Sample records for maximum scour depth

  1. Observed and Predicted Pier Scour in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lombard, Pamela J.

    2002-01-01

    Pier-scour and related data were collected and analyzed for nine high river flows at eight bridges across Maine from 1997 through 2001. Six bridges had multiple piers. Fifteen of 23 piers where data were measured during a high flow had observed maximum scour depths ranging from 0.5 feet (ft) to 12.0 ft. No pier scour was observed at the remaining eight piers. The maximum predicted pier-scour depths associated with the 23 piers were computed using the equations in the Federal Highway Administration's Hydraulic Engineering Circular number 18 (HEC-18), with data collected for this study. The predicted HEC-18 maximum pier-scour depths were compared to the observed maximum pier-scour depths. The HEC-18 pier-scour equations are intended to be envelope equations, ideally never underpredicting scour depths and not appreciably overpredicting them. The HEC-18 pier-scour equations performed well for rivers in Maine. Twenty-two out of 23 pier-scour depths were overpredicted by 0.7 ft to 18.3 ft. One pier-scour depth was underpredicted by 4.5 ft. For one pier at each of two bridges, large amounts of debris lodged on the piers after high-flow measurements were made at those sites. The scour associated with the debris increased the maximum pier-scour depths by about 5 ft in each case.

  2. Scour at bridge sites in Delaware, Maryland, and Virginia

    USGS Publications Warehouse

    Hayes, Donald C.

    1996-01-01

    Scour data were obtained from discharge measure- ments to develop and evaluate the reliability of constriction-scour and local-scour equations for rivers in Delaware, Maryland, and Virginia. No independent constriction-scour or local-scour equations were developed from the data because no significant relation was deter-mined between measured scour and streamflow, streambed, and bridge characteristics. Two existing equations were evaluated for prediction of constriction scour and 14 existing equations were evaluated for prediction of local scour. Constriction-scour data were obtained from historical stream discharge measurements, field surveys, and bridge plans at nine bridge sites in the three-State area. Constriction scour was computed by subtracting the average-streambed elevation in the constricted reach from an uncontracted-channel reference elevation. Hydraulic conditions were estimated for the measurements with the greatest discharges by use of the Water-Surface Profile computation model. Measured and calculated constriction-scour data were used to evaluate the reliability of Laursen's clear-water constriction-scour equation and Laursen's live-bed constriction-scour equation. Laursen's clear-water constriction-scour equation underestimated 21 of 23 scour measure- ments made at three sites. A sensitivity analysis showed that the equation is extremely sensitive to estimates of the channel-bottom width. Reduction in estimates of bottom width by one-third resulted in predictions of constriction scour slightly greater than measured values for all scour measurements. Laursen's live-bed constriction- scour equation underestimated 10 of 14 scour measurements made at one site. The error between measured and predicted constriction scour was less than 1.0 ft (feet) for 12 measure-ments and less than 0.5 ft for 8 measurements. Local-scour data were obtained from stream discharge measurements, field surveys, and bridge plans at 15 bridge sites in the three-State area. The reliability of 14 local-scour equations were evaluated. From visual inspection of the plotted data, the Colorado State University, Froehlich design, Laursen, and Mississippi pier-scour equations appeared to be the best predictors of local scour. The Colorado State University equation underestimated 11 scour depths in clear-water scour conditions by a maximum of 2.4 ft, and underestimated 3 scour depth in live-bed scour conditions by a maximum of 1.3 ft. The Froehlich design equation under- estimated two scour depth in clear-water scour conditions by a maximum of 1.2 ft, and under- estimated one scour depth in live-bed scour conditions by a maximum of 0.4 ft. Laursen's equation overestimated the maximum scour depth in clear-water scour conditions by approximately one-half pier width or approximately 1.5 ft, and overestimated the maximum scour depth in live-bed scour conditions by approximately one-pier width or approximately 3 ft. The Mississippi equation underestimated six scour depths in clear-water scour conditions by a maximum of 1.2 ft, and underestimated one scour depth in live-bed scour conditions by 1.6 ft. In both clear-water and live-bed scour conditions, the upper limit for the depth of scour to pier-width ratio for all local scour measurements was 2.1. An accurate pier- approach velocity is necessary to use many local pier-scour equations for bridge design. Velocity data from all the discharge measurements reviewed for this investigation were used to develop a design curve to estimate pier-approach velocity from mean cross-sectional velocity. A least- squares regression and offset were used to envelop the velocity data.

  3. Comparison of observed and predicted abutment scour at selected bridges in Maine.

    DOT National Transportation Integrated Search

    2008-01-01

    Maximum abutment-scour depths predicted with five different methods were compared to : maximum abutment-scour depths observed at 100 abutments at 50 bridge sites in Maine with a : median bridge age of 66 years. Prediction methods included the Froehli...

  4. Scour around vertical wall abutment in cohesionless sediment bed

    NASA Astrophysics Data System (ADS)

    Pandey, M.; Sharma, P. K.; Ahmad, Z.

    2017-12-01

    At the time of floods, failure of bridges is the biggest disaster and mainly sub-structure (bridge abutments and piers) are responsible for this failure of bridges. It is very risky if these sub structures are not constructed after proper designing and analysis. Scour is a natural phenomenon in rivers or streams caused by the erosive action of the flowing water on the bed and banks. The abutment undermines due to river-bed erosion and scouring, which generally recognized as the main cause of abutment failure. Most of the previous studies conducted on scour around abutment have concerned with the prediction of the maximum scour depth (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005). Dey and Barbhuiya (2005) proposed a relationship for computing maximum scour depth near an abutment, based on laboratory experiments, for computing maximum scour depth around vertical wall abutment, which was confined to their experimental data only. However, this relationship needs to be also verified by the other researchers data in order to support the reliability to the relationship and its wider applicability. In this study, controlled experimentations have been carried out on the scour near a vertical wall abutment. The collected data in this study along with data of the previous investigators have been carried out on the scour near vertical wall abutment. The collected data in this study along with data of the previous have been used to check the validity of the existing equation (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005) of maximum scour depth around the vertical wall abutment. A new relationship is proposed to estimate the maximum scour depth around vertical wall abutment, it gives better results all relationships.

  5. Level II scour analysis for Bridge 39 (TOPSTH00510039) on Town Highway 51, crossing Tabor Branch Waits River, Topsham, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Severance, Tim

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.4 ft. The worst-case contraction scour occurred at the maximum free surface flow discharge, which was less than the 100-year discharge. Abutment scour ranged from 4.8 to 8.0 ft. The worst-case abutment scour occurred at 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Scour assessments and sediment-transport simulation for selected bridge sites in South Dakota

    USGS Publications Warehouse

    Niehus, C.A.

    1996-01-01

    Scour at bridges is a major concern in the design of new bridges and in the evaluation of structural stability of existing bridges. Equations for estimating pier, contraction, and abutment scour have been developed from numerous laboratory studies using sand-bed flumes, but little verification of these scour equations has been done for actual rivers with various bed conditions. This report describes the results of reconnaissance and detailed scour assessments and a sediment-transport simulation for selected bridge sites in South Dakota. Reconnaissance scour assessments were done during 1991 for 32 bridge sites. The reconnaissance assessments for each bridge site included compilation of general and structural data, field inspection to record and measure pertinent scour variables, and evaluation of scour susceptibility using various scour-index forms. Observed pier scour at the 32 sites ranged from 0 to 7 feet, observed contraction scour ranged from 0 to 4 feet, and observed abutment scour ranged from 0 to 10 feet. Thirteen bridge sites having high potential for scour were selected for detailed assessments, which were accomplished during 1992-95. These detailed assessments included prediction of scour depths for 2-, 100-, and 500-year flows using selected published scour equations; measurement of scour during high flows; comparison of measured and predicted scour; and identification of which scour equations best predict actual scour. The medians of predicted pier-scour depth at each of the 13 bridge sites (using 13 scour equations) ranged from 2.4 to 6.8 feet for the 2-year flows and ranged from 3.4 to 13.3 feet for the 500-year flows. The maximum pier scour measured during high flows ranged from 0 to 8.5 feet. Statistical comparison (Spearman rank correlation) of predicted pier-scour depths (using flow data col- lected during scour measurements) indicate that the Laursen, Shen (method b), Colorado State University, and Blench (method b) equations correlate closer with measured scour than do the other prediction equations. The predicted pier-scour depths using the Varzeliotis and Carstens equations have weak statistical rela- tions with measured scour depths. Medians of predicted pier-scour depth from the Shen (method a), Chitale, Bata, and Carstens equations are statistically equal to the median of measured pier-scour depths, based on the Wilcoxon signed-ranks test. The medians of contraction scour depth at each of the 13 bridge sites (using one equation) ranged from -0.1 foot for the 2- year flows to 23.2 feet for the 500-year flows. The maximum contraction scour measured during high flows ranged from 0 to 3.0 feet. The contraction- scour prediction equation substantially overestimated the scour depths in almost all comparisons with the measured scour depths. A significant reason for this discrepancy is due to the wide flood plain (as wide as 5,000 feet) at most of the bridge sites that were investigated. One possible way to reduce this effect for bridge design is to make a decision on what is the effective approach section and thereby limit the size of the bridge flow approach width. The medians of abutment-scour depth at each of the 13 bridge sites (using five equations) ranged from 8.2 to 16.5 feet for the 2-year flows and ranged from 5.7 to 41 feet for the 500-year flows. The maximum abutment scour measured during high flows ranged from 0 to 4.0 feet. The abutment-scour prediction equations also substantially overestimated the scour depths in almost all comparisons with the measured scour depths. The Liu and others (live bed) equation predicted abutment-scour depths substantially lower than the other four abutment-scour equations and closer to the actual measured scour depths. However, this equation at times predicted greater scour depths for 2-year flows than it did for 500-year flows, making its use highly questionable. Again, limiting the bridge flow approach width would produce more reasonable predicted abutment scour.

  7. Comparison of Observed and Predicted Abutment Scour at Selected Bridges in Maine

    USGS Publications Warehouse

    Lombard, Pamela J.; Hodgkins, Glenn A.

    2008-01-01

    Maximum abutment-scour depths predicted with five different methods were compared to maximum abutment-scour depths observed at 100 abutments at 50 bridge sites in Maine with a median bridge age of 66 years. Prediction methods included the Froehlich/Hire method, the Sturm method, and the Maryland method published in Federal Highway Administration Hydraulic Engineering Circular 18 (HEC-18); the Melville method; and envelope curves. No correlation was found between scour calculated using any of the prediction methods and observed scour. Abutment scour observed in the field ranged from 0 to 6.8 feet, with an average observed scour of less than 1.0 foot. Fifteen of the 50 bridge sites had no observable scour. Equations frequently overpredicted scour by an order of magnitude and in some cases by two orders of magnitude. The equations also underpredicted scour 4 to 14 percent of the time.

  8. Upper bound of pier scour in laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2016-01-01

    The U.S. Geological Survey (USGS), in cooperation with the South Carolina Department of Transportation, conducted several field investigations of pier scour in South Carolina and used the data to develop envelope curves defining the upper bound of pier scour. To expand on this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with pier scour data from other sources and to evaluate upper-bound relations with this larger data set. To facilitate this analysis, 569 laboratory and 1,858 field measurements of pier scour were compiled to form the 2014 USGS Pier Scour Database. This extensive database was used to develop an envelope curve for the potential maximum pier scour depth encompassing the laboratory and field data. The envelope curve provides a simple but useful tool for assessing the potential maximum pier scour depth for effective pier widths of about 30 ft or less.

  9. Level II scour analysis for Bridge 37 (CABOTH00410037) on Town Highway 41, crossing the Winooski River, Cabot, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Medalie, Laura

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 2.7 ft. The worst-case contraction scour occurred at the maximum free-surface flow (with road overflow) discharge, which was less than the 100-year discharge. Abutment scour ranged from 9.8 to 10.7 ft along the left abutment and from 16.2 to 19.9 ft along the right abutment. The worstcase abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich and Hire equations (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Two-Dimensional Simulation of Flow and Evaluation of Bridge Scour at Structure A-1700 on Interstate 155 over the Mississippi River near Caruthersville, Missouri

    USGS Publications Warehouse

    Huizinga, Richard J.

    2007-01-01

    The evaluation of scour at bridges throughout the State of Missouri has been ongoing since 1991, and most of these evaluations have used one-dimensional hydraulic analysis and application of conventional scour depth prediction equations. Occasionally, the complex conditions of a site dictate a more thorough assessment of the stream hydraulics beyond a one-dimensional model. This was the case for structure A-1700, the Interstate 155 bridge crossing the Mississippi River near Caruthersville, Missouri. To assess the complex hydraulics at this site, a two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Mississippi River in the vicinity of the Interstate 155 structure A-1700. The model was used to simulate flow conditions for three discharges: a flood that occurred on April 4, 1975 (the calibration flood), which had a discharge of 1,658,000 cubic feet per second; the 100-year flood, which has a discharge of 1,960,000 cubic feet per second; and the project design flood, which has a discharge of 1,974,000 cubic feet per second. The project design flood was essentially equivalent to the flood that would cause impending overtopping of the mainline levees along the Mississippi River in the vicinity of structure A-1700. Discharge and river-stage readings from the flood of April 4, 1975, were used to calibrate the flow model. The model was then used to simulate the 100-year and project design floods. Hydraulic flow parameters obtained from the three flow simulations were applied to scour depth prediction equations to determine contraction, local pier, and abutment scour depths at structure A-1700. Contraction scour and local pier scour depths computed for the project design discharge generally were the greatest, whereas the depths computed for the calibration flood were the least. The maximum predicted total scour depth (contraction and local pier scour) for the calibration flood was 66.1 feet; for the 100-year flood, the maximum predicted total scour depth was 74.6 feet; for the project design flood, the maximum predicted total scour depth was 93.0 feet. If scour protection did not exist, bent 14 and piers 15 through 21 would be substantially exposed or undermined by the predicted total scour depths in all of the flood simulations. However, piers 18 through 21 have a riprap blanket around the base of each, and the riprap blanket observed on the right bank around bent 14 is thought to extend around the base of pier 15, which would limit the amount of scour that would occur at these piers. Furthermore, the footings and caissons that are not exposed by computed contraction scour may arrest local pier scour, which will limit local pier scour at several bents and piers. Nevertheless, main-channel piers 16 and 17 and all of the bents on the left (as viewed facing downstream) overbank are moderately to substantially exposed by the predicted scour depths from the three flood simulations, and there is no known scour protection at these piers or bents. Abutment scour depths were computed for structure A-1700, but abutment scour is expected to be mitigated by the presence of guidebanks upstream from the bridge abutments, as well as riprap revetment on the abutment and guidebank faces.

  11. The collection of clear-water contraction and abutment scour data at selected bridge sites in the coastal plain and piedmont of South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andy W.; Edited by Abt, S. R. and others

    1998-01-01

    Clear-water contraction and abutment scour data were collected at 128 bridge sites in South Carolina. In the sandy soils of the Coastal Plain, clear-water-scour data were collected at 63 sites (scour depths ranged from 0.4 to 7.2 meters.) In the clayey soils of the Piedmont, clear-water-scour data were collected at 47 sites (scour depths ranged from 0 to 1.4 meters.) In the sandy, clayey soils of the Piedmont, clear-water-scour data were collected at 18 sites (scour depths ranged from 0.9 to 5.5 meters.) The field data are to be compiled into a data base that will include bridge age; basin, soil and hydraulic characteristics; and theoretical scour data. The data are planned to be statistically analyzed for significant relations that may help explain and (or) predict maximum scour depths at bridges in South Carolina.

  12. Investigation of pier scour in coarse-bed streams in Montana, 2001 through 2007

    USGS Publications Warehouse

    Holnbeck, Stephen R.

    2011-01-01

    A primary goal of ongoing field research of bridge scour is improvement of scour-prediction equations so that pier-scour depth is predicted accurately-an important element of hydraulic analysis and design of highway bridges that cross streams, rivers, and other waterways. Scour depth for piers in streambeds with a mixture of sand, gravel, cobbles, and boulders (coarse-bed streams, which are common in Montana) generally is less than the scour depth in finer-grained (sandy) streambeds under similar conditions. That difference is attributed to an armor layer of coarser material. Pier-scour data from the U.S. Geological Survey were used in this study to develop a bed-material correction factor, which was incorporated into the Federal Highway Administration's recommended equation for computing pier scour. This report describes results of a study of pier scour in coarse-bed streams at 59 bridge sites during 2001-2007 in the mountain and foothill regions of western Montana. Respective drainage areas ranged from about 3 square miles (mi2) to almost 20,000 mi2. Data collected and analyzed for this study included 103 pier-scour measurements; the report further describes data collection, shows expansion of the national coarse pier-scour database, discusses use of the new data in evaluation of relative accuracy of various predictive equations, and demonstrates how differences in size and gradation between surface bed material and shallow-subsurface bed material might relate to pier scour. Nearly all measurements were made under clear-water conditions with no incoming sediment supply to the bridge opening. Half of the measurements showed approach velocities that equaled or surpassed the critical velocity for incipient motion of bed material, possibly indicating that measurements were made very near the threshold between clear-water and live-bed scour, where maximum scour was shown in laboratory studies. Data collected in this study were compared to selected pier-scour data from the nationwide Bridge Scour Data Management System (BSDMS), to show the effect of bed-material size and gradation on scour depth. Unsteady field flow conditions and armoring by coarser material reduced scour relative to the clear-water/sandy-bed laboratory results at steady flow. The new correction factor and the standard scour equation produced the most accurate estimates of scour depth in armored, coarse-bed conditions. Maximum relative scour occurred at similar velocity across variations in bed material and gradation. Pier scour decreased with increased variation in particle size and gradation.

  13. Experimental and Numerical Investigation of Local Scour Around Submarine Piggyback Pipeline Under Steady Current

    NASA Astrophysics Data System (ADS)

    Zhao, Enjin; Shi, Bing; Qu, Ke; Dong, Wenbin; Zhang, Jing

    2018-04-01

    As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few experimental studies have been published on the scour around the piggyback pipeline under steady current. This study numerically and experimentally investigates the local scour of the piggyback pipe under steady current. The influence of prominent factors such as pipe diameter, inflow Reynolds number, and gap between the main and small pipes, on the maximum scour depth have been examined and discussed in detail. Furthermore, one formula to predict the maximum scour depth under the piggyback pipeline has been derived based on the theoretical analysis of scour equilibrium. The feasibility of the proposed formula has been effectively calibrated by both experimental data and numerical results. The findings drawn from this study are instructive in the future design and application of the piggyback pipeline.

  14. Evaluation of bridge-scour data at selected sites in Ohio

    USGS Publications Warehouse

    Jackson, K.S.

    1997-01-01

    Scour data collected during 1989-94 were evaluated to determine whether pier scour and contraction scour occurred at 22 bridge sites in Ohio. Pier-scour depths computed from selected pier-scour prediction equations were compared with measured pier-scour depths, and the accuracy of the prediction equations were evaluated. Observed pier-scour relations were compared to relations developed through laboratory research. Mean streambed elevations were evaluated to determine the depth of contraction scour. Channel stability was assessed by use of mean streambed elevations at the approach section. Ground-penetrating radar was used at all sites to investigate the presence of historical scour. Pier scour was observed in 45 of 47 scour measurements made during floods; 84 cases of pier scour were documented, 83 at solid-wall piers and 1 at a capped-pile type pier. Estimated recurrence intervals for 27 of the 35 measured streamflows, all on unregulated streams, were less than 2 years. Seventeen pier-scour prediction equations were evaluated. The Froehlich Design equation was found to most closely meet the 'best design equation' criteria for all 84 cases of the observed data. The Larras equation was found to be the best design equation for the observed data where approach-flow attack angles were 10 degrees or less. Observed pier-scour depths and flow depths ranged from 0.5 to 6.1 feet and 3.0 to 19.8 feet, respectively. All pier-scour depths were less than 2.4 times the corresponding pier width. Selected factors were normalized by dividing by effective pier width. LOWESS curves were developed using the 84 cases of observed pier scour. Normalized scour depth increased with normalized flow depth; however, the rate of increase appeared to lessen as normalized flow depth exceeded 2.5. Normalized scour depths increased rapidly as flow intensity approached the threshold value of 1 and then decreased as flow intensities exceeded this threshold. Normalized scour depth was found to increase with Froude number, and a steeper slope was evident for Froude numbers exceeding 0.2. Normalized scour depth was found to increase with median grain size up to about 10 millimeters for bed material near the pier, then decrease for median grain sizes greater than 10 millimeters. Normalized scour depth was also found to decrease as sediment gradation of bed material near the pier increased. The observed pier-scour relations determined from the field measurements tend to support conclusions by previous researchers of streambed scour, except for the previous finding that normalized scour depth decreases consistently with increasing median grain size. Possible factors that may have influenced the observed trends in the relation between normalized scour depth and median grain size in this study are cohesion and scour measurements made at nonequilibrium conditions. LOWESS curves were developed for 45 of 84 cases of observed pier scour where approach-flow attack angles were less than or equal to 10 degrees. These curves were visually compared to LOWESS curves developed from all observations of pier scour. For three relations, differences in the trends of the LOWESS curves were of sufficient magnitude to warrant discussion. Contraction scour was observed in 4 of the 47 scour measurements and ranged from 0.8 to2.3 feet in depth. Analysis of annual mean streambed approach-section elevations indicated that approach sections were generally stable at 18 of the 22 sites. Ground-penetrating radar, a geophysical method that enables subsurface exploration of the streambed when conditions are favorable, was used at all sites to determine whether historical scour had occurred. Results of the ground-penetrating radar surveys at 20 sites in 1990 indicated the presence of historical scour surfaces at 5 sites. At four of the five sites showing evidence of possible historical scour, differences between the estimated depth of historical scour and the maximum observed scour were w

  15. Relation of local scour to hydraulic properties at selected bridges in New York

    USGS Publications Warehouse

    Butch, Gerard K.; ,

    1993-01-01

    Hydraulic properties, bridge geometry, and basin characteristics at 31 bridges in New York are being investigated to identify factors that affect local scour. Streambed elevations measured by the U.S. Geological Survey and New York State Department of Transportation are used to estimate local-scour depth. Data that show zero or minor scour were included in the analysis to decrease bias and to estimate hydraulic properties related to local scour. The maximum measured local scour at the 31 bridges for a single peak flow was 5.4 feet, but the deepening of scour holes at two sites to 6.1 feet and 7.8 feet by multiple peak flows could indicate that the number or duration of high flows is a factor. Local scour at a pier generally increased as the recurrence interval (magnitude) of the discharge increased, but the correlation between local-scour depth and recurrence interval was inconsistent among study sites. For example, flows with a 2-year recurrence interval produced 2 feet of local scour at two sites, whereas a flow with a recurrence interval produced 2 feet of local scour at two sites, whereas a flow with a recurrence interval of 50 years produced only 0.5 feet of local scour at another site. Local-scour depth increased with water depth, stream velocity, and Reynolds number but did not correlate well with bed-material size, Froude number, pier geometry, friction slope, or several other hydraulic and basin characteristics.

  16. Upper bound of abutment scour in laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen

    2016-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a field investigation of abutment scour in South Carolina and used those data to develop envelope curves that define the upper bound of abutment scour. To expand on this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with abutment scour data from other sources and evaluate upper bound patterns with this larger data set. To facilitate this analysis, 446 laboratory and 331 field measurements of abutment scour were compiled into a digital database. This extensive database was used to evaluate the South Carolina abutment scour envelope curves and to develop additional envelope curves that reflected the upper bound of abutment scour depth for the laboratory and field data. The envelope curves provide simple but useful supplementary tools for assessing the potential maximum abutment scour depth in the field setting.

  17. Evaluation of pier-scour measurement methods and pier-scour predictions with observed scour measurements at selected bridge sites in New Hampshire, 1995-98

    USGS Publications Warehouse

    Boehmler, Erick M.; Olimpio, Joseph R.

    2000-01-01

    In a previous study, 44 of 48 bridge sites examined in New Hampshire were categorized as scour critical. In this study, the U.S. Geological Survey (USGS) evaluated pier-scour measurement methods and predictions at many of these sites. This evaluation included measurement of pier-scour depths at 20 bridge sites using Ground- Penetrating Radar (GPR) surveys. Pier scour was also measured during floods by teams at 5 of these 20 sites. At 4 of the 20 sites, fixed instruments were installed to monitor scour. At only one bridge site investigated by a team was any pier scour measurable during a flood event. A scour depth of 0.7 foot (0.21 m) was measured at a pier in the channel at the State Route 18 bridge over the Connecticut River in Littleton. Measurements made using GPR and (or) fixed instruments indicated pier scour for six sites. The GPR surveys indicated scour along the side of a pier and further upstream from the nose of a pier that was not detected by flood-team measurements at two sites. Most pier-scour equations selected for this examination were reviewed and published in previous scour investigations. Graphical comparison of residual pier-scour depths indicate that the Shen equation yielded pier-scour depth predictions closest to those measured, without underestimating. Measured depths of scour, however, were zero feet for 14 of the 20 sites. For the Blench-Inglis II equation and the Simplified Chinese equation, most differences between measured and predicted scour depths were within 5 feet. These two equations underpredicted scour for one of six sites with measurable scour. The underprediction, however, was within the resolution of the depth measurements. The Simplified Chinese equation is less sensitive than other equations to velocity and depth input variables, and is one of the few empirical equations to integrate the influence of flow competence, or a measure of the maximum streambed particle size that a stream is capable of transporting, in the computation of pier scour. Absence of a flow-competence component could explain some of the overprediction by other equations, but was not investigated in this study. Measurements of scour during large floods at additional sites are necessary to strengthen and substantiate the application of alternatives to the HEC-18 equation to estimate pier scour at waterway crossings in New Hampshire.

  18. Simulation of flow and evaluation of bridge scour at Horse Island Chute Bridge near Chester, Illinois

    USGS Publications Warehouse

    Huizinga, Richard J.; Rydlund, Jr., Paul H.

    2001-01-01

    The evaluation of scour at bridges throughout the State of Missouri has been ongoing since 1991, and most of these evaluations have used one-dimensional hydraulic analysis and application of conventional scour depth equations. Occasionally, the conditions of a site dictate that a more thorough hydraulic assessment is required. To provide the hydraulic parameters required to determine the potential scour depths at the bridge over Horse Island Chute near Chester, Illinois, a two-dimensional finite-element surface-water model (FESWMS-2DH) was used to simulate flood flows in the vicinity of the Missouri State Highway 51 crossing of the Mississippi River and Horse Island Chute. The model was calibrated using flood-flow information collected during the 1993 flood. A flood profile along the Illinois side of the Mississippi River on August 5, 1993, with a corresponding measured discharge of 944,000 cubic feet per second was used to calibrate the model. Two additional flood-flow simulations were run: the flood peak that occurred on August 6, 1993, with a maximum discharge of 1,000,000 cubic feet per second, and the discharge that caused impending overtopping of the road embankment in the vicinity of the Horse Island Chute bridge, with a discharge of 894,000 cubic feet per second (impendent discharge). Hydraulic flow parameters obtained from the simulations were applied to scour depth equations to determine general contraction and local pier and abutment scour depths at the Horse Island Chute bridge. The measured discharge of 944,000 cubic feet per second resulted in 13.3 feet of total combined contraction and local pier scour at Horse Island Chute bridge. The maximum discharge of 1,000,000 cubic feet per second resulted in 15.8 feet of total scour and the impendent discharge of 894,000 cubic feet per second resulted in 11.6 feet of total scour.

  19. Level II scour analysis for Bridge 42 (RANDVT00120042) on State Highway 12, crossing Third Branch White River, Randolph, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Weber, Matthew A.

    1996-01-01

    bridge consisting of four concrete spans. The maximum span length is 57 ft. (Vermont Agency of Transportation, written commun., July 29, 1994). The bridge is supported by vertical, concrete abutments and three concrete piers. The toe of the left abutment is at the channel edge. The toe of the right abutment is set back on the right over-bank. The roadway centerline on the structure has a slight horizontal curve; however, the main channel is skewed approximately 5 degrees to the bridge. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  20. Investigation of scour adjacent to submerged geotextiles used for shore protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorton, Alicia M.; Herrington, Thomas O.; Smith, Ernest R.

    This study presents the results of an experimental investigation of morphology change in the vicinity of submerged geotextiles placed within the surf zone. The study was motivated by the emerging use of submerged geotextile tubes for shore protection, shoreline stabilization, and surf amenity enhancement and the need to understand the mechanisms responsible for scour in the vicinity of these structures to preserve their structural integrity and reduce their structural failure. A movable bed physical model experiment was conducted at the U.S. Army Engineer Research and Development Center’s Large-scale Sediment Transport Facility (LSTF) to develop empirical formulations to predict the meanmore » scour depth adjacent to geotextiles under oblique wave-breaking conditions as a function of the maximum Keulegan-Carpenter, Shields, and Reynolds numbers. The observed scour in the vicinity of the geotextiles was also compared to a previous study of scour in the vicinity of submerged cylinders. Formulations developed by Cataño-Lopera and García (2006) relating the Keulegan-Carpenter, Shields, and Reynolds numbers to the scour depth were used to predict the scour observed during the LSTF experiment. Results show that the formulations of Cataño-Lopera and García (2006) over-predict the observed scour when calculated using the maximum Keulegan-Carpenter, Shields, and Reynolds numbers. New, modified expressions of Cataño-Lopera and García (2006) were developed for use in oblique random wave fields.« less

  1. Autogenic erosional surfaces on backwater-mediated deltas from floods and avulsions

    NASA Astrophysics Data System (ADS)

    Ganti, V.; Chadwick, A. J.; Lamb, M. P.; Fischer, W. W.; Trower, L.

    2016-12-01

    Erosional surfaces provide key bounds on the architecture of fluvio-deltaic stratigraphy and are attributed to relative sea level fall and sediment supply changes modulated by secular changes in climate; however, major knowledge gap exists in detangling the record of internal sedimentary dynamics from that of allogenic forcings. Recent work suggests that river flood variability through persistent backwater hydrodynamics exerts a primary control on lobe-scale avulsions on deltas, and floods and avulsions play an important role in driving transient channel incision even in deltas experiencing net aggradation. Here, we identify and quantify two autogenically generated mechanisms that result in erosional boundaries within fluvio-deltaic stratigraphy, namely, flood-induced and avulsion-induced scours. We developed a theoretical model based on mass conversation that suggests that flood-induced scours resulting from river drawdown propagate approximately one backwater length (Lb) from the shoreline, and the scour depth is maximum near the shoreline and scales with flood variability and the bankfull depth (hbf). Avulsion-induced scours result from river steepening due to shortening of the new river path. This mechanism results in an erosional pulse whose maximum depth scales with the critical in-channel sedimentation that induces an avulsion (scales with hbf) and initiates at the avulsion site and propagates upstream by Lb. Together, autogenically generated erosional scours can extend 1-2Lb from the shoreline and their depths are a function of hbf and flood variability. We validate these theoretical predictions using a recent experiment of river delta evolution governed by persistent backwater hydrodynamics under constant sea level conditions. Finally, we reinterpret outcrop scale observations within the Castlegate sandstone, Utah—type example for sequence stratigraphy—and show that field observations are consistent with scours resulting from floods and avulsions alone.

  2. Measurement of bridge scour at the SR-32 crossing of the Sacramento River at Hamilton City, California, 1987-92

    USGS Publications Warehouse

    Blodgett, J.C.; Harris, Carroll D.; ,

    1993-01-01

    A study of the State Route 32 crossing of the Sacramento River near Hamilton City, California, is being made to determine those channel and bridge factors that contribute to scour at the site. Three types of scour data have been measured-channel bed (natural) scour, constriction (general) scour, and local (bridge-pier induced) scour. During the years 1979-93, a maximum of 3.4 ft of channel bed scour, with a mean of 1.4 ft, has been measured. Constriction scour, which may include channel bed scour, has been measured at the site nine times during the years 1987-92. The calculated amount of constriction scour ranged from 0.2 to 3.0 ft, assuming the reference is the mean bed elevation. Local scour was measured four times at the site in 1991 and 1992 and ranged from -2.1 (fill) to 11.6 ft , with the calculated amounts dependent on the bed reference elevation and method of computation used. Surveys of the channel bed near the bridge piers indicate the horizontal location of lowest bed elevation (maximum depth of scour) may vary at least 17 ft between different surveys at the same pier and most frequently is located downstream from the upstream face of the pier.

  3. Prediction of scour depth in gravel bed rivers using radio frequency IDs : application to the Skagit River.

    DOT National Transportation Integrated Search

    2013-10-01

    The overarching goal of the proposed research was to develop, test and verify a robust system based on the Low Frequency (134.2 : kHz), passive Radio Frequency Identification (RFID) technology to be ultimately used for determining the maximum scour d...

  4. Plans for a sensitivity analysis of bridge-scour computations

    USGS Publications Warehouse

    Dunn, David D.; Smith, Peter N.

    1993-01-01

    Plans for an analysis of the sensitivity of Level 2 bridge-scour computations are described. Cross-section data from 15 bridge sites in Texas are modified to reflect four levels of field effort ranging from no field surveys to complete surveys. Data from United States Geological Survey (USGS) topographic maps will be used to supplement incomplete field surveys. The cross sections are used to compute the water-surface profile through each bridge for several T-year recurrence-interval design discharges. The effect of determining the downstream energy grade-line slope from topographic maps is investigated by systematically varying the starting slope of each profile. The water-surface profile analyses are then used to compute potential scour resulting from each of the design discharges. The planned results will be presented in the form of exceedance-probability versus scour-depth plots with the maximum and minimum scour depths at each T-year discharge presented as error bars.

  5. The upper bound of Pier Scour defined by selected laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted several field investigations of pier scour in South Carolina (Benedict and Caldwell, 2006; Benedict and Caldwell, 2009) and used that data to develop envelope curves defining the upper bound of pier scour. To expand upon this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with pier-scour data from other sources and evaluate the upper bound of pier scour with this larger data set. To facilitate this analysis, a literature review was made to identify potential sources of published pier-scour data, and selected data were compiled into a digital spreadsheet consisting of approximately 570 laboratory and 1,880 field measurements. These data encompass a wide range of laboratory and field conditions and represent field data from 24 states within the United States and six other countries. This extensive database was used to define the upper bound of pier-scour depth with respect to pier width encompassing the laboratory and field data. Pier width is a primary variable that influences pier-scour depth (Laursen and Toch, 1956; Melville and Coleman, 2000; Mueller and Wagner, 2005, Ettema et al. 2011, Arneson et al. 2012) and therefore, was used as the primary explanatory variable in developing the upper-bound envelope curve. The envelope curve provides a simple but useful tool for assessing the potential maximum pier-scour depth for pier widths of about 30 feet or less.

  6. Prevention of Bridge Scour with Non-uniform Circular Piers Plane under Steady Flows

    NASA Astrophysics Data System (ADS)

    Chen, Hsing-Ting; Wang, Chuan-Yi

    2017-04-01

    River bed scour and deposit variation extremely severe because of most of rivers are steep and rapid flows, and river discharge extremely unstable and highly unsteady during different seasons in Taiwan. In addition to the obstruction of piers foundation, it causes local scour and threatens the safety of bridges. In the past, riprap, wire gabion or wrap pier works were adopted as the protections of piers foundation, but there were no effectual outcomes. The events of break off piers still happen sometimes. For example, typhoon Kalmaegi (2008) and Morakot (2009) caused heavy damages on Ho-Fon bridge in the Da-jia river and Shuang-Yuan bridge in the Kao-Ping river, respectively. Accordingly, to understand the piers scour system and propose an appropriate protection of piers foundation becomes an important topic for this study currently. This research improves the protection works of the existing uniform bridge pier (diameter D) to ensure the safety of the bridge. The non-uniform plane of circular piers (diameter D*) are placed on the top of a bridge pier foundation to reduce the down flow impacting energy and scour by its' surface roughness characteristics. This study utilize hydraulic models to simulate local scour depth and scour depth change with time for non-uniform pier diameter ratio D/D* of 0.3,0.4,0.5,0.6,0.7 and 0.8, and different type pier and initial bed level (Y) relative under the foundation top elevation under steady flows of V/Vc=0.95,0.80 and 0.65. The research results show that the scour depth increases with an increase of flow intensity (V/Vc) under different types of steady flow hydrographs. The scour depth decreases with increase of initial bed level (Y=+0.2D*,0D*and -0.2D*) relative under the foundation top elevation of the different type pier. The maximum scour depth occurred in the front of the pier for all conditions. Because of the scouring retardation by the non-uniform plane of foundation, the scour depth is reduced for the un-exposed bridge foundation (Y=+0.2D*) under any steady flows. Opposite results are found for the exposed (Y=-0.2D*) bridge foundation. For the condition non-uniform pier diameter ratio (D/D*=0.3 0.8) scours, when D/D* is equal to 0.4, because pier oncoming flow area is the smallest one so that down flow intensity is less; as non-uniform area is bigger and decrease more down flow energy so that bring smaller scour depth and effect area. Therefore, local scour depth for pier diameter ratio of 0.4 is less than other type of pier. Considering the safety of bridge structure, a non-uniform circular pier with D/D* which equals to 0.4 and initial bed level relative to Y=+0.2D* is the most ideal pier allocations.

  7. Pier and contraction scour prediction in cohesive soils at selected bridges in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Over, Thomas M.

    2010-01-01

    This report presents the results of testing the Scour Rate In Cohesive Soils-Erosion Function Apparatus (SRICOS-EFA) method for estimating scour depth of cohesive soils at 15 bridges in Illinois. The SRICOS-EFA method for complex pier and contraction scour in cohesive soils has two primary components. The first component includes the calculation of the maximum contraction and pier scour (Zmax). The second component is an integrated approach that considers a time factor, soil properties, and continued interaction between the contraction and pier scour (SRICOS runs). The SRICOS-EFA results were compared to scour prediction results for non-cohesive soils based on Hydraulic Engineering Circular No. 18 (HEC-18). On average, the HEC-18 method predicted higher scour depths than the SRICOS-EFA method. A reduction factor was determined for each HEC-18 result to make it match the maximum of three types of SRICOS run results. The unconfined compressive strength (Qu) for the soil was then matched with the reduction factor and the results were ranked in order of increasing Qu. Reduction factors were then grouped by Qu and applied to each bridge site and soil. These results, and comparison with the SRICOS Zmax calculation, show that less than half of the reduction-factor method values were the lowest estimate of scour; whereas, the Zmax method values were the lowest estimate for over half. A tiered approach to predicting pier and contraction scour was developed. There are four levels to this approach numbered in order of complexity, with the fourth level being a full SRICOS-EFA analysis. Levels 1 and 2 involve the reduction factors and Zmax calculation, and can be completed without EFA data. Level 3 requires some surrogate EFA data. Levels 3 and 4 require streamflow for input into SRICOS. Estimation techniques for both EFA surrogate data and streamflow data were developed.

  8. Level II scour analysis for Bridge 37, (BRNETH00740037) on Town Highway 74, crossing South Peacham Brook, Barnet, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Severance, Timothy

    1997-01-01

    Contraction scour for all modelled flows ranged from 15.8 to 22.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.7 to 11.1 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in Tables 1 and 2. A cross-section of the scour computed at the bridge is presented in Figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. The geomorphic and ecological effectiveness of habitat rehabilitation works: Continuous measurement of scour and fill around large logs in sand-bed streams

    NASA Astrophysics Data System (ADS)

    Borg, Dan; Rutherfurd, Ian; Stewardson, Mike

    2007-09-01

    Geomorphologists, ecologists and engineers have all contributed to stream rehabilitation projects by predicting the physical effect of habitat restoration structures. In this study we report the results of a stream rehabilitation project on the Snowy River, SE Australia; that aims to improve fish habitat and facilitate migration associated with scour holes around large wood in the streambed. Whilst engineering models allow us to predict maximum scour, the key management issue here was not the maximum scour depth but whether the holes persisted at a range of flows, and if they were present when fish actually required them. This led to the development of a new method to continuously monitor scour in a sand-bed, using a buried pressure transducer. In this study we monitored fluctuations in the bed level below three large logs (1 m diameter) on the Snowy River. Each log had a different scour mechanism: a plunge pool, a horseshoe vortex (analogous to a bridge pier), and a submerged jet beneath the log. The continuous monitoring demonstrated a complex relationship between discharge and pool scour. The horseshoe vortex pool maintained a constant level, whilst, contrary to expectations, both the plunge pool and the submerged jet pool gradually filled over the 12 months. Filling was associated with the average rise in flows in winter, and occurred despite several freshes and discharge spikes. The plunge pool showed the most variation, with bed levels fluctuating by over 1 m. A key factor in pool scour here may not be the local water depth at the log, but the position of the log in relation to larger scale movements of sand-waves in the stream. These results question assumptions on the relative importance of small floods or channel-maintenance flows that lead to beneficial scour around large wood in sand-bed streams. Further, the continuous measurement of scour and fill around the logs suggested the presence of pool scour holes would have met critical requirements for Australian bass ( Macquaria novemaculeata) during the migration period, whereas less-frequent monitoring typical of rehabilitation trials would have suggested the contrary. The results of this study have demonstrated that geomorphic effectiveness is not always synonymous with biological effectiveness. Whilst physical models emphasise extreme changes, such as maximum scour, the key biological issue is whether scour occurs at the critical time of the life cycle. Continuous measurement of sand levels is an example of a geomorphic technique that will help to develop models that predict biologically meaningful processes, not just extremes.

  10. Level II scour analysis for Bridge 63 (CHESTH00090063) on Town Highway 9, crossing the Williams River, Chester, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.

    1997-01-01

    year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Level II scour analysis for Bridge 43 (SPRICYBRIG0043) on Bridge Street, crossing the Black River, Springfield, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Medalie, Laura

    1997-01-01

    year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  12. Level II scour analysis for Bridge 42 (BENNCYSCHL0042) on School Street, crossing Walloomsac River, Bennington, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Degnan, James R.

    1997-01-01

    Contraction scour computed for all modelled flows was 0.0 ft. Computed left abutment scour ranged from 9.4 to 10.2 ft. with the worst-case scour occurring at the 500-year discharge. Computed right abutment scour ranged from 2.7 to 5.7 ft. with the worst-case scour occurring at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  13. Level II scour analysis for Bridge 8, (MANCTH00060008) on Town Highway 6, crossing Bourn Brook, Manchester, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Hammond, Robert E.

    1997-01-01

    Contraction scour for all modelled flows was zero ft. The left abutment scour ranged from 3.6 to 9.2 ft. The worst-case left abutment scour occurred at the 500-year discharge. The right abutment scour ranged from 9.8 to 12.6 ft. The worst case right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  14. Level II scour analysis for Bridge 29 (LONDTH00410029) on Town Highway 41, crossing Cook Brook, Londonderry, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Wild, Emily C.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.5. Abutment scour ranged from 8.4 to 15.1 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  15. Level II scour analysis for Bridge 7 (WARRTH00010007) onTown Highway 1, crossing Freemans Brook, Warren, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    The computed contraction scour for all modelled flows was 0.0 feet. Abutment scour ranged from 5.3 to 8.2 ft. The worst-case abutment scour occurred at the right abutment for the incipient-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  16. Level II scour analysis for Bridge 30, (HUNTTH00220030), on Town Highway 22, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    Contraction scour for all modelled flows was zero. Abutment scour ranged from 7.8 to 10.1 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 46 (CHELTH00680046) on Town Highway 68, crossing the First Branch of the White River, Chelsea, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Song, Donald L.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.9 to 2.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 14.3 to 24.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The left abutment sits atop a bedrock outcrop. The results of the calculated scour depths will be limited by the bedrock. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 23 (WEELTH00210023) on Town Highway 21, crossing Miller Run, Wheelock, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Boehmler, Erick M.

    1997-01-01

    Contraction scour for all modelled flows was computed to be zero ft. Abutment scour ranged from 9.1 to 10.8 ft along the right abutment and from 9.8 to 12.3 ft along the left abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. Level II scour analysis for Bridge 8 (BARTTH00020008) on Town Highway 2, crossing Roaring Brook, Barton, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Ivanoff, Michael A.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term aggradation or degradation; 2) contraction scour (due to reduction in flow area caused by a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute scour depths for contraction and local scour and a summary of the results follows. Contraction scour for all modelled flows ranged from 1.4 to 2.8 feet and the worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.5 to 16.5 feet and the worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Level II scour analysis for Bridge 4 (CRAFTH00040004) on Town Highway 4, crossing Whitney Brook, Craftsbury, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Hammond, Robert E.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term degradation; 2) contraction scour (due to accelerated flow caused by reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the computed scour results follow. Contraction scour for all modelled flows ranged from 0.7 to 1.7 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 10.7 to 15.3 feet. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Level II scour analysis for Bridge 71 (WODSTH00050071) on Town Highway 5, crossing Kedron Brook, Woodstock, Vermont

    USGS Publications Warehouse

    Olson, S.A.; Ayotte, J.D.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 2.5 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. The contraction scour depths do not take the concrete channel bed under the bridge into account. Abutment scour ranged from 8.7 to 18.2 ft. The worstcase abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  2. Level II scour analysis for Bridge 120 (LEICUS00070120) on U.S. Route 7, crossing the Leicester River, Leicester, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Severance, Timothy

    1997-01-01

    Contraction scour for all modelled flows ranged from 3.8 to 6.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.0 to 6.7 ft. The worst-case abutment scour also occurred at the 500-year discharge. Pier scour ranged from 9.1 to 10.2. The worst-case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Level II scour analysis for Bridge 37 (TOWNTH00290037) on Town Highway 29, crossing Mill Brook, Townshend, Vermont

    USGS Publications Warehouse

    Burns, R.L.; Medalie, Laura

    1998-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 2.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 6.7 to 8.7 ft. The worst-case left abutment scour occurred at the incipient roadway-overtopping discharge. Right abutment scour ranged from 7.8 to 9.5 ft. The worst-case right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Level II scour analysis for Bridge 38 (RANDTH00640038) on Town Highway 64, crossing the Second Branch of the White River, Randolph, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 1.7 to 2.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.2 to 24.2 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 46 (ENOSVT01080046) on State Route 108, crossing an Unnamed "The Branch" Tributary, Enosburg, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Medalie, Laura

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.3 to 0.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.0 to 8.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 30 (BRNATH00470030) on Town Highway 47, crossing Locust Creek, Barnard, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Song, Donald L.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.4 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 2.3 to 8.9 feet. The worst-case abutment scour occurred at the 100-year discharge at the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 25 (DANVTH00610025) on Town Highway 61, crossing Water Andric Brook, Danville, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Severance, Timothy

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.7 to 1.3 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 9.1 to 12.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 145 (HANCVT01000145) on Vermont Highway 100, crossing the Hancock Branch of the White River, Hancock, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1996-01-01

    Contraction scour for all modelled flows ranged from 3.4 to 4.3 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.2 to 11.1 ft. The worst-case abutment scour occurred at the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Level II scour analysis for Bridge 32 (CONCTH00030032) on Town Highway 3, crossing the Moose River, Concord, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.7 ft. Abutment scour ranged from 9.9 to 16.4 ft. Pier scour ranged from 14.4 to 16.2 ft. The worst-case contraction, abutment, and pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Level II scour analysis for Bridge 5 (MORRTH00060005) on Town Highway 6, crossing Bedell Brook, Morristown, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Degnan, James R.

    1997-01-01

    Contraction scour for all modelled flows ranged from 1.1 to 2.0 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 3.9 to 8.6 feet. The worst-case abutment scour occurred at the 500-year event. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Level II scour analysis for Bridge 25 (CLARTH00100025) on Town Highway 10, crossing the Clarendon River, Clarendon, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph D.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 5.7 to 10.6 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  12. Level II scour analysis for brigde 5 (STOCTH00360005) on Town Highway 36, crossing Stony Brook, Stockridge, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Weber, Matthew A.

    1998-01-01

    Contraction scour for all modelled flows ranged from 2.0 to 3.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 9.7 to 22.2 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  13. Level II scour analysis for Bridge 17 (POMFTH00010017) on Town Highway 1 (FAS 166) crossing Mill Brook, Pomfret, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Hammond, Robert E.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 3.6 to 7.1 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  14. Level II scour analysis for Bridge 6 (VICTTH000110006) on Town Highway 1, crossing the Moose River, Victory, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.2 to 0.4 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.3 to 8.2 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  15. Level II scour analysis for Bridge 36 (ANDOVT00110036) on VT 11, crossing Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Burns, Rhonda L.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 2.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 9.5 to 13.7 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  16. Level II scour analysis for Bridge 6 (BRISVT01160006) on State Highway 116, crossing Little Notch Brook, Bristol, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Burns, Ronda L.

    1997-01-01

    Contraction scour for all modelled flows ranged from 3.2 to 4.3 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.0 to 10.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 92 (WSTOVT01000092) on State Highway 100, crossing the West River, Weston, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.4 to 2.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.4 to 30.7 ft. The worst-case abutment scour occurred at the 500-year discharge along the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 50 (STARTH00250050) on Town Highway 25, crossing Lewis Creek, Starksboro, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Boehmler, Erick M.

    1997-01-01

    Contraction scour for all modelled flows ranged from 5.2 to 9.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 13.1 to 18.2 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. Level II scour analysis for Bridge 4 (RYEGTH00050004) on Town Highway 5, crossing the Wells River, Ryegate, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    Contraction scour for all modelled flows ranged from 1.8 to 2.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 10.2 to 22.6 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Level II scour analysis for Bridge 46 (BRNETH00610046) on Town Highway 61, crossing East Peacham Brook, Barnet, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0 to 1.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 10.4 to 13.9 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Level II scour analysis for Bridge 45 (NFIETH00250045) on Town Highway 25, crossing Union Brook, Northfield, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.4 to 0.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.5 to 9.1 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  2. Level II scour analysis for Bridge 81 (NFIETH00PL0081) on Pleasant Street, crossing Union Brook, Northfield, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Medalie, Laura

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.2 to 13.3 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Level II scour analysis for Bridge 9 (JAYVT02420009) on Vermont Highway 242, crossing the Jay Branch of the Missisquoi River, Jay, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Ivanoff, Michael A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.6 ft. The worst-case contraction scour occurred at the 100-year discharge. Abutment scour ranged from 0.8 to 5.6 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Level II scour analysis for Bridge 32 (TUNBTH00600032) on Town Highway 60, crossing First Branch White River, Tunbridge, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure TUNBTH00600032 on Town Highway 60 crossing the First Branch White River, Tunbridge, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 92.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge, while woody vegetation sparsely covers the immediate banks. In the study area, the First Branch White River has a sinuous channel with a slope of approximately 0.001 ft/ft, an average channel top width of 82 ft and an average bank height of 7 ft. The channel bed material ranges from sand to gravel with a median grain size (D50) of 24.4 mm (0.08 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 18, 1995, indicated that the reach was laterally unstable, as a result of block failure of moderately eroded banks. The Town Highway 60 crossing of the First Branch White River is a 74-ft-long, one-lane bridge consisting of a 71-foot timber thru-truss span (Vermont Agency of Transportation, written communication, August 24, 1994). The opening length of the structure parallel to the bridge face is 64 ft.The bridge is supported by vertical, laid-up stone abutments with upstream wingwalls. The channel is not skewed to the opening. The computed opening-skew-to-roadway is 5 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed in the upstream reach during the Level I assessment. Scour countermeasures at the site includes type-1 stone fill (less than 12 inches diameter) along the upstream right bank. Type-2 stone fill (less than 36 inches diameter) is present along the upstream right wingwall, the left abutment and the right abutment. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the maximum free-surface discharge was determined and analyzed as another potential worst-case scour scenarios. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 2.2 to 6.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 20.6 to 30.4 ft. Right abutment scour ranged from 9.7 to 19.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 26 (JAMATH00010026) on Town Highway 1, crossing Ball Mountain Brook, Jamaica, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Medalie, Laura

    1997-01-01

    Contraction scour for the modelled flows ranged from 1.0 to 2.7 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge. Abutment scour ranged from 8.4 to 17.6 ft. The worst-case abutment scour for the right abutment occurred at the incipient-overtopping discharge. For the left abutment, the worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 36 (RANDTH00480036) on Town Highway 48, crossing Snows Brook, Randolph, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.1 to 11.6 ft. The worst-case abutment scour occurred at the incipient-overtopping discharge, which was 50 cfs lower than the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 27 (STJOTH00080027) on Town Highway 8, crossing the Sleepers River, St. Johnsbury, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    Contraction scour computed for all modelled flows was zero ft. Abutment scour ranged from 6.2 to 9.7 ft. The worst-case abutment scour occurred at the 100-year discharge at the right abutment and at the 500-year discharge at the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 16 (GROTTH00170016) on Town Highway 17, crossing the Wells River, Groton, Vermont

    USGS Publications Warehouse

    Striker, L.K.; Ivanoff, M.A.

    1997-01-01

    Contraction scour for all modelled flows was 0 ft. Abutment scour ranged from 7.6 to 8.4 ft at the left abutment and from 9.9 to 14.8 ft at the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Level II scour analysis for Bridge 22 (REDSVT01000022) on State Route 100, crossing the West Branch Deerfield River, Readsboro, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Burns, Ronda L.

    1997-01-01

    There was no predicted contraction scour for any of the modelled flows. Abutment scour ranged from 4.9 to 11.6 ft. The worst-case abutment scour occurred at the right abutment for the 500-year discharge. However, historical information indicates the right abutment is in contact with bedrock at least in part. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Level II scour analysis for Bridge 53 (CHESTH01180053) on Town Highway 118, crossing the Williams River, Chester, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    Contraction scour for all modelled flows was 0.0 ft. Abutment scour ranged from 5.8 to 6.8 ft at the left abutment and 9.4 to 14.4 ft at the right abutment. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Level II scour analysis for Bridge 21 (WALDTH00450021) on Town Highway 45, crossing Joes Brook, Walden, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Medalie, Laura

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.5 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 12.4 to 24.4 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  12. Level II scour analysis for Bridge 21 (MIDBTH00230021) on Town Highway 23, crossing the Middlebury River, Middlebury, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Degnan, James R.

    1997-01-01

    year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.2 to 1.8 feet. The worst-case contraction scour occurred at the incipient overtopping discharge, which is less than the 500-year discharge. Abutment scour ranged from 17.7 to 23.7 feet. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  13. Level II scour analysis for Bridge 17 (SHEFTH00380017) on Town Highway 38, crossing Miller Run, Sheffield, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Degnan, James R.

    1997-01-01

    Contraction scour for modelled flows ranged from 0.0 to 2.4 ft. Abutment scour ranged from 6.1 to 7.9 ft at the left abutment and 11.4 to 17.4 ft at the right abutment. The worstcase contraction and abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  14. Level II scour analysis for Bridge 12 (CHESVT01030012) on State Highway 103, crossing the Williams River, Chester, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    northerly pier) and from 13.5 to 17.1 ft along Pier 2 (southerly pier). The worst case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured -streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  15. Level II scour analysis for Bridge 39 (LOWETH00080039) on Town Highway 8, crossing Potter Brook, Lowell, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Degnan, James R.

    1997-01-01

    A scour hole 2.0 feet deeper than the mean thalweg depth was observed along the left abutment during the Level I assessment. There were no scour protection measures evident at the site. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.3 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 1.8 to 5.5 feet. The worst-case abutment scour occurred at the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  16. Level II scour analysis for Bridge 81 (MARSUS00020081) on U.S. Highway 2, crossing the Winooski River, Marshfield, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 2.1 to 4.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 14.3 to 14.4 ft. The worst-case left abutment scour occurred at the incipient roadwayovertopping and 500-year discharge. Right abutment scour ranged from 15.3 to 18.5 ft. The worst-case right abutment scour occurred at the 100-year and the incipient roadwayovertopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) give “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 16, (NEWBTH00500016) on Town Highway 50, crossing Halls Brook, Newbury, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Degnan, James R.

    1997-01-01

    Contraction scour for all modelled flows ranged from 2.6 to 4.6 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge. The left abutment scour ranged from 11.6 to 12.1 ft. The worst-case left abutment scour occurred at the incipient road-overtopping discharge. The right abutment scour ranged from 13.6 to 17.9 ft. The worst-case right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in Tables 1 and 2. A cross-section of the scour computed at the bridge is presented in Figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 65 (NEWBTH00500065) on Town Highway 50, crossing Peach Brook, Newbury, Vermont

    USGS Publications Warehouse

    Burns, R.L.; Severance, Timothy

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.3 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. The right abutment scour ranged from 6.1 to 7.2 ft. The worstcase right abutment scour occurred at the incipient roadway-overtopping discharge. The left abutment scour ranged from 7.1 to 10.3 ft. The worst-case left abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented he

  19. Level II scour analysis for Bridge 49 (WODSTH00990049) on Town Highway 99, crossing Gulf Brook, Woodstock, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Hammond, Robert E.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour at the left abutment ranged from 3.1 to 10.3 ft. with the worst-case occurring at the 500-year discharge. Abutment scour at the right abutment ranged from 6.4 to 10.4 ft. with the worst-case occurring at the 100-year discharge.Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Level II scour analysis for Bridge 25 (ROYATH00550025) on Town Highway 55, crossing Broad Brook, Royalton, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Weber, Matthew A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.6 to 1.5 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge which was less than the 100-year discharge. Abutment scour ranged from 3.5 to 8.9 ft. The worst-case abutment scour occurred at the incipient road-overtopping discharge for the left abutment and at the 100-year discharge for the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Level II scour analysis for Bridge 8 (ATHETH00090008) on Town Highway 9, crossing Bull Creek, Athens, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Burns, Ronda L.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.4 feet. The worst-case contraction scour occurred at the incipient-overtopping discharge of 1730 cubic feet per second, which was less than the 100-year discharge. Abutment scour ranged from 7.6 to 11.4 feet. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  2. Level II scour analysis for Bridge 29 (PUTNTH00210029) on Town Highway 21, crossing East Putney Brook, Putney, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.9 feet. The worst-case contraction scour occurred at the incipient-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 6.1 to 18.4 feet. The worst-case abutment scour occurred at the 500-year discharge for the right abutment and the incipient overtopping discharge for the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Level II scour analysis for Bridge 12 (BRAITH00230012) on Town Highway 23, crossing Ayers Brook, Braintree, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 4.2 to 9.4 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge which was less than the 100-year discharge. Abutment scour ranged from 4.3 to 17.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Level II scour analysis for Bridge 8 (WELLTH00020008) on Town Highway 2, crossing Wells Brook, Wells, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 5.6 to 10.0 ft at the left abutment and from 3.1 to 4.2 ft at the right abutment. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge at the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 22 (WALDTH00180022) on Town Highway 18, crossing Coles Brook, Walden, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows was 0.0 ft. Abutment scour ranged from 6.4 to 7.9 ft at the left abutment and from 11.8 to 14.9 ft at the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 23 (CRAFTH00390023) on Town Highway 39, crossing the Black River, Craftsbury, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.

    1997-01-01

    Contraction scour for all modelled flows ranged from 20.1 to 25.2 and the worst-case contraction scour occurred at the 500-year discharge. Although this bridge has two piers, the flow through the spans between each abutment and pier is assumed to be negligible. Hence, abutment scour was computed assuming the forces contributing to scour actually occur on the main-span sides of each pier in this case. Abutment scour ranged from 8.8 to 10.6 and the worst-case abutment scour occurred at the 500-year discharge. Scour depths and depths to armoring are summarized on p. 14 in the section titled “Scour Results”. Scour elevations, based on the calculated depths are presented in tables 1 and 2. A graph of the scour elevations is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 7 (CHARTH00010007) on Town Highway 1, crossing Mad Brook, Charleston, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Weber, Matthew A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.3 ft. The worst-case contraction scour occurred at the incipient overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 6.2 to 9.4 ft. The worst-case abutment scour for the right abutment was 9.4 feet at the 100-year discharge. The worst-case abutment scour for the left abutment was 8.6 feet at the incipient overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 49 (FFIETH00290049) on Town Highway29, crossing Black Creek, Fairfield, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 4.4 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.5 to 14.3 ft and 12.2 to 16.3 ft on the left and right abutments respectively. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Level II scour analysis for Bridge 49 (BENNCYHUNT0049) on Hunt Street, crossing the Walloomsac River, Bennington, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Medalie, Laura

    1997-01-01

    2 stone fill also protects the channel banks upstream and downstream of the bridge for a minimum distance of 17 feet from the respective bridge faces. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour computed for all modelled flows ranged from 0.9 to 5.0 ft. The worst-case contraction scour occurred at the 500-year discharge. Computed left abutment scour ranged from 15.3 to 16.5 ft. with the worst-case scour occurring at the incipient roadway-overtopping discharge. Computed right abutment scour ranged from 6.0 to 8.7 ft. with the worst-case scour occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Level II scour analysis for Bridge 9 (BARRUSO3020009) on U.S. Route 302, crossing Jail Branch, Barre, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Ivanoff, Michael A.

    1997-01-01

    skew-to-roadway. There is evidence of channel scour along the right bank from 190 feet upstream of the bridge and extending through the bridge along the right abutment. Under the bridge, the scour depth is approximately 0.5 feet below the mean thalweg depth. Scour protection measures at the site include type-3 stone fill (less than 48 inches diameter) along the right bank extending from the bridge to 192 feet upstream. Type-2 stone fill (less than 36 inches diameter) is along the right abutment and the right downstream bank to 205 feet downtream of the bridge. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.2 to 0.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.3 to 7.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Computed scour for the 100-year event does not go below the abutment footings. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Potential-scour assessments and estimates of scour depth using different techniques at selected bridge sites in Missouri

    USGS Publications Warehouse

    Huizinga, Richard J.; Rydlund, Jr., Paul H.

    2004-01-01

    The evaluation of scour at bridges throughout the state of Missouri has been ongoing since 1991 in a cooperative effort by the U.S. Geological Survey and Missouri Department of Transportation. A variety of assessment methods have been used to identify bridges susceptible to scour and to estimate scour depths. A potential-scour assessment (Level 1) was used at 3,082 bridges to identify bridges that might be susceptible to scour. A rapid estimation method (Level 1+) was used to estimate contraction, pier, and abutment scour depths at 1,396 bridge sites to identify bridges that might be scour critical. A detailed hydraulic assessment (Level 2) was used to compute contraction, pier, and abutment scour depths at 398 bridges to determine which bridges are scour critical and would require further monitoring or application of scour countermeasures. The rapid estimation method (Level 1+) was designed to be a conservative estimator of scour depths compared to depths computed by a detailed hydraulic assessment (Level 2). Detailed hydraulic assessments were performed at 316 bridges that also had received a rapid estimation assessment, providing a broad data base to compare the two scour assessment methods. The scour depths computed by each of the two methods were compared for bridges that had similar discharges. For Missouri, the rapid estimation method (Level 1+) did not provide a reasonable conservative estimate of the detailed hydraulic assessment (Level 2) scour depths for contraction scour, but the discrepancy was the result of using different values for variables that were common to both of the assessment methods. The rapid estimation method (Level 1+) was a reasonable conservative estimator of the detailed hydraulic assessment (Level 2) scour depths for pier scour if the pier width is used for piers without footing exposure and the footing width is used for piers with footing exposure. Detailed hydraulic assessment (Level 2) scour depths were conservatively estimated by the rapid estimation method (Level 1+) for abutment scour, but there was substantial variability in the estimates and several substantial underestimations.

  12. Level II scour analysis for Bridge 34 (RANDTH00660034) on Town Highway 66, crossing Second Branch White River, Randolph, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Ayotte, Joseph D.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term aggradation or degradation; 2) contraction scour (due to reduction in flow area caused by a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute scour depths for contraction and local scour and a summary of the results follows. Contraction scour for all modelled flows ranged from 6.3 ft to 7.8 ft and the worst-case contraction scour occurred at the 100-year discharge. Abutment scour ranged from 7.9 ft to 20.3 ft and the worst-case abutment scour occurred at the 500-year discharge. Scour depths and depths to armoring are summarized on p. 14 in the section titled “Scour Results”. Scour elevations, based on the calculated depths are presented in tables 1 and 2; a graph of the scour elevations is presented in figure 8 Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. For all scour presented in this report, “the scour depths adopted [by VTAOT] may differ from the equation values based on engineering judgement” (Richardson and others, 1993, p. 21, 27). It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results.

  13. Level II scour analysis for Bridge 39 (RANDTH00730039) on Town Highway 73, crossing the Second Branch White River, Randolph, Vermont

    USGS Publications Warehouse

    Song, Donald L.; Ivanoff, Michael A.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term aggradation or degradation; 2) contraction scour (due to reduction in flow area caused by a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute scour depths for contraction and local scour and a summary of the results follows. Contraction scour for all modelled flows ranged from 1.9 ft to 4.6 ft and the worst-case contraction scour occurred at the incipient overtopping discharge. Abutment scour ranged from 4.0 ft to 22.5 ft and the worst-case abutment scour occurred at the 500-year discharge. Scour depths and depths to armoring are summarized on p. 14 in the section titled “Scour Results”. Scour elevations, based on the calculated depths are presented in tables 1 and 2; a graph of the scour elevations is presented in figure 8 Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. For all scour presented in this report, “the scour depths adopted [by VTAOT] may differ from the equation values based on engineering judgement” (Richardson and others, 1993, p. 21, 27). It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results.

  14. Level II scour analysis for Bridge 3 (BRIDTH000100003) on Town Highway 1, crossing Dailey Hollow Branch, Bridgewater, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Song, Donald L.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term aggradation or degradation; 2) contraction scour (due to reduction in flow area caused by a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute scour depths for contraction and local scour and a summary of the results follows. Contraction scour for all modelled flows ranged from 0.6 ft to 1.3 ft and the worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.7 ft to 12.2 ft and the worst-case abutment scour occurred at the 500-year discharge. Scour depths and depths to armoring are summarized on p. 14 in the section titled “Scour Results”. Scour elevations, based on the calculated depths are presented in tables 1 and 2; a graph of the scour elevations is presented in figure 8 Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. For all scour presented in this report, “the scour depths adopted [by VTAOT] may differ from the equation values based on engineering judgement” (Richardson and others, 1993, p. 21, 27). It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results.

  15. Level II scour analysis for Bridge 4 (MNTGTH00020004) on Town Highway 2, crossing Wade Brook, Montgomery, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was 0.1 ft. The worst-case contraction scour occurred at the 100-year and 500-year discharges. Abutment scour ranged from 3.9 to 5.2 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

  16. Development of a design methodology for pipelines in ice scoured seabeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, J.I.; Paulin, M.J.; Lach, P.R.

