 microM) produced a significant, concentration-dependent, rightward displacement of the MCh concentration-response curve (increase in EC50: rank order: rolipram > siguazodan). 4. In the guinea-pig ileum, isoprenaline (0.1 microM) produced a rightward displacement (approximately 3 fold) of the MCh concentration-response curve, accompanied by a significant depression of the maximum response. Increasing the isoprenaline concentration (1 microM) had no further effect on either parameter. Sodium nitroprusside (SNP, > or = 10 microM) produced a concentration-dependent depression of the MCh maximum without an effect on the EC50. 5. In the rat ileum, isoprenaline (1 microM) produced a concentration-dependent rightward displacement (approximately 2.8 fold) of the MCh concentration-response curve with depression of the MCh maximum at higher (> or = 100 microM) concentrations. SNP produced depression of the MCh maximum at a concentration of 10 microM and above. Effects on the MCh EC50 were seen only at 100 and 300 microM. 6. In guinea-pig ileum, isoprenaline (0.1 microM) in combination with rolipram (10 microM) further increased the MCh EC50 and reduced the MCh maximum. The combination of SNP (10 microM) with zaprinast (0.1 microM) produced no further significant effect than SNP alone. 7. In rat ileum, isoprenaline (1 microM) in combination with rolipram (10 microM) further increased the EC50 and reduced the maximum. SNP (10 microM) had no significant effect on either the MCh maximum or EC50. A combination with zaprinast (1 microM) had no further effect. 8. In conclusion, all the PDE inhibitors tested produced a concentration-dependent inhibition of the MCh concentration-response curve, indicating a modulator role for the PDE isoenzymes in gastrointestinal smooth muscle contractility. The PDE inhibitors that elevate cyclic GMP produced a depression of the MCh maximum response only, whilst those that elevate cyclic AMP produced a rightward displacement of the MCh concentration-response curve. This was confirmed by the use of isoprenaline and SNP. This difference in the type of inhibition produced by these PDE isoenzyme inhibitors may reflect a different intracellular site/mechanism by which the cyclic AMP- and cyclic GMP-activated kinases act functionally to antagonize the contractile response. PMID:8864552
The Optimal Forest Rotation: A Discussion and Annotated Bibliography
David H. Newman
1988-01-01
The literature contains six different criteria of the optimal forest rotation: (1) maximum single-rotation physical yield, (2) maximum single-rotation annual yield, (3) maximum single-rotation discounted net revenues, (4) maximum discounted net revenues from an infinite series of rotations, (5) maximum annual net revenues, and (6) maximum internal rate of return. First...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Jingli; Chen, Cun; Wang, Gang
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Yeo, Winnie; Chung, Hyun C.; Chan, Stephen L.; Wang, Ling Z.; Lim, Robert; Picus, Joel; Boyer, Michael; Mo, Frankie K.F.; Koh, Jane; Rha, Sun Y.; Hui, Edwin P.; Jeung, Hei C.; Roh, Jae K.; Yu, Simon C.H.; To, Ka F.; Tao, Qian; Ma, Brigette B.; Chan, Anthony W.H.; Tong, Joanna H.M.; Erlichman, Charles; Chan, Anthony T.C.; Goh, Boon C.
2012-01-01
Purpose Epigenetic aberrations have been reported in hepatocellular carcinoma (HCC). In this study of patients with unresectable HCC and chronic liver disease, epigenetic therapy with the histone deacetylase inhibitor belinostat was assessed. The objectives were to determine dose-limiting toxicity and maximum-tolerated dose (MTD), to assess pharmacokinetics in phase I, and to assess activity of and explore potential biomarkers for response in phase II. Patients and Methods Major eligibility criteria included histologically confirmed unresectable HCC, European Cooperative Oncology Group performance score ≤ 2, and adequate organ function. Phase I consisted of 18 patients; belinostat was given intravenously once per day on days 1 to 5 every 3 weeks; dose levels were 600 mg/m2 per day (level 1), 900 mg/m2 per day (level 2), 1,200 mg/m2 per day (level 3), and 1,400 mg/m2 per day (level 4). Phase II consisted of 42 patients. The primary end point was progression-free survival (PFS), and the main secondary end points were response according to Response Evaluation Criteria in Solid Tumors (RECIST) and overall survival (OS). Exploratory analysis was conducted on pretreatment tumor tissues to determine whether HR23B expression is a potential biomarker for response. Results Belinostat pharmacokinetics were linear from 600 to 1,400 mg/m2 without significant accumulation. The MTD was not reached at the maximum dose administered. Dose level 4 was used in phase II. The median number of cycles was two (range, one to 12). The partial response (PR) and stable disease (SD) rates were 2.4% and 45.2%, respectively. The median PFS and OS were 2.64 and 6.60 months, respectively. Exploratory analysis revealed that disease stabilization rate (complete response plus PR plus SD) in tumors having high and low HR23B histoscores were 58% and 14%, respectively (P = .036). Conclusion Epigenetic therapy with belinostat demonstrates tumor stabilization and is generally well-tolerated. HR23B expression was associated with disease stabilization. PMID:22915658
Physiology responses of Rhesus monkeys to vibration
NASA Astrophysics Data System (ADS)
Hajebrahimi, Zahra; Ebrahimi, Mohammad; Alidoust, Leila; Arabian Hosseinabadi, Maedeh
Vibration is one of the important environmental factors in space vehicles that it can induce severe physiological responses in most of the body systems such as cardiovascular, respiratory, skeletal, endocrine, and etc. This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV), electrocardiograms (ECG) and respiratory rate in Rhesus monkeys. Methods: two groups of rhesus monkey (n=16 in each group) was selected as control and intervention groups. Monkeys were held in a sitting position within a specific fixture. The animals of this experiment were vibrated on a table which oscillated right and left with sinusoidal motion. Frequency and acceleration for intervention group were between the range of 1 to 2000 Hz and +0.5 to +3 G during 36 weeks (one per week for 15 min), respectively. All of the animals passed the clinical evaluation (echocardiography, sonography, radiography and blood analysis test) before vibration test and were considered healthy and these tests repeated during and at the end of experiments. Results and discussions: Our results showed that heart and respiratory rates increased significantly in response to increased frequency from 1 to 60 Hz (p <0.05) directly with the +G level reaching a maximum (3G) within a seconds compare to controls. There were no significant differences in heart and respiratory rate from 60 t0 2000 Hz among studied groups. All monkeys passed vibration experiment successfully without any arrhythmic symptoms due to electrocardiography analysis. Conclusion: Our results indicate that vibration in low frequency can effect respiratory and cardiovascular function in rhesus monkey. Keywords: Vibration, rhesus monkey, heart rate, respiratory rate
Yalcin, Seda Karasu; Yesim Ozbas, Z.
2008-01-01
The study was performed in a batch system in order to determine the effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine yeast strains Saccharomyces cerevisiae Kalecik 1 and Narince 3. The highest values of dry mass and specific growth rate were obtained at pH 4.00 for both of the strains. Maximum specific glycerol production rates were obtained at pH 5.92 and 6.27 for the strains Kalecik 1 and Narince 3, respectively. Kalecik 1 strain produced maximum 8.8 gL−1 of glycerol at pH 6.46. Maximum glycerol concentration obtained by the strain Narince 3 was 9.1 gL−1 at pH 6.48. Both yeasts reached maximum specific growth rate at 30°C. Optimum temperature range for glycerol production was determined as 25-30°C for the strain Kalecik 1. The strain Narince 3 reached maximum specific glycerol production rate at 30°C. Maximum glycerol concentrations at 30°C were obtained as 8.5 and 7.6 gL−1 for Kalecik 1 and Narince 3, respectively. PMID:24031225
Liu, Zebin; Cheng, Ruimei; Xiao, Wenfa; Guo, Quanshui; Wang, Na
2014-01-01
Distylium chinense is an evergreen shrub used for the vegetation recovery of floodplain and riparian areas in Three Gorges Reservoir Region. To clarify the morphological and physiological responses and tolerance of Distylium chinense to off-season flooding, a simulation flooding experiment was conducted during autumn and winter. Results indicated that the survival rate of seedlings was 100%, and that plant height and stem diameter were not significantly affected by flooding. Adventitious roots and hypertrophic lenticels were observed in flooded seedlings after 30 days of flooding. Flooding significantly reduced the plant biomass of roots, net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), maximum photochemical efficiency (Fv/Fm), photochemical quenching (qP), and electron transport rate (ETR) in leaves, and also affected the allocation and transport of carbohydrate and nutrients. However, D. chinense was able to maintain stable levels of Pn, Fv/Fm, qP, ETR, and nutrient content (N and P) in leaves and to store a certain amount of carbohydrate in roots over prolonged durations of flooding. Based on these results, we conclude that there is a high flooding tolerance in D. chinense, and the high survival rate of D. chinense may be attributable to a combination of morphological and physiological responses to flooding.
NASA Astrophysics Data System (ADS)
Norcahyo, Rachmadi; Soepangkat, Bobby O. P.
2017-06-01
A research was conducted for the optimization of the end milling process of ASSAB XW-42 tool steel with multiple performance characteristics based on the orthogonal array with Taguchi-grey relational analysis method. Liquid nitrogen was applied as a coolant. The experimental studies were conducted under varying the liquid nitrogen cooling flow rates (FL), and the end milling process variables, i.e., cutting speed (Vc), feeding speed (Vf), and axial depth of cut (Aa). The optimized multiple performance characteristics were surface roughness (SR), flank wear (VB), and material removal rate (MRR). An orthogonal array, signal-to-noise (S/N) ratio, grey relational analysis, grey relational grade, and analysis of variance were employed to study the multiple performance characteristics. Experimental results showed that flow rate gave the highest contribution for reducing the total variation of the multiple responses, followed by cutting speed, feeding speed, and axial depth of cut. The minimum surface roughness, flank wear, and maximum material removal rate could be obtained by using the values of flow rate, cutting speed, feeding speed, and axial depth of cut of 0.5 l/minute, 109.9 m/minute, 440 mm/minute, and 0.9 mm, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaetsu, I.; Ito, A.; Hayashi, K.
1973-06-01
The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less
Pfeiffer, Keram; French, Andrew S
2009-09-02
Neurotransmitter chemicals excite or inhibit a range of sensory afferents and sensory pathways. These changes in firing rate or static sensitivity can also be associated with changes in dynamic sensitivity or membrane noise and thus action potential timing. We measured action potential firing produced by random mechanical stimulation of spider mechanoreceptor neurons during long-duration excitation by the GABAA agonist muscimol. Information capacity was estimated from signal-to-noise ratio by averaging responses to repeated identical stimulation sequences. Information capacity was also estimated from the coherence function between input and output signals. Entropy rate was estimated by a data compression algorithm and maximum entropy rate from the firing rate. Action potential timing variability, or jitter, was measured as normalized interspike interval distance. Muscimol increased firing rate, information capacity, and entropy rate, but jitter was unchanged. We compared these data with the effects of increasing firing rate by current injection. Our results indicate that the major increase in information capacity by neurotransmitter action arose from the increased entropy rate produced by increased firing rate, not from reduction in membrane noise and action potential jitter.
The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis
Eichelmann, H.; Oja, V.; Peterson, R.B.; Laisk, A.
2011-01-01
Light response (at 300 ppm CO2 and 10–50 ppm O2 in N2) and CO2 response curves [at absorbed photon fluence rate (PAD) of 550 μmol m−2 s−1] of O2 evolution and CO2 uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO3− or NH4+ as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH4NO3. Photosynthetic O2 evolution in excess of CO2 uptake was measured with a stabilized zirconia O2 electrode and an infrared CO2 analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO2, mainly NO2−, SO42−, and oxaloacetate. In NO3−-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O2–CO2 flux difference rapidly increased to about 1 μmol m−2 s−1 at very low PADs and the process was saturated at 50 μmol quanta m−2 s−1. At higher PADs the O2–CO2 flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m−2 s−1. In NH4+-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O2 evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO2− which successfully competes with CO2 reduction and saturates at a rate of about 1 μmol O2 m−2 s−1 (9% of the maximum O2 evolution rate). The high-PAD component of about 1 μmol O2 m−2 s−1, superimposed on NO2− reduction, may represent oxaloacetate reduction. The roles of NO2−, oxaloacetate, and O2 reduction in the regulation of ATP/NADPH balance are discussed. PMID:21239375
Fonseca, E; Cruz, J J; Dueñas, A; Gómez, A; Sánchez, P; Martín, G; Nieto, A; Soria, P; Muñoz, A; Gómez, J L; Pardal, J L
1996-01-01
Neoadjuvant chemotherapy for head and neck carcinoma is still an important treatment modality. The prognostic value of patient and tumor parameters has been extensively evaluated in several trials, yielding mixed results. We report the prognostic factors emerging from a group of patients undergoing neoadjuvant chemotherapy. From April 1986 to June 1992, 149 consecutive patients received cisplatin-5-fluorouracil-based neoadjuvant chemotherapy. After four courses of chemotherapy, patients underwent local-regional treatment with surgery, radiation or both. A variety of patient and tumor characteristics were evaluated as predictors for response to chemotherapy and survival. The complete response, partial response and no response rates to NAC were 52%, 33% and 15%, respectively. No parameters predicted response to chemotherapy. At a maximum follow-up of 87 months, overall survival was 39% and disease-free survival was 49%. Variables shown to be predictors of survival in univariate analyses were age, performance status, histology, site, T, N, stage, and response to chemotherapy. Using the Cox regression analysis, only complete response to induction chemotherapy (P = 0.0006), performance status (P = 0.03), stage (P = 0.01), age (P = 0.03) and primary tumor site (P = 0.04) emerged as independent prognostic factors for survival. Complete response to chemotherapy was confirmed as the strongest prognostic factor influencing survival. However, conventional clinicopathologic factors did not predict response, hence, potential prognostic biologic and molecular factors for response must be sought. At present, much effort must be made for the improvement of the complete response rate, which seems to be a requisite to prolong survival.
Graf, Alexandra C; Bauer, Peter
2011-06-30
We calculate the maximum type 1 error rate of the pre-planned conventional fixed sample size test for comparing the means of independent normal distributions (with common known variance) which can be yielded when sample size and allocation rate to the treatment arms can be modified in an interim analysis. Thereby it is assumed that the experimenter fully exploits knowledge of the unblinded interim estimates of the treatment effects in order to maximize the conditional type 1 error rate. The 'worst-case' strategies require knowledge of the unknown common treatment effect under the null hypothesis. Although this is a rather hypothetical scenario it may be approached in practice when using a standard control treatment for which precise estimates are available from historical data. The maximum inflation of the type 1 error rate is substantially larger than derived by Proschan and Hunsberger (Biometrics 1995; 51:1315-1324) for design modifications applying balanced samples before and after the interim analysis. Corresponding upper limits for the maximum type 1 error rate are calculated for a number of situations arising from practical considerations (e.g. restricting the maximum sample size, not allowing sample size to decrease, allowing only increase in the sample size in the experimental treatment). The application is discussed for a motivating example. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lysgaard, Maria L.; Eckford-Soper, Lisa; Daugbjerg, Niels
2018-05-01
Continued anthropogenic carbon emissions are expected to cause a decline in global average pH of the oceans to a projected value of 7.8 by the end of the century. Understanding how harmful algal bloom (HAB) species will respond to lowered pH levels will be important when predicting future HAB events and their ecological consequences. In this study, we examined how manipulated pH levels affected the growth rate of three strains of Prymnesium parvum from North America, Denmark and Japan. Triplicate strains were grown under pH conditions ranging from 6.6 to 9.1 to simulate plausible future levels. Different tolerances were evident for all strains. Significantly higher growth rates were observed at pH 6.6-8.1 compared to growth rates at pH 8.6-9.1 and a lower pH limit was not observed. The Japanese strain (NIES-1017) had the highest maximum growth rate of 0.39 divisions day-1 at pH 6.6 but a low tolerance (0.22 divisions day-1) to high levels (pH 9.1) with growth declining markedly after pH 7.6. The Danish (SCCAP K-0081) and North American (UTEX LB 2797) strains had maximum growth rates of 0.26 and 0.35 divisions day-1, respectively between pH 6.6-8.1. Compared to the other two strains the Danish strain had a statistically lower growth rate across all pH treatments. Strain differences were either attributed to their provenance or the length of time the strain had been in culture.
Rosewarne, P J; Wilson, J M; Svendsen, J C
2016-01-01
Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology. © 2016 The Fisheries Society of the British Isles.
Condon, Catriona H; Chenoweth, Stephen F; Wilson, Robbie S
2010-11-01
Organisms adjust to seasonal variability in the environment by responding to cues that indicate environmental change. As most studies of seasonal phenotypic plasticity test only the effect of a single environmental cue, how animals may integrate information from multiple cues to fine-tune plastic responses remains largely unknown. We examined the interaction between correlated (seasonally matching) and conflicting (seasonally opposite) temperature and photoperiod cues on the acclimation of performance traits in male zebrafish, Danio rerio. We acclimated fish for 8 weeks and then tested the change in thermal dependence of maximum burst swimming and feeding rate between 8 and 38°C. We predicted that correlated environmental cues should induce a greater acclimation response than uncorrelated cues. However, we found that only temperature was important for the seasonal acclimation of performance traits in zebrafish. Thermal acclimation shifted the thermal performance curve of both traits. For maximum burst swimming, performance increased for each group near the acclimation temperature and reduced in environments that were far from their acclimation temperature. The feeding rate of cold-acclimated zebrafish was reduced across the test temperature range compared with that of warm-acclimated fish. Our study is the first that has found no effect of the covariation between temperature and photoperiod acclimation cues on locomotor performance in fishes. Our results support the intuitive idea that photoperiod may be a less important seasonal cue for animals living at lower latitudes.
Mann, H J; Fuhs, D W; Cerra, F B
1988-03-01
The influence of the piston-cassette pump fill stroke on the pharmacodynamic response to sodium nitroprusside was evaluated prospectively in 10 adult patients in the surgical intensive-care unit. Simultaneous analog recordings of blood pressure and fill stroke were made over three complete pump fill cycles in each patient. Sodium nitroprusside flow rates and concentrations were recorded throughout the data-collection period. Analysis was based on the maximum pressure obtained during the two-minute baseline period before a fill stroke (Pmax baseline), the pressure at the initiation of the fill stroke (P initial), and the maximum pressure obtained during the two-minute period after the fill stroke (Pmax postfill). The maximum systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) during the baseline and post-fill-stroke periods were significantly different. The mean (+/- S.D.) variability in pressure between the time periods Pmax baseline and Pmax postfill was 3.9 +/- 5.8 mm Hg for SBP (range, -8 to +16), 3.5 +/- 5.7 mm Hg for DBP (range, -7 to +13), and 3.6 +/- 5.6 mm Hg for MBP (range, -7 to +14). The likelihood of a pharmacodynamic change was inconsistent both between and within patients. Within patients the difference between cycles for the variability between time periods ranged from a minimum of 2 mm Hg to a maximum of 16 mm Hg for SBP, 2 mm Hg to 17 mm Hg for DBP, and 1 mm Hg to 17 mm Hg for MBP. The variability within the baseline period (Pmax baseline - P initial) in SBP was significantly greater than the variability between the time periods, while the differences for DBP and MBP were not significant.(ABSTRACT TRUNCATED AT 250 WORDS)
Kruk, Carla; Segura, Angel M; Nogueira, Lucía; Alcántara, Ignacio; Calliari, Danilo; Martínez de la Escalera, Gabriela; Carballo, Carmela; Cabrera, Carolina; Sarthou, Florencia; Scavone, Paola; Piccini, Claudia
2017-12-01
The Microcystis aeruginosa complex (MAC) clusters cosmopolitan and conspicuous harmful bloom-forming cyanobacteria able to produce cyanotoxins. It is hypothesized that low temperatures and brackish salinities are the main barriers to MAC proliferation. Here, patterns at multiple levels of organization irrespective of taxonomic identity (i.e. a trait-based approach) were analyzed. MAC responses from the intracellular (e.g. respiratory activity) to the ecosystem level (e.g. blooms) were evaluated in wide environmental gradients. Experimental results on buoyancy and respiratory activity in response to increased salinity (0-35) and a literature review of maximum growth rates under different temperatures and salinities were combined with field sampling from headwaters (800km upstream) to the marine end of the Rio de la Plata estuary (Uruguay-South America). Salinity and temperature were the major variables affecting MAC responses. Experimentally, freshwater MAC cells remained active for 24h in brackish waters (salinity=15) while colonies increased their flotation velocity. At the population level, maximum growth rate decreased with salinity and presented a unimodal exponential response with temperature, showing an optimum at 27.5°C and a rapid decrease thereafter. At the community and ecosystem levels, MAC occurred from fresh to marine waters (salinity 30) with a sustained relative increase of large mucilaginous colonies biovolume with respect to individual cells. Similarly, total biomass and, specific and morphological richness decreased with salinity while blooms were only detected in freshwater both at high (33°C) and low (11°C) temperatures. In brackish waters, large mucilaginous colonies presented advantages under osmotic restrictive conditions. These traits values have also been associated with higher toxicity potential. This suggest salinity or low temperatures would not represent effective barriers for the survival and transport of potentially toxic MAC under likely near future scenarios of increasing human impacts (i.e. eutrophication, dam construction and climate change). Copyright © 2017 Elsevier B.V. All rights reserved.
The Use of Radiation Response (RR) in Selecting the Method of Treatment of Carcinoma Cervicis Uteri
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesterman, John N.