    1994-12-31

    Large areas of the continental shelf of northern oceans are frequently scoured or gouged by moving bodies of ice such as icebergs and sea ice keels associated with pressure ridges. This phenomenon presents a formidable challenge when the route of a submarine pipeline is intersected by the scouring ice. It is generally acknowledged that if a pipeline, laid on the seabed, were hit by an iceberg or a pressure ridge keel, the forces imposed on the pipeline would be much greater than it could practically withstand. The pipeline must therefore be buried to avoid direct contact with ice, but itmore » is very important to determine with some assurance the minimum depth required for safety for both economical and environmental reasons. The safe burial depth of a pipeline, however, cannot be determined directly from the relatively straight forward measurement of maximum scour depth. The major design consideration is the determination of the potential sub-scour deformation of the ice scoured soil. Forces transmitted through the soil and soil displacement around the pipeline could load the pipeline to failure if not taken into account in the design. If the designer can predict the forces transmitted through the soil, the pipeline can be designed to withstand these external forces using conventional design practice. In this paper, the authors outline a design methodology that is based on phenomenological studies of ice scoured terrain, both modern and relict, laboratory tests, centrifuge modeling, and numerical analysis. The implications of these studies, which could assist in the safe and economical design of pipelines in ice scoured terrain, will also be discussed.« less

  17. Level II scour analysis for Bridge 38 (CONCTH00060038) on Town Highway 6, crossing the Moose River, Concord, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.1 to 3.1 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge. Abutment scour at the left abutment ranged from 10.4 to 12.5 ft with the worst-case occurring at the 500-year discharge. Abutment scour at the right abutment ranged from 25.3 to 27.3 ft with the worst-case occurring at the incipient-overtopping discharge. The worst-case total scour also occurred at the incipient-overtopping discharge. The incipient-overtopping discharge was in between the 100- and 500-year discharges. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 24 (WODSTH00190024) on Town Highway 19, crossing North Bridgewater Brook, Woodstock, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Song, Donald L.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. Abutment scour ranged from 6.6 to 14.9 ft. with the worst-case scenario occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

  19. Reference surfaces for bridge scour depths

    USGS Publications Warehouse

    Landers, Mark N.; Mueller, David S.; ,

    1993-01-01

    Depth of scour is measured as the vertical distance between scoured channel geometry and a measurement reference surface. A scour depth measurement can have a wide range depending on the method used to establish the reference surface. A consistent method to establish reference surfaces for bridge scour measurements is needed to facilitate transferability of scour data an scour analyses. This paper describes and evaluates techniques for establishing reference surfaces from which local and contraction scour are measured.

  20. Level II scour analysis for Bridge 40 (ROCKTH00140040) on Town Highway 14, crossing the Williams River, Rockingham, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCKTH00140040 on Town Highway 14 crossing the Williams River, Rockingham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 99.2-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture downstream of the bridge. Upstream of the bridge, the left bank is forested and the right bank is suburban. In the study area, the Williams River has an incised, sinuous channel with a slope of approximately 0.005 ft/ft, an average channel top width of 154 ft and an average bank height of 11 ft. The channel bed material ranges from silt and clay to cobble with a median grain size (D50) of 45.4 mm (0.149 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 4, 1996, indicated that the reach was stable. The Town Highway 14 crossing of the Williams River is a 106-ft-long, one-lane covered bridge consisting of two steel-beam spans with a maximum span length of 73 ft (Vermont Agency of Transportation, written communication, April 6, 1995). The opening length of the structure parallel to the bridge face is 94.5 ft. The bridge is supported by a vertical, concrete abutment with wingwalls on the left, a vertical, laid-up stone abutment on the right and a concrete pier. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 2.1 ft deeper than the mean thalweg depth was observed towards the left side of the channel under and just downstream of the bridge during the Level I assessment. Scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) at the upstream end of the upstream left wingwall and type-2 stone fill (less than 36 inches diameter) along the upstream left bank and the left abutment. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was zero ft. Left abutment scour ranged from 13.9 to 19.2 ft. Right abutment scour ranged from 7.0 to 11.7 ft. The worst-case abutment scour occurred at the 500-year discharge. Pier scour ranged from 18.7 to 24.7 ft and the worst case occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Level II scour analysis for Bridge 27 (ANDOTH00290027) on Town Highway 29, crossing Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1997-01-01

    2 stone fill (less than 36 inches diameter) along the upstream right bank and downstream left bank and around the upstream left and right wingwalls. Type- 3 stone fill (less than 48 inches diameter) is located along the base of the left abutment in the scour hole, at the end of the downstream left wingwall and along the upstream left bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.4 to 0.9 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge and the 100-year discharge. Abutment scour ranged from 10.7 to 13.6 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  2. Clear-Water Contraction Scour at Selected Bridge Sites in the Black Prairie Belt of the Coastal Plain in Alabama, 2006

    USGS Publications Warehouse

    Lee, K.G.; Hedgecock, T.S.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Alabama Department of Transportation, made observations of clear-water contraction scour at 25 bridge sites in the Black Prairie Belt of the Coastal Plain of Alabama. These bridge sites consisted of 54 hydraulic structures, of which 37 have measurable scour holes. Observed scour depths ranged from 1.4 to 10.4 feet. Theoretical clear-water contraction-scour depths were computed for each bridge and compared with observed scour. This comparison showed that theoretical scour depths, in general, exceeded the observed scour depths by about 475 percent. Variables determined to be important in developing scour in laboratory studies along with several other hydraulic variables were investigated to understand their influence within the Alabama field data. The strongest explanatory variables for clear-water contraction scour were channel-contraction ratio and velocity index. Envelope curves were developed relating both of these explanatory variables to observed scour. These envelope curves provide useful tools for assessing reasonable ranges of scour depth in the Black Prairie Belt of Alabama.

  3. Level II scour analysis for Bridge 32 (NFIEVT012A0032) on State Route 12A, crossing the Dog River, Northfield, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Ivanoff, Michael A.

    1997-01-01

    section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. The upper bound of abutment scour defined by selected laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a field investigation of abutment scour in South Carolina and used that data to develop envelope curves defining the upper bound of abutment scour. To expand upon this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with abutment-scour data from other sources and evaluate the upper bound of abutment scour with the larger data set. To facilitate this analysis, a literature review was made to identify potential sources of published abutment-scour data, and selected data, consisting of 446 laboratory and 331 field measurements, were compiled for the analysis. These data encompassed a wide range of laboratory and field conditions and represent field data from 6 states within the United States. The data set was used to evaluate the South Carolina abutment-scour envelope curves. Additionally, the data were used to evaluate a dimensionless abutment-scour envelope curve developed by Melville (1992), highlighting the distinct difference in the upper bound for laboratory and field data. The envelope curves evaluated in this investigation provide simple but useful tools for assessing the potential maximum abutment-scour depth in the field setting.

  5. Estimation of contraction scour in riverbed using SERF

    USGS Publications Warehouse

    Jiang, J.; Ganju, N.K.; Mehta, A.J.

    2004-01-01

    Contraction scour in a firm-clay estuarine riverbed is estimated at an oil-unloading terminal at the Port of Haldia in India, where a scour hole attained a maximum depth greater than 5 m relative to the original bottom. A linear equation for the erosion flux as a function of the excess bed shear stress was semicalibrated in a rotating-cylinder device called SERF (Simulator of Erosion Rate Function) and coupled to a hydrodynamic code to simulate the hole as a clear-water scour process. SERF, whose essential design is based on previous such devices, additionally included a load cell for in situ and rapid measurement of the eroded sediment mass. Based on SERF's performance and the degree of comparison between measured and simulated hole geometry, it appears that this device holds promise as a simple tool for prediction of scour in firm-clay beds. ?? ASCE.

  6. Estimated and measured bridge scour at selected sites in North Dakota, 1990-97

    USGS Publications Warehouse

    Williams-Sether, Tara

    1999-01-01

    A Level 2 bridge scour method was used to estimate scour depths at 36 selected bridge sites located on the primary road system throughout North Dakota. Of the 36 bridge sites analyzed, the North Dakota Department of Transportation rated 15 as scour critical. Flood and scour data were collected at 19 of the 36 selected bridge sites during 1990-97. Data collected were sufficient to estimate pier scour but not contraction or abutment scour. Estimated pier scour depths ranged from -10.6 to -1.2 feet, and measured bed-elevation changes at piers ranged from -2.31 to +2.37 feet. Comparisons between the estimated pier scour depths and the measured bed-elevation changes indicate that the pier scour equations overestimate scour at bridges in North Dakota.A Level 1.5 bridge scour method also was used to estimate scour depths at 495 bridge sites located on the secondary road system throughout North Dakota. The North Dakota Department of Transportation determined that 26 of the 495 bridge sites analyzed were potentially scour critical.

  7. Level II scour analysis for Bridge 43 (CHESVT00110043) on State Highway 11, crossing the Middle Branch Williams River, Chester, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Burns, Ronda L.

    1997-01-01

    76-ft-long, two-lane bridge consisting of two 37-foot concrete Tee-beam spans (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening. The computed opening-skew-to-roadway was 30 degrees but the historical records indicate this angle is 25 degrees. Scour protection measures at the site consist of type-1 stone fill (less than 12 inches diameter) along the downstream banks and the upstream right wing wall. Type-2 (less than 36 inches diameter) stone fill protection is noted on the upstream and downstream left wingwalls and upstream along the left bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 1.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.2 to 10.7 ft. The worst-case abutment scour occurred at the 500-year discharge for the right abutment. Pier scour ranged from 7.3 to 8.6 ft. The worst-case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 23 (WODSTH00180023) on Town Highway 18, crossing North Bridgewater Brook, Woodstock, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Weber, Matthew A.

    1996-01-01

    Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  9. Level II scour analysis for Bridge 22 (CRAFTH00180022) on Town Highway 18, crossing Black River, Craftsbury, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph D.

    1996-01-01

    Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  10. Level II scour analysis for Bridge 31 (ALBATH00380031) on Town Highway 38, crossing the Black River, Albany, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.

    1996-01-01

    Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  11. Level II scour analysis for Bridge 25 (ALBATH00250030) on Town Highway 25, crossing the Black River, Albany, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.

    1996-01-01

    Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  12. Level II scour analysis for Bridge 6 (IRASTH00050006) on Town Highway 5, crossing the Black River, Irasburg, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  13. Level II scour analysis for Bridge 2 (CRAFTH00590002) on Town Highway 59, crossing Black River, Craftsbury, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph D.

    1996-01-01

    Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  14. Level II scour analysis for Bridge 26 (CRAFTH00250026) on Town Highway 25, crossing Black River, Craftsbury, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph D.

    1996-01-01

    Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  15. Bridge-scour analysis using the water surface profile (WSPRO) model

    USGS Publications Warehouse

    Mueller, David S.; ,

    1993-01-01

    A program was developed to extract hydraulic information required for bridge-scour computations, from the Water-Surface Profile computation model (WSPRO). The program is written in compiled BASIC and is menu driven. Using only ground points, the program can compute average ground elevation, cross-sectional area below a specified datum, or create a Drawing Exchange Format (DXF) fie of cross section. Using both ground points ad hydraulic information form the equal-conveyance tubes computed by WSPRO, the program can compute hydraulic parameters at a user-specified station or in a user-specified subsection of the cross section. The program can identify the maximum velocity in a cross section and the velocity and depth at a user-specified station. The program also can identify the maximum velocity in the cross section and the average velocity, average depth, average ground elevation, width perpendicular to the flow, cross-sectional area of flow, and discharge in a subsection of the cross section. This program does not include any help or suggestions as to what data should be extracted; therefore, the used must understand the scour equations and associated variables to the able to extract the proper information from the WSPRO output.

  16. Level II scour analysis for Bridge 37 (BARTTH00080037) on Town Highway 8, crossing Willoughby River, Barton, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph D.; Boehmler, Erick M.

    1996-01-01

    of north-central Vermont in the town of Barton. The 60.4-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the banks have sparse to moderate woody vegetation coverage. In the study area, the Willoughby River is probably incised, has a sinuous channel with a slope of approximately 0.009 ft/ft, an average channel top width of 108 ft and an average channel depth of 6 ft. The predominant channel bed material is cobble (D50 is 95.1 mm or 0.312 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 20, 1994, indicated that the reach was stable. The town highway 8 crossing of the Willoughby River is a 96-ft-long, two-lane bridge consisting of one 94-foot steel-beam span (Vermont Agency of Transportation, written communication, August 4, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is 10 degrees. No scour was reported in the channel or along abutments or wingwalls during the Level I assessment. Type-2 stone fill (less than 24 inches diameter) was reported at each abutment and all four wingwalls. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Data in appendix D (Vermont Agency of Transportation, written communication, August 4, 1994) indicate that the right abutment may be founded on or near marble bedrock which may limit scour depths. Bedrock was not detected by borings in the vicinity of the left abutment. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8. Contraction scour for all modelled flows was 0 ft. Abutment scour ranged from 7.3 to 10.7 ft and the worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 45 (CHELTH00440045) on Town Highway 44, crossing first Branch White River, Chelsea, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph D.; Hammond, Robert E.

    1996-01-01

    bridge consisting of one 27-foot clear-span concrete-encased steel beam deck superstructure (Vermont Agency of Transportation, written commun., August 25, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is 5 degrees. Both abutment footings were reported as exposed and the left abutment was reported to be undermined by 0.5 ft at the time of the Level I assessment. The only scour protection measure at the site was type-1 stone fill (less than 12 inches diameter) along the left abutment which was reported as failed. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.4 to 5.1 ft. with the worst-case occurring at the 500-year discharge. Abutment scour ranged from 9.9 to 20.3 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

  18. Evaluation of pier-scour equations for coarse-bed streams

    USGS Publications Warehouse

    Chase, Katherine J.; Holnbeck, Stephen R.

    2004-01-01

    Streambed scour at bridge piers is among the leading causes of bridge failure in the United States. Several pier-scour equations have been developed to calculate potential scour depths at existing and proposed bridges. Because many pier-scour equations are based on data from laboratory flumes and from cohesionless silt- and sand-bottomed streams, they tend to overestimate scour for piers in coarse-bed materials. Several equations have been developed to incorporate the mitigating effects of large particle sizes on pier scour, but further investigations are needed to evaluate how accurately pier-scour depths calculated by these equations match measured field data. This report, prepared in cooperation with the Montana Department of Transportation, describes the evaluation of five pier-scour equations for coarse-bed streams. Pier-scour and associated bridge-geometry, bed-material, and streamflow-measurement data at bridges over coarse-bed streams in Montana, Alaska, Maryland, Ohio, and Virginia were selected from the Bridge Scour Data Management System. Pier scour calculated using the Simplified Chinese equation, the Froehlich equation, the Froehlich design equation, the HEC-18/Jones equation and the HEC-18/Mueller equation for flood events with approximate recurrence intervals of less than 2 to 100 years were compared to 42 pier-scour measurements. Comparison of results showed that pier-scour depths calculated with the HEC-18/Mueller equation were seldom smaller than measured pier-scour depths. In addition, pier-scour depths calculated using the HEC-18/Mueller equation were closer to measured scour than for the other equations that did not underestimate pier scour. However, more data are needed from coarse-bed streams and from less frequent flood events to further evaluate pier-scour equations.

  19. Development and evaluation of clear-water pier and contraction scour envelope curves in the Coastal Plain and Piedmont Provinces of South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.

    2016-01-01

    The U.S. Geological Survey in cooperation with the South Carolina Department of Transportation collected clear-water pier- and contraction-scour data at 116 bridges in the Coastal Plain and Piedmont Physiographic Provinces of South Carolina. Pier-scour depths collected in both provinces ranged from 0 to 8.0 feet. Contraction-scour depths collected in the Coastal Plain ranged from 0 to 3.9 feet. Using hydraulic data estimated with a one-dimensional flow model, predicted clear-water scour depths were computed with scour equations from the Federal Highway Administration Hydraulic Engineering Circular 18 and compared with measured scour. This comparison indicated that predicted clear-water scour depths, in general, exceeded measured scour depths and at times were excessive. Predicted clear-water contraction scour, however, was underpredicted approximately 30 percent of the time by as much as 7.1 feet. The investigation focused on clear-water pier scour, comparing trends in the laboratory and field data. This comparison indicated that the range of dimensionless variables (relative depth, flow intensity, relative grain size) used in laboratory investigations of pier scour, were similar to the range for field data in South Carolina, further indicating that laboratory relations may have some applicability to field conditions in South Carolina. Variables determined to be important in developing pier scour in laboratory studies were investigated to understand their influence on the South Carolina field data, and many of these variables appeared to be insignificant under field conditions in South Carolina. The strongest explanatory variables were pier width and approach velocity. Envelope curves developed from the field data are useful tools for evaluating reasonable ranges of clear-water pier and contraction scour in South Carolina. A modified version of the Hydraulic Engineering Circular 18 pier-scour equation also was developed as a tool for evaluating clearwater pier scour. The envelope curves and modified equation offer an improvement over the current methods for predicting clear-water scour in South Carolina. Data from this study were compiled into a database that includes photographs, measured scour depths, predicted scour depths, limited basin characteristics, limited soil data, and modeled hydraulic data. The South Carolina database can be used to compare studied sites with unstudied sites to evaluate the potential for scour at the unstudied sites. In addition, the database can be used to evaluate the performance of various methods for predicting clear-water pier and contraction scour.

  20. Trends of Abutment-Scour Prediction Equations Applied to 144 Field Sites in South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Deshpande, Nikhil; Aziz, Nadim M.; Conrads, Paul

    2006-01-01

    The U.S. Geological Survey conducted a study in cooperation with the Federal Highway Administration in which predicted abutment-scour depths computed with selected predictive equations were compared with field measurements of abutment-scour depth made at 144 bridges in South Carolina. The assessment used five equations published in the Fourth Edition of 'Evaluating Scour at Bridges,' (Hydraulic Engineering Circular 18), including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. An additional unpublished equation also was assessed. Comparisons between predicted and observed scour depths are intended to illustrate general trends and order-of-magnitude differences for the prediction equations. Field measurements were taken during non-flood conditions when the hydraulic conditions that caused the scour generally are unknown. The predicted scour depths are based on hydraulic conditions associated with the 100-year flow at all sites and the flood of record for 35 sites. Comparisons showed that predicted scour depths frequently overpredict observed scour and at times were excessive. The comparison also showed that underprediction occurred, but with less frequency. The performance of these equations indicates that they are poor predictors of abutment-scour depth in South Carolina, and it is probable that poor performance will occur when the equations are applied in other geographic regions. Extensive data and graphs used to compare predicted and observed scour depths in this study were compiled into spreadsheets and are included in digital format with this report. In addition to the equation-comparison data, Water-Surface Profile Model tube-velocity data, soil-boring data, and selected abutment-scour data are included in digital format with this report. The digital database was developed as a resource for future researchers and is especially valuable for evaluating the reasonableness of future equations that may be developed.

  1. Informational Entropy and Bridge Scour Estimation under Complex Hydraulic Scenarios

    NASA Astrophysics Data System (ADS)

    Pizarro, Alonso; Link, Oscar; Fiorentino, Mauro; Samela, Caterina; Manfreda, Salvatore

    2017-04-01

    Bridges are important for society because they allow social, cultural and economic connectivity. Flood events can compromise the safety of bridge piers up to the complete collapse. The Bridge Scour phenomena has been described by empirical formulae deduced from hydraulic laboratory experiments. The range of applicability of such models is restricted by the specific hydraulic conditions or flume geometry used for their derivation (e.g., water depth, mean flow velocity, pier diameter and sediment properties). We seek to identify a general formulation able to capture the main dynamic of the process in order to cover a wide range of hydraulic and geometric configuration, allowing to extend our analysis in different contexts. Therefore, exploiting the Principle of Maximum Entropy (POME) and applying it on the recently proposed dimensionless Effective flow work, W*, we derived a simple model characterized by only one parameter. The proposed Bridge Scour Entropic (BRISENT) model shows good performances under complex hydraulic conditions as well as under steady-state flow. Moreover, the model was able to capture the evolution of scour in several hydraulic configurations even if the model contains only one parameter. Furthermore, results show that the model parameter is controlled by the geometric configurations of the experiment. This offers a possible strategy to obtain a priori model parameter calibration. The BRISENT model represents a good candidate for estimating the time-dependent scour depth under complex hydraulic scenarios. The authors are keen to apply this idea for describing the scour behavior during a real flood event. Keywords: Informational entropy, Sediment transport, Bridge pier scour, Effective flow work.

  2. Level II scour analysis for Bridge 7 (WALDTH00020007) on Town Highway 2, crossing Coles Brook, Walden, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    ft, an average channel top width of 37 ft and an average bank height of 4 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 32.9 mm (0.108 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 9, 1995, indicated that the reach was laterally unstable due to cut-banks, point bars, and loose unconsolidated bed material. The Town Highway 2 crossing of Coles Brook is a 74-ft-long, two-lane bridge consisting of one 71-foot steel-beam span (Vermont Agency of Transportation, written communication, April 5, 1995). The opening length of the structure parallel to the bridge face is 69.3 ft. The bridge is supported by spill-through abutments. The channel is skewed approximately 35 degrees to the opening while the measured opening-skew-to-roadway is 15 degrees. A scour hole 1.5 ft deeper than the mean thalweg depth was observed from 60 ft. to 100 ft. downstream during the Level I assessment. Scour protection measures at the site include: type-1 stone fill (less than 12 inches diameter) along the right bank upstream, at the downstream end of the downstream left wingwall and downstream right wingwall; and type-2 stone fill (less than 36 inches diameter) along the left bank upstream, at the upstream end of the upstream right wingwall, and along the entire base of the left and right abutments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge. Abutment scour ranged from 5.7 to 12.9 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Contraction rate, flow modification and bed layering impact on scour at the elliptical guide banks

    NASA Astrophysics Data System (ADS)

    Gjunsburgs, B.; Jaudzems, G.; Bizane, M.; Bulankina, V.

    2017-10-01

    Flow contraction by the bridge crossing structures, intakes, embankments, piers, abutments and guide banks leads to general scour and the local scour in the vicinity of the structures. Local scour is depending on flow, river bed and structures parameters and correct understanding of the impact of each parameter can reduce failure possibility of the structures. The paper explores hydraulic contraction, the discharge redistribution between channel and floodplain during the flood, local flow modification and river bed layering on depth, width and volume of scour hole near the elliptical guide banks on low-land rivers. Experiments in a flume, our method for scour calculation and computer modelling results confirm a considerable impact of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater and river bed layering on the depth, width, and volume of scour hole in steady and unsteady flow, under clear water condition. With increase of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater values, the scour depth increases. At the same contraction rate, but at a different Fr number, the scour depth is different: with increase in the Fr number, the local velocity, backwater, scour depth, width, and volume is increasing. Acceptance of the geometrical contraction of the flow, approach velocity and top sand layer of the river bed for scour depth calculation as accepted now, may be the reason of the structures failure and human life losses.

  4. Level II scour analysis for Bridge 51 (RANDTH00SC0051) on School Street, crossing Thayer Brook, Randolph, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    ft, an average channel top width of 36 ft and an average channel depth of 3 ft. The predominant channel bed materials are gravel and cobble (D50 is 58.2 mm or 0.191 ft). The geomorphic assessment at the time of the Level I site visits on August 4, 1994 and December 8, 1994, indicated that the reach was stable. The School Street crossing of Thayer Brook is a 39-ft-long, two-lane bridge consisting of one 35-foot concrete span (Vermont Agency of Transportation, written commun., August 2, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. Type-2 stone fill (less than 36 inches diameter) along the downstream left bank was the only existing protection. The approach channel is skewed approximately 45 degrees to the bridge face; the opening-skew-to-roadway is also 45 degrees. Additional details describing conditions at the site are included in the Level II Summary, Appendix D, and Appendix E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.0 to 2.2 ft. with the worst-case scenario occurring at the 500-year discharge. Abutment scour ranged from 6.2 to 12.0 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

  5. Level II scour analysis for Bridge 29 (CRAFTH00550029) on Town Highway 55, crossing the Black River, Craftsbury, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Degnan, James R.

    1996-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CRAFTH00550029 on town highway 55 crossing the Black River, Craftsbury, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province of north-central Vermont in the town of Craftsbury. The 24.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the banks have woody vegetation coverage except for the upstream left bank and the downstream right bank, which have more brush cover than trees. In the study area, the Black River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 41 ft and an average channel depth of 5.5 ft. The predominant channel bed material is sand and gravel (D50 is 44.7 mm or 0.147 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 7, 1995, indicated that the reach was stable. The town highway 55 crossing of the Black Riveris a 32-ft-long, one-lane bridge consisting of one 28-foot span steel stringer superstructure with a timber deck (Vermont Agency of Transportation, written communication, August 4, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening while the opening-skew-to-roadway is 10 degrees. A scour hole 2 ft deeper than the mean thalweg depth was evident at mid-channel immediately downstream of the bridge during the Level I assessment. The only scour protection measure at the site was type-1 stone fill (less than 12 inches diameter) on the upstream right bank and road approach embankment. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.9 to 1.4 ft. The worst-case contraction scour occurred at the 100-year discharge. Abutment scour ranged from 12.1 to 15.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 41 (ROCKTH00390041) on Town Highway 39, crossing the Saxtons River, Rockingham, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCKTH00390041 on Town Highway 39 crossing the Saxtons River, Rockingham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 57.4-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of forest on the left bank and pasture with some trees on the right bank. In the study area, the Saxtons River has an sinuous channel with a slope of approximately 0.009 ft/ft, an average channel top width of 112 ft and an average bank height of 10 ft. The channel bed material ranges from sand to cobbles with a median grain size (D50) of 103 mm (0.339 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 15, 1996, indicated that the reach was laterally unstable. There are wide point bars, cut-banks with fallen trees, and areas of localized channel scour along the left bank, where there is bedrock exposure at the surface. The Town Highway 39 crossing of the Saxtons River is an 85-ft-long, one-lane bridge consisting of one 82-foot steel-beam span (Vermont Agency of Transportation, written communication, March 31, 1995). The bridge is supported by vertical, concrete abutments without wingwalls. The channel is skewed approximately 30 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 3 ft deeper than the mean thalweg depth was observed during the Level I assessment along the left side of the channel under the bridge exposing the left abutment footing 5.5 feet. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) on the left banks upstream and downstream and the left abutment wall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 2.2 to 3.8 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 21.4 to 23.2 feet and 26.2 to 32.4 feet at the left and right abutments respectively. The worst-case abutment scour occurred for the right abutment at the incipient overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Bedrock was exposed at the surface in some areas of the channel and potentially is located at a shallower depth than the scour depths indicated above. Nevertheless, scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Summary and Comparison of Multiphase Streambed Scour Analysis at Selected Bridge Sites in Alaska

    USGS Publications Warehouse

    Conaway, Jeffrey S.

    2004-01-01

    The U.S. Geological Survey and the Alaska Department of Transportation and Public Facilities undertook a cooperative multiphase study of streambed scour at selected bridges in Alaska beginning in 1994. Of the 325 bridges analyzed for susceptibility to scour in the preliminary phase, 54 bridges were selected for a more intensive analysis that included site investigations. Cross-section geometry and hydraulic properties for each site in this study were determined from field surveys and bridge plans. Water-surface profiles were calculated for the 100- and 500-year floods using the Hydrologic Engineering Center?s River Analysis System and scour depths were calculated using methods recommended by the Federal Highway Administration. Computed contraction-scour depths for the 100- and 500-year recurrence-interval discharges exceeded 5 feet at six bridges, and pier-scour depths exceeded 10 feet at 24 bridges. Complex pier-scour computations were made at 10 locations where the computed contraction-scour depths would expose pier footings. Pressure scour was evaluated at three bridges where the modeled flood water-surface elevations intersected the bridge structure. Site investigation at the 54 scour-critical bridges was used to evaluate the effectiveness of the preliminary scour analysis. Values for channel-flow angle of attack and approach-channel width were estimated from bridge survey plans for the preliminary study and were measured during a site investigation for this study. These two variables account for changes in scour depths between the preliminary analysis and subsequent reanalysis for most sites. Site investigation is needed for best estimates of scour at bridges with survey plans that indicate a channel-flow angle of attack and for locations where survey plans did not include sufficient channel geometry upstream of the bridge.

  8. Predictive model for local scour downstream of hydrokinetic turbines in erodible channels

    NASA Astrophysics Data System (ADS)

    Musa, Mirko; Heisel, Michael; Guala, Michele

    2018-02-01

    A modeling framework is derived to predict the scour induced by marine hydrokinetic turbines installed on fluvial or tidal erodible bed surfaces. Following recent advances in bridge scour formulation, the phenomenological theory of turbulence is applied to describe the flow structures that dictate the equilibrium scour depth condition at the turbine base. Using scaling arguments, we link the turbine operating conditions to the flow structures and scour depth through the drag force exerted by the device on the flow. The resulting theoretical model predicts scour depth using dimensionless parameters and considers two potential scenarios depending on the proximity of the turbine rotor to the erodible bed. The model is validated at the laboratory scale with experimental data comprising the two sediment mobility regimes (clear water and live bed), different turbine configurations, hydraulic settings, bed material compositions, and migrating bedform types. The present work provides future developers of flow energy conversion technologies with a physics-based predictive formula for local scour depth beneficial to feasibility studies and anchoring system design. A potential prototype-scale deployment in a large sandy river is also considered with our model to quantify how the expected scour depth varies as a function of the flow discharge and rotor diameter.

  9. Level II scour analysis for Bridge 6 (MORRTH00030006) on Town Highway 3, crossing Ryder Brook, Morristown, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MORRTH00030006 on Town Highway 3 crossing Ryder Brook, Morristown, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in north-central Vermont. The 19.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover also is forested. In the study area, Ryder Brook has a straight channel with an average channel top width of 450 ft and an average bank height of 7 ft. The predominant channel bed material is silt and clay with a median grain size (D50) of 0.0719 mm (0.000236 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 18, 1996, indicated that the reach was aggraded, but the channel through the bridge was scoured. The Town Highway 3 crossing of Ryder Brook is a 72-ft-long, two-lane bridge consisting of one 70-foot steel-beam span (Vermont Agency of Transportation, written communication, January 31, 1996). The bridge is supported by vertical, concrete abutments with spill-through embankments and wingwalls. The channel is not skewed to the opening and the opening-skew-to-roadway is zero degrees. Channel scour under the bridge was evident at this site during the Level I assessment. The depth of the channel increases from 3 feet at the upstream bridge face to 10 feet at the downstream bridge face. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) on the spill-through embankments of each abutment, the upstream road embankments and the downstream left road embankment. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 20.4 to 25.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.3 to 10.5 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Level II scour analysis for Bridge 23 (WALDTH00060023) on Town Highway 6, crossing Stannard Brook, Walden, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WALDTH00060023 on Town Highway 6 crossing Stannard Brook, Walden, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in eastern Vermont. The 5.61-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the upstream surface cover is shrub and brushland with some trees. The downstream surface cover is forest. In the study area, Stannard Brook has an incised, straight channel with a slope of approximately 0.02 ft/ft, an average channel top width of 54 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 64.0 mm (0.210 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 8, 1995, indicated that the reach was stable. The Town Highway 6 crossing of Stannard Brook is a 59-ft-long (bottom width), two-lane pipe arch culvert consisting of one 22-foot corrugated plate pipe arch span (Vermont Agency of Transportation, written communication, March 28, 1995). The opening length of the structure parallel to the bridge face is 21.9 ft.The pipe arch is supported by vertical, concrete kneewalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 1.5 ft deeper than the mean thalweg depth was observed along the upstream end of the right kneewall during the Level I assessment. There was also a scour hole 0.5 ft deeper than the mean thalweg depth observed along the downstream end of the left kneewall. The scour counter measures at the site included type-3 stone fill (less than 48 inches diameter) at the upstream and downstream end of the left and right kneewall. There was also type-2 stone fill (less than 36 inches diameter) along the upstream right bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and kneewalls). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 2.3 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was greater than the 100-year discharge. Left kneewall scour ranged from 11.7 to 16.8 ft. The worst-case left kneewall scour occurred at the 500-year discharge. Right kneewall scour ranged from 13.7 to 16.7 ft. The worst-case right kneewall scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. During the Level I survey ledge was discovered at the upstream end of the right abutment. The ledge in the channel may limit scour depths. It is generally accepted that the Froehlich equation (abutment/ kneewall scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Level II scour analysis for Bridge 35 (RANDTH00650035) on Town Highway 65, crossing the Second Branch White River, Randolph, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  12. Level II scour analysis for Bridge 2 (BENNCYPARK0002) on Park Street, crossing Furnace Brook, Bennington, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  13. Level II scour analysis for Bridge 39 (STOWTH00160039) on Town Highway 16, crossing Moss Glen Brook, Stowe, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  14. Level II scour analysis for Bridge 7 (MORRTH00020007) on Town Highway 2 (FAS 239), crossing Ryder Brook, Morristown, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Hammond, Robert E.

    1997-01-01

    It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  15. Level II scour analysis for Bridge 11 (HINETH00040011) on Town Highway 4, crossing Lewis Creek, Hinesburg, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Burns, Ronda L.

    1997-01-01

    size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  16. Level II scour analysis for Bridge 39 (PEACTH00620039) on Town Highway 62, crossing South Peacham Brook, Peacham, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Degnan, James R.

    1997-01-01

    It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 137 (FERRUS00070137) on U.S. Route 7, crossing Little Otter Creek, Ferrisburg, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Burns, Ronda L.

    1997-01-01

    It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 19 (CHARTH00390019) on Town Highway 39, crossing Mad Brook, Charleston, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Hammond, Robert E.

    1997-01-01

    It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. Level II scour analysis for Bridge 12 (HUNTTH00010012) on Town Highway 001, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1997-01-01

    frequency data contained in the Flood Insurance Study for the Town of Huntington (U.S. Department of Housing and Urban Development, 1978). The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 9.19-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture while the immediate banks have some woody vegetation. In the study area, the Brush Brook has a sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 62 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to cobble with a median grain size (D50) of 100.0 mm (0.328 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 25, 1996, indicated that the reach was stable. The Town Highway 1 crossing of Brush Brook is a 64-ft-long, two-lane bridge consisting of one 62-foot steel-stringer span (Vermont Agency of Transportation, written communication, November 30, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is 6 degrees. Channel scour 2.2 ft deeper than the mean thalweg depth was observed along the upstream right bank and along the base of the spill-through protection for the right abutment during the Level I assessment. Scour protection measured at the site was type-2 stone fill (less than 36 inches diameter) along the upstream left and right banks and in front of all four wingwalls. In front of the abutments, there was type-3 stone fill (less than 48 inches diameter) forming a spill-through slope. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. There was no computed contraction scour for any modelled flow. Abutment scour ranged from 1.4 to 2.8 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 9. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Level II scour analysis for Bridge 17 (LYNDTH00020017) on Town Highway 2, crossing Hawkins Brook, Lyndon, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure LYNDTH00020017 on Town Highway 2 crossing Hawkins Brook, Lyndon, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the Green Mountain section of the New England physiographic province in northeastern Vermont. The 7.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the left and right upstream overbanks. The downstream left and right overbanks are brushland.In the study area, Hawkins Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 78 ft and an average bank height of 7.3 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 46.6 mm (0.153 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 4, 1995, indicated that the reach was laterally unstable with the presence of point bars and side bars.The Town Highway 2 crossing of Hawkins Brook is a 49-ft-long, two-lane bridge consisting of a 46-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 27, 1995). The opening length of the structure parallel to the bridge face is 43 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the computed opening-skew-to-roadway is zero degrees.A scour hole 0.75 ft deeper than the mean thalweg depth was observed along the downstream left abutment during the Level I assessment. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) at the upstream end of the downstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.Contraction scour for all modelled flows ranged from 0.1 to 0.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 3.8 to 6.6 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Level II scour analysis for Bridge 32 (HUNTTH00220032) on Town Highway 22, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HUNTTH00220032 on Town Highway 22 crossing Brush Brook, Huntington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 5.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest except on the downstream right overbank which is pasture. In the study area, Brush Brook has an incised, straight channel with a slope of approximately 0.05 ft/ft, an average channel top width of 58 ft and an average bank height of 6 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 127 mm (0.416 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 25, 1996, indicated that the reach was stable. The Town Highway 22 crossing of Brush Brook is a 36-ft-long, one-lane bridge consisting of one 34-foot steel-beam span and a timber deck (Vermont Agency of Transportation, written communication, December 12, 1995). The opening length of the structure parallel to the bridge face is 35.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls on the left. The channel is skewed approximately 50 degrees to the opening while the measured opening-skew-to-roadway is 15 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the left abutment and downstream left wingwall during the Level I assessment. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the upstream right bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.4 to 10.2 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  2. Rapid-estimation method for assessing scour at highway bridges

    USGS Publications Warehouse

    Holnbeck, Stephen R.

    1998-01-01

    A method was developed by the U.S. Geological Survey for rapid estimation of scour at highway bridges using limited site data and analytical procedures to estimate pier, abutment, and contraction scour depths. The basis for the method was a procedure recommended by the Federal Highway Administration for conducting detailed scour investigations, commonly referred to as the Level 2 method. Using pier, abutment, and contraction scour results obtained from Level 2 investigations at 122 sites in 10 States, envelope curves and graphical relations were developed that enable determination of scour-depth estimates at most bridge sites in a matter of a few hours. Rather than using complex hydraulic variables, surrogate variables more easily obtained in the field were related to calculated scour-depth data from Level 2 studies. The method was tested by having several experienced individuals apply the method in the field, and results were compared among the individuals and with previous detailed analyses performed for the sites. Results indicated that the variability in predicted scour depth among individuals applying the method generally was within an acceptable range, and that conservatively greater scour depths generally were obtained by the rapid-estimation method compared to the Level 2 method. The rapid-estimation method is considered most applicable for conducting limited-detail scour assessments and as a screening tool to determine those bridge sites that may require more detailed analysis. The method is designed to be applied only by a qualified professional possessing knowledge and experience in the fields of bridge scour, hydraulics, and flood hydrology, and having specific expertise with the Level 2 method.

  3. Use of a ground-penetrating radar system to detect pre-and post-flood scour at selected bridge sites in New Hampshire, 1996-98

    USGS Publications Warehouse

    Olimpio, Joseph R.

    2000-01-01

    Ground-penetrating radar was used to measure the depth and extent of existing and infilled scour holes and previous scour surfaces at seven bridges in New Hampshire from April 1996 to November 1998. Ground-penetrating-radar survey techniques initially were used by the U.S. Geological Survey to study streambed scour at 30 bridges. Sixteen of the 30 bridges were re-surveyed where floods exceeded a 2-year recurrence interval. A 300-megahertz signal was used in the ground-penetrating radar system that penetrated through depths as great as 20 feet of water and as great as 32 feet of streambed materials. Existing scour-hole dimensions, infilled thickness, previous scour surfaces, and streambed materials were detected using ground-penetrating radar. Depths to riprap materials and pier footings were identified and verified with bridge plans. Post data-collection-processing techniques were applied to assist in the interpretation of the data, and the processed data were displayed and printed as line plots. Processing included distance normalization, migration, and filtering but processing was kept to a minimum and some interference from multiple reflections was left in the record. Of the 16 post-flood bridges, 22 ground-penetrating-radar cross sections at 7 bridges were compared and presented in this report. Existing scour holes were detected during 1996 (pre-flood) data collection in nine cross sections where scour depths ranged from 1 to 3 feet. New scour holes were detected during 1998 (post-flood) data collection in four cross sections where scour depths were as great as 4 feet deep. Infilled scour holes were detected in seven cross sections, where depths of infilling ranged from less than 1 to 4 feet. Depth of infilling by means of steel rod and hammer was difficult to verify in the field because of cobble and boulder streambeds or deep water. Previous scour surfaces in streambed materials were identified in 15 cross sections and the depths to these surfaces ranged from 1 to 10 feet below the streambed. Riprap materials or pier footings were identified in all cross sections. Calculated record depths generally agree with bridge plans. Pier footings were exposed at two bridges and steel pile was exposed at one bridge. Exposures were verified by field observations.

  4. Level II scour analysis for Bridge 30 (NEWHTH00050030) on Town Highway 5, crossing the New Haven River, New Haven, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure NEWHTH00050030 on Town Highway 5 crossing the New Haven River, New Haven, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (Federal Highway Administration, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.The site is in the Champlain section of the St. Lawrence Valley physiographic province in west-central Vermont. The 115-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the right bank upstream and downstream of the bridge while the immediate banks have dense woody vegetation. The upstream left bank is also pasture. The downstream left bank is forested.In the study area, the New Haven River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 127 ft and an average bank height of 5 ft. The channel bed material ranges from silt to cobble with a median grain size (D50) of 20.4 mm (0.067 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 19, 1996, indicated that the reach was laterally unstable. The stream bends through the bridge and impacts the left bank where there is a cut bank and scour hole.The Town Highway 5 crossing of the New Haven River is a 181-ft-long, two-lane bridge consisting of four 45-ft concrete tee-beam spans (Vermont Agency of Transportation, written communication, December 15, 1995). The opening length of the structure parallel to the bridge face is 175.9 ft. The bridge is supported by vertical, concrete abutments with stone fill spill-through embankments and three concrete piers. The channel is skewed approximately 15 degrees to the opening while the computed opening-skew-to-roadway is 10 degrees.A scour hole 4.5 ft deeper than the mean thalweg depth was observed along the downstream left bank during the Level I assessment. Also observed was a scour hole 1.5 ft deeper than the mean thalweg depth at the upstream end of the middle pier. The only scour protection measure at the site was type-3 stone fill (less than 48 inches diameter) in front of the left and right abutments creating spill through slopes. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.Contraction scour for all modelled flows ranged from 0.7 to 2.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 6.8 to 8.4 ft. The worst-case left abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 11.2 to 14.0 ft. The worst-case right abutment scour occurred at the 500-year discharge. Pier scour ranged from 12.9 to 19.3 ft. The worst-case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 23 (GLOVTH00410023) on Town Highway 41, crossing Sherburne Brook, Glover, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure GLOVTH00410023 on Town Highway 41 crossing Sherburne Brook, Glover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in northern Vermont. The 2.57-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is primarily forest with small areas of lawn and a home on the right overbank and a gravel roadway along the upstream left bank. In the study area, Sherburne Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 33 ft and an average bank height of 6 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 57.3 mm (0.188 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 24, 1994, indicated that the reach was stable. The Town Highway 41 crossing of Sherburne Brook is a 24-ft-long, one-lane bridge consisting of one 21-foot steel-beam span with a timber deck (Vermont Agency of Transportation, written communication, August 4, 1994). The opening length of the structure parallel to the bridge face is 20.3 ft. The bridge is supported by vertical, granite block abutments. The channel is skewed approximately 55 degrees to the opening while the measured opening-skew-to-roadway is 30 degrees. One foot of scour below the mean thalweg depth was observed along the right abutment undermining the abutment by 0.5 feet vertically. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.4 to 0.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.6 to 7.2 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 25 (JAMATH00010025) on Town Highway 1, crossing Ball Mountain Brook, Jamaica, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure JAMATH00010025 on Town Highway 1 crossing Ball Mountain Brook, Jamaica, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southern Vermont. The 29.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest except on the downstream right bank which is pasture with some trees along the channel. In the study area, Ball Mountain Brook has an incised, straight channel with a slope of approximately 0.021 ft/ft, an average channel top width of 86 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 222 mm (0.727 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 13, 1996, indicated that the reach was stable. The Town Highway 1 crossing of Ball Mountain Brook is a 78-ft-long, two-lane bridge consisting of one 75-foot steel-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The opening length of the structure parallel to the bridge face is 73 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 30 degrees to the opening while the opening-skew-to-roadway is 30 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed at the upstream bridge face. The scour protection measures at the site were type-2 stone fill (less than 36 inches diameter) along the upstream banks and along both abutments, and type-3 stone fill (less than 48 inches diameter) along the downstream banks. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour only occurred at the 500-year discharge and was 0.1 ft. Abutment scour ranged from 11.2 to 15.7 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 42 (HARDELMSTR0042) on Elm Street, crossing Cooper Brook, Hardwick, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HARDELMSTR0042 on Elm Street crossing Cooper Brook, Hardwick, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in north-central Vermont. The 16.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the overbanks are primarily grass covered with some brush along the immediate channel banks except the upstream right bank and overbank which is forested and the downstream left overbank which has a lumberyard. In the study area, Cooper Brook has a sinuous channel with a slope of approximately 0.005 ft/ft, an average channel top width of 50 ft and an average channel depth of 6 ft. The predominant channel bed materials are sand and gravel with a median grain size (D50) of 1.25 mm (0.00409 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 24, 1995, indicated that the reach was stable. The Elm Street crossing of Cooper Brook is a 39-ft-long, two-lane bridge consisting of one 37-foot concrete span (Vermont Agency of Transportation, written communication, March 17, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening while the opening-skew-to-roadway is 45 degrees. On August 17, 1995 the site was revisited to investigate the effect of the August 4-5, 1995 flood on the structure. Channel features such as scour holes and point bars were shifted by the high flow event. Details of these changes can be found in the Level I data form in Appendix E. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and G. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 3.4 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge which was less than the 100-year discharge. Abutment scour ranged from 7.1 to 10.4 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 10 (BENNUS00070010) on U.S. Route 7, crossing the Walloomsac River, Bennington, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BENNUS00070010 on U.S. Route 7, also known as North Street, crossing of the Walloomsac River, Bennington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southwestern Vermont. The 30.1-mi2 drainage area is a predominantly rural and forested basin. The bridge site is located within an urban setting in the Town of Bennington with buildings, parking lots, lawns, and a playground on the overbank areas. In the study area, the Walloomsac River has a straight channel with constructed channel banks through much of the reach. The channel is located on a delta and has a slope of approximately 0.02 ft/ft, an average channel top width of 37 ft and an average bank height of 5 ft. The predominant channel bed material is cobble with a median grain size (D50) of 96.0 mm (0.315 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 5, 1996, indicated that the constructed reach was stable. The U.S. Route 7 crossing of the Walloomsac River is a 53-ft-long, two-lane bridge consisting of one 50-foot steel span (Vermont Agency of Transportation, written communication, September 27, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The wingwalls are angled in toward the channel because the widths of the upstream and downstream constructed channel banks are narrower than the bridge opening. The channel is skewed approximately 5 degrees to the opening and the opening-skew-to-roadway is 10 degrees. Scour countermeasures at the site include masonry and stone walls on both the upstream and downstream banks. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour computed for all modelled flows ranged from 0.0 to 0.1 ft. The worstcase contraction scour occurred at the 500-year discharge. Computed left abutment scour ranged from 5.9 to 6.8 ft. with the worst-case scour occurring at the 500-year discharge. Computed right abutment scour for all modelled flows was 6.8 ft. Total scour depths for all modelled flows did not exceed the depth of the abutment footings. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Level II scour analysis for Bridge 29 (ROYATH00920029) on Town Highway 92, crossing the First Branch White River, Royalton, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROYATH00920029 on Town Highway 92 crossing the First Branch White River, Royalton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 101-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge. In the study area, the First Branch White River has an incised, sinuous channel with a slope of approximately 0.001 ft/ft, an average channel top width of 81 ft and an average bank height of 9 ft. The channel bed material ranges from sand to bedrock with a median grain size (D50) of 1.18 mm (0.00347 ft). The geomorphic assessment at the time of the Level I site visit on July 23, 1996 and Level II site visit on June 2, 1995, indicated that the reach was stable. The Town Highway 92 crossing of the First Branch White River is a 59-ft-long, one-lane bridge consisting of a 57-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 52.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 4.0 ft deeper than the mean thalweg depth was observed in the upstream channel during the Level I assessment. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the upstream left and right wingwalls, the left abutment and downstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 4.1 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Left abutment scour ranged from 12.9 to 15.4 ft, where the worst-case abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 14.5 to 15.0 ft, where the worst-case abutment scour occurred at the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Level II scour analysis for Bridge 13 (SHARTH00040013) on Town Highway 4, crossing Broad Brook, Sharon, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Weber, Matthew A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SHARTH00040013 on Town Highway 4 crossing Broad Brook, Sharon, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the New England Upland section of the New England physiographic province in central Vermont. The 16.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is brushland on the downstream left overbank and row crops on the right overbank, while the immediate banks have dense woody vegetation. Upstream of the bridge, the overbanks are forested.In the study area, Broad Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 69 ft and an average bank height of 5 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 112 mm (0.369 ft). The geomorphic assessment at the time of the Level I site visit on April 11, 1995 and Level II site visit on July 23, 1996, indicated that the reach was stable.The Town Highway 4 crossing of Broad Brook is a 34-ft-long, two-lane bridge consisting of one 31-foot concrete tee beam span (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 30.1 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is 15 degrees.A scour hole 2.0 ft deeper than the mean thalweg depth was observed along the upstream end of the right abutment. At the downstream end of the left abutment, a 1.0 foot scour hole was observed . Scour countermeasures at the site include type-2 stone fill (less than 3 feet diameter) at each road embankment. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.Contraction scour for all modelled flows ranged from 0.7 to 1.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 5.6 to 9.4 ft. The worst case left abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 19.0 to 19.8 ft. The worst-case right abutment scour occurred at the incipient-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Level II scour analysis for Bridge 28 (CAMBTH00460028) on Town Highway 46, crossing the Seymour River, Cambridge, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CAMBTH00460028 on Town Highway 46 crossing the Seymour River, Cambridge, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in northwestern Vermont. The 9.94-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture while the immediate banks have dense woody vegetation. In the study area, the Seymour River has an incised, straight channel with a slope of approximately 0.02 ft/ft, an average channel top width of 81 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 62.0 mm (0.204 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 11, 1995, indicated that the reach was stable. The Town Highway 46 crossing of the Seymour River is a 38-ft-long, one-lane bridge consisting of one 33-foot steel-beam span (Vermont Agency of Transportation, written communication, March 8, 1995). The opening length of the structure parallel to the bridge face is 30.6 ft.The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 5 degrees to the opening while the measured opening-skew-to-roadway is 10 degrees. A scour hole 0.2 ft deeper than the mean thalweg depth was observed along the upstream right wingwall and right abutment during the Level I assessment. The only scour protection measure at the site was type-1 stone fill (less than 12 inches diameter) along the upstream left road embankment. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge. Left abutment scour ranged from 4.2 to 4.9 ft. The worst-case left abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 8.8 to 9.7 ft. The worst-case right abutment scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  12. Unknown foundation determination for scour.

    DOT National Transportation Integrated Search

    2012-04-01

    Unknown foundations affect about 9,000 bridges in Texas. For bridges over rivers, this creates a problem : regarding scour decisions as the calculated scour depth cannot be compared to the foundation depth, and a : very conservative costly approach m...

  13. Level II scour analysis for Bridge 32 (FERRTH00190032) on Town Highway 19, crossing the South Slang Little Otter Creek, Ferrisburgh, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure FERRTH00190032 on Town Highway 19 crossing the South Slang Little Otter Creek (Hawkins Slang Brook), Ferrisburg, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Champlain section of the St. Lawrence Valley physiographic province in west-central Vermont. The 8.00-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of wetlands upstream and downstream of the bridge with trees and pasture on the wide flood plains. In the study area, the South Slang Little Otter Creek has a meandering channel with essentially no channel slope, an average channel top width of 932 ft and an average bank height of 6 ft. The channel bed material ranges from clay to sand. Sieve analysis indicates that greater than 50% of the sample is coarse silt and clay and thus a medium grain size by use of sieve analysis was indeterminate. The median grain size was assumed to be a course silt with a size (D50) of 0.061mm (0.0002 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 2, 1996, indicated that the reach was stable. The Town Highway 19 crossing of the South Slang Little Otter Creek is a 45-ft-long, twolane bridge consisting of one 42-foot concrete box-beam span (Vermont Agency of Transportation, written communication, December 11, 1995). The opening length of the structure parallel to the bridge face is 41.8 ft. The bridge is supported by vertical, concrete abutments. The channel is skewed approximately 5 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 3.5 ft deeper than the mean thalweg depth was observed in the upstream channel. Also a scour hole 2.0 ft deeper than the mean thalweg depth was observed along the right abutment during the Level I assessment. The scour protection measures at the site are type-1 stone fill (less than 12 inches diameter) around the left and right abutments, along the upstream and downstream road embankments, and across the entire upstream and downstream bridge face. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 14.0 to 20.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 3.2 to 8.3 ft. The worst-case abutment scour occurred at the 500-year discharge. The predicted scour is well above the pile bottom elevations. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  14. Level II scour analysis for Bridge 13 (LINCTH00010013) on Town Highway 1, crossing Cota Brook, Lincoln, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure LINCTH00010013 on Town Highway 1 crossing Cota Brook, Lincoln, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 3.0-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest along the upstream right bank and brushland along the upstream left bank. Downstream of the bridge, the surface cover is pasture along the left and right banks. In the study area, Cota Brook has an sinuous channel with a slope of approximately 0.01 ft/ ft, an average channel top width of 30 ft and an average bank height of 2 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 34.7 mm (0.114 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 10, 1996, indicated that the reach was laterally unstable due to cut-banks and wide, vegetated point bars upstream and downstream of the bridge. The Town Highway 1 crossing of Cota Brook is a 38-ft-long, two-lane bridge consisting of a 36-foot steel-stringer span (Vermont Agency of Transportation, written communication, December 14, 1995). The opening length of the structure parallel to the bridge face is 34.4 ft. The bridge is supported by vertical, concrete abutments. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is zero degrees.A scour hole 2.0 ft deeper than the mean thalweg depth was observed along the upstream right bank during the Level I assessment. Along the right abutment, it is 0.25 ft deeper than the mean thalweg depth. Scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) along the upstream right bank and type-2 stone fill (less than 36 inches diameter) along the left and right abutments and along the downstream left bank. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 1.7 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 9.1 to 11.3 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  15. Level II scour analysis for Bridge 29 (HUNTTH00290029) on Town Highway 29, crossing Cobb Brook, Huntington, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HUNTTH00290029 on Town Highway 29 crossing Cobb Brook, Huntington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in northwestern Vermont. The 4.16-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and downstream of the bridge. In the study area, Cobb Brook has an incised, straight channel with a slope of approximately 0.024 ft/ft, an average channel top width of 53 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 112.0 mm (0.367 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 25, 1996, indicated that the reach was stable. The Town Highway 29 crossing of Cobb Brook is a 36-ft-long, one-lane bridge consisting of one 30-foot steel-beam span (Vermont Agency of Transportation, written communication, December 11, 1995) and a wooden deck. The opening length of the structure parallel to the bridge face is 27 ft.The bridge is supported by vertical, concrete abutments. The channel is skewed approximately 25 degrees to the opening while the opening-skew-to-roadway was measured to be 20 degrees. VTAOT records indicate an opening-skew-to-roadway of zero degrees. A scour hole 1.5 ft deeper than the mean thalweg depth was observed extending from 12 ft upstream of the upstream end of the left abutment to 10 ft under the bridge in the center of the channel during the Level I assessment. Another scour hole approximately 1.2 ft deeper than the mean thalweg depth was observed along the downstream end of the right abutment during the Level I assessment. The scour protection measures at the site included type-2 stone fill (less than 36 inches diameter) along the upstream end of the right abutment and type-3 stone fill (less than 48 inches diameter) along the upstream end of the upstream left retaining wall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was computed to be zero ft. Abutment scour ranged from 9.9 to 12.5 ft along the left abutment and from 6.2 to 8.6 ft along the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  16. Level II scour analysis for Bridge 41 (WODSTH00750041) on Town Highway 75, crossing Happy Valley Brook, Woodstock, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WODSTH00750041 on town highway 75 crossing Happy Valley Brook, Woodstock, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province of east-central Vermont. The 3.45-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is brush with scattered trees. In the study area, Happy Valley Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 23 ft and an average channel depth of 5 ft. The predominant channel bed materials are gravel and cobble with a median grain size (D50) of 82.8 mm (0.272 ft). The geomorphic assessment at the time of the Level II site visits on September 13, 1994 and December 14, 1994, indicated that the reach was degrading. Five logs are embedded across the channel under the bridge in an attempt to prevent further degradation (see Figures 5 and 6). The town highway 75 crossing of Happy Valley Brook is a 27-ft-long, two-lane bridge consisting of one 25-foot steel-beam span. The clear span is 17 ft. (Vermont Agency of Transportation, written communication, August 3, 1994). The bridge is supported by vertical, stone abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening and the opening-skew-to-roadway is also 40 degrees. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.3 to 2.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.2 to 12.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 8 (NEWFTH00010008) on Town Highway 1, crossing Wardsboro Brook, Newfane, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Degnan, James

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure NEWFTH00010008 on Town Highway 1 crossing Wardsboro Brook, Newfane, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (Federal Highway Administration, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in southestern Vermont. The 6.91-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the upstream right overbank and downstream left and right overbanks. The surface cover on the upstream left overbank is pasture. In the study area, Wardsboro Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 63 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 95.4 mm (0.313 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 21, 1996, indicated that the reach was stable. The Town Highway 1 crossing of the Wardsboro Brook is a 32-ft-long, two-lane bridge consisting of a 26-foot concrete tee-beam span (Vermont Agency of Transportation, written communication, April 6, 1995). The opening length of the structure parallel to the bridge face is 26.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the computed opening while the openingskew-to-roadway is 45 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the right abutment during the Level I assessment. Scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) along the upstream right bank, and type-2 stone fill (less than 36 inches diameter) along the upstream left bank and the upstream ends of the upstream left and right wingwalls. A stone wall extends along the downstream right bank from the end of the downstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.1 to 3.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 11.1 to 12.9 ft. Right abutment scour ranged from 4.3 to 4.8 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 28 (STRATH00020028) on Town Highway 2, crossing the West Branch Ompompanoosuc River, Strafford, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure STRATH00020028 on Town Highway 2 crossing the West Branch Ompompanoosuc River, Strafford, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gathered from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 25.4-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge. In the study area, the West Branch Ompompanoosuc River has a sinuous channel with a slope of approximately 0.002 ft/ft, an average channel top width of 34 ft and an average bank height of 6 ft. The channel bed material ranges from silt and clay to cobbles with a median grain size (D50) of 20.4 mm (0.0669 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 24, 1996, indicated that the reach was laterally unstable, because of moderate fluvial erosion. The Town Highway 2 crossing of the West Branch Ompompanoosuc River is a 31-ft-long, twolane bridge consisting of a 26-foot concrete tee-beam span (Vermont Agency of Transportation, written communication, October 23, 1995). The opening length of the structure parallel to the bridge face is 24.6 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the computed opening-skew-toroadway is 5 degrees. A scour hole 3.2 ft deeper than the mean thalweg depth was observed under the bridge along the right side of the channel during the Level I assessment. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the upstream right bank, the upstream right wingwall, the right abutment and the downstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 3.2 to 4.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 4.4 to 7.5 ft. Right abutment scour ranged from 7.2 to 10.1 ft.The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. Level II scour analysis for Bridge 46 (FFIETH00470046) on Town Highway 47, crossing Black Creek, Fairfield, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Flynn, Robert H.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure FFIETH00470046 on Town Highway 47 crossing Black Creek, Fairfield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gathered from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in northwestern Vermont. The 37.8 mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, Black Creek has a meandering channel with a slope of approximately 0.0005 ft/ft, an average channel top width of 51 ft and an average bank height of 6 ft. The channel bed material ranges from sand to bedrock with a median grain size (D50) of 0.189 mm (0.00062 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 12, 1995, indicated that the reach was stable. The Town Highway 47 crossing of Black Creek is a 35-ft-long, one-lane bridge consisting of one 31-ft steel-stringer span (Vermont Agency of Transportation, written communication, March 8, 1995). The opening length of the structure parallel to the bridge face is 28.0 ft. The bridge is supported by vertical, laid-up stone abutments with wingwalls. The channel is skewed approximately zero degrees to the opening and the opening-skew-toroadway is zero degrees. A scour hole 6.0 ft deeper than the mean thalweg depth was observed just downstream of the bridge during the Level I assessment. Scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) along the left abutment. Type-2 stone fill (less than 36 inches diameter) extended along the upstream left and right banks, the upstream left and right wingwalls, the downstream left wingwall, and the downstream left bank. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.4 to 8.2 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 5.8 to 15.6 ft. At the left abutment, the worst-case abutment scour occurred at the 100-year discharge, and at the right abutment the worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results.” Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Level II scour analysis for Bridge 31 (JERITH00350031) on Town Highway 35, crossing Mill Brook, Jericho, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure JERITH00350031 on Town Highway 35 crossing Mill Brook, Jericho, Vermont (figures 1– 8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gathered from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province and the Champlain section of the St. Lawrence physiographic province in northwestern Vermont. The 15.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream of the bridge. The downstream left overbank is pasture. The downstream right overbank is brushland. In the study area, the Mill Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 117 ft and an average bank height of 11 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 81.1 mm (0.266 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 3, 1996, indicated that the reach was laterally unstable. The Town Highway 35 crossing of the Mill Brook is a 53-ft-long, one-lane bridge consisting of a 50-foot steel-beam span with a wooden deck (Vermont Agency of Transportation, written communication, November 30, 1995). The opening length of the structure parallel to the bridge face is 48 ft. The bridge is supported by a vertical, concrete abutment with wingwalls on the left. On the right, the abutment and wingwalls are laid-up stone with a concrete cap. The channel is not skewed to the opening. The roadway is skewed 10 degrees to the opening. A scour hole 1.5 ft deeper than the mean thalweg depth was observed along the left abutment during the Level I assessment. Scour countermeasures at the site were type-2 stone fill (less than 36 inches diameter) at the upstream and downstream left wingwalls, the upstream and downsteam left channel banks, and the downstream left road embankment. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). In addition, the incipient roadway-overtopping discharge is analyzed since it has the potential of being the worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.4 to 1.3 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 9.9 to 12.4 ft. Right abutment scour ranged from 13.8 to 17.8 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Level II scour analysis for Bridge 6 (FAYSTH00010006) on Town Highway 1, crossing Shepard Brook, Fayston, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Flynn, Robert H.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure FAYSTH00010006 on Town Highway 1 crossing Shepard Brook, Fayston, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 16.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest. In the study area, Shepard Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 56 ft and an average bank height of 3 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 72.6 mm (0.238 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 2, 1996, indicated that the reach was stable. The Town Highway 1 crossing of the Shepard Brook is a 42-ft-long, two-lane bridge consisting of one 40-foot concrete T-beam span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 39.6 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the calculated opening-skew-to-roadway is 30 degrees. Scour, 2.0 ft deeper than the mean thalweg depth, was observed along the right abutment during the Level I assessment. The left abutment is undermined along the base of the footing. In addition, 1.5 ft of scour was observed along the left abutment during the Level I assessment. The only scour protection measure at the site was type-1 stone fill (less than 12 inches diameter) along the left bank upstream and type-2 stone fill (less than 36 inches diameter) along the upstream end of the upstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.9 to 3.9 ft. The worst-case contraction scour occurred at the 500-year. Abutment scour ranged from 11.1 to 17.2 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  2. Level II scour analysis for Bridge 19 (SHEFTH00440019) on Town Highway 44, crossing Trout Brook, Sheffield, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SHEFTH00440019 on Town Highway 44 crossing Trout Brook, Sheffield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 3.0-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is grass on the upstream and downstream right overbanks, while the immediate banks have dense woody vegetation. The surface cover of the upstream and downstream left overbanks is shrub and brushland. In the study area, Trout Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 45 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 116 mm (0.381 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 31, 1995, indicated that the reach was stable. The Town Highway 44 crossing of Trout Brook is a 24-ft-long, one-lane bridge consisting of a 22-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 28, 1994). The opening length of the structure parallel to the bridge face is 19.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is zero degrees. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was analyzed since it has the potential of being the worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows resulted in zero ft. Left abutment scour ranged from 4.4 to 5.6 ft. The worst-case left abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 3.6 to 4.8 ft. The worst-case right abutment scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Level II scour analysis for Bridge 33 (HUNTTH00220033) on Town Highway 22, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HUNTTH00220033 on Town Highway 22 crossing Brush Brook, Huntington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 8.65-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest except on the downstream right overbank which is pasture. In the study area, Brush Brook has an incised, straight channel with a slope of approximately 0.04 ft/ft, an average channel top width of 42 ft and an average bank height of 3 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 76.7 mm (0.252 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 26, 1996, indicated that the reach was stable. The Town Highway 22 crossing of Brush Brook is a 40-ft-long, two-lane bridge consisting of one 23.5-foot concrete slab span (Vermont Agency of Transportation, written communication, November 30, 1995). The opening length of the structure parallel to the bridge face is 36.9 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening while the opening-skew-to-roadway is 30 degrees. The scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the left and right banks upstream that extended through the bridge and along the downstream banks. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is analyzed since it has the potential of being the worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 1.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.5 to 14.9 ft. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Level II scour analysis for Bridge 22 (JAY-TH00400022) on Town Highway 40, crossing Jay Branch, Jay, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Song, Donald L.

    1997-01-01

    8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in northern Vermont. The 2.15-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is primarily pasture on the upstream and downstream left overbank while the immediate banks have dense woody vegetation. The downstream right overbank of the bridge is forested. In the study area, Jay Branch Tributary has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 26 ft and an average bank height of 3 ft. The channel bed material ranges from gravel to cobble with a median grain size (D50) of 40.5 mm (0.133 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 7, 1995, indicated that the reach was stable. The Town Highway 40 crossing of Jay Branch Tributary is a 27-ft-long, two-lane bridge consisting of one 25-foot steel-beam span (Vermont Agency of Transportation, written communication, March 6, 1995). The opening length of the structure parallel to the bridge face is 23.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel skew and the opening-skew-to-roadway are zero degrees. The scour counter-measures at the site included type-2 stone fill (less than 36 inches diameter) at the upstream end of the left and right abutments, at the upstream right wingwall, and at the downstream left wingwall. There was also type-3 stone fill (less than 48 inches diameter) at the upstream left and downstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.7 to 1.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 4.6 to 4.9 ft. The worst-case left abutment scour occurred at the 100-year discharge. Right abutment scour ranged from 4.0 to 5.0 ft. The worst-case right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 22 (BRADTH00270022) on Town Highway 27, crossing the Waits River, Bradford, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Ivanoff, Michael A.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BRADTH00270022 on Town Highway 27 crossing the Waits River, Bradford, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, obtained from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in east-central Vermont. The 153-mi2 drainage area is in a predominantly rural and forested basin. However, in the vicinity of the study site, the upstream and downstream left banks are suburban and the upstream and downstream right banks are shrub and brushland. In the study area, the Waits River has an incised, sinuous channel with a slope of approximately 0.0002 ft/ft, an average channel top width of 125 ft and an average bank height of 4 ft. The channel bed material ranges from silt and clay to bedrock with a median grain size (D50) of 0.393 mm (0.00129 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 7, 1995, indicated that the reach was stable. The Town Highway 27 crossing of the Waits River is a 109-ft-long, one-lane bridge consisting of a 104-ft steel-truss span (Vermont Agency of Transportation, written communication, March 16, 1995). The opening length of the structure parallel to the bridge face is 99.2 ft. The bridge is supported by vertical, laid-up stone abutments. The channel is skewed approximately 30 degrees to the opening while the opening-skew-to-roadway is zero degrees. No evidence of scour was observed during the Level I assessment. Scour protection measures at the site included type-2 stone fill (less than 36 inches diameter) along the upstream right and downstream left banks and type-3 stone fill (less than 48 inches diameter) along the left and right abutments. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.5 to 2.0 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 11.8 to 18.8 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results.” Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Tsunami-induced morphological change of a coastal lake: comparing hydraulic experiment with numerical modeling

    NASA Astrophysics Data System (ADS)

    Sugawara, D.; Imai, K.; Mitobe, Y.; Takahashi, T.

    2016-12-01

    Coastal lakes are one of the promising environments to identify deposits of past tsunamis, and such deposits have been an important key to know the recurrence of tsunami events. In contrast to tsunami deposits on the coastal plains, however, relationship between deposit geometry and tsunami hydrodynamic character in the coastal lakes has poorly been understood. Flume experiment and numerical modeling will be important measures to clarify such relationship. In this study, data from a series of flume experiment were compared with simulations by an existing tsunami sediment transport model to examine applicability of the numerical model for tsunami-induced morphological change in a coastal lake. A coastal lake with a non-erodible beach ridge was modeled as the target geomorphology. The ridge separates the lake from the offshore part of the flume, and the lake bottom was filled by sand. Tsunami bore was generated by a dam-break flow, which is capable of generating a maximum near-bed flow speed of 2.5 m/s. Test runs with varying magnitude of the bore demonstrated that the duration of tsunami overflow controls the scouring depth of the lake bottom behind the ridge. The maximum scouring depth reached up to 7 cm, and sand deposition occurred mainly in the seaward-half of the lake. A conventional depth-averaged tsunami hydrodynamic model coupled with the sediment transport model was used to compare the simulation and experimental results. In the Simulation, scouring depth behind the ridge reached up to 6 cm. In addition, the width of the scouring was consistent between the simulation and experiment. However, sand deposition occurred mainly in a zone much far from the ridge, showing a considerable deviation from the experimental results. This may be associated with the lack of model capability to resolve some important physics, such as vortex generation behind the ridge and shoreward migration of hydraulic jump. In this presentation, the results from the flume experiment and the numerical modeling will be compared in detail, including temporal evolution of the morphological change. In addition, model applicability and future improvements will be discussed.

  7. Level II scour analysis for Bridge 15 (BOLTTH00150015) on Town Highway 15, crossing Joiner Brook, Bolton, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BOLTTH00150015 on Town Highway 15 crossing Joiner Brook, Bolton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in north central Vermont. The 9.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture (lawn) downstream of the bridge and on the upstream right bank. The surface cover on the upstream left bank is shrub and brushland. In the study area, Joiner Brook has an incised, straight channel with a slope of approximately 0.01 ft/ft, an average channel top width of 61 ft and an average bank height of 7 ft. The channel bed material ranges from gravel to cobble with a median grain size (D50) of 43.6 mm (0.143 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 27, 1996, indicated that the reach was stable. The Town Highway 15 crossing of Joiner Brook is a 39-ft-long, two-lane bridge consisting of one 36-foot concrete tee-beam span (Vermont Agency of Transportation, written communication, November 3, 1995). The opening length of the structure parallel to the bridge face is 34.6 ft. The bridge is supported by nearly vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 1.5 ft deeper than the mean thalweg depth was observed at the downstream end of the right abutment and along the downstream right wingwall during the Level I assessment. A second scour hole 1.2 ft deeper than the mean thalweg depth was observed at the upstream end of the left abutment and along the upstream left wingwall. The left abutment footing is exposed in the area of the scour hole. Scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) at the upstream end of the upstream left wingwall and at the downstream end of the downstream right wingwall and type-2 stone fill (less than 36 inches diameter) along the downstream left bank. There is also type-3 stone fill (less than 48 inches diameter) along the upstream left and right banks. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.8 to 3.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.9 to 15.1 ft. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results.” Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Method for rapid estimation of scour at highway bridges based on limited site data

    USGS Publications Warehouse

    Holnbeck, S.R.; Parrett, Charles

    1997-01-01

    Limited site data were used to develop a method for rapid estimation of scour at highway bridges. The estimates can be obtained in a matter of hours rather than several days as required by more-detailed methods. Such a method is important because scour assessments are needed to identify scour-critical bridges throughout the United States. Using detailed scour-analysis methods and scour-prediction equations recommended by the Federal Highway Administration, the U.S. Geological Survey, in cooperation with the Montana Department of Transportation, obtained contraction, pier, and abutment scour-depth data for sites from 10 States.The data were used to develop relations between scour depth and hydraulic variables that can be rapidly measured in the field. Relations between scour depth and hydraulic variables, in the form of envelope curves, were based on simpler forms of detailed scour-prediction equations. To apply the rapid-estimation method, a 100-year recurrence interval peak discharge is determined, and bridge- length data are used in the field with graphs relating unit discharge to velocity and velocity to bridge backwater as a basis for estimating flow depths and other hydraulic variables that can then be applied using the envelope curves. The method was tested in the field. Results showed good agreement among individuals involved and with results from more-detailed methods. Although useful for identifying potentially scour-critical bridges, themethod does not replace more-detailed methods used for design purposes. Use of the rapid- estimation method should be limited to individuals having experience in bridge scour, hydraulics, and flood hydrology, and some training in use of the method.

  9. Level II scour analysis for Bridge 6 (ALBUTH00150006) on Town Highway 15, crossing Mud Creek, Alburg, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Level II scour analysis for Bridge 34 (CONCTH00110034) on Town Highway 11, crossing Miles Stream, Concord, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Hammond, Robert E.

    1997-01-01

    Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Level II scour analysis for Bridge 52 (CHESTH00100052) on Town Highway 10, crossing the South branch Williams River, Chester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Ivanoff, Michael A.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CHESTH00100052 on Town Highway 10 crossing the South Branch Williams River, Chester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 4.05-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and downstream of the bridge. In the study area, the South Branch Williams River has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 35 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 82.1 mm (0.269 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 21, 1996, indicated that the reach was unstable, as a result of the moderate bank erosion. The Town Highway 10 crossing of the South Branch Williams River is a 32-ft-long, one-lane bridge consisting of a 29-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 31, 1995). The opening length of the structure parallel to the bridge face is 27.6 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 25 degrees to the opening while the opening-skew-to-roadway is 20 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed at the downstream end of the right abutment during the Level I assessment. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the upstream left and right banks, the upstream end of the upstream right wingwall and the entire base length of the upstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 5.2 to 10.8 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  12. Level II scour analysis for Bridge 34 (ROCHTH00210034) on Town Highway 21, crossing the White River, Rochester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Degnan, James

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCHTH00210034 on Town Highway 21 crossing the White River, Rochester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, obtained from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 74.8-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is suburban on the upstream and downstream left overbanks, though brush prevails along the immediate banks. On the upstream and downstream right overbanks, the surface cover is pasture with brush and trees along the immediate banks.In the study area, the White River has an incised, straight channel with a slope of approximately 0.002 ft/ft, an average channel top width of 102 ft and an average bank height of 5 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 74.4 mm (0.244 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 23, 1996, indicated that the reach was stable.The Town Highway 21 crossing of the White River is a 72-ft-long, two-lane bridge consisting of 70-foot steel stringer span (Vermont Agency of Transportation, written communication, March 22, 1995). The opening length of the structure parallel to the bridge face is 67.0 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is zero degrees.Channel scour, 1.5 ft deeper than the mean thalweg depth was observed along the left abutment and wingwalls during the Level I assessment. Scour countermeasures at the site includes type-1 stone fill (less than 12 inches diameter) along the upstream left bank and the upstream and downstream left road embankments, type-2 (less than 36 inches diameter) along the upstream end of the upstream left wingwall and downstream left bank, and type-3 (less than 48 inches diameter) along the downstream end of the downstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). In addition, the incipient roadway-overtopping discharge is analyzed since it has the potential of being the worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.Contraction scour for all modelled discharges was zero. Left abutment scour ranged from 6.8 to 21.2 ft. Right abutment scour ranged from 13.9 to 18.4 ft. The worst-case abutment scour occurred at the 500-year discharge at the left and right abutments. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  13. Level II scour analysis for Bridge 28 (ROCHTH00370028) on Town Highway 37, crossing Brandon Brook, Rochester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Weber, Matthew A.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCHTH00370028 on Town Highway 37 crossing Brandon Brook, Rochester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from VTAOT files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 8.0-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the upstream left overbank although the immediate banks have dense woody vegetation. The upstream right overbank and downstream left and right overbanks are forested. In the study area, the Brandon Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 44 ft and an average bank height of 7 ft. The channel bed material ranges from gravel to cobbles with a median grain size (D50) of 84.2 mm (0.276 ft). The geomorphic assessment at the time of the Level I site visit on April 12, 1995 and Level II site visit on July 8, 1996, indicated that the reach was stable. The Town Highway 37 crossing of the Brandon Brook is a 33-ft-long, one-lane bridge consisting of a 31-foot timber-stringer span (Vermont Agency of Transportation, written communication, March 22, 1995). The opening length of the structure parallel to the bridge face is 29.6 ft. The bridge is supported by vertical, timber log cribbing abutments with wingwalls. The channel is skewed approximately 5 degrees to the opening while the computed opening-skew-to-roadway is zero degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the upstream left wingwall and the left abutment during the Level I assessment. The only scour protection measure at the site was type-5 protection, an artificial levee, extending along the upstream right bank to the end of the upstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was zero ft. Left abutment scour ranged from 7.1 to 9.9 ft where the worst-case scour occurred at the 500-year discharge. Right abutment scour ranged from 4.4 to 5.1 ft where the worst-case scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results.” Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein

  14. Level II scour analysis for Bridge 44 (LINCTH00330044) on Town Highway 33, crossing the New Haven River, Lincoln, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure LINCTH00330044 on Town Highway 33 crossing the New Haven River, Lincoln, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 6.3-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest.In the study area, the New Haven River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 56 ft and an average bank height of 6 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 101.9 mm (0.334 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 10, 1996, indicated that the reach was stable.The Town Highway 33 crossing of the New Haven River is a 33-ft-long, one-lane bridge consisting of one 31-foot timber-beam span (Vermont Agency of Transportation, written communication, December 14, 1995). The opening length of the structure parallel to the bridge face is 29.3 ft. The bridge is supported by vertical, wood-beam crib abutments with wingwalls. The channel is skewed approximately 25 degrees to the opening while the opening-skew-to-roadway is zero degrees.A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the right abutment during the Level I assessment. The scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) at the downstream end of the downstream left wingwall and along the downstream right bank, type-2 stone fill (less than 36 inches diameter) along the upstream right bank and type-3 stone fill (less than 48 inches diameter) at the upstream end of the upstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.Contraction scour for all modelled flows ranged from 0.0 to 1.3 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 9.4 to 12.6 ft. The worst-case abutment scour occurred at the 100-year discharge for the left abutment and at the incipient overtopping discharge for the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  15. Level II scour analysis for Bridge 67 (MTHOTH00120067) on Town Highway 12, crossing Freeman Brook, Mount Holly, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Severance, Timothy

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MTHOTH00120067 on Town Highway 12 crossing Freeman Brook, Mount Holly, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 11.4-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forested. In the study area, Freeman Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 51 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulders with a median grain size (D50) of 55.7 mm (0.183 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 5, 1995, indicated that the reach was stable. The Town Highway 12 crossing of Freeman Brook is a 34-ft-long, two-lane bridge consisting of a 30-foot prestressed concrete-slab span (Vermont Agency of Transportation, written communication, March 15, 1995). The opening length of the structure parallel to the bridge face is 29.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 50 degrees to the opening while the opening-skew-to-roadway is 15 degrees. Along the upstream right wingwall, the right abutment and the downstream right wingwall, a scour hole approximately 1.0 to 2.0 ft deeper than the mean thalweg depth was observed during the Level I assessment. Scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) along the downstream end of the downstream right wingwall; type-2 stone fill (less than 36 inches diameter) along the upstream left wingwall, the left abutment, the downstream left wingwall and the upstream left and right banks; type- 3 stone fill (less than 48 inches diameter) along the downstream left and right banks; and type-4 stone fill (less than 60 inches diameter) along the upstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 2.6 to 3.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 7.9 to 10.0 ft. Right abutment scour ranged from 12.7 to 15.2 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  16. Level II scour analysis for Bridge 36 (DUXBTH00040036) on Town Highway 4, crossing Crossett Brook, Duxbury, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure DUXBTH00040036 on Town Highway 4 crossing the Crossett Brook, Duxbury, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the Green Mountain section of the New England physiographic province in north-central Vermont. The 4.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover on the upstream left overbank is pasture. The upstream and downstream right overbanks are forested. The downstream left overbank is brushland, while the immediate banks have dense woody vegetation.In the study area, the Crossett Brook has an incised, sinuous channel with a slope of approximately 0.006 ft/ft, an average channel top width of 55 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 51.6 mm (0.169 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 1, 1996, indicated that the reach was stable.The Town Highway 4 crossing of the Crossett Brook is a 29-ft-long, two-lane bridge consisting of a 26-foot concrete slab span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 26 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening while the computed opening-skew-to-roadway is 5 degrees.A scour hole 1.5 ft deeper than the mean thalweg depth was observed along the upstream left wingwall and the right abutment during the Level I assessment. Scour countermeasures at the site includes type-2 stone fill (less than 36 inches diameter) at the upstream end of the upstream left and right wingwalls and the upstream left and right banks and road embankments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.Contraction scour for all modelled flows ranged from 0.0 to 1.7 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 6.4 to 8.3 ft. Right abutment scour ranged from 6.0 to 7.0 ft. The worst-case left and right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 51 (JERITH00590051) on Town Highway 59, crossing The Creek, Jericho, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure JERITH00590051 on Town Highway 59 crossing The Creek, Jericho, Vermont (figures 1– 8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (Federal Highway Administration, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province and the Champlain section of the St. Lawrence physiographic province in northwestern Vermont. The 10.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the left and right overbanks, upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, The Creek has a sinuous channel with a slope of approximately 0.004 ft/ft, an average channel top width of 45 ft and an average bank height of 6 ft. The channel bed material ranges from silt to cobble with a median grain size (D50) of 58.6 mm (0.192 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 3, 1996, indicated that the reach was stable. The Town Highway 59 crossing of The Creek is a 33-ft-long, two-lane bridge consisting of a 28-foot steel-stringer span (Vermont Agency of Transportation, written communication, December 11, 1995). The opening length of the structure parallel to the bridge face is 26 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the computed opening-skew-toroadway is 5 degrees.A scour hole 3 ft deeper than the mean thalweg depth was observed along the right abutment during the Level I assessment. Scour countermeasures at the site included type-1 stone fill (less than 12 inches diameter) at the left and right upstream road embankments. Type-2 stone fill (less than 36 inches diameter) was along the upstream right bank and along the upstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was zero ft. Left abutment scour ranged from 2.4 to 3.2 ft. Right abutment scour ranged from 4.1 to 4.5 ft.The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 34 (CORITH0050034) on Town Highway 50, crossing the South Branch Waits River, Corinth, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CORITH00500034 on Town Highway 50 crossing the South Branch Waits River, Corinth, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 35.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, the South Branch Waits River has an incised, meandering channel with a slope of approximately 0.005 ft/ft, an average channel top width of 63 ft and an average bank height of 6 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 23.7 mm (0.078 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 5, 1995, indicated that the reach was stable. The Town Highway 50 crossing of the South Branch Waits River is a 56-ft-long, one-lane bridge consisting of one 54-foot steel thru-truss span (Vermont Agency of Transportation, written communication, March 24, 1995). The opening length of the structure parallel to the bridge face is 51.5 ft.The bridge is supported by vertical, concrete abutments with no wingwalls. Stone fill and bank material in front of the abutments create spill-through embankments. The channel is skewed approximately 30 degrees to the opening while the opening-skew-to-roadway is 15 degrees. A scour hole 2.5 ft deeper than the mean thalweg depth was observed along the left bank through the bridge during the Level I assessment. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the left and right banks extending from upstream to downstream through the bridge. The stone fill under the bridge creates spill-through embankments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as other potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 3.0 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 2.4 to 6.3 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich and HIRE equations (abutment scour) give “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. Level II scour analysis for Bridge 5 (DUMMVT00300005) on State Route 30, crossing Stickney Brook, Dummerston, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure DUMMVT00300005 on State Route 30 crossing Stickney Brook, Dummerston, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 6.31-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest and brush. In the study area, Stickney Brook has an incised, straight channel with a slope of approximately 0.04 ft/ft, an average channel top width of 80 ft and an average bank height of 7 ft. The channel bed material is predominantly cobble with a median grain size (D50) of 80.3 mm (0.264 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 12, 1996, indicated that the reach was aggrading. The State Route 30 crossing of Stickney Brook is a 84-ft-long, two-lane bridge consisting of one 82-foot steel-beam span (Vermont Agency of Transportation, written communication, March 30, 1995). The opening length of the structure parallel to the bridge face is 79.7 ft. The bridge is supported by vertical, concrete abutments with spill-through embankments. The channel is skewed approximately 5 degrees to the opening while the opening-skew-to-roadway is 0 degrees. A scour hole 0.5 ft deeper than the mean thalweg depth was observed along the toe of the right spill-through slope during the Level I assessment. The scour protection measures at the site were type-2 stone fill (less than 36 inches diameter) along the left and right bank under the bridge forming a spill-through slope and type-2 stone fill from approximately 20 ft to 64 ft upstream on the right bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.2 ft. The worst-case contraction scour occurred at the 100-year discharge. Left abutment scour ranged from 5.5 to 6.3 ft. Right abutment scour ranged from 2.0 to 3.8 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Level II scour analysis for Bridge 17 (RIPTTH00180017) on Town Highway 18, crossing the South Branch Middlebury River, Ripton, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure RIPTTH00180017 on Town Highway 18 crossing the South Branch Middlebury River, Ripton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 15.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest except on the upstream left bank where it is shrubs and brush. In the study area, the South Branch Middlebury River has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 86 ft and an average bank height of 10 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 111 mm (0.364 ft). In addition, there is a bedrock outcrop across the channel downstream of the bridge. The geomorphic assessment at the time of the Level I and Level II site visit on June 10, 1996, indicated that the reach was stable. The Town Highway 18 crossing of the South Branch Middlebury River is a 61-ft-long, one-lane bridge consisting of one 58-foot steel-beam span (Vermont Agency of Transportation, written communication, November 30, 1995). The opening length of the structure parallel to the bridge face is 56.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening while the computed opening-skew-to-roadway is 30. A scour hole 1.25 ft deeper than the mean thalweg depth was observed along the right abutment and the downstream right wingwall during the Level I assessment. The scour protection measures at the site include type-2 stone fill (less than 36 inches diameter) along the left abutment and it’s wingwalls and at the upstream end of the right abutment. Also, type-3 stone fill (less than 48 inches diameter) is along the upstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.1 to 1.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 5.6 to 9.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Level II scour analysis for Bridge 16 (RIPTTH00110016) on Town Highway 11, crossing the Middle Branch Middlebury River, Ripton, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure RIPTTH00110016 on Town Highway 11 crossing the Middle Branch Middlebury River, Ripton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 6.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of shrubs, brush and trees except for the upstream left bank which is completely forested. In the study area, the Middle Branch Middlebury River has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 68 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 97.6 mm (0.320 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 11, 1996, indicated that the reach was stable. The Town Highway 11 crossing of the Middle Branch Middlebury River is a 44-ft-long, two-lane bridge consisting of one 42-foot steel-beam span (Vermont Agency of Transportation, written communication, December 15, 1995). The opening length of the structure parallel to the bridge face is 40.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening. The opening-skew-to-roadway value from the VTAOT database is 20 degrees while 30 degrees was computed from surveyed points. A scour hole, 3 ft deeper than the mean thalweg depth, was observed along the left abutment and upstream left wingwall during the Level I assessment. In addition, 1 ft of channel scour was observed just downstream of the downstream left wingwall along the left bank. Scour countermeasures at the site included type-2 stone fill (less than 36 inches diameter) along the upstream left and right banks and along the upstream end of the downstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.1 to 0.4 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.2 to 8.6 ft along the right abutment and from 11.7 to 13.7 ft along the left abutment. The worstcase abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  2. Level II scour analysis for Bridge 21 (MORETH00010021) on Town Highway 1, crossing Cox Brook, Moretown, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MORETH00010021 on Town Highway 1 crossing Cox Brook, Moretown, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in north-central Vermont. The 2.85-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is predominantly forested. In the study area, Cox Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 23 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to cobble with a median grain size (D50) of 47.5 mm (0.156 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 18, 1996, indicated that the reach was stable. The Town Highway 1 crossing of Cox Brook is a 29-ft-long, two-lane bridge consisting of one 27-foot steel-beam span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 24.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 60 degrees to the opening while the measured opening-skew-to-roadway is 40 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the left abutment downstream during the Level I assessment. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the left bank upstream. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100-year and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.2 to 0.5 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 2.8 to 4.0 ft. The worst-case abutment scour occurred at the left abutment at the 100-year discharge and at the right abutment at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Level II scour analysis for Bridge 20 (BRISTH00270020) on Town Highway 27, crossing Little Notch Brook, Bristol, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BRISTH00270020 on Town Highway 27 crossing Little Notch Brook, Bristol, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 8.43-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of pasture with trees, shrubs, and brush along the road embankments and the stream banks, except for the downstream left overbank area. Surface cover on the downstream left overbank is forest with dense undergrowth consisting of vines, shrubs, and brush. In the study area, Little Notch Brook has a sinuous channel with a slope of approximately 0.006 ft/ft, an average channel top width of 47 feet and an average bank height of 3 feet. The predominant channel bed materials are gravel and cobbles with a median grain size (D50) of 66.0 mm (0.216 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 19, 1995, indicated that the reach was stable. The Town Highway 27 crossing of Little Notch Brook is a 48-ft-long, one-lane bridge consisting of one 45-foot steel pony-truss span (Vermont Agency of Transportation, written communication, November 30, 1995). The opening length of the structure parallel to the bridge face is 42.8 feet. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 1.0 feet deeper than the mean thalweg depth was observed along the upstream left wingwall and the upstream end of the left abutment during the Level I assessment. The only scour protection measure at the site was a crude, block-cut stone wall, which extended from the upstream end of the upstream left wingwall to 45 feet upstream. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.2 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 12.2 to 13.4 feet at the left abutment and from 3.6 to 5.0 feet at the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Level II scour analysis for Bridge 13 (PFRDTH00030013) on Town Highway 3, crossing Furnace Brook, Pittsford, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure PFRDTH00030013 on Town Highway 3 crossing Furnace Brook, Pittsford, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Taconic section of the New England physiographic province in western Vermont. The 17.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is grass along the downstream right bank while the remaining banks are primarily forested. In the study area, Furnace Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 49 ft and an average channel depth of 4 ft. The predominant channel bed material ranges from gravel to bedrock with a median grain size (D50) of 70.2 mm (0.230 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 20, 1995, indicated that the reach was stable. The Town Highway 3 crossing of Furnace Brook is a 75-ft-long, two-lane bridge consisting of one 72-ft-long steel stringer span (Vermont Agency of Transportation, written communication, March 14, 1995). The bridge is supported by vertical, concrete abutments with spill-through slopes. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is 35 degrees. The opening-skew-to-roadway was determined from surveyed data collected at the bridge although, information provided from the VTAOT files, indicates that the opening-skew-to-roadway is 30 degrees (Appendix D). The scour protection measures at the site included type-2 stone fill (less than 36 inches diameter) on the spill-through slope along each abutment. Type-2 stone fill scour protection was also found along the upstream left wingwall and downstream right wingwall. Type-1 (less than 12 inches diameter) stone fill scour protection was found along the upstream right wingwall and downstream left wingwall. No bank protection was observed downstream or upstream. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.2 to 2.0 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.8 to 13.1 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution although, bedrock outcropping is apparent both upstream and downstream of this bridge. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 4 (MAIDTH00070004) on Town Highway 7, crossing Cutler Mill Brook, Maidstone, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MAIDTH00070004 on Town Highway 7 crossing the Cutler Mill Brook, Maidstone, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 18.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is predominantly shrub and brushland. In the study area, the Cutler Mill Brook has a non-incised, meandering channel with local braiding and a slope of approximately 0.004 ft/ft, an average channel top width of 43 ft and an average bank height of 2 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 27.6 mm (0.091 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 19, 1995, indicated that the reach was laterally unstable due to large meanders in the channel. The Town Highway 7 crossing of the Cutler Mill Brook is a 25-ft-long, one-lane bridge consisting of one 22-foot concrete span (Vermont Agency of Transportation, written communication, August 5, 1994). The opening length of the structure parallel to the bridge face is 21.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is 0 degrees. A scour hole 2.0 ft deeper than the mean thalweg depth was observed along the left abutment during the Level I assessment. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along both banks upstream, along the entire base length of the upstream left wingwall, and along the upstream end of the upstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 2.2 to 4.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 5.7 to 12.4 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 38 (ANDOVT00110038) on State Route 11, crossing the Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110038 on State Route 11 crossing the Middle Branch Williams River, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south central Vermont. The 5.65-mi2 drainage area is in a predominantly rural and forested basin. Upstream and downstream of the study site banks and overbanks are forested. In the study area, the Middle Branch Williams River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 44 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 54.0 mm (0.177 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 5, 1996, indicated that the reach was stable. The State Route 11 crossing of the Middle Branch Williams River is a 33-ft-long, two-lane bridge consisting of one 31-foot concrete T-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 55 degrees to the opening while the measured opening-skew-to-roadway is 45 degrees. There were no scour problems observed during the Level I assessment. Type-4 stone fill (less than 60 inches diameter) and type-3 stone fill (less than 48 inches diameter) was present on the left bank upstream and right bank upstream respectively. Type-2 stone fill (less than 36 inches diameter) was present in the upstream left wing wall area. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.8 to 3.4 ft. The worst-case contraction scour occurred at the 500-year flow. Abutment scour ranged from 12.0 to 14.0 ft. The worst-case abutment scour occurred at the 500-year flow at the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 39 (ANDOVT00110039) on State Route 11, crossing the Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110039 on State Route 11 crossing the Middle Branch Williams River, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southern Vermont. The 5.75-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the upstream left bank and downstream right bank. The surface cover on the upstream right and downstream left banks is brush. In the study area, the Middle Branch Williams River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 58 ft and an average bank height of 8 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 96.8 mm (0.317 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 9, 1996, indicated that the reach was laterally unstable. The State Route 11 crossing of the Middle Branch Williams River is a 43-ft-long, two-lane bridge consisting of one 41-foot concrete-beam span and two additional steel beams on the upstream face (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the opening-skew-to-roadway is 45 degrees. The only scour protection measures at the site was type-2 stone fill (less than 36 inches diameter) at the upstream end of the upstream right wingwall and type-3 stone fill (less than 48 inches diameter) along the entire base length of the upstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.9 to 11.2 ft. The worst-case abutment scour occurred at the incipient-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 25 (ANDOTH00230025) on Town Highway 23, crossing Andover Branch, Andover, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOTH00230025 on Town Highway 23 crossing the Andover Branch, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 6.74-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the right overbank and forest on the left overbank while the immediate banks, both upstream and downstream, are forested. In the study area, the Andover Branch has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 55 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 78.4 mm (0.257 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 27, 1996, indicated that the reach was stable. The Town Highway 23 crossing of the Andover Branch is a 25-ft-long, two-lane structure consisting of a multi-plate corrugated steel arch culvert with concrete footings (Vermont Agency of Transportation, written communication, March 29, 1995). The culvert is mitered at the inlet and outlet. The channel is skewed approximately zero degrees to the opening while the opening-skew-to-roadway is zero degrees. The footings are exposed approximately 1.25 ft, with the exception of the downstream end of the right footing which is exposed approximately 0.5 ft. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the upstream left bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for modelled flows ranged from 1.6 to 2.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 10.0 to 11.7 ft along the left footing and from 11.8 to 16.7 along the right footing. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Level II scour analysis for Bridge 26 (WSTOTH00070026) on Town Highway 7, crossing Greendale Brook, Weston, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Hammond, Robert A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WSTOTH00070026 on Town Highway 7 crossing Greendale Brook, Weston, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south central Vermont. The 3.13-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest. In the study area, the Greendale Brook has a sinuous, non-incised, non-alluvial channel with a slope of approximately 0.015 ft/ft, an average channel top width of 38 ft and an average bank height of 3 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 64.8 mm (0.213 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 19, 1996, indicated that the reach was laterally unstable. The channel has moved to the right, however, scour countermeasures are in place along the upstream right bank. The Town Highway 7 crossing of the Greendale Brook is a 52-ft-long, two-lane bridge consisting of one 50-foot steel-beam span with a concrete deck (Vermont Agency of Transportation, written communication, April 07, 1995). The opening length of the structure parallel to the bridge face is 48.6 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 50 degrees to the opening while the opening-skew-to-roadway is 30 degrees. A scour hole 1.5 ft deeper than the mean thalweg depth was observed along the upstream right wingwall and right abutment during the Level I assessment. Scour protection measures at the site include: type-2 stone fill (less than 36 inches diameter) at the upstream end of the upstream left wingwall, along the left bank upstream, at the downstream end of the downstream left wing wall, and along the entire length of the downstream right wing wall; type 4 (less than 60 inches) and type-3 stone fill (less than 48 inches) along the right bank upstream. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was 0.0 ft. Abutment scour ranged from 3.9 to 9.9 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). The Hire equation (abutment scour) is often used when the horizontal length blocked by flow divided by the depth of flow is greater than 25 (Richardson and others, 1995 p. 49). Although the Hire equation could be applied to the left abutment more conservative scour estimates were given by the Froehlich equation on the left abutment. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Level II scour analysis for Bridge 16 (BURKTH00070016) on Town Highway 7, crossing Dish Mill Brook, Burke, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Severance, Tim

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BURKTH00070016 on Town Highway 7 crossing Dish Mill Brook, Burke, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 6.0-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest except on the left bank upstream which is brushland. In the study area, Dish Mill Brook has an incised, sinuous channel with a slope of approximately 0.04 ft/ft, an average channel top width of 40 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 94.1 mm (0.309 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 7, 1995, indicated that the reach was stable. The Town Highway 7 crossing of Dish Mill Brook is a 28-ft-long, two-lane bridge consisting of one 24-foot steel-beam span (Vermont Agency of Transportation, written communication, March 24, 1995). The opening length of the structure parallel to the bridge face is 24.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening while the computed opening-skew-to-roadway is 35 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the left and right abutments during the Level I assessment. In front of the upstream and downstream left wingwalls the scour depth was only 0.5 ft, while in front of the downstream right wingwall it was 0.75 ft and in front of the upstream right wingwall it was 0.3 ft. The scour countermeasures at the site include type-1 stone fill (less than 12 inches diameter) at the downstream end of the right abutment and along the downstream right wingwall. Type-2 stone fill (less than 36 inches diameter) is along the upstream left bank, the upstream and downstream left wingwalls, and at the upstream end of the upstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.7 to 9.3 ft. The worst-case abutment scour occurred at the 500-year discharge for the left abutment and at the incipient road-overtopping discharge for the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Level II scour analysis for Bridge 18 (GROTTH00480018) on Town Highway 48, crossing the Wells River Groton, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure GROTTH00480018 on Town Highway 48 crossing the Wells River, Groton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in eastern Vermont. The 53.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the right bank upstream and the left bank downstream while the surface cover is shrub and brushland along the left bank upstream and the right bank downstream. The immediate banks are vegetated with brush and scattered trees. In the study area, the Wells River has an incised, straight channel with a slope of approximately 0.003 ft/ft, an average channel top width of 69 ft and an average bank height of 7 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 66.7 mm (0.219 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 28, 1995, indicated that the reach was stable. The Town Highway 48 crossing of the Wells River is a 38-ft-long, one-lane bridge consisting of one 36-foot steel-beam span (Vermont Agency of Transportation, written communication, March 24, 1995). The opening length of the structure parallel to the bridge face is 33.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 0 degrees to the opening and the opening-skew-toroadway is also 0 degrees. Local scour 3.25 ft deeper than the mean thalweg depth was observed underneath the bridge along the left and right abutments during the Level I assessment. In addition, a scour hole extends from 90 ft US to 50 ft DS for a total length of 115 ft with an average scour depth of 2.0 ft. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the left bank upstream, along the entire base length of the downstream right wingwall, and along the left and right banks downstream; and type-1 stone fill (less than 12 inches diameter) along the entire base length of the upstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was 0.0 ft. Abutment scour ranged from 2.0 to 2.3 ft at the left abutment and 8.8 to 14.6 ft at the right abutment. The worst-case abutment scour occurred at the 500-year discharge at the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  12. Clear-water abutment and contraction scour in the Coastal Plain and Piedmont Provinces of South Carolina, 1996-99

    USGS Publications Warehouse

    Benedict, Stephen T.

    2016-01-01

    Data from this study have been compiled into a database that includes photographs, figures, observed scour depths, theoretical scour depths, limited basin characteristics, limited soil data, and theoretical hydraulic data. The database can be used to compare studied sites with unstudied sites to assess the potential for scour at the unstudied sites. In addition, the database can be used to assess the performance of various theoretical methods for predicting clear-water abutment and contraction scour.

  13. Level II scour analysis for Bridge 46 (LINCTH00060046) on Town Highway 6, crossing the New Haven River, Lincoln, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure LINCTH00060046 on Town Highway 6 crossing the New Haven River, Lincoln, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 45.9-mi2 drainage area is in a predominantly suburban and forested basin. In the vicinity of the study site, the surface cover is forest upstream of the bridge. The downstream right overbank near the bridge is suburban with buildings, homes, lawns, and pavement (less than fifty percent). The downstream left overbank is brushland while the immediate banks have dense woody vegetation. In the study area, the New Haven River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 95 ft and an average bank height of 7 ft. The channel bed material ranges from sand to bedrock with a median grain size (D50) of 120.7 mm (0.396 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 13, 1996, indicated that the reach was stable. The Town Highway 34 crossing of the New Haven River is a 85-ft-long, two-lane bridge consisting of an 80-foot steel arch truss (Vermont Agency of Transportation, written communication, December 14, 1995). The opening length of the structure parallel to the bridge face is 69 feet. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 25 degrees to the opening while the opening-skew-to-roadway is 5 degrees. A scour hole 2.0 ft deeper than the mean thalweg depth was observed in the downstream channel during the Level I assessment. Protection measures at the site include type-1 stone fill (less than 12 inches diameter) at the upstream left wingwall, type-2 stone fill (less than 36 inches diameter) at the downstream end of the downstream left wingwall, and type-3 stone fill (less than 48 inches diameter) at the upstream right wingwall and the downstream end of the downstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 1.7 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge. Left abutment scour ranged from 12.9 to 17.8 ft. Right abutment scour ranged from 5.9 to 11.9 ft. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  14. Level II scour analysis for Bridge 37 (DUXBTH00120037) on Town Highway 12, crossing Ridley Brook, Duxbury, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Ivanhoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure DUXBTH00120037 on Town Highway 12 crossing Ridley Brook, Duxbury, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in north central Vermont. The 10.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and downstream of the bridge. In the study area, Ridley Brook has an incised, straight channel with a slope of approximately 0.04 ft/ft, an average channel top width of 67 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 123 mm (0.404 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 1, 1996, indicated that the reach was stable. The Town Highway 12 crossing of Ridley Brook is a 33-ft-long, two-lane bridge consisting of five 30-ft steel rolled beams (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 30 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 50 degrees to the opening while the measured opening-skew-to-roadway is 20 degrees. A scour hole 2 ft deeper than the mean thalweg depth was observed along the right abutment and downstream right wingwall during the Level I assessment. Scour countermeasures at the site include type-2 stone fill (less than 3 feet diameter) along the upstream and downstream left road embankments, and type-3 stone fill (less than 4 feet diameter) along the upstream right bank and upstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.6 to 1.7 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 5.0 to 8.3 ft, with the worst-case occurring at the incipient-overtopping discharge. Right abutment scour ranged from 13.1 to 16.7 ft, with the worst-case occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  15. Level II scour analysis for Bridge 8 (ANDOTH00010008) on Town Highway 1, crossing Andover Branch, Andover, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOTH00010008 on Town Highway 1 crossing the Andover Branch, Andover , Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 5.30-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover along the immediate banks, both upstream and downstream of the bridge, is grass while farther upstream and downstream, the surface cover is primarily forest.In the study area, the Andover Branch has an incised, straight channel with a slope of approximately 0.01 ft/ft, an average channel top width of 35 ft and an average bank height of 3 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 63.6 mm (0.209 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 27, 1996, indicated that the reach was stable.The Town Highway 1 crossing of the Andover Branch is a 54-ft-long, two-lane bridge consisting of one 51-foot steel-beam span (Vermont Agency of Transportation, written communication, March 28, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the opening-skew-to-roadway is 30 degrees.A scour hole 0.7 ft deeper than the mean thalweg depth was observed approximately 52 feet downstream of the downstream face of the bridge during the Level I assessment. Scour countermeasures at the site include type-2 stone fill (less than 36 inches diameter) along the entire base length of the left and right abutments and along the left bank from 65 ft to 89 ft upstream. Type-1 stone fill was found along the right bank from the bridge to 47 ft upstream and along the left bank from 40 ft to 65 ft upstream. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.Contraction scour for all modelled flows ranged from 0.0 to 0.1 ft. The worst case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 5.0 to 8.1 ft along the left abutment and from 2.1 to 4.6 ft along the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  16. Level II scour analysis for Bridge 63 (MTH0TH00120063) on Town Highway 12, crossing Russell Brook, Mount Holly, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Severance, Timothy

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MTHOTH00120063 on Town Highway 12 crossing Russell Brook, Mount Holly, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 3.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and downstream of the bridge. In the study area, Russell Brook has an incised, sinuous channel with a slope of approximately 0.0263 ft/ft, an average channel top width of 29 ft and an average bank height of 3 ft. The channel bed material ranges from cobbles to boulders with a median grain size (D50) of 97.1 mm (0.318 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 4, 1995, indicated that the reach was stable. The Town Highway 12 crossing of Russell Brook is a 29-ft-long, one-lane bridge consisting of a 26-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 21, 1995). The opening length of the structure parallel to the bridge face is 23.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening while the computed opening-skew-to-roadway is 35 degrees. During the Level I assessment, it was observed that the upstream left wingwall footing was exposed 0.2 ft, in reference to the mean thalweg depth, and the upstream end of the left abutment was exposed 0.1 ft. The scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the upstream end of the upstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.1 ft. The worst-case contraction scour occurred at the 100-year discharge. Left abutment scour ranged from 4.4 to 5.7 ft. Right abutment scour ranged from 11.3 to 12.2 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 68 (NFIETH00960068) on Town Highway 96, crossing the Dog River, Northfield, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure NFIETH00960068 on Town Highway 96 crossing the Dog River, Northfield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 30.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover on the left bank upstream and downstream is pasture while the immediate banks have dense woody vegetation. The right bank upstream is forested and the downstream right bank is pasture. Vermont state route 12A runs parallel to the river on the right bank. In the study area, the Dog River has an incised, straight channel with a slope of approximately 0.004 ft/ft, an average channel top width of 70 ft and an average bank height of 7 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 47.9 mm (0.157 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 25, 1996, indicated that the reach was stable. The Town Highway 96 crossing of the Dog River is a 45-ft-long, one-lane bridge consisting of one 43-foot steel-beam span with a timber deck (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 41.5 ft.The bridge is supported by vertical, concrete abutments with wingwalls. The channel is not skewed to the opening and the opening-skew-to-roadway is zero degrees. Channel scour 0.5 ft deeper than the mean thalweg depth, was observed under the bridge during the Level I assessment. The scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) along the left bank upstream and type-2 stone fill (less than 36 inches diameter) along the upstream and downstream right banks that extends partially in front of the right wingwalls. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.8 to 1.2 ft. The worst-case contraction scour occurred at the 100-year and 500-year discharges. Abutment scour ranged from 8.5 to 12.2 ft. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge for the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 3 (EASTTH00010003) on Town Highway 1, crossing the East Branch Passumpsic River, East Haven, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure EASTTH00010003 on Town Highway 1 crossing the East Branch Passumpsic River, East Haven, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 50.4-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover on the left bank upstream is forest. On the remaining three banks the surface cover is pasture while the immediate banks have dense woody vegetation. In the study area, the East Branch Passumpsic River has an incised, sinuous channel with a slope of approximately 0.003 ft/ft, an average channel top width of 62 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 61.5 mm (0.187 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 14, 1995, indicated that the reach was stable. The Town Highway 1 crossing of the East Branch Passumpsic River is a 89-ft-long, two-lane bridge consisting of one 87-foot steel-beam span (Vermont Agency of Transportation, written communication, March 17, 1995). The opening length of the structure parallel to the bridge face is 84.7 ft. The bridge is supported by vertical, concrete abutments with sloped stone fill in front that creates a spill through embankment. The channel is skewed approximately zero degrees to the opening and the opening-skew-to-roadway is also zero degrees. Channel scour 0.5 ft deeper than the mean thalweg depth was observed to the left of the center of the channel under the bridge during the Level I assessment. The scour countermeasures at the site are type-2 stone fill (less than 36 inches diameter) along the downstream left bank and type-4 stone fill (less than 60 inches diameter) in front of the abutments creating spill through slopes. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0 to 1.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.4 to 11.7 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. Level II scour analysis for Bridge 4 (DANVTH00010004) on Town Highway 1, crossing Joes Brook, Danville, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure DANVTH00010004 on Town Highway 1 crossing Joes Brook, Danville, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in northeastern Vermont. The 42.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture along the upstream and downstream left banks with trees and brush along the immediate banks. The upstream and downstream right banks are forested. In the study area, Joes Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 68 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 80.1 mm (0.263 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 22, 1995, indicated that the reach was stable. The Town Highway 1 crossing of Joes Brook is a 49-ft-long, two-lane bridge consisting of one 45-foot steel-beam span (Vermont Agency of Transportation, written communication, March 17, 1995). The opening length of the structure parallel to the bridge face is 45 ft.The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening and the computed opening-skew-to-roadway is 15 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the right abutment during the Level I assessment. The scour hole also extends upstream and downstream of the bridge, along the right side of the channel. The scour protection measures at the site include type-2 stone fill (less than 36 inches diameter) at the upstream end of the upstream left wingwall and along the entire base length of the downstream right wingwall. Type-3 stone fill (less than 48 inches diameter) is along the entire base length of the upstream right wingwall and type-5 protection (stone block wall) is along the upstream right bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was computed to be zero ft. Abutment scour ranged from 11.7 to 13.0 ft along the right abutment and from 6.6 to 9.4 ft along the left abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich and Hire equations (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Level II scour analysis for Bridge 38 (TOPSTH00570038) on Town Highway 57, crossing Waits River, Topsham, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure TOPSTH00570038 on Town Highway 57 crossing the Waits River, Topsham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in east central Vermont. The 37.3-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is predominantly pasture while the left bank upstream is suburban. In the study area, the Waits River has a sinuous locally anabranched channel with a slope of approximately 0.01 ft/ft, an average channel top width of 76 ft and an average bank height of 6 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 57.2 mm (0.188 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 28, 1995, indicated that the reach was considered laterally unstable due to cut-banks upstream, mid-channel bars and lateral migration of the channel towards the left abutment. The Town Highway 34 crossing of the Waits River is a 34-ft-long, one-lane bridge consisting of one 31-foot steel-beam span (Vermont Agency of Transportation, written communication, March 28, 1995). The opening length of the structure parallel to the bridge face is 30.4 ft. The bridge is supported by a vertical, stone abutment with concrete facing and wingwalls on the right and by a vertical, concrete abutment with wingwalls on the left. The channel is skewed approximately 0 degrees to the opening and the opening-skew-to-roadway is also zero degrees. A scour hole 2.0 ft deeper than the mean thalweg depth was observed towards the left bank underneath the bridge. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the left bank upstream, in the upstream left wing wall area, along the left abutment, at the downstream end of the right abutment, and in the downstream left wing wall area. There is type-3 stone fill (less than 48 inches diameter) in the downstream right wing wall area. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.6 to 5.2 ft. The worst-case contraction scour occurred at the 100-year discharge. Abutment scour ranged from 9.8 to 18.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Level II scour analysis for Bridge 31 (HUNTTH00220031) on Town Highway 22, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HUNTTH00220031 on Town Highway 22 crossing Brush Brook, Huntington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, obtained from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 5.01-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of trees and brush. In the study area, Brush Brook has an incised, straight channel with a slope of approximately 0.06 ft/ft, an average channel top width of 44 ft and an average bank height of 4 ft. The channel bed material ranges from boulder to gravel with a median grain size (D50) of 107.0 mm (0.352 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 25, 1996, indicated that the reach was stable. The Town Highway 22 crossing of Brush Brook is a 34-ft-long, one-lane bridge consisting of one 30-foot steel I-beam span (Vermont Agency of Transportation, written communication, November 30, 1995). The opening length of the structure parallel to the bridge face is 31.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the computed opening-skew-to-roadway is 10 degrees. The VTAOT computed opening-skewto-roadway is 2 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed at the downstream end of the left abutment during the Level I assessment. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the upstream right bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was computed to be zero ft. Abutment scour ranged from 7.0 to 10.5 ft. The worst-case abutment scour occurred at the 500-year discharge for the left abutment and at the incipient-overtopping discharge for the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  2. Level II scour analysis for Bridge 42 (NEWFTH00350042) on Town Highway 35, crossing Stratton Hill Brook, Newfane, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Ivanoff, Michael A.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure NEWFTH00350042 on Town Highway 35 crossing Stratton Hill Brook, Newfane, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 1.16-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forested. In the study area, Stratton Hill Brook has an incised, striaght channel with a slope of approximately 0.1 ft/ft, an average channel top width of 36 ft and an average bank height of 8 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 121 mm (0.396 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 20, 1996, indicated that the reach was stable. The Town Highway 34 crossing of Stratton Hill Brook is a 34-ft-long, one-lane bridge consisting of a 32-foot steel-beam span (Vermont Agency of Transportation, written communication, April 6, 1995). The opening length of the structure parallel to the bridge face is 30.8 ft. The bridge is supported by vertical, concrete abutments with upstream wingwalls. The channel is skewed approximately 20 degrees to the opening while the computed opening-skew-to-roadway is 15 degrees. During the Level I assessment, it was observed that the right abutment footing was exposed 1.5 feet. The only scour protection measure at the site was type-1 stone fill (less than 12 inches diameter) along the downstream left bank. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was zero ft. Abutment scour ranged from 2.3 to 3.3 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Level II scour analysis for Bridge 33 (WWINTH00300033) on Town Highway 30, crossing Mill Brook, West Windsor, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Flynn, Robert H.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WWINTH00300033 on Town Highway 30 crossing Mill Brook, West Windsor, Vermont (Figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in east-central Vermont. The 24.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream of the bridge while the immediate banks have dense woody vegetation. Downstream of the bridge is forested. In the study area, Mill Brook has an incised, sinuous channel with a slope of approximately 0.004 ft/ft, an average channel top width of 58 ft and an average bank height of 5 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 65.7 mm (0.215 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 5, 1996, indicated that the reach was stable. The Town Highway 30 crossing of the Mill Brook is a 46-ft-long, one-lane covered bridge consisting of a 40-foot wood-beam span (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 36.3 ft. The bridge is supported by vertical, concrete capped laid-up stone abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is zero degrees. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the upstream right bank, the upstream right wingwall, the right abutment and the downstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was analyzed since it had the potential of being the worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.0 to 16.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Level II scour analysis for Bridge 25 (ROCHTH00400025) on Town Highway 40, crossing Corporation Brook, Rochester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Weber, Matthew A.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCHTH00400025 on Town Highway 40 crossing Corporation Brook, Rochester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, from Vermont Agency of Transportation files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 4.97-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the upstream left and right overbanks, and the downstream left overbank. On the downstream right overbank, the surface cover is predominately brushland. In the study area, Corporation Brook has an incised, sinuous channel with a slope of approximately 0.04 ft/ft, an average channel top width of 37 ft and an average bank height of 6 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 101 mm (0.332 ft). The geomorphic assessment at the time of the Level I site visit on April 12, 1995 and Level I and II site visit on July 8, 1996, indicated that the reach was stable. The Town Highway 40 crossing of Corporation Brook is a 31-ft-long, one-lane bridge consisting of a 26-foot steel stringer span (Vermont Agency of Transportation, written communication, March 22, 1995). The opening length of the structure parallel to the bridge face is 24 ft. The bridge is supported by vertical, concrete abutments. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is 15 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed in the channel at the downstream bridge face during the Level I assessment. Additionally, it was observed that the left abutment footing was exposed 1.0 ft and the right abutment footing was exposed 2.0 ft. Scour countermeasures at the site included type-1 stone fill (less than 12 inches diameter) along the upstream left and right banks and the downstream left bank. Type-2 stone fill (less than 36 inches diameter) scour protection extended along the downstream right bank and the upstream and downstream ends of the abutments. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.1 to 1.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 6.5 to 7.0 ft. The worst-case left abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 5.6 to 6.0 ft. The worst-case right abutment scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 48 (FFIETH00300048) on Town Highway 30, crossing Wanzer Brook, Fairfield, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure FFIETH00300048 on Town Highway 30 crossing Wanzer Brook, Fairfield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in northwestern Vermont. The 6.78-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover upstream of the bridge and on the downstream right bank is primarily pasture. The downstream left bank is forested. In the study area, Wanzer Brook has an incised, straight channel with a slope of approximately 0.03 ft/ft, an average channel top width of 65 ft and an average bank height of 5 ft. The channel bed material is cobble with a median grain size (D50) of 111 mm (0.364 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 11, 1995, indicated that the reach was stable. The Town Highway 30 crossing of Wanzer Brook is a 31-ft-long, two-lane bridge consisting of one 28-foot steel-beam span (Vermont Agency of Transportation, written communication, March 8, 1995). The opening length of the structure parallel to the bridge face is 26 ft.The bridge is supported by vertical stone wall abutments with concrete caps and “kneewall” footings. The channel is skewed approximately 25 degrees to the opening while the measured opening-skew-to-roadway is 20 degrees. A scour hole 1.5 ft deeper than the mean thalweg depth was observed along the downstream left retaining wall (extended concrete footing) during the Level I assessment. It was also observed that the right abutment is undermined with a scour depth of 0.5 ft. The scour protection at the site was limited to four large boulders (type-4, less than 60 inches diameter) along the downstream right retaining wall. The channel under the bridge is a “corduroy” log mat floor composed of 13 logs which are parallel to the bridge face and extend from 5 ft under the bridge to the downstream bridge face. The most downstream log is approximately 0.3 to 0.4 ft higher than the other logs and controls flow at lower flows. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.3 to 0.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 14.1 to 16.0 ft at the left abutment and from 6.8 to 7.6 ft at the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 25 (REDSTH00360025) on Town Highway 36, crossing the West Branch Deerfield River, Readsboro, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure REDSTH00360025 on Town Highway 36 crossing the West Branch Deerfield River, Readsboro, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 14.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the upstream right bank and forest on the upstream left bank. The surface cover on the downstream right and left banks is primarily grass, shrubs and brush. In the study area, the West Branch Deerfield River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 65 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulders, with a median grain size (D50) of 117 mm (0.383 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 1, 1996, indicated that the reach was stable. The Town Highway 36 crossing of the West Branch Deerfield River is a 59-ft-long, two-lane bridge consisting of one 57-foot concrete T-beam span (Vermont Agency of Transportation, written communication, September 28, 1995). The opening length of the structure parallel to the bridge face is 54 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 50 degrees to the opening while the opening-skew-to-roadway is 30 degrees. During the Level I assessment, a scour hole approximately 2 ft deeper than the mean thalweg depth was observed along the upstream right wingwall and a scour hole approximately 1 ft deeper than the mean thalweg depth was observed along the downstream left wingwall. The scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) at the downstream end of the downstream left wingwall, at the upstream end of the upstream right wingwall, at the downstream end of the right abutment, along the entire base length of the downstream right wingwall, along the upstream right bank and along the downstream left bank. A stone wall was noted along the upstream left bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.6 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge. Abutment scour ranged from 15.1 to 16.3 ft along the left abutment and from 7.4 to 9.2 ft along the right abutment. The worst-case abutment scour occurred at the incipient-overtopping and 500-year discharges for the left abutment and at the 500-year discharge for the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 47 (PLYMTH00540047) on Town Highway 54, crossing Pinney Hollow Brook, Plymouth, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Weber, Matthew A.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure PLYMTH00540047 on Town Highway 54 crossing Pinney Hollow Brook, Plymouth, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gathered from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 7.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, Pinney Hollow Brook has an incised, straight channel with a slope of approximately 0.01 ft/ft, an average channel top width of 57 ft and an average bank height of 7 ft. The channel bed material ranges from sand to cobbles with a median grain size (D50) of 45.7 mm (0.150 ft). The geomorphic assessment at the time of the Level I and Level II site visit on March 30, 1995 and Level II site visit on October 2, 1995, indicated that the reach was stable. The Town Highway 54 crossing of Pinney Hollow Brook is a 30-ft-long, two-lane bridge consisting of a 27-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 22, 1995). The opening length of the structure parallel to the bridge face is 25.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is not skewed to the opening and the opening-skew-to-roadway is zero degrees. Scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) along the upstream left wingwall, the upstream right wingwall and the downstream end of the downstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 2.0 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Left abutment scour ranged from 3.4 to 6.7 ft. The worst-case left abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 8.9 to 9.6 ft. The worst-case right abutment scour occurred at the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 45 (BRNETH00070045) on Town Highway 7, crossing the Stevens River, Barnet, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BRNETH00070045 on Town Highway 7 crossing the Stevens River, Barnet, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in east-central Vermont. The 41.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and pasture downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, the Stevens River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 100 ft and an average bank height of 17 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 105 mm (0.344 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 22, 1995, indicated that the reach was stable. The Town Highway 7 crossing of the Stevens River is a 37-ft-long, two-lane bridge consisting of one 34-foot concrete slab span (Vermont Agency of Transportation, written communication, March 16, 1995). The opening length of the structure parallel to the bridge face is 33 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is 20 degrees. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) along the entire left and right abutments, upstream and downstream wingwalls, and upstream and downstream banks. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.8 to 5.4 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was greater than the 100-year discharge. Left abutment scour ranged from 21.8 to 28.6 ft. The worst-case left abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 14.6 to 17.4 ft. The worst-case right abutment scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Level II scour analysis for Bridge 38 (JERITH0020038) on Town Highway 20, crossing the Lee River, Jericho, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure JERITH00200038 on Town Highway 20 crossing the Lee River, Jericho, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, obtained from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province and the Champlain section of the St. Lawrence physiographic province in northwestern Vermont. The 12.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover on the upstream and downstream right overbank is pasture while the immediate banks have dense woody vegetation. The surface cover on the upstream and downstream left overbank is forested. In the study area, the Lee River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 89 ft and an average bank height of 14 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 45.9 mm (0.151 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 2, 1996, indicated that the reach was stable. The Town Highway 20 crossing of the Lee River is a 49-ft-long, one-lane bridge consisting of a steel through truss span (Vermont Agency of Transportation, written communication, December 12, 1995). The opening length of the structure parallel to the bridge face is 44 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the computed opening-skew-toroadway is 5 degrees. A scour hole 1 ft deeper than the mean thalweg depth was observed in the center of the channel during the Level I assessment. Scour countermeasures at the site include type-1 stone fill (less than 12 inches diameter) at the downstream left road embankment. Type-2 stone fill (less than 36 inches diameter) protects the upstream left wingwall, the upstream and downstream right wingwalls and the upstream end of the right abutment. Type-3 stone fill (less than 48 inches diameter) protects the left abutment. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was zero. Abutment scour ranged from 4.9 to 10.7 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Level II scour analysis for Bridge 7H (HUNTTH0001007H) on Town Highway 1, crossing Cobb Brook, Huntington, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HUNTTH001007H on Town Highway 1 crossing the Cobb Brook, Huntington, Vermont (figures 1–10). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.In August 1976, Hurricane Belle caused flooding at this site which resulted in road and bridge damage (figures 7-8). This was approximately a 25-year flood event (U.S. Department of Housing and Urban Development, 1978). The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 4.20-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream of the bridge. Downstream of the bridge is brushland and pasture.In the study area, the Cobb Brook has an incised, straight channel with a slope of approximately 0.03 ft/ft, an average channel top width of 43 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulders with a median grain size (D50) of 65.5 mm (0.215 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 24, 1996, indicated that the reach was stable. The Town Highway 1 crossing of the Cobb Brook is a 23-ft-long, two-lane bridge consisting of one 20-foot concrete slab span (Vermont Agency of Transportation, written communication, June 21, 1996). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is zero degrees.A scour hole 2.8 ft deeper than the mean thalweg depth was observed along the left abutment during the Level I assessment. Protection measures at the site include type-1 stone fill (less than 12 inches diameter) at the downstream right wingwall, type-2 stone fill (less than 36 inches diameter) at the upstream right wingwall and the downstream end of the downstream left wingwall, and type-3 stone fill (less than 48 inches diameter) at the upstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.Contraction scour for all modelled flows ranged from 0.2 to 1.3 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge. Abutment scour ranged from 4.0 to 8.7 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 10. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Level II scour analysis for Bridge 18 (SHEFTH00410018) on Town Highway 41, crossing Millers Run, Sheffield, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SHEFTH00410018 on Town Highway 41 crossing Millers Run, Sheffield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 16.2-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is grass upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, Millers Run has an incised, straight channel with a slope of approximately 0.01 ft/ft, an average channel top width of 50 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 50.9 mm (0.167 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 1, 1995, indicated that the reach was laterally unstable, which is evident in the moderate to severe fluvial erosion in the upstream reach. The Town Highway 41 crossing of the Millers Run is a 30-ft-long, one-lane bridge consisting of a 28-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 28, 1995). The opening length of the structure parallel to the bridge face is 22.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 20 degrees to the opening. The computed opening-skewto-roadway is 5 degrees, while it is zero degrees in the historical form. A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the left abutment during the Level I assessment. The scour protection measure at the site includes type-1 stone fill (less than 12 inches diameter) along the upstream right wingwall and the upstream left wingwall. Type-2 stone fill (less than 36 inches diameter) extends along the downstream end of the downstream left wingwall, the upstream right bank and the downstream left bank. The downstream right bank is protected by type-2 stone fill and a stone masonry wall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.2 to 1.8 ft. The worst-case contraction scour occurred at the 100-year and 500-year discharges. Left abutment scour ranged from 14.1 to 16.4 ft. The worst-case left abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 6.9 to 9.3 ft. The worst-case right abutment scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  12. Level II scour analysis for Bridge 29 (DORSTH00100029) on Town Highway 10, crossing the Mettawee River, Dorset, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure DORSTH00100029 on Town Highway 10 crossing the Mettawee River, Dorset, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Taconic section of the New England physiographic province in southwestern Vermont. The 9.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the upstream left overbank and the upstream and downstream right overbanks. The downstream left overbank is pasture and brushland. In the study area, the Mettawee River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 66 ft and an average bank height of 8 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 79.0 mm (0.259 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 5, 1996, indicated that the reach was stable. The Town Highway 10 crossing of the Mettawee River is a 26-ft-long, two-lane bridge consisting of a 24-ft steel-stringer span (Vermont Agency of Transportation, written communication, September 28, 1995). The opening length of the structure parallel to the bridge face is 24.1 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the opening-skew-to-roadway is zero degrees. At the upstream end of the right abutment, there is a scour hole 1.0 ft deeper than the mean thalweg depth. Scour counter-measures at the site include type-1 stone fill (less than 12 inches diameter) along the downstream right wingwall. Type-2 stone fill (less than 36 inches diameter) is present along the downstream left and right banks. Type-3 stone fill (less than 48 inches diameter) is present along the upstream left bank and sparsely in front of the right abutment. A concrete wall (old abutment) extends along the upstream right bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.4 to 1.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 10.5 to 10.8 ft. The worst-case left abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 11.4 to 11.9 ft. The worst-case right abutment scour occurred at the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  13. Level II scour analysis for Bridge 28 (BRIDTH00440028) on Town Highway 044 crossing Plymouth Brook, Bridgewater, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Ayotte, Joseph D.

    1996-01-01

    The town highway 5 crossing of the Black River is a 70-ft-long, two-lane bridge consisting of one 65-foot clear span (Vermont Agency of Transportation, written commun., August 2, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. There is also a retaining wall along the upstream side of the road embankments. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is 15 degrees. A scour hole 3.0 ft deeper than the mean thalweg depth was observed along the right abutment. The scour hole was 27 feet long, 15 feet wide, and was 2.5 feet below the abutment footing at the time of the Level I assessment. This right abutment had numerous cracks and had settled. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  14. Level II scour analysis for Bridge 38 (BETHTH00070038) on Town Highway 007, crossing Gilead Brook, Bethel, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Song, Donald L.

    1996-01-01

    The town highway 5 crossing of the Black River is a 70-ft-long, two-lane bridge consisting of one 65-foot clear span (Vermont Agency of Transportation, written commun., August 2, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. There is also a retaining wall along the upstream side of the road embankments. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is 15 degrees. A scour hole 3.0 ft deeper than the mean thalweg depth was observed along the right abutment. The scour hole was 27 feet long, 15 feet wide, and was 2.5 feet below the abutment footing at the time of the Level I assessment. This right abutment had numerous cracks and had settled. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  15. Experimental study on local scouring at pile-supported piers

    NASA Astrophysics Data System (ADS)

    Moreno, Mario; Birjukova, Olga; Grimaldi, Carmelo; Gaudio, Roberto; Cardoso, António H.

    2017-06-01

    In spite of the increasing importance of complex piers for bridges, the number of studies on these piers is comparatively small and the predictors of scour depth at complex piers are only a few, derived from limited experimental evidence. The main purpose of this paper is to share with the hydraulics community the results of 67 tests on scouring at pile-supported piers (including complex piers) aligned with the flow, under clear-water conditions close to the threshold of beginning of sediment motion, while contributing to shade some more light on the influence of the pile-cap thickness on the equilibrium scour depth, the reliability of the superposition approach, the contribution of each one of the complex pier components to the equilibrium scour depth of the ensemble, and the performance of existing predictors of local scour at complex piers.