1963-03-01
Attempts were made to determine the choice treatment of cervical squamous carcinoma (surgery, radiation, or surgery with radiation) in Stages I and II. A study of 50 patients showed good results from surgery in patients with poor radiation response (RR) and that the RR, estimated by a precise and uniform technique, will identify those patients who will not respond well to complete radiation therapy. Moreover, it will do this after a first radium application of moderate dosage, at a time when it is still possible to interrupt this therapy. A radiation dose of at least 1000 r at the cervixmore » will be followed by the maximum RR, in a good response, between the 8th and 14th (especially 10th to 12th) days. A poor RR will reach its maximum earlier than a good one, on about the 10th day after radium implantation. When deciding the definition of good RR, it was found that the radiation changes present in a count of 100 cells were seen in more than 70 cells. There is evidence that age, menopause, and hormonal status influence the radiation reaction. If poor RR is more frequently found with high estrogenic activity, young patients treated by radiation should be expected to have a worse survival rate than old. The survival rate is about 1/3) in the young patient as against 1/2 in the postmenopausal. A good sensitization response (SR) was, in most cases, followed by good RR after radiation. Of 39 patients with good SR, 34 had good RR after one application of radium. However, this correlation was absent when the SR was poor. Of 41 patients with poor SR, 18 remained poor after radiation and 23 developed good RR. Finally, this SR should not be taken alone as a guide to treatment, but all patients should be given the first radium application and the RR assessed.« less
5 CFR 550.106 - Annual maximum earnings limitation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Annual maximum earnings limitation. 550... PAY ADMINISTRATION (GENERAL) Premium Pay Maximum Earnings Limitations § 550.106 Annual maximum... and premium pay for the calendar year to exceed the greater of— (1) The maximum annual rate of basic...
Vilozni, Daphna; Alcaneses-Ofek, Maria Rosario; Reuveny, Ronen; Rosenblum, Omer; Inbar, Omri; Katz, Uriel; Ziv-Baran, Tomer; Dubnov-Raz, Gal
2016-12-01
Pulmonary mechanics may play a role in exercise intolerance in patients with congenital heart disease (CHD). A reduced FVC volume could increase the ratio between mid-flow (FEF 25-75% ) and FVC, which is termed high dysanapsis. The relationship between high dysanapsis and the response to maximum-intensity exercise in children with CHD had not yet been studied. The aim of this work was to examine whether high dysanapsis is related to the cardiopulmonary response to maximum-intensity exercise in pediatric subjects with CHD. We retrospectively collected data from 42 children and adolescents with CHD who had either high dysanapsis (ratio >1.2; n = 21) or normal dysanapsis (control) (n = 21) as measured by spirometry. Data extracted from cardiopulmonary exercise test reports included peak values of heart rate, work load, V̇ O 2 , V̇ CO 2 , and ventilation parameters and submaximum values, including ventilatory threshold and ventilatory equivalents. There were no significant differences in demographic and clinical parameters between the groups. Participants with high dysanapsis differed from controls in lower median peak oxygen consumption (65.8% vs 83.0% of predicted, P = .02), peak oxygen pulse (78.6% vs 87.8% of predicted, P = .02), ventilatory threshold (73.8% vs 85.3% of predicted, P = .03), and maximum breathing frequency (106% vs 121% of predicted, P = .035). In the high dysanapsis group only, median peak ventilation and tidal volume were significantly lower than 80% of predicted values. In children and adolescents with corrected CHD, high dysanapsis was associated with a lower ventilatory capacity and reduced aerobic fitness, which may indicate respiratory muscle impairments. Copyright © 2016 by Daedalus Enterprises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Sheree, E-mail: shereedst32@hotmail.com; Vicini, Frank; Vanapalli, Jyotsna R.
2012-07-01
Purpose: The purpose of this analysis was to evaluate dose-volume relationships associated with a higher probability for developing chest wall toxicity (pain) after accelerated partial breast irradiation (APBI) by using both single-lumen and multilumen brachytherapy. Methods and Materials: Rib dose data were available for 89 patients treated with APBI and were correlated with the development of chest wall/rib pain at any point after treatment. Ribs were contoured on computed tomography planning scans, and rib dose-volume histograms (DVH) along with histograms for other structures were constructed. Rib DVH data for all patients were sampled at all volumes {>=}0.008 cubic centimeter (cc)more » (for maximum dose related to pain) and at volumes of 0.5, 1, 2, and 3 cc for analysis. Rib pain was evaluated at each follow-up visit. Patient responses were marked as yes or no. No attempt was made to grade responses. Eighty-nine responses were available for this analysis. Results: Nineteen patients (21.3%) complained of transient chest wall/rib pain at any point in follow-up. Analysis showed a direct correlation between total dose received and volume of rib irradiated with the probability of developing rib/chest wall pain at any point after follow-up. The median maximum dose at volumes {>=}0.008 cc of rib in patients who experienced chest wall pain was 132% of the prescribed dose versus 95% of the prescribed dose in those patients who did not experience pain (p = 0.0035). Conclusions: Although the incidence of chest wall/rib pain is quite low with APBI brachytherapy, attempts should be made to keep the volume of rib irradiated at a minimum and the maximum dose received by the chest wall as low as reasonably achievable.« less
9 CFR 310.1 - Extent and time of post-mortem inspection; post-mortem inspection staffing standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... inspector performs the viscera and upper carcass inspection. 1 1 The “Maximum Slaughter Rates” figures... accompanying rules. (i) Inspection Using the Viscera Truck. Steers and Heifers Maximum slaughter rates (head... 1 1 1 85 to 86 1 2 1 87 to 143 2 2 1 Cows and Bulls Maximum slaughter rates (head per hour) Number...
9 CFR 310.1 - Extent and time of post-mortem inspection; post-mortem inspection staffing standards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... inspector performs the viscera and upper carcass inspection. 1 1 The “Maximum Slaughter Rates” figures... accompanying rules. (i) Inspection Using the Viscera Truck. Steers and Heifers Maximum slaughter rates (head... 1 1 1 85 to 86 1 2 1 87 to 143 2 2 1 Cows and Bulls Maximum slaughter rates (head per hour) Number...
9 CFR 310.1 - Extent and time of post-mortem inspection; post-mortem inspection staffing standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... inspector performs the viscera and upper carcass inspection. 1 1 The “Maximum Slaughter Rates” figures... accompanying rules. (i) Inspection Using the Viscera Truck. Steers and Heifers Maximum slaughter rates (head... 1 1 1 85 to 86 1 2 1 87 to 143 2 2 1 Cows and Bulls Maximum slaughter rates (head per hour) Number...
9 CFR 310.1 - Extent and time of post-mortem inspection; post-mortem inspection staffing standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... inspector performs the viscera and upper carcass inspection. 1 1 The “Maximum Slaughter Rates” figures... accompanying rules. (i) Inspection Using the Viscera Truck. Steers and Heifers Maximum slaughter rates (head... 1 1 1 85 to 86 1 2 1 87 to 143 2 2 1 Cows and Bulls Maximum slaughter rates (head per hour) Number...
9 CFR 310.1 - Extent and time of post-mortem inspection; post-mortem inspection staffing standards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... inspector performs the viscera and upper carcass inspection. 1 1 The “Maximum Slaughter Rates” figures... accompanying rules. (i) Inspection Using the Viscera Truck. Steers and Heifers Maximum slaughter rates (head... 1 1 1 85 to 86 1 2 1 87 to 143 2 2 1 Cows and Bulls Maximum slaughter rates (head per hour) Number...
Impact of marine reserve on maximum sustainable yield in a traditional prey-predator system
NASA Astrophysics Data System (ADS)
Paul, Prosenjit; Kar, T. K.; Ghorai, Abhijit
2018-01-01
Multispecies fisheries management requires managers to consider the impact of fishing activities on several species as fishing impacts both targeted and non-targeted species directly or indirectly in several ways. The intended goal of traditional fisheries management is to achieve maximum sustainable yield (MSY) from the targeted species, which on many occasions affect the targeted species as well as the entire ecosystem. Marine reserves are often acclaimed as the marine ecosystem management tool. Few attempts have been made to generalize the ecological effects of marine reserve on MSY policy. We examine here how MSY and population level in a prey-predator system are affected by the low, medium and high reserve size under different possible scenarios. Our simulation works shows that low reserve area, the value of MSY for prey exploitation is maximum when both prey and predator species have fast movement rate. For medium reserve size, our analysis revealed that the maximum value of MSY for prey exploitation is obtained when prey population has fast movement rate and predator population has slow movement rate. For high reserve area, the maximum value of MSY for prey's exploitation is very low compared to the maximum value of MSY for prey's exploitation in case of low and medium reserve. On the other hand, for low and medium reserve area, MSY for predator exploitation is maximum when both the species have fast movement rate.
Sea level and global ice volumes from the Last Glacial Maximum to the Holocene.
Lambeck, Kurt; Rouby, Hélène; Purcell, Anthony; Sun, Yiying; Sambridge, Malcolm
2014-10-28
The major cause of sea-level change during ice ages is the exchange of water between ice and ocean and the planet's dynamic response to the changing surface load. Inversion of ∼1,000 observations for the past 35,000 y from localities far from former ice margins has provided new constraints on the fluctuation of ice volume in this interval. Key results are: (i) a rapid final fall in global sea level of ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y before present (30 ka BP); (ii) a slow fall to -134 m from 29 to 21 ka BP with a maximum grounded ice volume of ∼52 × 10(6) km(3) greater than today; (iii) after an initial short duration rapid rise and a short interval of near-constant sea level, the main phase of deglaciation occurred from ∼16.5 ka BP to ∼8.2 ka BP at an average rate of rise of 12 m⋅ka(-1) punctuated by periods of greater, particularly at 14.5-14.0 ka BP at ≥40 mm⋅y(-1) (MWP-1A), and lesser, from 12.5 to 11.5 ka BP (Younger Dryas), rates; (iv) no evidence for a global MWP-1B event at ∼11.3 ka BP; and (v) a progressive decrease in the rate of rise from 8.2 ka to ∼2.5 ka BP, after which ocean volumes remained nearly constant until the renewed sea-level rise at 100-150 y ago, with no evidence of oscillations exceeding ∼15-20 cm in time intervals ≥200 y from 6 to 0.15 ka BP.
Sea level and global ice volumes from the Last Glacial Maximum to the Holocene
Lambeck, Kurt; Rouby, Hélène; Purcell, Anthony; Sun, Yiying; Sambridge, Malcolm
2014-01-01
The major cause of sea-level change during ice ages is the exchange of water between ice and ocean and the planet’s dynamic response to the changing surface load. Inversion of ∼1,000 observations for the past 35,000 y from localities far from former ice margins has provided new constraints on the fluctuation of ice volume in this interval. Key results are: (i) a rapid final fall in global sea level of ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka BP with a maximum grounded ice volume of ∼52 × 106 km3 greater than today; (iii) after an initial short duration rapid rise and a short interval of near-constant sea level, the main phase of deglaciation occurred from ∼16.5 ka BP to ∼8.2 ka BP at an average rate of rise of 12 m⋅ka−1 punctuated by periods of greater, particularly at 14.5–14.0 ka BP at ≥40 mm⋅y−1 (MWP-1A), and lesser, from 12.5 to 11.5 ka BP (Younger Dryas), rates; (iv) no evidence for a global MWP-1B event at ∼11.3 ka BP; and (v) a progressive decrease in the rate of rise from 8.2 ka to ∼2.5 ka BP, after which ocean volumes remained nearly constant until the renewed sea-level rise at 100–150 y ago, with no evidence of oscillations exceeding ∼15–20 cm in time intervals ≥200 y from 6 to 0.15 ka BP. PMID:25313072
Evaluation of different recall periods for the US National Cancer Institute's PRO-CTCAE.
Mendoza, Tito R; Dueck, Amylou C; Bennett, Antonia V; Mitchell, Sandra A; Reeve, Bryce B; Atkinson, Thomas M; Li, Yuelin; Castro, Kathleen M; Denicoff, Andrea; Rogak, Lauren J; Piekarz, Richard L; Cleeland, Charles S; Sloan, Jeff A; Schrag, Deborah; Basch, Ethan
2017-06-01
The US National Cancer Institute recently developed the PRO-CTCAE (Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events). PRO-CTCAE is a library of questions for clinical trial participants to self-report symptomatic adverse events (e.g. nausea). The objective of this study is to inform evidence-based selection of a recall period when PRO-CTCAE is included in a trial. We evaluated differences between 1-, 2-, 3-, and 4-week recall periods, using daily reporting as the reference. English-speaking patients with cancer receiving chemotherapy and/or radiotherapy were enrolled at four US cancer centers and affiliated community clinics. Participants completed 27 PRO-CTCAE items electronically daily for 28 days, and then weekly over 4 weeks, using 1-, 2-, 3-, and 4-week recall periods. For each recall period, mean differences, effect sizes, and intraclass correlation coefficients were calculated to evaluate agreement between the maximum of daily ratings and the corresponding ratings obtained using longer recall periods (e.g. maximum of daily scores over 7 days vs 1-week recall). Analyses were repeated using the average of daily scores within each recall period rather than the maximum of daily scores. A total of 127 subjects completed questionnaires (57% male; median age: 57). The median of the 27 mean differences in scores on the PRO-CTCAE 5-point response scale comparing the maximum daily versus the longer recall period (and corresponding effect size) was -0.20 (-0.20) for 1-week recall, -0.36 (-0.31) for 2-week recall, -0.45 (-0.39) for 3-week recall, and -0.47 (-0.40) for 4-week recall. The median intraclass correlation across 27 items between the maximum of daily ratings and the corresponding longer recall ratings for 1-week recall was 0.70 (range: 0.54-0.82), for 2-week recall was 0.74 (range: 0.58-0.83), for 3-week recall was 0.72 (range: 0.61-0.84), and for 4-week recall was 0.72 (range: 0.64-0.86). Similar results were observed for all analyses using the average of daily scores rather than the maximum of daily scores. A 1-week recall corresponds best to daily reporting. Although intraclass correlations remain stable over time, there are small but progressively larger differences between daily and longer recall periods at 2, 3, and 4 weeks, respectively. The preferred recall period for the PRO-CTCAE is the past 7 days, although investigators may opt for recall periods of 2, 3, or 4 weeks with an understanding that there may be some information loss.
NASA Astrophysics Data System (ADS)
Lehmeier, C.; Min, K.; Good, H. J.; Billings, S. A.
2015-12-01
Temperature (T) is a major determinant of microbial decomposition of soil organic matter (SOM). Quantifying T responses of microbial C fluxes is crucial to improve predictions of SOM dynamics and atmospheric CO2 concentrations, but interpretation of experimental data is complicated by many properties inherent to soils. Comparing such data with complementary, reductionist experiments can help to identify basic mechanisms and interpret soil measurements. We quantified T effects on activity levels (i.e., rates of substrate cleavage) of microbial extracellular enzymes β-glucosidase (BGase) and β-N-acetyl glucosaminidase (NAGase), and on rates of CO2 efflux in soil incubations. We compare the results to those derived from purified enzyme assays, and to measurements of microbial respiration rates in continuous-flow chemostat culture in which a population of the soil bacterium Pseudomonas fluorescens was grown on medium with similar C:N ratio as the incubated SOM (10:1). Activity levels of both BGase and NAGase decreased by 80% between 25 and 5 °C. These T responses were higher than predictions from intrinsic (i.e., maximum) T responses in purified assays of BGase (minus 50%) and NAGase (minus 67%). This suggests that factors like physical access to substrate or reduced microbial production of enzymes constrained substrate decomposition rates in the soils relatively more at low than at high T. In chemostats, (mass-)specific bacterial respiration rate at T 14.5 °C was 50% of the rate observed at 26.5 °C; in contrast, CO2 efflux from the soil incubations decreased by only ~25% from 25 to 15 °C. The reason for this discrepancy can be manifold, including changes in microbial community composition, but results from ongoing measurements of microbial biomass in the soil samples will allow a closer comparison of these respiration rate responses. Our efforts highlight the significance of experimenting across scales and complexity for a better understanding of SOM dynamics.
7 CFR 4290.845 - Maximum rate of amortization on Loans and Debt Securities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... INVESTMENT COMPANY (âRBICâ) PROGRAM Financing of Enterprises by RBICs Structuring Rbic Financing of Eligible Enterprises-Types of Financings § 4290.845 Maximum rate of amortization on Loans and Debt Securities. The...
Value of FDG-PET/CT Volumetry After Chemoradiotherapy in Rectal Cancer.
Okuno, Takayuki; Kawai, Kazushige; Koyama, Keitaro; Takahashi, Miwako; Ishihara, Soichiro; Momose, Toshimitsu; Morikawa, Teppei; Fukayama, Masashi; Watanabe, Toshiaki
2018-03-01
Neoadjuvant chemoradiotherapy followed by an optimal surgery is the standard treatment for patients with locally advanced rectal cancer. FDG-PET/CT is commonly used as the modality for assessing the effect of chemoradiotherapy. The purpose of this study was to investigate whether PET/CT-based volumetry could contribute to the prediction of pathological complete response or prognosis after neoadjuvant chemoradiotherapy. This was a retrospective cohort study. This study was conducted at a single research center. Ninety-one consecutive patients with locally advanced rectal cancer were enrolled between January 2005 and December 2015. Patients underwent PET/CT before and after neoadjuvant chemoradiotherapy. Maximum standardized uptake value and total lesion glycolysis on PET/CT before and after neoadjuvant chemoradiotherapy were calculated using isocontour methods. Correlations between these variables and clinicopathological factors and prognosis were assessed. PET/CT-associated variables before chemoradiotherapy were not correlated with either clinicopathological factors or prognosis. Maximum standardized uptake value was associated with pathological complete response, but total lesion glycolysis was not. Maximum standardized uptake value correlated with ypT, whereas total lesion glycolysis correlated with both ypT and ypN. High total lesion glycolysis was associated with a considerably poorer prognosis; the 5-year recurrence rate was 65% and the 5-year mortality rate 42%, whereas in lesions with low total lesion glycolysis, these were 6% and 2%. On multivariate analysis, high total lesion glycolysis was an independent risk factor for recurrence (HR = 4.718; p = 0.04). The gain in fluoro-2-deoxy-D-glucose uptake may differ between scanners, thus the general applicability of this threshold should be validated. In patients with locally advanced rectal cancer, high total lesion glycolysis after neoadjuvant chemoradiotherapy is strongly associated with a worse prognosis. Total lesion glycolysis after chemoradiotherapy may be a promising preoperative predictor of recurrence and death. See Video Abstract at http://links.lww.com/DCR/A464.
NASA Technical Reports Server (NTRS)
Stubbs, S. M.; Tanner, J. A.
1976-01-01
During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.
Saraswat, Shweta; Rai, J P N
2011-03-01
The study deals with phytoextraction of Zn and Cd by Leucaena leucocephala grown on effluent fed and low nitrogen soils collected from S1, S2, and S3 sites, representing decreasing metal content with increasing distance from the effluent drain. Plant nitrogen fixation potential and soil micro-biochemical attributes against metal stress were also assessed. Increasing soil metal content and plant growth enhanced metal accumulation. Relatively greater amount of Zn than Cd was accumulated by L. leucocephala, which exceeded in roots with that of other parts. Remediation factor for Cd was maximum (3.6%) in S2 grown plant. Nodule numbers, their biomass, nitrogenase activity, and leghaemoglobin content were maximum in plants grown in S3 and minimum in S1 soil having maximum metals. Maximum soil organic C, total N, C(mic), and N(mic), respiration rate, ATP content, and enzymatic activities in response to phytoremediation was recorded in S3 followed by S2 and S1. Phytoremediation for a year enhanced extractable Zn and Cd by 36% and 45%, and their total removal by 20% and 30%, respectively from S2, which suggests the possible application of L. leucocephala for the remediation of metal contaminated sites and their fertility restoration by improving microbial functionalities and N-pool.
ERIC Educational Resources Information Center
Kieftenbeld, Vincent; Natesan, Prathiba
2012-01-01
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
Sander, Tilmann H.; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz
2010-01-01
Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds. PMID:20145717
Sander, Tilmann H; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz
2010-01-01
Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.