  16. Level II scour analysis for Bridge 43 (BENNCYDEPO0043) on Depot Street, crossing the Walloomsac River, Bennington, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BENNCYDEPO0043 on the Depot Street crossing of the Walloomsac River, Bennington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southwestern Vermont. The 30.1-mi2 drainage area is a predominantly rural and forested basin. The bridge site is located within an urban setting in the Town of Bennington with buildings and parking lots on overbanks. In the study area, the Walloomsac River has a straight channel with constructed channel banks through much of the reach. The channel is located on a delta and has a slope of approximately 0.02 ft/ft, an average channel top width of 48 ft and an average bank height of 6 ft. The predominant channel bed material is cobble with a median grain size (D50) of 108 mm (0.356 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 5, 1996, indicated that the reach was stable. The Depot Street crossing of the Walloomsac River is a 46-ft-long, two-lane bridge consisting of one 40-foot concrete span (Vermont Agency of Transportation, written communication, December 13, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 5 degrees to the opening and the opening-skew-to-roadway is 15 degrees. Scour countermeasures at the site include type-2 stone fill (less than 36 inches diameter) at the upstream end of the upstream right wing wall and type-1 stone fill (less than 12 inches diameter) along the base of the upstream left wing wall. Downstream banks are protected by concrete and stone walls. The upstream right bank is protected by alternating type-2 stone fill and masonry walls. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour computed for all modelled flows ranged from 0.0 to 4.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Computed right abutment scour ranged from 2.9 to 13.4 ft. with the worst-case scour occurring at the 500-year discharge. Computed left abutment scour ranged from 5.6 to 16.3 ft. with the worst-case scour also occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 10 (CHESTH00030010) on Town Highway 3 (VT 35), crossing the South Branch of Williams River, Chester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CHESTH00030010 on Town Highway 3 (VT 35) crossing the South Branch Williams River, Chester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 9.44-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest.In the study area, the South Branch Williams River has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 67 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 69.0 mm (0.226 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 26-27, 1996, indicated that the reach was stable.The Town Highway 3 (VT 35) crossing of the South Branch Williams River is a 69-foot-long, two-lane bridge consisting of one 67-foot steel-stringer span with a concrete deck (Vermont Agency of Transportation, written communication, August 23, 1994). The opening length of the structure parallel to the bridge face is 64.5 ft. The bridge is supported by vertical, concrete abutments with spill-through embankments. The channel is skewed approximately 50 degrees to the opening while the opening-skew-to-roadway is 30 degrees.The scour protection (spill-through abutments) measured at the site was type-3 stone fill (less than 48 inches diameter) extending the entire base length and around the ends of the left and right abutments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.Contraction scour for modelled flows ranged from 0.8 to 3.8 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge. Left abutment scour ranged from 13.3 to 14.9 ft. The worst-case scour at the left abutment occurred at the 500-year discharge. Right abutment scour ranged from 4.1 to 6.0 ft. The worst-case scour at the right abutment occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 20 (GRAFTH00010020) on Town Highway 1, crossing the Saxtons River, Grafton Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure GRAFTH00010020 on Town Highway 1 crossing the Saxtons River, Grafton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 33.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream of the bridge and shrub and brush downstream. In the study area, the Saxtons River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 97 ft and an average bank height of 2 ft. The predominant channel bed material is gravel with a median grain size (D50) of 58.6 mm (0.192 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 21, 1996, indicated that the reach was laterally unstable due to distinctive cut bank development on the upstream right bank and point bar development on the upstream left bank and downstream right bank. The Town Highway 1 crossing of the Saxtons River is a 191-ft-long, two-lane bridge consisting of three steel-beam spans (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with spill-through embankments and two piers. The channel is skewed approximately 40 degrees to the opening. The opening-skew-to-roadway is 45 degrees in the VTAOT records but measured 50 degrees from surveyed points. The scour protection measures at the site were type-1 stone fill (less than 12 inches diameter) on the left abutment, type-2 stone fill (less than 36 inches diameter) on the right abutment and downstream right bank, and a stone wall is noted on the left bank downstream. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.9 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.0 to 14.9 feet. The worst-case abutment scour occurred at the 500-year discharge for the right abutment. There are two piers for which computed pier scour ranged from 8.7 to 26.0 feet. The left and right piers in this report are presented as pier 1 and pier 2 respectively. The worst-case pier scour occurred at pier 2 for the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. Level II scour analysis for Bridge 40 (ANDOVT00110040) on State Route 11, crossing Lyman Brook, Andover, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110040 on State Route 11 crossing Lyman Brook, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 4.18-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture while the immediate banks have dense woody vegetation. In the study area, Lyman Brook has an incised, straight channel with a slope of approximately 0.03 ft/ft, an average channel top width of 42 ft and an average bank height of 8 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 86.0 mm (0.282 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 9, 1996, indicated that the reach was stable. The State Route 11 crossing of Lyman Brook is a 28-ft-long, two-lane bridge consisting of one 27-foot concrete tee-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The opening length of the structure parallel to the bridge face is 24.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 0 degrees to the opening while the opening-skew-to-roadway is 30 degrees. The scour protection measures at the site included type-2 stone fill (less than 36 inches diameter) at the upstream end of the upstream right wingwall and the downstream ends of the downstream left and right wingwalls. There was also a stone wall along the top of the left bank from 36 to 76 feet upstream. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.7 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge which was more than the 100-year discharge. Left abutment scour ranged from 1.2 to 7.5 ft. The worst-case left abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 5.2 to 6.7 ft. The worst-case right abutment scour occurred at the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Level II scour analysis for Bridge 44 (CHESVT00110044) on State Route 11, crossing Andover Brook, Chester, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CHESVT00110044 on State Route 11 crossing Andover Brook, Chester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 12.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture with dense woody vegetation on the immediate banks except the downstream left bank of the bridge which is forested. In the study area, Andover Brook has an incised, meandering channel with a slope of approximately 0.02 ft/ft, an average channel top width of 74 ft and an average bank height of 8 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 83.6 mm (0.274 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 11, 1996, indicated that the reach was stable. The State Route 11 crossing of Andover Brook is a 58-ft-long, two-lane bridge consisting of one 56-foot concrete T-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The opening length of the structure parallel to the bridge face is 52.9 ft.The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening while the opening-skew-to-roadway is 45 degrees. A scour hole 1.8 ft deeper than the mean thalweg depth was observed along the upstream left wingwall and left abutment during the Level I assessment. The scour protection measures at the site included type-4 stone fill (less than 60 inches diameter) along the upstream left bank between the wingwall and a concrete wall. There was type-2 stone fill (less than 36 inches diameter) along the entire base of the upstream left wingwall, and the downstream end of the downstream right wingwall. There was type-1 stone fill (less than 12 inches diameter) at the downstream end of the downstream left wingwall. There was also a concrete wall along the upstream left bank from 18 to 50 ft upstream of the bridge. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 1.2 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge. The incipientovertopping discharge is 520 cfs less than the 100-year discharge. Left abutment scour ranged from 16.4 to 20.9 ft. The worst-case left abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 8.4 to 9.4 ft. The worst-case right abutment scour occurred at both the 100-year and 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Level II scour analysis for Bridge 33 (TUNBTH00450033) on Town Highway 45, crossing the First Branch White River, Tunbridge, Vermont

    USGS Publications Warehouse

    Wild, E.C.; Severance, Timothy

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure TUNBTH00450033 on Town Highway 45 crossing the First Branch White River, Tunbridge, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 86.4-mi 2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge, while woody vegetation sparsely covers the immediate banks. In the study area, the First Branch White River has an incised, sinuous channel with a slope of approximately 0.003 ft/ft, an average channel top width of 68 ft and an average bank height of 7 ft. The channel bed material ranges from sand to gravel with a median grain size (D50) of 27.1 mm (0.089 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 18, 1995, indicated that the reach was laterally unstable due to a cut-bank present on the upstream right bank and a wide channel bar in the upstream reach. The Town Highway 45 crossing of the First Branch White River is a 67-ft-long, one-lane bridge consisting of one 54-foot timber thru-truss span (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 53.5 ft. The bridge is supported on the right by a vertical, concrete abutment with an upstream wingwall, and on the left by a vertical, stone abutment. The channel is skewed approximately 20 degrees to the opening while the computed opening-skew-to-roadway is 10 degrees. A scour hole 1.5 ft deeper than the mean thalweg depth was observed along the right abutment during the Level I assessment. Scour countermeasures at the site include type-1 stone fill (less than 12 inches diameter) along the upstream right wingwall, type-2 stone fill (less than 36 inches diameter) along the right abutment, and type-3 stone fill (less than 48 inches diameter) along the upstream right bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 3.0 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 12.8 to 31.0 ft. Right abutment scour ranged from 9.8 to 19.0 ft. The worst-case left and right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in Tables 1 and 2. A cross-section of the scour computed at the bridge is presented in Figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  2. Level II scour analysis for Bridge 5 (WOLCTH00150005) on Town Highway 15, crossing the Wild Branch Lamoille River, Wolcott, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WOLCTH00150005 on Town Highway 15 crossing the Wild Branch Lamoille River, Wolcott, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.During the August 1995 and July 1997 flood events, the left roadway was overtopped. Although there was loss of stone fill along the right abutment, the structure withstood both events.The site is in the Green Mountain section of the New England physiographic province in north- central Vermont. The 38.3-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge, while the immediate banks have dense woody vegetation.In the study area, the Wild Branch Lamoille River has an incised, sinuous channel with a slope of approximately 0.006 ft/ft, an average channel top width of 98 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 89.1 mm (0.292 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 17, 1996, indicated that the reach was stable.The Town Highway 15 crossing of the Wild Branch Lamoille River is a 46-ft-long, two-lane bridge consisting of a 43-foot prestressed concrete box-beam span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 42 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening- skew-to-roadway is zero degrees.A scour hole 2.0 ft deeper than the mean thalweg depth was observed near the bridge along the left side of the channel during the Level I assessment. Scour countermeasures at the site consists of type-1 stone fill (less than 12 inches diameter) along the upstream left bank and along the left and right downstream banks, type-2 stone fill (less than 36 inches diameter) along the downstream left and right wingwalls, type-3 stone fill (less than 48 inches diameter) along the upstream left wingwall and the right abutment, and type-4 stone fill (less than 60 inches diameter) along the upstream right wingwall and the left abutment. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.Contraction scour for all modelled flows was zero ft. Left abutment scour ranged from 7.9 to 23.3 ft. The worst-case left abutment scour occurred at the 500-year discharge. Right abutment scour ranged from 21.5 to 22.8 ft. The worst-case right abutment scour occurred at the incipient roadway-overtopping discharge. Additional in formation on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross- section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Level II scour analysis for Bridge 46 (CHESVT00110046) on Vermont State Route 11, crossing the Middle Branch Williams River, Chester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CHESVT00110046 on State Route 11 crossing the Middle Branch Williams River, Chester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the Green Mountain and New England Upland sections of the New England physiographic province in southeastern Vermont. The 28.0-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forested on the upstream left and downstream right overbanks. The upstream right and downstream left overbanks are pasture while the immediate banks have dense woody vegetation.In the study area, the the Middle Branch Williams River has an incised, sinuous channel with a slope of approximately 0.013 ft/ft, an average channel top width of 81 ft and an average bank height of 11 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 70.7 mm (0.232 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 12, 1996, indicated that the reach was stable.The State Route 11 crossing of the Middle Branch Williams River is a 118-ft-long, two-lane steel stringer type bridge consisting of a 114-foot steel plate deck (Vermont Agency of Transportation, written communication, March 29, 1995). The opening length of the structure parallel to the bridge face is 109 ft.The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the opening-skew-to-roadway is 50 degrees.A scour hole 2 ft deeper than the mean thalweg depth was observed 128 feet downstream during the Level I assessment. Type-1 (less than 1 foot) stone fill protects the downstream right wingwall. Type-2 (less than 3 ft diameter) stone fill protects the upstream right wingwall, the left and right abutments, the upstream left and right road embankments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.There was no computed contraction scour for any modelled flows. Abutment scour ranged from 7.0 to 10.3 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Level II scour analysis for Bridge 45b (BRIDTH00040045b) on Town Highway 4, crossing an unnamed Dailey Hollow Branch Tributary, Bridgewater, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.

    1996-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BRIDTH0004045B on town highway 4 crossing an unnamed Dailey Hollow Branch Tributary, Bridgewater, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 2.47-mi2 drainage area is in a predominantly rural and forested basin. Surface cover in the vicinity of the study site is variable. A gravel road is adjacent to the left bank with the immediate upstream left bank covered by grass and the immediate downstream left bank covered by shrubs and brush. The upstream right bank is densely forested; the downstream right overbank is covered by grass with trees and brush on the immediate channel bank. In the study area, this unnamed Dailey Hollow Branch Tributary has an incised channel with a slope of approximately 0.04 ft/ft, an average channel top width of 29 ft and an average channel depth of 4 ft. The predominant channel bed material is gravel with a median grain size (D50) of 47.0 mm (0.154 ft). The geomorphic assessment at the time of the Level I and Level II site visit on November 15, 1994, indicated that the reach was stable. The town highway 4 crossing of the unnamed Dailey Hollow Branch Tributary is a 62-ft-long, corrugated steel multi-plate arch structure. It is supported by concrete footings leaving natural stream bed exposed (Vermont Agency of Transportation, written communication, January, 1996). The road embankments are protected by stone fill, however, the size is unknown due to sand and grass covering the fill except for the upstream left embankment which has type-2 stone fill (less than 36 inches diameter). The downstream left bank is protected by type-3 stone fill (less than 48 inches diameter) extending 25 feet downstream of the culvert. The channel approach to the culvert has a mild s-curve bend with the opening skewed ten degrees to flow. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.1 to 1.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.7 to 11.7 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 144 (ROCHVT01000144) on State Route 100, crossing the White River, Rochester, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCHVT01000144 on State Route 100 crossing the White River, Rochester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 68.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture with forest on the valley walls. In the study area, the White River has a meandering channel with a slope of approximately 0.003 ft/ft, an average channel top width of 119 ft and an average channel depth of 4 ft. The predominant channel bed material is gravel and cobbles with a median grain size (D50) of 72.5 mm (0.238 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 22, 1996, indicated that the reach was laterally unstable due to a cut-bank present on the upstream left bank and wide point bars upstream and downstream in the vicinity of this site. The State Route 100 crossing of the White Riveris a 103-ft-long, two-lane bridge consisting of one 101-foot steel-beam span (Vermont Agency of Transportation, written communication, March 8, 1995). The bridge is supported by vertical, concrete abutment walls with spill-through embankments in front of each abutment wall and no wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-toroadway is 5 degrees. The scour protection measures at the site are type-2 stone fill (less than 36 inches diameter) on the upstream left bank, both abutment spill-through embankments, and the downstream banks. There also is type-1 stone fill (less than 12 inches diameter) on the upstream right bank. The stone fill is continuous on both sides of the river in the vicinity of the bridge. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. There was no computed contraction scour for the modelled flows. Abutment scour ranged from 6.9 to 10.9 ft. The worst-case abutment scour occurred at the incipient overtopping discharge, which was less than the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 36 (STOWTH00430036) on Town Highway 43, crossing Miller Brook, Stowe, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure STOWTH00430036 on Town Highway 43 crossing the Miller Brook, Stowe, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in north central Vermont. The 5.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is predominantly forested. In the study area, the Miller Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 43 ft and an average bank height of 7 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 70.4 mm (0.231 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 15, 1996, indicated that the reach was stable. The Town Highway 43 crossing of the Miller Brook is a 24-ft-long, two-lane bridge consisting of one 21-foot steel-beam span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 21.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening and the computed opening-skew-to-roadway is also 10 degrees. The footing on the left abutment was exposed 2.5 ft and the footing on the right abutment was exposed 3.0 ft during the Level I assessment. Scour protection measures at the site were type-4 stone fill (less than 60 inches diameter) on the left and right bank upstream, type-3 stone fill (less than 48 inches diameter) along the entire base length of the upstream right wingwall, right abutment, and type-2 stone fill (less than 36 inches diameter) along the entire base length of the downstream right wingwall, and left and right banks downstream. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 3.1 to 6.5 ft. The worst-case abutment scour occurred at the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 11R (ROCKTH0001011R) on Town Highway 1 (VT 121 & FAS 125), crossing the Saxtons River, Rockingham, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCKTH0001011R on Town Highway 1 crossing the Saxtons River, Rockingham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 68.3-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of houses, short grass, and scattered trees except along the immediate river banks, which are tree covered. In the study area, the Saxtons River has a sinuous channel with a slope of approximately 0.005 ft/ft, an average channel top width of 121 ft and an average bank height of 8 ft. The predominant channel bed materials are gravel and cobbles with a median grain size (D50) of 109 mm (0.359 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 3, 1996, indicated that the reach was laterally unstable. Lateral instability was evident with respect to a cut-bank on the left bank upstream with slip failure of bank material. Furthermore, there is a wide point bar along the right bank upstream opposite the cut-bank. The Town Highway 1 crossing of the Saxtons River is a 184-ft-long, two-lane bridge consisting of three steel-beam spans (Vermont Agency of Transportation, written communication, March 30, 1995). The bridge is supported by vertical, concrete, skeletal-style abutment walls with spill-through embankments adjacent to each wall. The channel is skewed approximately 35 degrees to the opening while the opening-skew-to-roadway is 30 degrees. The only scour protection measure at the site was type-3 stone fill (less than 48 inches diameter) on the spill-through embankments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. There was no computed contraction scour for all modelled flows at this site. Abutment scour ranged from 9.0 to 13.4 feet. The worst-case abutment scour occurred at the 500-year discharge for the left abutment. There are two piers for which computed pier scour ranged from 9.0 to 18.4 feet. The left and right piers in this report are presented as pier 1 and pier 2, respectively. The worst-case pier scour occurred at pier 2 for the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 34 (HUNTTH00210034) on Town Highway 21, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Ivanoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HUNTTH00210034 on Town Highway 21 crossing Brush Brook, Huntington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 6.23-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest. In the study area, Brush Brook has an incised, straight channel with a slope of approximately 0.03 ft/ft, an average channel top width of 43 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 90.0 mm (0.295 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 26, 1996, indicated that the reach was stable. The Town Highway 21 crossing of Brush Brook is a 28-ft-long, one-lane bridge consisting of one 26-foot steel-beam span with a timber deck (Vermont Agency of Transportation, written communication November 30, 1995). The opening length of the structure parallel to the bridge face is 25.4 ft. The bridge is supported by vertical, concrete abutments with a wingwall on the upstream right. The channel is skewed approximately 5 degrees to the opening and the computed opening-skew-to-roadway is 5 degrees. A tributary enters Brush Brook on the right bank immediately downstream of the bridge. At the confluence, the left bank of Brush Brook is eroded and there is a small void under the downstream end of the left abutment footing which is completely exposed. The right abutment footing is also exposed. The scour countermeasures at the site include type-2 stone fill (less than 36 inches diameter) along the upstream banks and in front of the right abutment and type-3 stone fill (less than 48 inches diameter) along the entire base length of the upstream right wingwall and along the downstream right bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.7 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 6.9 to 10.9 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Level II scour analysis for Bridge 33 (CONCTH00580033) on Town Highway 58, crossing Miles Stream, Concord, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CONCTH00580033 on Town Highway 58 crossing Miles Stream, Concord, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in northeastern Vermont. The 17.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream of the bridge while the immediate banks have dense woody vegetation. Downstream of the bridge, the right bank is forested and the left bank has shrubs and brush. In the study area, Miles Stream has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 91 ft and an average bank height of 7 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 61.6 mm (0.188 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 15, 1995, indicated that the reach was stable. The Town Highway 58 crossing of Miles Stream is a 44-ft-long, two-lane bridge consisting of one 39-foot steel-beam span (Vermont Agency of Transportation, written communication, March 24, 1995). The opening length of the structure parallel to the bridge face is 37.4 ft. The bridge is supported by vertical, concrete abutments with stone fill in front creating spillthrough embankments. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is zero degrees. The only scour countermeasure at the site was type-3 stone fill (less than 48 inches diameter) along the left and right banks upstream, in front of the abutments forming spill through embankments, and extending along the banks downstream. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 1.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.0 to 9.7 ft. The worst-case abutment scour occurred at the 500-year discharge for the right abutment and at the incipient roadway-overtopping discharge for the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Level II scour analysis for Bridge 16 (CHESVT01030016) on State Route 103, crossing the Williams River, Chester, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CHESVT01030016 on State Route 103 crossing the Williams River, Chester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 15.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture except for the downstream right overbank which is forested. In the study area, the Williams River has an incised, straight channel with a slope of approximately 0.008 ft/ft, an average channel top width of 56 ft and an average bank height of 6 ft. The channel bed material ranges from gravel to cobbles with a median grain size (D50) of 67.5 mm (0.222 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 16, 1996, indicated that the reach was stable. The State Route 103 crossing of the Williams River is a 162-ft-long, two-lane bridge consisting of three steel-beam spans (Vermont Agency of Transportation, written communication, March 13, 1995). The opening length of the structure parallel to the bridge face is 157.7 ft.The bridge is supported by vertical, concrete abutments and piers with no wingwalls. The channel is skewed approximately 55 degrees to the opening while the opening-skew-to-roadway is also 55 degrees. The scour protection measures at the site included type-4 stone fill (less than 60 inches diameter) along the upstream left bank. There was type-3 stone fill (less than 48 inches diameter) along the upstream right bank and both spill-through embankments and both downstream banks. There was type-1 stone fill (less than 12 inches diameter) along the upstream right and downstream left road embankments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was 0.0. Abutment scour ranged from 6.4 to 9.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Pier scour ranged from 7.9 to 10.1 ft. The worst-case pier scour occurred at the incipient-overtopping discharge for both piers. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Level II scour analysis for Bridge 23 (WOLCTH00130023) on Town Highway 13, crossing the Wild Branch of the Lamoille River, Wolcott, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WOLCTH00130023 on Town Highway 13 crossing the Wild Branch Lamoille River, Wolcott, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, collected from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in northcentral Vermont. The 27.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the upstream right overbank. The upstream left overbank is brushland. Downstream of the bridge, the surface cover is forested on the right overbank. The downstream left overbank is pasture while the immediate bank has dense woody vegetation. In the study area, the Wild Branch Lamoille River has an incised, straight channel with a slope of approximately 0.009 ft/ft, an average channel top width of 65 ft and an average bank height of 7 ft. The channel bed material ranges from sand to boulders with a median grain size (D50) of 85.3 mm (0.280 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 17, 1996 indicated that the reach was laterally unstable. The Town Highway 13 crossing of the Wild Branch Lamoille River is a 41-ft-long, one-lane bridge consisting of a 39-foot steel girder span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 38 ft. The bridge is supported by vertical, concrete abutments. The right abutment has concrete wingwalls. The channel is skewed approximately 45 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 3.5 ft deeper than the mean thalweg depth was observed in the channel during the Level I assessment. Scour countermeasures at the site includes type-2 stone fill (less than 3 feet diameter) along the banks, the right wingwalls, the right abutment and the road embankments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.0 to 2.1 ft. The worst-case contraction scour occurred at the 100-year discharge. Left abutment scour ranged from 9.1 to 13.2 ft. Right abutment scour ranged from 15.7 to 22.3 ft. The worst-case abutment scour occurred at the 500- year discharge for both abutments. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. During the August 1995 flood, the Wild Branch Lamoille River overtopped the bridge deck at structure WOLCTH00130023. Debris also was caught in the upstream I-beam of the structure. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  12. Level II scour analysis for Bridge 35, (ANDOVT00110035) on State Route 11, crossing the Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110035 on State Route 11 crossing the Middle Branch Williams River, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (Federal Highway Administration, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 4.65-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the left bank and small trees and brush on the right bank upstream and downstream of the bridge. In the study area, the Middle Branch Williams River has an incised, meandering channel with a slope of approximately 0.02 ft/ft, an average channel top width of 57 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 31.4 mm (0.103 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 28, 1996, indicated that the reach was laterally unstable. There are cut-banks upstream and downstream of the bridge and an island in the channel upstream. The State Route 11 crossing of the Middle Branch Williams River is a 28-ft-long, two-lane bridge consisting of one 24-ft concrete tee-beam span (Vermont Agency of Transportation, written communication, March 28, 1995). The opening length of the structure parallel to the bridge face is 23.6 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the computed opening-skew-to-roadway is 25 degrees. A scour hole ranging from 1.5 to 1.75 ft deeper than the mean thalweg depth was observed along the upstream left wingwall, the left abutment, and the downstream left wingwall during the Level I assessment. The scour countermeasures at the site included type-1 stone fill (less than 12 inches diameter) at the right road approach upstream and downstream of the bridge and type-2 stone fill (less than 36 inches diameter) at the left road approach upstream and downstream of the bridge. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 2.0 to 4.3 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 14.4 to 16.5 ft at the left abutment and from 6.3 to 8.8 ft at the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  13. Modified level II streambed-scour analysis for structure I-65-85-5527 crossing Sugar Creek in Johnson County, Indiana

    USGS Publications Warehouse

    Robinson, B.A.; Voelker, D.C.; Miller, R.L.

    1997-01-01

    Level II scour evaluations follow a process in which hydrologic, hydraulic, and sediment transport data are evaluated to calculate the depth of scour that may result when a given discharge is routed through a bridge opening. The results of the modified Level II analysis for structure 1-65-85-5527 on Interstate 65 crossing Sugar Creek in Johnson County, Indiana, are presented. The site is near the town of Amity in the southeastern part of Johnson County. Scour depths were computed with the Water Surface PROfile model, version V050196, which incorporates the scour-calculation procedures outlined in Hydraulic Engineering Circular No. 18. Total scour depths at the piers were approximately 26.8 feet for the modeled discharge of 26,000 cubic feet per second and approximately 30.8 feet for the modeled discharge of 34,100 cubic feet per second

  14. Modified level II streambed-scour analysis for structure I-74-32-4946 crossing Sugar Creek in Montgomery County, Indiana

    USGS Publications Warehouse

    Miller, R.L.; Robinson, B.A.; Voelker, D.C.

    1997-01-01

    Level II scour evaluations follow a process in which hydrologic, hydraulic, and sedient-transport data are evaluated to calculate the depth of scour that may result when given discharge is routed through a bridge opening. The results of the modified Levell II analysis for structure I-74-32-4946 on Interstate 74 crossing Sugar Creek in Montgomery County, Indiana are presented. The site is near the town of Crawfordsville in the central part of Montgomery County. Scour depths were computed with the Water Surface PROfile model, version V050196, which incorporates the scour-calculation procedures outlined in Hydraulic Engineering Circular No. 18. Total scour depths at the piers were approximately 13.0 feet for the modeled discharge of 3,000  cubic feet per second and approximately 15.1 feet for the modeled discharge of 41,900 cubic feet per second.

  15. Level II scour analysis for Bridge 27 (WSTOTH00070027) on Town Highway 7, crossing Jenny Coolidge Brook, Weston, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WSTOTH00070027 on Town Highway 7 crossing Jenny Coolidge Brook, Weston, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in southwestern Vermont. The 2.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture downstream of the bridge while upstream of the bridge is forested. In the study area, the Jenny Coolidge Brook has an incised, sinuous channel with a slope of approximately 0.04 ft/ft, an average channel top width of 51 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulders with a median grain size (D50) of 122 mm (0.339 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 20, 1996, indicated that the reach was stable. The Town Highway 7 crossing of the Jenny Coolidge Brook is a 52-ft-long, two-lane bridge consisting of a 50-foot steel-beam span (Vermont Agency of Transportation, written communication, April 7, 1995). The opening length of the structure parallel to the bridge face is 49.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 5 degrees to the opening while the computed opening-skew-to-roadway is 15 degrees. The legs of the skeleton-type right abutment were exposed approximately 2 feet (vertically) and approximately 2 feet (horizontally) during the Level I assessment. Scour protection measures at the site include type-1 stone fill (less than 12 inches diameter) along the downstream right wingwall, and type-2 stone fill (less than 36 inches diameter) along the upstream banks, upstream left wingwall, left abutment, downstream left wingwall and downstream left bank. A stone wall levee extends along the downstream right bank. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was zero ft. Abutment scour ranged from 3.0 to 4.1 ft. The worst-case left abutment scour occurred at the 100-year discharge. The worst-case right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  16. Level II scour analysis for Bridge 12 (SUNDFLR0030012) on Forest Land Road 3, crossing Roaring Branch Brook, Sunderland, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SUNDFLR0030012 on Forest Land Road (FLR) 3 (FAS 114) crossing Roaring Branch Brook, Sunderland, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southwestern Vermont. The 4.93-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is dense forest along the left bank and primarily shrubs and trees along the right bank, both upstream and downstream of the bridge. In the study area, Roaring Branch Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 33 ft and an average bank height of 4 ft. The channel bed material ranges from cobble to bedrock with a median grain size (D50) of 139 mm (0.457 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 30, 1996, indicated that the reach was stable. Forest Land Road 3 (FAS 114) crossing of Roaring Branch Brook is a 37-ft-long, two-lane bridge consisting of one 35-foot steel-beam span (Vermont Agency of Transportation, written communication, December 14, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 30 degrees to the opening while the opening-skew-to-roadway is 15 degrees. The scour protection measures at the site included type-3 stone fill (less than 48 inches diameter) along the left and right abutments, along the upstream left and downstream right wing walls and along the downstream right bank. Type-4 (less than 60 inches diameter) stone fill was found along the upstream right and downstream left wingwalls and along the downstream left bank. Type-2 (less than 36 inches diameter) stone fill scour protection was found along the upstream left and right banks. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was calculated to be 0.0 ft. Abutment scour ranged from 4.3 to 10.4 ft. The worst-case abutment scour occurred at the 500-year discharge along the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 37 (PLYMTH00080037) on Town Highway 8, crossing Broad Brook, Plymouth, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Medalie, Laura

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure PLYMTH00080037 on Town Highway 8 crossing Broad Brook, Plymouth, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gathered from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 5.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and downstream of the bridge. In the study area, Broad Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 46 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 87.5 mm (0.287 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 3, 1995, indicated that the reach was laterally unstable due to cut-banks present on the upstream left bank and the downstream left and right banks. The Town Highway 8 crossing of Broad Brook is a 31-ft-long, one-lane bridge consisting of a 28-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 22, 1995). The opening length of the structure parallel to the bridge face is 27.0 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is 15 degrees. During the Level I assessment, it was observed that the left abutment footing was exposed 1.25 ft at the downstream end, and the subfooting was exposed 1 ft. Scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) along the upstream right wingwall, the right abutment and the downstream right wingwall. Type-2 stone fill (less than 36 inches diameter) was along the upstream left wingwall, the upstream end of the left abutment and the downstream end of the downstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.5 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Left abutment scour ranged from 11.1 to 12.0 ft. Right abutment scour ranged from 3.0 to 7.7 ft. The worst-case abutment scour occurred at the 500-year discharge. Pier scour ranged from 6.2 to 7.1 ft. The worst-case pier scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 41 (ANDOVT00110041) on State Route 11, crossing the Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110041 on State Route 11 crossing the Middle Branch Williams River, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southeastern Vermont. The 12.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is grass on the upstream right overbank while the immediate banks have dense woody vegetation. The upstream left overbank and downstream right overbank are brushland. The downstream left overbank is forested. In the study area, the Middle Branch Williams River has an incised, sinuous channel with a slope of approximately 0.018 ft/ft, an average channel top width of 71 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 85.0 mm (0.279 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 10, 1996, indicated that the reach was laterally unstable due to a cut-bank present on the upstream right bank and a wide channel bar with vegetation in the upstream reach. The State Route 11 crossing of the Middle Branch Williams River is a 46-ft-long, two-lane bridge consisting of a concrete 44-foot tee-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The opening length of the structure parallel to the bridge face is 42 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening while the opening-skew-toroadway is zero degrees. A scour hole 0.8 ft deeper than the mean thalweg depth was observed along the downstream end of the left abutment and downstream left wingwall during the Level I assessment. Type- 2 stone fill (less than 36 inches diameter) protects the upstream end of the upstream left wingwall, the downstream ends of the downstream left and right wingwalls and the downstream right road embankment. Type-3 stone fill protects the upstream end of the upstream right wingwall and the upstream right bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 2.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 11.1 to 18.7 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. Level II scour analysis for Bridge 34 (WWINTH00370034) on Town Highway 37, crossing Mill Brook, West Windsor, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WWINTH00370034 on Town Highway 37 crossing Mill Brook, West Windsor, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in east-central Vermont. The 16.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture except for the upstream left bank where there is mostly shrubs and brush. In the study area, Mill Brook has a sinuous channel with a slope of approximately 0.003 ft/ ft, an average channel top width of 52 ft and an average bank height of 5 ft. The channel bed material ranges from sand to cobbles with a median grain size (D50) of 43.4 mm (0.142 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 5, 1996, indicated that the reach was laterally unstable. Point bars were observed upstream and downstream of this site. Furthermore, slip failure of the bank material was noted downstream at a cut-bank on the left side of the channel across from a point bar. The Town Highway 37 crossing of Mill Brook is a 37-ft-long, one-lane covered bridge consisting of one 32-foot wood thru-truss span (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 29.6 ft. The bridge is supported by vertical, laid-up stone abutment walls with concrete facing and laid-up stone wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 1.5 ft deeper than the mean thalweg depth was observed along the right abutment during the Level I assessment. Scour protection measures at the site included type-3 (less than 48 inches diameter) and type-4 (less than 60 inches diameter) stone fill. Type-3 stone fill was observed along the upstream right bank and along the right abutments. Type-4 stone fill was observed at the upstream end of the upstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. There was no contraction scour predicted for any of the modeled flows. Abutment scour at the left abutment ranged from 5.7 to 7.3 ft, while that at the right abutment ranged from 11.6 to 17.7 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results.” Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Level II scour analysis for Bridge 26 (ROYATH00540026) on Town Highway 54, crossing Broad Brook, Royalton, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Weber, Matthew A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROYATH00540026 on Town Highway 54 crossing Broad Brook, Royalton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 11.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover on the left bank upstream and downstream is pasture with trees and brush on the immediate banks. The right bank, upstream and downstream of the bridge, is forested. In the study area, Broad Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 37 ft and an average bank height of 4 ft. The channel bed material ranges from sand to boulders with a median grain size (D50) of 66.3 mm (0.218 ft). The geomorphic assessment at the time of the Level I site visit on April 13, 1995 and the Level II site visit on July 11, 1996, indicated that the reach was stable. The Town Highway 54 crossing of Broad Brook is a 29-ft-long, one-lane bridge consisting of one 24-foot steel-beam span with a timber deck (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 23.3 ft. The bridge is supported by a vertical, concrete face laid-up stone abutment with concrete wingwalls on the left and a laid-up stone abutment on the right. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the downstream end of the right abutment during the Level I assessment. Also, at the upstream end of the left abutment, the footing is exposed 0.5 ft. The scour protection measures at the site included type-2 stone fill (less than 36 inches diameter) along the upstream left bank, at the upstream end of the upstream left wingwall, along the entire length of the downstream left wingwall, and at the upstream end of the right abutment. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 1.4 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 2.2 to 7.4 ft on the left and from 14.7 to 17.7 ft on the right. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge for the left and at the 500-year discharge for the right. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Level II scour analysis for Bridge 45a (BRIDUS00040045a) on U.S. Route 4, crossing Ottauquechee River, Bridgewater, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BRIDUS00040045a on U.S.. Route 4 crossing the Ottauquechee River, Bridgewater, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge available from VTAOT files was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D. The site is in the Green Mountain physiographic province of central Vermont in the town of Bridgewater. The 72.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the overbank areas are lawn or pasture with a few residences. The immediate channel banks have moderately dense woody vegetation. In the study area, the Ottauquechee River has a sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 81 ft and an average channel depth of 3 ft. The predominant channel bed materials are gravel and cobble (D50 is 54.9 mm or 0.180 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 26, 1994, indicated that the reach was stable. The U.S. Route 4 crossing of the Ottauquechee Riveris a 172-ft-long, two-lane bridge consisting of three steel-beam spans supported by spill-through abutments and two concrete piers (Vermont Agency of Transportation, written commun., August 25, 1994). The abutment and road approaches are protected by type-2 stone fill (less than 36 inches diameter). The North Branch of the Ottauquechee River joins the Ottauquechee River approximately 200 feet upstream of the bridge on the main branch’s left bank. The channel approach to the bridge has a mild bend with the bridge skewed 15 degrees to flow; the opening-skew-to-roadway is 30 degrees. Additional details describing conditions at the site are included in the Level II Summary, Appendix D, and Appendix E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 3.1 to 4.0 ft. with the worst-case contraction scour occurring at the 500-year and incipient road-overflow discharges. Abutment scour ranged from 9.3 to 15.2 ft. The worst-case abutment scour also occurred at the 500-year discharge. Pier scour ranged from 11.4 to 12.4 ft. with the worst-case scenario occurring at the incipient roadway overflow discharge. The incipient roadway overflow discharge was between the 100- and 500-year discharges. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

  2. Level II scour analysis for Bridge 17 (NEWHTH00200017) on Town Highway 20, crossing Little Otter Creek, New Haven, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Burns, Ronda L.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure NEWHTH00200017 on Town Highway 20 crossing Little Otter Creek, New Haven, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Champlain section of the St. Lawrence Valley physiographic province in west-central Vermont. The 10.8-mi2 drainage area is in a predominantly rural and wetland basin. In the vicinity of the study site, the surface cover is shrubland on the downstream right overbank. The surface cover of the downstream left overbank, the upstream right overbank and the upstream left overbank is wetland and pasture. In the study area, Little Otter Creek has a meandering channel with a slope of approximately 0.0007 ft/ft, an average channel top width of 97 ft and an average bank height of 5 ft. The channel bed material ranges from silt and clay to cobble. Medium sized silt and clay is the channel material upstream of the approach cross-section and downstream of the exit cross-section. The median grain size (D50) of the silt and clay channel bed material is 1.52 mm (0.005 ft), which was used for contraction and abutment scour computations. From the approach cross-section, under the bridge, and to the exit cross-section, stone fill is the channel bed material. The median grain size (D50) of the stone fill channel bed material is 95.7 mm (0.314 ft). The stone fill median grain size was used solely for armoring computations. The geomorphic assessment at the time of the Level I and Level II site visit on June 11, 1996, indicated that the reach was stable.The Town Highway 20 crossing of Little Otter Creek is a 32-ft-long, two-lane bridge consisting of a 28-ft steel-beam span (Vermont Agency of Transportation, written communication, December 15, 1995). The opening length of the structure parallel to the bridge face is 24.9 ft. The bridge is supported by almost vertical, concrete abutments. The channel is skewed approximately 15 degrees to the opening while the opening-skew-toroadway is zero degrees. The scour countermeasures at the site consisted of type-1 stone fill (less than 12 inches diameter) along the left and right abutments, as well as along the upstream left and right banks. Type-2 stone fill (less than 36 inches diameter) was present along the downstream right bank. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 9.7 to 13.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 6.9 to 7.9 ft. Right abutment scour ranged from 10.5 to 11.8 ft. The worst-case left and right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Level II scour analysis for Bridge 2 (RYEGTH00020002) on Town Highway 2, crossing the Wells River, Ryegate, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure RYEGTH00020002 on Town Highway 2 crossing the Wells River, Ryegate, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in east-central Vermont. The 75.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of cut grass, trees, and brush on the flood plains while the immediate banks have dense woody vegetation. In the study area, the Wells River has an incised, sinuous channel with a slope of approximately 0.006 ft/ft, an average channel top width of 110 ft and an average bank height of 12 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 82.3 mm (0.270 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 24, 1995, indicated that the reach was laterally unstable with moderate fluvial erosion and meandering downstream of the bridge. The Town Highway 2 crossing of the Wells River is a 79-ft-long, two-lane bridge consisting of one 75-foot steel-beam span (Vermont Agency of Transportation, written communication, March 27, 1995). The opening length of the structure parallel to the bridge face is 75.1 ft. The bridge is supported by vertical, concrete abutments, the left has a spill-through embankment, with wingwalls. The channel is not skewed to the opening and the opening-skew-to-roadway is zero degrees. A scour hole 3 ft deeper than the mean thalweg depth was observed in the channel from upstream and through the bridge during the Level I assessment. The scour protection counter-measures at the site included type-4 stone fill (less than 60 inches diameter) along the base of the left abutment forming a spill-through embankment. There was also type-2 stone fill (less than 36 inches diameter) along the entire base length of the upstream right wingwall, the upstream right bank and downstream left bank. There was a stone wall along the upstream left bank extending 130 ft from the bridge. In addition there was type-1 stone fill (less than 12 inches diameter) along the downstream right bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was zero. Abutment scour ranged from 7.1 to 11.4 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Design and evaluation of a high sensitivity spiral TDR scour sensor

    NASA Astrophysics Data System (ADS)

    Gao, Quan; (Bill Yu, Xiong

    2015-08-01

    Bridge scour accounts for more than half of the reported bridge failures in the United States. Scour monitoring technology based on time domain reflectometry (TDR) features the advantages of being automatic and inexpensive. The senior author’s team has developed a few generations of a TDR bridge scour monitoring system, which have succeeded in both laboratory and field evaluations. In this study, an innovative spiral TDR sensor is proposed to further improve the sensitivity of the TDR sensor in scour detection. The spiral TDR sensor is made of a parallel copper wire waveguide wrapped around a mounting rod. By using a spiral path for the waveguide, the TDR sensor achieves higher sensitivity than the traditional straight TDR probes due to longer travel distance of the electromagnetic (EM) wave per unit length in the spiral probe versus traditional probe. The performance of the new TDR spiral scour sensor is validated by calibration with liquids with known dielectric constant and wet soils. Laboratory simulated scour-refilling experiments are performed to evaluate the performance of the new spiral probe in detecting the sediment-water interface and therefore the scour-refill process. The tests results indicate that scour depth variation of less than 2 cm can be easily detected by this new spiral sensor. A theory is developed based on the dielectric mixing model to simplify the TDR signal analyses for scour depth detection. The sediment layer thickness (directly related to scour depth) varies linearly with the square root of the bulk dielectric constant of the water-sediment mixture measured by the spiral TDR probe, which matches the results of theoretical prediction. The estimated sediment layer thickness and therefore scour depth from the spiral TDR sensor agrees very well with that by direct physical measurement. The spiral TDR sensor is four times more sensitive than a traditional straight TDR probe.

  5. Design and characterization of a piezoelectric sensor for monitoring scour hole evolution

    NASA Astrophysics Data System (ADS)

    Azhari, Faezeh; Tom, Caroline; Benassini, Joseph; Loh, Kenneth J.; Bombardelli, Fabian A.

    2014-03-01

    Scour occurring near bridge piers and abutments jeopardizes the stability and safety of overwater bridges. In fact, bridge scour is responsible for a significant portion of overwater bridge failures in the United States and around the world. As a result, numerous methods have been developed for monitoring bridge scour by measuring scour depth at locations near bridge piers and foundations. Besides visual inspections conducted by trained divers, other technologies include sonar, float-out devices, magnetic sliding collars, tilt sensors, and fiber optics, to name a few. These systems each offer unique advantages, but most of them share fundamental limitations (e.g., high costs, low reliability, limited accuracy, low reliability, etc.) that have limited their implementation in practice. Thus, the goal of this study is to present a low-cost and simple scour depth sensor fabricated using piezoelectric poly(vinylidene fluoride) (PVDF) polymer strips. Unlike current piezoelectric scour sensors that are based on mounting multiple and equidistantly spaced transducers on a rod, the proposed sensor is formed by coating one continuous PVDF film onto a substrate, followed by waterproofing the sensor. The PVDF-based sensor can then be buried in the streambed and at a location where scour depth measurements are desired. When scour occurs and exposes a portion of the PVDF sensor, water flow excites the sensor to cause the generation of a time-varying voltage signal. Since the dynamics of the voltage time history response is related to the exposed length of the sensor, scour depth can be determined. This work presents the design and fabrication of the sensor. Then, the sensor's performance and accuracy is characterized through extensive laboratory testing.

  6. Level II scour analysis for Bridge 21 (MONKTH00340021) on Town Highway 34, crossing Little Otter Creek, Monkton, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MONKTH00340021 on Town Highway 34 crossing Little Otter Creek, Monkton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix D of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix C. The site is in the Champlain section of the Saint Lawrence Valley physiographic province in northwestern Vermont. The 34.1-mi2 drainage area is in a predominantly rural and forested basin with pasture in the valleys. In the vicinity of the study site, the surface cover consists of pasture. The most significant tree cover is immediately adjacent to the channel on the right bank downstream. In the study area, Little Otter Creek has a sinuous channel with a slope of approximately 0.008 ft/ft, an average channel top width of 92 feet and an average bank height of 6 feet. The predominant channel bed materials are silt and clay. Sieve analysis indicates that greater than 50% of the sample is silt and clay and thus a median grain size by use of sieve analysis was indeterminate. Therefore, the median grain size was assumed to be medium silt with a size (D50) of 0.0310 mm (0.000102 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 19 and June 20, 1996, indicated that the reach was stable. The Town Highway 34 crossing of Little Otter Creek is a 50-ft-long, one-lane bridge consisting of one 26-foot concrete span and three “boiler tube” smooth metal pipe culverts through the left road approach (Vermont Agency of Transportation, written communication, December 15, 1995). The opening length of the bridge parallel to the bridge face is 25.1 feet. The bridge is supported by vertical, concrete abutments with wingwalls on the right abutment only. The channel is skewed approximately 25 degrees to the opening. The VTAOT records indicate the opening-skew-to-roadway is 20 degrees but measurement from surveyed data suggests the skew is five degrees. The scour protection measures at the site were type-1 stone fill (less than 12 inches diameter) on the upstream and downstream embankments of the left road approach and type-2 stone fill (less than 36 inches diameter) surrounding the entrance of each culvert. Additional details describing conditions at the site are included in the Level II Summary and Appendices C and D. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 10.3 to 12.3 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.6 to 22.5 feet. The worst-case abutment scour occurred at the 500-year discharge for the left abutment and at the incipient overtopping discharge for the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Scour of chinook salmon redds on suction dredge tailings

    Treesearch

    Bret C. Harvey; Thomas E. Lisle

    1999-01-01

    Abstract - We measured scour of the redds of chinook salmon Oncorhynchus tshawytscha on dredge tailings and natural substrates in three tributaries of the Klamath River, California. We measured maximum scour with scour chains and net scour by surveying before and after high winter flows. Scour of chinook salmon redds located on dredge tailings exceeded scour of redds...

  8. Estimation of potential scour at bridges on local government roads in South Dakota, 2009-12

    USGS Publications Warehouse

    Thompson, Ryan F.; Wattier, Chelsea M.; Liggett, Richard R.; Truax, Ryan A.

    2014-01-01

    In 2009, the U.S. Geological Survey and South Dakota Department of Transportation (SDDOT) began a study to estimate potential scour at selected bridges on local government (county, township, and municipal) roads in South Dakota. A rapid scour-estimation method (level-1.5) and a more detailed method (level-2) were used to develop estimates of contraction, abutment, and pier scour. Data from 41 level-2 analyses completed for this study were combined with data from level-2 analyses completed in previous studies to develop new South Dakota-specific regression equations: four regional equations for main-channel velocity at the bridge contraction to account for the widely varying stream conditions within South Dakota, and one equation for head change. Velocity data from streamgages also were used in the regression for average velocity through the bridge contraction. Using these new regression equations, scour analyses were completed using the level-1.5 method on 361 bridges on local government roads. Typically, level-1.5 analyses are completed at flows estimated to have annual exceedance probabilities of 1 percent (100-year flood) and 0.2 percent (500-year flood); however, at some sites the bridge would not pass these flows. A level-1.5 analysis was then completed at the flow expected to produce the maximum scour. Data presented for level-1.5 scour analyses at the 361 bridges include contraction, abutment, and pier scour. Estimates of potential contraction scour ranged from 0 to 32.5 feet for the various flows evaluated. Estimated potential abutment scour ranged from 0 to 40.9 feet for left abutments, and from 0 to 37.7 feet for right abutments. Pier scour values ranged from 2.7 to 31.6 feet. The scour depth estimates provided in this report can be used by the SDDOT to compare with foundation depths at each bridge to determine if abutments or piers are at risk of being undermined by scour at the flows evaluated. Replicate analyses were completed at 24 of the 361 bridges to provide quality-assurance/quality-control measures for the level-1.5 scour estimates. An attempt was made to use the same flows among replicate analyses. Scour estimates do not necessarily have to be in numerical agreement to give the same results. For example, if contraction scour replicate analyses are 18.8 and 30.8 feet, both scour depths can indicate susceptibility to scour for which countermeasures may be needed, even though one number is much greater than the other number. Contraction scour has perhaps the greatest potential for being estimated differently in replicate visits. For contraction scour estimates at the various flows analyzed, differences between results ranged from -7.8 to 5.5 feet, with a median difference of 0.4 foot and an average difference of 0.2 foot. Abutment scour appeared to be nearly as reproducible as contraction scour. For abutment scour estimates at the varying flows analyzed, differences between results ranged from -17.4 to 11 feet, with a median difference of 1.4 feet and an average difference of 1.7 feet. Estimates of pier scour tended to be the most consistently reproduced in replicate visits, with differences between results ranging from -0.3 to 0.5 foot, with a median difference of 0.0 foot and an average difference of 0.0 foot. The U.S. Army Corps of Engineers Hydraulics Engineering Center River Analysis Systems (HEC-RAS) software package was used to model stream hydraulics at the 41 sites with level-2 analyses. Level-1.5 analyses also were completed at these sites, and the performance of the level-1.5 method was assessed by comparing results to those from the more rigorous level-2 method. The envelope curve approach used in the level-1.5 method is designed to overestimate scour relative to the estimate from the level-2 scour analysis. In cases where the level-1.5 method estimated less scour than the level-2 method, the amount of underestimation generally was less than 3 feet. The level-1.5 method generally overestimated contraction, abutment, and pier scour relative to the level-2 method, as intended. Although the level-1.5 method is designed to overestimate scour relative to more involved analysis methods, many assumptions, uncertainties, and estimations are involved. If the envelope curves are adjusted such that the level-1.5 method never underestimates scour relative to the level-2 method, an accompanying result may be excessive overestimation.

  9. Measurement and Estimation of Riverbed Scour in a Mountain River

    NASA Astrophysics Data System (ADS)

    Song, L. A.; Chan, H. C.; Chen, B. A.

    2016-12-01

    Mountains are steep with rapid flows in Taiwan. After installing a structure in a mountain river, scour usually occurs around the structure because of the high energy gradient. Excessive scouring has been reported as one of the main causes of failure of river structures. The scouring disaster related to the flood can be reduced if the riverbed variation can be properly evaluated based on the flow conditions. This study measures the riverbed scour by using an improved "float-out device". Scouring and hydrodynamic data were simultaneously collected in the Mei River, Nantou County located in central Taiwan. The semi-empirical models proposed by previous researchers were used to estimate the scour depths based on the measured flow characteristics. The differences between the measured and estimated scour depths were discussed. Attempts were then made to improve the estimating results by developing a semi-empirical model to predict the riverbed scour based on the local field data. It is expected to setup a warning system of river structure safety by using the flow conditions. Keywords: scour, model, float-out device

  10. Methodology and Estimates of Scour at Selected Bridge Sites in Alaska

    USGS Publications Warehouse

    Heinrichs, Thomas A.; Kennedy, Ben W.; Langley, Dustin E.; Burrows, Robert L.

    2001-01-01

    The U.S. Geological Survey estimated scour depths at 325 bridges in Alaska as part of a cooperative agreement with the Alaska Department of Transportation and Public Facilities. The department selected these sites from approximately 806 State-owned bridges as potentially susceptible to scour during extreme floods. Pier scour and contraction scour were computed for the selected bridges by using methods recommended by the Federal Highway Administration. The U.S. Geological Survey used a four-step procedure to estimate scour: (1) Compute magnitudes of the 100- and 500-year floods. (2) Determine cross-section geometry and hydraulic properties for each bridge site. (3) Compute the water-surface profile for the 100- and 500-year floods. (4) Compute contraction and pier scour. This procedure is unique because the cross sections were developed from existing data on file to make a quantitative estimate of scour. This screening method has the advantage of providing scour depths and bed elevations for comparison with bridge-foundation elevations without the time and expense of a field survey. Four examples of bridge-scour analyses are summarized in the appendix.

  11. Level II scour analysis for Bridge 24 (MANCUS00070024) on U.S. Route 7, crossing Lye Brook, Manchester, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MANCUS00070024 on U.S. Route 7 crossing Lye Brook, Manchester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Taconic section of the New England physiographic province in southwestern Vermont. The 8.13-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the primary surface cover consists of brush and trees. In the study area, Lye Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 66 ft and an average bank height of 11 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 90.0 mm (0.295 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 6, 1996, indicated that the reach was stable. Although, the immediate reach is considered stable, upstream of the bridge the Lye Brook valley is very steep (0.05 ft/ft). Extreme events in a valley this steep may quickly reveal the instability of the channel. In the Flood Insurance Study for the Town of Manchester (Federal Emergency Management Agency, January, 1985), Lye Brook’s overbanks were described as “boulder strewn” after the August 1976 flood. The U.S. Route 7 crossing of Lye Brook is a 28-ft-long, two-lane bridge consisting of one 25-foot concrete span (Vermont Agency of Transportation, written communication, September 28, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the opening-skew-to-roadway is 55 degrees. At the time of construction, the downstream channel was relocated (written communication, Dan Landry, VTAOT, January 2, 1997). A levee on the downstream right bank was also constructed and is protected by type-4 stone-fill (less than 60 inches diameter) extending from the bridge to more than 300 feet downstream. Type-2 stone fill (less than 36 inches diameter) covers the downstream right bank from the bridge to more than 300 feet downstream. Type-2 stone-fill also extends from the bridge to 220 feet upstream on both upstream banks. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is analyzed since it has the potential of being the worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.0 to 1.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour computations for the left abutment ranged from 14.5 to 16.1 ft. with the worst-case occurring at the 100-year discharge. Abutment scour computations for the right abutment ranged from 6.9 to 10.4 ft. with the worst-case occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  12. Potential-scour assessments and estimates of maximum scour at selected bridges in Iowa

    USGS Publications Warehouse

    Fischer, E.E.

    1995-01-01

    Although the abutment-scour equation predicted deep scour holes at many of the sites, the only significant abutment scour that was measured was erosion of the embankment at the left abutment at one bridge after a flood.

  13. A novel bridge scour monitoring and prediction system

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Michalis, Panagiotis; Zhang, Hanqing

    2015-04-01

    Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the use of a novel methodology is proposed for the prediction of bridge scour. Specifically, the use of an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation. Training of the system to new bridge geometries and flow conditions can be achieved by obtaining real time data, via novel electromagnetic sensors monitoring scour depth. Once the model is trained with data representative of the new system, bridge scour prediction can be performed for high/design flows or floods.

  14. Flood scour monitoring system using fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Lin, Yung Bin; Lai, Jihn Sung; Chang, Kuo Chun; Li, Lu Sheng

    2006-12-01

    The exposure and subsequent undermining of pier/abutment foundations through the scouring action of a flood can result in the structural failure of a bridge. Bridge scour is one of the leading causes of bridge failure. Bridges subject to periods of flood/high flow require monitoring during those times in order to protect the traveling public. In this study, an innovative scour monitoring system using button-like fiber Bragg grating (FBG) sensors was developed and applied successfully in the field during the Aere typhoon period in 2004. The in situ FBG scour monitoring system has been demonstrated to be robust and reliable for real-time scour-depth measurements, and to be valid for indicating depositional depth at the Dadu Bridge. The field results show that this system can function well and survive a typhoon flood.

  15. Evaluation of scour potential of cohesive soils - phase 2.

    DOT National Transportation Integrated Search

    2015-01-01

    Determination of erosion parameters in order to predict scour depth is imperative to designing safe, : economic, and efficient bridge foundations. Scour behavior of granular soils is generally understood, : and design criteria have been established b...

  16. Bridge-Scour Data Management System user's manual

    USGS Publications Warehouse

    Landers, Mark N.; Mueller, David S.; Martin, Gary R.

    1996-01-01

    The Bridge-Scour Data Management System (BSDMS) supports preparation, compilation, and analysis of bridge-scour data. The BSDMS provides interactive storage, retrieval, selection, editing, and display of bridge-scour data sets. Bridge-scour data sets include more than 200 site and measurement attributes of the channel geometry, flow hydraulics, hydrology, sediment, geomorphic-setting, location, and bridge specifications. This user's manual provides a general overview of the structure and organization of BSDMS data sets and detailed instructions to operate the program. Attributes stored by the BSDMS are described along with an illustration of the input screen where the attribute can be entered or edited. Measured scour depths can be compared with scour depths predicted by selected published equations using the BSDMS. The selected published equations available in the computational portion of the BSDMS are described. This manual is written for BSDMS, version 2.0. The data base will facilitate: (1) developing improved estimators of scour for specific regions or conditions; (2) describing scour processes; and (3) reducing risk from scour at bridges. BSDMS is available in DOS and UNIX versions. The program was written to be portable and, therefore, can be used on multiple computer platforms. Installation procedures depend on the computer platform, and specific installation instructions are distributed with the software. Sample data files and data sets of 384 pier-scour measurements from 56 bridges in 14 States are also distributed with the software.

  17. Ultimate pier and contraction scour prediction in cohesive soils at selected bridges in Illinois.

    DOT National Transportation Integrated Search

    2013-09-01

    The Scour Rate In COhesive Soils-Erosion Function Apparatus (SRICOS-EFA) method includes an ultimate scour prediction that is : the equilibrium maximum pier and contraction scour of cohesive soils over time. The purpose of this report is to present t...

  18. Assessing potential scour using the South Carolina bridge-scour envelope curves

    USGS Publications Warehouse

    Benedict, Stephen T.; Feaster, Toby D.; Caldwell, Andral W.

    2016-09-30

    SummaryBridge-scour equations presented in the Federal Highway Administration Hydraulic Engineering Circular No. 18 reflect the current state-of-the practice for predicting scour at bridges. Although these laboratory-derived equations provide an important resource for assessing scour potential, there is a measure of uncertainty when applying these equations to field conditions. The uncertainty and limitations have been acknowledged by laboratory researchers and confirmed in field investigations.Because of the uncertainty associated with bridge-scour equations, HEC-18 recommends that engineers evaluate the computed scour depths obtained from the equations and modify the resulting data if they appear unreasonable. Perhaps the best way to evaluate the reasonableness of predicted scour is to compare it to field measurements of historic scour. Historic field data show scour depths resulting from high flows and provide a reference for evaluating predicted scour. It is rare, however, that such data are available at or near a site of interest, making the evaluation of predicted scour as compared to field data difficult if not impossible. Realizing the value of historic scour measurements, the U.S. Geological Survey (USGS), in cooperation with the South Carolina Department of Transportation (SCDOT), conducted a series of three field investigations to collect historic scour data with the goal of understanding regional trends of scour at riverine bridges in South Carolina.Historic scour measurements, including measurements of clear-water abutment, contraction, and pier scour, as well as live-bed contraction and pier scour, were made at more than 200 bridges. These field investigations provided valuable insights into regional scour trends and yielded regional bridge-scour envelope curves that can be used as supplementary tools for assessing all components of scour at riverine bridges in South Carolina.The application and limitations of these envelope curves were documented in four reports. Because each report addresses different components of bridge scour, it was recognized that there was a need to develop an integrated procedure for applying the envelope curves to help assess scour potential at riverine bridges in South Carolina. The result of that effort is detailed in Benedict and others (2016) and summarized in this fact sheet.

  19. Real time measurement of scour depths around bridge piers and abutments.

    DOT National Transportation Integrated Search

    2015-01-01

    Scour is one of the most significant threats to bridge infrastructure and is the leading cause of failure within the : United States. Scour monitoring is an approved countermeasure as reported by the Federal Highway Administration. As : the monitorin...

  20. Evaluation of design methods to determine scour depths for bridge structures : [technical summary].

    DOT National Transportation Integrated Search

    2013-01-01

    Scour of bridge foundations is the most common cause of bridge failures. The Federal Highway Administration : (FHWA) has developed a design method, HEC-18, for the state Departments of Transportation (DOTs) to evaluate : the scour potential of existi...

  1. Real time measurement of scour depth around bridge piers and abutments : final report.

    DOT National Transportation Integrated Search

    2015-01-01

    Scour is one of the most significant threats to bridge infrastructure and is the leading cause of failure within the : United States. Scour monitoring is an approved countermeasure as reported by the Federal Highway Administration. As : the monitorin...

  2. Measurement of scour-depth near bridge piers

    USGS Publications Warehouse

    Skinner, J.V.

    1986-01-01

    Because a free-running craft will be undesirably heavy and large, other methods of obtaining scour data are proposed. A tethered craft fitted with a controllable rudder and some methods of measuring scour at a point are presented for future study and development.

  3. Study and Control of Scour below Pipelines under unidirectional flow

    NASA Astrophysics Data System (ADS)

    Kabiri, Shima; Hoseinzadeh Dalir, Ali

    2016-04-01

    Water and other fluids pipelines laid on sandy rivers and sea bed change flow pattern around pipelines. These changes increase the bed shear stress and the degree of confusion around the pipes and cause to create scour hole below the pipes. In this situation, the occurrence of scour below the pipelines may lead to instability, fracture and bending and even breakage where cause very severe economic and environmental harms eventually. In this research as well as studying of scour under the pipelines, the bed sill had been used as a new mechanism in order to reduce and control of scour. For this purpose, 3 pipes (smooth) with different diameters (D) were modelled in flow condition of PIC U/Uc=0.8-0.9 in the channel with 11m length, 25cm width and depth of 50 cm. Experiment has been performed in below 2 modes: 1) Scour below a smooth pipe without bed sill 2) Scour below a smooth pipe with bed sill. In the 2nd modes bed sill was located at 4 different distances (L=0,D/4,D/2,D) of downstream Of the pipe central axis. In the experiments bed sill was a barrier for spreading wake vortices and it controlled erosions of downstream. Results of this research indicated that whatever the distance of bed sill from central axis of pipe is less, there is the most influence in reducing the scour depth below pipe. In the case that bed sill had been located exactly under central axis of pipe, scour depth under pipe decreased about 100% Also in this situation with passing a long time from the beginning of examination, the pipe self-burial process occurred due to vortex creation in pipe downstream and relocation of particles toward pipe.

  4. Evaluation of streambed scour at bridges over tidal waterways in Alaska

    USGS Publications Warehouse

    Conaway, Jeffrey S.; Schauer, Paul V.

    2012-01-01

    The potential for streambed scour was evaluated at 41 bridges that cross tidal waterways in Alaska. These bridges are subject to several coastal and riverine processes that have the potential, individually or in combination, to induce streambed scour or to damage the structure or adjacent channel. The proximity of a bridge to the ocean and water-surface elevation and velocity data collected over a tidal cycle were criteria used to identify the flow regime at each bridge, whether tidal, riverine, or mixed, that had the greatest potential to induce streambed scour. Water-surface elevations measured through at least one tide cycle at 32 bridges were correlated to water levels at the nearest tide station. Asymmetry of the tidal portion of the hydrograph during the outgoing tide at 12 bridges indicated that riverine flows were stored upstream of the bridge during the tidal exchange. This scenario results in greater discharges and velocities during the outgoing tide compared to those on the incoming tide. Velocity data were collected during outgoing tides at 10 bridges that experienced complete flow reversals, and measured velocities during the outgoing tide exceeded the critical velocity required to initiate sediment transport at three sites. The primary risk for streambed scour at most of the sites considered in this study is from riverine flows rather than tidal fluctuations. A scour evaluation for riverine flow was completed at 35 bridges. Scour from riverine flow was not the primary risk for six tidally-controlled bridges and therefore not evaluated at those sites. Field data including channel cross sections, a discharge measurement, and a water-surface slope were collected at the 35 bridges. Channel instability was identified at 14 bridges where measurable scour and or fill were noted in repeated surveys of channel cross sections at the bridge. Water-surface profiles for the 1-percent annual exceedance probability discharge were calculated by using the Hydrologic Engineering Center’s River Analysis System model, and scour depths were calculated using methods recommended by the Federal Highway Administration. Computed contraction-scour depths were greater than 2.0 feet at five bridges and computed pier-scour depths were 4.0 feet or greater at 15 bridges. The potential for streambed scour by both coastal and riverine processes at the bridges considered in this study were evaluated, ranked, and summed to determine a cumulative risk factor for each bridge. Possible factors that could mitigate the scour risks were investigated at 22 bridges that had high individual or cumulative rankings. Mitigating factors such as piers founded in bedrock, deep pier foundations relative to scour depths, and lack of observed scour during field measurements were documented for 13 sites, but additional study and monitoring is needed to better quantify the streambed scour potential for nine sites. Three bridges prone to being affected by storm surges will require more data collection and possibly complex hydrodynamic modeling to accurately quantify the streambed scour potential. Continuous monitoring of water-surface and streambed elevation at one or more piers is needed for two bridges to better understand the tidal and riverine influences on streambed scour.

  5. Prediction of Scour Depth around Bridge Piers using Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Zhang, Hanqing

    2014-05-01

    Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health of river systems but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the application of a Machine Learning model that has been successfully employed in Water Engineering, namely an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation.

  6. Pier scour equations used in the People's Republic of China : review and summary

    DOT National Transportation Integrated Search

    1993-09-01

    Equations for estimating scour depth at bridge structures was developed from model and field data presented at the Symposium on Scour at Bridges in China, 1964. These equations have been used in highway and railway engineering in China for more than ...

  7. Clear-Water Abutment and Contraction Scour in the Coastal Plain and Piedmont Provinces of South Carolina, 1996-99

    DOT National Transportation Integrated Search

    2016-08-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, collected observations of clear-water abutment and contraction scour at 146 bridges in the Coastal Plain and Piedmont of South Carolina. Scour depths ran...

  8. Comparison of Scour and Flow Characteristics Around Circular and Oblong Bridge Piers in Seepage Affected Alluvial Channels

    NASA Astrophysics Data System (ADS)

    Chavan, Rutuja; Venkataramana, B.; Acharya, Pratik; Kumar, Bimlesh

    2018-06-01

    The present study examines scour geometry and turbulent flow characteristics around circular and oblong piers in alluvial channel with downward seepage. Experiments were conducted in plane sand bed of non-uniform sand under no seepage, 10% seepage and 15% seepage conditions. Scour depth at oblong pier is significantly lesser than the scour depth at circular one. However, the scour depth at both piers reduces with downward seepage. The measurements show that the velocity and Reynolds stresses are negative near the bed at upstream of piers where the strong reversal occurs. At downstream of oblong pier near the free surface, velocity and Reynolds stresses are less positive; whereas, they are negative at downstream of circular pier. The streamline shape of oblong pier leads to reduce the strength of wake vortices and consequently reversal flow at downstream of pier. With application of downward seepage turbulent kinetic energy is decreasing. The results show that the wake vortices at oblong pier are weaker than the wake vortices at circular pier. The strength of wake vortices diminishes with downward seepage. The Strouhal number is lesser for oblong pier and decreases with downward seepage for both oblong and circular piers.

  9. Experimental study on the stability and failure of individual step-pool

    NASA Astrophysics Data System (ADS)

    Zhang, Chendi; Xu, Mengzhen; Hassan, Marwan A.; Chartrand, Shawn M.; Wang, Zhaoyin

    2018-06-01

    Step-pools are one of the most common bedforms in mountain streams, the stability and failure of which play a significant role for riverbed stability and fluvial processes. Given this importance, flume experiments were performed with a manually constructed step-pool model. The experiments were carried out with a constant flow rate to study features of step-pool stability as well as failure mechanisms. The results demonstrate that motion of the keystone grain (KS) caused 90% of the total failure events. The pool reached its maximum depth and either exhibited relative stability for a period before step failure, which was called the stable phase, or the pool collapsed before its full development. The critical scour depth for the pool increased linearly with discharge until the trend was interrupted by step failure. Variability of the stable phase duration ranged by one order of magnitude, whereas variability of pool scour depth was constrained within 50%. Step adjustment was detected in almost all of the runs with step-pool failure and was one or two orders smaller than the diameter of the step stones. Two discharge regimes for step-pool failure were revealed: one regime captures threshold conditions and frames possible step-pool failure, whereas the second regime captures step-pool failure conditions and is the discharge of an exceptional event. In the transitional stage between the two discharge regimes, pool and step adjustment magnitude displayed relatively large variabilities, which resulted in feedbacks that extended the duration of step-pool stability. Step adjustment, which was a type of structural deformation, increased significantly before step failure. As a result, we consider step deformation as the direct explanation to step-pool failure rather than pool scour, which displayed relative stability during step deformations in our experiments.

  10. Streambed scour of salmon spawning habitat in a regulated river influenced by management of peak discharge

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Burton, Karl D.; Magirl, Christopher S.; Konrad, Christopher P.

    2017-01-01

    In the Pacific Northwest of the United States, salmon eggs incubating within streambed gravels are susceptible to scour during floods. The threat to egg-to-fry survival by streambed scour is mitigated, in part, by the adaptation of salmon to bury their eggs below the typical depth of scour. In regulated rivers globally, we suggest that water managers consider the effect of dam operations on scour and its impacts on species dependent on benthic habitats.We instrumented salmon-spawning habitat with accelerometer scour monitors (ASMs) at 73 locations in 11 reaches of the Cedar River in western Washington State of the United States from Autumn 2013 through the Spring of 2014. The timing of scour was related to the discharge measured at a nearby gage and compared to previously published ASM data at 26 locations in two reaches of the Cedar River collected between Autumn 2010 and Spring 2011.Thirteen percent of the recovered ASMs recorded scour during a peak-discharge event in March 2014 (2-to 3-year recurrence interval) compared to 71% of the recovered ASMs during a higher peak-discharge event in January 2011 (10-year recurrence interval). Of the 23 locations where ASMs recorded scour during the 2011 and 2014 deployments, 35% had scour when the discharge was ≤87.3 m3/s (3,082 ft3/s) (2-year recurrence interval discharge) with 13% recording scour at or below the 62.3 m3/s (2,200 ft3/s) operational threshold for peak-discharge management during the incubation of salmon eggs.Scour to the depth of salmon egg pockets was limited during peak discharges with frequent (1.25-year or less) recurrence intervals, which managers can regulate through dam operations on the Cedar River. Pairing novel measurements of the timing of streambed scour with discharge data allows the development of peak-discharge management strategies that protect salmon eggs incubating within streambed gravels during floods.

  11. Estimates of bridge scour at two sites on the Virgin River, southeastern Nevada, using a sediment-transport model and historical geomorphic data

    USGS Publications Warehouse

    Hilmes, M.M.; Vaill, J.E.

    1997-01-01

    A bridge-scour study by the U.S. Geological Survey, in cooperation with the Nevada Department of Transportation, began in April 1996 to evaluate the Mesquite, Nevada, and Riverside, Nevada, bridges on the lower Virgin River using a sediment-transport model and historical geomorphic data. The BRIdge Stream Tube model for Alluvial River Simulation (BRI-STARS) was used to estimate bridge scour. The model was first calibrated using data for the Virgin River flood of March 12, 1995. Surveyed channel-geometry data were available at 11 cross sections for dates before and after the March 1995 flood to allow for evaluation of the model results. The model estimated the thalweg altitude within plus or minus 1 meter at 10 of the 11 cross sections. The calibrated model then was used to estimate the contraction, channel, pier, and total scour for synthesized hydrographs for 100- and 500-year floods at the two bridge sites. The estimated maximum total scour at the Mesquite bridge was 1.30 meters for the 100-year flood and 1.32 meters for the 500-year flood. The maximum total scour at the Riverside bridge was 1.90 meters for the 100-year flood and 2.01 meters for the 500-year flood. General scour was evaluated using stage-discharge relations at nearby streamflow-gaging stations, 1993-95 channel-geometry data, and channel-geometry data for the 100- and 500-year floods. On the basis of stage and discharge at the Littlefield, Arizona, gaging station, no long-term trend in aggradation or degradation was found. However, several cycles of aggradation and degradation had occurred during the period of record; the difference between the highest and lowest stage was 0.87 meter for a chosen low-flow discharge of 5.66 cubic meters per second for 1929-95. The value of 0.87 meter is probably the best estimate of general scour. The cross sections had an average scour depth of 0.07 meter between 1993 and 1994 and 0.16 meter between 1994 and 1995. The model simulated little general scour for the 100- and 500-year floods at the cross sections and did not give a good estimate of general scour, probably because the duration (days) of the floods used in the model was relatively short when compared with the duration (months or years) of geomorphic processes that influence long-term aggradation or degradation. Historical geomorphic changes of the Virgin River at the bridge sites and the causes of those changes were documented using aerial photographs from 1938-95 and other historical information. The Virgin River has become narrower and more sinuous through time, the vegetation on the flood plain has increased, and the channel has shifted laterally many times. The processes associated with these channel changes were found to be long-term changes in precipitation and streamflow; the duration, magnitude, and timing of floods; sediment-transport characteristics; channel avulsion; changes in density of vegetation; and anthropogenic influences.

  12. Prediction of Scour below Flip Bucket using Soft Computing Techniques

    NASA Astrophysics Data System (ADS)

    Azamathulla, H. Md.; Ab Ghani, Aminuddin; Azazi Zakaria, Nor

    2010-05-01

    The accurate prediction of the depth of scour around hydraulic structure (trajectory spillways) has been based on the experimental studies and the equations developed are mainly empirical in nature. This paper evaluates the performance of the soft computing (intelligence) techiques, Adaptive Neuro-Fuzzy System (ANFIS) and Genetic expression Programming (GEP) approach, in prediction of scour below a flip bucket spillway. The results are very promising, which support the use of these intelligent techniques in prediction of highly non-linear scour parameters.

  13. Large scale clear-water local pier scour experiments

    USGS Publications Warehouse

    Sheppard, D.M.; Odeh, M.; Glasser, T.

    2004-01-01

    Local clear-water scour tests were performed with three different diameter circular piles (0. 114, 0.305, and 0.914 m), three different uniform cohesionless sediment diameters (0.22, 0.80, and 2.90 mm) and a range of water depths and flow velocities. The tests were performed in the 6.1 m wide, 6.4 m deep, and 38.4 m long flume at the United States Geological Survey Conte Research Center in Turners Falls, Mass. These tests extend local scour data obtained in controlled experiments to prototype size piles and ratios of pile diameter to sediment diameter to 4,155. Supply water for this flow through flume was supplied by a hydroelectric power plant reservoir and the concentration of suspended fine sediment (wash load) could not be controlled. Equilibrium scour depths were found to depend on the wash load concentration. ?? ASCE.

  14. Estimation of potential bridge scour at bridges on state routes in South Dakota, 2003-07

    USGS Publications Warehouse

    Thompson, Ryan F.; Fosness, Ryan L.

    2008-01-01

    Flowing water can erode (scour) soils and cause structural failure of a bridge by exposing or undermining bridge foundations (abutments and piers). A rapid scour-estimation technique, known as the level-1.5 method and developed by the U.S. Geological Survey, was used to evaluate potential scour at bridges in South Dakota in a study conducted in cooperation with the South Dakota Department of Transportation. This method was used during 2003-07 to estimate scour for the 100-year and 500-year floods at 734 selected bridges managed by the South Dakota Department of Transportation on State routes in South Dakota. Scour depths and other parameters estimated from the level-1.5 analyses are presented in tabular form. Estimates of potential contraction scour at the 734 bridges ranged from 0 to 33.9 feet for the 100-year flood and from 0 to 35.8 feet for the 500-year flood. Abutment scour ranged from 0 to 36.9 feet for the 100-year flood and from 0 to 45.9 feet for the 500-year flood. Pier scour ranged from 0 to 30.8 feet for the 100-year flood and from 0 to 30.7 feet for the 500-year flood. The scour depths estimated by using the level-1.5 method can be used by the South Dakota Department of Transportation and others to identify bridges that may be susceptible to scour. Scour at 19 selected bridges also was estimated by using the level-2 method. Estimates of contraction, abutment, and pier scour calculated by using the level-1.5 and level-2 methods are presented in tabular and graphical formats. Compared to level-2 scour estimates, the level-1.5 method generally overestimated scour as designed, or in a few cases slightly underestimated scour. Results of the level-2 analyses were used to develop regression equations for change in head and average velocity through the bridge opening. These regression equations derived from South Dakota data are compared to similar regression equations derived from Montana and Colorado data. Future level-1.5 scour investigations in South Dakota may benefit from the use of these South Dakota-specific regression equations for estimating change in stream head and average velocity at the bridge.

  15. CFD-DEM Onset of Motion Analysis for Application to Bed Scour Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitek, M. A.; Lottes, S. A.

    This CFD study with DEM was done as a part of the Federal Highway Administration’s (FHWA’s) effort to improve scour design procedures. The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) model, available in CD-Adapco’s StarCCM+ software, was used to simulate multiphase systems, mainly those which combine fluids and solids. In this method the motion of discrete solids is accounted for by DEM, which applies Newton's laws of motion to every particle. The flow of the fluid is determined by the local averaged Navier–Stokes equations that can be solved using the traditional CFD approach. The interactions between the fluid phase and solidsmore » phase are modeled by use of Newton's third law. The inter-particle contact forces are included in the equations of motion. Soft-particle formulation is used, which allows particles to overlap. In this study DEM was used to model separate sediment grains and spherical particles laying on the bed with the aim to analyze their movement due to flow conditions. Critical shear stress causing the incipient movement of the sediment was established and compared to the available experimental data. An example of scour around a cylindrical pier is considered. Various depths of the scoured bed and flow conditions were taken into account to gain a better understanding of the erosion forces existing around bridge foundations. The decay of these forces with increasing scour depth was quantified with a ‘decay function’, which shows that particles become increasingly less likely to be set in motion by flow forces as a scour hole increases in depth. Computational and experimental examples of the scoured bed around a cylindrical pier are presented.« less

  16. Evaluation of abutment scour prediction equations with field data

    USGS Publications Warehouse

    Benedict, S.T.; Deshpande, N.; Aziz, N.M.

    2007-01-01

    The U.S. Geological Survey, in cooperation with FHWA, compared predicted abutment scour depths, computed with selected predictive equations, with field observations collected at 144 bridges in South Carolina and at eight bridges from the National Bridge Scour Database. Predictive equations published in the 4th edition of Evaluating Scour at Bridges (Hydraulic Engineering Circular 18) were used in this comparison, including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. The comparisons showed that most equations tended to provide conservative estimates of scour that at times were excessive (as large as 158 ft). Equations also produced underpredictions of scour, but with less frequency. Although the equations provide an important resource for evaluating abutment scour at bridges, the results of this investigation show the importance of using engineering judgment in conjunction with these equations.

  17. Bridge Scour Measurements Using the Rfid Technology

    NASA Astrophysics Data System (ADS)

    Moustakidis, I.; Tsakiris, A. G.; Papanicolaou, T.

    2010-12-01

    The main purpose of this project is to develop a system for continuous monitoring scour around bridge piers and abutments (i.e. bridge scour) using the Radio Frequency IDentification (RFID) technology and examine its applicability for estimating scour around a pier or an existing bridge. Excessive bridge scour can compromise the bridge foundations and lead to dramatic bridge collapses with significant impacts on economy and traveling public safety. An RFID system consists of three main components: the low frequency reader (~134.2 kHz frequency), the transponder (derived from transmitter/responder) and the antenna (of rectangular shape with one or more loops). RFID is a technology that permits the wireless two-way transfer of information from a reader to a transponder via RF waves transmitted with an antenna. What makes RFIDs suitable for monitoring bridge scour is that no line of sight is necessary between the reader and the transponder, which can be detected even when it is buried in the bed substrate. The proposed system for monitoring bridge scour relies on the principle that transponders oriented perpendicular to antenna plane can be detected at longer distances, than transponders oriented parallel to it. We intend to attach transponders at predetermined locations (depths) along a chain with known length. The chain will subsequently be driven into the bed substrate at the location where bridge scour hole is expected within the detection range of the antenna, which will be installed directly above the chain. The chain will retain the transponders perpendicular to the antenna plane, so that they can be continuously detected. Once scour takes place, the transponders will be oriented parallel to the antenna plane and thus they will not be detected. The latter will indicate that bridge scour reached the known depth, at which the transponder was initially buried. Once a prototype RFID system is functional, future research will aim at combining it with satellite technology for real time acquisition of bridge scour information to a base station.

  18. Potential-Scour Assessments at 130 Bridges in Iowa

    USGS Publications Warehouse

    Fischer, Edward E.

    1996-01-01

    A total of 130 highway bridges in Iowa were assessed for potential scour using a potential-scour index developed by the U.S. Geological Survey for a bridge-scour study in western Tennessee. Greater values of the index, which is composed of 11 components, suggest a greater likelihood of scour-related problems occurring at a bridge. For the Iowa assessments, the minimum value was 3, the median value was 11.5, and the maximum value was 24.5. None of the 130 bridges required immediate attention with regard to installing scour countermeasures. Based on the results of the assessments, it was concluded that assessing potential scour only once at a site would be of limited benefit in the Iowa Department of Transportation's bridge inspection program. Additional information would help determine whether repeated potential-scour assessments would enhance more timely and cost-effective implementation of scourcountermeasures.

  19. Extreme Changes in Stream Geomorphic Conditions induced by Fluvial Scour in Bridges

    NASA Astrophysics Data System (ADS)

    Özcan, O.; Ozcan, O.

    2016-12-01

    The numerous complexities associated with bridge scour have caused scour to be one of the most active topics of stream geomorphic research. The assessment of local scouring mechanism around bridge piers provides information for decision-making regarding the pile footing design, predicting the safety of bridges under critical scoured conditions, and as a result, may help prevent unnecessary loses. In the study, bridge design plans and HEC-RAS modeling were used for the assessment of changes in stream geomorphic conditions. The derived fluvial scour depths were compared with the field measurements and the empirical formula which is based on stream flow discharge rate, streambed condition and shape of river. Preliminary results revealed that bridge damage resulting from the flood event in 2003 induced substantial scour around bridge piles. Afterwards, significant stream bed change was observed under the influence of fluvial scour in another flood occurred in 2009. Consequently, geomorphic conditions of the stream bed should be considered in the structural design of the bridges.

  20. Numerical simulation of scouring-deposition variations caused by rainfall-induced landslides in the upstream of Zengwun River, Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsi; Liao, Yi-Wen; Tsai, Kuang-Jung

    2017-04-01

    In recent years, the increasing sediment disasters of severe rainfall-induced landslides on human lives and lifeline facilities worldwide have advanced the necessity to find out both economically acceptable and useful techniques to predict the occurrence and destructive power of the disasters. In August 2009, Typhoon Morakot brought a large amount of rainfall with both high intensity and long duration to a vast area of Taiwan. Unfortunately, this resulted in a catastrophic landslide in watershed of Zengwun-River reservoir, southern Taiwan. Meanwhile, large amounts of landslides were formed in the upstream of Zengwun River. The major scope of this study is to apply numerical model to simulate the scouring-deposition variations caused by rainfall-induced landslides that occurred in the upstream of Zengwun River during Typhoon Morakot. This study proposed the relation diagrams of the intermediate diameter (d50), recurrence interval (T) and scouring-deposition depth (D), and applied the diagrams to understand the impacts of the scouring-deposition variations on the structures for water and soil conservation and their measurements. Based on the simulation of scouring-deposition variation at the Da-Bu dam and Da-Bang dam, this study also discussed the scouring-deposition variations of different sections under different scenarios (including flow rate, intermediate diameters and structures). In summary, the result suggested that the diagrams of the intermediate diameter, recurrence interval and scouring-deposition depth could be used as the reference for designing the check dams, ground sills and lateral constructions.

  1. Coupling hydrodynamic modeling and empirical measures of bed mobility to assess the risk of redd scour on a large regulated river

    Treesearch

    Christine L. May; Bonnie S. Pryor; Thomas E. Lisle; Margaret M. Lang

    2009-01-01

    n order to assess the risk of scour and fill of spawning redds during floods, an understanding of the relations among river discharge, bed mobility, and scour and fill depths in areas of the streambed heavily utilized by spawning salmon is needed. Our approach coupled numerical flow modeling and empirical data from the Trinity River, California, to quantify spatially...

  2. Evaluation of design methods to determine scour depths for bridge structures.

    DOT National Transportation Integrated Search

    2013-03-01

    Scour of bridge foundations is the most common cause of bridge failures. The overall goal of this project was to evaluate the applicability of the existing Hydraulic Engineering Circular (HEC-18) documents method to Louisiana bridges that are mostly ...

  3. Field performance of an acoustic scour-depth monitoring system

    USGS Publications Warehouse

    Mason, Jr., Robert R.; Sheppard, D. Max

    1994-01-01

    The Herbert C. Bonner Bridge over Oregon Inlet serves as the only land link between Bodie and Hatteras Islands, part of the Outer Banks of North Carolina. Periodic soundings over the past 30 years have documented channel migration, local scour, and deposition at several pilings that support the bridge. In September 1992, a data-collection system was installed to permit the off-site monitoring of scour at 16 bridge pilings. The system records channel-bed elevations at 15-minute intervals and transmits the data to a satellite receiver. A cellular phone connection also permits downloading and reviewing of the data as they are being collected. A digitally recording, acoustic fathometer is the main component of the system. In November 1993, current velocity, water-surface elevation, wave characteristics, and water temperature measuring instruments were also deployed at the site. Several performance problems relating to the equipment and to the harsh marine environment have not been resolved, but the system has collected and transmitted reliable scour-depth and water-level data.

  4. Levee Scour Protection for Storm Waves

    NASA Astrophysics Data System (ADS)

    Johnson, E.; Sustainable; Resiliency in Levee Scour Protection

    2011-12-01

    Earnest Johnson, Firat Y. Testik *, Nadarajah Ravichandran Civil Engineering, Clemson University, Clemson, SC, USA * Contact author ftestik@clemson.edu Levee failure due to scouring has been a prominent occurrence among intense storm surges and waves, giving rise to the implementation of various scour protection measures over the years. This study is to investigate the levee scour and to compare different scour protection measures on a model-levee system in a laboratory wave tank. The protection measures that are tested and compared for their effectiveness in this study include turf reinforcement mats, woven geotextiles, and core-locs. This is an ongoing research effort and experiments are currently being conducted with model levees constructed based upon the United States Army Corps of Engineers' levee design and construction guidelines under various simulated storm conditions. Parameters such as wave elevations, deformation time history of the floodwall, and the scour depth are measured in each test. The finding of this research will be translated to provide effective scour protection measures for robust levee designs.

  5. Large-scale scour of the sea floor and the effect of natural armouring processes, land reclamation Maasvlakte 2, port of Rotterdam

    USGS Publications Warehouse

    Boer, S.; Elias, E.; Aarninkhof, S.; Roelvink, D.; Vellinga, T.

    2007-01-01

    Morphological model computations based on uniform (non-graded) sediment revealed an unrealistically strong scour of the sea floor in the immediate vicinity to the west of Maasvlakte 2. By means of a state-of-the-art graded sediment transport model the effect of natural armouring and sorting of bed material on the scour process has been examined. Sensitivity computations confirm that the development of the scour hole is strongly reduced due to the incorporation of armouring processes, suggesting an approximately 30% decrease in terms of erosion area below the -20m depth contour. ?? 2007 ASCE.

  6. New types of time domain reflectometry sensing waveguides for bridge scour monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ping; Wang, Kai; Chung, Chih-Chung; Weng, Yu-Wen

    2017-07-01

    Scour is a major threat to bridge safety, especially in harsh fluvial environments. Real-time monitoring of bridge scour is still very limited due to the lack of robust and economic scour monitoring device. Time domain reflectometry (TDR) is an emerging waveguide-based technique holding great promise to develop more durable scour monitoring devices. This study presents new types of TDR sensing waveguides in forms of either sensing rod or sensing wire, taking into account of the measurement range, durability, and ease of field installation. The sensing rod is composed of a hollow grooved steel rod paired up with a metal strip on the insulating groove, while the sensing wire consists of two steel strands with one of them coated with an insulating jacket. The measurement sensitivity is inevitably sacrificed when other properties such as the measurement range, field durability, and installation easiness are enhanced. Factors affecting the measurement sensitivity were identified and experimentally evaluated for better arranging the waveguide conductors. A data reduction method for scour-depth estimation without the need for identifying the sediment/water reflection and a two-step calibration procedure for rating propagation velocities were proposed to work with the new types of TDR sensing waveguides. Both the calibration procedure and the data reduction method were experimentally validated. The test results indicated that the new TDR sensing waveguide provides accurate scour depth measurements regardless of the sacrificed sensitivity. The insulating coating of the new TDR sensing waveguide was also demonstrated to be effective in extending the measurement range up to at least 15 m.

  7. Smart rock technology for real-time monitoring of bridge scour and riprap effectiveness - design guidelines and visualization tool.

    DOT National Transportation Integrated Search

    2016-12-31

    This study aims to further develop and demonstrate the recently-proposed smart rock technology for : scour depth and protection effectiveness monitoring. A smart rock is one or two stacked magnets encased : in a concrete sphere with a specially-desig...

  8. Evaluation of design methods to determine scour depths for bridge structures : LTRC research project capsule 08-3ST.

    DOT National Transportation Integrated Search

    2009-04-01

    Scour, an engineering term for erosion, is : the result of the erosive action of flowing : water excavating and carrying away : material from the bed and banks of : streams and from around the piers and : abutments of bridges. For analysis : purposes...

  9. Use of surface-geophysical methods to assess riverbed scour at bridge piers

    USGS Publications Warehouse

    Gorin, S.R.; Haeni, F.P.

    1989-01-01

    A ground-penetrating-radar system, and three seismic systems--color fathometer, tuned transducer, and black-and-white fathometer--were used to evaluate river-bed scour at the Charter Oak, Founder 's and Bulkeley Bridges in Hartford, Connecticut. Cross-sections of the channel and some lateral sections were run at each bridge in June and July 1987, and significant scour at piers supporting each of these bridges was recorded. Each of the four geophysical systems proved to have advantages and limitations. The ground penetrating radar system used single and dual 80 megahertz antennae floating in the water to transmit and receive the signal. The method was successful in water less than 25 ft deep, and in resistive earth materials. The geometry of existing scour holes and the extent of post-scour sedimentation were clearly defined. The color fathometer, operating at a signal frequency of 20 kilohertz, delineated existing scour-hole geometry, detected infilling of scour holes, and provided qualitative information about the physical properties of sediments. The tuned transducer, operating at a signal frequency of 14 kilohertz, defined scour-hole geometry and the extent of post-scour sediment deposition. Both of these systems were effective in water greater than 5 ft deep. At a signal frequency of 200 kilohertz, the black-and-white fathometer could not penetrate post-scour deposits, but it was useful in defining existing scour-holed geometry in water of any depth. (USGS)

  10. Sediment Dynamics Over a Stable Point bar of the San Pedro River, Southeastern Arizona

    NASA Astrophysics Data System (ADS)

    Hamblen, J. M.; Conklin, M. H.

    2002-12-01

    Streams of the Southwest receive enormous inputs of sediment during storm events in the monsoon season due to the high intensity rainfall and large percentages of exposed soil in the semi-arid landscape. In the Upper San Pedro River, with a watershed area of approximately 3600 square kilometers, particle size ranges from clays to boulders with large fractions of sand and gravel. This study focuses on the mechanics of scour and fill on a stable point bar. An innovative technique using seven co-located scour chains and liquid-filled, load-cell scour sensors characterized sediment dynamics over the point bar during the monsoon season of July to September 2002. The sensors were set in two transects to document sediment dynamics near the head and toe of the bar. Scour sensors record area-averaged sediment depths while scour chains measure scour and fill at a point. The average area covered by each scour sensor is 11.1 square meters. Because scour sensors have never been used in a system similar to the San Pedro, one goal of the study was to test their ability to detect changes in sediment load with time in order to determine the extent of scour and fill during monsoonal storms. Because of the predominantly unconsolidated nature of the substrate it was hypothesized that dune bedforms would develop in events less than the 1-year flood. The weak 2002 monsoon season produced only two storms that completely inundated the point bar, both less than the 1-year flood event. The first event, 34 cms, produced net deposition in areas where Johnson grass had been present and was now buried. The scour sensor at the lowest elevation, in a depression which serves as a secondary channel during storm events, recorded scour during the rising limb of the hydrograph followed by pulses we interpret to be the passage of dunes. The second event, although smaller at 28 cms, resulted from rain more than 50 km upstream and had a much longer peak and a slowly declining falling limb. During the second flood, several areas with buried vegetation were scoured back to their original bed elevations. Pulses of sediment passed over the sensor in the secondary channel and the sensor in the vegetated zone. Scour sensor measurements agree with data from scour chains (error +/- 3 cm) and surveys (error +/- 0.6 cm) performed before and after the two storm events, within the range of error of each method. All load sensor data were recorded at five minute intervals. Use of a smaller interval could give more details about the shapes of sediment waves and aid in bedform determination. Results suggest that dune migration is the dominant mechanism for scour and backfill in the point bar setting. Scour sensors, when coupled with surveying and/or scour chains, are a tremendous addition to the geomorphologist's toolbox, allowing unattended real-time measurements of sediment depth with time.

  11. Entrainment of bed sediment by debris flows: results from large-scale experiments

    USGS Publications Warehouse

    Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.

    2011-01-01

    When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.

  12. Using geophysical data to assess scour development

    USGS Publications Warehouse

    Placzek, Gary; Haeni, Peter F.; Trent, Roy; ,

    1993-01-01

    The development of scour holes in the Connecticut River near the new Baldwin Bridge has been documented by comparing geophysical records collected before (1989), during (1990), and after (1992) bridge construction. Eight piers that support the 570-m (meter) span over the Connecticut River were protected by 12-m wide cofferdams during construction. The maximum flow during the study was equivalent to a 3-year recurrence-interval flood, indicating no significant floods. Fathometer data indicate that deep scour holes, 1.5 to 6.4 m deep, developed north of piers 6, 7, and 8. Scour holes, less than 1.3 m-deep, developed south of these piers. The deepest scour hole was north of pier 7, where data show a flat river bottom in 1989, a scour 3.3-m deep in 1990, and a scour hole 6.4-m deep in 1992. Continuous seismic-profiling (CSP) data show that a 1.5 -m deep scour hole north of pier 6 in 1990 was filled in with 1.5-m of material by 1992. No infilling was detected in the scour holes north of piers 7 and 8. Numerous subbottom reflectors from geologic layers, up to 7.6 -m deep were identified in the CSP records.

  13. An Experimental Study to Control Scour at River Confluence

    NASA Astrophysics Data System (ADS)

    Wuppukondur, A.; Chandra, V.

    2015-12-01

    The aim of present study is finding a method to control sediment erosion at river confluence. The confluences are mixture of two different flows and are common occurrences along the river. River confluences are sites of natural scour phenomenon and also influence reservoir sedimentation. The river confluence is associated with a separation zone, stagnation zone and a mixing layer along which the scour hole is observed. The eroded sediment creates potential problems by depositing at unwanted downstream locations such as barrages, weirs, check dams, reservoirs etc. As per the literature, the storage capacity of major reservoirs in India is going to be reduced nearly half of the storage capacity by 2020. Hence, an experimental study has been conducted on mobile bed (d50=0.28 mm) with a confluence angle of 90o for a discharge ratio (Qr) of 0.5, where, Qr is defined as the ratio between lateral flow discharge (Ql) and main flow discharge (Qm). Circular shape pile models of same diameter are arranged in a systematic manner with constant spacing (5 cm, 10 cm and 15 cm) to change the flow pattern for reducing scour at the confluence. Two types of pile models (8 mm ϕ and 12 mm ϕ) are used to conduct the experiments. The experimental results show that maximum scour depth at confluence is reduced by 60%. In addition, the bed profile modifications are also reported. Keywords: Reservoir sedimentation, River confluence, Mobile bed, Scour, Vanes. References:1. Borghei, S. M., and Sahebari, A. J. (2010). "Local Scour at Open-Channel Junctions", Journal of Hydraulic Research, 48(4), 37 - 41. 2. Kothyari, U. C. (1996). "Methods for Estimation Sediment Yield from Catchments", Proc., Int. Sem. On Civil Engg. Practices in Twenty First Century, Roorkee, India, 1071-1086. 3. Mosley, M. P. (1976) "An Experimental Study of Channel Confluences". The Journal of Geology, 84(55), 532-562. 4. Ouyang, H. T. (2009). "Investigation on the dimensions and shape of a submerged vane for sediment management in alluvial channels." Journal of Hydraulic Engineering, 135 (3), 209- 217. 5. Tan, S. K., Yu, G., Lim, S.Y., and Ong, M. C. (2005). "Flow structure and sediment motion around submerged vanes in open channel." Journal of Waterway, Port, Coastal and Ocean Engineering, 131(3), 132-136.

  14. Streambed stability and scour potential at selected bridge sites in Michigan

    USGS Publications Warehouse

    Holtschlag, D.J.; Miller, R.L.

    1998-01-01

    Contraction scour in the main stream channel at a bridge and local scour near piers and abutments can result in bridge failure. Estimates of contraction-scour and local-scour potentials associated with the 100-year flood were computed for 13 bridge sites in Michigan by use of semi-theoretical equations and procedures recommended by the Federal Highway Administration. These potentials were compared with measures of Streambed stability obtained by use of data from 773 historical streamflow measurements, documenting 20,741 individual Streambed soundings between 1959 and 1995. Analysis of these data indicate small, but statistically significant, monotonic trends in Streambed elevation at 10 sites. No consistent patterns in relations between changes in Streambed elevations and streamflow, flow velocity, or flow depth were evident. Also, estimates of contraction-scour potential were not correlated with measures of Streambed stability, and no differences were detected between measures of Streambed stability in the main channel and stability adjacent to piers. Despite the inconsistencies between measures of Streambed stability and scour potential, data from a single, large flood (greater than a 100-year event) provided field evidence that the relation between scour and streamflow is highly nonlinear. This nonlinearity and the limited availability of measurements of extreme flood events may have reduced the utility of the empirical measures for confirming the nonlinear scour-potential equations and procedures. Results of field surveys using ground-penetrating radar and tuned transducers showed limited ability to aid interpretation of historical scour conditions at four bridge sites. Additional research is needed to confirm the applicability of scour-potential equations for hydrogeologic conditions in Michigan.

  15. Delineation of tidal scour through marine geophysical techniques at Sloop Channel and Goose Creek bridges, Jones Beach State Park, Long Island, New York

    USGS Publications Warehouse

    Stumm, Frederick; Chu, Anthony; Reynolds, Richard J.

    2001-01-01

    Inspection of the Goose Creek Bridge in southeastern Nassau County in April 1998 by the New York State Department of Transportation (NYSDOT) indicated a separation of bridge piers from the road bed as a result of pier instability due to apparent seabed scouring by tidal currents. This prompted a cooperative study by the U.S. Geological Survey with the NYSDOT to delineate the extent of tidal scour at this bridge and at the Sloop Channel Bridge, about 0.5 mile to the south, through several marine- geophysical techniques. These techniques included use of a narrow-beam, 200-kilohertz, research-grade fathometer, a global positioning system accurate to within 3 feet, a 3.5 to 7-kilohertz seismic-reflection profiler, and an acoustic Doppler current profiler (ADCP). The ADCP was used only at the Sloop Channel Bridge; the other techniques were used at both bridges.Results indicate extensive tidal scour at both bridges. The fathometer data indicate two major scour holes nearly parallel to the Sloop Channel Bridge—one along the east side, and one along the west side (bridge is oriented north-south). The scour-hole depths are as much as 47 feet below sea level and average more than 40 feet below sea level; these scour holes also appear to have begun to connect beneath the bridge. The deepest scour is at the north end of the bridge beneath the westernmost piers. The east-west symmetry of scour at Sloop Channel Bridge suggests that flood and ebb tides produce extensive scour.The thickness of sediment that has settled within scour holes could not be interpreted from fathometer data alone because fathometer frequencies cannot penetrate beneath the sea-floor surface. The lower frequencies used in seismic-reflection profiling can penetrate the sea floor and underlying sediments, and indicate the amount of infilling of scour holes, the extent of riprap under the bridge, and the assemblages of clay, sand, and silt beneath the sea floor. The seismic- reflection surveys detected 2 to 5 feet of sediment filling the scour holes at both bridges; this indicates that the fathometer surveys were undermeasuring the effective depth of bridge scour by 2 to 5 feet through their inability to penetrate the infilled sediment. Several clay layers with thicknesses of 3 to 5 feet were detected beneath the sea floor at both bridges. Most of the piers beneath Sloop Channel Bridge appear to be surrounded by riprap, but, in several areas the riprap appears to be slumping or sliding into adjacent scour holes. Similar slumping was indicated at the Goose Creek Bridge. Most of the sediment underlying the sea floor at both bridges is interpreted as a fine-grained, cross-bedded sand.ADCP data from Sloop Channel indicate that the constricted flow beneath the bridge increases the horizontal current velocities from 2 to 6 feet per second. Total measured discharge beneath Sloop Channel Bridge was 41,800 cubic feet per second at flood tide and 27,600 cubic feet per second at ebb tide.

  16. Estimating bridge scour in New York from historical U.S. geological survey streamflow measurements

    USGS Publications Warehouse

    Butch, Gerard K.; ,

    1993-01-01

    Historical streamflow measurements by the U.S. Geological Survey an bridge-inspection reports by the New York State Department of Transportation are being used to estimate scour at 31 bridges in New York State. Streamflow measurements that were made before, during, or after high flows are used to estimate scour and to define hydraulic properties associated with floods. Clear-water scour is common at most sites; local scour holes that formed during high flows did not refill after subsequent high flows. The 31 streambeds are armored by gravel; median particle size ranges form 22 to 68 millimeters. Streambed elevations measured after a high flow are assumed to represent the elevations during peak flow. Measurements at several bridges indicate scour by multiple high flows, severe floods, and debris. Three high flows at State Route 23 over the Otselic River in Cortland County produced 6.1 feet of local scour and partly exposed concrete pilings below the footing. Although the recurrence interval of each flow was less than 10 years, a 30-degree angle between the flow and the pier increased the tendency of the streambed to scour. State Route 427 over the Chemung River in Chemung County survived the 1972 flood ( recurrence interval greater than 100 years) because pilings supported the undermined piers. The maximum local scour during the 1972 flood was estimated to be 5.4 feet. A local-scour hole, 2.4 feet deep before the flood, was deepened to 7.8 feet.

  17. Characterization of major lithologic units underlying the lower American River using water-borne continuous resistivity profiling, Sacramento, California, June 2008

    USGS Publications Warehouse

    Ball, Lyndsay B.; Teeple, Andrew

    2013-01-01

    The levee system of the lower American River in Sacramento, California, is situated above a mixed lithology of alluvial deposits that range from clay to gravel. In addition, sand deposits related to hydraulic mining activities underlie the floodplain and are preferentially prone to scour during high-flow events. In contrast, sections of the American River channel have been observed to be scour resistant. In this study, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, explores the resistivity structure of the American River channel to characterize the extent and thickness of lithologic units that may impact the scour potential of the area. Likely lithologic structures are interpreted, but these interpretations are non-unique and cannot be directly related to scour potential. Additional geotechnical data would provide insightful data on the scour potential of certain lithologic units. Additional interpretation of the resistivity data with respect to these results may improve interpretations of lithology and scour potential throughout the American River channel and floodplain. Resistivity data were collected in three profiles along the American River using a water-borne continuous resistivity profiling technique. After processing and modeling these data, inverted resistivity profiles were used to make interpretations about the extent and thickness of possible lithologic units. In general, an intermittent high-resistivity layer likely indicative of sand or gravel deposits extends to a depth of around 30 feet (9 meters) and is underlain by a consistent low-resistivity layer that likely indicates a high-clay content unit that extends below the depth of investigation (60 feet or 18 meters). Immediately upstream of the Watt Avenue Bridge, the high-resistivity layer is absent, and the low-resistivity layer extends to the surface where a scour-resistant layer has been previously observed in the river bed.

  18. Development and application of a modified wireless tracer for disaster prevention

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han; Su, Chih Chiang

    2016-04-01

    Typhoon-induced flooding causes water overflow in a river channel, which results in general and bridge scour and soil erosion, thus leading to bridge failure, debris flow and landslide collapse. Therefore, dynamic measurement technology should be developed to assess scour in channels and landslide as a disaster-prevention measure against bridge failure and debris flow. This paper presents a wireless tracer that enables monitoring general scour in river channels and soil erosion in hillsides. The wireless tracer comprises a wireless high-power radio modem, various electronic components, and a self-designed printed circuit board that are all combined with a 9-V battery pack and an auto switch. The entire device is sealed in a jar by silicon. After it was modified, the wireless tracer underwent the following tests for practical applications: power continuation and durability, water penetration, and signal transmission during floating. A regression correlation between the wireless tracer's transmission signal and distance was also established. This device can be embedded at any location where scouring is monitored, and, in contrast to its counterparts that detect scour depth by identifying and analyzing received signals, it enables real-time observation of the scouring process. In summary, the wireless tracer developed in this study provides a dynamic technology for real-time monitoring of scouring (or erosion) and forecasting of landslide hazards. Keywords: wireless tracer; scour; real-time monitoring; landslide hazard.

  19. Geological effects and implications of the 2010 tsunami along the central coast of Chile

    NASA Astrophysics Data System (ADS)

    Morton, Robert A.; Gelfenbaum, Guy; Buckley, Mark L.; Richmond, Bruce M.

    2011-12-01

    Geological effects of the 2010 Chilean tsunami were quantified at five near-field sites along a 200 km segment of coast located between the two zones of predominant fault slip. Field measurements, including topography, flow depths, flow directions, scour depths, and deposit thicknesses, provide insights into the processes and morphological changes associated with tsunami inundation and return flow. The superposition of downed trees recorded multiple strong onshore and alongshore flows that arrived at different times and from different directions. The most likely explanation for the diverse directions and timing of coastal inundation combines (1) variable fault rupture and asymmetrical slip displacement of the seafloor away from the epicenter with (2) resonant amplification of coastal edge waves. Other possible contributing factors include local interaction of incoming flow and return flow and delayed wave reflection by the southern coast of Peru. Coastal embayments amplified the maximum inundation distances at two sites (2.4 and 2.6 km, respectively). Tsunami vertical erosion included scour and planation of the land surface, inundation scour around the bases of trees, and channel incision from return flow. Sheets and wedges of sand and gravel were deposited at all of the sites. Locally derived boulders up to 1 m in diameter were transported as much as 400 m inland and deposited as fields of dispersed clasts. The presence of lobate bedforms at one site indicates that at least some of the late-stage sediment transport was as bed load and not as suspended load. Most of the tsunami deposits were less than 25 cm thick. Exceptions were thick deposits near open-ocean river mouths where sediment supply was abundant. Human alterations of the land surface at most of the sites provided opportunities to examine some tsunami effects that otherwise would not have been possible, including flow histories, boulder dispersion, and vegetation controls on deposit thickness.

  20. Geological effects and implications of the 2010 tsunami along the central coast of Chile

    USGS Publications Warehouse

    Morton, R.A.; Gelfenbaum, G.; Buckley, M.L.; Richmond, B.M.

    2011-01-01

    Geological effects of the 2010 Chilean tsunami were quantified at five near-field sites along a 200. km segment of coast located between the two zones of predominant fault slip. Field measurements, including topography, flow depths, flow directions, scour depths, and deposit thicknesses, provide insights into the processes and morphological changes associated with tsunami inundation and return flow. The superposition of downed trees recorded multiple strong onshore and alongshore flows that arrived at different times and from different directions. The most likely explanation for the diverse directions and timing of coastal inundation combines (1) variable fault rupture and asymmetrical slip displacement of the seafloor away from the epicenter with (2) resonant amplification of coastal edge waves. Other possible contributing factors include local interaction of incoming flow and return flow and delayed wave reflection by the southern coast of Peru. Coastal embayments amplified the maximum inundation distances at two sites (2.4 and 2.6. km, respectively). Tsunami vertical erosion included scour and planation of the land surface, inundation scour around the bases of trees, and channel incision from return flow. Sheets and wedges of sand and gravel were deposited at all of the sites. Locally derived boulders up to 1. m in diameter were transported as much as 400. m inland and deposited as fields of dispersed clasts. The presence of lobate bedforms at one site indicates that at least some of the late-stage sediment transport was as bed load and not as suspended load. Most of the tsunami deposits were less than 25. cm thick. Exceptions were thick deposits near open-ocean river mouths where sediment supply was abundant. Human alterations of the land surface at most of the sites provided opportunities to examine some tsunami effects that otherwise would not have been possible, including flow histories, boulder dispersion, and vegetation controls on deposit thickness. ?? 2011.

  1. Geological impacts and implications of the 2010 tsunami along the central coast of Chile

    USGS Publications Warehouse

    Morton, Robert A.; Gelfenbaum, Guy; Buckley, Mark L.; Richmond, Bruce M.

    2011-01-01

    Geological effects of the 2010 Chilean tsunami were quantified at five near-field sites along a 200 km segment of coast located between the two zones of predominant fault slip. Field measurements, including topography, flow depths, flow directions, scour depths, and deposit thicknesses, provide insights into the processes and morphological changes associated with tsunami inundation and return flow. The superposition of downed trees recorded multiple strong onshore and alongshore flows that arrived at different times and from different directions. The most likely explanation for the diverse directions and timing of coastal inundation combines (1) variable fault rupture and asymmetrical slip displacement of the seafloor away from the epicenter with (2) resonant amplification of coastal edge waves. Other possible contributing factors include local interaction of incoming flow and return flow and delayed wave reflection by the southern coast of Peru. Coastal embayments amplified the maximum inundation distances at two sites (2.4 and 2.6 km, respectively). Tsunami vertical erosion included scour and planation of the land surface, inundation scour around the bases of trees, and channel incision from return flow. Sheets and wedges of sand and gravel were deposited at all of the sites. Locally derived boulders up to 1 m in diameter were transported as much as 400 m inland and deposited as fields of dispersed clasts. The presence of lobate bedforms at one site indicates that at least some of the late-stage sediment transport was as bed load and not as suspended load. Most of the tsunami deposits were less than 25 cm thick. Exceptions were thick deposits near open-ocean river mouths where sediment supply was abundant. Human alterations of the land surface at most of the sites provided opportunities to examine some tsunami effects that otherwise would not have been possible, including flow histories, boulder dispersion, and vegetation controls on deposit thickness.

  2. Ground-penetrating radar: A tool for monitoring bridge scour

    USGS Publications Warehouse

    Anderson, N.L.; Ismael, A.M.; Thitimakorn, T.

    2007-01-01

    Ground-penetrating radar (GPR) data were acquired across shallow streams and/or drainage ditches at 10 bridge sites in Missouri by maneuvering the antennae across the surface of the water and riverbank from the bridge deck, manually or by boat. The acquired two-dimensional and three-dimensional data sets accurately image the channel bottom, demonstrating that the GPR tool can be used to estimate and/or monitor water depths in shallow fluvial environments. The study results demonstrate that the GPR tool is a safe and effective tool for measuring and/or monitoring scour in proximity to bridges. The technique can be used to safely monitor scour at assigned time intervals during peak flood stages, thereby enabling owners to take preventative action prior to potential failure. The GPR tool can also be used to investigate depositional and erosional patterns over time, thereby elucidating these processes on a local scale. In certain instances, in-filled scour features can also be imaged and mapped. This information may be critically important to those engaged in bridge design. GPR has advantages over other tools commonly employed for monitoring bridge scour (reflection seismic profiling, echo sounding, and electrical conductivity probing). The tool doesn't need to be coupled to the water, can be moved rapidly across (or above) the surface of a stream, and provides an accurate depth-structure model of the channel bottom and subchannel bottom sediments. The GPR profiles can be extended across emerged sand bars or onto the shore.

  3. Ability to protect oil/gas pipelines and subsea installations from icebergs in the Hibernia area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, F.V.

    1981-01-01

    Mobil Oil Canada has examined 2 pipeline routes from Hibernia to the Newfoundland coast. The Northern Route is from Hibernia to the Bay of Bulls, a distance of ca 200 miles. The Southern Route is from Hibernia to Trepassey Bay, a distance of ca 225 miles. Both these routes go through the Avalon channel which has water depths of 200 m, or over 600 ft, with very steep slopes on both sides of the channel. To protect pipelines from icebergs and iceberg scour, there is really only one obvious solution and that is to bury the pipeline several feet belowmore » the deepest known iceberg scour depth.« less

  4. Local sediment scour model tests for the Woodrow Wilson Bridge piers

    USGS Publications Warehouse

    Sheppard, D.M.; Jones, J.S.; Odeh, M.; Glasser, T.

    2004-01-01

    The Woodrow Wilson Bridge on I-495 over the Potomac River in Prince Georges County, Maryland is being replaced. Physical local scour model studies for the proposed piers for the new bridge were performed in order to help establish design scour depths. Tests were conducted in two different flumes, one in the USGS-BRD Conte Research Center in Turners Falls, Massachusetts and one in the FHWA Turner Fairbanks Laboratory in McLean, Virginia. Due to space limitations in this publication only the tests conducted in the USGS flume are presented in this paper. Two different pier designs were tested. One of the piers was also tested with two different diameter dolphin systems. Copyright ASCE 2004.

  5. Monitoring of levees, bridges, pipelines, and other critical infrastructure during the 2011 flooding in the Mississippi River Basin: Chapter J in 2011 floods of the central United States

    USGS Publications Warehouse

    Densmore, Brenda K.; Burton, Bethany L.; Dietsch, Benjamin J.; Cannia, James C.; Huizinga, Richard J.

    2014-01-01

    During the 2011 Mississippi River Basin flood, the U.S. Geological Survey evaluated aspects of critical river infrastructure at the request of and in support of local, State, and Federal Agencies. Geotechnical and hydrographic data collected by the U.S. Geological Survey at numerous locations were able to provide needed information about 2011 flood effects to those managing the critical infrastructure. These data were collected and processed in a short time frame to provide managers the ability to make a timely evaluation of the safety of the infrastructure and, when needed, to take action to secure and protect critical infrastructure. Critical infrastructure surveyed by the U.S. Geological Survey included levees, bridges, pipeline crossings, power plant intakes and outlets, and an electrical transmission tower. Capacitively coupled resistivity data collected along the flood-protection levees surrounding the Omaha Public Power District Nebraska City power plant (Missouri River Levee Unit R573), mapped the near-subsurface electrical properties of the levee and the materials immediately below it. The near-subsurface maps provided a better understanding of the levee construction and the nature of the lithology beneath the levee. Comparison of the capacitively coupled resistivity surveys and soil borings indicated that low-resistivity value material composing the levee generally is associated with lean clay and silt to about 2 to 4 meters below the surface, overlying a more resistive layer associated with sand deposits. In general, the resistivity structure becomes more resistive to the south and the southern survey sections correlate well with the borehole data that indicate thinner clay and silt at the surface and thicker sand sequences at depth in these sections. With the resistivity data Omaha Public Power District could focus monitoring efforts on areas with higher resistivity values (coarser-grained deposits or more loosely compacted section), which typically are more prone to erosion or scour. Data collected from multibeam echosounder hydrographic surveys at selected bridges aided State agencies in evaluating the structural integrity of the bridges during the flood, by assessing the amount of scour present around piers and abutments. Hydrographic surveys of the riverbed detected scour depths ranging from zero (no scour) to approximately 5.8 meters in some areas adjacent to North Dakota bridge piers, zero to approximately 6 meters near bridge piers in Nebraska, and zero to approximately 10.4 meters near bridge piers in Missouri. Substructural support elements of some bridge piers in North Dakota, Nebraska, and Missouri that usually are buried were exposed to moving water and sediment. At five Missouri bridge piers the depth of scour left less than 1.8 meters of bed material between the bottom of the scour hole and bedrock. State agencies used this information along with bridge design and construction information to determine if reported scour depths would have a substantial effect on the stability of the structure. Multibeam echosounder hydrographic surveys of the riverbed near pipeline crossings did not detect exposed pipelines. However, analysis of the USGS survey data by pipeline companies aided in their evaluation of pipeline safety and led one company to further investigate the safety of their line and assisted another company in getting one offline pipeline back into operation. Multibeam echosounder hydrographic surveys of the banks, riverbed, and underwater infrastructure at Omaha Public Power District power plants documented the bed and scour conditions. These datasets were used by Omaha Public Power District to evaluate the effects that the flood had on operation, specifically to evaluate if scour during the peak of the flood or sediment deposition during the flood recession would affect the water intake structures. Hydrographic surveys at an Omaha Public Power District electrical transmission tower documented scour so that they could evaluate the structural integrity of the tower as well as have the information needed to make proper repairs after flood waters receded.

  6. Bed erosion control at 60 degree river confluence using vanes

    NASA Astrophysics Data System (ADS)

    Wuppukondur, Ananth; Chandra, Venu

    2017-04-01

    Confluences are common occurrences along natural rivers. Hydrodynamics at the confluence is complex due to merging of main and lateral flows with different characteristics. Bed erosion occurs at the confluence due to turbulence and also secondary circulation induced by centrifugal action of the lateral flow. The eroded sediment poses various problems in the river ecosystem including river bank failure. Reservoirs are majorly affected due to sediment deposition which reduces storage capacity. The bed erosion also endangers stability of pipeline crossings and bridge piers. The aim of this experimental study is to check the performance of vanes in controlling bed erosion at the confluence. Experiments are performed in a 600 confluence mobile bed model with a non-uniform sediment of mean particle size d50 = 0.28mm. Discharge ratio (q=ratio of lateral flow discharge to main flow discharge) is maintained as 0.5 and 0.75 with a constant average main flow depth (h) of 5cm. Vanes of width 0.3h (1.5cm) and thickness of 1 mm are placed along the mixing layer at an angle of 150, 300 and 600(with respect to main flow) to perform the experiments. Also, two different spacing of 2h and 3h (10cm and 15cm) between the vanes are used for conducting the experiments. A digital point gauge with an accuracy of ±0.1mm is used to measure bed levels and flow depths at the confluence. An Acoustic Doppler Velocitimeter (ADV) with a frequency of 25Hz and accuracy of ±1mm/s is used to measure flow velocities. Maximum scour depth ratio Rmax, which is ratio between maximum scour depth (Ds) and flow depth (h), is used to present the experimental results.From the experiments without vanes, it is observed that the velocities are increasing along the mixing layer and Rmax=0.82 and 1.06, for q=0.5 and 0.75, respectively. The velocities reduce with vanes since roughness increases along the mixing layer. For q=0.5 and 0.75, Rmax reduces to 0.62 and 0.7 with vanes at 2h spacing, respectively. Similarly, for the same discharge ratios (q), Rmax reduces to 0.64 and 0.72 with 3h spacing between the vanes, respectively. Obstruction to the flow increases with an increase of vane angle which leads to decrease of bed erosion. Also, the bed erosion increases with an increase of spacing between the vanes. Hence, vanes placed at 600 vane angle and 2h spacing exhibit better performance.

  7. The Morphology and Sedimentology of Fluvial Megascours

    NASA Astrophysics Data System (ADS)

    Bull, J. M.; Vardy, M. E.; Sambrook Smith, G.; Best, J.; Dixon, S. J.; Goodbred, S. L., Jr.

    2015-12-01

    Scour zones in the World's largest rivers, or so-called "megascours", are extensive and dynamic features that are currently poorly understood in terms of their morphology and kinematics. Such scours can erode c. 50-60 metres below the water surface, extend laterally for 100s metres to kilometres, and may migrate kilometres in a single year. Understanding the evolution of such scour zones has important implications for improved flood and bank erosion prediction, better infrastructure planning (e.g. bridges, embankments), and differentiating between autocyclic and allocyclic erosion in the geological record (e.g. sequence stratigraphic applications). Here, we present results from two field seasons using geophysical techniques (high-resolution multibeam bathymetry and seismic reflection data using Chirp and Boomer sources) to study six scour zones in the Ganges-Jamuna-Padma-Meghna river system of Bangladesh. These scours include some of the World's largest confluences, as well as smaller distributaries, and those with varying levels of tidal influence. Seismic data from repeat surveys permit an accurate characterization of short-term scour evolution and associated deposits across two monsoonal flood peaks. Meanwhile, the bathymetric data reveals widespread deep scours (30-40 m) even in small, downstream distributary tidal channels, illustrating that megascours are present all the way to the subaerial delta fringe. Bathymetric analysis also shows a complex relationship between these scours and bedform distribution and orientation. This suggests the need for a new scaling for sand dune dimensions at such sites, and the need for substantial revisions to current ideas on the use of dune-scale cross-stratification to infer palaeoflow depths in the ancient sedimentary record.

  8. Sediment erosion by Görtler vortices: the scour-hole problem

    NASA Astrophysics Data System (ADS)

    Hopfinger, E. J.; Kurniawan, A.; Graf, W. H.; Lemmin, U.

    2004-12-01

    Experimental results on sediment erosion (scour) by a plane turbulent wall jet, issuing from a sluice gate, are presented which show clearly it seems for the first time that the turbulent wall layer is destabilized by the concave curvature of the water/sediment interface. The streamwise Görtler vortices which emerge create sediment streaks or longitudinal sediment ridges. The analysis of the results in terms of Görtler instability of the wall layer indicates that the strength of these curvature-excited streamwise vortices is such that the sediment transport is primarily due to turbulence created by these vortices. Their contribution to the wall shear stress is taken to be of the same form as the normal turbulent wall shear stress. For this reason, the model developed by Hogg et al. (J. Fluid Mech. Vol. 338, 1997, p. 317) remains valid; only the numerical coefficients are affected. The logarithmic dependency of the time evolution of the scour-hole depth predicted by this model is shown to be in good agreement with experiments. New scaling laws for the quasi-steady state depth and the associated time, inspired by the Hogg et al. (1997) model are proposed. Furthermore, it is emphasized that at least two scouring regimes must be distinguished: a short-time regime after which a quasi-steady state is reached, followed by a long-time regime, leading to an asymptotic state of virtually no sediment transport.

  9. Evolution and Reduction of Scour around Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    McGovern, David; Ilic, Suzana

    2010-05-01

    Evolution and Reduction of Scour around Offshore Wind Turbines In response to growing socio-economic and environmental demands, electricity generation through offshore wind turbine farms is a fast growing sector of the renewable energy market. Considerable numbers of offshore wind farms exist in the shallow continental shelf seas of the North-West Europe, with many more in the planning stages. Wind energy is harnessed by large rotating blades that drive an electricity generating turbine placed on top of a long cylindrical monopile that are driven into the sea-bed, well into the bed rock below the sediment. Offshore wind turbines are popular due to consistently higher wind speeds and lower visual impact than their onshore counter parts, but their construction and maintenance is not without its difficulties. The alteration of flow by the presence of the wind turbine monopile results in changes in sedimentary processes and morphology at its base. The increase in flow velocity and turbulence causes an amplification of bed shear stress and this can result in the creation of a large scour hole at the monopile base. Such a scour hole can adversely affect the structural integrity and hence longevity of the monopile. Changes to the sea bed caused by this may also locally affect the benthic habitat. We conducted an extensive series of rigid and mobile bed experiments to examine the process of scour under tidal currents. We also test the effectiveness of a flow-altering collared monopile in reducing scour. Firstly, we used Particle Image Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) to visualise and analyse the flow and turbulence properties in the local flow around the monopile and collared monopile over a smooth rigid bed under tidal flow. The measured flow, turbulence and shear stress properties are related to mobile bed tests where a Seatek 5 MHz Ultrasonic Ranging system is used to identify the evolution of scour under reversing tidal currents. The tidal evolution of the scour hole around the monopile is compared with that under unidirectional currents and that around the collared monopile. Results show that the evolution of scour under tidal currents is quite different than that of a unidirectional current and that the scour hole shape is also more symmetrical than the scour hole under a unidirectional current, which is quite asymmetrical. Results also indicate that the collared monopile design is effective in reducing the depth of scour that occurs at its base. This data will also be used for a validation of the numerical model of scour processes around the pile. Key words: Monopile, Scour, Tidal Flow, Scour Reduction

  10. Ensonifying Change: Repeat Ultra-High-Resolution Surveys in Monterey Canyon before and after Passage of a Turbidity Current

    NASA Astrophysics Data System (ADS)

    Wolfson-Schwehr, M.; Paull, C. K.; Caress, D. W.; Carvajal, C.; Thomas, H. J.; Maier, K. L.; Parsons, D. R.; Simmons, S.

    2017-12-01

    Turbidity currents are one of the primary means of global sediment transport, yet our understanding of how they interact with the seafloor is hindered by the limited number of direct measurements. The Coordinated Canyon Experiment (CCE; October 2015 - April 2017) has made great strides in addressing this issue by providing direct measurements of turbidity currents and detailed observations of the resulting seafloor change in Monterey Canyon, offshore California. Here we focus on a section of the canyon at 1850-m water depth, where a Seafloor Instrument Node (SIN) recorded passage of three turbidity currents using a range of sensors, including three upward-looking acoustic Doppler current profilers. The fastest event at this site had a maximum velocity of 2.8 m/s, and dragged the 430-Kg SIN 26 m down-canyon. Repeat mapping surveys were conducted four times during the CCE, utilizing a prototype ultra-high-resolution mapping system mounted on the ROV Doc Ricketts. The survey platform hosts a 400-kHz Reson 7125 multibeam sonar, a 3DatDepth SL1 subsea LiDAR, two stereo color cameras, and a Kearfott SeaDevil INS. At a survey altitude of 2.5 m above the bed, the system provides remarkable 5-cm resolution multibeam bathymetry, 1-cm resolution LiDAR bathymetry, and 2-mm resolution photomosaics, and can cover a 100-m2 survey area. Surveys of the SIN site prior to and after the fastest event show areas of net deposition/erosion of 60 cm and 20 cm, respectively. Net deposition occurred in the topographic lows between bedforms, while erosion was focused on the bedform crests. At the end of the experiment, transects of sediment cores were taken by ROV within areas of net deposition. The cores show a variety of sedimentary facies, including muds, sands, gravel, and organic rich layers. Gravel layers have sharp erosive bases. The repeat surveys document the dynamic nature of flute-like scours as the flow events erode and deposit material along the canyon floor, as well as the evolution of scours between events. While the scours may represent a small component of sediment transport within the canyon, their multi-generational structure indicates a complex interaction of scour processes along the canyon bed. These data provide a new means to understanding the detailed changes in canyon floor morphology and sedimentology at the event scale.

  11. Ultimate pier and contraction scour prediction in cohesive soils at selected bridges in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Over, Thomas M.; Domanski, Marian M.

    2013-01-01

    The Scour Rate In COhesive Soils-Erosion Function Apparatus (SRICOS-EFA) method includes an ultimate scour prediction that is the equilibrium maximum pier and contraction scour of cohesive soils over time. The purpose of this report is to present the results of testing the ultimate pier and contraction scour methods for cohesive soils on 30 bridge sites in Illinois. Comparison of the ultimate cohesive and noncohesive methods, along with the Illinois Department of Transportation (IDOT) cohesive soil reduction-factor method and measured scour are presented. Also, results of the comparison of historic IDOT laboratory and field values of unconfined compressive strength of soils (Qu) are presented. The unconfined compressive strength is used in both ultimate cohesive and reduction-factor methods, and knowing how the values from field methods compare to the laboratory methods is critical to the informed application of the methods. On average, the non-cohesive method results predict the highest amount of scour, followed by the reduction-factor method results; and the ultimate cohesive method results predict the lowest amount of scour. The 100-year scour predicted for the ultimate cohesive, noncohesive, and reduction-factor methods for each bridge site and soil are always larger than observed scour in this study, except 12% of predicted values that are all within 0.4 ft of the observed scour. The ultimate cohesive scour prediction is smaller than the non-cohesive scour prediction method for 78% of bridge sites and soils. Seventy-six percent of the ultimate cohesive predictions show a 45% or greater reduction from the non-cohesive predictions that are over 10 ft. Comparing the ultimate cohesive and reduction-factor 100-year scour predictions methods for each bridge site and soil, the scour predicted by the ultimate cohesive scour prediction method is less than the reduction-factor 100-year scour prediction method for 51% of bridge sites and soils. Critical shear stress remains a needed parameter in the ultimate scour prediction for cohesive soils. The unconfined soil compressive strength measured by IDOT in the laboratory was found to provide a good prediction of critical shear stress, as measured by using the erosion function apparatus in a previous study. Because laboratory Qu analyses are time-consuming and expensive, the ability of field-measured Rimac data to estimate unconfined soil strength in the critical shear–soil strength relation was tested. A regression analysis was completed using a historic IDOT dataset containing 366 data pairs of laboratory Qu and field Rimac measurements from common sites with cohesive soils. The resulting equations provide a point prediction of Qu, given any Rimac value with the 90% confidence interval. The prediction equations are not significantly different from the identity Qu = Rimac. The alternative predictions of ultimate cohesive scour presented in this study assume Qu will be estimated using Rimac measurements that include computed uncertainty. In particular, the ultimate cohesive predicted scour is greater than observed scour for the entire 90% confidence interval range for predicting Qu at the bridges and soils used in this study, with the exception of the six predicted values that are all within 0.6 ft of the observed scour.

  12. Recent applications of acoustic Doppler current profilers

    USGS Publications Warehouse

    Oberg, K.A.; Mueller, David S.

    1994-01-01

    A Broadband acoustic Doppler current profiler (BB-ADCP) is a new instrument being used by the U.S. Geological Survey (USGS) to measure stream discharge and velocities, and bathymetry. During the 1993 Mississippi River flood, more than 160 high-flow BB-ADCP measurements were made by the USGS at eight locations between Quincy and Cairo, Ill., from July 19 to August 20, 1993. A maximum discharge of 31,400 m3/s was measured at St. Louis, Mo., on August 2, 1993. A BB-ADCP also has been used to measure leakage through three control structures near Chicago, Ill. These measurements are unusual in that the average velocity for the measured section was as low as 0.03 m/s. BB-ADCP's are also used in support of studies of scour at bridges. During the recent Mississippi River flood, BB-ADCP's were used to measure water velocities and bathymetry upstream from, next to, and downstream from bridge piers at several bridges over the Mississippi River. Bathymetry data were collected by merging location data from Global Positioning System (GPS) receivers, laser tracking systems, and depths measured by the BB-ADCP. These techniques for collecting bathymetry data were used for documenting the channel formation downstream from the Miller City levee break and scour near two bridges on the Mississippi River.

  13. Coupled large-eddy simulation and morphodynamics of a large-scale river under extreme flood conditions

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Sotiropoulos, Fotis; Stony Brook University Team

    2016-11-01

    We present a coupled flow and morphodynamic simulations of extreme flooding in 3 km long and 300 m wide reach of the Mississippi River in Minnesota, which includes three islands and hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the VFS-Geophysics model to investigate the flow and bed evolution of the river during a 500 year flood. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. The geometrical data of the river, islands and structures are obtained from LiDAR, sub-aqueous sonar and in-situ surveying to construct a digital map of the river bathymetry. Our simulation results for the bed evolution of the river reveal complex sediment dynamics near the hydraulic structures. The numerically captured scour depth near some of the structures reach a maximum of about 10 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems. This work was funded by a Grant from Minnesota Dept. of Transportation.

  14. High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis

    2016-12-01

    We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.

  15. Coupling Aeolian Stratigraphic Architecture to Paleo-Boundary Conditions: The Scour-Fill Dominated Jurassic Page Sandstone

    NASA Astrophysics Data System (ADS)

    Cardenas, B. T.; Kocurek, G.; Mohrig, D. C.; Swanson, T.

    2017-12-01

    The stratigraphic architecture of aeolian sandstones is thought to encode signals originating from both autogenic dune behavior and allogenic boundary conditions within which the dune field evolves. Mapping of outcrop-scale bounding surfaces and sets of cross-strata between these surfaces for the Jurassic Page Sandstone near Page, AZ, USA, demonstrates that dune autogenic behavior manifested in variable dune scour depth, whereas the dominant boundary conditions were antecedent topography and water-table elevation. At the study area, the Page Sandstone is 60 m thick and is separated from the underlying Navajo Sandstone by the J-2 regional unconformity, which shows meters of relief. Filling J-2 depressions are thin, climbing sets of cross-strata. In contrast, the overlying Page consists of packages of one to a few, meter-scale sets of cross-strata between the outcrop-scale bounding surfaces. These surfaces, marked by polygonal fractures and local overlying sabkha deposits, are regional in scale and correlated to high stands of the adjacent Carmel sea. Over the km-scale outcrop, the surfaces show erosional relief and packages of cross-strata are locally truncated. Notably absent within these cross-strata packages are early dune-field accumulations, interdune deposits, and apparent dune-climbing. These strata are interpreted to represent a scour-fill architecture created by migrating large dunes within a mature dry aeolian sand sea, in which early phases of dune-field construction have been cannibalized and dune fill of the deepest scours is recorded. At low angles of climb, set thickness is dominated by the component of scour-depth variation over the component resulting from the angle of climb. After filling of J-2 depressions, the Page consists of scour-fill accumulations formed during low stands. Carmel transgressions limited sediment availability, causing deflation to the water table and development of the regional bounding surfaces. Each subsequent fall of the water table with Carmel regressions renewed sediment availability, including local breaching of the resistant surfaces and cannibalization of Page accumulations. The Page record exists because of preservation associated with Carmel transgressions and subsidence, without which the Page would be represented by an erosional surface.

  16. 23 CFR 650.313 - Inspection procedures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... in § 650.309, at the bridge at all times during each initial, routine, in-depth, fracture critical... inspection, and bridges that are scour critical. (1) Bridges with fracture critical members. In the...

  17. 23 CFR 650.313 - Inspection procedures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... in § 650.309, at the bridge at all times during each initial, routine, in-depth, fracture critical... inspection, and bridges that are scour critical. (1) Bridges with fracture critical members. In the...

  18. 23 CFR 650.313 - Inspection procedures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... in § 650.309, at the bridge at all times during each initial, routine, in-depth, fracture critical... inspection, and bridges that are scour critical. (1) Bridges with fracture critical members. In the...

  19. 23 CFR 650.313 - Inspection procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... in § 650.309, at the bridge at all times during each initial, routine, in-depth, fracture critical... inspection, and bridges that are scour critical. (1) Bridges with fracture critical members. In the...

  20. The morphodynamics and sedimentology of large river confluences

    NASA Astrophysics Data System (ADS)

    Nicholas, Andrew; Sambrook Smith, Greg; Best, James; Bull, Jon; Dixon, Simon; Goodbred, Steven; Sarker, Mamin; Vardy, Mark

    2017-04-01

    Confluences are key locations within large river networks, yet surprisingly little is known about how they migrate and evolve through time. Moreover, because confluence sites are associated with scour pools that are typically several times the mean channel depth, the deposits associated with such scours should have a high potential for preservation within the rock record. However, paradoxically, such scours are rarely observed, and the sedimentological characteristics of such deposits are poorly understood. This study reports results from a physically-based morphodynamic model, which is applied to simulate the evolution and resulting alluvial architecture associated with large river junctions. Boundary conditions within the model simulation are defined to approximate the junction of the Ganges and Jamuna rivers, in Bangladesh. Model results are supplemented by geophysical datasets collected during boat-based surveys at this junction. Simulated deposit characteristics and geophysical datasets are compared with three existing and contrasting conceptual models that have been proposed to represent the sedimentary architecture of confluence scours. Results illustrate that existing conceptual models may be overly simplistic, although elements of each of the three conceptual models are evident in the deposits generated by the numerical simulation. The latter are characterised by several distinct styles of sedimentary fill, which can be linked to particular morphodynamic behaviours. However, the preserved characteristics of simulated confluence deposits vary substantial according to the degree of reworking by channel migration. This may go some way towards explaining the confluence scour paradox; while abundant large scours might be expected in the rock record, they are rarely reported.

  1. Formative flow in bedrock canyons

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Kwoll, E.; Rennie, C. D.; Church, M. A.

    2017-12-01

    In alluvial channels, it is widely accepted that river channel configuration is set by a formative flow that represents a balance between the magnitude and frequency of flood flows. The formative flow is often considered to be one that is just capable of filling a river channel to the top of its banks. Flows much above this formative flow are thought to cause substantial sediment transport and rearrange the channel morphology to accommodate the larger flow. This idea has recently been extended to semi-alluvial channels where it has been shown that even with bedrock exposed, the flows rarely exceed that required to entrain the local sediment cover. What constitutes a formative flow in a bedrock canyon is not clear. By definition, canyons have rock walls and are typically incised vertically, removing the possibility of the walls being overtopped, as can occur in an alluvial channel at high flows. Canyons are laterally constrained, have deep scour pools and often have width to maximum depth ratios approaching 1, an order of magnitude lower than alluvial channels. In many canyons, there are a sequence of irregularly spaced scour pools. The bed may have intermittent or seasonal sediment cover, but during flood flows the sediment bed is entrained leaving a bare bedrock channel. It has been suggested that canyons cut into weak, well-jointed rock may adjust their morphology to the threshold for block plucking because the rock bed is labile during exceptionally large magnitude flows. However, this hypothesis does not apply to canyons cut into massive crystalline rock where abrasion is the dominant erosion process. Here, we argue that bedrock canyon morphology is adjusted to a characteristic flow structure developed in bedrock canyons. We show that the deeply scoured canyon floor is adjusted to a velocity inversion that is present at low flows, but gets stronger at high flows. The effect is to increase boundary shear stresses along the scour pool that forms in constricted bedrock canyons, thereby increasing abrasion rates and the potential for block plucking from massive crystalline rock beds.

  2. Technical improvements for the dynamic measurement of general scour and landslides

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han; Su, Chih Chiang

    2017-04-01

    Disasters occurring near riverbeds, such as landslides, earth slides, debris flow, and general scour, are easily caused by flooding from typhoons. The occurrence of each type of disaster involves a process, so if a disaster event can be monitored in real time, hazards can be predicted, thereby enabling early warnings that could reduce the degree of loss engendered by the disaster. The study of technical improvements for the dynamic measurement of general scour and landslides could help to release these early warnings. In this study, improved wireless tracers were set up on site to ensure the feasibility of the improved measurement technology. A wireless tracer signal transmission system was simultaneously set up to avoid danger to surveyors caused by them having to be on site to take measurements. In order to understand the real-time dynamic riverbed scouring situation, after the flow path of the river was confirmed, the sites for riverbed scouring observation were established at the P30 pier of the Dajia River Bridge of National Highway No. 3, and approximately 100 m both upstream and downstream (for a total of three sites). A rainy event that caused riverbed erosion occurred in May 2015, and subsequently, Typhoons Soudelor, Goni, and Dujuan caused further erosion in the observed area. The results of the observations of several flood events revealed that wireless tracers can reflect the change in riverbed scour depth caused by typhoons and flooding in real time. The wireless tracer technique can be applied to real-time dynamic scouring observation of rivers, and these improvements in measurement technology could be helpful in preventing landslides in the future.

  3. Bathymetric and velocimetric surveys at highway bridges crossing the Missouri River in and into Missouri during summer flooding, July-August 2011

    USGS Publications Warehouse

    Huizinga, Richard J.