Kovács, L; Kézér, F L; Kulcsár-Huszenicza, M; Ruff, F; Szenci, O; Jurkovich, V
2016-09-01
Behavior, hypothalamic-pituitary-adrenal axis, and cardiac autonomic nervous system (ANS) activity were evaluated in response to transrectal examination in nonlactating Holstein-Friesian cows with different behavioral reactivity. According to behavioral reactions shown to the procedure of fixing the heart rate (HR) monitors, the 20 cows with the highest and the 20 cows with the lowest behavioral reactivity were involved in the study (high responder, n=20; and low responder, n=20, respectively). Activity of the ANS was assessed by HR and HR variability parameters. Blood and saliva were collected at 5 min before (baseline) and 0, 5 10, 15, 20, 30, 40, 60, and 120 min after the examination to determine cortisol concentrations. The examination lasted for 5 min. Cardiac parameters included HR, the root mean square of successive differences between the consecutive interbeat intervals, the high frequency (HF) component of heart rate variability, and the ratio between the low frequency (LF) and HF parameter (LF/HF). Following the examination, peak plasma and saliva cortisol levels and the amplitude of the plasma and saliva cortisol response were higher in high responder cows than in low responders. Areas under the plasma and saliva cortisol response curves were greater in high responder cows. Plasma and salivary cortisol levels correlated significantly at baseline (r=0.91), right after examination (r=0.98), and at peak levels (r=0.96). Area under the HR response curve was higher in low responder cows; however, maximum HR and the amplitude of the HR response showed no differences between groups. Minimum values of both parameters calculated for the examination were higher in high responders. Following the examination, response parameters of root mean square of successive differences and HF did not differ between groups. The maximum and the amplitude of LF/HF response and area under the LF/HF response curve were lower in low responder cows, suggesting a lower sympathetic activation of the ANS. Although changes in behaviors indicated that the procedure was painful for the animals, no differences were observed either in vocalization or in attendant behavior between groups during the examination. Our results demonstrate that behaviorally more reactive animals exhibit increased plasma and salivary cortisol concentrations and higher cardiac autonomic responsiveness to transrectal examination than less reactive cows. Salivary cortisol may substitute for plasma cortisol when assessing response of cattle to stress. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Growth and Deposition of Inorganic Nutrient Elements in Developing Leaves of Zea mays L. 1
Meiri, Avraham; Silk, Wendy Kuhn; Läuchli, André
1992-01-01
Spatial distributions of growth and of the concentration of some inorganic nutrient elements were analyzed in developing leaves of maize (Zea mays L.). Growth was analyzed by pinprick experiments with numerical analysis to characterize fields of velocity and relative elemental elongation rate. Inductively coupled plasma and atomic emission spectroscopy were used to measure nutrients extracted from segments of leaf tissue collected by position. Leaves 7 and 8, both elongating 3 millimeters per hour had maximum relative elemental growth rates of 0.06 to 0.08 millimeters per hour with maximum rates 20 to 50 millimeters from the node and cessation of growth by 90 millimeters from the node. Spatial distribution of dry weight density revealed that the rate of biomass deposition was maximum in the most rapidly expanding region and continued beyond the elongation zone. The nutrient elements K, Cl, Ca, Mg, and P showed different distribution patterns of ion density (on a dry weight basis). K and Cl had minimal density in the leaf tips; K density was maximum in the growing region, whereas Cl density was maximum at the region of growth cessation. Ca, Mg, and P had relatively high densities at the base of the elongation zone near the node and also in the tip regions. Near the node, P and Mg densities were higher in the young, growing leaves, whereas Ca density near the node was higher in older leaves that had completed elongation. Deposition rates of all nutrients were greatest in the region of maximum elongation rate. PMID:16669027
Intracoronary Adenosine: Dose-Response Relationship With Hyperemia.
Adjedj, Julien; Toth, Gabor G; Johnson, Nils P; Pellicano, Mariano; Ferrara, Angela; Floré, Vincent; Di Gioia, Giuseppe; Barbato, Emanuele; Muller, Olivier; De Bruyne, Bernard
2015-09-01
The present study sought to establish the dosage of intracoronary (IC) adenosine associated with minimal side effects and above which no further increase in flow can be expected. Despite the widespread adoption of IC adenosine in clinical practice, no wide-ranging, dose-response study has been conducted. A recurring debate still exists regarding its optimal dose. In 30 patients, Doppler-derived flow velocity measurements were obtained in 10 right coronary arteries (RCAs) and 20 left coronary arteries (LCAs) free of stenoses >20% in diameter. Flow velocity was measured at baseline and after 8 ml bolus administrations of arterial blood, saline, contrast medium, and 9 escalating doses of adenosine (4 to 500 μg). The hyperemic value was expressed in percent of the maximum flow velocity reached in a given artery (Q/Qmax, %). Q/Qmax did not increase significantly beyond dosages of 60 μg for the RCA and 160 μg for LCA. Heart rate did not change, whereas mean arterial blood pressure decreased by a maximum of 7% (p < 0.05) after bolus injections of IC adenosine. The incidence of transient A-V blocks was 40% after injection of 100 μg in the RCA and was 15% after injection of 200 μg in the LCA. The duration of the plateau reached 12 ± 13 s after injection of 100 μg in the RCA and 21 ± 6 s after the injection of 200 μg in the LCA. A progressive prolongation of the time needed to return to baseline was observed. Hyperemic response after injection of 8 ml of contrast medium reached 65 ± 36% of that achieved after injection of 200 μg of adenosine. This wide-ranging, dose-response study indicates that an IC adenosine bolus injection of 100 μg in the RCA and 200 μg in the LCA induces maximum hyperemia while being associated with minimal side effects. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Marquardt, Torsten; Stange, Annette; Pecka, Michael; Grothe, Benedikt; McAlpine, David
2014-01-01
Recently, with the use of an amplitude-modulated binaural beat (AMBB), in which sound amplitude and interaural-phase difference (IPD) were modulated with a fixed mutual relationship (Dietz et al. 2013b), we demonstrated that the human auditory system uses interaural timing differences in the temporal fine structure of modulated sounds only during the rising portion of each modulation cycle. However, the degree to which peripheral or central mechanisms contribute to the observed strong dominance of the rising slope remains to be determined. Here, by recording responses of single neurons in the medial superior olive (MSO) of anesthetized gerbils and in the inferior colliculus (IC) of anesthetized guinea pigs to AMBBs, we report a correlation between the position within the amplitude-modulation (AM) cycle generating the maximum response rate and the position at which the instantaneous IPD dominates the total neural response. The IPD during the rising segment dominates the total response in 78% of MSO neurons and 69% of IC neurons, with responses of the remaining neurons predominantly coding the IPD around the modulation maximum. The observed diversity of dominance regions within the AM cycle, especially in the IC, and its comparison with the human behavioral data suggest that only the subpopulation of neurons with rising slope dominance codes the sound-source location in complex listening conditions. A comparison of two models to account for the data suggests that emphasis on IPDs during the rising slope of the AM cycle depends on adaptation processes occurring before binaural interaction. PMID:24554782
Martin, C E; McKee, J M; Schmitt, A K
1989-09-01
Past studies of the effects of varying levels of photosynthetic photon flux density (PPFD) on the morphology and physiology of the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides L. (Bromeliaceae) have resulted in two important findings: (1) CAM, measured as integrated nocturnal CO2 uptake or as nocturnal increases in tissue acidity, saturates at relatively low PPFD, and (2) this plant does not acclimate to different PPFD levels, these findings require substantiation using photosynthetic responses immediately attributable to different PPFD levels, e.g., O2 evolution, as opposed to the delayed, nocturnal responses (CO2 uptake and acid accumulation). In the present study, instantaneous responses of O2 evolution to PPFD level were measured using plants grown eight weeks at three PPFD (20-45, 200-350, and 750-800 μmol m(-2)s(-1)) in a growth chamber, and using shoots taken from the exposed upper portions (maximum PPFD of 800 μmol m(-2)s(-1)) and shaded lower portions (maximum PPFD of 140 μmol m(-2)s(-1)) of plants grown ten years in a greenhouse. In addition, nocturnal increases in acidity were measured in the growth chamber plants. Regardless of the PPFD levels during growth, O2 evolution rates saturated around 500 μmol m(-2)s(-1). Furthermore, nocturnal increases in tissue acidity saturated at much lower PPFD. Thus, previous results were confirmed: photosynthesis saturated at low PPFD, and this epiphyte does not acclimate to different levels of PPFD.
Diagnosis of Middle Atmosphere Climate Sensitivity by the Climate Feedback Response Analysis Method
NASA Technical Reports Server (NTRS)
Zhu, Xun; Yee, Jeng-Hwa; Cai, Ming; Swartz, William H.; Coy, Lawrence; Aquila, Valentina; Talaat, Elsayed R.
2014-01-01
We present a new method to diagnose the middle atmosphere climate sensitivity by extending the Climate Feedback-Response Analysis Method (CFRAM) for the coupled atmosphere-surface system to the middle atmosphere. The Middle atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves the CFRAM unique feature of an additive property for which the sum of all partial temperature changes due to variations in external forcing and feedback processes equals the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. MCFRAM is applied to both measurements and model output fields to diagnose the middle atmosphere climate sensitivity. It is found that the largest component of the middle atmosphere temperature response to the 11-year solar cycle (solar maximum vs. solar minimum) is directly from the partial temperature change due to the variation of the input solar flux. Increasing CO2 always cools the middle atmosphere with time whereas partial temperature change due to O3 variation could be either positive or negative. The partial temperature changes due to different feedbacks show distinctly different spatial patterns. The thermally driven globally averaged partial temperature change due to all radiative processes is approximately equal to the observed temperature change, ranging from 0.5 K near 70 km from the near solar maximum to the solar minimum.
Photoacclimatory Responses of Zostera marina in the Intertidal and Subtidal Zones.
Park, Sang Rul; Kim, Sangil; Kim, Young Kyun; Kang, Chang-Keun; Lee, Kun-Seop
2016-01-01
Photoacclimatory responses of the seagrass Zostera marina in the intertidal and subtidal zones were investigated by measuring chlorophyll a fluorescence parameters, photosynthetic pigments, leaf δ13C values, and shoot morphology in two bay systems. Intertidal plants had higher carotenoid concentrations than subtidal plants to avoid photodamage under excess light conditions during the day. The maximum relative electron transport rate (rETRmax) and minimum saturation irradiance (Ek) of the intertidal plants were higher than those of the subtidal plants, whereas photosynthetic efficiency (α) and maximum quantum yield (Fv/Fm) were higher in subtidal plants. The intertidal plants also had significantly greater Stern-Volmer non-photochemical quenching (NPQ) than that of the subtidal plants. These results suggest that the subtidal plants photoacclimated to use limited light more efficiently, and the intertidal plants exhibited photosynthetic responses to minimize photodamage at excess irradiance. The δ13C values of leaf tissues were more negative in the intertidal plants than those in the subtidal plants, suggesting that the intertidal plants used atmospheric or dissolved CO2 for photosynthesis during emersion. Effective quantum yield (ΔF/Fm´) in the intertidal plants decreased more slowly after emersion than that in the subtidal plants, indicating higher desiccation tolerance of the intertidal plants. The intertidal plants also recovered more rapidly from desiccation damage than the subtidal plants, suggesting photosynthetic adaptation to desiccation stress. The photosynthetic plasticity of Z. marina in response to variable environmental conditions most likely allows this species to occur in the intertidal and subtidal zones.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-10
... Change To Amend Rule 11.13 Regarding Maximum Permissible Response Time for Users of Order Delivery... maximum permissible response time to an inbound order. The current rule filing does not propose to change...
41 CFR 301-31.10 - How will my agency pay my subsistence expenses?
Code of Federal Regulations, 2011 CFR
2011-07-01
... maximum lodging amount applicable to the locality .75 times the maximum lodging amount applicable to the locality .5 times the maximum lodging amount applicable to the locality. Payment for lodging, meals, and other per diem expenses The maximum per diem rate applicable to the locality .75 times the maximum per...
Smith, Nicholas G; Dukes, Jeffrey S
2017-11-01
Leaf canopy carbon exchange processes, such as photosynthesis and respiration, are substantial components of the global carbon cycle. Climate models base their simulations of photosynthesis and respiration on an empirical understanding of the underlying biochemical processes, and the responses of those processes to environmental drivers. As such, data spanning large spatial scales are needed to evaluate and parameterize these models. Here, we present data on four important biochemical parameters defining leaf carbon exchange processes from 626 individuals of 98 species at 12 North and Central American sites spanning ~53° of latitude. The four parameters are the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport for the regeneration of Ribulose-1,5,-bisphosphate (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and leaf dark respiration (R d ). The raw net photosynthesis by intercellular CO 2 (A/C i ) data used to calculate V cmax , J max , and V pmax rates are also presented. Data were gathered on the same leaf of each individual (one leaf per individual), allowing for the examination of each parameter relative to others. Additionally, the data set contains a number of covariates for the plants measured. Covariate data include (1) leaf-level traits (leaf mass, leaf area, leaf nitrogen and carbon content, predawn leaf water potential), (2) plant-level traits (plant height for herbaceous individuals and diameter at breast height for trees), (3) soil moisture at the time of measurement, (4) air temperature from nearby weather stations for the day of measurement and each of the 90 d prior to measurement, and (5) climate data (growing season mean temperature, precipitation, photosynthetically active radiation, vapor pressure deficit, and aridity index). We hope that the data will be useful for obtaining greater understanding of the abiotic and biotic determinants of these important biochemical parameters and for evaluating and improving large-scale models of leaf carbon exchange. © 2017 by the Ecological Society of America.
High Strain Rate Response of 7055 Aluminum Alloy Subject to Square-spot Laser Shock Peening
NASA Astrophysics Data System (ADS)
Sun, Rujian; Zhu, Ying; Li, Liuhe; Guo, Wei; Peng, Peng
2017-12-01
The influences of laser pulse energy and impact time on high strain rate response of 7055 aluminum alloy subject to square-spot laser shock peening (SLSP) were investigate. Microstructural evolution was characterized by OM, SEM and TEM. Microhardness distribution and in-depth residual stress in 15 J with one and two impacts and 25 J with one and two impacts were analyzed. Results show that the original rolling structures were significantly refined due to laser shock induced recrystallization. High density of microdefects was generated, such as dislocation tangles, dislocation wall and stacking faults. Subgrains and nanograins were induced in the surface layer, resulting in grain refinement in the near surface layer after SLSP. Compressive residual stresses with maximum value of more than -200 MPa and affected depths of more than 1 mm can be generated after SLSP. Impact time has more effectiveness than laser pulse energy in increasing the magnitude of residual stress and achieving thicker hardening layer.
BWR Anticipated Transients Without Scram Leading to Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng L. Y.; Baek J.; Cuadra, A.
2013-11-10
Anticipated transients without scram (ATWS) in aboiling water reactor (BWR) were simulated in order to understand reactor response and determine the effectiveness of automatic and operator actions to mitigate this beyond-design-basis accident. The events of interest herein are initiated by a turbine trip when the reactor is operating in the expanded operating domainMELLLA+ [maximum extended load line limit plus]. In these events the reactor may initially be at up to 120% of the original licensed thermal power (OLTP) and at flow rates as low as 80% of rated.For these (and similar) ATWS events the concern isthat when the reactor powermore » decreases in response to a dual recirculation pump trip, the core will become unstable and large amplitude oscillations will begin. The occurrence of these power oscillations, if left unmitigated, may result in fuel damage, and the amplitude of the poweroscillations may hamper the effectiveness of the injection of dissolved neutron absorber through the standby liquid control system (SLCS).« less
Effects of Combinations of Substrates on Maximum Growth Rates of Several Rumen Bacteria
Russell, James B.; Delfino, Frank J.; Baldwin, R. L.
1979-01-01
Five rumen bacteria, Selenomonas ruminantium, Bacteroides ruminicola, Megasphaera elsdenii, Butyrivibrio fibrisolvens, and Streptococcus bovis were grown in media containing nonlimiting concentrations of glucose, sucrose, maltose, cellobiose, xylose and/or lactate. Each bacterium was grown with every substrate that it could ferment in every possible two-way combination. Only once did a combination of substrates result in a higher maximum growth rate than that observed with either substrate alone. Such stimulations of growth rate would be expected if specific factors unique to individual substrates (transport proteins and/or enzymes) were limiting. Since such synergisms were rare, it was concluded that more general factors limit maximum growth rates in these five bacteria. PMID:16345360
Yasukochi, Yoshiki; Satta, Yoko
2014-05-02
An extraordinary diversity of amino acid sequences in the peptide-binding region (PBR) of human leukocyte antigen [HLA; human major histocompatibility complex (MHC)] molecules has been maintained by balancing selection. The process of accumulation of amino acid diversity in the PBR for six HLA genes (HLA-A, B, C, DRB1, DQB1, and DPB1) shows that the number of amino acid substitutions in the PBR among alleles does not linearly correlate with the divergence time of alleles at the six HLA loci. At these loci, some pairs of alleles show significantly less nonsynonymous substitutions at the PBR than expected from the divergence time. The same phenomenon was observed not only in the HLA but also in the rat MHC. To identify the cause for this, DRB1 sequences, a representative case of a typical nonlinear pattern of substitutions, were examined. When the amino acid substitutions in the PBR were placed with maximum parsimony on a maximum likelihood tree based on the non-PBR substitutions, heterogeneous rates of nonsynonymous substitutions in the PBR were observed on several branches. A computer simulation supported the hypothesis that allelic pairs with low PBR substitution rates were responsible for the stagnation of accumulation of PBR nonsynonymous substitutions. From these observations, we conclude that the nonsynonymous substitution rate at the PBR sites is not constant among the allelic lineages. The deceleration of the rate may be caused by the coexistence of certain pathogens for a substantially long time during HLA evolution. Copyright © 2014 Yasukochi and Satta.
Sediment retention in a bottomland hardwood wetland in Eastern Arkansas
Kleiss, B.A.
1996-01-01
One of the often-stated functions of wetlands is their ability to remove sediments and other particulates from water, thus improving water quality in the adjacent aquatic system. However, actual rates of suspended sediment removal have rarely been measured in freshwater wetland systems. To address this issue, suspended sediment dynamics were measured in a 85-km2 bottomland hardwood (BLH) wetland adjacent to the highly turbid Cache River in eastern Arkansas during the 1988-1990 water years. A suspended sediment mass balance was calculated using depth-integrated, flow-weighted daily measurements at wetland inflow and outflow points. Over the three-year period, suspended sediment load decreased an average of 14% between upstream and downstream sampling points. To test the idea that the suspended sediments were retained by the adjacent wetland and to determine what portion of the BLH forest was most responsible for retaining the suspended sediments, concurrent measurements of sediment accretion were made at 30 sites in the wetland using feldspar clay marker horizons, sedimentation disks, the 137cesium method, and dendrogeomorphic techniques. Sedimentation rates exceeding 1 cm/yr were measured in frequently flooded areas dominated by Nyssa aquatica and Taxodium distichum. Maximum sedimentation rates did not occur on the natural levee, as would be predicted by classical fluvial geomorphology, but in the "first bottom," where retention time of the water reached a maximum. Multiple regression was used to relate sedimentation rates with several physical and biological factors. A combination of distance from the river, flood duration, and tree basal area accounted for nearly 90% of the variation in sedimentation rates.
Pasternack, Jordan B.; Howell, Roger W.
2012-01-01
The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy are generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Methods Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. Results The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/hr and a minimum dose rate of 0.01 cGy/hr. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/hr. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. Conclusion The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. PMID:23265668
Pasternack, Jordan B; Howell, Roger W
2013-02-01
The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy is generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/h and a minimum dose rate of 0.01 cGy/h. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/h. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. Copyright © 2013 Elsevier Inc. All rights reserved.
Grain refinement control in gas-shielded arc welding of aluminum tubing
NASA Technical Reports Server (NTRS)
Iceland, W. F.; Whiffen, E. L.
1974-01-01
When sections are being welded, operator varies pulse rate of power supply and simultaneously monitors signal on oscilloscope until rate is found which produces maximum arc gas voltage. Remainder of welding is performed with power supply set at this pulse rate, producing desired maximum weld puddle agitation and fine uniform weld of grain structure.
17 CFR 148.7 - Rulemaking on maximum rates for attorney fees.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Rulemaking on maximum rates for attorney fees. 148.7 Section 148.7 Commodity and Securities Exchanges COMMODITY FUTURES TRADING... attorney fees may be awarded at a rate higher than $75 per hour in some or all of the types of proceedings...
Haseli, Y
2016-05-01
The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate are compared for each of these engines. The results reveal that in an endoreversible heat engine, a reduction in entropy production corresponds to an increase in thermal efficiency. The three criteria of minimum entropy production, the maximum thermal efficiency, and the maximum power may become equivalent at the condition of fixed heat input.
Bogan, Richard K.; Roth, Thomas; Schwartz, Jonathan; Miloslavsky, Maja
2015-01-01
Study Objectives: This post hoc analysis evaluated the time to response that can be expected with sodium oxybate (SXB) for treatment of excessive daytime sleepiness (EDS) and cataplexy in patients with narcolepsy. Methods: Data were from a 4-week, double-blind, randomized, placebo-controlled trial (GHB-2; N = 136) of oral SXB 3 g, 6 g, and 9 g nightly, and its 12-month open-label extension (GHB-3). Two response definitions were utilized: ≥ 20% improvement in Epworth Sleepiness Scale (ESS) score (EDS responders), and ≥ 50% reduction in weekly cataplexy attacks (cataplexy responders). These thresholds were previously determined to be clinically relevant based on analysis of the relationship of Clinical Global Impression of Change with ESS and number of cataplexy attacks. Kaplan-Meier curves and median times to first response, based on above criteria, and to maximum response were estimated. Results: Among 86 patients randomized to SXB in GHB-2 and continued into GHB-3, 77.6% and 90.7% were EDS and cataplexy responders, respectively. The median (95% CI) times to first response were 37 (31–50) days for EDS and 25 (17–29) days for cataplexy, and median times to maximum response were 106 (85–164) days for EDS and 213 (94–279) days for cataplexy. GHB-3 results among 31 patients initially randomized to placebo were consistent with those treated with SXB throughout, but with longer times to maximum response. Conclusions: Response onset, assessed as clinically meaningful improvements in EDS and cataplexy, was observed in most patients within 2 months; a longer period is needed to achieve maximum response. Clinicians should recognize that time to initial and maximum response may take weeks to months. Citation: Bogan RK, Roth T, Schwartz J, Miloslavsky M. Time to response with sodium oxybate for the treatment of excessive daytime sleepiness and cataplexy in patients with narcolepsy. J Clin Sleep Med 2015;11(4):427–432. PMID:25580605
Evaluation of a pilot workload metric for simulated VTOL landing tasks
NASA Technical Reports Server (NTRS)
North, R. A.; Graffunder, K.
1979-01-01
A methodological approach to measuring workload was investigated for evaluation of new concepts in VTOL aircraft displays. Multivariate discriminant functions were formed from conventional flight performance and/or visual response variables to maximize detection of experimental differences. The flight performance variable discriminant showed maximum differentiation between crosswind conditions. The visual response measure discriminant maximized differences between fixed vs. motion base conditions and experimental displays. Physiological variables were used to attempt to predict the discriminant function values for each subject/condition/trial. The weights of the physiological variables in these equations showed agreement with previous studies. High muscle tension, light but irregular breathing patterns, and higher heart rate with low amplitude all produced higher scores on this scale and thus, represented higher workload levels.
A step-up test procedure to find the minimum effective dose.
Wang, Weizhen; Peng, Jianan
2015-01-01
It is of great interest to find the minimum effective dose (MED) in dose-response studies. A sequence of decreasing null hypotheses to find the MED is formulated under the assumption of nondecreasing dose response means. A step-up multiple test procedure that controls the familywise error rate (FWER) is constructed based on the maximum likelihood estimators for the monotone normal means. When the MED is equal to one, the proposed test is uniformly more powerful than Hsu and Berger's test (1999). Also, a simulation study shows a substantial power improvement for the proposed test over four competitors. Three R-codes are provided in Supplemental Materials for this article. Go to the publishers online edition of Journal of Biopharmaceutical Statistics to view the files.
Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid.
Cnaani, A; Zilberman, N; Tinman, S; Hulata, G; Ron, M
2004-09-01
We searched for genetic linkage between DNA markers and quantitative trait loci (QTLs) for innate immunity, response to stress, biochemical parameters of blood, and fish size in an F2 population derived from an interspecific tilapia hybrid (Oreochromis mossambicusx O. aureus). A family of 114 fish was scanned for 40 polymorphic microsatellite DNA markers and two polymorphic genes, covering approximately 80% of the tilapia genome. These fish had previously been phenotyped for seven immune-response traits and six blood parameters. Critical values for significance were P <0.05 with the false discovery rate (FDR) controlled at 40%. The genome-scan analysis resulted in 35 significant marker-trait associations, involving 26 markers in 16 linkage groups. In a second experiment, nine markers were re-sampled in a second family of 79 fish of the same species hybrid. Seven markers (GM180, GM553, MHC-I, UNH848, UNH868, UNH898 and UNH925) in five linkage groups (LG 1, 3, 4, 22 and 23) were associated with stress response traits. An additional six markers (GM47, GM552, UNH208, UNH881, UNH952, UNH998) in five linkage groups (LG 4, 16, 19, 20 and 23) were verified for their associations with immune response traits, by linkage to several different traits. The portion of variance explained by each QTL was 11% on average, with a maximum of 29%. The average additive effect of QTLs was 0.2 standard deviation units of stress response traits and fish size, with a maximum of 0.33. In three linkage groups (LG 1, 3 and 23) markers were associated with stress response, body weight and sex determination, confirming the location of QTLs reported by several other studies.
NASA Astrophysics Data System (ADS)
Whitehead, James Joshua
The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in visualization. The concept of Expanded-Durov diagrams was also adopted and adapted to this study to aid in visualization of uncertainty bounds. Regions of maximum regression rate and associated uncertainties were determined for each set of case scenarios. Application of response surface methodology coupled with probabilistic-based MCS allowed for flexible and comprehensive interrogation of mixture and operating design space during optimization cases. Analyses were also conducted to assess sensitivity of uncertainty to variations in key elemental uncertainty estimates. The methodology developed during this research provides an innovative optimization tool for future propulsion design efforts.
Time trends in minimum mortality temperatures in Castile-La Mancha (Central Spain): 1975-2003
NASA Astrophysics Data System (ADS)
Miron, Isidro J.; Criado-Alvarez, Juan José; Diaz, Julio; Linares, Cristina; Mayoral, Sheila; Montero, Juan Carlos
2008-03-01
The relationship between air temperature and human mortality is described as non-linear, with mortality tending to rise in response to increasingly hot or cold ambient temperatures from a given minimum mortality or optimal comfort temperature, which varies from some areas to others according to their climatic and socio-demographic characteristics. Changes in these characteristics within any specific region could modify this relationship. This study sought to examine the time trend in the maximum temperature of minimum organic-cause mortality in Castile-La Mancha, from 1975 to 2003. The analysis was performed by using daily series of maximum temperatures and organic-cause mortality rates grouped into three decades (1975-1984, 1985-1994, 1995-2003) to compare confidence intervals ( p < 0.05) obtained by estimating the 10-yearly mortality rates corresponding to the maximum temperatures of minimum mortality calculated for each decade. Temporal variations in the effects of cold and heat on mortality were ascertained by means of ARIMA models (Box-Jenkins) and cross-correlation functions (CCF) at seven lags. We observed a significant decrease in comfort temperature (from 34.2°C to 27.8°C) between the first two decades in the Province of Toledo, along with a growing number of significant lags in the summer CFF (1, 3 and 5, respectively). The fall in comfort temperature is attributable to the increase in the effects of heat on mortality, due, in all likelihood, to the percentage increase in the elderly population.
Ground Reaction Forces During Locomotion in Simulated Microgravity
NASA Technical Reports Server (NTRS)
Davis, B. L.; Cavanagh, Peter R.; Sommer, H. J., III; Wu, G.
1996-01-01
Significant losses in bone density and mineral, primarily in the lower extremities have been reported following exposure to weightlessness. Recent investigations suggest that mechanical influences such as bone deformation and strain rate may be critically important in stimulating new bone formation. It was hypothesized that velocity, cadence and harness design would significantly affect lower limb impact forces during treadmill exercise in simulated zero gravity (0G). A ground-based hypogravity simulator was used to investigate which factors affect limb loading during tethered treadmill exercise. A fractional factorial design was used and 12 subjects were studied. The results showed that running on active and passive treadmills in the simulator with a tethering force close to the maximum comfortable level produced similar magnitudes for the peak ground reaction force. It was also found that these maximum forces were significantly lower than those obtained during overground trials, even when the speeds of locomotion in the simulator were 66 % greater than those in 1 G. Cadence had no effect on any of the response variables. The maximum rate of force application (DFDT-Max) was similar for overground running and exercise in simulated 0G, provided that the "weightless subjects ran on a motorized treadmill. These findings have implications for the use of treadmill exercise as a countermeasure for hypokinetic osteoporosis. As the relationship between mechanical factors and osteogenesis becomes better understood, results from human experiments in 0G simulators will help to design in-flight exercise programs that are more closely targeted to generate appropriate mechanical stimuli.
NASA Technical Reports Server (NTRS)
Smetana, F. O.; Montoya, R. J.; Carden, R. K.
1972-01-01
The philosophy and detail design of an electro-mechanical actuator for Fowler-type wing flaps which have a response time constant of 0.025 seconds are described. A conventional electrical servomotor with a power rating twice the maximum power delivered to the load is employed along with adaptive, gain-scheduled feedback and various logic circuits, including one to remove electrical excitation from the motor during extended periods when no motion of the flap is desired.
Acute Physiological Responses to Strongman Training Compared to Traditional Strength Training.
Harris, Nigel K; Woulfe, Colm J; Wood, Matthew R; Dulson, Deborah K; Gluchowski, Ashley K; Keogh, Justin B
2016-05-01
Strongman training (ST) has become an increasingly popular modality, but data on physiological responses are limited. This study sought to determine physiological responses to an ST session compared to a traditional strength exercise training (RST) session. Ten healthy men (23.6 ± 27.5 years, 85.8 ± 10.3 kg) volunteered in a crossover design, where all participants performed an ST session, an RST session, and a resting session within 7 days apart. The ST consisted of sled drag, farmer's walk, 1 arm dumbbell clean and press, and tire flip at loads eliciting approximately 30 seconds of near maximal effort per set. The RST consisted of squat, deadlift, bench press, and power clean, progressing to 75% of 1 repetition maximum. Sessions were equated for approximate total set duration. Blood lactate and salivary testosterone were recorded immediately before and after training sessions. Heart rate, caloric expenditure, and substrate utilization were measured throughout the resting session, both training protocols and for 80 minutes after training sessions. Analyses were conducted to determine differences in physiological responses within and between protocols. No significant changes in testosterone occurred at any time point for either session. Lactate increased significantly immediately after both sessions. Heart rate, caloric expenditure, and substrate utilization were all elevated significantly during ST and RST. Heart rate and fat expenditure were significantly elevated compared to resting in both sessions' recovery periods; calorie and carbohydrate expenditures were not. Compared to RST, ST represents an equivalent physiological stimulus on key parameters indicative of potential training-induced adaptive responses. Such adaptations could conceivably include cardiovascular conditioning.
5 CFR 9701.312 - Maximum rates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Maximum rates. 9701.312 Section 9701.312 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES...
Enhanced oil recovery using flash-driven steamflooding
Roark, Steven D.
1990-01-01
The present invention is directed to a novel steamflooding process which utilizes three specific stages of steam injection for enhanced oil recovery. The three stages are as follows: As steam is being injected into an oil-bearing reservoir through an injection well, the production rate of a production well located at a distance from the injection well is gradually restricted to a point that the pressure in the reservoir increases at a predetermined rate to a predetermined maximum value. After the maximum pressure has been reached, the production rate is increased to a value such that the predetermined maximum pressure value is maintained. Production at maximum pressure is continued for a length of time that will be unique for each individual reservoir. In some cases, this step of the steamflooding process of the invention may be omitted entirely. In the third stage of the steamflooding process of the invention, production rates at the producing well are increased gradually to allow the pressure to decrease down from the maximum pressure value to the original pressure value at the producing well. The rate of pressure reduction will be unique for each reservoir. After completing stage three, the three stages can be repeated or the steamflood may be terminated as considered desirable.
Response of an algal consortium to diesel under varying culture conditions.
Chavan, Anal; Mukherji, Suparna
2010-03-01
A diesel-tolerant sessile freshwater algal consortium obtained from the vicinity of Powai Lake (Mumbai, India) was cultured in the laboratory. The presence of diesel in batch cultures enhanced the maximum specific growth rate of the algal consortium. With decrease in light-dark (L:D) cycle from 20:4 to 4:20 h, the chlorophyll-a levels decreased; however, the removal of diesel was found to be maximum at L:D of 18:6 h with 37.6% degradation over and above controls. In addition to growth in the form of green clumps, white floating biomass was found surrounding the diesel droplets on the surface. This culture predominated at the least L:D ratio of 4:20 h. Studies confirmed the ability of the floating organisms to grow heterotrophically in the dark utilizing diesel as carbon source and also in the presence of light in a medium devoid of organic carbon sources.
ERIC Educational Resources Information Center
Jones, Douglas H.
The progress of modern mental test theory depends very much on the techniques of maximum likelihood estimation, and many popular applications make use of likelihoods induced by logistic item response models. While, in reality, item responses are nonreplicate within a single examinee and the logistic models are only ideal, practitioners make…
Optimizing the well pumping rate and its distance from a stream
NASA Astrophysics Data System (ADS)
Abdel-Hafez, M. H.; Ogden, F. L.
2008-12-01
Both ground water and surface water are very important component of the water resources. Since they are coupled systems in riparian areas, management strategies that neglect interactions between them penalize senior surface water rights to the benefit of junior ground water rights holders in the prior appropriation rights system. Water rights managers face a problem in deciding which wells need to be shut down and when, in the case of depleted stream flow. A simulation model representing a combined hypothetical aquifer and stream has been developed using MODFLOW 2000 to capture parameter sensitivity, test management strategies and guide field data collection campaigns to support modeling. An optimization approach has been applied to optimize both the well distance from the stream and the maximum pumping rate that does not affect the stream discharge downstream the pumping wells. Conjunctive management can be modeled by coupling the numerical simulation model with the optimization techniques using the response matrix technique. The response matrix can be obtained by calculating the response coefficient for each well and stream. The main assumption of the response matrix technique is that the amount of water out of the stream to the aquifer is linearly proportional to the well pumping rate (Barlow et al. 2003). The results are presented in dimensionless form, which can be used by the water managers to solve conflicts between surface water and ground water holders by making the appropriate decision to choose which well need to be shut down first.
Modeling marrow damage from response data: Evolution from radiation biology to benzene toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.D.; Morris, M.D.; Hasan, J.S.
1996-12-01
Consensus principles from radiation biology were used to describe a generic set of nonlinear, first-order differential equations for modeling toxicity-induced compensatory cell kinetics in terms of sublethal injury, repair, direct killing, killing of cells with unrepaired sublethal injury, and repopulation. This cellular model was linked to a probit model of hematopoietic mortality that describes death from infection and/or hemorrhage between 5 and 30 days. Mortality data from 27 experiments with 851 dose-response groups, in which doses were protracted by rate and/or fractionation, were used to simultaneously estimate all rate constants by maximum-likelihood methods. Data used represented 18,940 test animals: 12,827more » mice, 2925 rats, 1676 sheep, 829 swine, 479 dogs, and 204 burros. Although a long-term, repopulating hematopoietic stem cell is ancestral to all lineages needed to restore normal homeostasis, the dose-response data from the protracted irradiations indicate clearly that the particular lineage that is critical to hematopoietic recovery does not resemble stemlike cells with regard to radiosensitivity and repopulation rates. Instead, the weakest link in the chain of hematopoiesis was found to have an intrinsic radioresistance equal to or greater than stromal cells and to repopulate at the same rates. Model validation has been achieved by predicting the LD50 and/or fractional group mortality in 38 protracted-dose experiments (rats and mice) that were not used in the fitting of model coefficients. 29 refs., 5 figs., 5 tabs.« less
Electroacupuncture most effectively elicits depressor and bradycardic responses at 1 Hz in humans.
Nakahara, Hidehiro; Kawada, Toru; Ueda, Shin-ya; Kawai, Eriko; Yamamoto, Hiromi; Sugimachi, Masaru; Miyamoto, Tadayoshi
2016-02-01
Acupuncture stimulation is known to act on the autonomic nervous system and elicits depressor and bradycardic effects. However, previous studies on humans did not conduct quantitative analyses on optimal acupuncture conditions such as the stimulation frequency and duration to achieve maximum depressor and bradycardic effects. The aim of the present study was to investigate the effects of varying stimulation frequencies of electroacupuncture on time-dependent changes in blood pressure and heart rate in humans. Twelve healthy volunteers participated in the study. An acupuncture needle was inserted at the Ximen acupoint (PC4 according to WHO nomenclature), located at the anterior aspect of the forearm. An electrical stimulation was delivered through the acupuncture needle at an intensity of 1 V, pulse width of 5 ms, and stimulation frequencies of 0.5, 1, 5, and 10 Hz in a random order. The duration of electroacupuncture was 6 min, during which blood pressure and heart rate responses were monitored. Group-averaged data indicated that 1-Hz electroacupuncture decreased blood pressure and heart rate. Blood pressure was significantly decreased from the prestimulation baseline value of 86.6 ± 2.9 to 81.4 ± 2.3 mmHg during 4-6 min of 1-Hz electroacupuncture (mean ± SE, P < 0.01). Heart rate was also significantly decreased (from 66.2 ± 2.0 to 62.7 ± 1.7 beats/min, P < 0.01). These results provide fundamental evidence that bradycardiac and depressor responses are effectively produced by electrical acupuncture in humans.
NASA Astrophysics Data System (ADS)
Li, Zhe; Xiao, Yan; Yang, Jixiang; Li, Chao; Gao, Xia; Guo, Jinsong
2017-11-01
Turbulent mixing, in particular on a small scale, affects the growth of microalgae by changing diffusive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under different turbulent mixing conditions. Aphanizomenon flos-aquae were cultivated in different stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s3 to 0.050 58 m2/s3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory effect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum effective quantum yield of PSII (the ratio of F v/ F m) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the diffusive sublayer, regulating the nutrient flux of cells.
Dinosaur Metabolism and the Allometry of Maximum Growth Rate
Myhrvold, Nathan P.
2016-01-01
The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. PMID:27828977
Dinosaur Metabolism and the Allometry of Maximum Growth Rate.
Myhrvold, Nathan P
2016-01-01
The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued.
Triphasic behavioral response of motor units to submaximal fatiguing exercise.
Dorfman, L J; Howard, J E; McGill, K C
1990-07-01
We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.
Karp, Jordan F.; Whyte, Ellen M.; Lenze, Eric J.; Dew, Mary A.; Begley, Amy; Miller, Mark D.; Reynolds, Charles F.
2010-01-01
Background Up to 50% of depressed older adults either do not adequately respond to or are unable to tolerate treatment with a serotonin-specific reuptake inhibitor. On the basis of previous experience with serotonin-norepinephrine reuptake inhibitors, we predicted at least a 50% response rate to open-label treatment with duloxetine in subjects who were resistant to treatment with the selective serotonin reuptake inhibitor (SSRI) escitalopram. Method Community-dwelling subjects aged 65 years or older with current nonpsychotic major depressive disorder as established by the Structured Clinical Interview for DSM-IV received escitalopram under protocolized conditions between April 2004 and September 2006. Subjects who failed to meet response criteria or relapsed after achieving an initial response were subsequently switched to open treatment with duloxetine up to 120 mg/day. Side effects were assessed at every visit. Results Subjects (N = 40) switched to duloxetine had a mean (SD) age of 74.4 (7.0) years and a baseline (before escitalopram) 17-item Hamilton Rating Scale for Depression (HAM-D-17) score of 20.0 (3.5) and were predominantly female (65.0%) and white (82.5%). The mean (SD) maximum dose of duloxetine was 93.0 (27.8) mg/day. Subjects received this maximum dose for a median duration of 6.9 weeks. Fifty percent of subjects (N = 20) met criteria for full response, 17.5% (N = 7) were partial responders, and 32.5% (N = 13) did not respond. The median time to response was 12.0 weeks (95% CI = 8.4 to 14.6). Five of the subjects (12.5%) discontinued duloxetine because of intolerable side effects. Discussion These open-label data suggest that duloxetine at doses up to 120 mg/day is a well-tolerated and potentially effective treatment for older adults who fail to respond to an adequate trial of an SSRI. These results are preliminary, and future controlled studies are required to test the efficacy of rescue pharmacotherapy with duloxetine. Trial Registration clinicaltrials.gov Identifier: NCT00177671 PMID:18251622
42 CFR 457.560 - Cumulative cost-sharing maximum.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 4 2010-10-01 2010-10-01 false Cumulative cost-sharing maximum. 457.560 Section... State Plan Requirements: Enrollee Financial Responsibilities § 457.560 Cumulative cost-sharing maximum... writing and orally if appropriate of their individual cumulative cost-sharing maximum amount at the time...
[Hydroxylamine conversion by anammox enrichment].
Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua
2010-04-01
Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway model presented by van de Graaf AA.
Long-term behavior of passively aerated compost methanotrophic biofilter columns.
Wilshusen, J H; Hettiaratchi, J P A; Stein, V B
2004-01-01
The methane oxidation potential of several types of compost methanotrophic biofilter columns were compared in the laboratory over a period of 220 days. The results indicate an increase in methanotrophic activity over a period of about 100 days, up to a maximum of 400 g m(-2) day(-1), and a gradual decline to about 100 g m(-2) day(-1) within the next 120 days. High methane oxidation rates appear to be restricted to a small area of the column, 10-15 cm thick. Based on the laboratory investigations carried out to determine the cause for the decline in methane oxidation rate, it was concluded that the formation of exopolymeric substances (EPS), at the zones of maximum methane oxidation, was responsible for this decline. In monitoring methane oxidation in a column for up to 600 days, it was observed that mixing of the medium after formation of EPS enabled the column to temporarily recover high performance. The results suggest that stable, homogenous compost, with a low C/N and low ammonium content, mixed on a regular basis, could achieve and maintain high methane oxidation efficiencies. Copyright 2004 Elsevier Ltd.
Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji
2016-02-22
In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.
Kinetics of heterotrophic biomass and storage mechanism in wetland cores measured by respirometry.
Ortigara, A R C; Foladori, P; Andreottola, G
2011-01-01
Although oxygen uptake rate has been widely used in activated sludge for measuring kinetic and stoichiometric parameters or for wastewater characterization, its application in constructed wetlands (CWs) cores has been recently proposed. The aim of this research is to estimate the kinetic and stoichiometric parameters of the heterotrophic biomass in CW cores. Respirometric tests were carried out with pure carbonaceous substrate and real wastewater. Endogenous respiration was about 2 gO2 m(-3) h(-1) (per unit of bed volume), while the kinetic parameters obtained for COD oxidation were very high (maximum rate per unit of bed volume of 10.7-26.8 gCOD m(-3) h(-1)) which indicates high biodegradation potential in fully aerobic environment. Regarding to stoichiometric parameter, the maximum growth yield, Y(H), was 0.56-0.59 mgCOD/mgCOD, while the storage yield, Y(STO), was 0.75-0.77 mgCOD/mgCOD. The storage mechanism was observed in CW cores during COD oxidation, which leads to the transformation of the external soluble substrate in internal storage products, probably as response to intermittent loads applied in CW systems, transient concentrations of readily biodegradable substrate and alternance of feast/famine periods.
Climate change and the northern Russian treeline zone.