    2012-01-01

    Bathymetric and velocimetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Kansas and Missouri Departments of Transportation, in the vicinity of 36 bridges at 27 highway crossings of the Missouri River between Brownville, Nebraska and St. Louis, Missouri, from July 13 through August 3, 2011, during a summer flood. A multibeam echo sounder mapping system was used to obtain channel-bed elevations for river reaches ranging from 1,350 to 1,860 feet and extending across the active channel of the Missouri River. These bathymetric scans provide a "snapshot" of the channel conditions at the time of the surveys and provide characteristics of scour holes that may be useful in the development of predictive guidelines or equations for scour holes. These data also may be used by the Kansas and Missouri Departments of Transportation to assess the bridges for stability and integrity issues with respect to bridge scour during floods. Bathymetric data were collected around every pier that was in water, except those at the edge of water, in extremely shallow water, or surrounded by debris rafts. Scour holes were present at most piers for which bathymetry could be obtained, except at piers on channel banks, those near or embedded in lateral or longitudinal spur dikes, and those on exposed bedrock outcrops. Scour holes observed at the surveyed bridges were examined with respect to depth and shape. Although exposure of parts of foundational support elements was observed at several piers, at most sites the exposure likely can be considered minimal compared to the overall substructure that remains buried in bed material; however, there were several notable exceptions where the bed material thickness between the bottom of the scour hole and bedrock was less than 6 feet. Such substantial exposure of usually buried substructural elements may warrant special observation in future flood events. Previous bathymetric surveys had been done at several of the sites, and comparisons between bathymetric surfaces from the previous surveys and those of this study indicate substantial variability in the response of the channel bed to the 2011 summer flood conditions. At sites in Kansas City, there was no consistent deepening of the channel or increase in the size of scour holes, despite substantially more discharge and a higher water-surface elevation in the 2011 surveys, which implies the high-flow conditions during the 2011 surveys created a similar scour scenario to the previous surveys. At Jefferson City and the St. Louis sites, there was a consistent deepening of the channel, and a slight to substantial increase in the depth of scour holes in the 2011 surveys compared to previous surveys, although the effects of the higher flow appeared to be mitigated by the shape and alignment of the piers at most sites in St. Louis. Construction activities related to a new bridge at the Atchison, Kansas, site likely have contributed to the substantial additional scour observed there in a previous survey during the 2010 flooding, and the subsequent aggradation of the channel bed observed in the 2011 survey. Pier size, nose shape, and alignment to flow also had a profound effect on the size of the scour hole observed for a given pier.

  4. Electromagnetic sensors for monitoring of scour and deposition processes at bridges and offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Michalis, Panagiotis; Tarantino, Alessandro; Judd, Martin

    2014-05-01

    Recent increases in precipitation have resulted in severe and frequent flooding incidents. This has put hydraulic structures at high risk of failure due to scour, with severe consequences to public safety and significant economic losses. Foundation scour is the leading cause of bridge failures and one of the main climate change impacts to highway and railway infrastructure. Scour action is also being considered as a major risk for offshore wind farm developments as it leads to excessive excavation of the surrounding seabed. Bed level conditions at underwater foundations are very difficult to evaluate, considering that scour holes are often re-filled by deposited loose material which is easily eroded during smaller scale events. An ability to gather information concerning the evolution of scouring will enable the validation of models derived from laboratory-based studies and the assessment of different engineering designs. Several efforts have focused on the development of instrumentation techniques to measure scour processes at foundations. However, they are not being used routinely due to numerous technical and cost issues; therefore, scour continues to be inspected visually. This research project presents a new sensing technique, designed to measure scour depth variation and sediment deposition around the foundations of bridges and offshore wind turbines, and to provide an early warning of an impending structural failure. The monitoring system consists of a probe with integrated electromagnetic sensors, designed to detect the change in the surrounding medium around the foundation structure. The probe is linked to a wireless network to enable remote data acquisition. A developed prototype and a commercial sensor were evaluated to quantify their capabilities to detect scour and sediment deposition processes. Finite element modelling was performed to define the optimum geometric characteristics of the prototype scour sensor based on models with various permittivity conditions. The experimental analysis was conducted using simulations and open channel flume tests in different sediment and temperature conditions. The density and salinity effects on the response of the sensors were also evaluated and reported herein. The obtained results indicate that the sensors are capable of exhibiting high sensitivity to scour and sediment deposition processes under the different tested environmental conditions. Saline water and temperature induced electrical conductivity changes were also found to have inevitable influences on the sensor signals. Based on this research, it is concluded that the proposed monitoring system has considerable potential for field applications that will contribute to improving the resilience and sustainability of hydraulic and marine structures.

  5. Assessment of bridge scour in the lower, middle, and upper Yangtze River estuary with riverbed sonar profiling techniques.

    PubMed

    Zheng, Shuwei; Xu, Y Jun; Cheng, Heqin; Wang, Bo; Lu, Xuejun

    2017-12-12

    Riverbed scour of bridge piers can cause rapid loss in foundation strength, leading to sudden bridge collapse. This study used multi-beam echo sounders (Seabat 7125) to map riverbed surrounding the foundations of four major bridges in the lower, middle, and upper reaches of the 700-km Yangtze River Estuary (YRE) during June 2015 and September 2016. The high-resolution data were utilized to analyze the morphology of the bridge scour and the deformation of the wide-area riverbed (i.e., 5-18 km long and 1.3-8.3 km wide). In addition, previous bathymetric measurements collected in 1998, 2009, and 2013 were used to determine riverbed erosion and deposition at the bridge reaches. Our study shows that the scour depth surrounding the bridge foundations progressed up to 4.4-19.0 m in the YRE. Over the past 5-15 years, the total channel erosion in some river reaches was up to 15-17 m, possessing a threat to the bridge safety in the YRE. Tide cycles seemed to have resulted in significant variation in the scour morphology in the lower and middle YRE. In the lower YRE, the riverbed morphology displayed one long erosional ditch on both sides of the bridge foundations and a long-strip siltation area distributed upstream and downstream of the bridge foundations; in the middle YRE, the riverbed morphology only showed erosional morphology surrounding the bridge foundations. Large dunes caused deep cuts and steeper contours in the bridge scour. Furthermore, this study demonstrates that the high-resolution grid model formed by point cloud data of multi-beam echo sounders can clearly display the morphology of the bridge scour in terms of wide areas and that the sonar technique is a very useful tool in the assessment of bridge scours.

  6. Bathymetric and hydraulic survey of the Matanuska River near Circle View Estates, Alaska

    USGS Publications Warehouse

    Conaway, Jeffrey S.

    2008-01-01

    An acoustic Doppler current profiler interfaced with a differentially corrected global positioning system was used to map bathymetry and multi-dimensional velocities on the Matanuska River near Circle View Estates, Alaska. Data were collected along four spur dikes and a bend in the river during a period of active bank erosion. These data were collected as part of a larger investigation into channel processes being conducted to aid land managers with development of a long-term management plan for land near the river. The banks and streambed are composed of readily erodible material and the braided channels frequently scour and migrate. Lateral channel migration has resulted in the periodic loss of properties and structures along the river for decades.For most of the survey, discharge of the Matanuska River was less than the 25th percentile of long-term streamflow. Despite this relatively low flow, measured water velocities were as high as 15 feet per second. The survey required a unique deployment of the acoustic Doppler current profiler in a tethered boat that was towed by a small inflatable raft. Data were collected along cross sections and longitudinal profiles. The bathymetric and velocity data document river conditions before the installation of an additional spur dike in 2006 and during a period of bank erosion. Data were collected along 1,700 feet of river in front of the spur dikes and along 1,500 feet of an eroding bank.Data collected at the nose of spur dikes 2, 3, and 4 were selected to quantify the flow hydraulics at the locations subject to the highest velocities. The measured velocities and flow depths were greatest at the nose of the downstream-most spur dike. The maximum point velocity at the spur dike nose was 13.3 feet per second and the maximum depth-averaged velocity was 11.6 feet per second. The maximum measured depth was 12.0 feet at the nose of spur dike 4 and velocities greater than 10 feet per second were measured to a depth of 10 feet.Data collected along an eroding bank provided details of the spatial distribution and variability in magnitude of velocities and flow depths while erosion was taking place. Erosion was concentrated in an area just downstream of the apex of a river bend. Measured velocities and flow depths were greater in the apex of the bend than in the area of maximum bank erosion. The maximum measured velocity was 12.9 feet per second at the apex and 11.2 feet per second in front of the eroding bank. The maximum measured depth was 10.2 feet at the apex and 5.2 feet in front of the eroding bank.

  7. Bathymetric and velocimetric surveys at highway bridges crossing the Missouri and Mississippi Rivers on the periphery of Missouri, June 2014

    USGS Publications Warehouse

    Huizinga, Richard J.

    2015-01-01

    Previous bathymetric surveys had been done at both of the sites on the Missouri River and one of the sites on the Mississippi River examined in this study. Comparisons between bathymetric surfaces from the previous surveys during the 2011 flood and those of this study generally indicate that there was an increase in the elevation of the channel bed at these sites that likely was caused by a substantial decrease in discharge and water-surface elevation compared to the 2011 surveys. However, the scour holes observed at these sites were either the same size or larger in 2014 compared to the 2011 surveys, indicating that the flow condition is not the sole variable in the determination of the size of scour holes, and that local velocity and depth also are critical variables, as indicated by predictive pier scour equations.

  8. A sustainable and green process for scouring of cotton fabrics using xylano-pectinolytic synergism: switching from noxious chemicals to eco-friendly catalysts.

    PubMed

    Singh, Avtar; Kaur, Amanjot; Patra, Arun Kumar; Mahajan, Ritu

    2018-04-01

    The objective of this research was to develop an appropriate, eco-friendly, cost-effective bioscouring methodology for removing natural impurities from cotton fabric. Maximum bioscouring was achieved using 5.0 IU xylanase and 4.0 IU pectinase with material to liquid ratio of 1:15 in a 50 mM buffer (glycine-NaOH buffer, 1.0 mM EDTA and 1% Tween-80, pH 8.5) with a treatment time of 60 min at 50 °C and an agitation speed of 60 rpm. The bioscoured cotton fabrics showed a gain of 1.17% in whiteness, 3.23% in brightness and a reduction of 4.18% in yellowness in comparison to fabric scoured with an alkaline scouring method. Further, after bleaching, the whiteness, brightness and tensile strength of the bioscoured fabrics were increased by 2.18, 2.33 and 11.74% along with a decrease of 4.61% in yellowness of bioscoured plus bleached fabrics in comparison to chemically scoured plus bleached fabrics. From the results, it is clear that bioscouring is more efficient, energy saving and an eco-friendly process and has the potential to replace the environment-damaging scouring process with the xylano-pectinolytic bioscouring process.

  9. Munition Burial by Local Scour and Sandwaves: large-scale laboratory experiments

    NASA Astrophysics Data System (ADS)

    Garcia, M. H.

    2017-12-01

    Our effort has been the direct observation and monitoring of the burial process of munitions induced by the combined action of waves, currents and pure oscillatory flows. The experimental conditions have made it possible to observe the burial process due to both local scour around model munitions as well as the passage of sandwaves. One experimental facility is the Large Oscillating Water Sediment Tunnel (LOWST) constructed with DURIP support. LOWST can reproduce field-like conditions near the sea bed. The second facility is a multipurpose wave-current flume which is 4 feet (1.20 m) deep, 6 feet (1.8 m) wide, and 161 feet (49.2 m) long. More than two hundred experiments were carried out in the wave-current flume. The main task completed within this effort has been the characterization of the burial process induced by local scour as well in the presence of dynamic sandwaves with superimposed ripples. It is found that the burial of a finite-length model munition (cylinder) is determined by local scour around the cylinder and by a more global process associated with the formation and evolution of sandwaves having superimposed ripples on them. Depending on the ratio of the amplitude of these features and the body's diameter (D), a model munition can progressively get partially or totally buried as such bedforms migrate. Analysis of the experimental data indicates that existing semi-empirical formulae for prediction of equilibrium-burial-depth, geometry of the scour hole around a cylinder, and time-scales developed for pipelines are not suitable for the case of a cylinder of finite length. Relative burial depth (Bd / D) is found to be mainly a function of two parameters. One is the Keulegan-Carpenter number, KC, and the Shields parameter, θ. Munition burial under either waves or combined flow, is influenced by two different processes. One is related to the local scour around the object, which takes place within the first few hundred minutes of flow action (i.e. short time scale). 2nd process is related to the development of sandwaves which in turn may partially or totally cover a given mine as they migrate (i.e. long time scales), leading to global burial. A third process occurring at a much shorter time scale is related to fluidization. Existing formulations for munition burial do not account for long sandwaves as well as bed fluidization.

  10. Surface-geophysical techniques used to detect existing and infilled scour holes near bridge piers

    USGS Publications Warehouse

    Placzek, Gary; Haeni, F.P.

    1995-01-01

    Surface-geophysical techniques were used with a position-recording system to study riverbed scour near bridge piers. From May 1989 to May 1993. Fathometers, fixed- and swept-frequency con- tinuous seismic-reflection profiling (CSP) systems, and a ground-penetrating radar (GPR) system were used with a laser-positioning system to measure the depth and extent of existing and infilled scour holes near bridge piers. Equipment was purchased commercially and modified when necessary to interface the components and (or) to improve their performance. Three 200-kHz black-and-white chart- recording Fathometers produced profiles of the riverbed that included existing scour holes and exposed pier footings. The Fathometers were used in conjunction with other geophysical techniques to help interpret the geophysical data. A 20-kHz color Fathometer delineated scour-hole geometry and, in some cases, the thickness of fill material in the hole. The signal provided subbottom information as deep as 10 ft in fine-grained materials and resolved layers of fill material as thin as 1 foot thick. Fixed-frequency and swept-frequency CSP systems were evaluated. The fixed-frequency system used a 3.5-, 7.0-, or 14-kHz signal. The 3.5-kHz signal pene- trated up to 50 ft of fine-grained material and resolved layers as thin as 2.5-ft thick. The 14-kHz signal penetrated up to 20 ft of fine-grained material and resolved layers as thin as 1-ft thick. The swept-frequency systems used a signal that swept from 2- to 16-kHz. With this system, up to 50 ft of penetration was achieved, and fill material as thin as 1 ft was resolved. Scour-hole geometry, exposed pier footings, and fill thickness in scour holes were detected with both CSP systems. The GPR system used an 80-, 100-, or 300-megahertz signal. The technique produced records in water up to 15 ft deep that had a specific conductance less than 200x11ms/cm. The 100-MHz signal penetrated up to 40 ft of resistive granular material and resolved layers as thin as 2-ft thick. Scour-hole geometry, the thickness of fill material in scour holes, and riverbed deposition were detected using this technique. Processing techniques were applied after data collection to assist with the interpretation of the data. Data were transferred from the color Fathometer, CSP, and GPR systems to a personal computer, and a commercially available software package designed to process GPR data was used to process the GPR and CSP data. Digital filtering, predictive-deconvolution, and migration algorithms were applied to some of the data. The processed data were displayed and printed as color amplitude or wiggle-trace plots. These processing methods eased and improved the interpretation of some of the data, but some interference from side echoes from bridge piers and multiple reflections remained in the data. The surface-geophysical techniques were applied at six bridge sites in Connecticut. Each site had different water depths, specific conductance, and riverbed materials. Existing and infilled scour holes, exposed pier footings, and riverbed deposition were detected by the surveys. The interpretations of the geophysical data were confirmed by comparing the data with lithologic and (or) probing data.

  11. Using GIS to appraise structural control of the river bottom morphology near hydrotechnical objects on Alluvial rivers

    NASA Astrophysics Data System (ADS)

    Habel, Michal; Babinski, Zygmunt; Szatten, Dawid

    2017-11-01

    The paper presents the results of analyses of structural changes of the Vistula River bottom, in a section of direct influence of the bridge in Torun (Northern Poland) fitted with one pier in the form of a central island. The pier limits a free water flow by reducing the active width of the riverbed by 12%. In 2011, data on the bottom morphology was collected, i.e. before commencing bridge construction works, throughout the whole building period - 38 measurements. Specific river depth measurements are carried out with SBES and then bathymetric maps are drawn up every two months. The tests cover the active Vistula river channel of 390 - 420 metres in width, from 730+40 to 732+30 river kilometre. The paper includes the results of morphometric analyses of vertical and horizontal changes of the river bottom surrounded by the bridge piers. The seasonality of scour holes and inclination of accumulative forms (sand bars) in the relevant river reach was analysed. Morphometric analyses were performed on raster bases with GIS tools, including the Map Algebra algorithm. The obtained results shown that scour holes/pools of up to 10 metres in depth and exceeding 1200 metres in length are formed in the tested river segment. Scour holes within the pier appeared in specific periods. Constant scour holes were found at the riverbank, and the rate of their movement down the river was 0.6 to 1.3 m per day. The tests are conducted as part of a project ordered by the City of Torun titled `Monitoring Hydrotechniczny Inwestycji Mostowej 2011 - 2014' (Hydrotechnical Monitoring of the Bridge Investment, period 2011 - 2014).

  12. Measurement of the temporal progression of scour in a pool-riffle sequence in a gravel bed stream using an electronic scour monitor

    NASA Astrophysics Data System (ADS)

    Devries, Paul; Burges, Stephen J.; Daigneau, Julie; Stearns, Daniel

    2001-11-01

    A relatively inexpensive prototype monitor was designed and developed to record temporal variation in scour depth and was field-tested in a gravel bed stream. The device consists of plastic practice golf balls that are fitted internally with ring magnets and strung on a two-conductor cable enclosing a small reed switch. The balls are installed and oriented near-vertically in the streambed. As each ball is disturbed and released, it slides along the cable past the reed switch, and the time of circuit closure caused by passage of the magnet is recorded by a data logger. The device can be applied in arrays that span large areas of the streambed, including in wide channels that are inaccessible during a flood. Data obtained from 19 devices installed in an aggrading site described scouring processes in a pool-riffle interface during a bed load transport event. Substantial bed excavation occurred in the region of the pool edge during the rising stage, indicating existence of a local, temporally varying imbalance in bed load transport rate. Bed disturbance in the rest of the site prior to aggradation was limited to the surface and immediate subpavement layer.

  13. Hydraulic analysis of the Schoharie Creek bridge

    USGS Publications Warehouse

    Froehlich, David C.; Trent, Roy E.

    1989-01-01

    Ten people died on April 5, 1987 as a result of the collapse of two spans of a New York State Thruway bridge into the floodwaters of Schoharie Creek. The cause of the bridge failure was determined to be scour of bed material from under the foundations of piers supporting the bridge. To evaluate the hydraulic conditions that produced the scour, a two-dimensional finite element surface-water flow model was constructed. The model was used to obtain a detailed description of water-surface elevations and depth-averaged velocities within a reach that extends from about 4000 ft downstream of the bridge to about 6000 ft upstream of the bridge.

  14. Bedforms, Channel Formation, and Flow Stripping in the Navy Fan, Offshore Baja California

    NASA Astrophysics Data System (ADS)

    Carvajal, C.; Paull, C. K.; Caress, D. W.; Fildani, A.; Lundsten, E. M.; Anderson, K.; Maier, K. L.; McGann, M.; Gwiazda, R.; Herguera, J. C.

    2017-12-01

    Deep-sea fans store some of the largest volumes of siliciclastic sediment in marine basins. These sandy accumulations record the history of sediment transfer from land to sea, serving as direct records of the geologic history of the continents. Despite their importance, deep-sea fans are difficult to study due to their remote locations in thousands of meters of water depth. In addition, deep-sea fans have a low relief, and geomorphological changes important for the evolution of the fan are often too subtle to be adequately resolved by 3D seismic data or surface-ship bathymetry. To improve our understanding of deep-sea fans, an autonomous underwater vehicle (AUV) was used to acquire high-resolution bathymetry and sub-bottom CHIRP profiles in the proximal sectors of the Navy Fan, offshore Baja California. A remotely operated vehicle was also used to acquire vibracores. The 1-m grid resolution bathymetry shows the seafloor geomorphology in extreme detail revealing different kinds of bedforms, which in combination with the vibracores help to interpret the sedimentary processes active during the Holocene. Morphological elements in the survey area include a main channel, numerous scours, an incipient channel, sediment waves, and a fault escarpment. Several of the scours are interpreted to result from flow stripping at a bend in the main channel. Along high gradient sectors (e.g. > 1o), the scours form bedforms with an erosionally truncated headwall immediately followed down-dip by an upflow accreting sedimentary bulge. These bedforms, the presence of clean sands in the scours and the high gradients suggest that these scours are net-erosional cyclic steps. Scours seem to coalesce along the sediment transport direction to form an incipient channel with abundant rip-up clast gravels. Elsewhere in the survey area, scours are elongated and intimately associated with sediment waves. The acquired dataset illustrates that deep-sea fans may show a variety of processes and geomorphologies, difficult to infer with the use of low-resolution data.

  15. Iceberg killing fields limit huge potential for benthic blue carbon in Antarctic shallows.

    PubMed

    Barnes, David K A

    2017-07-01

    Climate-forced ice losses are increasing potential for iceberg-seabed collisions, termed ice scour. At Ryder Bay, West Antarctic Peninsula (WAP) sea ice, oceanography, phytoplankton and encrusting zoobenthos have been monitored since 1998. In 2003, grids of seabed markers, covering 225 m 2 , were established, surveyed and replaced annually to measure ice scour frequency. Disturbance history has been recorded for each m 2 of seabed monitored at 5-25 m for ~13 years. Encrusting fauna, collected from impacted and nonimpacted metres each year, show coincident benthos responses in growth, mortality and mass of benthic immobilized carbon. Encrusting benthic growth was mainly determined by microalgal bloom duration; each day, nanophytoplankton exceeded 200 μg L -1 produced ~0.05 mm radial growth of bryozoans, and sea temperature >0 °C added 0.002 mm day -1 . Mortality and persistence of growth, as benthic carbon immobilization, were mainly influenced by ice scour. Nearly 30% of monitored seabed was hit each year, and just 7% of shallows were not hit. Hits in deeper water were more deadly, but less frequent, so mortality decreased with depth. Five-year recovery time doubled benthic carbon stocks. Scour-driven mortality varied annually, with two-thirds of all monitored fauna killed in a single year (2009). Reduced fast ice after 2006 ramped iceberg scouring, killing half the encrusting benthos each year in following years. Ice scour coupled with low phytoplankton biomass drove a phase shift to high mortality and depressed zoobenthic immobilized carbon stocks, which has persevered for 10 years since. Stocks of immobilized benthic carbon averaged nearly 15 g m -2 . WAP ice scouring may be recycling 80 000 tonnes of carbon yr -1 . Without scouring, such carbon would remain immobilized and the 2.3% of shelf which are shallows could be as productive as all the remaining continental shelf. The region's future, when glaciers reach grounding lines and iceberg production diminishes, is as a major global sink of carbon storage. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  16. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows.

    PubMed

    Barnes, David K A

    2017-12-01

    One of the major climate-forced global changes has been white to blue to green; losses of sea ice extent in time and space around Arctic and West Antarctic seas has increased open water and the duration (though not magnitude) of phytoplankton blooms. Blueing of the poles has increases potential for heat absorption for positive feedback but conversely the longer phytoplankton blooms have increased carbon export to storage and sequestration by shelf benthos. However, ice shelf collapses and glacier retreat can calve more icebergs, and the increased open water allows icebergs more opportunities to scour the seabed, reducing zoobenthic blue carbon capture and storage. Here the size and variability in benthic blue carbon in mega and macrobenthos was assessed in time and space at Ryder and Marguerite bays of the West Antarctic Peninsula (WAP). In particular the influence of the duration of primary productivity and ice scour are investigated from the shallows to typical shelf depths of 500 m. Ice scour frequency dominated influence on benthic blue carbon at 5 m, to comparable with phytoplankton duration by 25 m depth. At 500 m only phytoplankton duration was significant and influential. WAP zoobenthos was calculated to generate ~10 7 , 4.5 × 10 6 and 1.6 × 10 6 tonnes per year (between 2002 and 2015) in terms of production, immobilization and sequestration of carbon respectively. Thus about 1% of annual primary productivity has sequestration potential at the end of the trophic cascade. Polar zoobenthic blue carbon capture and storage responses to sea ice losses, the largest negative feedback on climate change, has been underestimated despite some offsetting of gain by increased ice scouring with more open water. Equivalent survey of Arctic and sub-Antarctic shelves, for which new projects have started, should reveal the true extent of this feedback and how much its variability contributes to uncertainty in climate models. © 2017 John Wiley & Sons Ltd.

  17. Automatic Monitoring System Design and Failure Probability Analysis for River Dikes on Steep Channel

    NASA Astrophysics Data System (ADS)

    Chang, Yin-Lung; Lin, Yi-Jun; Tung, Yeou-Koung

    2017-04-01

    The purposes of this study includes: (1) design an automatic monitoring system for river dike; and (2) develop a framework which enables the determination of dike failure probabilities for various failure modes during a rainstorm. The historical dike failure data collected in this study indicate that most dikes in Taiwan collapsed under the 20-years return period discharge, which means the probability of dike failure is much higher than that of overtopping. We installed the dike monitoring system on the Chiu-She Dike which located on the middle stream of Dajia River, Taiwan. The system includes: (1) vertical distributed pore water pressure sensors in front of and behind the dike; (2) Time Domain Reflectometry (TDR) to measure the displacement of dike; (3) wireless floating device to measure the scouring depth at the toe of dike; and (4) water level gauge. The monitoring system recorded the variation of pore pressure inside the Chiu-She Dike and the scouring depth during Typhoon Megi. The recorded data showed that the highest groundwater level insides the dike occurred 15 hours after the peak discharge. We developed a framework which accounts for the uncertainties from return period discharge, Manning's n, scouring depth, soil cohesion, and friction angle and enables the determination of dike failure probabilities for various failure modes such as overtopping, surface erosion, mass failure, toe sliding and overturning. The framework was applied to Chiu-She, Feng-Chou, and Ke-Chuang Dikes on Dajia River. The results indicate that the toe sliding or overturning has the highest probability than other failure modes. Furthermore, the overall failure probability (integrate different failure modes) reaches 50% under 10-years return period flood which agrees with the historical failure data for the study reaches.

  18. Major factors affecting the performance of bridges during floods.

    DOT National Transportation Integrated Search

    1989-01-01

    The models used to predict the depth of scour that might occur in a river when a bridge is constructed across it were based on laboratory data. Within the decade of the 1980s, the Federal Highway Administration encouraged the states to collect field ...

  19. Geomorphic and hydrologic study of peak-flow management on the Cedar River, Washington

    USGS Publications Warehouse

    Magirl, Christopher S.; Gendaszek, Andrew S.; Czuba, Christiana R.; Konrad, Christopher P.; Marineau, Mathieu D.

    2012-01-01

    Assessing the linkages between high-flow events, geomorphic response, and effects on stream ecology is critical to river management. High flows on the gravel-bedded Cedar River in Washington are important to the geomorphic function of the river; however, high flows can deleteriously affect salmon embryos incubating in streambed gravels. A geomorphic analysis of the Cedar River showed evidence of historical changes in river form over time and quantified the effects of anthropogenic alterations to the river corridor. Field measurements with accelerometer scour monitors buried in the streambed provided insight into the depth and timing of streambed scour during high-flow events. Combined with a two-dimensional hydrodynamic model, the recorded accelerometer disturbances allowed the prediction of streambed disturbance at the burial depth of Chinook and sockeye salmon egg pockets for different peak discharges. Insight gained from these analyses led to the development of suggested monitoring metrics for an ongoing geomorphic monitoring program on the Cedar River.

  20. Formation and maintenance of a forced pool-riffle couplet following loading of large wood

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Fixler, S. A.

    2017-11-01

    Pool-riffle maintenance has been documented in numerous studies, but it has been almost impossible to characterize detailed natural pool-riffle formation mechanisms because of the lack of baseline data prior to pool establishment. In 2013, a study was conducted on the Blackledge River in Connecticut to document the formation of a new pool-riffle couplet on a section of river that had previously been studied from 1999 to 2001. In 2001, the study reach contained a scour hole with a residual depth of 0.08 ± 0.09 m downstream of a 1930s paired deflector with no identifiable riffle immediately downstream. At this time, a large, severely undercut, hemlock tree was noted along the left bank. Sometime between fall 2001 and 2004, the tree fell perpendicular to flow across the channel and formed a large wood (LW) jam and new pool-riffle couplet several meters downstream of the old scour hole. Pool spacing along the reach decreased from 4.47 bankfull widths (BFW) in 1999 to 3.83 BFW after the new pool-riffle couplet formed. The new pool has a residual depth, the water depth of the streambed depression below the elevation of the immediate downstream hydraulic control, of 1.36 ± 0.075 to 1.59 ± 0.075 m, which resulted from a combination of 1.32 ± 0.09 m or less of incision below the old scour hole (95.6% or less of the depth increase) and up to 0.18 ± 0.09 m of downstream deposition and associated backwater formation (13.2% or less of the depth increase). To assess dynamic stability of the pool-riffle couplet over several flood cycles, surficial fine-sediment and organic material along the reach were quantified. The 23-m-long pool stores 25.7% of the surficial fine grained sediments and 15.4% of organic material along a 214-m-long reach that includes one additional artificially created pool. An adjacent 50-m-long secondary channel impacted by the LW jam stores 65.3% of the surficial fine-grained sediments and 54.8% of organic material along the full reach.

  1. Two-phase flow simulation of scour around a cylindrical pile

    NASA Astrophysics Data System (ADS)

    Nagel, T.; Chauchat, J.; Bonamy, C.; Liu, X.; Cheng, Z.; Hsu, T. J.

    2017-12-01

    Scour around structures is a major engineering issue that requires a detailed description of the flow field but also a consistent description of sediment transport processes that could not only be related to bed shear stress, like Shields parameter based sediment transport formula. In order to address this issue we used a multi-dimensional two-phase flow solver, sedFoam-2.0 (Chauchat et al., GMD 2017) implemented under the open-source CFD toolbox OpenFoam. Three-dimensional simulations have been performed on Roulund et al. (JFM 2005) configurations for clear-water and live bed cases. The k-omega model from Wilcox (AIAA Journal 2006) is used for the turbulent stress and the granular rheology μ(I) is used for the granular stress in the live bed case. The hydrodynamic is validated on the clear water case and the numerical results obtained for the live bed case provide a proof of concept that two-phase flow model is applicable to such problem with quantitative results for the prediction of scour depth upstream and downstream the cylinder at short timescales, up to 300s. Analyzing the simulation results in term of classical dimensionless sediment transport flux versus Shields parameter allows to get more insight into the fine scale sediment transport mechanisms involved in the scour process.

  2. Real-time data collection of scour at bridges

    USGS Publications Warehouse

    Mueller, David S.; Landers, Mark N.

    1994-01-01

    The record flood on the Mississippi River during the summer of 1993 provided a rare opportunity to collect data on scour of the streambed at bridges and to test data collection equipment under extreme hydraulic conditions. Detailed bathymetric and hydraulic information were collected at two bridges crossing the Mississippi River during the rising limb, near the peak, and during the recession of the flood. Bathymetric data were collected using a digital echo sounder. Three-dimensional velocities were collected using Broadband Acoustic Doppler Current Profilers (BB-ADCP) operating at 300 kilohertz (kHz), 600 kHz, and 1,200 kHz. Positioning of the data collected was measured using a range-azimuth tracking system and two global positioning systems (GPS). Although differential GPS was able to provide accurate positions and tracking information during approach- and exit-reach data collection, it was unable to maintain lock on a sufficient number of satellites when the survey vessel was under the bridge or near the piers. The range-azimuth tracking system was used to collect position and tracking information for detailed data collection near the bridge piers. These detailed data indicated local scour ranging from 3 to 8 meters and will permit a field-based evaluation of the ability of various numerical models to compute the hydraulics, depth, geometry, and time-dependent development of local scour.

  3. Criteria for Evaluating Coastal Flood-Protection Structures

    DTIC Science & Technology

    1989-12-01

    Hotta, S., and Marui , N. 1976. "Local Scour and Current Around a Porous Breakwater," Chapter 93, Proceedings, 15th Coastal Engineering Conference, 11- 17...breaking waves consistent with FEMA depth-limited breaking wave approach to design. 7. Hotta and Marui (1976) testing permeable and impermeable shore

  4. The Physical, Geochemical and Microbial Conditions and Processes in the Hyporheic Zone of a Large Tidally Influenced River: The Fraser River, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Bianchin, M.; Roschinski, T.; Ross, K.; Leslie, S.; William, M.; Beckie, R.

    2006-12-01

    The objective of this research is to investigate the physical, chemical and biological conditions and processes that occur in the hyporheic zone of the lower Fraser River, British Columbia. The large flows of between 2000 and 10000 cubic meters per second, the 10 15 m deep, 250 m wide channel, the 1 m tidal fluctuations, the localized scour and redeposition of sediments during freshet and the strong geochemical contrast between groundwater and surface water distinguish this investigation from studies on smaller channels and streams and required the development of novel characterization tools and strategies. The geochemistry of water samples collected with a push-in profiler, bulk electrical conductivity (EC) measurements collected with a push-in tool and hydraulic head measurements indicate that groundwater principally discharges into the river approximately 100 m offshore in a 10 m wide band. River water and groundwater mix to a maximum depth of between 0.75 and 1.5 m. While hydraulic heads show strong tidal reversals, bulk EC profiles show only moderate changes during the tidal cycle. It was hypothesized that high iron (10's mg/L of Fe(II)) in reduced groundwater would precipitate from solution as secondary iron-oxide phases in the zone where groundwater mixes with aerobic river water. Sediments were collected with a freeze-shoe corer and depth profiles through the hyporheic zone and into the underlying aquifer were analyzed by selective extractions. The 15-30 mg/g of total extractable iron in both the aquifer and hyporheic zone is relatively high. The lack of noticeable iron accumulation in the hyporheic zone may indicate that iron precipitates on shallow sediments that are subsequently scoured from the river bed during freshet. Microbial DNA from sediments was analyzed using denaturing gradient gel electrophoresis and showed a relatively diverse community structure but an overall low biomass.

  5. Iceberg ploughmark features on bottom surface of the South-Eastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dorokhov, Dmitry; Sivkov, Vadim; Dorokhova, Evgenia; Krechik, Viktor

    2016-04-01

    A detail swath bathymetry, side-scan sonar and acoustic profiling combined with sediment sampling during the 64th cruise of RV "Academic Mstislav Keldysh" (October 2015) allowed to identify new geomorphological features of the South-Eastern Baltic Sea bottom surface. The extended chaotic ploughmarks (furrows) in most cases filled with thin layer of mud were discovered on surface of the Gdansk-Gotland sill glacial deposits. They are observed on the depth of more than 70 m and have depth and width from 1 to 10 m. Most of them are v- or u-shaped stepped depressions. The side-scan records of similar geomorpholoical features are extensively reported from Northern Hemisphere and Antarctica (Goodwin et al., 1985; Dowdeswell et al., 1993). Ploughmarks are attributed to the action of icebergs scouring into the sediment as they touch bottom. We are suggest that furrows discovered in the South-Eastern Baltic Sea are also the result of iceberg scouring during the Baltic Ice Lake stage (more than 11 600 cal yr BP (Bjorck, 2008)). This assumption confirmed by occurrence of fragmental stones and boulders on the sea bottom surface which are good indicators of iceberg rafting (Lisitzin, 2003). Ice ploughmarks at sea bottom surface were not occurred before in the South-Eastern Baltic Sea. The study was financed by Russian Scientific Fund, grant number 14-37-00047. References Bjorck S. The late Quaternary development of the Baltic Sea Basin. In: The BACC Author Team (eds) Assessment of climate change for the Baltic Sea Basin. Springer, Berlin, Heidelberg. 2008. Dowdeswell J. A., Villinger H., Whittington R. J., Marienfeld P. Iceberg scouring in Scoresby Sund and on the East Greenland continental shelf // Marine Geology. V. 111. N. 1-2. 1993. P. 37-53. Goodwin C. R., Finley J. C., Howard L. M. Ice scour bibliography. Environmental Studies Revolving Funds Report No. 010. Ottawa. 1985. 99 pp. Lisitzin A. P. Sea-Ice and Iceberg Sedimentation in the Ocean: Recent and Past. Springer, Heidelberg, Germany. 2003.

  6. Bathymetric and velocimetric surveys at highway bridges crossing the Missouri and Mississippi Rivers near St. Louis, Missouri, May 23–27, 2016

    USGS Publications Warehouse

    Huizinga, Richard J.

    2017-09-26

    Bathymetric and velocimetric data were collected by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, near 13 bridges at 8 highway crossings of the Missouri and Mississippi Rivers in the greater St. Louis, Missouri, area from May 23 to 27, 2016. A multibeam echosounder mapping system was used to obtain channel-bed elevations for river reaches ranging from 1,640 to 1,970 feet longitudinally and extending laterally across the active channel from bank to bank during low to moderate flood flow conditions. These bathymetric surveys indicate the channel conditions at the time of the surveys and provide characteristics of scour holes that may be useful in the development of predictive guidelines or equations for scour holes. These data also may be useful to the Missouri Department of Transportation as a low to moderate flood flow comparison to help assess the bridges for stability and integrity issues with respect to bridge scour during floods.Bathymetric data were collected around every pier that was in water, except those at the edge of water, and scour holes were observed at most surveyed piers. The observed scour holes at the surveyed bridges were examined with respect to shape and depth.The frontal slope values determined for scour holes observed in the current (2016) study generally are similar to recommended values in the literature and to values determined for scour holes in previous bathymetric surveys. Several of the structures had piers that were skewed to primary approach flow, as indicated by the scour hole being longer on the side of the pier with impinging flow, and some amount of deposition on the leeward side, as typically has been observed at piers skewed to approach flow; however, at most skewed piers in the current (2016) study, the scour hole was deeper on the leeward side of the pier. At most of these piers, the angled approach flow was the result of a deflection or contraction of flow caused by a spur dike near the pier, which may affect flow differently than for a simple skew. At structure A6500 (site 33), the wide face of the pier footing and seal course would behave as a complex foundation, for which scour is computed differently.Previous bathymetric surveys exist for all the sites examined in this study. A previous survey in October 2010 at most of the sites had similar flow conditions and similar results to the 2016 surveys. A survey during flood conditions in August 2011 at the sites on the Missouri River and in May 2009 at structures A4936 and A1850 (site 35) on the Mississippi River did not always indicate more substantial scour during flood conditions. At structure A6500 (site 33) on the Mississippi River, a previous survey in 2009 was part of a habitat assessment before construction of the bridge and provides unique insight into the effects of the construction of that bridge on the channel in this reach. Substantial scour was observed near the right pier, and the riprap blanket surrounding the left pier seems to limit scour near that pier. Multiple additional surveys have been completed at structures A4936 and A1850 (site 35) on the Mississippi River, and the results of these surveys also are presented.

  7. Application of a sediment-transport model to estimate bridge scour at selected sites in Colorado, 1991-93

    USGS Publications Warehouse

    Vaill, J.E.

    1995-01-01

    A bridge-scour study by the U.S. Geological Survey, in cooperation with the Colorado Department of Transportation, was begun in 1991 to evaluate bridges in the State for potential scour during floods. A part of that study was to apply a computer model for sediment-transport routing to simulate channel aggradation or degradation and pier scour during floods at three bridge sites in Colorado. Stream-channel reaches upstream and downstream from the bridges were simulated using the Bridge Stream Tube model for Alluvial River Simulation (BRI-STARS). Synthetic flood hydrographs for the 500-year floods were developed for Surveyor Creek near Platner and for the Rio Grande at Wagon Wheel Gap. A part of the recorded mean daily hydrograph for the peak flow of record was used for the Yampa River near Maybell. The recorded hydrograph for the peak flow of record exceeded the computed 500-year-flood magnitude for this stream by about 22 percent. Bed-material particle-size distributions were determined from samples collected at Surveyor Creek and the Rio Grande. Existing data were used for the Yampa River. The model was used to compute a sediment-inflow hydrograph using particle-size data collected and a specified sediment-transport equation at each site. Particle sizes ranged from less than 0.5 to 16 millimeters for Surveyor Creek, less than 4 to 128 millimeters for the Yampa River, and 22.5 to 150 millimeters for the Rio Grande. Computed scour at the peak steamflows ranged from -2.32 feet at Surveyor Creek near Platner to +0.63 foot at the Rio Grande at Wagon Wheel Gap. Pier- scour depths computed at the peak streamflows ranged from 4.46 feet at the Rio Grande at Wagon Wheel Gap to 5.94 feet at the Yampa River near Maybell. The number of streamtubes used in the model varied at each site.

  8. Fluvial processes and local lithology controlling abundance, structure, and composition of mussel beds.

    PubMed

    Vannote, R L; Minshall, G W

    1982-07-01

    In the Salmon River Canyon, Idaho, the fresh-water pearl mussel, Margaritifera falcata, attains maximum density and age in river reaches where large block-boulders structurally stabilize cobbles and interstitial gravels. We hypothesize that block-boulders prevent significant bed scour during major floods, and these boulder-sheltered mussel beds, although rare, may be critical for population recruitment elsewhere within the river, especially after periodic flood scour of less protected mussel habitat. Mussel shells in Indian middens adjacent to these boulder-stabilized areas suggest that prehistoric tribes selectively exploited the high-density old-aged mussel beds. Locally, canyon reaches are aggrading with sand and gravel, and M. falcata is being replaced by Gonidea angulata.

  9. The Planform Mobility of Large River Channel Confluences

    NASA Astrophysics Data System (ADS)

    Sambrook Smith, Greg; Dixon, Simon; Nicholas, Andrew; Bull, Jon; Vardy, Mark; Best, James; Goodbred, Steven; Sarker, Maminul

    2017-04-01

    Large river confluences are widely acknowledged as exerting a controlling influence upon both upstream and downstream morphology and thus channel planform evolution. Despite their importance, little is known concerning their longer-term evolution and planform morphodynamics, with much of the literature focusing on confluences as representing fixed, nodal points in the fluvial network. In contrast, some studies of large sand bed rivers in India and Bangladesh have shown large river confluences can be highly mobile, although the extent to which this is representative of large confluences around the world is unknown. Confluences have also been shown to generate substantial bed scours, and if the confluence location is mobile these scours could 'comb' across wide areas. This paper presents field data of large confluences morphologies in the Ganges-Brahmaputra-Meghna river basin, illustrating the spatial extent of large river bed scours and showing scour depth can extend below base level, enhancing long term preservation potential. Based on a global review of the planform of large river confluences using Landsat imagery from 1972 to 2014 this study demonstrates such scour features can be highly mobile and there is an array of confluence morphodynamic types: from freely migrating confluences, through confluences migrating on decadal timescales to fixed confluences. Based on this analysis, a conceptual model of large river confluence types is proposed, which shows large river confluences can be sites of extensive bank erosion and avulsion, creating substantial management challenges. We quantify the abundance of mobile confluence types by classifying all large confluences in both the Amazon and Ganges-Brahmaputra-Meghna basins, showing these two large rivers have contrasting confluence morphodynamics. We show large river confluences have multiple scales of planform adjustment with important implications for river management, infrastructure and interpretation of the rock record.

  10. Predicting seabed burial of cylinders by wave-induced scour: Application to the sandy inner shelf off Florida and Massachusetts

    USGS Publications Warehouse

    Trembanis, A.C.; Friedrichs, Carl T.; Richardson, M.D.; Traykovski, P.; Howd, P.A.; Elmore, P.A.; Wever, T.F.

    2007-01-01

    A simple parameterized model for wave-induced burial of mine-like cylinders as a function of grain-size, time-varying, wave orbital velocity and mine diameter was implemented and assessed against results from inert instrumented mines placed off the Indian Rocks Beach (IRB, FL), and off the Martha's Vineyard Coastal Observatory (MVCO, Edgartown, MA). The steady flow scour parameters provided by Whitehouse (1998) for self-settling cylinders worked well for predicting burial by depth below the ambient seabed for O (0.5 m) diameter mines in fine sand at both sites. By including or excluding scour pit infilling, a range of percent burial by surface area was predicted that was also consistent with observations. Rapid scour pit infilling was often seen at MVCO but never at IRB, suggesting that the environmental presence of fine sediment plays a key role in promoting infilling. Overprediction of mine scour in coarse sand was corrected by assuming a mine within a field of large ripples buries only until it generates no more turbulence than that produced by surrounding bedforms. The feasibility of using a regional wave model to predict mine burial in both hindcast and real-time forecast mode was tested using the National Oceanic and Atmospheric Administration (NOAA, Washington, DC) WaveWatch 3 (WW3) model. Hindcast waves were adequate for useful operational forcing of mine burial predictions, but five-day wave forecasts introduced large errors. This investigation was part of a larger effort to develop simple yet reliable predictions of mine burial suitable for addressing the operational needs of the U.S. Navy. ?? 2007 IEEE.

  11. Levee reliability analyses for various flood return periods - a case study in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, W.-C.; Yu, H.-W.; Weng, M.-C.

    2015-04-01

    In recent years, heavy rainfall conditions have caused disasters around the world. To prevent losses by floods, levees have often been constructed in inundation-prone areas. This study performed reliability analyses for the Chiuliao First Levee in southern Taiwan. The failure-related parameters were the water level, the scouring depth, and the in situ friction angle. Three major failure mechanisms were considered: the slope sliding failure of the levee and the sliding and overturning failures of the retaining wall. When the variability of the in situ friction angle and the scouring depth are considered for various flood return periods, the variations of the factor of safety for the different failure mechanisms show that the retaining wall sliding and overturning failures are more sensitive to the change of the friction angle. When the flood return period is greater than 2 years, the levee could fail with slope sliding for all values of the water level difference. The results of levee stability analysis considering the variability of different parameters could aid engineers in designing the levee cross sections, especially with potential failure mechanisms in mind.

  12. Bathymetric and velocimetric surveys at highway bridges crossing the Missouri River between Kansas City and St. Louis, Missouri, April-May, 2013

    USGS Publications Warehouse

    Huizinga, Richard J.

    2014-01-01

    Bathymetric and velocimetric data were collected by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, in the vicinity of 10 bridges at 9 highway crossings of the Missouri River between Lexington and Washington, Missouri, from April 22 through May 2, 2013. A multibeam echosounder mapping system was used to obtain channel-bed elevations for river reaches ranging from 1,640 to 1,840 feet longitudinally and extending laterally across the active channel between banks and spur dikes in the Missouri River during low- to moderate-flow conditions. These bathymetric surveys indicate the channel conditions at the time of the surveys and provide characteristics of scour holes that may be useful in the development of predictive guidelines or equations for scour holes. These data also may be useful to the Missouri Department of Transportation to assess the bridges for stability and integrity issues with respect to bridge scour during floods. Bathymetric data were collected around every pier that was in water, except those at the edge of water or in very shallow water (less than about 6 feet). Scour holes were present at most piers for which bathymetry could be obtained, except at piers on channel banks, near or embedded in lateral or longitudinal spur dikes, and on exposed bedrock outcrops. Scour holes observed at the surveyed bridges were examined with respect to depth and shape. Although exposure of parts of foundational support elements was observed at several piers, at most sites the exposure likely can be considered minimal compared to the overall substructure that remains buried in channel-bed material; however, there were several notable exceptions where the bed material thickness between the bottom of the scour hole and bedrock was less than 6 feet. Such substantial exposure of usually buried substructural elements may warrant special observation in future flood events. Previous bathymetric surveys had been done at all of the sites in this study during the flood of 2011. Comparisons between bathymetric surfaces from the previous surveys and those of this study generally indicate a consistent increase in the elevation of the bed and decrease in the size of scour holes at these sites, both likely caused by a substantial decrease in discharge and water-surface elevation compared to the 2011 surveys at most sites. However, multiple surveys at one of the sites indicate that the flow condition is not the sole variable in the determination of the size of scour holes at sites with a dual bridge configuration. Furthermore, another site had a smaller and shallower scour hole even though the discharge in this study was slightly greater than in 2011. Pier size, nose shape, and alignment to flow also had a substantial effect on the size of the scour hole observed.

  13. In Situ Temperature Measurements at the Svalbard Continental Margin: Implications for Gas Hydrate Dynamics

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Wallmann, K.; Berndt, C.; Pape, T.; Freudenthal, T.; Bergenthal, M.; Bünz, S.; Bohrmann, G.

    2018-04-01

    During expedition MARIA S. MERIAN MSM57/2 to the Svalbard margin offshore Prins Karls Forland, the seafloor drill rig MARUM-MeBo70 was used to assess the landward termination of the gas hydrate system in water depths between 340 and 446 m. The study region shows abundant seafloor gas vents, clustered at a water depth of ˜400 m. The sedimentary environment within the upper 100 m below seafloor (mbsf) is dominated by ice-berg scours and glacial unconformities. Sediments cored included glacial diamictons and sheet-sands interbedded with mud. Seismic data show a bottom simulating reflector terminating ˜30 km seaward in ˜760 m water depth before it reaches the theoretical limit of the gas hydrate stability zone (GHSZ) at the drilling transect. We present results of the first in situ temperature measurements conducted with MeBo70 down to 28 mbsf. The data yield temperature gradients between ˜38°C km-1 at the deepest site (446 m) and ˜41°C km-1 at a shallower drill site (390 m). These data constrain combined with in situ pore-fluid data, sediment porosities, and thermal conductivities the dynamic evolution of the GHSZ during the past 70 years for which bottom water temperature records exist. Gas hydrate is not stable in the sediments at sites shallower than 390 m water depth at the time of acquisition (August 2016). Only at the drill site in 446 m water depth, favorable gas hydrate stability conditions are met (maximum vertical extent of ˜60 mbsf); however, coring did not encounter any gas hydrates.

  14. Streambed scour evaluations and conditions at selected bridge sites in Alaska, 2012

    USGS Publications Warehouse

    Beebee, Robin A.; Schauer, Paul V.

    2015-11-19

    Vertical contraction and pressure flow occurred during 1 percent or smaller annual exceedance probability floods at five sites, including three aggradation sites. Contraction scour exceeded 5 feet at two sites, and total scour at piers (pier scour plus contraction scour) exceeded 5 feet at two sites. Debris accumulation increased calculated pier scour at six sites by an average of 1.2 feet. Total scour at abutments including contraction scour exceeded 5 feet at seven sites. Scour estimates seemed excessive at aggradation sites where upstream sediment supply controls scour and deposition processes, at cohesive soil sites where conservative assumptions were made for soil strength and flood duration, and for abutment scour at sites where failure of the embankment and attendant channel widening would reduce scour.

  15. Linear Scour Depressions or Bedforms? Using Interferometric Sonar to Investigate Nearshore Sediment Transport

    NASA Astrophysics Data System (ADS)

    Borrelli, M.; Giese, G. S.; Dingman, S. L.; Gontz, A. M.; Adams, M. B.; Norton, A. R.; Brown, T. L.

    2011-12-01

    A series of ambiguous features on the seafloor off the coast of Provincetown, Massachusetts USA has been identified in two bathymetric lidar surveys (2007, 2010) conducted by the US Army Corps of Engineers. Similar features in the area have been described as linear scour depressions by other investigators, but at deeper water depths. These features exhibit some of the characteristics of bedforms, they have migrated tens of meters and maintained similar 3 dimensional morphologies. However, what would be described as the slipface more closely resembles the updrift face of a linear scour depression. The features are in relatively shallow water (9 - 15 m), are 150 - 200 m long, have spacings of 100 - 150 m and are 5-6 m in height. Further investigations are being undertaken to better understand these features and nearshore sediment transport in the area. The features appear along a high energy, accreting coast with both strong wave-driven sediment flux and tidal currents. Mapping of the study area with an interferometric sonar system, which collects coincident swath bathymetry and acoustic backscatter imagery, is ongoing. Interferometric sonar increases bathymetric swath width to depth ratios, in comparison to multibeam systems, and expedites data collection by reducing costs, vessel-time and hazards associated with navigating shallow waters. In addition, sediment grab samples and a series of seismic reflection profiles will also be collected in the area to ground-truth acoustic imagery and provide a subsurface framework for the features, respectively. These datasets will allow investigators to better document bottom conditions, estimate flow velocities needed to create these features and improve our understanding of sediment transport processes and pathways in the area.

  16. DEBRIS: a computer program for analyzing channel cross sections

    Treesearch

    Patrick Deenihan; Thomas E. Lisle

    1988-01-01

    DEBRIS is a menu-driven, interactive computer program written in FORTRAN 77 for recording and plotting survey data and for computing hydraulic variables and depths of scour and fill. It was developed for use with the USDA Forest Service's Data General computer system, with the AOS/VS operation system. By using menus, the operator does not need to know any...

  17. DEBRIS: A computer program for analyzing channel cross sections

    Treesearch

    Patrick Deenihan; Thomas E. Lisle

    1988-01-01

    DEBRIS is a menu-driven, interactive computer program written in FORTRAN 77 for recording and platting survey data and for computing hydraulic variables and depths of scour and fill. It was developed for use with the USDA Forest Service's Data General computer system, with the AOS/VS operating system. By using menus, the operator does not need to know any...

  18. The experimental study of hydrodynamic characteristics of the overland flow on a slope with three-dimensional Geomat

    NASA Astrophysics Data System (ADS)

    Wang, Guang-yue; Sun, Guo-rui; Li, Jian-kang; Li, Jiong

    2018-02-01

    The hydrodynamic characteristics of the overland flow on a slope with a three-dimensional Geomat are studied for different rainfall intensities and slope gradients. The rainfall intensity is adjusted in the rainfall simulation system. It is shown that the velocity of the overland flow has a strong positive correlation with the slope length and the rainfall intensity, the scour depth decreases with the increase of the slope gradient for a given rainfall intensity, and the scour depth increases with the increase of the rainfall intensity for a given slope gradient, the overland flow starts with a transitional flow on the top and finishes with a turbulent flow on the bottom on the slope with the three-dimensional Geomat for different rainfall intensities and slope gradients, the resistance coefficient and the turbulent flow Reynolds number are in positively related logarithmic functions, the resistance coefficient and the slope gradient are in positively related power functions, and the trend becomes leveled with the increase of the rainfall intensity. This study provides some important theoretical insight for further studies of the hydrodynamic process of the erosion on the slope surface with a three-dimensional Geomat.

  19. Levee reliability analyses for various flood return periods - a case study in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, W.-C.; Yu, H.-W.; Weng, M.-C.

    2015-01-01

    In recent years, heavy rainfall conditions have caused damages around the world. To prevent damages by floods, levees have often been constructed in prone-to-inundation areas. This study performed reliability analyses for the Chiuliao 1st Levee located in southern Taiwan. The failure-related parameters were the water level, the scouring depth, and the in-situ friction angle. Three major failure mechanisms were considered, including the slope sliding failure of the levee, and the sliding and overturning failures of the retaining wall. When the variabilities of the in-situ friction angle and the scouring depth are considered for various flood return periods, the variations of the factor of safety (FS) for the different failure mechanisms show that the retaining wall sliding and overturning failures are more sensitive to the variability of the friction angle. When the flood return period is greater than 2 years, the levee can undergo slope sliding failure for all values of the water level difference. The results for levee stability analysis considering the variability of different parameters could assist engineers in designing the levee cross sections, especially with potential failure mechanisms in mind.

  20. Streambed scour evaluations and conditions at selected bridge sites in Alaska, 2013–15

    USGS Publications Warehouse

    Beebee, Robin A.; Dworsky, Karenth L.; Knopp, Schyler J.

    2017-12-27

    Streambed scour potential was evaluated at 52 river- and stream-spanning bridges in Alaska that lack a quantitative scour analysis or have unknown foundation details. All sites were evaluated for stream stability and long-term scour potential. Contraction scour and abutment scour were calculated for 52 bridges, and pier scour was calculated for 11 bridges that had piers. Vertical contraction (pressure flow) scour was calculated for sites where the modeled water surface was higher than the superstructure of the bridge. In most cases, hydraulic models of the 1- and 0.2-percent annual exceedance probability floods (also known as the 100- and 500-year floods, respectively) were used to derive hydraulic variables for the scour calculations. Alternate flood values were used in scour calculations for sites where smaller floods overtopped a bridge or where standard flood-frequency estimation techniques did not apply. Scour also was calculated for large recorded floods at 13 sites.Channel instability at 11 sites was related to human activities (in-channel mining, dredging, and channel relocation). Eight of the dredged sites are located on active unstable alluvial fans and were graded to protect infrastructure. The trend toward aggradation during major floods at these sites reduces confidence in scour estimates.Vertical contraction and pressure flow occurred during the 0.2-percent or smaller annual exceedance probability floods at eight sites. Contraction scour exceeded 5 feet (ft) at four sites, and total scour at piers (pier scour plus contraction scour) exceeded 5 ft at four sites. Debris accumulation increased calculated pier scour at six sites by an average of 2.4 ft. Total scour at abutments exceeded 5 ft at 10 sites. Scour estimates seemed excessive at two piers where equations did not account for channel armoring, and at four abutments where failure of the embankment and attendant channel widening would reduce scour.

  1. A guidance manual for assessing scour potential using the South Carolina bridge-scour envelope curves

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.; Feaster, Toby D.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a series of three field investigations of bridge scour in order to better understand regional trends of scour within South Carolina. The studies collected historic-scour data at approximately 200 riverine bridges including measurements of clear-water abutment, contraction, and pier scour, as well as live-bed contraction and pier scour. These investigations provided valuable insights for regional scour trends and yielded bridge-scour envelope curves for assessing scour potential associated with all components of scour at riverine bridges in South Carolina. The application and limitations of these envelop cureves were documents in three reports, Each repoort addresses different components of bridge scour and this, there is a need to develop an integrated procedure for applying the South Carolina bridge-scour envelope curves. To address this need, the U.S. Geological Survey and the South Carolina Department of Transportation initiated a cooperative effort to develop an integrated procedure and document the method in a guidance manual. In addition to developing the integrated procedure, field data from other investigations outside of South Carolina were used to verify the South Carolina bridge-source envelope curves.

  2. Effects of contrasting wave conditions on scour and drag on pioneer tidal marsh plants

    NASA Astrophysics Data System (ADS)

    Silinski, Alexandra; Heuner, Maike; Troch, Peter; Puijalon, Sara; Bouma, Tjeerd J.; Schoelynck, Jonas; Schröder, Uwe; Fuchs, Elmar; Meire, Patrick; Temmerman, Stijn

    2016-02-01

    Tidal marshes are increasingly valued for protecting shorelines against wave impact, but waves in turn may limit the initial establishment of tidal marsh pioneer plants. In estuaries, the shorelines typically experience a wide range of wave periods, varying from short period wind waves (usually of around 1-2 s in fair weather conditions) to long ship-generated waves, with secondary waves in the order of 2-7 s and primary waves with periods that can exceed 1 min. Waves are known to create sediment scour around, as well as to exert drag forces on obstacles such as seedlings and adults of establishing pioneer plant species. In intertidal systems, these two mechanisms have been identified as main causes for limiting potential colonization of bare tidal flats. In this paper, we want to assess to which extent common quantitative formulae for predicting local scour and drag forces on rigid cylindrical obstacles are valid for the estimation of scour and drag on slightly flexible plants with contrasting morphology, and hence applicable to predict plant establishment and survival under contrasting wave conditions. This has been tested in a full-scale wave flume experiment on two pioneer species (Scirpus maritimus and Scirpus tabernaemontani) and two life stages (seedlings and adults of S. maritimus) as well as on cylindrical reference sticks, which we have put under a range of wave periods (2-10 s), intended to mimic natural wind waves (short period waves) and ship-induced waves (artificial long period waves), at three water levels (5, 20, 35 cm). Our findings suggest that at very shallow water depths (5 cm) particular hydrodynamic conditions are created that lead to drag and scour that deviate from predictions. For higher water levels (20, 35 cm) scour can be well predicted for all wave conditions by an established formula for wave-induced scour around rigid cylinders. Drag forces can be relatively well predicted after introducing experimentally derived drag coefficients that are specific for the different plant morphologies. Best predictions were found for plants with a simple near-cylindrical morphology such as S. tabernaemontani, but are less accurate for plants of more complex structure such as S. maritimus, particularly for long period waves. In conclusion, our study offers valuable insights towards predicting/modelling the conditions under which seedlings and shoots of pioneer species can establish, and elucidates that long waves are more likely to counteract successful plant establishment than natural short waves.

  3. Modification of selected South Carolina bridge-scour envelope curves

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.

    2012-01-01

    Historic scour was investigated at 231 bridges in the Piedmont and Coastal Plain physiographic provinces of South Carolina by the U.S. Geological Survey in cooperation with the South Carolina Department of Transportation. These investigations led to the development of field-derived envelope curves that provided supplementary tools to assess the potential for scour at bridges in South Carolina for selected scour components that included clear-water abutment, contraction, and pier scour, and live-bed pier and contraction scour. The envelope curves consist of a single curve with one explanatory variable encompassing all of the measured field data for the respective scour components. In the current investigation, the clear-water abutment-scour and live-bed contraction-scour envelope curves were modified to include a family of curves that utilized two explanatory variables, providing a means to further refine the assessment of scour potential for those specific scour components. The modified envelope curves and guidance for their application are presented in this report.

  4. Numerical Modeling of Scour at the Head of a Vertical-Wall Breakwater in Waves

    NASA Astrophysics Data System (ADS)

    Baykal, C.; Balcı, H. B.; Sumer, B. M.; Fuhrman, D. R.

    2017-12-01

    This study presents a 3D numerical modeling study on the flow and scour at the head of a vertical-wall breakwater in regular waves. The numerical model utilized in the study is based on that given by Jacobsen (2011). The present model has been applied successfully to the scour and backfilling beneath submarine pipelines by Fuhrman et al. (2014), and around a vertical cylindrical pile mounted on a horizontal plane sediment bed by Baykal et al. (2015, 2017). The model is composed of two main modules. The first module is the hydrodynamic model where Reynolds Averaged Navier Stokes (RANS) equations are solved with a k-ω turbulence closure. The second module is the morphologic model which comprises five sub-modules, namely; bed load, suspended load, sand slide, bed evolution and 3D mesh motion. The model is constructed in open-source CFD toolbox OpenFOAM. In this study, the model is applied to experimental data sets of Sumer and Fredsoe (1997) on the scour around a vertical-wall breakwater with a circular round head. Here, it is given the preliminary results of bed evolution of Test-8 of Sumer and Fredsoe (1997) in which a vertical-wall breakwater head with a width of B=140 mm is subjected to oscillatory flow with Tw=2.0 s and maximum orbital velocity at the bed Um=22cm/s, resulting in a Keulegan-Carpenter number, KC=3.14, close to KC experienced in real-life situations (KC = O(1)). The grain size is d=0.17 mm. The Shields parameter in the test case is given as θc=0.11, larger than the critical value for the initiation of motion implying that the scour is in the live-bed regime. The computational domain used in the simulations has the following dimensions: Length, l=40B, Width, w=20B, and Height, h=2B. The total number of cells is O(105) in the simulations. The scoured bed profile computed at the end of 3 periods of oscillatory flow of Test-8 is given in the figure below. The color scale in the figure is given for the ratio of bed elevation to the width of breakwater. Early results show that bed shear stress amplifications are as high as O(10) near the structure and the scoured bed profile looks similar in shape as observed in the experiments. The simulation results will be presented with special focus on the flow structures around the structure and the time scale of the scour development.

  5. Rippled scour depressions on the inner continental shelf off central California

    USGS Publications Warehouse

    Cacchione, David A.; Drake, David E.; Grant, William D.; Tate, George B.

    1984-01-01

    Side-scan sonar records taken during the recent Coastal Ocean Dynamics Experiment (CODE) show elongate, shore-normal tippled depressions of low relief on the inner continental shelf off central California between Bodega Bay and Point Arena. These features extend up to 2 kin from the coast into water depths of up to 65 m. The proposed mechanism for their generation is storm- generated bottom currents associated with coastal downwelling during the late fall and winter which scour the surficial fine-sand sediment and expose the coarser-sand substrate in the depressions. The zones of most intense erosion and the irregular spacing of the features may be controlled by submerged rock ledges and other prominent coastal features. The large straight-crested ripples within the depres- sions (heights to 40 cm; wavelengths to 1.7 m) are probably formed by large-amplitude, long-period surface waves generated by winter storms.

  6. Evaluation of historical scour at selected stream crossings in Indian

    USGS Publications Warehouse

    Mueller, David S.; Miller, Robert L.; ,

    1993-01-01

    Geophysical data were collected by means of ground-penetrating radar and tuned transducer systems to estimate the historical scour at ten bridges in Indiana. These geophysical data were used to compare and evaluate the results of 13 published pier-scour equations. In order to make this comparison, it was assumed that the measured historical scour was associated with the peak historical discharge. Because the geophysical data were not sufficient to map the lateral extent of the refilled scour hole, local scour could not be isolated from concentration scour. For the evaluation, computed contraction scour and pier scour were used in combination with the existing channel geometry to determine a computed bed elevation. This computed bed elevation was compared to be minimum historic bed elevation estimated from the geophysical data. None of the selected pier-scour equations, when combined with the contraction-scour equation, accurately represented the historical scour at all of the study sites. On the basis of the limited data presented, the equations currently recommended by the Federal Highway Administration provided a combination of accuracy and safety, required by design equations, equal to or better than the other equations evaluated.

  7. Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Keller, E. A.

    2003-12-01

    In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is produced by a boulder-bedrock constriction that rapidly decreases the channel width above the pool by roughly 25 percent. The width constriction creates highly turbulent flow capable of scouring bed material through the pool. The high velocity core that is produced through the pool center appears to be enhanced by the formation of a large eddy directly below the boulder. Values of unit stream power and shear stress indicate that the pool exit is an area of deposition of bed material due to a decrease in tractive force. The presence of a strong transverse velocity gradient suggests that only a portion of the flow is responsible for scouring bed material. After we eliminate the dead water zone, the lowest five percent of the velocity range, patterns of effective width between pools and riffles begin to emerge. The ratio of flow width between adjacent pools and riffles is one measure of flow convergence. At a discharge of 0.5 cms, the ratio of effective width between pools and riffles is roughly 1:1, implying that there is uniform flow with little flow convergence. At a discharge of 5.15 cms the width ratio between the pool and riffle is about 1:3, demonstrating the strong convergent flow patterns at the pool head. The observed effective width relationship suggests that when considering restoration designs, boulders should be placed in areas that replicate natural convergence and divergence patterns in order to maximize pool area and depth.

  8. Prediction and mitigation of scour and scour damage to Vermont bridges.

    DOT National Transportation Integrated Search

    2017-02-20

    Over 300 Vermont bridges were damaged in the 2011 Tropical Storm Irene and many experienced significant scour. Successfully mitigating bridge scour in future flooding events depends on our ability to reliably estimate scour potential, design safe and...

  9. Site Survey of the Martha's Vineyard Coastal Observatory: Backscatter, Grain Size and Temporal Evolution of Rippled Scour Depressions

    NASA Astrophysics Data System (ADS)

    Goff, J. A.; Mayer, L.; Schwab, B.; Traykovski, P.; Wilkins, R.; Jenkins, C.; Kraft, B.; Evans, R.; Buynevich, I.