MacDonald, G M; Kremenetski, K V; Beilman, D W
2008-07-12
The Russian treeline is a dynamic ecotone typified by steep gradients in summer temperature and regionally variable gradients in albedo and heat flux. The location of the treeline is largely controlled by summer temperatures and growing season length. Temperatures have responded strongly to twentieth-century global warming and will display a magnified response to future warming. Dendroecological studies indicate enhanced conifer recruitment during the twentieth century. However, conifers have not yet recolonized many areas where trees were present during the Medieval Warm period (ca AD 800-1,300) or the Holocene Thermal Maximum (HTM; ca 10,000-3,000 years ago). Reconstruction of tree distributions during the HTM suggests that the future position of the treeline due to global warming may approximate its former Holocene maximum position. An increased dominance of evergreen tree species in the northern Siberian forests may be an important difference between past and future conditions. Based on the slow rates of treeline expansion observed during the twentieth century, the presence of steep climatic gradients associated with the current Arctic coastline and the prevalence of organic soils, it is possible that rates of treeline expansion will be regionally variable and transient forest communities with species abundances different from today's may develop.
CFD-Based Design Optimization for Single Element Rocket Injector
NASA Technical Reports Server (NTRS)
Vaidyanathan, Rajkumar; Tucker, Kevin; Papila, Nilay; Shyy, Wei
2003-01-01
To develop future Reusable Launch Vehicle concepts, we have conducted design optimization for a single element rocket injector, with overall goals of improving reliability and performance while reducing cost. Computational solutions based on the Navier-Stokes equations, finite rate chemistry, and the k-E turbulence closure are generated with design of experiment techniques, and the response surface method is employed as the optimization tool. The design considerations are guided by four design objectives motivated by the consideration in both performance and life, namely, the maximum temperature on the oxidizer post tip, the maximum temperature on the injector face, the adiabatic wall temperature, and the length of the combustion zone. Four design variables are selected, namely, H2 flow angle, H2 and O2 flow areas with fixed flow rates, and O2 post tip thickness. In addition to establishing optimum designs by varying emphasis on the individual objectives, better insight into the interplay between design variables and their impact on the design objectives is gained. The investigation indicates that improvement in performance or life comes at the cost of the other. Best compromise is obtained when improvements in both performance and life are given equal importance.
Ziegler, David S.; Cohn, Richard J.; McCowage, Geoffrey; Alvaro, Frank; Oswald, Cecilia; Mrongovius, Robert; White, Les
2006-01-01
The objective of this study was to assess the efficacy of the VETOPEC regimen, a regimen of vincristine and etoposide with escalating doses of cyclophosphamide (CPA), in pediatric patients with high-risk brain tumors. Three consecutive studies by the Australia and New Zealand Children’s Cancer Study Group—VETOPEC I, Baby Brain 91, and VETOPEC II—have used a specific chemotherapy regimen of vincristine (VCR), etoposide (VP-16) and escalating CPA in patients with relapsed, refractory, or high-risk solid tumors. Patients in the VETOPEC II cohort were treated with very high dose CPA with peripheral blood stem cell (PBSC) rescue. We analyzed the subset of patients with high-risk brain tumors treated with these intensive VETOPEC-based protocols to assess the response, toxicity, and survival. We also assessed whether the use of very high dose chemotherapy with stem cell rescue improved the response rate or affected toxicity. Seventy-one brain tumor patients were treated with VETOPEC-based protocols. Of the 54 patients evaluable for tumor response, 17 had a complete response (CR) and 20 a partial response (PR) to treatment, which yielded an overall response rate of 69%. The CR + PR was 83% (19/23) for medulloblastomas, 56% (5/9) for primitive neuroectodermal tumors, 55% (6/11) for grade 3 and 4 astrocytomas, and 80% (6/8) for ependymomas. At a median follow-up of 36 months, overall survival for the entire cohort of 71 patients was 32%, with event-free survival of 13%. There were no toxic deaths within the PBSC-supported VETOPEC II cohort, despite higher CPA doses, compared with 7% among the non-PBSC patients. This regimen produces high response rates in a variety of very poor prognosis pediatric brain tumors. The maximum tolerated dose of CPA was not reached. Higher escalation in doses of CPA did not deliver a further improvement in response. With PBSC rescue in the VETOPEC II study, hematologic toxicity was no longer a limiting factor. The response rates observed support further development of this chemotherapy regimen. PMID:16443948
Relaxation of a High-Energy Quasiparticle in a One-Dimensional Bose Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Shina; Glazman, Leonid I.; Pustilnik, Michael
2010-08-27
We evaluate the relaxation rate of high-energy quasiparticles in a weakly interacting one-dimensional Bose gas. Unlike in higher dimensions, the rate is a nonmonotonic function of temperature, with a maximum at the crossover to the state of suppressed density fluctuations. At the maximum, the relaxation rate may significantly exceed its zero-temperature value. We also find the dependence of the differential inelastic scattering rate on the transferred energy. This rate yields information about temperature dependence of local pair correlations.
Design of a Slowed-Rotor Compound Helicopter for Future Joint Service Missions
2010-01-01
achieves a 208kt top speed at engine MCP and 11,000ft/ISA while having 216hp/ton installed power, based on engine MRP and MTOW. Figure 33...Intermediate rated power ISA International Standard Atmosphere MCP Maximum continuous power MRP Maximum rated power MTOW Maximum Takeoff Weight NDARC...NASA Design and Analysis of Rotorcraft SFC Specific fuel consumption SRC Slowed-Rotor Compound Symbols σ Rotor solidity (geometric) CD Drag
Gastin, Paul B; Meyer, Denny; Robinson, Dean
2013-09-01
Perceptions of wellness are often used by athletes and coaches to assess adaptive responses to training. The purpose of this research was to describe how players were coping with the demands of elite level Australian football over a competitive season using subjective ratings of physical and psychological wellness and to assess the ecological validity of such a monitoring approach. Twenty-seven players completed ratings for 9 items (fatigue, general muscle, hamstring, quadriceps, pain/stiffness, power, sleep quality, stress, well-being). Players subjectively rated each item as they arrived at the training or competition venue on a 1-5 visual analog scale, with 1 representing the positive end of the continuum. A total of 2,583 questionnaires were analyzed from completions on 183 days throughout the season (92 ± 24 per player, 103 ± 20 per week; mean ± SD). Descriptive statistics and multilevel modelling were used to understand how player ratings of wellness varied over the season and during the week leading into game day and whether selected player characteristics moderated these relationships. Results indicated that subjective ratings of physical and psychological wellness were sensitive to weekly training manipulations (i.e., improve steadily throughout the week to a game day low, p < 0.001), to periods of unloading during the season (i.e., a week of no competition, p < 0.05) and to individual player characteristics (e.g., muscle strain after a game was poorer in players with high maximum speed, p < 0.01). It is concluded that self-reported player ratings of wellness provide a useful tool for coaches and practitioners to monitor player responses to the rigorous demands of training, competition, and life as a professional athlete.
Delayed hypersensitivity and neutrophil chemotaxis: effect of trauma.
Meakins, J L; McLean, A P; Kelly, R; Bubenik, O; Pietsch, J B; MacLean, L D
1978-04-01
To investigate alterations in host defense produced by trauma, skin testing with five standard recall antigens was done on admission and weekly on 53 patients with blunt trauma and seven with penetrating missile injuries, who then were classified as normal (N), 2 or more positive responses; relatively anergic (RA), one positive response; or anergic (A), no response. Neutrophil chemotaxis was tested 145 times in 32 patients. Degree of injury was assessed by assigning one point to pelvic fracture, long-bone fracture, head, chest, or abdominal injury, to a maximum of five. The A and RA patients had greater trauma, 3 vs. 1.6 for N, and a significantly increased rate of sepsis (p less than 0.005) and mortality (p less than 0.05). Incidence of anergy depended upon age and extent of trauma. Neutrophil chemotaxis in A and RA patients was significantly (p less than 0.001) worse at 96.7 +/- 2.4 mu and 99.8 +/- 1.7 mu compared to N, 113.2 +/- 1.7 mu, and controls 121 +/- 4 mu. With recovery, chemotaxis returned to normal. It is concluded that failure of delayed hypersensitivity responses follows trauma, is related to the severity of injury and age of patient, and is associated with an abnormality of neutrophil chemotaxis and increased rate of sepsis.
Vestibular afferent responses to linear accelerations in the alert squirrel monkey
NASA Technical Reports Server (NTRS)
Somps, Christopher J.; Schor, Robert H.; Tomko, David L.
1994-01-01
The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.
Benelli, Piero; Colasanti, Franca; Ditroilo, Massimiliano; Cuesta-Vargas, Antonio; Gatta, Giorgio; Giacomini, Francesco; Lucertini, Francesco
2014-01-01
Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64-76% of peak VO2 and 71-90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the "vigorous" range of exercise intensity, at any of the step frequencies used in this study.
Nishikawa, A; Yoshizato, K
1986-02-01
Epidermal cells were dissociated from tails of the bullfrog tadpole, Rana catesbeiana, and cultured to investigate their response to steroid and thyroid hormones. Charcoal-treated serum (CTS) was used in the growth medium when cells were to be grown in the absence of steroid and thyroid hormones. The cells could be maintained for 2 weeks with a small increase in cell number in medium that contained CTS (CTS medium). Addition of cortisol to CTS medium increased both cellular attachment to the culture dishes and the proliferation of the attached cells with an optimum concentration of 5 X 10(-7) M. The cells remained viable and attached for at least a week. Cortisol stimulated the rate of protein synthesis 1.8-fold but did not alter the rate of DNA synthesis. The cells did not proliferate in the medium containing triiodothyronine (T3) and detached themselves from the dish within 5 days, which occurred in a dose-dependent manner with a maximum effect at 10(-8) M. It drastically decreased the rate of DNA synthesis but did not influence the rate of protein synthesis. These responses of cells to cortisol and T3 may reflect growth and death of tail epidermal cells in vivo at metamorphosis.
Rossi, Sergio; Deslauriers, Annie; Anfodillo, Tommaso; Morin, Hubert; Saracino, Antonio; Motta, Renzo; Borghetti, Marco
2006-01-01
Intra-annual radial growth rates and durations in trees are reported to differ greatly in relation to species, site and environmental conditions. However, very similar dynamics of cambial activity and wood formation are observed in temperate and boreal zones. Here, we compared weekly xylem cell production and variation in stem circumference in the main northern hemisphere conifer species (genera Picea, Pinus, Abies and Larix) from 1996 to 2003. Dynamics of radial growth were modeled with a Gompertz function, defining the upper asymptote (A), x-axis placement (beta) and rate of change (kappa). A strong linear relationship was found between the constants beta and kappa for both types of analysis. The slope of the linear regression, which corresponds to the time at which maximum growth rate occurred, appeared to converge towards the summer solstice. The maximum growth rate occurred around the time of maximum day length, and not during the warmest period of the year as previously suggested. The achievements of photoperiod could act as a growth constraint or a limit after which the rate of tree-ring formation tends to decrease, thus allowing plants to safely complete secondary cell wall lignification before winter.
Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G; Grieco, John P; Achee, Nicole L
2013-01-01
Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human-vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown and will depend on rate of biting on human hosts prior to house exiting.
Soyer, Ozlem Mutluay; Baran, Bulent; Ormeci, Aslı Ciftcibasi; Gokturk, Suut; Aydın, Esra; Onel, Derya; Gulluoglu, Mine; Karaca, Cetin; Akyuz, Filiz; Demir, Kadir; Besisik, Fatih; Kaymakoglu, Sabahattin
2016-05-01
Interferon (IFN) therapy is associated with low rates of treatment success and high rates of recurrence in hepatitis D virus (HDV) infection. Several strategies to increase efficacy, including extending the treatment duration, have been tested. This study aimed to compare treatment outcomes between patients receiving 12 months vs. longer courses of interferon therapy for chronic delta hepatitis (CDH). Data from CDH patients receiving standard or pegylated IFN therapy were retrospectively evaluated. Patients were divided into two groups: group I received ≤12 months of therapy and group II received >12 months (maximum: 24 months) of therapy. Viral response at the end of treatment (EOT-VR), post-treatment week 24 viral response (PTW24- VR) and viral response after long-term follow-up (LTFU-VR) were compared. Parameters affecting virologic response were investigated. Sixty-five patients, 14 in group I and 51 in group II, were included. The EOT-VRs were 21% and 45% (p > 0.05), and the PTW24-VRs were 7% and 41% (p = 0.02), respectively. Recurrence rates were 66% and 17% in Groups I and II, respectively. The LTFU-VRs were 7% and 37%, respectively (p = 0.04). The HDV RNA at week 24 of treatment was the only parameter significantly affecting the PTW24-VR (odds ratio: 71.2; 95% CI: 3.7-1353, p = 0.005). PTW24-VR was achieved in 68% and 5% of patients with negative and positive HDV RNA, respectively, at week 24 of treatment (p < 0.01). IFN treatment for up to 24 months may increase the virologic response rate for CDH. HDV RNA negativity at week 24 of treatment was a significant predictor of virologic response.
Sulter, A M; Wit, H P
1996-11-01
Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity conditions. The glottal volume velocity waveforms were obtained by inverse filtering the oral flow. Glottal volume velocity waveforms were parameterized with flow-based (minimum flow, ac flow, average flow, maximum flow declination rate) and time-based parameters (closed quotient, closing quotient, speed quotient), as well as with derived parameters (vocal efficiency and glottal resistance). Higher sound-pressure levels, intra-oral pressures, and flow-parameter values (ac flow, maximum flow declination rate) were observed, when compared with previous investigations. These higher values might be the result of the specific phonation tasks (stressed /ae/ vowel in a word and a sentence) or filtering processes. Few statistically significant (p < 0.01) differences in parameters were found between untrained and trained subjects [the maximum flow declination rate and the closing quotient were higher in trained women (p < 0.001), and the speed quotient was higher in trained men (p < 0.005)]. Several statistically significant parameter differences were found between men and women [minimum flow, ac flow, average flow, maximum flow declination rate, closing quotient, glottal resistance (p < 0.001), and closed quotient (p < 0.005)]. Significant effects of intensity condition were observed on ac flow, maximum flow declination rate, closing quotient, and vocal efficiency in women (p < 0.005), and on minimum flow, ac flow, average flow, maximum flow declination rate, closed quotient, and vocal efficiency in men (p < 0.01).
Finite mixture model: A maximum likelihood estimation approach on time series data
NASA Astrophysics Data System (ADS)
Yen, Phoong Seuk; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad
2014-09-01
Recently, statistician emphasized on the fitting of finite mixture model by using maximum likelihood estimation as it provides asymptotic properties. In addition, it shows consistency properties as the sample sizes increases to infinity. This illustrated that maximum likelihood estimation is an unbiased estimator. Moreover, the estimate parameters obtained from the application of maximum likelihood estimation have smallest variance as compared to others statistical method as the sample sizes increases. Thus, maximum likelihood estimation is adopted in this paper to fit the two-component mixture model in order to explore the relationship between rubber price and exchange rate for Malaysia, Thailand, Philippines and Indonesia. Results described that there is a negative effect among rubber price and exchange rate for all selected countries.
Modeling the initial mechanical response and yielding behavior of gelled crude oil
NASA Astrophysics Data System (ADS)
Lei, Chen; Gang, Liu; Xingguo, Lu; Minghai, Xu; Yuannan, Tang
2018-05-01
The initial mechanical response and yielding behavior of gelled crude oil under constant shear rate conditions were investigated. By putting the Maxwell mechanical analog and a special dashpot in parallel, a quasi-Jeffreys model was obtained. The kinetic equation of the structural parameter in the Houska model was simplified reasonably so that a simplified constitutive equation of the special dashpot was expressed. By introducing a damage factor into the constitutive equation of the special dashpot and the Maxwell mechanical analog, we established a constitutive equation of the quasi-Jeffreys model. Rheological tests of gelled crude oil were conducted by imposing constant shear rates and the relationship between the shear stress and shear strain under different shear rates was plotted. It is found that the constitutive equation can fit the experimental data well under a wide range of shear rates. Based on the fitted parameters in the quasi-Jeffreys model, the shear stress changing rules of the Maxwell mechanical analog and the special dashpot were calculated and analyzed. It is found that the critical yield strain and the corresponding shear strain where shear stress of the Maxwell analog is the maximum change slightly under different shear rates. And then a critical damage softening strain which is irrelevant to the shearing conditions was put forward to describe the yielding behavior of gelled crude oil.
Ning, Na; Wen, Yinyuan; Dong, Shuqi; Yin, Meiqiang; Guo, Meijun; Wang, Binqiang; Feng, Lei; Guo, Pingyi
2014-01-01
Radix Isatidis (Isatis indigotica Fort.) is one of the most important traditional Chinese medicine plants. However, there is no suitable herbicide used for weed control in Radix Isatidis field during postemergence stage. To explore the safety of sulfonylurea herbicide nicosulfuron on Radix Isatidis (Isatis indigotica Fort.) seedlings and the photosynthetic physiological response of the plant to the herbicide, biological mass, leaf area, photosynthetic pigment content, photosynthetic rate, chlorophyll fluorescence characteristics, and P700 parameters of Radix Isatidis seedlings were analyzed 10 d after nicosulfuron treatment at 5th leaf stage in this greenhouse research. The results showed that biological mass, total chlorophyll, chlorophyll a, and carotenoids content, photosynthetic rate, stomatal conductance, PS II maximum quantum yield, PS II effective quantum yield, PS II electron transport rate, photochemical quenching, maximal P700 change, photochemical quantum yield of PS I, and PS I electron transport rate decreased with increasing herbicide concentrations, whereas initial fluorescence, quantum yield of non-regulated energy dissipation in PS II and quantum yield of non-photochemical energy dissipation due to acceptor side limitation in PS I increased. It suggests that nicosulfuron ≥1 mg L−1 causes the damage of chloroplast, PS II and PS I structure. Electron transport limitations in PS I receptor side, and blocked dark reaction process may be the main cause of the significantly inhibited growth and decreased photosynthetic rate of Radix Isatidis seedlings. PMID:25165819
Adoptive Cell Therapy for the Treatment of Patients with Metastatic Melanoma
Rosenberg, Steven A.; Dudley, Mark E.
2012-01-01
Adoptive cell therapy (ACT) is the best available treatment for patients with metastatic melanoma. In a recent series of three consecutive clinical trials using increasing lymphodepletion prior to infusion of autologous tumor infiltrating lymphocytes (TIL), objective response rates between 49% and 72% were seen. Persistence of infused cells in the circulation at one month was highly correlated with anti-tumor response as was the mean telomere length of the cells infused and the number of CD8+ CD27+ cells infused. Responses occur at all sites and appear to be durable with many patients in ongoing response beyond three years. In the most recent trial of 25 patients receiving maximum lymphodepletion, seven of the 25 patients (28%) achieved a complete response. Of the 12 patients in the three trials who achieved a complete response all but one are ongong between 18 and 75 months. We recently demonstrated that ACT using autologous lymphocytes genetically modified to express anti-tumor T cell receptors can mediate tumor regression and this approach is now being applied to patients with common epithelial cancers. PMID:19304471
Coherence resonance in low-density jets
NASA Astrophysics Data System (ADS)
Zhu, Yuanhang; Gupta, Vikrant; Li, Larry K. B.
2017-11-01
Coherence resonance is a phenomenon in which the response of a stable nonlinear system to noise exhibits a peak in coherence at an intermediate noise amplitude. We report the first experimental evidence of coherence resonance in a purely hydrodynamic system, a low-density jet whose variants can be found in many natural and engineering systems. This evidence comprises four parts: (i) the jet's response amplitude increases as the Reynolds number approaches the instability boundary under a constant noise amplitude; (ii) as the noise amplitude increases, the amplitude distribution of the jet response first becomes unimodal, then bimodal, and finally unimodal again; (iii) a distinct peak emerges in the coherence factor at an intermediate noise amplitude; and (iv) for a subcritical Hopf bifurcation, the decay rate of the autocorrelation function exhibits a maximum at an intermediate noise amplitude, but for a supercritical Hopf bifurcation, the decay rate decreases monotonically with increasing noise amplitude. It is clear that coherence resonance can provide valuable information about a system's nonlinearity even in the unconditionally stable regime, opening up new possibilities for its use in system identification and flow control. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
Physiological demands of women's rugby union: time-motion analysis and heart rate response.
Virr, Jody Lynn; Game, Alex; Bell, Gordon John; Syrotuik, Daniel
2014-01-01
The aim of this study was to determine the physical demands of women's rugby union match play using time-motion analysis and heart rate (HR) response. Thirty-eight premier club level female rugby players, ages 18-34 years were videotaped and HRs monitored for a full match. Performances were coded into 12 different movement categories: 5 speeds of locomotion (standing, walking, jogging, striding, sprinting), 4 forms of intensive non-running exertion (ruck/maul/tackle, pack down, scrum, lift) and 3 discrete activities (kick, jump, open field tackle). The main results revealed that backs spend significantly more time sprinting and walking whereas forwards spend more time in intensive non-running exertion and jogging. Forwards also had a significantly higher total work frequency compared to the backs, but a higher total rest frequency compared to the backs. In terms of HR responses, forwards displayed higher mean HRs throughout the match and more time above 80% of their maximum HR than backs. In summary, women's rugby union is characterised by intermittent bursts of high-intensity activity, where forwards and backs have similar anaerobic energy demands, but different specific match demands.
Fonseca, E; Cruz, J J; Rodríguez, C A; Gómez-Bernal, A; Martín, G; Sánchez, P; Nieto, A; Soria, P; Vega, M J; Muñoz, A; Pardal, J L
1996-01-01
Cisplatin-based induction chemotherapy has been extensively tested in nasopharyngeal carcinoma for the improvement of local and systemic control and survival of this disease. In this study, we report the results of the treatment with induction chemotherapy in 40 patients with locally advanced carcinoma of the nasopharynx (LANPC) with four courses of cisplatin (P) 25 mg/m2 per day and 5-fluorouracil (F) 1000 mg/m2 per day both in a 4-days continuous infusion, with or without leucovorin (L) 250 mg/m2 per day in 2-hour infusion at the beginning of daily administration of PF, followed by sequential radiotherapy. All except one were in stage IV. The overall response after induction chemotherapy was 93%, with 55% CR and 38% PR. Definitive overall response after radiotherapy was 98%, with 80% CR and 18% PR. At a maximum follow up of 11 years, the overall survival rate is 55%. Induction chemotherapy with continuous infusion of PF with or without leucovorin followed by radiotherapy is a highly active regimen for the treatment of locally advanced nasopharyngeal carcinoma with response and survival rates comparable to other combinations of sequential or simultaneous chemotherapy and radiotherapy.
14 CFR 25.331 - Symmetric maneuvering conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Where sudden displacement of a control is specified, the assumed rate of control surface displacement... torque or maximum rate obtainable by a power control system.) (1) Maximum pitch control displacement at V..., whichever occurs first, need not be considered. (2) Specified control displacement. A checked maneuver...
Interpretation of psychophysics response curves using statistical physics.
Knani, S; Khalfaoui, M; Hachicha, M A; Mathlouthi, M; Ben Lamine, A
2014-05-15
Experimental gustatory curves have been fitted for four sugars (sucrose, fructose, glucose and maltitol), using a double layer adsorption model. Three parameters of the model are fitted, namely the number of molecules per site n, the maximum response RM and the concentration at half saturation C1/2. The behaviours of these parameters are discussed in relationship to each molecule's characteristics. Starting from the double layer adsorption model, we determined (in addition) the adsorption energy of each molecule on taste receptor sites. The use of the threshold expression allowed us to gain information about the adsorption occupation rate of a receptor site which fires a minimal response at a gustatory nerve. Finally, by means of this model we could calculate the configurational entropy of the adsorption system, which can describe the order and disorder of the adsorbent surface. Copyright © 2013 Elsevier Ltd. All rights reserved.
Maintenance therapy in colon cancer.
Giuliani, F; De Vita, F; Colucci, G; Pisconti, S
2010-11-01
In the last decade dramatic improvements have been obtained in the treatment of metastatic colorectal cancer. Thanks to the introduction in the clinical practice of new drugs such as Irinotecan and Oxaliplatin, and modern biological drugs such as Bevacizumab and Cetuximab, the response rate, progression-free and overall survival are about 50-60%, 9-11 and 20-24 months respectively. Despite this progress, many questions remain unsolved especially those related to the optimal duration of treatment and the role of maintenance therapy. To treat until progression (or unacceptable toxicity) is the classical way but in the common clinical practice is frequent to perform an induction therapy (until the maximum response is obtained) followed by a complete stop and restart on progression, or by a maintenance without the drug/s responsible of the major cumulative toxicities. The following report focus on the role of different strategies respect to the classic "treatment until progression". Copyright © 2010 Elsevier Ltd. All rights reserved.
Lee, Daniel W; Kochenderfer, James N; Stetler-Stevenson, Maryalice; Cui, Yongzhi K; Delbrook, Cindy; Feldman, Steven A; Fry, Terry J; Orentas, Rimas; Sabatino, Marianna; Shah, Nirali N; Steinberg, Seth M; Stroncek, Dave; Tschernia, Nick; Yuan, Constance; Zhang, Hua; Zhang, Ling; Rosenberg, Steven A; Wayne, Alan S; Mackall, Crystal L
2015-02-07
Chimeric antigen receptor (CAR) modified T cells targeting CD19 have shown activity in case series of patients with acute and chronic lymphocytic leukaemia and B-cell lymphomas, but feasibility, toxicity, and response rates of consecutively enrolled patients treated with a consistent regimen and assessed on an intention-to-treat basis have not been reported. We aimed to define feasibility, toxicity, maximum tolerated dose, response rate, and biological correlates of response in children and young adults with refractory B-cell malignancies treated with CD19-CAR T cells. This phase 1, dose-escalation trial consecutively enrolled children and young adults (aged 1-30 years) with relapsed or refractory acute lymphoblastic leukaemia or non-Hodgkin lymphoma. Autologous T cells were engineered via an 11-day manufacturing process to express a CD19-CAR incorporating an anti-CD19 single-chain variable fragment plus TCR zeta and CD28 signalling domains. All patients received fludarabine and cyclophosphamide before a single infusion of CD19-CAR T cells. Using a standard 3 + 3 design to establish the maximum tolerated dose, patients received either 1 × 10(6) CAR-transduced T cells per kg (dose 1), 3 × 10(6) CAR-transduced T cells per kg (dose 2), or the entire CAR T-cell product if sufficient numbers of cells to meet the assigned dose were not generated. After the dose-escalation phase, an expansion cohort was treated at the maximum tolerated dose. The trial is registered with ClinicalTrials.gov, number NCT01593696. Between July 2, 2012, and June 20, 2014, 21 patients (including eight who had previously undergone allogeneic haematopoietic stem-cell transplantation) were enrolled and infused with CD19-CAR T cells. 19 received the prescribed dose of CD19-CAR T cells, whereas the assigned dose concentration could not be generated for two patients (90% feasible). All patients enrolled were assessed for response. The maximum tolerated dose was defined as 1 × 10(6) CD19-CAR T cells per kg. All toxicities were fully reversible, with the most severe being grade 4 cytokine release syndrome that occurred in three (14%) of 21 patients (95% CI 3·0-36·3). The most common non-haematological grade 3 adverse events were fever (nine [43%] of 21 patients), hypokalaemia (nine [43%] of 21 patients), fever and neutropenia (eight [38%] of 21 patients), and cytokine release syndrome (three [14%) of 21 patients). CD19-CAR T cell therapy is feasible, safe, and mediates potent anti-leukaemic activity in children and young adults with chemotherapy-resistant B-precursor acute lymphoblastic leukaemia. All toxicities were reversible and prolonged B-cell aplasia did not occur. National Institutes of Health Intramural funds and St Baldrick's Foundation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses.
Meysman, Filip J R; Bruers, Stijn
2010-05-12
The idea that entropy production puts a constraint on ecosystem functioning is quite popular in ecological thermodynamics. Yet, until now, such claims have received little quantitative verification. Here, we examine three 'entropy production' hypotheses that have been forwarded in the past. The first states that increased entropy production serves as a fingerprint of living systems. The other two hypotheses invoke stronger constraints. The state selection hypothesis states that when a system can attain multiple steady states, the stable state will show the highest entropy production rate. The gradient response principle requires that when the thermodynamic gradient increases, the system's new stable state should always be accompanied by a higher entropy production rate. We test these three hypotheses by applying them to a set of conventional food web models. Each time, we calculate the entropy production rate associated with the stable state of the ecosystem. This analysis shows that the first hypothesis holds for all the food webs tested: the living state shows always an increased entropy production over the abiotic state. In contrast, the state selection and gradient response hypotheses break down when the food web incorporates more than one trophic level, indicating that they are not generally valid.
Increased conditioned pain modulation in athletes.
Flood, Andrew; Waddington, Gordon; Thompson, Kevin; Cathcart, Stuart
2017-06-01
The potential relationship between physical activity and endogenous pain modulatory capacity remains unclear. Therefore, the aim of the current study was to compare the pain modulatory responses of athletes and non-athletes. Conditioned pain modulation (CPM) was assessed in 15 athletes and 15 non-athletes at rest. Participation was restricted to pain-free males between 18 and 40 years of age. To measure CPM capacity, a sequential CPM testing protocol was implemented, whereby a test stimulus (pressure pain threshold [PPT]) was presented before and immediately after a conditioning stimulus (4-min cold-pressor test). Pain intensity ratings were obtained at 15-s intervals throughout the cold-pressor task using a numerical rating scale. Athletes demonstrated higher baseline PPTs compared to non-athletes (P = .03). Athletes also gave lower mean (P < .001) and maximum (P < .001) pain intensity ratings in response to the conditioning stimulus. The conditioning stimulus had a stronger inhibitory effect on the test stimulus in athletes, showing enhanced CPM in athletes compared to non-athletes (P < .05). This finding of enhanced CPM in athletes helps clarify previous mixed findings. Potential implications for exercise performance and injury are discussed.
Saikia, Ruprekha; Baruah, Bhargav; Kalita, Dipankar; Pant, Kamal K; Gogoi, Nirmali; Kataki, Rupam
2018-04-01
The objective of the present investigation was to optimize the pyrolysis condition of an abundantly available and low cost perennial grass of north-east India Saccharum ravannae L. (S. ravannae) using response surface methodology based on central composite design. Kinetic study of the biomass was conducted at four different heating rates of 10, 20, 40 and 60 °C min -1 and results were interpreted by Friedman, Kissinger Akira Sunnose and Flynn-Wall-Ozawa methods. Average activation energy 151.45 kJ mol -1 was used for evaluation of reaction mechanism following Criado master plot. Maximum bio-oil yield of 38.1 wt% was obtained at pyrolysis temperature of 550 °C, heating rate of 20 °C min -1 and nitrogen flow rate of 226 mL min -1 . Study on bio-oil quality revealed higher content of hydrocarbon, antioxidant property, total phenolic content and metal chelating capacity. These opened up probable applications of S. ravannae bio-oil in different fields including fuel, food industry and biomedical domain. Copyright © 2018 Elsevier Ltd. All rights reserved.
20 CFR 229.48 - Family maximum.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Family maximum. 229.48 Section 229.48... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.48 Family maximum. (a) Family... month on one person's earnings record is limited. This limited amount is called the family maximum. The...
22 CFR 201.67 - Maximum freight charges.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Maximum freight charges. 201.67 Section 201.67... TRANSACTIONS FINANCED BY USAID Price Provisions § 201.67 Maximum freight charges. (a) Ocean freight rates—(1... the United States. (2) Maximum charter rates. (i) USAID will not finance ocean freight under any...
Mydlo, J H; Volpe, M A; MacChia, R J
2000-09-01
To evaluate the outcome of combined therapy (using intraurethral alprostadil and oral sildenafil) in private and clinic patients with erectile dysfunction, and thus assess predictors of satisfaction. In all, 360 men were treated for erectile dysfunction using single and/or combined therapy, comprising 214 private-practice and 166 clinic patients. Responses were evaluated using the International Index for Erectile Function (IIEF) questionnaire before and after treatment. Serum testosterone levels, education and socio-economic status were also assessed. Group 1a consisted of 33 private patients and Group 1b of 24 clinic patients who tried the maximum dose of intraurethral alprostadil monotherapy initially, followed by the maximum dose of sildenafil monotherapy, and remained dissatisfied. Group 2a consisted of 32 private patients and group 2b of 31 clinic patients who tried the maximum dose of sildenafil monotherapy initially, followed by the maximum dose of alprostadil monotherapy, and were also dissatisfied. These two groups of 65 private and 55 clinic patients then underwent combined therapy. The mean (SD) score for erectile function was 24.1 (2) for combined therapy (a 123% improvement), and 19.8 (1. 8) (83% improvement) and 15.2 (1.6) (41% improvement) for sildenafil and alprostadil monotherapies (P < 0.05 for both patient groups). The men also reported an improvement in their satisfaction with intercourse. However, at 18 months, 60 of the 65 private patients but only 40 of the 55 clinic patients continued with combined therapy; thus, the discontinuation rate was three times greater among clinic than among private patients. Furthermore, the private patients had an overall improvement in the satisfaction score of 128%, compared with 51% for the clinic patients. Although there were no significant differences in erectile function improvement within the two satisfied combined therapy groups, the differences in overall satisfaction and long-term withdrawal rates suggests that other factors beside motivation must be involved for success, e.g. education, persistence, realistic expectations, and certain psychological factors. Combined therapy should be considered for those patients who have a suboptimal response to monotherapy and refuse or are not candidates for surgical options. Generally, those patients with a higher education, greater persistence and more realistic expectations were more satisfied with combined therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingham, J.G.
Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33%more » of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.« less
Maximum Rate of Growth of Enstrophy in Solutions of the Fractional Burgers Equation
NASA Astrophysics Data System (ADS)
Yun, Dongfang; Protas, Bartosz
2018-02-01
This investigation is a part of a research program aiming to characterize the extreme behavior possible in hydrodynamic models by analyzing the maximum growth of certain fundamental quantities. We consider here the rate of growth of the classical and fractional enstrophy in the fractional Burgers equation in the subcritical and supercritical regimes. Since solutions to this equation exhibit, respectively, globally well-posed behavior and finite-time blowup in these two regimes, this makes it a useful model to study the maximum instantaneous growth of enstrophy possible in these two distinct situations. First, we obtain estimates on the rates of growth and then show that these estimates are sharp up to numerical prefactors. This is done by numerically solving suitably defined constrained maximization problems and then demonstrating that for different values of the fractional dissipation exponent the obtained maximizers saturate the upper bounds in the estimates as the enstrophy increases. We conclude that the power-law dependence of the enstrophy rate of growth on the fractional dissipation exponent has the same global form in the subcritical, critical and parts of the supercritical regime. This indicates that the maximum enstrophy rate of growth changes smoothly as global well-posedness is lost when the fractional dissipation exponent attains supercritical values. In addition, nontrivial behavior is revealed for the maximum rate of growth of the fractional enstrophy obtained for small values of the fractional dissipation exponents. We also characterize the structure of the maximizers in different cases.
The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture
Pai, Athma A; Henriques, Telmo; McCue, Kayla; Burkholder, Adam; Adelman, Karen
2017-01-01
Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly low variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing. PMID:29280736
The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture
Pai, Athma A.; Henriques, Telmo; McCue, Kayla; ...
2017-12-27
Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly lowmore » variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.« less
The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pai, Athma A.; Henriques, Telmo; McCue, Kayla
Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly lowmore » variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.« less
Nash, Mark S; Jacobs, Patrick L; Woods, Jeffrey M; Clark, James E; Pray, Tanya A; Pumarejo, Alex E
2002-02-01
To test whether acute metabolic (VO(2)), chronotropic (heart rate), and perceptual (rating of perceived exertion; RPE) responses to exercise by persons with paraplegia differ when the exercise is on a multistation isoinertial exercise system (MultiGym) or on a customized system of Thera-Band resistance bands (ElasticGym). Within-subjects comparison of 2 treatments. Academic medical center. Sixteen men and 1 woman with complete paraplegia (T4-L1), as defined by the American Spinal Injury Association. A circuit resistance training (CRT) program for persons with paraplegia was adapted to both a MultiGym and a customized ElasticGym. Exercises used for training and testing used 6 resistance maneuvers at 50% of the 1-repetition maximum (1-RM), with interposed rapid arm spinning. Subjects were habituated to both conditions for 2 weeks before testing on randomized nonconsecutive days. VO(2) (L/min) was measured by portable spirometry, heart rate (beats/min) by a chest strap monitor, and RPE by the Borg Scale of Perceived Exertion (6-20). No significant effects of test condition on average VO(2) or heart rate were observed, with differences between conditions reflecting only .08L/min and 6.4 beats/min, respectively. Average RPE was significantly higher in testing under the ElasticGym condition (P < .05). CRT on a customized ElasticGym system elicited acute metabolic and chronotropic responses that did not differ from responses to exercise on a MultiGym, though RPE was greater with the ElasticGym. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation
Granath, Gustaf; Strengbom, Joachim; Breeuwer, Angela; Heijmans, Monique M P D; Berendse, Frank; Rydin, Håkan
2009-04-01
Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north-south transplant experiment in northern Europe, covering a latitudinal N deposition gradient ranging from 0.28 g N m(-2) year(-1) in the north, to 1.49 g N m(-2) year(-1) in the south. The maximum photosynthetic rate (NP(max)) increased southwards, and was mainly explained by tissue N concentration, secondly by allocation of N to the photosynthesis, and to a lesser degree by modified photosystem II activity (variable fluorescence/maximum fluorescence yield). Although climatic factors may have contributed, these results were most likely attributable to an increase in N deposition southwards. For S. fuscum, photosynthetic rate continued to increase up to a deposition level of 1.49 g N m(-2) year(-1), but for S. balticum it seemed to level out at 1.14 g N m(-2) year(-1). The results for S. balticum suggested that transplants from different origin (with low or intermediate N deposition) respond differently to high N deposition. This indicates that Sphagnum species may be able to adapt or physiologically adjust to high N deposition. Our results also suggest that S. balticum might be more sensitive to N deposition than S. fuscum. Surprisingly, NP(max) was not (S. balticum), or only weakly (S. fuscum) correlated with biomass production, indicating that production is to a great extent is governed by factors other than the photosynthetic capacity.
Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures
Gardiner, Naomi M.; Munday, Philip L.; Nilsson, Göran E.
2010-01-01
The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations. PMID:20949020
Understanding and quantifying foliar temperature acclimation for Earth System Models
NASA Astrophysics Data System (ADS)
Smith, N. G.; Dukes, J.
2015-12-01
Photosynthesis and respiration on land are the two largest carbon fluxes between the atmosphere and Earth's surface. The parameterization of these processes represent major uncertainties in the terrestrial component of the Earth System Models used to project future climate change. Research has shown that much of this uncertainty is due to the parameterization of the temperature responses of leaf photosynthesis and autotrophic respiration, which are typically based on short-term empirical responses. Here, we show that including longer-term responses to temperature, such as temperature acclimation, can help to reduce this uncertainty and improve model performance, leading to drastic changes in future land-atmosphere carbon feedbacks across multiple models. However, these acclimation formulations have many flaws, including an underrepresentation of many important global flora. In addition, these parameterizations were done using multiple studies that employed differing methodology. As such, we used a consistent methodology to quantify the short- and long-term temperature responses of maximum Rubisco carboxylation (Vcmax), maximum rate of Ribulos-1,5-bisphosphate regeneration (Jmax), and dark respiration (Rd) in multiple species representing each of the plant functional types used in global-scale land surface models. Short-term temperature responses of each process were measured in individuals acclimated for 7 days at one of 5 temperatures (15-35°C). The comparison of short-term curves in plants acclimated to different temperatures were used to evaluate long-term responses. Our analyses indicated that the instantaneous response of each parameter was highly sensitive to the temperature at which they were acclimated. However, we found that this sensitivity was larger in species whose leaves typically experience a greater range of temperatures over the course of their lifespan. These data indicate that models using previous acclimation formulations are likely incorrectly simulating leaf carbon exchange responses to future warming. Therefore, our data, if used to parameterize large-scale models, are likely to provide an even greater improvement in model performance, resulting in more reliable projections of future carbon-clime feedbacks.
40 CFR 60.37e - Compliance, performance testing, and monitoring guidelines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements: (1) Establish maximum charge rate and minimum secondary chamber temperature as site-specific... above the maximum charge rate or below the minimum secondary chamber temperature measured as 3-hour... below the minimum secondary chamber temperature shall constitute a violation of the established...
38 CFR 3.27 - Automatic adjustment of benefit rates.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.27 Automatic... pension. (Authority: 38 U.S.C. 5312(a)) (b) Parents' dependency and indemnity compensation—maximum annual... the maximum monthly rates of dependency indemnity compensation for parents. (Authority: 38 U.S.C. 5312...
38 CFR 3.27 - Automatic adjustment of benefit rates.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.27 Automatic... pension. (Authority: 38 U.S.C. 5312(a)) (b) Parents' dependency and indemnity compensation—maximum annual... the maximum monthly rates of dependency indemnity compensation for parents. (Authority: 38 U.S.C. 5312...
38 CFR 3.27 - Automatic adjustment of benefit rates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.27 Automatic... pension. (Authority: 38 U.S.C. 5312(a)) (b) Parents' dependency and indemnity compensation—maximum annual... the maximum monthly rates of dependency indemnity compensation for parents. (Authority: 38 U.S.C. 5312...
38 CFR 3.27 - Automatic adjustment of benefit rates.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.27 Automatic... pension. (Authority: 38 U.S.C. 5312(a)) (b) Parents' dependency and indemnity compensation—maximum annual... the maximum monthly rates of dependency indemnity compensation for parents. (Authority: 38 U.S.C. 5312...
38 CFR 3.27 - Automatic adjustment of benefit rates.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.27 Automatic... pension. (Authority: 38 U.S.C. 5312(a)) (b) Parents' dependency and indemnity compensation—maximum annual... the maximum monthly rates of dependency indemnity compensation for parents. (Authority: 38 U.S.C. 5312...
NASA Astrophysics Data System (ADS)
Ganje, Mohammad; Jafari, Seid Mahdi; Farzaneh, Vahid; Malekjani, Narges
2018-06-01
To study the kinetics of color degradation, the tomato paste was designed to be processed at three different temperatures including 60, 70 and 80 °C for 25, 50, 75 and 100 min. a/b ratio, total color difference, saturation index and hue angle were calculated with the use of three main color parameters including L (lightness), a (redness-greenness) and b (yellowness-blueness) values. Kinetics of color degradation was developed by Arrhenius equation and the alterations were modelled with the use of response surface methodology (RSM). It was detected that all of the studied responses followed a first order reaction kinetics with an exception in TCD parameter (zeroth order). TCD and a/b respectively with the highest and lowest activation energy presented the highest sensitivity to the temperature alterations. The maximum and minimum rates of alterations were observed by TCD and b parameters, respectively. It was obviously determined that all of the studied parameters (responses) were affected by the selected independent parameters.
Results of Skylab medical experiment M171: Metabolic activity
NASA Technical Reports Server (NTRS)
Michel, E. L.; Rummel, J. A.; Sawin, C. F.; Buderer, M. C.; Lem, J. D.