    2002-12-01

    The Office of Naval Research's Mine Burial Prediction program has chosen the Martha's Vineyard Coastal Observatory (MVCO) as a natural laboratory for experimental observations of object burial by nearshore processes (e.g., bedform migration, scour). In support of this program, the MVCO has been subject to an intensive site survey program, involving, since early 2001: (1) three swath backscatter and/or bathymetry surveys; (2) three high resolution seismic surveys; (3) ultra-high resolution sector-scanning sonar on pole mounts; (4) in situ geotechnical (velocity and resistivity) measurements, (5) grab sampling, and (6) vibracoring. These efforts are concentrated in water depths between ~8 and 18 m, centered on the site of the MVCO permanent node at ~12 m water depth Rippled scour depressions (RSDs) are pervasive within the MVCO. RSDs are ~shore-perpendicular bands of coarse sands separated by overlying fine sands. The term itself implies that the coarse sands are heavily rippled (~0.5-1 m wavelength, ~0.1 m amplitude) and slightly depressed relative to the fine sands which, in the MVCO, are generally just a few 10's of cm thick. The RSDs are clearly evident on sidescan data as bands of high backscatter. For the most part, grain size measurements confirm a strong positive correspondence between mean grain size and backscatter intensity. However, a critical exception is seen in deeper water where, well within the area of fine sands, backscatter increases noticeably as mean grain size decreases from ~150μ to ~130μ. Topographic expression related to the RSDs is confined primarily to evident scour depressions at the edges. The RSDs are highly asymmetric: backscatter is higher, the coarse/fine transition is more sharply defined, and the scour depression is deeper on one side than the other. This pattern changes within the survey: the higher backscatter edge is always to the west in the western part of the survey, and vice versa to the east. The strike of the RSDs also changes, from being slightly east of north in the western part of the survey to slightly west of north to the east. The MVCO site survey work establishes a baseline set of observations against which physical changes in the seafloor with time can be measured. Early evidence of significant change has been provided by comparison of the first two sidescan surveys, which indicates a shift in the RSD boundaries by as much as 50 m between February and September of 2001. Continued seafloor evolution is evidenced by the August 2002 grab sampling and sector scanning sonar. This dynamic setting will continue to be monitored by additional swath mapping and sampling in conjunction with the planned winter 2003/2004 mine burial experiment.

  10. Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum

    PubMed Central

    Fraser, Ceridwen I.; Nikula, Raisa; Spencer, Hamish G.; Waters, Jonathan M.

    2009-01-01

    The end of the Last Glacial Maximum (LGM) dramatically reshaped temperate ecosystems, with many species moving poleward as temperatures rose and ice receded. Whereas reinvading terrestrial taxa tracked melting glaciers, marine biota recolonized ocean habitats freed by retreating sea ice. The extent of sea ice in the Southern Hemisphere during the LGM has, however, yet to be fully resolved, with most palaeogeographic studies suggesting only minimal or patchy ice cover in subantarctic waters. Here, through population genetic analyses of the widespread Southern Bull Kelp (Durvillaea antarctica), we present evidence for persistent ice scour affecting subantarctic islands during the LGM. Using mitochondrial and chloroplast genetic markers (COI; rbcL) to genetically characterize some 300 kelp samples from 45 Southern Ocean localities, we reveal a remarkable pattern of recent recolonization in the subantarctic. Specifically, in contrast to the marked phylogeographic structure observed across coastal New Zealand and Chile (10- to 100-km scales), subantarctic samples show striking genetic homogeneity over vast distances (10,000-km scales), with a single widespread haplotype observed for each marker. From these results, we suggest that sea ice expanded further and ice scour during the LGM impacted shallow-water subantarctic marine ecosystems more extensively than previously suggested. PMID:19204277

  11. Character, distribution, and ecological significance of storm wave-induced scour in Rhode Island Sound, USA

    USGS Publications Warehouse

    McMullen, Katherine Y.; Poppe, Lawrence J.; Parker, Castle E.

    2015-01-01

    Multibeam bathymetry, collected during NOAA hydrographic surveys in 2008 and 2009, is coupled with USGS data from sampling and photographic stations to map the seabed morphology and composition of Rhode Island Sound along the US Atlantic coast, and to provide information on sediment transport and benthic habitats. Patchworks of scour depressions cover large areas on seaward-facing slopes and bathymetric highs in the sound. These depressions average 0.5-0.8 m deep and occur in water depths reaching as much as 42 m. They have relatively steep well-defined sides and coarser-grained floors, and vary strongly in shape, size, and configuration. Some individual scour depressions have apparently expanded to combine with adjacent depressions, forming larger eroded areas that commonly contain outliers of the original seafloor sediments. Where cobbles and scattered boulders are present on the depression floors, the muddy Holocene sands have been completely removed and the winnowed relict Pleistocene deposits exposed. Low tidal-current velocities and the lack of obstacle marks suggest that bidirectional tidal currents alone are not capable of forming these features. These depressions are formed and maintained under high-energy shelf conditions owing to repetitive cyclic loading imposed by high-amplitude, long-period, storm-driven waves that reduce the effective shear strength of the sediment, cause resuspension, and expose the suspended sediments to erosion by wind-driven and tidal currents. Because epifauna dominate on gravel floors of the depressions and infauna are prevalent in the finer-grained Holocene deposits, it is concluded that the resultant close juxtaposition of silty sand-, sand-, and gravel-dependent communities promotes regional faunal complexity. These findings expand on earlier interpretations, documenting how storm wave-induced scour produces sorted bedforms that control much of the benthic geologic and biologic diversity in Rhode Island Sound.

  12. Channel formation by flow stripping: large-scale scour features along the Monterey East Channel and their relation to sediment waves

    USGS Publications Warehouse

    Fildani, A.; Normark, W.R.; Kostic, S.; Parker, G.

    2006-01-01

    The Monterey East system is formed by large-scale sediment waves deposited as a result of flows stripped from the deeply incised Monterey fan valley (Monterey Channel) at the apex of the Shepard Meander. The system is dissected by a linear series of steps that take the form of scour-shaped depressions ranging from 3·5 to 4·5 km in width, 3 to 6 km in length and from 80 to 200 m in depth. These giant scours are aligned downstream from a breech in the levee on the southern side of the Shepard Meander. The floor of the breech is only 150 m above the floor of the Monterey fan valley but more than 100 m below the levee crests resulting in significant flow stripping. Numerical modeling suggests that the steps in the Monterey East system were created by Froude-supercritical turbidity currents stripped from the main flow in the Monterey channel itself. Froude-supercritical flow over an erodible bed can be subject to an instability that gives rise to the formation of cyclic steps, i.e. trains of upstream-migrating steps bounded upstream and downstream by hydraulic jumps in the flow above them. The flow that creates these steps may be net-erosional or net-depositional. In the former case it gives rise to trains of scours such as those in the Monterey East system, and in the latter case it gives rise to the familiar trains of upstream-migrating sediment waves commonly seen on submarine levees. The Monterey East system provides a unique opportunity to introduce the concept of cyclic steps in the submarine environment to study processes that might result in channel initiation on modern submarine fans.

  13. Origin of the scaling laws of sediment transport

    NASA Astrophysics Data System (ADS)

    Ali, Sk Zeeshan; Dey, Subhasish

    2017-01-01

    In this paper, we discover the origin of the scaling laws of sediment transport under turbulent flow over a sediment bed, for the first time, from the perspective of the phenomenological theory of turbulence. The results reveal that for the incipient motion of sediment particles, the densimetric Froude number obeys the `(1 + σ)/4' scaling law with the relative roughness (ratio of particle diameter to approach flow depth), where σ is the spectral exponent of turbulent energy spectrum. However, for the bedforms, the densimetric Froude number obeys a `(1 + σ)/6' scaling law with the relative roughness in the enstrophy inertial range and the energy inertial range. For the bedload flux, the bedload transport intensity obeys the `3/2' and `(1 + σ)/4' scaling laws with the transport stage parameter and the relative roughness, respectively. For the suspended load flux, the non-dimensional suspended sediment concentration obeys the `-Z ' scaling law with the non-dimensional vertical distance within the wall shear layer, where Z is the Rouse number. For the scour in contracted streams, the non-dimensional scour depth obeys the `4/(3 - σ)', `-4/(3 - σ)' and `-(1 + σ)/(3 - σ)' scaling laws with the densimetric Froude number, the channel contraction ratio (ratio of contracted channel width to approach channel width) and the relative roughness, respectively.

  14. Evaluation of Maryland abutment scour equation through selected threshold velocity methods

    USGS Publications Warehouse

    Benedict, S.T.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Maryland State Highway Administration, used field measurements of scour to evaluate the sensitivity of the Maryland abutment scour equation to the critical (or threshold) velocity variable. Four selected methods for estimating threshold velocity were applied to the Maryland abutment scour equation, and the predicted scour to the field measurements were compared. Results indicated that performance of the Maryland abutment scour equation was sensitive to the threshold velocity with some threshold velocity methods producing better estimates of predicted scour than did others. In addition, results indicated that regional stream characteristics can affect the performance of the Maryland abutment scour equation with moderate-gradient streams performing differently from low-gradient streams. On the basis of the findings of the investigation, guidance for selecting threshold velocity methods for application to the Maryland abutment scour equation are provided, and limitations are noted.

  15. Evaluation of pier-scour measurement methods and pier-scour predictions with observed scour measurements at selected bridge sites in New Hampshire, 1995-98

    DOT National Transportation Integrated Search

    2000-11-01

    In a previous study, 44 of 48 bridge sites examined in New Hampshire were categorized as scour critical. This report summarizes research conducted to evaluate pier-scour measurement methods and predictions at many of these sites. This evaluation incl...

  16. The South Carolina bridge-scour envelope curves

    USGS Publications Warehouse

    Benedict, Stephen T.; Feaster, Toby D.; Caldwell, Andral W.

    2016-09-30

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a series of three field investigations to evaluate historical, riverine bridge scour in the Piedmont and Coastal Plain regions of South Carolina. These investigations included data collected at 231 riverine bridges, which lead to the development of bridge-scour envelope curves for clear-water and live-bed components of scour. The application and limitations of the South Carolina bridge-scour envelope curves were documented in four reports, each report addressing selected components of bridge scour. The current investigation (2016) synthesizes the findings of these previous reports into a guidance manual providing an integrated procedure for applying the envelope curves. Additionally, the investigation provides limited verification for selected bridge-scour envelope curves by comparing them to field data collected outside of South Carolina from previously published sources. Although the bridge-scour envelope curves have limitations, they are useful supplementary tools for assessing the potential for scour at riverine bridges in South Carolina.

  17. High rates of bedload transport measured from infilling rate of large strudelscour craters in the Beaufort Sea, Alaska

    USGS Publications Warehouse

    Reimnitz, Erk; Kempema, E.W.

    1982-01-01

    Strudel scours are craters as much as 20 m wide and 4 m deep, that are excavated by vertical drainage flow during the yearly spring flooding of vast reaches of fast ice surrounding arctic deltas; they form at a rate of about 2.5 km^-2 yr^-1. Monitoring two such craters in the Beaufort Sea, we found that in relatively unprotected sites they fill in by deposition from bedload in 2 to 3 years. Net westward sediment transport results in sand layers dipping at the angle of repose westward into the strudel-scour crater, whereas the west wall of the crater remains steep to vertical. Initially the crater traps almost all bedload: sand, pebbles, and organic detritus; as infilling progresses, the materials are increasingly winnowed, and bypassing must occur. Over a 20-m-wide sector, an exposed strudel scour trapped 360 m3 of bedload during two seasons; this infilling represents a bedload transport rate of 9 m3 yr^-1 m^-1. This rate should be applicable to a 4.5-km-wide zone with equal exposure and similar or shallower depth. Within this zone, the transport rate is 40,500 m3 yr^-1, similar to estimated longshore transport rates on local barrier beaches. On the basis of the established rate of cut and fill, all the delta-front deposits should consist of strudel-scour fill. Vibracores typically show dipping interbedded sand and lenses of organic material draped over very steep erosional contacts, and an absence of horizontal continuity of strata--criteria that should uniquely identify high-latitude deltaic deposits. Given a 2- to 3-year lifespan, most strudel scours seen in surveys must be old. The same holds true for ice gouges and other depressions not adjusted to summer waves and currents, although these features record events of only the past few years. In view of such high rates of bottom reworking of the shallow shelf, any human activities creating turbidity, such as dredging, would have little effect on the environment. However, huge amounts of transitory material trapped by long causeways planned for offshore development would result in major changes in the environment.

  18. Bathymetric surveys at highway bridges crossing the Missouri River in Kansas City, Missouri, using a multibeam echo sounder, 2010

    USGS Publications Warehouse

    Huizinga, Richard J.

    2010-01-01

    Bathymetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, on the Missouri River in the vicinity of nine bridges at seven highway crossings in Kansas City, Missouri, in March 2010. A multibeam echo sounder mapping system was used to obtain channel-bed elevations for river reaches that ranged from 1,640 to 1,800 feet long and extending from bank to bank in the main channel of the Missouri River. These bathymetric scans will be used by the Missouri Department of Transportation to assess the condition of the bridges for stability and integrity with respect to bridge scour. Bathymetric data were collected around every pier that was in water, except those at the edge of the water or in extremely shallow water, and one pier that was surrounded by a large debris raft. A scour hole was present at every pier for which bathymetric data could be obtained. The scour hole at a given pier varied in depth relative to the upstream channel bed, depending on the presence and proximity of other piers or structures upstream from the pier in question. The surveyed channel bed at the bottom of the scour hole was between 5 and 50 feet above bedrock. At bridges with drilled shaft foundations, generally there was exposure of the upstream end of the seal course and the seal course often was undermined to some extent. At one site, the minimum elevation of the scour hole at the main channel pier was about 10 feet below the bottom of the seal course, and the sides of the drilled shafts were evident in a point cloud visualization of the data at that pier. However, drilled shafts generally penetrated 20 feet into bedrock. Undermining of the seal course was evident as a sonic 'shadow' in the point cloud visualization of several of the piers. Large dune features were present in the channel at nearly all of the surveyed sites, as were numerous smaller dunes and many ripples. Several of the sites are on or near bends in the river, resulting in a deep channel thalweg on the outside of the bend at these sites. At structure A5817 on State Highway 269, bedrock exposure was evident in the channel thalweg. The surveyed channel bed at a given site from this study generally was lower than the channel bed obtained during Level II scour assessments in 2002. At piers with well-defined scour holes, the frontal slopes of the holes were somewhat less than recommended values in the literature, and the shape of the holes appeared to be affected by the movement of dune features into and around the holes. The channel bed at all of the surveyed sites was lower than the channel bed at the time of construction, and an analysis of measurement data from the U.S. Geological Survey continuous streamflow-gaging station on the Missouri River at Kansas City, Missouri (station number 06893000), confirmed a lowering trend of the channel-bed elevations with time at the gaging station. The size of the scour holes observed at the surveyed sites likely was affected by the moderate flood conditions on the Missouri River at the time of the surveys. The scour holes likely would be substantially smaller during conditions of low flow.

  19. Development of bridge-scour instrumentation for inspection and maintenance personnel

    USGS Publications Warehouse

    Mueller, David S.; Landers, Mark N.; ,

    1993-01-01

    Inspecting bridges and monitoring scour during high flow can improve public transportation safety by providing early identification of scour and stream stability problems at bridges. Most bridge-inspection data are collected during low flow, when scour holes may have refilled. More than 25 percent of the States that responded to a questionnaire identified lack of adequate methodology and/or equipment as reasons for not collecting scour data during high-flow conditions. Therefore, the U.S. Geological Survey (USGS), in cooperation with the Federal Highway Administration, has begun to develop instrumentation for measuring scour that could be used by inspection and maintenance personnel during high-flow conditions. A variety of instruments and techniques for measuring scour were tested and evaluated in real-time bridge-scour data-collection studies by the USGS. In the National Scour study, fathometers were found to be superior to sounding weights and will be the primary bed-measuring instrument. The ability of low-cost fathometers and fish finders to locate the bed accurately is being evaluated. Simple and efficient methods for deploying the transducer during floods are also important for a successful measurement. The information and additional testing are being used to design new, portable scour-measuring systems.

  20. Two-Dimensional Depth-Averaged Circulation Model CMS-M2D: Version 3.0, Report 2, Sediment Transport and Morphology Change

    DTIC Science & Technology

    2006-08-01

    demonstrates symmetry of the methodology and capability to represent complex configurations of non -erodible cells. The bathymetric configuration (Figure...Army Engineer Rsearch and Development Center, Coastal and Hydraulics Laboratory. The upgrades chiefly concern capability to calculate sediment...hard bottom ( non -erodible bottom) to represent limestone and rocking coasts, as well as scour blankets at jetties, and (2) bottom avalanching to limit

  1. Multi-Hazard Assessment of Scour Damaged Bridges with UAS-Based Measurements

    NASA Astrophysics Data System (ADS)

    Özcan, O.; Ozcan, O.

    2017-12-01

    Flood and stream induced scour occurring in bridge piers constructed on rivers is one of the mostly observed failure reasons in bridges. Scour induced failure risk in bridges and determination of the alterations in bridge safety under seismic effects has the ultimate importance. Thus, for the determination of bridge safety under the scour effects, the scour amount under bridge piers should be designated realistically and should be tracked and updated continuously. Hereby, the scour induced failures in bridge foundation systems will be prevented and bridge substructure design will be conducted safely. In this study, in order to measure the amount of scour in bridge load bearing system (pile foundations and pile abutments) and to attain very high definition 3 dimensional models of river flood plain for the flood analysis, unmanned aircraft system (UAS) based measurement methods were implemented. UAS based measurement systems provide new and practical approach and bring high precision and reliable solutions considering recent measurement systems. For this purpose, the reinforced concrete (RC) bridge that is located on Antalya Boğaçayı River, Turkey and that failed in 2003 due to flood-induced scour was selected as the case study. The amount of scour occurred in bridge piers and piles was determined realistically and the behavior of bridge piers under scour effects was investigated. Future flood effects and the resultant amount of scour was determined with HEC-RAS software by using digital surface models that were obtained at regular intervals using UAS for the riverbed. In the light of the attained scour measurements and expected scour after a probable flood event, the behavior of scour damaged RC bridge was investigated by pushover and time history analyses under lateral and vertical seismic loadings. In the analyses, the load and displacement capacity of bridge was observed to diminish significantly under expected scour. Thus, the deterioration in multi hazard performance of the bridge was monitored significantly in the light of updated bridge load bearing system capacity. Regarding the case study, UAS based and continuously updated bridge multi hazard risk detection system was established that can be used for bridges located on riverbed.

  2. Developing a bridge scour warning system : technical summary.

    DOT National Transportation Integrated Search

    2016-09-01

    Flooding and scour can be major threats to the integrity of bridges. During flood events, : scour at bridge piers and abutments can undermine the foundations of the bridge, causing : significant damage or even total structure loss. Because scour occu...

  3. Developing a bridge scour warning system : final report.

    DOT National Transportation Integrated Search

    2016-09-01

    Flooding and scour can be major threats to the integrity of bridges. During flood events, scour at bridge piers : and abutments can undermine the foundations of the bridge, causing significant damage or even total structure loss. : Because scour occu...

  4. Development, verification, and application of a simplified method to estimate total-streambed scour at bridge sites in Illinois

    USGS Publications Warehouse

    Holmes, Robert R.; Dunn, Chad J.

    1996-01-01

    A simplified method to estimate total-streambed scour was developed for application to bridges in the State of Illinois. Scour envelope curves, developed as empirical relations between calculated total scour and bridge-site chracteristics for 213 State highway bridges in Illinois, are used in the method to estimate the 500-year flood scour. These 213 bridges, geographically distributed throughout Illinois, had been previously evaluated for streambed scour with the application of conventional hydraulic and scour-analysis methods recommended by the Federal Highway Administration. The bridge characteristics necessary for application of the simplified bridge scour-analysis method can be obtained from an office review of bridge plans, examination of topographic maps, and reconnaissance-level site inspection. The estimates computed with the simplified method generally resulted in a larger value of 500-year flood total-streambed scour than with the more detailed conventional method. The simplified method was successfully verified with a separate data set of 106 State highway bridges, which are geographically distributed throughout Illinois, and 15 county highway bridges.

  5. Scour in supercritical flow

    DOT National Transportation Integrated Search

    1988-10-01

    Scour in supercritical flow is one extreme aspect of the effects of velocity on scour. Analysis of the case of scour in a long contraction shows that if all other independent variables are kept constant (1) some finite velocity is necessary to have a...

  6. Results of repeat bathymetric and velocimetric surveys at the Amelia Earhart Bridge on U.S. Highway 59 over the Missouri River at Atchison, Kansas, 2009-2013

    USGS Publications Warehouse

    Huizinga, Richard J.

    2013-01-01

    Bathymetric and velocimetric data were collected six times by the U.S. Geological Survey, in cooperation with the Kansas Department of Transportation, in the vicinity of Amelia Earhart Bridge on U.S. Highway 59 over the Missouri River at Atchison, Kansas. A multibeam echosounder mapping system and an acoustic Doppler current meter were used to obtain channel-bed elevations and depth-averaged velocities for a river reach approximately 2,300 feet long and extending across the active channel of the Missouri River. The bathymetric and velocimetric surveys provide a “snapshot” of the channel conditions at the time of each survey, and document changes to the channel-bed elevations and velocities during the course of construction of a new bridge for U.S. Highway 59 downstream from the Amelia Earhart Bridge. The baseline survey in June 2009 revealed substantial scour holes existed at the railroad bridge piers upstream from and at pier 10 of the Amelia Earhart Bridge, with mostly uniform flow and velocities throughout the study reach. After the construction of a trestle and cofferdam on the left (eastern) bank downstream from the Amelia Earhart Bridge, a survey on June 2, 2010, revealed scour holes with similar size and shape as the baseline for similar flow conditions, with slightly higher velocities and a more substantial contraction of flow near the bridges than the baseline. Subsequent surveys during flooding conditions in June 2010 and July 2011 revealed substantial scour near the bridges compared to the baseline survey caused by the contraction of flow; however, the larger flood in July 2011 resulted in less scour than in June 2010, partly because the removal of the cofferdam for pier 5 of the new bridge in March 2011 diminished the contraction near the bridges. Generally, the downstream part of the study reach exhibited varying amounts of scour in all of the surveys except the last when compared to the baseline. During the final survey, velocities throughout the study area were the lowest of all the surveys, resulting in overall deposition throughout the reach compared to the baseline survey—despite the presence of the trestle in the final survey. The multiple surveys at the Amelia Earhart Bridge document the effects of moderate- to high-flow conditions on scour, compounded by the effects of adding and removing a constriction in the channel. Additional factors such as pier shape and angle of approach flow also were documented.

  7. Bridge Failure Due to Inadequate Design of Bed Protection

    NASA Astrophysics Data System (ADS)

    Gupta, Yogita; Kaur, Suneet; Dindorkar, Nitin

    2017-12-01

    The shallow foundation is generally provided on non-erodible strata or where scour depth is less. It is also preferable for low perennial flow or standing water condition. In the present case study shallow foundation is adopted for box type bridge. The total length of the bridge is 132.98 m, consisting of eight unit of RCC box. Each unit is composed of three cell box. The bottom slab of box unit is acted as raft foundation, founded 500 mm below ground level. River bed protection work is provided on both upstream and downstream side along the whole length of the bridge as it is founded above scour level. The bridge collapsed during the monsoon just after two years of service. The present paper explains the cause of failure. This study on failure of the bridge illustrates the importance of bridge inspection before and after monsoon period and importance of the timely maintenance. Standard specifications of Indian Road Congress for the river bed protection work are also included.

  8. Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method

    NASA Astrophysics Data System (ADS)

    Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun

    2017-10-01

    Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.

  9. U.S. Geological Survey - Virginia Department of Transportation: Bridge scour pilot study

    USGS Publications Warehouse

    Austin, Samuel H.

    2018-02-27

    BackgroundCost effective and safe highway bridge designs are required to ensure the long-term sustainability of Virginia’s road systems. The streamflows that, over time, scour streambed sediments from bridge piers inherently affect bridge safety and design costs. To ensure safety, bridge design must anticipate streambed scour at bridge piers over the lifespan of a bridge. Until recently Federal Highway Administration (FHWA) guidance provided only for scour estimates of granular, noncohesive, highly erosive material yielding overestimates of scour potential in instances when streambed materials offer some resistance to scour. This study seeks to estimate stream power and streambed scour for these more resistive sites, with bridge piers potentially established in cohesive soil or erodible rock. This new knowledge may provide significant construction cost savings while ensuring design and construction of safe highway bridges.

  10. Autonomous measurements of bridge pier and abutment scour using motion-sensing radio transmitters : technical transfer summary.

    DOT National Transportation Integrated Search

    2010-01-01

    Scour around the foundations (piers and abutments) of a bridge due to river flow is often referred to as bridge scour. Bridge scour is a problem of national scope that has dramatic impacts on economics and safety of the traveling public. Bridge...

  11. Spatial patterns of streambed morphology around woody debris: flume experiments and field observations on the effects of woody debris on streambed morphology

    NASA Astrophysics Data System (ADS)

    Leung, V.; Montgomery, D. R.

    2010-12-01

    The interactions between woody debris, fluid flow and sediment transport in rivers play a fundamental role in ecogeomorphology, affecting channel roughness, streambed morphology, and sediment transport and storage. In particular, woody debris increases the hydraulic and topographic complexity in rivers, leading to a greater diversity of aquatic habitats and an increase in the number of large pools that are important fish habitat and breeding grounds. In the past decade, engineered logjams have become an increasingly used tool in river management for simultaneously decreasing the rate of riverbank migration and improving aquatic habitat. Sediment deposits around woody debris build up riverbanks and counteract bank migration caused by erosion. Previous experiments of flow visualization around model woody debris suggest the amount of sediment scour and deposition are primarily related to the presence of roots and the obstructional area of the woody debris. We present the results of field surveys and sediment transport experiments of streambed morphology around stationary woody debris on a mobile bed. These experiments test the effects of root presence, root geometry and log orientation of individual stationary trees on streambed morphology. The flume contains a deformable sediment bed of medium sand, and has subcritical and turbulent flow, corresponding to flow conditions found in nature. Field surveys on the Hoh River, WA, measure the local streambed morphology around woody debris (e.g. pool and gravel-bar length, width and depth), as well as woody debris characteristics (e.g. tree diameter, tree length, root diameter and root depth). We quantified the amount of local sediment scour and deposition around woody debris of varying sizes, geometries and orientations relative to flow. We find that: 1) the presence of roots on woody debris leads to greater areas of both sediment scour and deposition; and 2) the amount of sediment scour and deposition are related to the root cross-sectional area, oriented orthogonal to flow. Sediment transport around woody debris is episodic and occurs during flood events, making it difficult to take active measurements. A combined methodology of flume experiments and fieldwork allows for a general understanding of sediment transport around woody debris that includes the complexities of natural systems. A better understanding of the underlying sediment physics and hydraulics around naturally occurring woody debris in rivers can provide guidance and criteria for use in river restoration and engineering as well as scientific insights into a complex interdisciplinary problem.

  12. Simulation of Water-Surface Elevations and Velocity Distributions at the U.S. Highway 13 Bridge over the Tar River at Greenville, North Carolina, Using One- and Two-Dimensional Steady-State Hydraulic Models

    USGS Publications Warehouse

    Wagner, Chad R.

    2007-01-01

    The use of one-dimensional hydraulic models currently is the standard method for estimating velocity fields through a bridge opening for scour computations and habitat assessment. Flood-flow contraction through bridge openings, however, is hydrodynamically two dimensional and often three dimensional. Although there is awareness of the utility of two-dimensional models to predict the complex hydraulic conditions at bridge structures, little guidance is available to indicate whether a one- or two-dimensional model will accurately estimate the hydraulic conditions at a bridge site. The U.S. Geological Survey, in cooperation with the North Carolina Department of Transportation, initiated a study in 2004 to compare one- and two-dimensional model results with field measurements at complex riverine and tidal bridges in North Carolina to evaluate the ability of each model to represent field conditions. The field data consisted of discharge and depth-averaged velocity profiles measured with an acoustic Doppler current profiler and surveyed water-surface profiles for two high-flow conditions. For the initial study site (U.S. Highway 13 over the Tar River at Greenville, North Carolina), the water-surface elevations and velocity distributions simulated by the one- and two-dimensional models showed appreciable disparity in the highly sinuous reach upstream from the U.S. Highway 13 bridge. Based on the available data from U.S. Geological Survey streamgaging stations and acoustic Doppler current profiler velocity data, the two-dimensional model more accurately simulated the water-surface elevations and the velocity distributions in the study reach, and contracted-flow magnitudes and direction through the bridge opening. To further compare the results of the one- and two-dimensional models, estimated hydraulic parameters (flow depths, velocities, attack angles, blocked flow width) for measured high-flow conditions were used to predict scour depths at the U.S. Highway 13 bridge by using established methods. Comparisons of pier-scour estimates from both models indicated that the scour estimates from the two-dimensional model were as much as twice the depth of the estimates from the one-dimensional model. These results can be attributed to higher approach velocities and the appreciable flow angles at the piers simulated by the two-dimensional model and verified in the field. Computed flood-frequency estimates of the 10-, 50-, 100-, and 500-year return-period floods on the Tar River at Greenville were also simulated with both the one- and two-dimensional models. The simulated water-surface profiles and velocity fields of the various return-period floods were used to compare the modeling approaches and provide information on what return-period discharges would result in road over-topping and(or) pressure flow. This information is essential in the design of new and replacement structures. The ability to accurately simulate water-surface elevations and velocity magnitudes and distributions at bridge crossings is essential in assuring that bridge plans balance public safety with the most cost-effective design. By compiling pertinent bridge-site characteristics and relating them to the results of several model-comparison studies, the framework for developing guidelines for selecting the most appropriate model for a given bridge site can be accomplished.

  13. Experiments and Analyses of the Formation of Erosional Scour Marks with Implications to the Origin of the Martian Outflow Channels

    NASA Technical Reports Server (NTRS)

    Komar, P. D.

    1985-01-01

    The objectives of the present study of erosional scour marks on Mars involve flume experiments to examine the details of scour patterns around a variety of obstacle shapes, and to review the engineering literature on the scour around bridge piers to determine whether those results might provide a quantitative evaluation of the flows which formed the scour marks in the outflow channels. The flume experiments completed to date examined the scour which develops around a circular island and around a streamlined island (having a lemniscate shape with length/width = 3.0). The islands themselves are non-erodable solids, but are surrounded by a fine-grained sediment bed. The scour patterns which occur around the circular island agree with those produced by prototype bridge piers and by scale-model piers employed in the engineering studies. The scour patterns around the model streamlined islands correspond extremely well with those seen adjacent to the streamlined islands on Mars, providing still more confirmation for a water-flow origin.

  14. Vulnerability of bridges to scour: insights from an international expert elicitation workshop

    NASA Astrophysics Data System (ADS)

    Lamb, Rob; Aspinall, Willy; Odbert, Henry; Wagener, Thorsten

    2017-08-01

    Scour (localised erosion) during flood events is one of the most significant threats to bridges over rivers and estuaries, and has been the cause of numerous bridge failures, with damaging consequences. Mitigation of the risk of bridges being damaged by scour is therefore important to many infrastructure owners, and is supported by industry guidance. Even after mitigation, some residual risk remains, though its extent is difficult to quantify because of the uncertainties inherent in the prediction of scour and the assessment of the scour risk. This paper summarises findings from an international expert workshop on bridge scour risk assessment that explores uncertainties about the vulnerability of bridges to scour. Two specialised structured elicitation methods were applied to explore the factors that experts in the field consider important when assessing scour risk and to derive pooled expert judgements of bridge failure probabilities that are conditional on a range of assumed scenarios describing flood event severity, bridge and watercourse types and risk mitigation protocols. The experts' judgements broadly align with industry good practice, but indicate significant uncertainty about quantitative estimates of bridge failure probabilities, reflecting the difficulty in assessing the residual risk of failure. The data and findings presented here could provide a useful context for the development of generic scour fragility models and their associated uncertainties.

  15. Multibeam observations of mine burial near Clearwater, FL, including comparisons to predictions of wave-induced burial

    USGS Publications Warehouse

    Wolfson, M.L.; Naar, D.F.; Howd, P.A.; Locker, S.D.; Donahue, B.T.; Friedrichs, Carl T.; Trembanis, A.C.; Richardson, M.D.; Wever, T.F.

    2007-01-01

    A Kongsberg Simrad EM 3000 multibeam sonar (Kongsberg Simrad, Kongsberg, Norway) was used to conduct a set of six repeat high-resolution bathymetric surveys west of Indian Rocks Beach (IRB), just to the south of Clearwater, FL, between January and March 2003, to observe in situ scour and burial of instrumented inert mines and mine-like cylinders. Three closely located study sites were chosen: two fine-sand sites, a shallow one located in ??? 13 m of water depth and a deep site located in ???14 m of water depth; and a coarse-sand site in ???13 m. Results from these surveys indicate that mines deployed in fine sand are nearly buried within two months of deployment (i.e., they sunk 74.5% or more below the ambient seafloor depth). Mines deployed in coarse sand showed a lesser amount of scour, burying until they present roughly the same hydrodynamic roughness as the surrounding rippled bedforms. These data were also used to test the validity of the Virginia Institute of Marine Science (VIMS, Gloucester Point, VA) 2-D burial model. The model worked well in areas of fine sand, sufficiently predicting burial over the course of the experiment. In the area of coarse sand, the model greatly overpredicted the amount of burial. This is believed to be due to the presence of rippled bedforms around the mines, which affect local bottom morphodynamics and are not accounted for in the model, an issue currently being addressed by the modelers. This paper focuses specifically on two instrumented mines: an acoustic mine located in fine sand and an optical instrumented mine located in coarse sand. ?? 2007 IEEE.

  16. Hydrographic surveys of the Missouri and Yellowstone Rivers at selected bridges and through Bismarck, North Dakota, during the 2011 flood

    USGS Publications Warehouse

    Densmore, Brenda K.; Strauch, Kellan R.; Dietsch, Benjamin J.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the North Dakota Department of Transportation and the North Dakota State Water Commission, completed hydrographic surveys at six Missouri River bridges and one Yellowstone River bridge during the 2011 flood of the Missouri River system. Bridges surveyed are located near the cities of Cartwright, Buford, Williston, Washburn, and Bismarck, N. Dak. The river in the vicinity of the bridges and the channel through the city of Bismarck, N. Dak., were surveyed. The hydrographic surveys were conducted using a high-resolution multibeam echosounder (MBES), the RESON SeaBatTM 7125, during June 6–9 and June 28–July 9, 2011. The surveyed area at each bridge site extended 820 feet upstream from the bridge to 820 feet downstream from the bridge. The surveyed reach through Bismarck consisted of 18 miles of the main channel wherever depth was sufficient. Results from these emergency surveys aided the North Dakota Department of Transportation in evaluating the structural integrity of the bridges during high-flow conditions. In addition, the sustained high flows made feasible the surveying of a large section of the normally shallow channel with the MBES. In general, results from sequential bridge surveys showed that as discharge increased between the first and second surveys at a given site, there was a general trend of channel scour. Locally, complex responses of scour in some areas and deposition in other areas of the channel were identified. Similarly, scour around bridge piers also showed complex responses to the increase in flow between the two surveys. Results for the survey area of the river channel through Bismarck show that, in general, scour occurred around river structures or where the river has tight bends and channel narrowing. The data collected during the surveys are provided electronically in two different file formats: comma delimited text and CARIS Spatial ArchiveTM (CSARTM) format.

  17. Megascours: the morphodynamics of large river confluences

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Sambrook Smith, Greg; Nicholas, Andrew; Best, Jim; Bull, Jon; Vardy, Mark; Goodbred, Steve; Haque Sarker, Maminul

    2015-04-01

    River confluences are wildly acknowledged as crucial controlling influences upon upstream and downstream morphology and thus landscape evolution. Despite their importance very little is known about their evolution and morphodynamics, and there is a consensus in the literature that confluences represent fixed, nodal points in the fluvial network. Confluences have been shown to generate substantial bed scours around five times greater than mean depth. Previous research on the Ganges-Jamuna junction has shown large river confluences can be highly mobile, potentially 'combing' bed scours across a large area, although the extent to which this is representative of large confluences in general is unknown. Understanding the migration of confluences and associated scours is important for multiple applications including: designing civil engineering infrastructure (e.g. bridges, laying cable, pipelines, etc.), sequence stratigraphic interpretation for reconstruction of past environmental and sea level change, and in the hydrocarbon industry where it is crucial to discriminate autocyclic confluence scours from widespread allocyclic surfaces. Here we present a wide-ranging global review of large river confluence planforms based on analysis of Landsat imagery from 1972 through to 2014. This demonstrates there is an array of confluence morphodynamic types: from freely migrating confluences such as the Ganges-Jamuna, through confluences migrating on decadal timescales and fixed confluences. Along with data from recent geophysical field studies in the Ganges-Brahmaputra-Meghna basin we propose a conceptual model of large river confluence types and hypothesise how these influence morphodynamics and preservation of 'megascours' in the rock record. This conceptual model has implications for sequence stratigraphic models and the correct identification of surfaces related to past sea level change. We quantify the abundance of mobile confluence types by classifying all large confluences in the Amazon and Ganges-Brahmaputra-Meghna basins, showing these two basins have contrasting confluence morphodynamics. For the first time we show large river confluences have multiple scales of planform adjustment with important implications for infrastructure and interpretation of the rock record.

  18. Hydrological response to timber harvest in northern Idaho: Implications for channel scour and persistence of salmonids

    USGS Publications Warehouse

    Tonina, D.; Luce, C.H.; Rieman, B.; Buffington, J.M.; Goodwin, P.; Clayton, S.R.; Ali, S. Md; Barry, J.J.; Berenbrock, C.

    2008-01-01

    The potential for forest harvest to increase snowmelt rates in maritime snow climates is well recognized. However, questions still exist about the magnitude of peak flow increases in basins larger than 10 km2 and the geomorphic and biological consequences of these changes. In this study, we used observations from two nearly adjacent small basins (13 and 30 km2) in the Coeur d'Alene River basin, one with recent, relatively extensive, timber harvest, and the other with little disturbance in the last 50 years to explore changes in peak flows due to timber harvest and their potential effects on fish. Peak discharge was computed for a specitic rain-on-snow event using a series of physical models that linked predicted values of snowmelt input to a runoff-routing model. Predictions indicate that timber harvest caused a 25% increase in the peak flow of the modelled event and increased the frequency of events of this magnitude from a 9-year recurrence interval to a 3-6-year event. These changes in hydrologic regime, with larger discharges at shorter recurrence intervals, are predicted to increase the depth and frequency of streambed scour, causing up to 15% added mortality of bull trout (Salvelinus confluentus) embryos. Mortality from increased scour, although not catastrophic, may have contributed to the extirpation of this species from the Coeur d'Alene basin, given the widespread timber harvest that occurred in this region. Copyright ?? 2008 John Wiley & Sons, Ltd.

  19. Risks to Navigation at the Matagorda Ship Channel Entrance, Texas, Phase 2: Evaluation of Significant Risk Factors

    DTIC Science & Technology

    2011-08-01

    jetties are deteriorating. As a result of this deterioration and lowered beach and dunes adjacent to the jetties, there are overwash occurrences during...the toe . An example slope stability analysis is presented in Figure 51. This figure shows a typical cross section or model properties (soil layers...depth caused by the ship passage. Any area of influence will be localized and, in light of a critical gradient analysis, near- toe scouring effects

  20. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Underwater Repair of Concrete Damaged by Abrasion-Erosion

    DTIC Science & Technology

    1991-12-01

    and compatible placement tech- niques that can ensure successful and cost effective repairs of scour holes of different sizes and depths under water...bridge foundation in Japan. The valve was attached to the bottom of a pump line and was moved to cast concrete in successive layers at several locations...surfaces, reinforc- ing steel, and dowel bars in order to ensure successful and durable repairs. Thi. is ( specizlly important since it is not practical to

  1. Concrete and Rock Tests, Major Rehabilitation of Dresden Island Lock and Dam, Illinois Waterway, Chicago District. Phase II. Compliance, Scour Detection.

    DTIC Science & Technology

    1981-03-01

    uwniin SHUAR STMSS AREA ________________________ URINO NO. GW-5 S AMPLE NO. DEPTH 33 OIRECT SHEAR TEST REPORT (ROCK) WES AR11490 EDITION oP JUNf4 SIs...28 " 24 -T2. 70 ILVAMO DRESDEN ISWIDM W)C AND DAM ANA *am* M E-1 ~N L15 .4-15.9/494.1-494.6 IDM2" FB7 NVJG WUCT SHUAR TT ROem -񓡌 (IM 10 1" IO-j Ml

  2. Scour at a bridge over the Weldon River, Iowa

    USGS Publications Warehouse

    Fischer, Edward E.; ,

    1993-01-01

    Contraction scour at the State Highway 2 bridge over the Weldon River in south-central Iowa was caused by a flood of record proportions on September 14 and 15, 1992. The peak discharge was 1, 930 cubic meters per second,which was 4 times the probable 100-year flood used to design the bridge, and resulted in road overflow. Contraction scour exposed the pier footings, but a subsurface layer of glacial clay apparently resisted additional vertical scour and caused the scouring process to move laterally. The embankment at the left abutment was eroded away, exposing 3 m of vertical abutment piling.

  3. Longevity of Wood-Forced Pools in an Old-Growth Forest

    NASA Astrophysics Data System (ADS)

    Buffington, J. M.; Woodsmith, R. D.; Johnson, A. C.

    2009-12-01

    Wood debris plays an important role in scouring pools in forest channels and providing resultant habitat for aquatic organisms. We investigated the longevity of such pools in a gravel-bed river flowing through old-growth forest in southeastern Alaska by aging trees and “bear’s bread” fungi (Ganoderma applanatum, Fomitopsis pinicola) growing on pool-forming wood debris. Ages were determined by counting annual growth rings from cores and cross sections of trees and fungi growing on the wood debris. These ages are minimum values because they do not account for lag time between debris recruitment and seedling/spore establishment on the debris, nor do they account for flood scour that may periodically reset tree and fungi growth on the debris. The study stream has a gradient of about 1%, bankfull width and depth of 13.3 and 0.78 m, respectively, median grain size of 18 mm, a high wood loading (0.8 pieces/m), and a correspondingly low pool spacing (0.3 bankfull widths/pool), with 81% of the pools forced by wood debris. The size of wood debris in the study stream is large relative to the channel (average log length of 7.6 m and diameter of 0.35 m), rendering most debris immobile. Eighty-one pool-forming pieces of wood were dated over 1.2 km of stream length, with 28% of these pieces causing scour of more than one pool. In all, 122 wood-forced pools were dated, accounting for 38% of all pools at the site and 47% of the wood-forced pools. Fifty-three percent of the wood-forced pools lacked datable wood because these pieces either: were newly recruited; had been scoured by floods; or were contained below the active channel elevation, prohibiting vegetation establishment on the wood debris (the most common cause). The debris age distribution declined exponentially from 2 to 113 yrs., with a median value of 18 yrs. Similar exponential residence time distributions have been reported in other studies, but our analysis focused specifically on the ages of pool-forming wood as opposed to all in-channel wood. Most pool scour was relatively recent (60% ≤ 25 yrs. old), but 16% of the pools were old features (50-100+ yrs.), indicating long-term availability of pool habitats at the study site. Future studies will use these results to develop a wood budget model that accounts for pool scour and availability of pool habitats. For such modeling, our data suggest that stand-replacing disturbances (e.g. wildfire, riparian clear cutting) will cause a sharp drop in the numbers of wood-forced pools, as most of those are ≤ 25 yrs. old.

  4. Procedures for scour assessments at bridges in Pennsylvania

    USGS Publications Warehouse

    Cinotto, Peter J.; White, Kirk E.

    2000-01-01

    Scour is the process and result of flowing water eroding the bed and banks of a stream. Scour at nearly 14,300 bridges(1) spanning water, and the stability of river and stream channels in Pennsylvania, are being assessed by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Transportation (PennDOT). Procedures for bridge-scour assessments have been established to address the needs of PennDOT in meeting a 1988 Federal Highway Administration mandate requiring states to establish a program to assess all public bridges over water for their vulnerability to scour. The procedures also have been established to help develop an understanding of the local and regional factors that affect scour and channel stability. This report describes procedures for the assessment of scour at all bridges that are 20 feet or greater in length that span water in Pennsylvania. There are two basic types of assessment: field-viewed bridge site assessments, for which USGS personnel visit the bridge site, and office-reviewed bridge site assessments, for which USGS personnel compile PennDOT data and do not visit the bridge site. Both types of assessments are primarily focused at assisting PennDOT in meeting the requirements of the Federal Highway Administration mandate; however, both assessments include procedures for the collection and processing of ancillary data for subsequent analysis. Date of bridge construction and the accessibility of the bridge substructure units for inspection determine which type of assessment a bridge receives. A Scour-Critical Bridge Indicator Code and a Scour Assessment Rating are computed from selected collected and compiled data. PennDOT personnel assign the final Scour-Critical Bridge Indicator Code and a Scour Assessment Rating on the basis of their review of all data. (1)Words presented in bold type are defined in the Glossary section of this report.

  5. Immune-stimulatory effects of a bacteria-based probiotic on peripheral leukocyte subpopulations and cytokine mRNA expression levels in scouring holstein calves.

    PubMed

    Qadis, Abdul Qadir; Goya, Satoru; Yatsu, Minoru; Kimura, Atsushi; Ichijo, Toshihiro; Sato, Shigeru

    2014-05-01

    Subpopulations of peripheral leukocytes and cytokine mRNA expression levels were evaluated in scouring and healthy Holstein calves (age 10 ± 5 days; n=42) treated with a probiotic consisting of Lactobacillus plantarum, Enterococcus faecium and Clostridium butyricum. The calves were assigned to the scouring or healthy group and then subdivided into pathogen-positive treated (n=8), pathogen-positive control (n=8), pathogen-negative treated (n=6), pathogen-negative control (n=6), healthy treated (n=6) and healthy control (n=8) groups. A single dose of the probiotic (3.0 g/100 kg body weight) was given to each calf in the treatment groups for 5 days. Blood samples were collected on the first day of scour occurrence (day 0) and on day 7. In the scouring calves, smaller peripheral leukocyte subpopulations and cytokine mRNA expression levels were noted on day 0. The numbers of CD3(+) T cells; CD4(+), CD8(+) and WC1(+) γδ T cell subsets; and CD14(+), CD21(+) and CD282(+) (TLR2) cells were significantly increased in the scouring and healthy treated calves on day 7. Furthermore, interleukin-6, tumor necrosis factor-alpha and interferon-gamma mRNA expression was elevated in the peripheral leukocytes of the scouring and healthy treated calves on day 7. The scouring calves given the probiotic recovered on day 7. A significantly smaller number of peripheral leukocytes and lower cytokine mRNA expression level might be induced by scouring in calves. Repeated probiotic administration might stimulate cellular immunity and encourage recovery from scouring in pre-weaning Holstein calves.

  6. Immune-Stimulatory Effects of a Bacteria-Based Probiotic on Peripheral Leukocyte Subpopulations and Cytokine mRNA Expression Levels in Scouring Holstein Calves

    PubMed Central

    QADIS, Abdul Qadir; GOYA, Satoru; YATSU, Minoru; KIMURA, Atsushi; ICHIJO, Toshihiro; SATO, Shigeru

    2014-01-01

    ABSTRACT Subpopulations of peripheral leukocytes and cytokine mRNA expression levels were evaluated in scouring and healthy Holstein calves (age 10 ± 5 days; n=42) treated with a probiotic consisting of Lactobacillus plantarum, Enterococcus faecium and Clostridium butyricum. The calves were assigned to the scouring or healthy group and then subdivided into pathogen-positive treated (n=8), pathogen-positive control (n=8), pathogen-negative treated (n=6), pathogen-negative control (n=6), healthy treated (n=6) and healthy control (n=8) groups. A single dose of the probiotic (3.0 g/100 kg body weight) was given to each calf in the treatment groups for 5 days. Blood samples were collected on the first day of scour occurrence (day 0) and on day 7. In the scouring calves, smaller peripheral leukocyte subpopulations and cytokine mRNA expression levels were noted on day 0. The numbers of CD3+ T cells; CD4+, CD8+ and WC1+ γδ T cell subsets; and CD14+, CD21+ and CD282+ (TLR2) cells were significantly increased in the scouring and healthy treated calves on day 7. Furthermore, interleukin-6, tumor necrosis factor-alpha and interferon-gamma mRNA expression was elevated in the peripheral leukocytes of the scouring and healthy treated calves on day 7. The scouring calves given the probiotic recovered on day 7. A significantly smaller number of peripheral leukocytes and lower cytokine mRNA expression level might be induced by scouring in calves. Repeated probiotic administration might stimulate cellular immunity and encourage recovery from scouring in pre-weaning Holstein calves. PMID:24451928

  7. Post-glacial sea-level history for SW Ireland (Bantry Bay) based on offshore evidence

    NASA Astrophysics Data System (ADS)

    Plets, R. M.; Callard, L.; Cooper, A.; Long, A. J.; Belknap, D. F.; Edwards, R.; Jackson, D.; Kelley, J. T.; Long, D.; Milne, G. A.; Monteys, X.; Quinn, R.

    2013-12-01

    In recent years, progress in remote sensing techniques has helped to constrain the advance and retreat phases of the British-Irish Ice Sheet during and after the Last Glacial Maximum (LGM), both on- and offshore. However, little evidence has been collected to study the pattern of relative sea-level (RSL) change immediately after ice sheet retreat. Glacio-isostatic adjustment (GIA) models suggest a complex RSL pattern around Ireland, influenced by local and regional isostatic movements. Unfortunately, such models are poorly constrained for periods during which RSL was significantly lower than present, particularly the Late Pleistocene and Early Holocene, owing to the paucity of accurate observational data offshore. This poster presents post-LGM stratigraphic evidence from Bantry Bay (SW Ireland), one of seven areas targeted around the Irish Sea as part of a larger NERC funded project which aims to provide the first field data on the depth and age of the RSL minimum since deglaciation in the Irish Sea Basin. Data examined consists of: multibeam bathymetry and backscatter, pinger sub-bottom and vibrocores (25 sites). Notable features on the multibeam are a bluff line in the outer bay with a maximum height of 10 m in water depths of c. -80 m which forms the western edge of a large sediment lobe. The south-western boundary of this lobe is marked by a series of long (up to 22 km), parallel ridges at depths between -96 m and -131 m, with iceberg scouring evident on the offshore margin. Six seismo-stratigraphic units are interpreted from the pinger data, the most prominent of which can be traced from the inner part of the Bay to the inshore edge of the ridges. This unit sits on an erosional surface, is characterised by a turbid acoustic signature and is identified as alternating sand and clay layers with some traces of organic material and gas. Equal amounts of marine and estuarine foraminifera are present within this unit, whilst the underlying unit has a higher percentage of brackish species and the overlying unit becomes predominantly marine. Based on this evidence, we suggest that the erosional surface represents the transgressive surface, underlying intertidal sediments. Mapping the extent of this surface reveals a maximum depth of -75 m offshore, rising gradually to a depth of -30 m in the inner Bay, a profile remarkably similar to the modelled sea-level curve for the area. The long parallel ridges are interpreted to represent ice-marginal, submarine moraine ridges associated with ice retreat, behind which a glacio-marine delta formed, resulting in the large sediment lobe imaged at the mouth of Bantry Bay. Foraminifera from the proposed transgressive surface have been submitted for radiocarbon dating. Once available, these results will be used for fine-tuning the Earth and ice model parameters in the GIA model. Such adjustments could have important implications for modelled RSL curves around the Irish Sea basin.

  8. A pier-scour database: 2,427 field and laboratory measurements of pier scour

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.

    2014-01-01

    The U.S. Geological Survey conducted a literature review to identify potential sources of published pier-scour data, and selected data were compiled into a digital spreadsheet called the 2014 USGS Pier-Scour Database (PSDb-2014) consisting of 569 laboratory and 1,858 field measurements. These data encompass a wide range of laboratory and field conditions and represent field data from 23 States within the United States and from 6 other countries. The digital spreadsheet is available on the Internet and offers a valuable resource to engineers and researchers seeking to understand pier-scour relations in the laboratory and field.

  9. Portable Instrumentation for Real-Time Measurement of Scour at Bridges

    DOT National Transportation Integrated Search

    2000-12-01

    Portable scour-measuring systems were developed to meet the requirements of three different applications: bridge inspections, limited-detail data collection, and detailed data collection. A portable scour-measuring system consists of four components:...

  10. Bridge Scour Technology Transfer

    DOT National Transportation Integrated Search

    2018-01-24

    Scour and flooding are the leading causes of bridge failures in the United States and therefore should be monitored. New applications of tools and technologies are being developed, tested, and implemented to reduce bridge scour risk. The National Coo...

  11. Software user's guide for determining the Pennsylvania scour critical indicator code and streambed scour assessment rating for roadway bridges

    USGS Publications Warehouse

    Henneberg, M.F.; Strause, J.L.

    2002-01-01

    This report presents the instructions required to use the Scour Critical Bridge Indicator (SCBI) Code and Scour Assessment Rating (SAR) calculator developed by the Pennsylvania Department of Transportation (PennDOT) and the U.S. Geological Survey to identify Pennsylvania bridges with excessive scour conditions or a high potential for scour. Use of the calculator will enable PennDOT bridge personnel to quickly calculate these scour indices if site conditions change, new bridges are constructed, or new information needs to be included. Both indices are calculated for a bridge simultaneously because they must be used together to be interpreted accurately. The SCBI Code and SAR calculator program is run by a World Wide Web browser from a remote computer. The user can 1) add additional scenarios for bridges in the SCBI Code and SAR calculator database or 2) enter data for new bridges and run the program to calculate the SCBI Code and calculate the SAR. The calculator program allows the user to print the results and to save multiple scenarios for a bridge.

  12. Bridge pressure flow scour for clear water conditions

    DOT National Transportation Integrated Search

    2009-10-01

    The equilibrium scour at a bridge caused by pressure flow with critical approach velocity in clear-water simulation conditions was studied both analytically and experimentally. The flume experiments revealed that (1) the measured equilibrium scour pr...

  13. Sea-floor geology in northwestern Block Island Sound, Rhode Island

    USGS Publications Warehouse

    McMullen, Katherine Y.; Poppe, Lawrence J.; Ackerman, Seth D.; Blackwood, Dann S.; Woods, D.A.

    2014-01-01

    Multibeam-echosounder and sidescan-sonar data, collected by the National Oceanic and Atmospheric Administration in a 69-square-kilometer area of northwestern Block Island Sound, are used with sediment samples, and still and video photography of the sea floor, collected by the U.S. Geological Survey at 43 stations within this area, to interpret the sea-floor features and sedimentary environments. Features on the sea floor include boulders, sand waves, scour depressions, modern marine sediments, and trawl marks. Boulders, which are often several meters wide, are found in patches in the shallower depths and tend to be overgrown with sessile flora and fauna. They are lag deposits of winnowed glacial drift, and reflect high-energy environments characterized by processes associated with erosion and nondeposition. Sand waves and megaripples tend to have crests that either trend parallel to shore with 20- to 50-meter (m) wavelengths or trend perpendicular to shore with several-hundred-meter wavelengths. The sand waves reflect sediment transport directions perpendicular to shore by waves, and parallel to shore by tidal or wind-driven currents, respectively. Scour depressions, which are about 0.5 m lower than the surrounding sea floor, have floors of gravel and coarser sand than bounding modern marine sediments. These scour depressions, which are conspicuous in the sidescan-sonar data because of their more highly reflective coarser sediment floors, are likely formed by storm-generated, seaward-flowing currents and maintained by the turbulence in bottom currents caused by their coarse sediments. Areas of the sea floor with modern marine sediments tend to be relatively flat to current-rippled and sandy.

  14. Monitoring bridge scour using fiber optic sensors.

    DOT National Transportation Integrated Search

    2015-04-01

    The scouring process excavates and carries away materials from the bed and banks of streams, and from : around the piers and abutments of bridges. Scour undermines bridges and may cause bridge failures due to : structural instability. In the last 30 ...

  15. Conductor shears as iceberg encroaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-10-01

    Operators in the Arctic regions must protect wellheads from encroaching icebergs and icepack sheets. Diverting ice masses and excavating large holes below scour depth is expensive. Now an alternate approach allows the conductor to shear, shuts in the well, and provides a method of re-entering the well. The new system has been successfully used by Mobil on two exploratory wells in the Hibernia field off eastern Canada. The wells used 18 3/4-in. wellheads rated at 10,000 psi with 36-in. conductor pipe. The performance of the system is discussed.

  16. HEC-RAS 2.2 for backwater and scour analysis - phase one

    DOT National Transportation Integrated Search

    2000-09-01

    The Kansas Department of Transportation (KDOT) and most bridge consultants in Kansas have been using the DOS-WSPRO program and the KDOT scour spreadsheets to perform bridge hydraulics and scour analysis for the past several years. Unfortunately, DOS-...

  17. Scour damage to Vermont bridges and scour monitoring.

    DOT National Transportation Integrated Search

    2015-06-01

    Scour is by far the primary cause of bridge failures in the United States. Regionally, the : vulnerability of bridges to flood damage became evident from the damage seen to Vermont : bridges in the 2011 Tropical Storm Irene. Successfully mitigating s...

  18. Scour at culvert outlets in mixed bed materials.

    DOT National Transportation Integrated Search

    1982-09-01

    "The study of localized scour at culvert outlets has been on-going to control and manage erosion along highway embankments. Herein is presented an investigation of scour at culvert outlets which refines and extends the state-of-the-art of predicting ...

  19. A critical evaluation of bridge scour for Michigan specific conditions

    DOT National Transportation Integrated Search

    2011-02-01

    The overall goal of this research was to improve MDOTs bridge scour prediction capability. In : an effort to achieve this goal, the research team evaluated scour prediction methods utilized by : state DOTs, conducted a field data collection project, ...

  20. Bleaching of hydroentangled greige cotton nonwoven fabrics without scouring

    USDA-ARS?s Scientific Manuscript database

    This work investigated whether a hydroentangled greige cotton nonwoven fabric made at a relatively high hydroentangling water pressure, say, 135-bar, could be successfully bleached to attain the desired whiteness, absorbency and other properties without traditional scouring. Accordingly, the scoured...

  1. Updating HEC-18 pier scour equations for noncohesive soils.

    DOT National Transportation Integrated Search

    2016-10-01

    A dataset of 594 bridge pier scour observations from two laboratory and three field studies was compiled. The dataset served as the testing ground for evaluating potential enhancements to the pier scour tools for noncohesive soils in Hydraulic Engine...

  2. Bridge scour conference shares knowledge and innovations : Tech Transfer Spotlight

    DOT National Transportation Integrated Search

    2018-01-01

    The National Cooperative Highway Research Programs Domestic Scan (NCHRP Project 20-68A) on bridge scour risk management brought more than 30 national bridge scour experts together for a week in July 2016 to examine ways to prevent and remediate br...

  3. Design and Evaluation of Scour for Bridges Using HEC-18 : technical brief.

    DOT National Transportation Integrated Search

    2017-07-01

    This project developed a new approach for evaluating erosive scour at New Jersey bridges over non-tidal waterways. The main deliverable was the Scour Evaluation Model (SEM), which offers new analysis procedures, while still retaining the applicable p...

  4. A Temperature-Based Monitoring System for Scour and Deposition at Bridge Piers

    DOT National Transportation Integrated Search

    2017-05-01

    Stream flows around a bridge pier can be fast and highly turbulent causing large shear stresses that may mobilize streambed sediment resulting in scour around bridge foundations. Scour is the leading cause of bridge failure in the USA because it comp...

  5. Criteria for predicting scour of erodible rock in West Virginia.

    DOT National Transportation Integrated Search

    2013-09-01

    The research project Criteria for Predicting Scour of Erodible Rock in West Virginia (RP-273) was conducted to characterize the hydraulic scour of rock at : 15 selected bridge sites in West Virginia (at least one site in each of WVDOHs ten d...

  6. Streambed stresses and flow around bridge piers

    USGS Publications Warehouse

    Parola, A.C.; Ruhl, K.J.; Hagerty, D.J.; Brown, B.M.; Ford, D.L.; Korves, A.A.

    1996-01-01

    Scour of streambed material around bridge foundations by floodwaters is the leading cause of catastrophic bridge failure in the United States. The potential for scour and the stability of riprap used to protect the streambed from scour during extreme flood events must be known to evaluate the likelihood of bridge failure. A parameter used in estimating the potential for scour and removal of riprap protection is the time-averaged shear stress on the streambed often referred to as boundary stress. Bridge components, such as bridge piers and abutments, obstruct flow and induce strong vortex systems that create streambed or boundary stresses significantly higher than those in unobstructed flow. These locally high stresses can erode the streambed around pier and abutment foundations to the extent that the foundation is undermined, resulting in settlement or collapse of bridge spans. The purpose of this study was to estimate streambed stresses at a bridge pier under full-scale flow conditions and to compare these stresses with those obtained previously in small-scale model studies. Two-dimensional velocity data were collected for three flow conditions around a bridge pier at the Kentucky State Highway 417 bridge over the Green River at Greensburg in Green County, Ky. Velocity vector plots and the horizontal component of streambed stress contour plots were developed from the velocity data. The streambed stress contours were developed using both a near-bed velocity and velocity gradient method. Maximum near-bed velocities measured at the pier for the three flow conditions were 1.5, 1.6, and 2.0 times the average near-bed velocities measured in the upstream approach flow. Maximum streambed stresses for the three flow conditions were determined to be 10, 15, and 36 times the streambed stresses of the upstream approach flow. Both the near-bed velocity measurements and approximate maximum streambed stresses at the full-scale pier were consistent with those observed in experiments using small-scale models in which similar data were collected, except for a single observation of the near-bed velocity data and the corresponding streambed stress determination. The location of the maximum streambed stress was immediately downstream of a 90 degree radial of the upstream cylinder (with the center of the upstream cylinder being the origin) for the three flow conditions. This location was close to the flow wake separation point at the upstream cylinder. Other researchers have observed the maximum streambed stress around circular cylinders at this location or at a location immediately upstream of the wake separation point. Although the magnitudes of the estimated streambed stresses measured at the full-scale pier were consistent with those measured in small-scale model studies, the stress distributions were significantly different than those measured in small-scale models. The most significant discrepancies between stress contours developed in this study and those developed in the small-scale studies for flow around cylindrical piers on a flat streambed were associated with the shape of the stress contours. The extent of the high stress region of the streambed around the full-scale pier was substantially larger than the diameter of the upstream cylinder, while small-scale models had small regions compared to the diameter of the model cylinders. In addition, considerable asymmetry in the stress contours was observed. The large region of high stress and asymmetry was attributed to several factors including (1) the geometry of the full-scale pier, (2) the non-planar topography of the streambed, (3) the 20 degree skew of the pier to the approaching flow, and (4) the non-uniformity of the approach flow. The extent of effect of the pier on streambed stresses was found to be larger for the full-scale site than for model studies. The results from the model studies indicated that the streambed stresses created by the obstruction of flow by the 3-foot wide pi

  7. Maintaining the Link to The Floodplain: Scour Dynamics in Crevasses

    NASA Astrophysics Data System (ADS)

    Esposito, C. R.; Liang, M.; Yuill, B. T.; Meselhe, E. A.

    2017-12-01

    In river deltas, crevasses are the primary geomorphic feature that traverse the levee, connecting the river to its floodplain and facilitating the transfer of water, sediment, and chemical constituents from the trunk channel. Despite their fundamental position linking river and floodplain, the factors that are important to crevasse evolution are not well understood, and their enumeration is the subject of active research across multiple earth surface process subfields. Crevasses are often associated with a zone of intense scour proximal to the trunk channel. Surprisingly little is known about the morphological dynamics in this zone, but there is evidence from studies of river avulsion that scour zone evolution plays an important role in determining crevasse sustainability. Here we use Delft3D to simulate the development of managed crevasse splays - river diversions - for the purpose of landscape management in the Mississippi River Delta. Our model runs vary the erodibility of the substrate in the receiving basin and the extent and location of erosion protection along the conveyance channel. We find that substrate erodibility in the basin plays a critical role in determining the long-term performance of sediment diversions. Crevasses that create large scours tend to maintain their performance over several decades, but those that only create small scours are subject to rapidly declining performance as the scour pit fills in with coarse sediments. Finally, we compare the evolution of our modeled scour zone to the West Bay Sediment Diversion, where regular bathymetric surveys have documented the evolution of the scour zone since 2004.

  8. Role of Erosion in Shaping Point Bars

    NASA Astrophysics Data System (ADS)

    Moody, J.; Meade, R.

    2012-04-01

    A powerful metaphor in fluvial geomorphology has been that depositional features such as point bars (and other floodplain features) constitute the river's historical memory in the form of uniformly thick sedimentary deposits waiting for the geomorphologist to dissect and interpret the past. For the past three decades, along the channel of Powder River (Montana USA) we have documented (with annual cross-sectional surveys and pit trenches) the evolution of the shape of three point bars that were created when an extreme flood in 1978 cut new channels across the necks of two former meander bends and radically shifted the location of a third bend. Subsequent erosion has substantially reshaped, at different time scales, the relic sediment deposits of varying age. At the weekly to monthly time scale (i.e., floods from snowmelt or floods from convective or cyclonic storms), the maximum scour depth was computed (by using a numerical model) at locations spaced 1 m apart across the entire point bar for a couple of the largest floods. The maximum predicted scour is about 0.22 m. At the annual time scale, repeated cross-section topographic surveys (25 during 32 years) indicate that net annual erosion at a single location can be as great as 0.5 m, and that the net erosion is greater than net deposition during 8, 16, and 32% of the years for the three point bars. On average, the median annual net erosion was 21, 36, and 51% of the net deposition. At the decadal time scale, an index of point bar preservation often referred to as completeness was defined for each cross section as the percentage of the initial deposit (older than 10 years) that was still remaining in 2011; computations indicate that 19, 41, and 36% of the initial deposits of sediment were eroded. Initial deposits were not uniform in thickness and often represented thicker pods of sediment connected by thin layers of sediment or even isolated pods at different elevations across the point bar in response to multiple floods during a water year. Erosion often was preferential and removed part or all of pods at lower elevations, and in time left what appears to be a random arrangement of sediment pods forming the point bar. Thus, we conclude that the erosional process is as important as the deposition process in shaping the final form of the point bar, and that point bars are not uniformly aggradational or transgressive deposits of sediment in which the age of the deposit increases monotonically downward at all locations across the point bar.

  9. The erosion of streamlined islands, longitudinal grooves and scour marks: Implications to the origin of the Martian outflow channels

    NASA Technical Reports Server (NTRS)

    Komar, P. D.

    1984-01-01

    The diversity of proposed origins for large Martian outflow channels results from the differing interpretations given to the landforms associated with the outflow channels. In an attempt to help limit the possible mechanisms of channel erosion, detailed studies of three of the channel features were done; the streamlined islands, longitudinal grooves and scour marks. This examination involved a comparison of the martian streamlined islands with various streamlined landforms on Earth including those found in the Channel Scabland in large rivers, glacial drumlins, and desert yardangs. The comparisons included statistical analyses of the landform lengths versus widths and positions of maximum width, and an examination of the degree of shape agreement with the geometric lemniscate which was in turn demonstrated to correspond closely with true airfoil shapes. The analyses showed that the shapes of the martian islands correspond closely to the streamlined islands in rivers and the Channel Scabland land. Drumlins show a much smaller correlation. Erosional rock islands formed by glaciers are very much different in shape.

  10. Three-dimensional numerical simulations of local scouring around bridge piers

    USDA-ARS?s Scientific Manuscript database

    This paper presents a novel numerical method for simulating local scouring around bridge piers using a three-dimensional free-surface RANS turbulent flow model. Strong turbulent fluctuations and the down-flows around the bridge pier are considered important factors in scouring the bed. The turbulent...

  11. Development of a Computational Approach to Detect Instability and Incipient Motion of Large Riprap Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojanowski, C.; Lottes, S. A.; Flora, K.

    2017-08-01

    Local scour at bridge piers is a potential safety hazard of major concern to transportation agencies. If it is determined that scour at bridge piers can adversely affect the stability of a bridge, scour countermeasures to protect the pier should be considered.

  12. Design and Evaluation of Scour for Bridges Using HEC-18 (Volume 3 of 3).

    DOT National Transportation Integrated Search

    2017-07-04

    The overall objective of this research is the development of a new approach for evaluating bridge scour for New Jersey's bridges on non-tidal waterways. The study commenced with a web-based survey of scour practice within the U.S. and a literature re...

  13. Design and Evaluation of Scour for Bridges Using HEC-18 (Volume 1 of 3).

    DOT National Transportation Integrated Search

    2017-07-04

    The overall objective of this research is the development of a new approach for evaluating bridge scour for New Jersey's bridges on non-tidal waterways. The study commenced with a web-based survey of scour practice within the U.S. and a literature re...

  14. Bridge scour monitoring technologies : development of evaluation and selection protocols for application on river bridges in Minnesota.

    DOT National Transportation Integrated Search

    2010-03-01

    Bridge failure or loss of structural integrity can result from scour of riverbed sediment near bridge abutments or : piers during high-flow events in rivers. In the past 20 years, several methods of monitoring bridge scour have been : developed spann...

  15. Monitoring bridge scour using fiber optic sensors : [tech summary].

    DOT National Transportation Integrated Search

    2015-04-01

    It is well known that scour is one of the major causes of bridge failures. In the last 30 years, more than 1,000 bridges collapsed in : the US and about 60% of the failures are related to the scour of bridges foundations. Due to the difficulty in ...

  16. Design and Evaluation of Scour for Bridges Using HEC-18 (Volume 2 of 3).

    DOT National Transportation Integrated Search

    2017-07-04

    The overall objective of this research is the development of a new approach for evaluating bridge scour for New Jersey's bridges on non-tidal waterways. The study commenced with a web-based survey of scour practice within the U.S. and a literature re...

  17. Erosion Control of Scour during Construction. Report 8. Summary Report.

    DTIC Science & Technology

    1985-01-01

    the breakwaters. Experiments were conducted by Hotta and Marui (1976) to investigate characteristics of the local scour; and it was found that local... Marui , N. 1976. "Local Scour and Current Around a Porous Breakwater," Proceedings, Fifteenth Conference on Coastal Engineering, Honolulu, Hawaii, Vol II

  18. Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica

    NASA Technical Reports Server (NTRS)

    Das, Indrani; Bell, Robin E.; Scambos, Ted A.; Wolovick, Michael; Creyts, Timothy T.; Studinger, Michael; Fearson, Nicholas; Nicolas, Julien P.; Lenaerts, Jan T. M.; vandenBroeke, Michiel R.

    2013-01-01

    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (< or = 200 sq km) with reduced surface accumulation. Estimates of Antarctic surface mass balance rely on sparse point measurements or coarse atmospheric models that do not capture these local processes, and overestimate the net mass input in wind-scour zones. Here we combine airborne radar observations of unconformable stratigraphic layers with lidar-derived surface roughness measurements to identify extensive wind-scour zones over Dome A, in the interior of East Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations.

  19. Development and Evaluation of Live-Bed Pier- and Contraction-Scour Envelope Curves in the Coastal Plain and Piedmont Provinces of South Carolina

    DOT National Transportation Integrated Search

    2009-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, used ground-penetrating radar to collect measurements of live-bed pier scour and contraction scour at 78 bridges in the Piedmont and Coastal Plain Physio...

  20. Effects of Gradation and Cohesion on Bridge Scour : Volume 4 : Experimental Study of Scour Around Circular Piers in Cohesive Soils

    DOT National Transportation Integrated Search

    1999-12-01

    The effects of cohesion on pier scour was investigated experimentally using four-foot-wide, eight-foot-wide, and twenty-foot-wide test flumes at the Engineering Research Center, Colorado State University. In the first part of the experiments, clay-sa...

  1. Time rate of local scour at complex bridge piers field and laboratory analyses : final report, April 2009.

    DOT National Transportation Integrated Search

    2009-04-01

    A local scour evolution field study was conducted under this contract. One of the piers on the A1A Bridge over the Intracoastal Waterway (ICCW) in Fort Pierce, Florida was selected for the test site. The existing local scour hole was filled with sand...

  2. Submarine glacial landforms and interactions with volcanism around Sub-Antarctic Heard and McDonald Islands

    NASA Astrophysics Data System (ADS)

    Picard, K.; Watson, S. J.; Fox, J. M.; Post, A.; Whittaker, J. M.; Lucieer, V.; Carey, R.; Coffin, M. F.; Hodgson, D.; Hogan, K.; Graham, A. G. C.

    2017-12-01

    Unravelling the glacial history of Sub-Antarctic islands can provide clues to past climate and Antarctic ice sheet stability. The glacial history of many sub-Antarctic islands is poorly understood, including the Heard and McDonald Islands (HIMI) located on the Kerguelen Plateau in the southern Indian Ocean. The geomorphologic development of HIMI has involved a combination of construction via hotspot volcanism and mechanical erosion caused by waves, weather, and glaciers. Today, the 2.5 km2 McDonald Islands are not glacierised; in contrast, the 368 km2 Heard Island has 12 major glaciers, some extending from the summit of 2813 m to sea level. Historical accounts from Heard Island suggest that the glaciers were more extensive in the 1850s to 1870s, and have retreated at least 12% (33.89 km2) since 1997. However, surrounding bathymetry suggests a much more extensive previous glaciation of the HIMI region that encompassed 9,585 km2, likely dating back at least to the Last Glacial Maximum (LGM) ca. 26.5 -19 ka. We present analyses of multibeam bathymetry and backscatter data, acquired aboard RV Investigator in early 2016, that support the previous existence of an extensive icecap. These data reveal widespread ice-marginal and subglacial features including moraines, over-deepened troughs, drumlins and crag-and-tails. Glacial landforms suggest paleo-ice flow directions and a glacial extent that are consistent with previously documented broad scale morphological features. We identify >660 iceberg keel scours in water depths ranging from 150 - 530 m. The orientations of the iceberg keel scours reflect the predominantly east-flowing Antarctic Circumpolar Current and westerly winds in the region. 40Ar/39Ar dating of volcanic rocks from submarine volcanoes around McDonald Islands suggests that volcanism and glaciation coincided. The flat-topped morphology of these volcanoes may result from lava-ice interaction or erosion by glaciers post eruption during a time of extensive ice-sheet cover and/or wave base erosion during sea level low stands. The prevalence and range of glacial landforms around HIMI suggest extensive past glaciation, and that glaciers have exerted a major influence on submarine geomorphology.

  3. Sea-floor geology in northeastern Block Island Sound, Rhode Island

    USGS Publications Warehouse

    McMullen, Kate Y.; Poppe, Lawrence J.; Ackerman, Seth D.; Blackwood, Dann S.; Lewit, P.G.; Parker, Castle E.

    2013-01-01

    Multibeam-echosounder and sidescan-sonar data collected by the National Oceanic and Atmospheric Administration in northeastern Block Island Sound, combined with sediment samples and bottom photography collected by the U.S. Geological Survey, are used to interpret sea-floor features and sedimentary environments in this 52-square-kilometer-area offshore Rhode Island. Boulders, which are often overgrown with sessile fauna and flora, are mostly in water depths shallower than 20 meters. They are probably part of the southern flank of the Harbor Hill-Roanoke Point-Charlestown-Buzzards Bay moraine, deposited about 18,000 years ago. Scour depressions, areas of the sea floor with a coarser grained, rippled surface lying about 0.5 meter below the finer grained, surrounding sea floor, along with erosional outliers within the depressions are in a band near shore and also offshore in deep parts of the study area. Textural and bathymetric differences between areas of scour depressions and the surrounding sea floor or erosional outliers stand out in the sidescan-sonar imagery with sharp tonal contrasts. Also visible in the sidescan-sonar imagery are broad, low-profile bedforms with coarser grained troughs and finer grained crests.

  4. Studies of the inner shelf and coastal sedimentation environment of the Beaufort Sea from ERTS-1

    NASA Technical Reports Server (NTRS)

    Reimnitz, E. (Principal Investigator); Barnes, P. W.

    1973-01-01

    The author has identified the following significant results. Northward flowing rivers of Alaska inundate extensive areas of sea ice during spring breakup. This process has been studied under the ERTS-1 program. Drainage of large volumes of fresh water through the ice at holes and cracks (strudel) causes scour depressions, over 4 m deep, and up to 20 m across in the sea floor below. Strudel scours occur within 30 km of river mouths, generally in areas where ERTS-1 imagery shows less potential for drifting ice to scour the bottom than elsewhere. The shapes and distribution patterns of strudel scours correspond with those of strudel seen in the ice canopy. Densities of scours are highest in the inner areas of overlfow. But strudel scours also occur outside of overflow areas mapped during the last several years. These must be very old. One strudel scour investigated by diving is surrounded by a rim, has vertical walls exposing a tundra horizon, and terminates at a gravel layer 4 m below the lagoon floor. Another terminates at a semi-consolidated layer of silty clay. The gravel and silty clay are pre-Holocene deposits. Mixing of Holocene marine with older sediments by vertical strudel flow causes great variability in sediment types over small areas. These observations complicate interpretation of shallow water deposits of cold climates.

  5. In situ stress, natural fracture distribution, and borehole elongation in the Auburn Geothermal Well, Auburn, New York

    USGS Publications Warehouse

    Hickman, Stephen H.; Healy, John H.; Zoback, Mark D.

    1985-01-01

    Hydraulic fracturing stress measurements and a borehole televiewer survey were conducted in a 1.6‐km‐deep well at Auburn, New York. This well, which was drilled at the outer margin of the Appalachian Fold and Thrust Belt in the Appalachian Plateau, penetrates approximately 1540 m of lower Paleozoic sedimentary rocks and terminates 60 m into the Precambrian marble basement. Analysis of the hydraulic fracturing tests indicates that the minimum horizontal principal stress increases in a nearly linear fashion from 9.9±0.2 MPa at 593 m to 30.6±0.4 MPa at 1482 m. The magnitude of the maximum horizontal principal stress increases in a less regular fashion from 13.8±1.2 MPa to 49.0±2.0 MPa over the same depth range. The magnitudes of the horizontal principal stresses relative to the calculated overburden stress are somewhat lower than is the norm for this region and are indicative of a strike‐slip faulting regime that, at some depths, is transitional to normal faulting. As expected from the relative aseismicity of central New York State, however, analysis of the magnitudes of the horizontal principal stresses indicates, at least to a depth of 1.5 km, that frictional failure on favorably oriented preexisting fault planes is unlikely. Orientations of the hydraulic fractures at 593 and 919 m indicate that the azimuth of the maximum horizontal principal stress at Auburn is N83°E±15°, in agreement with other stress field indicators for this region. The borehole televiewer log revealed a considerable number of planar features in the Auburn well, the great majority of which are subhorizontal (dips < 5°) and are thought to be bedding plane washouts or drill bit scour marks. In addition, a smaller number of distinct natural fractures were observed on the borehole televiewer log. Of these, the distinct steeply dipping natural fractures in the lower half of the sedimentary section at Auburn tend to strike approximately east‐west, while those in the upper part of the well and in the Precambrian basement exhibit no strong preferred orientation. The origin of this east‐west striking fracture set is uncertain, as it is parallel both to the contemporary direction of maximum horizontal compression and to a late Paleozoic fracture set that has been mapped to the south of Auburn. In addition to these planar features the borehole televiewer log indicates paired dark bands on diametrically opposite sides of the borehole throughout the Auburn well. Processing of the borehole televiewer data in the time domain revealed these features to be irregular depressions in the borehole wall. As these depressions were consistently oriented in a direction at right angles to the direction of maximum horizontal compression, we interpret them to be the result of stress‐induced spalling of the borehole wall (breakouts).

  6. Trace-fossil and storm-deposit relationships of San Carlos formation, west Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, C.L.; Bednarski, S.P.

    1986-05-01

    Two distinct assemblages of trace fossils are preserved in the storm deposits in delta-front facies of the Upper Cretaceous San Carlos Formation, west Texas. The assemblages represent two widely differing responses to storm deposition and sediment-trace-fossil relationships, indicating that other environmental parameters, probably water depth and oxygen levels, influenced trace-fossil distribution within the San Carlos delta front. Evidence of the storm-deposited nature of the sandstones includes a scoured basal contact, planar to hummocky cross-stratification, and a upper contact that is either ripple marked or is gradational with overlying shales.

  7. Capacity of scour-damaged bridges, part 2 : Integrated Analysis Program (IAP) - a program for the analysis of lateral performance of pile-supported structures under scour conditions.

    DOT National Transportation Integrated Search

    2013-11-01

    Scour is the removal of soils in the vicinity of bridge foundations, resulting in a reduced capacity of the foundations, which can increase the risk of bridge : failure. To minimize bridge failure, the Federal Highway Administration (FHWA) has establ...

  8. Capacity of scour-damaged bridges, part 2 : Integrated Analysis Program (IAP) - a program for the analysis of lateral performance of pile-supported structures under scour conditions, [technical summary].

    DOT National Transportation Integrated Search

    2013-11-01

    Scour is the removal of soils in the vicinity of bridge foundations, resulting in a reduced capacity of the foundations, which can increase the risk of bridge failure. To minimize bridge failure, the Federal Highway Administration (FHWA) has establis...

  9. Composition of the microbiota in forestomach fluids and feces of Japanese Black calves with white scours.

    PubMed

    Nakamura, S-I; Kim, Y H; Takashima, K; Kimura, A; Nagai, K; Ichijo, T; Sato, S

    2017-09-01

    The objective of this study was to characterize the composition of the forestomach and fecal microbiota in Japanese Black calves with white scours. Forestomach fluid, feces, and peripheral blood were collected from healthy calves ( = 5; age 10 ± 2 d) and scouring calves ( = 5; age 10 ± 1 d) on the day on which white scours occurred. The pH and concentrations of VFA, lactic acid, and ammonia nitrogen (NH-N) of the forestomach fluids were determined. Microbiota composition and gene copy numbers in the forestomach fluid and feces were analyzed by 454 pyrosequencing and quantitative real-time PCR (qPCR), respectively. The cytokine mRNA level in peripheral leukocytes was evaluated by qPCR. The pH of the forestomach fluid of the scouring calves tended to be higher than that of the healthy calves ( = 0.056). No significant difference was detected in the total VFA, lactic acid, or NH-N concentrations in the forestomach fluids of the 2 groups. Firmicutes, Bacteroidetes, and Proteobacteria were the predominant phyla in the forestomach fluid and feces. At the genus level, the relative abundance of in the forestomach fluid was significantly higher in the scouring calves ( < 0.05) and the relative abundance of in the feces was significantly higher than that in the forestomach in the healthy calves ( < 0.05). Furthermore, the bacterial diversity indices of feces were lower in the scouring calves. Quantitative PCR amplification using some of the primer pairs failed in the forestomach fluid and feces in both groups. These results suggested that fermentation in the forestomach may affect the occurrence of white scours, resulting in changes in the composition and diversity of the forestomach fluid and fecal microbiota in Japanese Black calves.

  10. Twentieth century arroyo changes in Chaco Culture National Historical Park

    USGS Publications Warehouse

    Gellis, Allen C.

    2002-01-01

    Chaco Wash arroyo channel changes in the 20th century have become a major concern of the National Park Service. Several archeologic and cultural sites are located in the Chaco Wash corridor; thus, increased erosional activity of Chaco Wash, such as channel incision and increased meandering, may affect these sites. Through field surveys, photogrammetric analyses, and reviews of existing reports and maps, arroyo changes at Chaco Culture National Historic Park were documented. Arroyo changes were documented for the inner active channel and the entire arroyo cross section. The inner channel of Chaco Wash evolved from a wide, braided channel in the 1930's to a narrower channel with a well-developed flood plain by the 1970's. From 1934 to 1973 the active channel narrowed an average of 26 meters, and from the 1970's to 2000 the channel narrowed an average of 9 meters. Overall from 1934 to 2000, the inner channel narrowed an average of 30 meters. From 1934 to 2000, the top of Chaco Wash widened at four cross sections, narrowed at one, and remained the same at another. The top of Chaco Wash widened at a rate of 0.4 meter per year from the 1970's to 2000 compared with 0.2 meter per year from 1934 to 1973. At 50-percent depth or halfway down the arroyo channel, four cross sections widened and two cross sections narrowed from 1934 to 2000. Rates of widening at 50-percent depth decreased from 0.2 meter per year from 1934 to 1973 to 0.1 meter per year from the 1970's to 2000. From 1934 to 2000, arroyo depth decreased at five of six cross sections and increased at one cross section. Arroyo depth between 1934 and 1973 decreased an average 1.4 meters from aggradation and between the 1970's and 2000 increased an average 0.4 meter from channel scour. From 1934 to 2000, arroyo cross-sectional area decreased at all six cross sections. Cross-sectional areas in Chaco Wash decreased from 1934 to 1973 as a result of sediment deposition and both decreased and increased from the 1970's to 2000. The cross-sectional area decreased by the 1970's due to channel narrowing and flood-plain formation. Increases in cross-sectional area are from channel scour and channel widening. Photogrammetric analyses of volumetric changes for a 1.7-kilometer reach of Chaco Wash showed sediment deposition from 1934 to 1973 of 64 square meters per unit length of channel over 1.7 kilometers to erosion from 1973 to 2000 of 7 square meters per unit length of channel. Chaco Wash evolved from a braided channel in the 1930's to a narrow, sinuous inner channel by the 1970's. Chaco Wash was widening in the 1930's, leading to sediment deposition and formation of an inner flood plain. Channel narrowing resulted from increased sediment deposition on the flood plain. Sediment deposition may be related to a decrease in peak flows, an increase in flood-plain vegetation, or an increase in the transport of fine-grained sediment. Increases in bankfull depth of Chaco Wash between the 1970's and 2000 were due to aggradation of the flood plain and channel scour. Thus, rates of aggradation and cross-sectional filling were greater from 1934 to the 1970's than from the 1970's to 2000.

  11. A field investigation on the effects of background erosion on the free span development of a submarine pipeline

    NASA Astrophysics Data System (ADS)

    Wen, Shipeng; Xu, Jishang; Hu, Guanghai; Dong, Ping; Shen, Hong

    2015-08-01

    The safety of submarine pipelines is largely influenced by free spans and corrosions. Previous studies on free spans caused by seabed scours are mainly based on the stable environment, where the background seabed scour is in equilibrium and the soil is homogeneous. To study the effects of background erosion on the free span development of subsea pipelines, a submarine pipeline located at the abandoned Yellow River subaqueous delta lobe was investigated with an integrated surveying system which included a Multibeam bathymetric system, a dual-frequency side-scan sonar, a high resolution sub-bottom profiler, and a Magnetic Flux Leakage (MFL) sensor. We found that seabed homogeneity has a great influence on the free span development of the pipeline. More specifically, for homogeneous background scours, the morphology of scour hole below the pipeline is quite similar to that without the background scour, whereas for inhomogeneous background scour, the nature of spanning is mainly dependent on the evolution of seabed morphology near the pipeline. Magnetic Flux Leakage (MFL) detection results also reveal the possible connection between long free spans and accelerated corrosion of the pipeline.

  12. Geologic implications and potential hazards of scour depressions on bering shelf, Alaska

    USGS Publications Warehouse

    Larsen, M.C.; Nelson, H.; Thor, D.R.

    1979-01-01

    Flat-bottomed depression 50-150 m in diameter and 60-80 cm deep occur in the floor of Norton Sound, Bering Sea. These large erosional bedforms and associated current ripples are found in areas where sediment grain size is 0.063-0.044 mm (4-4.5 ??), speeds of bottom currents are greatest (20-30 cm/s mean speeds under nonstorm conditions, 70 cm/s during typical storms), circulation of water is constricted by major topographic shoals (kilometers in scale), and small-scale topographic disruptions, such as ice gouges, occur locally on slopes of shoals. These local obstructions on shoals appear to disrupt currents, causing separation of flow and generating eddies that produce large-scale scour. Offshore artificial structures also may disrupt bottom currents in these same areas and have the potential to generate turbulence and induce extensive scour in the area of disrupted flow. The size and character of natural scour depressions in areas of ice gouging suggest that large-scale regions of scour may develop from enlargement of local scour sites around pilings, platforms, or pipelines. Consequently, loss of substrate support for pipelines and gravity structures is possible during frequent autumn storms. ?? 1979 Springer-Verlag New York Inc.

  13. Modelling Time and Length Scales of Scour Around a Pipeline

    NASA Astrophysics Data System (ADS)

    Smith, H. D.; Foster, D. L.

    2002-12-01

    The scour and burial of submarine objects is an area of interest for engineers, oceanographers and military personnel. Given the limited availability of field observations, there exists a need to accurately describe the hydrodynamics and sediment response around an obstacle using numerical models. In this presentation, we will compare observations of submarine pipeline scour with model predictions. The research presented here uses the computational fluid dynamics (CFD) model FLOW-3D. FLOW-3D, developed by Flow Science in Santa Fe, NM, is a 3-dimensional finite-difference model that solves the Navier-Stokes and continuity equations. Using the Volume of Fluid (VOF) technique, FLOW-3D is able to resolve fluid-fluid and fluid-air interfaces. The FAVOR technique allows for complex geometry to be resolved with rectangular grids. FLOW-3D uses a bulk transport method to describe sediment transport and feedback to the hydrodynamic solver is accomplished by morphology evolution and fluid viscosity due to sediment suspension. Previous investigations by the authors have shown FLOW-3D to well-predict the hydrodynamics around five static scoured bed profiles and a stationary pipeline (``Modelling of Flow Around a Cylinder Over a Scoured Bed,'' submit to Journal of Waterway, Port, Coastal, and Ocean Engineering). Following experiments performed by Mao (1986, Dissertation, Technical University of Denmark), we will be performing model-data comparisons of length and time scales for scour around a pipeline. Preliminary investigations with LES and k-ɛ closure schemes have shown that the model predicts shorter time scales in scour hole development than that observed by Mao. Predicted time and length scales of scour hole development are shown to be a function of turbulence closure scheme, grain size, and hydrodynamic forcing. Subsequent investigations consider variable wave-current flow regimes and object burial. This investigation will allow us to identify different regimes for the scour process based on dimensionless parameters such as the Reynolds number, the Keulegan-Carpenter number, and the sediment mobility number. This research is sponsored by the Office of Naval Research - Mine Burial Program.

  14. Role of river flow and sediment mobilization in riparian alder establishment along a bedrock-gravel river, South Fork Eel River, California

    NASA Astrophysics Data System (ADS)

    Jablkowski, P.; Johnson, E. A.; Martin, Y. E.

    2017-10-01

    Climatic, hydraulics, hydrologic, and fluvial geomorphic processes are the main drivers of riparian white alder (Alnus rhombifolia Nutt.) distribution in northern California. The Mediterranean climate and canyon bound, bedrock-gravel morphology of the South Fork Eel have a distinct effect on these processes. White alder seeds are preferentially deposited on river bars where river hydraulics create eddies coinciding with the downstream part of riffles and the upstream part of pools. Seeds are generally deposited below bankfull elevations by the descending hydrograph during the spring season in this Mediterranean climate. For successful germination and establishment, the seeds must be deposited at a location such that they are not remobilized by late spring flows. The summer establishment period is defined from the date of seed deposition and germination to the fall/winter date of river sediment mobilization. Seedling root growth rate decreases exponentially with decreasing water potential. However, seedlings are shown not to be generally limited by water availability at the elevations they are most commonly deposited. The establishment of white alder seedlings following the first summer will therefore depend on their ability to resist fall/winter high flows. The method proposed here compares the predicted rooting depth to predicted sediment scour rates. The length of the establishment period rather than water availability determines final seedling rooting depth. Over the past 40 years, very few years had establishment periods that were long enough or had fast enough alder growth rates to survive winter floods that often scour deeper than the total root length. The low survival of seedlings in the first autumn season following germination is believed to be a principal reason for the missing age classes often found in alder distributions along rivers.

  15. Fine-scale relief related to late holocene channel shifting within the floor of the upper Redondo Fan, offshore Southern California

    USGS Publications Warehouse

    Normark, W.R.; Paull, C.K.; Caress, D.W.; Ussler, W.; Sliter, R.

    2009-01-01

    Erosional and depositional bedforms have been imaged at outcrop scale in the upper Redondo Fan, in the San Pedro Basin of offshore Southern California in ???600 m water depths, using an Autonomous Underwater Vehicle developed by the Monterey Bay Aquarium Research Institute. The Autonomous Underwater Vehicle is equipped with multibeam and chirp sub-bottom sonars. Sampling and photographic images using the Monterey Bay Aquarium Research Institute Remotely Operated Vehicle Tiburon provide groundtruth for the Autonomous Underwater Vehicle survey. The 0??3 m vertical and 1??5 m lateral bathymetric resolution and 0??1 m sub-bottom profile resolution provide unprecedented detail of bedform morphology and structure. Multiple channels within the Redondo Fan have been active at different times during the Late Holocene (0 to 3000 yr bp). The currently active channel extending from Redondo Canyon makes an abrupt 90?? turn at the canyon mouth before resuming a south-easterly course along the east side of the Redondo Fan. This channel is floored by sand and characterized by small steps generally <1 m in relief, spaced 10 to 80 m in the down-channel direction. A broader channel complex lies along the western side of the fan valley that was last active more than 850 years ago. Two distinct trains of large scours, with widths ranging from tens to a few hundred metres and depths of 20 m, occur on the floor of the western channel complex, which has a thin mud drape. If observed in cross-section only, these large scours would probably be misidentified as the thalweg of an active channel. ?? 2009 The Authors. Journal compilation ?? 2009 International Association of Sedimentologists.

  16. Sonic depth sounder for laboratory and field use

    USGS Publications Warehouse

    Richardson, E.V.; Simons, Daryl B.; Posakony, G.J.

    1961-01-01

    The laboratory investigation of roughness in alluvial channels has led to the development of a special electronic device capable of mapping the streambed configuration under dynamic conditions. This electronic device employs an ultrasonic pulse-echo principle, similar to that of a fathometer, that utilizes microsecond techniques to give high accuracy in shallow depths. This instrument is known as the sonic depth sounder and was designed to cover a depth range of 0 to 4 feet with an accuracy of ? 0.5 percent. The sonic depth sounder is capable of operation at frequencies of 500, 1,000 and 2,000 kilocycles. The ultrasonic beam generated at the transducer is designed to give a minimum-diameter interrogating signal over the extended depth range. The information obtained from a sonic depth sounder is recorded on a strip-chart recorder. This permanent record allows an analysis to be made of the streambed configuration under different dynamic conditions. The model 1024 sonic depth sounder was designed principally as a research instrument to meet laboratory needs. As such, it is somewhat limited in its application as a field instrument on large streams and rivers. The principles employed in this instrument, however, have many potentials for field applications such as the indirect measurement of bed load when the bed roughness is ripples and (or) dunes, depth measurement, determination of bed configuration, and determination of depth of scour around bridge piers and abutments. For field application a modification of the present system into a battery-operated lightweight instrument designed to operate at a depth range of 0 to 30 feet is possible and desirable.

  17. Hydro-dynamic and geotechnical effects in bridge scour processes

    NASA Astrophysics Data System (ADS)

    Radice, Alessio; Ballio, Francesco; Tran, Chau

    2010-05-01

    Local pier and abutment scour is a crucial topic in hydraulic engineering, due to the significant social and economical impact of bridge failure. Therefore, reliable tools for scour prediction are necessary for both design and vulnerability evaluation of the structures. In recent years, phenomenological studies of the local scour dynamics have been undertaken, to yield insight over the small scale mechanisms of the process. Experimental measurement and numerical modelling of the scouring flow field have shown the horseshoe vortex and the principal vortex as the most evident features of the flow pattern at piers and abutments, respectively. The vortex structure near the obstacles typically presents a high turbulence level compared to that of the incoming flow, and the temporal fluctuations in water velocity make the coherent vortical structures unstable in time. Furthermore, the statistical distributions of velocity values in junction flows often present a bimodal shape. The kinematics of the bottom grains reflects the unsteadiness of the flow pattern. Indeed, recent detailed measurements of particle motion in an abutment scour hole proved that a succession of opposite motion events takes place at several locations within the hole. Events of sediment motion directed away from the obstacles can be attributed to sediment pickup and transport by the turbulent flow field, whilst those with motion towards the abutment can be associated to sediment sliding along the slopes of the hole due to geotechnical instability. On a qualitative basis the presence of geotechnical effects is indeed relatively acknowledged. Despite the general agreement on the qualitative features of the scour process, a quantitative definition of the relevance of sliding for the sediment kinematics in a local scour process is still lacking. Therefore, the purpose of the present work has been to make a specific analysis of the different types of sediment motion events, aimed to a quantification of the relevance of sediment sliding for a proper process modelling. Two experimental configurations have been considered, namely a vertical-wall abutment and a circular pier. Attention has been focused on the well developed stages of the erosion process, where the grain instantaneous movements have been divided into two populations, namely the "turbulence-dominated" events (those in which the particle motion is triggered by the turbulent flow field) and the "gravity-dominated" events (those in which the particles slide along the slopes of the scour hole due to geotechnical instability). A relevant difference has been found between the dynamics of gravity-dominated and turbulence-dominated events. In addition, it has been found that the presence of geotechnical effects in the erosion hole may significantly alter the scour rate. Potential implications of the present results for the modelling of local scour processes have been discussed.

  18. Bridge scour and change in contracted section, Razor Creek

    USGS Publications Warehouse

    Holnbeck, Stephen R.; Parrett, Charles; Tillinger, Todd N.; ,

    1993-01-01

    Two large floods, 3 and 4 times the estimated 100-year peak discharge, occurred in 1986 and 1991 at a timber-pile bridge over Razor Creek in Montana. A bridge section surveyed after the 1991 flood was compared with a 1955 design section and showed total scour of 0.85 m at the left abutment, 2.23 m at the right abutment, and 0. 94 m at the pile bents. Calculated total scour based on equations recommended by the Federal Highway Administration and data obtained after the 1991 flood was 3.20 m at the left abutment, 4.36 m at the right abutment, and 2.13 m at the pile bents. Residual scour from floods prior to 1986 was presumed to be negligible because no floods of significant magnitude were documented. Also, scour for the 1986 flood is believed to be significantly less than for the 1991 flood because the 1986 peak discharge was significantly smaller and the contracted section for the 1986 peak discharge was 22 m upstream from the bridge.

  19. Wax removal for accelerated cotton scouring with alkaline pectinase.

    PubMed

    Agrawal, Pramod B; Nierstrasz, Vincent A; Klug-Santner, Barbara G; Gübitz, Georg M; Lenting, Herman B M; Warmoeskerken, Marijn M C G

    2007-03-01

    A rational approach has been applied to design a new environmentally acceptable and industrially viable enzymatic scouring process. Owing to the substrate specificity, the selection of enzymes depends on the structure and composition of the substrate, i.e. cotton fibre. The structure and composition of the outer layers of cotton fibre has been established on the basis of thorough literature study, which identifies wax and pectin removal to be the key steps for successful scouring process. Three main issues are discussed here, i.e. benchmarking of the existing alkaline scouring process, an evaluation of several selected acidic and alkaline pectinases for scouring, and the effect of wax removal treatment on pectinase performance. It has been found that the pectinolytic capability of alkaline pectinases on cotton pectin is nearly 75% higher than that of acidic pectinases. It is concluded that an efficient wax removal prior to pectinase treatment indeed results in improved performance in terms of hydrophilicity and pectin removal. To evaluate the hydrophilicity, the structural contact angle (theta) was measured using an auto-porosimeter.

  20. Detailed scour measurements around a debris accumulation

    USGS Publications Warehouse

    Mueller, David S.; Parola, Arthur C.

    1998-01-01

    Detailed scour measurements were made at Farm-Market 2004 over the Brazos River near Lake Jackson, Tex. during flooding in October 1994. Woody debris accumulations on bents 6, 7, and 8 obstructed flow through the bridge, causing scour of the streambed. Measurements at the site included three-dimensional velocities, channel bathymetry, water-surface elevations, water-surface slope, and discharge. Channel geometry upstream from the bridge caused approach conditions to be nonuniform.

  1. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    PubMed

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.

  2. Potential hazards from floodflows in Grapevine Canyon, Death Valley National Monument, California and Nevada

    USGS Publications Warehouse

    Bowers, J.C.

    1990-01-01

    Grapevine Canyon is on the western slope of the Grapevine Mountains in the northern part of Death Valley National Monument , California and Nevada. Grapevine Canyon Road covers the entire width of the canyon floor in places and is a frequently traveled route to Scotty 's Castle in the canyon. The region is arid and subject to flash flooding because of infrequent but intense convective storms. When these storms occur, normally in the summer, the resulting floods may create a hazard to visitor safety and property. Historical data on rainfall and floodflow in Grapevine Canyon are sparse. Data from studies made for similar areas in the desert mountains of southern California provide the basis for estimating discharges and the corresponding frequency of floods in the study area. Results of this study indicate that high-velocity flows of water and debris , even at shallow depths, may scour and damage Grapevine Canyon Road. When discharge exceeds 4,900 cu ft/sec, expected at a recurrence interval of between 25 and 50 years, the Scotty 's Castle access road and bridge may be damaged and the parking lot partly inundated. A flood having a 100-year or greater recurrence interval probably would wash out the bridge and present a hazard to the stable and garage buildings but not to the castle buildings, whose foundations are higher than the predicted maximum flood level. (USGS)

  3. Gray whale and walrus feeding excavation on the Bering Shelf, Alaska.

    USGS Publications Warehouse

    Nelson, C.H.; Johnson, K.R.; Barber, J.H.

    1987-01-01

    The gray whales (average mouth length, 2.0 m), when suction feeding on infaunal amphipods, create shallow pits in the sea floor, typically 2.5m x 1.5m x 10cm deep, which are distinct and mappable on sidescan sonographs. Similarly, walrus, when foraging for shallow clams, create long, linear feeding furrows that average 47 x 0.4 x 0.1m (length-width-depth). The whale feeding pits are commonly enlarged and oriented by seasonal storm-related scour. Walrus-feeding features are smaller, formed in higher-energy environments, and modified more rapidly than whale-feeding pits. -from Authors

  4. Submarine canyon formation and evolution in the Argentine Continental Margin between 44°30'S and 48°S

    NASA Astrophysics Data System (ADS)

    Lastras, G.; Acosta, J.; Muñoz, A.; Canals, M.

    2011-05-01

    In the framework of the Vulnerable Marine Ecosystems (VME) of the High Seas of the South West Atlantic, large areas of the Argentine Continental Margin (ACM) between 44°30'S and 48°S have been swath-mapped for the first time, obtaining full data coverage of the seafloor in this region between the outermost continental shelf and the middle slope down to 1600 m water depth. The slope is characterized by the presence of smooth terraces (Nagera, Perito Moreno and Piedra Buena) that widen towards the south, limited by morphological steps with evident signs of erosion in the form of scours. These terraces form part of the Argentine contourite depositional systems, generated by the interaction of the northwards flowing Antarctic water masses with the seafloor. Within the studied area, seven canyons and their multiple branches dissect the upper and middle continental slopes, from west to east, across the terraces and the steps. These canyons, which belong to the Patagonia submarine canyon system and are collected at a depth of ~ 3.5 km by a slope-parallel, SSW-NNE-oriented channel known as the Almirante Brown transverse canyon, display a large variety of morphologies. These include incisions from just a dozen of metres to 650 m, straight to highly meandering sections with sharp bends, well-developed levees and walls that reach 35° in slope gradient, hanging branches, conspicuous axial incisions and multiple knickpoints. Only the northernmost canyon indents in the continental shelf, whereas the others start at the limit between the upper and middle slopes, and are often fed by small, straight, leveed gullies. The action of both across-slope processes represented by submarine canyons and along-slope processes represented by terracing and scouring conform the ACM as a peculiar mixed margin, with the presence of both contour and gravity currents at the same place at the same time. We propose that at present, along-slope erosion and transport mainly occurs along the Perito Moreno terrace, whereas across-slope processes are much more dominant in the Nagera terrace. Erosive bedforms such as crescent scours, generated by contour currents, contribute to the progressive bottom-up erosion of the Nagera terrace and act as an initial collector of across-slope transported sediment, that later, due to flow focusing and recurrence, incise and interconnect creating definitive canyons that progress upslope by retrogressive erosion until their head indents the shelf break. Changes in the balance between across-slope and along-slope transport would imply a disequilibrium in the combination of processes leading to canyon formation, producing canyon abandonment, and partial or total filling. These changes could be produced by a variation in the depth of the main interfaces of Antarctic water masses leading to either an increase or a decrease in the erosion and transport capacity of contour currents, and/or by an enhancement of across-slope transport related to an increase of sediment availability.

  5. 21 CFR 520.2345d - Tetracycline powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Control and treatment of bacterial enteritis (scours) caused by Escherichia coli and bacterial pneumonia... bacterial enteritis (scours) caused by E. coli and bacterial pneumonia associated with Pasteurella spp., A...

  6. 21 CFR 520.2345d - Tetracycline powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Control and treatment of bacterial enteritis (scours) caused by Escherichia coli and bacterial pneumonia... bacterial enteritis (scours) caused by E. coli and bacterial pneumonia associated with Pasteurella spp., A...

  7. 21 CFR 520.2345d - Tetracycline powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Control and treatment of bacterial enteritis (scours) caused by Escherichia coli and bacterial pneumonia... bacterial enteritis (scours) caused by E. coli and bacterial pneumonia associated with Pasteurella spp., A...

  8. Bridge-scour analysis on Cuchillo Negro Creek at the Interstate 25 crossing near Truth or Consequences, New Mexico

    USGS Publications Warehouse

    Waltemeyer, S.D.

    1995-01-01

    A sediment-transport model to simulate channel change was applied to a 1-mile reach of Cuchillo Negro Creek at the Interstate 25 crossing at Truth or Consequences, New Mexico, using the Bridge-Stream Tube model for Alluvial River Simulation (BRI-STARS). The 500-year flood discharge was estimated to be 10,700 cubic feet per second. The 100-year, 500-year, and regional maximum discharges were used to design synthetic and discretized hydrographs using a flood volume equation. The regional maximum discharge relation was developed for New Mexico based on 259 streamflow-gaging stations' maximum peak discharge. The regional maximum-peak discharge for the site was determined to be 81,700 cubic feet per second. Bed-material particle-size distribution was determined for six size classes ranging from 1 to 30 millimeters. The median diameter was 4.6 millimeters at the bed surface and 9.0 millimeters 13 feet below the bed surface. Bed-material discharge for use in the model was estimated to be 18,770 tons per day using hydraulic properties, water temperature, and Yang's gravel equation. Channel-change simulations showed a maximum channel degradation of 1.38 feet for the regional maximum-peak discharge hydrograph.

  9. Regional Sediment Management (RSM) Principles in Flood Recovery: Incorporating RSM after the 2011 Missouri River Flood

    DTIC Science & Technology

    2013-06-01

    outer bank threatened a Fed- eral levee that protects adjacent homes and farmland. The eroded chute bank approached the toe of the levee causing...design drawing for repairing the levee toe . Approximately 30,000 tons of riprap were placed to re-establish the bank in front of the scour hole...Sediment was needed to fill and stabilize the scour hole between the riprap bank and the toe of the levee. The volume required to fill the scour hole

  10. Physical Hydraulic Model of Side-Channel Spillway of Lambuk DAM, Bali

    NASA Astrophysics Data System (ADS)

    Harifa, A. C.; Sholichin, M.; Othman, F. B.

    2013-12-01

    The spillway is among the most important structures of a dam project. A spillway is designed to prevent overtopping of a dam at a place that is not designed for overtopping. Side-channel spillways are commonly used to release water flow from a reservoir in places where the sides are steep and have a considerable height above the dam. Experimental results were collected with a hydraulic model of the side-channel spillway for releasing the peak overflow of Lambuk Dam. This dam is, located on the Lambuk River, which is a tributary of the Yeh Hoo River ~ 34.6 km north of Denpasar on the island of Bali. The bituminous geomembrane faced dam is 24 m in height, with a 35-m wide spillway. The length of the side channel is 35 m long, with 58 m of transition channel, 67.37 m of chuteway channel and 22.71 m of stilling basin. The capacity of the spillway is 231.91 m3/s and the outlet works capacity is 165.28 m3/s. The reservoir is designed for irrigation and water supply. The purpose of this study was to optimize the designed of the structure and to ensure its safe operation. In hydraulic model may help the decision-makers to visualize the flow field before selecting a ';suitable' design. The hydraulic model study was performed to ensure passage of the maximum discharge at maximum reservoir capacity; to study the spillway approach conditions, water surface profiles, and flow patterns in the chuteway; and to reveal potential demerits of the proposed hydraulic design of various structures and explore solutions. The model was constructed at 1 : 40 scale, Reservoir topography was modeled using concrete, the river bed using sand and some gravel, the river berm using concrete, and the spillway and channel using Plexiglas. Water was measured using Rectangular contracted weir. Design floods (with return period in year) were Q2 = 111.40 m3/s, Q5 = 136.84 m3/s, Q10 = 159.32 m3/s, Q25 = 174.61 m3/s, Q50 = 185.13 m3/s, Q100 = 198.08 m3/s, Q200 = 210.55 m3/s, Q1000 = 231.91 m3/s and the probable maximum flood was 476.88 m3/s. Hydraulic analysis of spillway used USBR method for spillway, Hind's equation for the side channel, energy equation with standard step method for the transition and chuteway channel. Local scouring depth was calculated using the Schotlisch and Veronise equation. Total head on crest spillway for Q2 = 0.92 m, Q1000 = 1.68 m and for QPMF = 1.92 m. The highest measurement error is 3.16% according to the total head on crest spillway. Cavitation was observed in chuteway. Flow is subcritical (Froude < 1) in the side channel and supercritical in the transition channel. The final design for the spillway and chuteway were safe from impact of cavitation, pulsating flow, and local scouring.

  11. Submerged flow bridge scour under clear water conditions

    DOT National Transportation Integrated Search

    2012-09-01

    Prediction of pressure flow (vertical contraction) scour underneath a partially or fully submerged bridge superstructure : in an extreme flood event is crucial for bridge safety. An experimentally and numerically calibrated formulation is : developed...

  12. Numerical Analysis Study of Sarawak Barrage River Bed Erosion and Scouring by Using Smooth Particle Hydrodynamic (SPH)

    NASA Astrophysics Data System (ADS)

    Zainol, M. R. R. M. A.; Kamaruddin, M. A.; Zawawi, M. H.; Wahab, K. A.

    2017-11-01

    Smooth Particle Hydrodynamic is the three-dimensional (3D) model. In this research work, three cases and one validation have been simulate using DualSPHysics. Study area of this research work was at Sarawak Barrage. The cases have different water level at the downstream. This study actually to simulate riverbed erosion and scouring properties by using multi-phases cases which use sand as sediment and water. The velocity and the scouring profile have been recorded as the result and shown in the result chapter. The result of the validation is acceptable where the scouring profile and the velocity were slightly different between laboratory experiment and simulation. Hence, it can be concluded that the simulation by using SPH can be used as the alternative to simulate the real cases.

  13. The maximum economic depth of groundwater abstraction for irrigation

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of maximum economic depth will be combined with estimates of groundwater depth and storage coefficients to estimate economically attainable groundwater volumes worldwide.

  14. Numerical study of turbulent flow over stages of interacting barchan dunes: sediment scour and vorticity dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Anderson, William

    2017-11-01

    Large-eddy simulation (LES) results of unidirectional turbulent flow over interacting barchan dunes are presented. A series of interacting barchan dune topographies have been considered wherein a small dune is positioned at locations upflow of a relatively larger dune, and at a slight spanwise offset. The smaller dune is geometrically similar, but one-eighth the volume of the larger dune, thus replicating instantaneous realizations during actual dune interactions. We report that flow channeling in the interdune space induces a mean flow heterogeneity - termed ``wake veering'' - in which the location of maximum momentum deficit in the dune wake is spanwise-displaced. The probability density functions of streamwise velocity fluctuation in the interdune space showed wide variability, and were used to select low-frequency, high-magnitude thresholds for conditional sampling. Conditionally- and Reynolds-averaged iso-contours of Q-criterion and differential helicity revealed a persistent roller in interdune space, which strengthened asymmetric sediment erosion via scouring. We assess terms in the Reynolds-averaged streamwise vorticity transport, and show that the roller is primarily sustained by stretching. Finally, we present results of joint time-frequency analysis using wavelet decomposition, which shows that the dune geometry imparts a distinct influence on the local flow.

  15. Bedload transport over run-of-river dams, Delaware, U.S.A.

    NASA Astrophysics Data System (ADS)

    Pearson, Adam J.; Pizzuto, Jim

    2015-11-01

    We document the detailed morphology and bed sediment size distribution of a stream channel upstream and downstream of a 200-year-old run-of-river dam on the Red Clay Creek, a fifth order stream in the Piedmont of northern Delaware, and combine these data with HEC-RAS modeling and bedload transport computations. We hypothesize that coarse bed material can be carried through run-of-river impoundments before they completely fill with sediment, and we explore mechanisms to facilitate this transport. Only 25% of the accommodation space in our study site is filled with sediment, and maximum water depths are approximately equal to the dam height. All grain-size fractions present upstream of the impoundment are also present throughout the impoundment. A characteristic coarse-grained sloping ramp leads from the floor of the impoundment to the crest of the dam. A 2.3-m-deep plunge pool has been excavated below the dam, followed immediately downstream by a mid-channel bar composed of coarse bed material similar in size distribution to the bed material of the impoundment. The mid-channel bar stores 1472 m3 of sediment, exceeding the volume excavated from the plunge pool by a factor of 2.8. These field observations are typical of five other sites nearby and suggest that all bed material grain-size fractions supplied from upstream can be transported through the impoundment, up the sloping ramp, and over the top of the dam. Sediment transport computations suggest that all grain sizes are in transport upstream and within the impoundment at all discharges with return periods from 1 to 50 years. Our computations suggest that transport of coarse bed material through the impoundment is facilitated by its smooth, sandy bed. Model results suggest that the impoundment is currently aggrading at 0.26 m/year, but bed elevations may be recovering after recent scour from a series of large floods during water year 2011-2012. We propose that impoundments upstream of these run-of-river dams behave as long pools that adjust their bed elevation and texture to transport the load supplied by the watershed, rather than as impounded reservoirs with little bed material transport capacity. Scour may only occur during episodic high flows, followed by aggradation during periods of low flow.

  16. Instrumentation for detailed bridge-scour measurements

    USGS Publications Warehouse

    Landers, Mark N.; Mueller, David S.; Trent, Roy E.; ,

    1993-01-01

    A portable instrumentation system is being developed to obtain channel bathymetry during floods for detailed bridge-scour measurements. Portable scour measuring systems have four components: sounding instrument, horizontal positioning instrument, deployment mechanisms, and data storage device. The sounding instrument will be a digital fathometer. Horizontal position will be measured using a range-azimuth based hydrographic survey system. The deployment mechanism designed for this system is a remote-controlled boat using a small waterplane area, twin-hull design. An on-board computer and radio will monitor the vessel instrumentation, record measured data, and telemeter data to shore.

  17. California State Waters Map Series: Drakes Bay and vicinity, California

    USGS Publications Warehouse

    Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik N.; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.

    2015-01-01

    Sediment transport in the map area largely is controlled by surface waves and tidal currents in the nearshore and, at depths greater than 20 to 30 m, by tidal and subtidal currents. In the map area, nearshore littoral drift of sand and coarse sediment is to the south, owing to the dominant west-northwest swell direction, and scour from large waves and tidal currents removes and redistributes sediment over large areas of the inner shelf. Tidal currents are particularly strong over the shelf in the map area, and they dominate the current regime in the nearshore. Further offshore, bottom currents generally flow to the northwest, distributing finer grained sediment accordingly.

  18. Effects of Debris Flows on Stream Ecosystems of the Klamath Mountains, Northern California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; Delafuente, J. A.; Resh, V. H.

    2006-12-01

    We examined the long-term effects of debris flows on channel characteristics and aquatic food webs in steep (0.04-0.06 slope), small (4-6 m wide) streams. A large rain-on-snow storm event in January 1997 resulted in numerous landslides and debris flows throughout many basins in the Klamath Mountains of northern California. Debris floods resulted in extensive impacts throughout entire drainage networks, including mobilization of valley floor deposits and removal of vegetation. Comparing 5 streams scoured by debris flows in 1997 and 5 streams that had not been scoured as recently, we determined that debris-flows decreased channel complexity by reducing alluvial step frequency and large woody debris volumes. Unscoured streams had more diverse riparian vegetation, whereas scoured streams were dominated by dense, even-aged stands of white alder (Alnus rhombiflia). Benthic invertebrate shredders, especially nemourid and peltoperlid stoneflies, were more abundant and diverse in unscoured streams, reflecting the more diverse allochthonous resources. Debris flows resulted in increased variability in canopy cover, depending on degree of alder recolonization. Periphyton biomass was higher in unscoured streams, but primary production was greater in the recently scoured streams, suggesting that invertebrate grazers kept algal assemblages in an early successional state. Glossosomatid caddisflies were predominant scrapers in scoured streams; heptageniid mayflies were abundant in unscoured streams. Rainbow trout (Oncorhynchus mykiss) were of similar abundance in scoured and unscoured streams, but scoured streams were dominated by young-of-the-year fish while older juveniles were more abundant in unscoured streams. Differences in the presence of cold-water (Doroneuria) versus warm-water (Calineuria) perlid stoneflies suggest that debris flows have altered stream temperatures. Debris flows have long-lasting impacts on stream communities, primarily through the cascading effects of removal of riparian vegetation. Because debris flow frequency increases following road construction and timber harvest, the long-term biological effects of debris flows on stream ecosystems, including anadromous fish populations, needs to be considered in forest management decisions.

  19. Analytical model for local scour prediction around hydrokinetic turbine foundations

    NASA Astrophysics Data System (ADS)

    Musa, M.; Heisel, M.; Hill, C.; Guala, M.

    2017-12-01

    Marine and Hydrokinetic renewable energy is an emerging sustainable and secure technology which produces clean energy harnessing water currents from mostly tidal and fluvial waterways. Hydrokinetic turbines are typically anchored at the bottom of the channel, which can be erodible or non-erodible. Recent experiments demonstrated the interactions between operating turbines and an erodible surface with sediment transport, resulting in a remarkable localized erosion-deposition pattern significantly larger than those observed by static in-river construction such as bridge piers, etc. Predicting local scour geometry at the base of hydrokinetic devices is extremely important during foundation design, installation, operation, and maintenance (IO&M), and long-term structural integrity. An analytical modeling framework is proposed applying the phenomenological theory of turbulence to the flow structures that promote the scouring process at the base of a turbine. The evolution of scour is directly linked to device operating conditions through the turbine drag force, which is inferred to locally dictate the energy dissipation rate in the scour region. The predictive model is validated using experimental data obtained at the University of Minnesota's St. Anthony Falls Laboratory (SAFL), covering two sediment mobility regimes (clear water and live bed), different turbine designs, hydraulic parameters, grain size distribution and bedform types. The model is applied to a potential prototype scale deployment in the lower Mississippi River, demonstrating its practical relevance and endorsing the feasibility of hydrokinetic energy power plants in large sandy rivers. Multi-turbine deployments are further studied experimentally by monitoring both local and non-local geomorphic effects introduced by a twelve turbine staggered array model installed in a wide channel at SAFL. Local scour behind each turbine is well captured by the theoretical predictive model. However, multi-turbine configurations introduce subtle large-scale effects that deepen local scour within the first two rows of the array and develop spatially as a two-dimensional oscillation of the mean bed downstream of the entire array.

  20. Rock stream stability structures in the vicinity of bridges.

    DOT National Transportation Integrated Search

    2014-10-01

    This report was sponsored by the Utah Department of Transportation (UDOT) to determine if rock stream stability structures could be used as : scour countermeasures and to protect streambanks. Traditional scour countermeasures, such as rock riprap, ar...

  1. 21 CFR 520.2261b - Sulfamethazine powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (bacterial scours) (E. coli), and bacterial pneumonia (Pasteurella spp.). (iii) Limitations. Add the required... (bacterial scours) (E. coli), necrotic pododermatitis (foot rot) (Fusobacterium necrophorum), calf diphtheria... coryza (Haemophilus gallinarum), coccidiosis (Eimeria tenella, E. necatrix), acute fowl cholera...

  2. Realtime monitoring of bridge scour using remote monitoring technology

    DOT National Transportation Integrated Search

    2011-02-01

    The research performed in this project focuses on the application of instruments including accelerometers : and tiltmeters to monitor bridge scour. First, two large scale laboratory experiments were performed. One : experiment is the simulation of a ...

  3. The South Carolina bridge-scour envelope curves.

    DOT National Transportation Integrated Search

    2016-09-23

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a series of three field investigations to evaluate historical, riverine bridge scour in the Piedmont and Coastal Plain regions of South Carolin...

  4. Application of non-destructive testing to evaluate unknown foundations for Pennsylvania bridges.

    DOT National Transportation Integrated Search

    2013-08-01

    Unknown bridge foundations present a unique challenge to Departments of Transportation (DOT) across the country since : foundation characteristics are a necessary input to assess scour vulnerability and to develop appropriate scour countermeasures. :...

  5. Development of a database for Louisiana highway bridge scour data : technical summary.

    DOT National Transportation Integrated Search

    1999-10-01

    The objectives of the project included: 1) developed a database with manipulation capabilities such as data retrieval, visualization, and update; 2) Input the existing scour data from DOTD files into the database.

  6. Monitoring bridge scour using fiber optic sensors : research project capsule.

    DOT National Transportation Integrated Search

    2009-03-01

    The interstate highway network is an : important national asset. Bridges : constituting critical nodes within : transportation networks are the : backbone of the transportation : infrastructure. It is well known that : scour is one of the major cours...

  7. Predicting Scour of Bedrock in Wisconsin

    DOT National Transportation Integrated Search

    2017-04-01

    This research evaluates the scour potential of rocks supporting Wisconsin DOT bridge foundations. Ten highway bridges were selected for this study, of which seven are supported by shallow foundations, and five were built on sandstone in rivers/stream...

  8. Geophysical reconnaissance of Lemmon Valley, Washoe County, Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.; Maurer, Douglas K.

    1981-01-01

    Rapid growth in the Lemmon Valley area, Nevada, during recent years has put increasing importance on knowledge of stored ground water for the valley. Data that would fill voids left by previous studies are depth to bedrock and depth to good-quality water beneath the two playas in the valley. Depths to bedrock calculated from a gravity survey in Lemmon Valley indicate that the western part of Lemmon Valley is considerably deeper than the eastern part. Maximum depth in the western part is about 2 ,600 feet below land surface. This depression approximately underlies the Silver Lake playa. A smaller, shallower depression with a maximum depth of about 1,500 feet below land surface exists about 2.5 miles north of the playa. The eastern area is considerably shallower. The maximum calculated depth to bedrock is about 1,000 feet below land surface, but the depth throughout most the eastern area is only about 400 feet below land surface. An electrical resistivity survey in Lemmon Valley consisting of 10 Schlumberger soundings was conducted around the playas. The maximum depth of poor-quality water (characterized by a resistivity less than 20 ohm-meters) differed considerably from place to place. Maximum depths of poor-quality water beneath the playa east of Stead varied from about 120 feet to almost 570 feet below land surface. At the Silver Lake playa, the maximum depths varied from about 40 feet in the west to 490 feet in the east. (USGS)

  9. Influence of submarine morphology on bottom water flow across the western Ross Sea continental margin

    USGS Publications Warehouse

    Davey, F.J.; Jacobs, S.S.

    2007-01-01

    Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.

  10. Neuromuscular responses during aquatic resistance exercise with different devices and depths.

    PubMed

    Colado, Juan C; Borreani, Sebastien; Pinto, Stephanie Santana; Tella, Victor; Martin, Fernando; Flandez, Jorge; Kruel, Luiz F

    2013-12-01

    Little research has been reported regarding the effects of using different devices and immersion depths during the performance of resistance exercises in a water environment. The purpose of this study was to compare muscular activation of upper extremity and core muscles during shoulder extensions performed at maximum velocity with different devices and at different depths. Volunteers (N = 24) young fit male university students performed 3 repetitions of shoulder extensions at maximum velocity using 4 different devices and at 2 different depths. The maximum amplitude of the electromyographic root mean square of the latissimus dorsi (LD), rectus abdominis, and erector lumbar spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction. No significant (p > 0.05) differences were found in the neuromuscular responses between the different devices used during the performance of shoulder extension at xiphoid process depth. Regarding the comparisons of muscle activity between the 2 depths analyzed in this study, only the LD showed a significantly (p ≤ 0.05) higher activity at the xiphoid process depth compared with that at the clavicle depth. Therefore, if maximum muscle activation of the extremities is required, the xiphoid depth is a better choice than clavicle depth, and the kind of device is not relevant. Regarding core muscles, neither the kind of device nor the immersion depth modifies muscle activation.

  11. Evaluating scour at bridges.

    DOT National Transportation Integrated Search

    1995-11-01

    This document is the third of HEC 18, i.e., presents the state of knowledge and practice for the design, : evaluation, and inspection of bridges for scour. It contains updated material not included in the second : edition dated April 1993. This docum...

  12. Bridge scour and stream instability countermeasures : experience, selection, and design guidance : third edition. Volume 1

    DOT National Transportation Integrated Search

    2009-09-01

    This document identifies and provides design guidelines for bridge scour and stream instability countermeasures that have been implemented by various State departments of transportation (DOTs) in the United States. Countermeasure experience, selectio...

  13. Bridge scour and stream instability countermeasures : experience, selection, and design guidance : third edition. Volume 2

    DOT National Transportation Integrated Search

    2009-09-01

    This document identifies and provides design guidelines for bridge scour and stream instability countermeasures that have been implemented by various State departments of transportation (DOTs) in the United States. Countermeasure experience, selectio...

  14. 21 CFR 520.2260a - Sulfamethazine oblet, tablet, and bolus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sulfamethazine: bacterial scours (colibacilloosis) caused by E. coli; necrotic pododermatitis (foot rot) and calf... (shipping fever complex) (Pasteurella spp.), colibacillosis (bacterial scours) (Escherichia coli), necrotic... spp.), strangles (Streptococcus equi), and bacterial enteritis (Escherichia coli). (iii) Limitations...

  15. Modification of Selected South Carolina Bridge-Scour Envelope Curves

    DOT National Transportation Integrated Search

    2012-01-01

    Historic scour was investigated at 231 bridges in the Piedmont and Coastal Plain physiographic provinces of South Carolina by the U.S. Geological Survey in cooperation with the South Carolina Department of Transportation. These investigations led to ...

  16. Pier scour in clear-water conditions with non-uniform bed materials

    DOT National Transportation Integrated Search

    2012-05-01

    Pier scour design in the United States is currently accomplished through application of the Colorado State University : (CSU) equation. Since the Federal Highway Administration recommended the CSU equation in 2001, substantial : advances have been ma...

  17. Erosional self-channelization of pyroclastic density currents - Evidence from ground-penetrating radar imaging at Mt. St. Helens, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Gase, A.; Brand, B. D.; Bradford, J.

    2016-12-01

    The causes and consequences of substrate erosion are among the least understood attributes of pyroclastic density current (PDC) dynamics. Field evidence of substrate erosion is often limited by the location and quality of exposed PDC deposits. Here we present evidence for one of the most spatially extensive cases of PDC erosion to date, found within the 18 May 1980 deposits of Mt. St. Helens, Washington (USA). An 8 m deep and 300 m wide PDC scour and fill feature, which extends into PDC deposits from earlier in the eruption, is exposed along a distal outcrop of the shallow-dipping (<15º) pumice plain. Near surface geophysical techniques allow us to investigate the nature, extent, and cause of this large scour. We used 50 MHz ground-penetrating radar to track the distal scour from outcrop toward its source. Beginning 700 m up-flow from the large scour and fill exposure, the feature progressively widens from 205 m to 280 m and deepens from 10 m to 13 m, suggesting the PDCs became more erosive along the length of the scour. We extended our transects across the pumice plain to locate additional scours and to establish the topography at the time of erosion. We found a second 420 m wide and 11 m deep scour that extends at least 500 m from its inception point. Apparent dips of the sides of both channels are asymmetrical, due to pronounced erosion on the up-slope side of the flow in cross-section. Our data show no evidence of subsurface topographic irregularities or high slope angles up-flow from either erosional feature. These features imply large PDCs from semi-sustained or fluctuating eruptions can self-channelize by erosional mechanisms. Our findings suggest that (1) concentrated PDCs are capable of producing large scours on shallow slopes with negligible surface roughness, analogous to the erosional channels of submarine turbidity currents, (2) substrate properties, including partial fluidization of fresh PDC deposits, may facilitate substrate erosion during semi-sustained eruptions, and (3) large PDCs can undergo self-channelization, whereby axial zones of high flow energy erode channels that confine subsequent flows. Erosion and self-channelization of this nature is not accounted for in models of concentrated PDCs, which may result in underestimates of run-out distance.

  18. Unraveling the channel–lobe transition zone with high-resolution AUV bathymetry: Navy Fan, offshore Baja California, Mexico

    USGS Publications Warehouse

    Carvajal, Cristian; Paull, Charles K.; Caress, David W.; Fildani, Andrea; Lundsten, Eve M.; Anderson, Krystle; Maier, Katherine L.; McGann, Mary; Gwiazda, Roberto; Herguera, Juan Carlos

    2017-01-01

    Ultra-high-resolution (1 m * 1 m * 0.25 m) bathymetry was acquired with an autonomous underwater vehicle (AUV) over a sector of the Navy Fan offshore Baja California. The survey specifically targeted an area where the former interpretation of the fan showed a channel–lobe transition; however, the lobe and the transition were not recognized. Instead, the newly acquired bathymetry shows that the previously identified channel continues basinward changing its overall morphology and stratigraphic architecture, becoming gradually but significantly wider (650–1000 m) and of lower relief (3–4 m). Cores from the channel thalweg recovered mud-poor (< 5%) well-sorted sands, interpreted as deposited by fully turbulent flows. The cores also show several mud-rich (9–18%) poorly sorted sands, probably indicating deposition from more cohesive flows.The high-resolution bathymetry shows large sectors of the seafloor sculpted by elaborate bedforms and scours. The overbank area north of the channel exhibits the most numerous and prominent scours, interpreted to have been largely generated by flow stripping at a bend in the channel. Along high-gradient sectors (more than approximately 1¯) of this area, the scours are largest and deepest. Some of these scours show an erosional headwall and a distal upflow-dipping depositional bulge, forming repetitive bedforms interpreted as erosional cyclic steps associated with locked-in-place trains of hydraulic jumps. The scours seem to coalesce to form an incipient channel, which would likely drive the avulsion of the main channel. Further basinward, average gradients decrease (< 0.6¯ ) and scours become smaller and less deep suggesting a gradient control on erosion. The southern channel margin and adjacent overbank area exhibit a trend of scours that are elongated transverse to flow, that successively repeat themselves basinwards, and that at times merge with sediment waves. Probably these scours are genetically linked to sediment waves, and they may have been formed by cyclic-step-like processes as well. The acquired bathymetry represents a breakthrough in the imaging of the proximal sectors of deep-sea fans, which provides the basis for an accurate morphometric characterization and the understanding of sedimentary processes and morphodynamics associated with the delivery of sediment into the deep sea.

  19. Alteration of digestive tract microbiome in neonatal Holstein bull calves by bacitracin methylene disalicylate treatment and scours.

    PubMed

    Xie, G; Duff, G C; Hall, L W; Allen, J D; Burrows, C D; Bernal-Rigoli, J C; Dowd, S E; Guerriero, V; Yeoman, C J

    2013-10-01

    The effects of bacitracin methylene disalicylate (BMD) and scours on the fecal microbiome, animal performance, and health were studied in Holstein bull calves. Holstein bull calves (n = 150) were obtained from a single source at 12 to 24 h of age. Bull calves were randomly assigned to 1 of 2 treatments including CON (no BMD; n = 75 calves) and BMD (n = 75 calves). Starting 3 d after arrival, BMD was added into milk replacer (0.5 g/feeding; twice daily) and fed to the calves for 10 consecutive d. No differences (P > 0.10) were observed in ADG for d 0 to 28 and d 0 to 56, DMI for d 0 to 28, d 29 to 56, and d 0 to 56, or G:F for d 0 to 28, d 29 to 56, and d 0 to 56; ADG for d 29 to 56 tended to increase (P < 0.10) for BMD-treated calves compared with controls. Fecal samples were collected from 15 scouring calves and 10 cohorts (nonscouring calves received on the same day and administered the same treatment as the scouring calves). Animal morbidity and fecal score did not vary between the 2 treatments. Mortality was not influenced by the treatments in the BMD administration period or throughout the experiment. Fecal samples were subjected to pyrotagged 454 FLX pyrosequencing of 16S rRNA gene amplicon to examine compositional dynamics of fecal microbes. Escherichia, Enterococcus, and Shigella had greater (P < 0.05) populations in the BMD group whereas Dorea, Roseburia, Fecalibacterium, Papillibacter, Collinsella, Eubacterium, Peptostreptococcus, and Prevotella were decreased (P < 0.05) by BMD treatment. Genus populations were also compared between scouring and nonscouring calves. Streptococcus was the only genus that had notable increase (P < 0.05) in fecal samples from scouring calves whereas populations of Bacteroides, Roseburia, and Eubacterium were markedly (P < 0.05) greater in nonscouring calves. These results show that BMD has the ability to alter the composition of the fecal microbiome but failed to improve performance in Holstein bull calves. Discrepancy of microorganism profiles between scouring and nonscouring calves might be associated with the occurrence of scours and bacterial genera identified might be potential target of treating diarrhea.

  20. Predicting scour in weak rock of the Oregon Coast Range : final report

    DOT National Transportation Integrated Search

    1999-10-01

    Recent experience in the Coast Range Province of Oregon demonstrates that weak sedimentary bedrock in stream channels can be vulnerable to scour. The presence of erodible rock adjacent to bridge foundations and abutments necessitates monitoring of th...

Top