1974-01-01
The experiment was conducted to establish whether man's ability to perform mechanical work would be progressively altered as a result of exposure to the weightless environment of space flight. The Skylab crewmen exercised on a bicycle ergometer at workloads approximating 25, 50, and 75 percent of their maximum aerobic capacity. The physiological parameters monitored were respiratory gas exchange, blood pressure, and vectorcardiogram/heart rate. The results of these tests indicate that the crewmen had no significant decrement in their responses to exercise during their exposure to zero gravity. The results of the third manned Skylab mission (Skylab 4) are presented and a comparison is made of the overall results obtained from the three successively longer Skylab manned missions. The Skylab 4 crewmembers' 84-day in-flight responses to exercise were no worse and were probably better than the responses of the crewmen on the first two Skylab missions. Indications that exercise was an important contributing factor in maintaining this response are discussed.
Lee, Daniel K C; Bates, Caroline E; Lipworth, Brian J
2004-01-01
The relationship between beta2-adrenoceptor polymorphisms at positions 16 and 27, and the acute systemic beta2-adrenoceptor effects of inhaled salbutamol is unclear. We therefore elected to evaluate the influence of common homozygous beta2-adrenoceptor haplotypes on the acute systemic beta2-adrenoceptor effects following inhaled salbutamol in asthmatic subjects. An initial database search of 531 asthmatic subjects identified the two commonest homozygous haplotypes at positions 16 and 27 to be Arg16-Gln27 (12%) and Gly16-Glu27 (19%). After a 1-week washout period where all beta2-adrenoceptor agonists were withdrawn, 16 Caucasian subjects (Arg16-Gln27: n = 8 and Gly16-Glu27: n = 8) were given a single dose of inhaled salbutamol (1200 microg), followed by serial blood sampling for serum potassium, along with measurements of diastolic blood pressure and heart rate, at 5-min intervals for 20 min. The two groups were well matched for age, sex, FEV1, and inhaled corticosteroid dose. Baseline values for serum potassium, diastolic blood pressure and heart rate were not significantly different comparing Arg16-Gln27 vs Gly16-Glu27. The mean +/- SEM maximum serum potassium change from baseline over 20 min was significantly greater (P = 0.04) for Arg16-Gln27: -0.37 +/- 0.05 mmol l(-1) vs Gly16-Glu27: -0.23 +/- 0.04 mmol l(-1); 95% CI for difference: -0.01 to -0.28 mmol l(-1). The maximum diastolic blood pressure change from baseline over 20 min was significantly greater (P = 0.0008) for Arg16-Gln27: -13 +/- 1 mmHg vs Gly16-Glu27: -4 +/- 2 mmHg; 95% CI for difference: -5, 14 mmHg. There was no significant difference comparing the maximum heart rate change from baseline for Arg16-Gln27: 10 +/- 3 beats min(-1) vs Gly16-Glu27: 10 +/- 3 beats min(-1). Caucasian asthmatic subjects with the Arg16-Gln27 haplotype exhibited a greater systemic response to inhaled salbutamol, compared with those with the Gly16-Glu27 haplotype. The attenuated beta2-adrenoceptor response in the Gly16-Glu27 haplotype would be in keeping with increased susceptibility to prior down-regulation by endogenous catecholamines.
High methane natural gas/air explosion characteristics in confined vessel.
Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing
2014-08-15
The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.
Lafreniere, Janet A; Hamilton, Donald P; Carr, Roxane R
2006-10-01
To examine the practice of potassium chloride (KCl) replacement in pediatric oncology patients receiving amphotericin B (amp-B). A retrospective observational chart review was conducted of patients who received amp-B on the oncology unit between August 2000 and May 2001. A survey was distributed to pediatric oncology pharmacists at other pediatric institutions to assess KCl infusion guidelines across North America. Twenty hypokalemic episodes were identified within 22 patient admissions. Fifty-five percent used KCl replacement (by all combined routes) at rates exceeding the institution's guidelines. Other pediatric institutions varied with respect to the maximum rates and concentration of KCl permitted on non-intensive care units. Based on the data from this review, the KCl administration guidelines for our hospital were changed. We now allow a maximum peripheral line concentration of 60 mEq/L, a maximum central line concentration of 120 mEq/L and a maximum KCl infusion rate of 0.4 mEq/kg/hr without the requirement of a heart monitor. Parenteral Nutrition is now restricted to maximum potassium concentration of 80 mEq/L and fluid-restricted patients are restricted to a maximum concentration of 150 mEq/L.
Sigal, R J; Purdon, C; Fisher, S J; Halter, J B; Vranic, M; Marliss, E B
1994-10-01
Hyperglycemia with accompanying hyperinsulinemia occurs after brief, greater than 85% maximum oxygen consumption exercise to exhaustion in normal subjects and persists up to 60 min of recovery. To determine the importance of endogenous insulin secretion during and after intense exercise, responses to exercise of lean fit male post-absorptive insulin-dependent diabetes mellitus (IDDM) subjects, aged 18-34 yr, were compared with those of control subjects (C; n = 6). Three iv insulin protocols were employed: hyperglycemic (HG; n = 7) and euglycemic (EG1; n = 6) with constant insulin infusion, and euglycemic with doubled insulin infusion during recovery (EG2; n = 6). Overnight iv insulin was adjusted to achieve prolonged euglycemia (5.4 +/- 0.3 mmol/L) or hyperglycemia (8.6 +/- 0.3 mmol/L) before exercise. This allowed for comparisons between HG and EG1 (constant infusion) and between C and EG2 (to approximate physiological hyperinsulinemia by doubling the infusion rates at exhaustion for 56 +/- 7 min during recovery). Subjects exercised to 89-98% of their individual maximum oxygen consumption for 12.8 +/- 0.3 min. Glycemia increased to maximum values at 6 min of recovery (9.8 +/- 0.5 in HG, 6.9 +/- 0.4 in EG1, 7.3 +/- 0.3 in EG2, and 6.9 +/- 0.4 mmol/L in C). Whereas in EG2 and C, glucose returned to resting values in 50-80 min, it remained elevated at 120 min recovery in HG and EG1. During exercise, [3-3H]-glucose-determined glucose production increased markedly and exceeded disappearance in all groups, but less so in the HG subjects than in the other groups. An early recovery decline in glucose production did not differ among groups, but MCR (rate of glucose disappearance/glycemia) were markedly lower in HG and EG1, in whom plasma free insulin remained unchanged from 15 min of recovery onward (MCR, 1.6-1.9 vs. 2.3-2.8 mL/kg.min in C). Doubling the insulin infusion rate in EG2 restored the MCR response to that of C subjects. In summary, constant insulin infusion is insufficient to prevent prolonged postexercise hyperglycemia in IDDM subjects, even when provided at a rate sufficient to maintain normal resting glycemia and glucose turnover. The finding that increasing the rate of insulin infusion restored plasma glucose to normal in IDDM subjects suggests that the postexercise increase in insulin levels observed in normal subjects is essential to return plasma glucose to resting levels. Therefore, special strategies, differing from those for less strenuous exercise, are required for the management of insulin therapy in IDDM during and after intense exercise.
Ren, Jingli; Chen, Cun; Wang, Gang; ...
2017-03-22
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Prey life-history and bioenergetic responses across a predation gradient.
Rennie, M D; Purchase, C F; Shuter, B J; Collins, N C; Abrams, P A; Morgan, G E
2010-10-01
To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.
Quantitative regulation of B cell division destiny by signal strength.
Turner, Marian L; Hawkins, Edwin D; Hodgkin, Philip D
2008-07-01
Differentiation to Ab secreting and isotype-switched effector cells is tightly linked to cell division and therefore the degree of proliferation strongly influences the nature of the immune response. The maximum number of divisions reached, termed the population division destiny, is stochastically distributed in the population and is an important parameter in the quantitative outcome of lymphocyte responses. In this study, we further assessed the variables that regulate B cell division destiny in vitro in response to T cell- and TLR-dependent stimuli. Both the concentration and duration of stimulation were able to regulate the average maximum number of divisions undergone for each stimulus. Notably, a maximum division destiny was reached during provision of repeated saturating stimulation, revealing that an intrinsic limit to proliferation exists even under these conditions. This limit was linked directly to division number rather than time of exposure to stimulation and operated independently of the survival regulation of the cells. These results demonstrate that a B cell population's division destiny is regulable by the stimulatory conditions up to an inherent maximum value. Division destiny is a crucial parameter in regulating the extent of B cell responses and thereby also the nature of the immune response mounted.
The response of middle atmospheric ozone to solar UV irradiance variations with a period of 27 days
NASA Technical Reports Server (NTRS)
Chen, LI; Brasseur, Guy; London, Julius
1994-01-01
A one-dimensional photochemical-dynamical-radiative time-dependent model was used to study the response of middle atmospheric temperature and ozone to solar UV irradiance variations with the period of 27 days. The model solar UV O(x), HO(x), NO(x), and CIO(x)families and modeled solar UV variations. The amplitude of the primary temperature response to the solar UV variation is plus 0.4 K at 85-90 km with a phase lag of about 6 days. A secondary maximum response of plus 0.3 K at 45-50 km appears with a phase lag of 1 day. There is a maximum positive ozone response to the 27-day solar UV oscillation of 2.5 percent at 80-90 km with a phase lag of about 10 days after the solar irradiance maximum. At 70 km the ozone response is about 1.2 percent and is out of phase with the solar variation. In the upper stratosphere (40-50 km) the relative ozone variation is small, about 0.2 percent to 0.3 percent, and there is a negative phase of about 4 days between the ozone and solar oscillations. These oscillations are in phase in the middle stratosphere (35-40 km) where there is again a maximum relative response of about 0.6 percent. The reasons for these ozone amplitude and phase variations are discussed.
Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?
Cullen, John J
2015-01-01
The phenomenon of subsurface chlorophyll maximum layers (SCMLs) is not a unique ecological response to environmental conditions; rather, a broad range of interacting processes can contribute to the formation of persistent layers of elevated chlorophyll a concentration (Chl) that are nearly ubiquitous in stratified surface waters. Mechanisms that contribute to the formation and maintenance of the SCMLs include a local maximum in phytoplankton growth rate near the nutricline, photoacclimation of pigment content that leads to elevated Chl relative to phytoplankton biomass at depth, and a range of physiologically influenced swimming behaviors in motile phytoplankton and buoyancy control in diatoms and cyanobacteria that can lead to aggregations of phytoplankton in layers, subject to grazing and physical control. A postulated typical stable water structure characterizes consistent patterns in vertical profiles of Chl, phytoplankton biomass, nutrients, and light across a trophic gradient structured by the vertical flux of nutrients and characterized by the average daily irradiance at the nutricline. Hypothetical predictions can be tested using a nascent biogeochemical global ocean observing system. Partial results to date are generally consistent with predictions based on current knowledge, which has strong roots in research from the twentieth century.
Le, MyPhuong T.; Frye, Reginald F.; Rivard, Christopher J.; Cheng, Jing; McFann, Kim K.; Segal, Mark S.; Johnson, Richard J.; Johnson, Julie A.
2011-01-01
Objective It is unclear whether high fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared to sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- versus sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Materials/Methods Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hr. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Results Fructose area under the curve and maximum concentration, dose normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared to sucrose-sweetened beverages. Conclusions Compared to sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. PMID:22152650
Le, Myphuong T; Frye, Reginald F; Rivard, Christopher J; Cheng, Jing; McFann, Kim K; Segal, Mark S; Johnson, Richard J; Johnson, Julie A
2012-05-01
It is unclear whether high-fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared with sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- vs sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hours. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Fructose area under the curve and maximum concentration, dose-normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared with sucrose-sweetened beverages. Compared with sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. Copyright © 2012 Elsevier Inc. All rights reserved.
19 CFR 212.07 - Rulemaking on maximum rates for attorney fees.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 3 2010-04-01 2010-04-01 false Rulemaking on maximum rates for attorney fees. 212.07 Section 212.07 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT General Provisions...
40 CFR 57.203 - Contents of the application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission of sulfur dioxide; the characteristics of all gas streams emitted from the smelter's process...'s maximum daily production capacity (as defined in § 57.103(r)), the operational rate (in pounds of... smelter is operating at that capacity; and the smelter's average and maximum daily production rate for...
5 CFR 591.104 - Higher initial maximum uniform allowance rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Higher initial maximum uniform allowance rate. 591.104 Section 591.104 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE... initial year a new style or type of minimum basic uniform is required for a category of employees, an...
78 FR 18982 - Maximum Per Diem Rates for the States of Oklahoma and Texas
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... GENERAL SERVICES ADMINISTRATION [Notice-FTR 2013-01; Docket 2013-0002; Sequence 7] Maximum Per Diem Rates for the States of Oklahoma and Texas AGENCY: Office of Governmentwide Policy (OGP), General Services Administration (GSA). ACTION: Notice of Per Diem Bulletin 13-04, revised continental United States...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... GENERAL SERVICES ADMINISTRATION [GSA Bulletin FTR 11-06; Docket 2011-0002; Sequence 2] Maximum Per Diem Rates for the States of California, Mississippi, New York, Pennsylvania, Texas, and Virginia AGENCY: Office of Governmentwide Policy, General Services Administration (GSA). ACTION: Notice of Per...
Weon, S Y; Lee, S I; Koopman, B
2004-11-01
Effect of temperature and dissolved oxygen concentration on nitrification rate were investigated with enrichment cultures of nitrifying bacteria. Values of specific nitrite oxidation rate in the absence of ammonia were 2.9-12 times higher than maximum specific ammonia oxidation rates at the same temperatures. The presence of high ammonia levels reversed this relationship, causing maximum specific nitrite oxidation rates to fall to 19 to 45% as high as maximum specific ammonia oxidation rates. This result suggests that nitrification at high ammonia levels will invariably result in nitrite accumulation. The K(O2) for nitrite oxidation in the presence of high ammonia levels was higher than the K(O2) for ammonia oxidation when temperature exceeded 18 degrees C, whereas the opposite was true at lower temperatures. These results indicate that low oxygen tensions will exacerbate nitrite accumulation when water temperature is high.
Maddocks, Kami; Ruppert, Amy S.; Browning, Rebekah; Jones, Jeffrey; Flynn, Joseph; Kefauver, Cheryl; Gao, Yue; Jiang, Yao; Rozewski, Darlene M.; Poi, Ming; Phelps, Mitch A.; Harper, Erica; Johnson, Amy J.; Byrd, John C.; Andritsos, Leslie A.
2015-01-01
Adequate dosing of lenalidomide in Chronic Lymphocytic Leukemia (CLL) remains unclear. This study determined maximum tolerated dose (MTD) in relapsed CLL patients (Cohort A) and patients achieving a partial response (PR) or better to recent therapy (Cohort B). Thirty-seven patients were enrolled. MTD was 2.5 mg followed by 5.0 mg continuous. In Cohort A, tumor flare grade 1–2 occurred in 15 patients (50%) and grade 3 in 1 patient (3%). Cohort A had 19 of 23 evaluable (83%) patients, 4 PR (17%) and 15 (65%) stable disease (SD), Cohort B had 6 of 7 patients (86%) with SD. Despite overall response rate not being high, many patients remained on therapy several months with SD. PMID:25082342
Klueter, Anke; Trapani, Jennifer; Archer, Frederick I; McIlroy, Shelby E; Coffroth, Mary Alice
2017-01-01
Many dinoflagellate microalgae of the genus Symbiodinium form successful symbioses with a large group of metazoans and selected protists. Yet knowledge of growth kinetics of these endosymbionts and their ecological and evolutionary implications is limited. We used a Bayesian biphasic generalized logistic model to estimate key parameters of the growth of five strains of cultured Symbiodinium, S. microadriaticum (cp-type A194; strain 04-503), S. microadriaticum (cp-type A194; strain CassKB8), S. minutum (cp-type B184; strain Mf 1.05b.01.SCI.01), S. psygmophilum (cp-type B224; strain Mf 11.05b.01) and S. trenchii (cp-type D206; strain Mf 2.2b), grown in four different combinations of temperature and light. Growth kinetics varied among Symbiodinium strains and across treatments. Biphasic growth was especially evident for S. minutum and S. psygmophilum across all treatments. Monophasic growth was more common when final asymptotic densities were relatively low (~ 200 million cells ml-1). All species tended to grow faster and / or reached a higher asymptote at 26°C than at 18°C. The fastest growth was exhibited by S. minutum, with an approximate four-fold increase in estimated cell density after 60 days. The strongest effect of light was seen in S. trenchii, in which increasing light levels resulted in a decrease in initial growth rate, and an increase in asymptotic density, time when growth rate was at its maximum, final growth rate, and maximum growth rate. Results suggest that Symbiodinium species have different photokinetic and thermal optima, which may affect their growth-related nutritional physiology and allow them to modify their response to environmental changes.
Photoacclimatory Responses of Zostera marina in the Intertidal and Subtidal Zones
Park, Sang Rul; Kim, Sangil; Kim, Young Kyun; Kang, Chang-Keun; Lee, Kun-Seop
2016-01-01
Photoacclimatory responses of the seagrass Zostera marina in the intertidal and subtidal zones were investigated by measuring chlorophyll a fluorescence parameters, photosynthetic pigments, leaf δ13C values, and shoot morphology in two bay systems. Intertidal plants had higher carotenoid concentrations than subtidal plants to avoid photodamage under excess light conditions during the day. The maximum relative electron transport rate (rETRmax) and minimum saturation irradiance (Ek) of the intertidal plants were higher than those of the subtidal plants, whereas photosynthetic efficiency (α) and maximum quantum yield (Fv/Fm) were higher in subtidal plants. The intertidal plants also had significantly greater Stern–Volmer non-photochemical quenching (NPQ) than that of the subtidal plants. These results suggest that the subtidal plants photoacclimated to use limited light more efficiently, and the intertidal plants exhibited photosynthetic responses to minimize photodamage at excess irradiance. The δ13C values of leaf tissues were more negative in the intertidal plants than those in the subtidal plants, suggesting that the intertidal plants used atmospheric or dissolved CO2 for photosynthesis during emersion. Effective quantum yield (ΔF/Fm´) in the intertidal plants decreased more slowly after emersion than that in the subtidal plants, indicating higher desiccation tolerance of the intertidal plants. The intertidal plants also recovered more rapidly from desiccation damage than the subtidal plants, suggesting photosynthetic adaptation to desiccation stress. The photosynthetic plasticity of Z. marina in response to variable environmental conditions most likely allows this species to occur in the intertidal and subtidal zones. PMID:27227327
Averill, Colin; Waring, Bonnie G; Hawkes, Christine V
2016-05-01
Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, it is not known if variation in the shape and magnitude of microbial functional responses to soil moisture can be predicted from historical climate at regional scales. To address this problem, we measured soil enzyme activity at 12 sites across a broad climate gradient spanning 442-887 mm mean annual precipitation. Measurements were made eight times over 21 months to maximize sampling during different moisture conditions. We then fit saturating functions of enzyme activity to soil moisture and extracted half saturation and maximum activity parameter values from model fits. We found that 50% of the variation in maximum activity parameters across sites could be predicted by 30-year mean annual precipitation, an indicator of historical climate, and that the effect is independent of variation in temperature, soil texture, or soil carbon concentration. Based on this finding, we suggest that variation in the shape and magnitude of soil microbial response to soil moisture due to historical climate may be remarkably predictable at regional scales, and this approach may extend to other systems. If historical contingencies on microbial activities prove to be persistent in the face of environmental change, this approach also provides a framework for incorporating historical climate effects into biogeochemical models simulating future global change scenarios. © 2016 John Wiley & Sons Ltd.
Habib, Darima; Chaudhary, Muhammad Fayyaz; Zia, Muhammad
2014-01-01
Here, we demonstrate the micropropagation protocol of Argyrolobium roseum (Camb.), an endangered herb exhibiting anti-diabetic and immune-suppressant properties, and antioxidant enzymes pattern is evaluated. Maximum callogenic response (60 %) was observed from leaf explant at 1.0 mg L(-1) 1-nephthalene acetic acid (NAA) and 0.5 mg L(-1) 6-benzyl aminopurine (BA) in Murashige and Skoog (MS) medium using hypocotyl and root explants (48 % each). Addition of AgNO3 and PVP in the culture medium led to an increase in callogenic response up to 86 % from leaf explant and 72 % from hypocotyl and root explants. The best shooting response was observed in the presence of NAA, while maximum shoot length and number of shoots were achieved based on BA-supplemented MS medium. The regenerated shoots were rooted and successfully acclimatized under greenhouse conditions. Catalase and peroxidase enzymes showed ascending pattern during in vitro plant development from seed while ascorbate peroxidase showed descending pattern. Totally reverse response of these enzymes was observed during callus induction from three different explants. During shoot induction, catalase and peroxidase increased at high rate while there was a mild reduction in ascorbate peroxidase activity. Catalase and peroxidase continuously increased; on the other hand, ascorbate peroxidase activity decreased during root development and acclimatization states. The protocol described here can be employed for the mass propagation and genetic transformation of this rare herb. This study also highlights the importance and role of ascorbate peroxidase, catalase, and peroxidase in the establishment of A. roseum in vitro culture through callogenesis and organogenesis.
Mao, Zhongping Lily; Modi, Nishit B
2016-08-01
Parkinson disease is an age-related disorder of the central nervous system principally due to loss of dopamine-producing cells in the midbrain. Levodopa, in combination with carbidopa, is widely regarded as an effective treatment for the symptoms of Parkinson disease. A dose-response relationship is established for carbidopa-levodopa extended-release capsules (IPX066) in levodopa-naive Parkinson disease patients using a disease progression model. Unified Parkinson Disease Rating Scale (UPDRS) part II plus part III scores from 171 North American patients treated with placebo or IPX066 for approximately 30 weeks from a double-blind, parallel-group, dose-ranging study were used to develop the pharmacodynamic model. The model comprised 3 components: a linear function describing disease progression, a component describing placebo (or nonlevodopa) effects, and a component to describe the effect of levodopa. Natural disease progression in early Parkinson disease as measured by UPDRS was 11.6 units/year and faster in patients with more severe disease (Hoehn-Yahr stage 3). Maximum placebo/nonlevodopa response was 23.0% of baseline UPDRS. Maximum levodopa effect from IPX066 was 76.7% of baseline UPDRS, and the ED50 was 450 mg levodopa. Equilibration half-life for the effect compartment was 62.8 days. Increasing age increased and being female decreased equilibration half-life. The quantitative model allowed description of the entire time course of response to clinical trial intervention. © 2016, The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.
Pegylated liposomal doxorubicin in the treatment of primary cutaneous T-cell lymphomas.
Pulini, Stefano; Rupoli, Serena; Goteri, Gaia; Pimpinelli, Nicola; Alterini, Renato; Tassetti, Angela; Scortechini, Anna Rita; Offidani, Massimo; Mulattieri, Simonetta; Stronati, Andrea; Brandozzi, Giuliano; Giacchetti, Alfredo; Mozzicafreddo, Giorgio; Ricotti, Giuseppe; Filosa, Giorgio; Bettacchi, Alberta; Simonacci, Marco; Novelli, Nicolino; Leoni, Pietro
2007-05-01
Pegylated liposomal doxorubicin (Peg-Doxo) is a promising drug for advanced/recalcitrant primary cutaneous T-cell lymphomas (CTCLs). This prospective phase II trial enrolled 19 patients. We observed overall and complete response rates of 84.2% and 42.1% (with no significant differences between stage I-IIA and IIB-IV patients), and 11% grade III/IV toxicity. After a maximum 46 month-follow-up, median overall (OS), event-free (EFS) and progression-free (PFS) survival were 34, 18 and 19 months. OS, EFS and PFS rates at 46 months were 44%, 30% and 37% respectively. Peg-Doxo seems to be an active and safe principle that should be used in plurirelapsed, early stage-MF and in combination with other chemotherapeutic agents in advanced and aggressive CTCLs.
2007-06-01
17 Table 2. Best (maximum free distance) rate r=2/3 punctured convolutional code ...Hamming distance between all pairs of non-zero paths. Table 2 lists the best rate r=2/3, punctured convolutional code information weight structure dB...Table 2. Best (maximum free distance) rate r=2/3 punctured convolutional code information weight structure. (From: [12]). K freed freeB
NASA Astrophysics Data System (ADS)
Rathod, Maureen L.
Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has a larger impact. Examination of maximum stable bubble diameter through the mixer predicted areas of higher bubble dispersion based on flow type. This research has advanced simulation of non-Newtonian fluid and shown that direct calculation of extension rate is possible, demonstrating the effect of extension rate on bubble break-up.
Benecke, U; Schulze, E -D; Matyssek, R; Havranek, W M
1981-08-01
CO 2 -assimilation and leaf conductance of Larix decidua Mill. were measured in the field at high (Patscherkofel, Austria) and low (Bayreuth, Germany) elevation in Europe, and outside its natural range along an altitudinal gradient in New Zealand.Phenology of leaf and stem growth showed New Zealand sites to have much longer growing seasons than in Europe, so that the timberline (1,330 m) season was almost twice as long as at the Austrian timberline (1,950 m).The maximum rates of photosynthesis, A max , were similar at all sites after completion of leaf growth, namely 3 to 3.5 μmol m -2 s -1 . Only the sun needles of the Bayreuth tree reached 3.5 to 5 μmol m -2 s -1 . Light response curves for CO 2 -assimilation changed during leaf ontogeny, the slope being less in young than in adult leaves. The temperature optimum for 90% of maximum photosynthesis was at all sites similar between ca. 12-28°C for much of the summer. Only at the cooler high altitude timberline sites were optima lower at ca. 10-16°C in developing needles during early summer.A linear correlation existed between A max and leaf conductance at A max , and this showed no difference between the sites except for sun needles at Bayreuth.Leaf conductance responded strongly to light intensity and this was concurrent with the light response of CO 2 -uptake. A short-term and a long-term effect were differentiated. With increasing age maximum rates of CO 2 -uptake and leaf conductance at A max increased, whereas short-term response during changes in light declined. The stomata became less responsive with increasing age and tended to remain open. The stomatal responses to light have a significant effect on the water use efficiency during diurnal courses. A higher water use efficiency was found for similar atmospheric conditions in spring than in autumn.Stomata responded with progressive closure to declining air humidity in a similar manner under dissimilar climates. Humidity response thus showed insensitivity to habitat differences.From the diurnal course of gas-exchange stomata were more closed at timberline (1,330 m) than at lower elevations but this did not lead to corresponding site differences in CO 2 -exchange suggesting Larix may not be operating at high water use efficiency when air is humid.The main difference between habitats studied was in the time necessary for completion of needle development. Similarity in photosynthesis and leaf conductance existed between sites when tree foliage was compared at the same stage of development. Length of growing season and time requirement for foliar development appear to be a principle factor in the carbon balance of deciduous species. The evergreen habit may be more effective in counterbalancing the effects of cool short summers.
Otto, Wolfgang; Stadler, Peter F.; López-Giraldéz, Francesc; Townsend, Jeffrey P.; Lynch, Vincent J.
2009-01-01
A major mode of gene expression evolution is based on changes in cis-regulatory elements (CREs) whose function critically depends on the presence of transcription factor–binding sites (TFBS). Because CREs experience extensive TFBS turnover even with conserved function, alignment-based studies of CRE sequence evolution are limited to very closely related species. Here, we propose an alternative approach based on a stochastic model of TFBS turnover. We implemented a maximum likelihood model that permits variable turnover rates in different parts of the species tree. This model can be used to detect changes in turnover rate as a proxy for differences in the selective pressures acting on TFBS in different clades. We applied this method to five TFBS in the fungi methionine biosynthesis pathway and three TFBS in the HoxA clusters of vertebrates. We find that the estimated turnover rate is generally high, with half-life ranging between ∼5 and 150 My and a mode around tens of millions of years. This rate is consistent with the finding that even functionally conserved enhancers can show very low sequence similarity. We also detect statistically significant differences in the equilibrium densities of estrogen- and progesterone-response elements in the HoxA clusters between mammal and nonmammal vertebrates. Even more extreme clade-specific differences were found in the fungal data. We conclude that stochastic models of TFBS turnover enable the detection of shifts in the selective pressures acting on CREs in different organisms. The analysis tool, called CRETO (Cis-Regulatory Element Turn-Over) can be downloaded from http://www.bioinf.uni-leipzig.de/Software/creto/. PMID:20333180
Lahr, Eleanor C; Dunn, Robert R; Frank, Steven D
2018-01-01
Photosynthesis is a fundamental process that trees perform over fluctuating environmental conditions. This study of red maple (Acer rubrum L.) characterizes photosynthesis, stomatal conductance, and water use efficiency in planted cultivars relative to wildtype trees. Red maple is common in cities, yet there is little understanding of how physiological processes affect the long-term growth, condition, and ecosystem services provided by urban trees. In the first year of our study, we measured leaf-level gas exchange and performed short-term temperature curves on urban planted cultivars and on suburban and rural wildtype trees. In the second year, we compared urban planted cultivars and urban wildtype trees. In the first year, urban planted trees had higher maximum rates of photosynthesis and higher overall rates of photosynthesis and stomatal conductance throughout the summer, relative to suburban or rural wildtype trees. Urban planted trees again had higher maximum rates of photosynthesis in the second year. However, urban wildtype trees had higher water use efficiency as air temperatures increased and similar overall rates of photosynthesis, relative to cultivars, in mid and late summer. Our results show that physiological differences between cultivars and wildtype trees may relate to differences in their genetic background and their responses to local environmental conditions, contingent on the identity of the horticultural variety. Overall, our results suggest that wildtype trees should be considered for some urban locations, and our study is valuable in demonstrating how site type and tree type can inform tree planting strategies and improve long-term urban forest sustainability.
King, Bryan H.; Dukes, Kimberly; Donnelly, Craig L.; Sikich, Linmarie; McCracken, James T.; Scahill, Lawrence; Hollander, Eric; Bregman, Joel D.; Anagnostou, Evdokia; Robinson, Fay; Sullivan, Lisa; Hirtz, Deborah
2016-01-01
IMPORTANCE The finding of factors that differentially predict the likelihood of response to placebo over that of an active drug could have a significant impact on study design in this population. OBJECTIVE To identify possible nonspecific, baseline predictors of response to intervention in a large randomized clinical trial of children and adolescents with autism spectrum disorders. DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial of citalopram hydrobromide for children and adolescents with autism spectrum disorders and prominent repetitive behavior. Baseline data at study entry were examined with respect to final outcome to determine if response predictors could be identified. A total of 149 children and adolescents 5 to 17 years of age (mean [SD] age, 9.4 [3.1] years) from 6 academic centers were randomly assigned to citalopram (n = 73) or placebo (n = 76). Participants had autistic disorder, Asperger syndrome, or pervasive developmental disorder, not otherwise specified; had illness severity ratings that were moderate or more than moderate on the Clinical Global Impression–Severity scale; and scored moderate or more than moderate on compulsive behaviors measured with the modified Children’s Yale-Brown Obsessive-Compulsive Scale. INTERVENTIONS Twelve weeks of treatment with citalopram (10 mg/5 mL) or placebo. The mean (SD) maximum dose of citalopram was 16.5 (6.5) mg by mouth daily (maximum dose, 20 mg/d). MAIN OUTCOMES AND MEASURES A positive response was defined as having a score of at least much improved on the Clinical Global Impression–Improvement scale at week 12. Baseline measures included demographic (sex, age, weight, and pubertal status), clinical, and family measures. Clinical variables included baseline illness severity ratings (the Aberrant Behavior Checklist, the Child and Adolescent Symptom Inventory, the Vineland Adaptive Behavior Scales, the Repetitive Behavior Scale–Revised, and the Children’s Yale-Brown Obsessive-Compulsive Scale). Family measures included the Caregiver Strain Questionnaire. RESULTS Several baseline predictors of response were identified, and a principal component analysis yielded 3 composite measures (disruptive behavior, autism/mood, and caregiver strain) that significantly predicted response at week 12. Specifically, participants in the placebo group were significantly less likely than participants in the citalopram group to respond at week 12 if they entered the study more symptomatic on each of the 3 composite measures, and they were at least 2 times less likely to be responders. CONCLUSIONS AND RELEVANCE This analysis suggests strategies that may be useful in anticipating and potentially mitigating the nonspecific response in randomized clinical trials of children and adolescents with autism spectrum disorders. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00086645 PMID:24061784
Kwon, Ji Eun; Jeong, Hae Jin; Kim, So Jin; Jang, Se Hyeon; Lee, Kyung Ha; Seong, Kyeong Ah
2017-09-01
Heterotrophic nanoflagellates are ubiquitous and known to be major predators of bacteria. The feeding of free-living heterotrophic nanoflagellates on phytoplankton is poorly understood, although these two components usually co-exist. To investigate the feeding and ecological roles of major heterotrophic nanoflagellates Katablepharis spp., the feeding ability of Katablepharis japonica on bacteria and phytoplankton species and the type of the prey that K. japonica can feed on were explored. Furthermore, the growth and ingestion rates of K. japonica on the dinoflagellate Akashiwo sanguinea-a suitable algal prey item-heterotrophic bacteria, and the cyanobacteria Synechococcus sp., as a function of prey concentration were determined. Among the prey tested, K. japonica ingested heterotrophic bacteria, Synechococcus sp., the prasinophyte Pyramimonas sp., the cryptophytes Rhodomonas salina and Teleaulax sp., the raphidophytes Heterosigma akashiwo and Chattonella ovata, the dinoflagellates Heterocapsa rotundata, Amphidinium carterae, Prorocentrum donghaiense, Alexandrium minutum, Cochlodinium polykrikoides, Gymnodinium catenatum, A. sanguinea, Coolia malayensis, and the ciliate Mesodinium rubrum, however, it did not feed on the dinoflagellates Alexandrium catenella, Gambierdiscus caribaeus, Heterocapsa triquetra, Lingulodinium polyedra, Prorocentrum cordatum, P. micans, and Scrippsiella acuminata and the diatom Skeletonema costatum. Many K. japonica cells attacked and ingested a prey cell together after pecking and rupturing the surface of the prey cell and then uptaking the materials that emerged from the ruptured cell surface. Cells of A. sanguinea supported positive growth of K. japonica, but neither heterotrophic bacteria nor Synechococcus sp. supported growth. The maximum specific growth rate of K. japonica on A. sanguinea was 1.01 d -1 . In addition, the maximum ingestion rate of K. japonica for A. sanguinea was 0.13ngC predator -1 d -1 (0.06 cells predator -1 d -1 ). The maximum ingestion rate of K. japonica for heterotrophic bacteria was 0.019ngC predator -1 d -1 (266 bacteria predator -1 d -1 ), and the highest ingestion rate of K. japonica for Synechococcus sp. at the given prey concentrations of up to ca. 10 7 cells ml -1 was 0.01ngC predator -1 d -1 (48 Synechococcus predator -1 d -1 ). The maximum daily carbon acquisition from A. sanguinea, heterotrophic bacteria, and Synechococcus sp. were 307, 43, and 22%, respectively, of the body carbon of the predator. Thus, low ingestion rates of K. japonica on heterotrophic bacteria and Synechococcus sp. may be responsible for the lack of growth. The results of the present study clearly show that K. japonica is a predator of diverse phytoplankton, including toxic or harmful algae, and may also affect the dynamics of red tides caused by these prey species. Copyright © 2017 Elsevier B.V. All rights reserved.
Huang, Chun-Jen; Chen, Cheng-Chung
2018-01-01
Abstract Background The burden of major depressive disorder includes suffering due to symptom severity, functional impairment, and quality of life deficits. The aim of this study was to compare the differences between electroconvulsive therapy and pharmacotherapy in reducing such burdens. Methods This was a pooled analysis study including 2 open-label trials for major depressive disorder inpatients receiving either standard bitemporal and modified electroconvulsive therapy with a maximum of 12 sessions or 20 mg/d of fluoxetine for 6 weeks. Symptom severity, functioning, and quality of life were assessed using the 17-item Hamilton Rating Scale for Depression, the Modified Work and Social Adjustment Scale, and SF-36. Side effects following treatment, including subjective memory impairment, nausea/vomiting, and headache, were recorded. The differences between these 2 groups in 17-item Hamilton Rating Scale for Depression, Modified Work and Social Adjustment Scale, quality of life, side effects, and time to response (at least a 50% reduction of 17-item Hamilton Rating Scale for Depression) and remission (17-item Hamilton Rating Scale for Depression ≤7) following treatment were analyzed. Results Electroconvulsive therapy (n=116) showed a significantly greater reduction in 17-item Hamilton Rating Scale for Depression, Modified Work and Social Adjustment Scale, and quality of life deficits and had significantly shorter time to response/remission than fluoxetine (n=126). However, the electroconvulsive therapy group was more likely to experience subjective memory impairment and headache. Conclusions Compared with fluoxetine, electroconvulsive therapy was more effective in alleviating the burden of major depressive disorder and had a substantially increased speed of response/remission in the acute phase. Increased education and information about electroconvulsive therapy for clinicians, patients, and their families and the general public is warranted. PMID:29228200
Li, Ning; Dou, Lizhou; Zhang, Yueming; Jin, Jing; Wang, Guiqi; Xiao, Qin; Li, Yexiong; Wang, Xin; Ren, Hua; Fang, Hui; Wang, Weihu; Wang, Shulian; Liu, Yueping; Song, Yongwen
2017-03-01
Accurate prediction of the response to preoperative chemoradiotherapy (CRT) potentially assists in the individualized selection of treatment. Endorectal US (ERUS) is widely used for the pretreatment staging of rectal cancer, but its use for preoperatively predicting the effects of CRT is not well evaluated because of the inflammation, necrosis, and fibrosis induced by CRT. This study assessed the value of sequential ERUS in predicting the efficacy of preoperative CRT for locally advanced rectal cancer. Forty-one patients with clinical stage II/III rectal adenocarcinoma were enrolled prospectively. Radiotherapy was delivered to the pelvis with concurrent chemotherapy of capecitabine and oxaliplatin. Total mesorectal excision was performed 6 to 8 weeks later. EUS measurements of primary tumor maximum diameter were performed before (ERUS1), during (ERUS2), and 6 to 8 weeks after (ERUS3) CRT, and the ratios of these were calculated. Correlations between ERUS values, tumor regression grade (TRG), T down-staging rate, and pathologic complete response (pCR) rate were assessed, and survival was analyzed. There was no significant correlation between ERUS2/ERUS1 and TRG. The value of ERUS3/ERUS1 correlated with pCR rate and TRG but not T down-staging rate. An ERUS3 value of 6.3 mm and ERUS3/ERUS1 of 52% were used as the cut-off for predicting pCR, and patients were divided into good and poor prognosis groups. Although not statistically significant, 3-year recurrence and survival rates of the good prognosis group were better than those of the poor prognosis group. Sequential ERUS may predict therapeutic efficacy of preoperative CRT for locally advanced rectal cancer. (Clinical trial registration number: NCT01582750.). Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Heart rate profile during exercise in patients with early repolarization.
Cay, Serkan; Cagirci, Goksel; Atak, Ramazan; Balbay, Yucel; Demir, Ahmet Duran; Aydogdu, Sinan
2010-09-01
Both early repolarization and altered heart rate profile are associated with sudden death. In this study, we aimed to demonstrate an association between early repolarization and heart rate profile during exercise. A total of 84 subjects were included in the study. Comparable 44 subjects with early repolarization and 40 subjects with normal electrocardiogram underwent exercise stress testing. Resting heart rate, maximum heart rate, heart rate increment and decrement were analyzed. Both groups were comparable for baseline characteristics including resting heart rate. Maximum heart rate, heart rate increment and heart rate decrement of the subjects in early repolarization group had significantly decreased maximum heart rate, heart rate increment and heart rate decrement compared to control group (all P < 0.05). The lower heart rate increment (< 106 beats/min) and heart rate decrement (< 95 beats/min) were significantly associated with the presence of early repolarization. After adjustment for age and sex, the multiple-adjusted OR of the risk of presence of early repolarization was 2.98 (95%CI 1.21-7.34) (P = 0.018) and 7.73 (95%CI 2.84-21.03) (P < 0.001) for the lower heart rate increment and heart rate decrement compared to higher levels, respectively. Subjects with early repolarization have altered heart rate profile during exercise compared to control subjects. This can be related to sudden death.
Short-term Recovery Following Resistance Exercise Leading or not to Failure.
González-Badillo, J J; Rodríguez-Rosell, D; Sánchez-Medina, L; Ribas, J; López-López, C; Mora-Custodio, R; Yañez-García, J M; Pareja-Blanco, F
2016-04-01
This study analyzed the time course of recovery following 2 resistance exercise protocols differing in level of effort: maximum (to failure) vs. half-maximum number of repetitions per set. 9 males performed 3 sets of 4 vs. 8 repetitions with their 80% 1RM load, 3×4(8) vs. 3×8(8), in the bench press and squat. Several time-points from 24 h pre- to 48 h post-exercise were established to assess the mechanical (countermovement jump height, CMJ; velocity against the 1 m·s(-1) load, V1-load), biochemical (testosterone, cortisol, GH, prolactin, IGF-1, CK) and heart rate variability (HRV) and complexity (HRC) response to exercise. 3×8(8) resulted in greater neuromuscular fatigue (higher reductions in repetition velocity and velocity against V1-load) than 3×4(8). CMJ remained reduced up to 48 h post-exercise following 3×8(8), whereas it was recovered after 6 h for 3×4(8). Significantly greater prolactin and IGF-1 levels were found for 3×8(8) vs. 3×4(8). Significant reductions in HRV and HRC were observed for 3×8(8) vs. 3×4(8) in the immediate recovery. Performing a half-maximum number of repetitions per set resulted in: 1) a stimulus of faster mean repetition velocities; 2) lower impairment of neuromuscular performance and faster recovery; 3) reduced hormonal response and muscle damage; and 4) lower reduction in HRV and HRC following exercise. © Georg Thieme Verlag KG Stuttgart · New York.
Shafagoj, Yanal A; Mohammed, Faisal I
2002-08-01
The physiological effects of cigarette smoking have been widely studied, however, little is known regarding the effects of smoking hubble-bubble. We examined the acute effects of hubble-bubble smoking on heart rate, systolic, diastolic, and mean arterial blood pressure and maximum end-expiratory carbon monoxide. This study was carried out in the student laboratory, School of Medicine, Department of Physiology, University of Jordan, Amman, Jordan, during the summer of 1999. In 18 healthy habitual hubble-bubble smokers, heart rate, blood pressure, and maximum end-expiratory carbon monoxide was measured before, during and post smoking of one hubble-bubble run (45 minutes). Compared to base line (time zero), at the end of smoking heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure, and maximum end-expiratory carbon monoxide were increased 16 2.4 beats per minute, 6.7 2.5 mm Hg, 4.4 1.6 mm Hg, 5.2 1.7 mm Hg, and 14.2 1.8 ppm, (mean standard error of mean, P<.05). Acute short-term active hubble-bubble smoking elicits a modest increase in heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure and maximum end-expiratory carbon monoxide in healthy hubble-bubble smokers.