NASA Astrophysics Data System (ADS)
Hayden, T. G.; Kominz, M. A.; Magens, D.; Niessen, F.
2009-12-01
We have estimated ice thicknesses at the AND-1B core during the Last Glacial Maximum by adapting an existing technique to calculate overburden. As ice thickness at Last Glacial Maximum is unknown in existing ice sheet reconstructions, this analysis provides constraint on model predictions. We analyze the porosity as a function of depth and lithology from measurements taken on the AND-1B core, and compare these results to a global dataset of marine, normally compacted sediments compiled from various legs of ODP and IODP. Using this dataset we are able to estimate the amount of overburden required to compact the sediments to the porosity observed in AND-1B. This analysis is a function of lithology, depth and porosity, and generates estimates ranging from zero to 1,000 meters. These overburden estimates are based on individual lithologies, and are translated into ice thickness estimates by accounting for both sediment and ice densities. To do this we use a simple relationship of Xover * (ρsed/ρice) = Xice; where Xover is the overburden thickness, ρsed is sediment density (calculated from lithology and porosity), ρice is the density of glacial ice (taken as 0.85g/cm3), and Xice is the equalivant ice thickness. The final estimates vary considerably, however the “Best Estimate” behavior of the 2 lithologies most likely to compact consistently is remarkably similar. These lithologies are the clay and silt units (Facies 2a/2b) and the diatomite units (Facies 1a) of AND-1B. These lithologies both produce best estimates of approximately 1,000 meters of ice during Last Glacial Maximum. Additionally, while there is a large range of possible values, no combination of reasonable lithology, compaction, sediment density, or ice density values result in an estimate exceeding 1,900 meters of ice. This analysis only applies to ice thicknesses during Last Glacial Maximum, due to the overprinting effect of Last Glacial Maximum on previous ice advances. Analysis of the AND-2A core is underway, and results will be compared to those of AND-1B.
Wong, Florence L.; Phillips, Eleyne L.; Johnson, Samuel Y.; Sliter, Ray W.
2012-01-01
Models of the depth to the base of Last Glacial Maximum and sediment thickness over the base of Last Glacial Maximum for the eastern Santa Barbara Channel are a key part of the maps of shallow subsurface geology and structure for offshore Refugio to Hueneme Canyon, California, in the California State Waters Map Series. A satisfactory interpolation of the two datasets that accounted for regional geologic structure was developed using geographic information systems modeling and graphics software tools. Regional sediment volumes were determined from the model. Source data files suitable for geographic information systems mapping applications are provided.
Nearshore sediment thickness, Fire Island, New York
Locker, Stanley D.; Miselis, Jennifer L.; Buster, Noreen A.; Hapke, Cheryl J.; Wadman, Heidi M.; McNinch, Jesse E.; Forde, Arnell S.; Stalk, Chelsea A.
2017-04-03
Investigations of coastal change at Fire Island, New York (N.Y.), sought to characterize sediment budgets and determine geologic framework controls on coastal processes. Nearshore sediment thickness is critical for assessing coastal system sediment availability, but it is largely unquantified due to the difficulty of conducting geological or geophysical surveys across the nearshore. This study used an amphibious vessel to acquire chirp subbottom profiles. These profiles were used to characterize nearshore geology and provide an assessment of nearshore sediment volume. Two resulting sediment-thickness maps are provided: total Holocene sediment thickness and the thickness of the active shoreface. The Holocene sediment section represents deposition above the maximum flooding surface that is related to the most recent marine transgression. The active shoreface section is the uppermost Holocene sediment, which is interpreted to represent the portion of the shoreface thought to contribute to present and future coastal behavior. The sediment distribution patterns correspond to previously defined zones of erosion, accretion, and stability along the island, demonstrating the importance of sediment availability in the coastal response to storms and seasonal variability. The eastern zone has a thin nearshore sediment thickness, except for an ebb-tidal deposit at the wilderness breach caused by Hurricane Sandy. Thicker sediment is found along a central zone that includes shoreface-attached sand ridges, which is consistent with a stable or accretional coastline in this area. The thickest overall Holocene section is found in the western zone of the study, where a thicker lower section of Holocene sediment appears related to the westward migration of Fire Island Inlet over several hundred years.
Geostatistical mapping of effluent-affected sediment distribution on the Palos Verdes shelf
Murray, C.J.; Lee, H.J.; Hampton, M.A.
2002-01-01
Geostatistical techniques were used to study the spatial continuity of the thickness of effluent-affected sediment in the offshore Palos Verdes Margin area. The thickness data were measured directly from cores and indirectly from high-frequency subbottom profiles collected over the Palos Verdes Margin. Strong spatial continuity of the sediment thickness data was identified, with a maximum range of correlation in excess of 1.4 km. The spatial correlation showed a marked anisotropy, and was more than twice as continuous in the alongshore direction as in the cross-shelf direction. Sequential indicator simulation employing models fit to the thickness data variograms was used to map the distribution of the sediment, and to quantify the uncertainty in those estimates. A strong correlation between sediment thickness data and measurements of the mass of the contaminant p,p???-DDE per unit area was identified. A calibration based on the bivariate distribution of the thickness and p,p???-DDE data was applied using Markov-Bayes indicator simulation to extend the geostatistical study and map the contamination levels in the sediment. Integrating the map grids produced by the geostatistical study of the two variables indicated that 7.8 million m3 of effluent-affected sediment exist in the map area, containing approximately 61-72 Mg (metric tons) of p,p???-DDE. Most of the contaminated sediment (about 85% of the sediment and 89% of the p,p???-DDE) occurs in water depths < 100 m. The geostatistical study also indicated that the samples available for mapping are well distributed and the uncertainty of the estimates of the thickness and contamination level of the sediments is lowest in areas where the contaminated sediment is most prevalent. ?? 2002 Elsevier Science Ltd. All rights reserved.
Haefner, Ralph J.; Sheets, Rodney A.; Andrews, Robert E.
2011-01-01
The horizontal-to-vertical spectral ratio (HVSR) seismic method involves analyzing measurements of ambient seismic noise in three dimensions to determine the fundamental site resonance frequency. Resonance is excited by the interaction of surface waves (Rayleigh and Love) and body waves (vertically incident shear) with the high-contrast aconstic impedance boundary at the bedrock-sediment interface. Measurements were made to determine the method's utility for estimating thickness of unconsolidated glacial sediments at 18 locations at the South Well Field, Franklin County, OH, and at six locations in Pickaway County where sediment thickness was already known. Measurements also were made near a high-capacity production well (with pumping on and off) and near a highway and a limestone quarry to examine changes in resonance frequencies over a 20-hour period. Although the regression relation for resonance frequency and sediment thickness had a relatively low [r.sup.2] (0.322), estimates of sediment thickness were, on average, within 14 percent of known thicknesses. Resonance frequencies for pumping on and pumping off were identical, although the amplitude of the peak was nearly double under pumping conditions. Resonance frequency for the 20-hour period did not change, but the amplitude of the peak changed considerably, with a maximum amplitude in the early afternoon and minimum in the very early morning hours. Clay layers within unconsolidated sediments may influence resonance frequency and the resulting regression equation, resulting in underestimation of sediment thickness; however, despite this and other complicating factors, hydrogeologists should consider this method when thickness data are needed for unconsolidated sediments.
Haefner, R.J.; Sheets, R.A.; Andrews, R.E.
2010-01-01
The horizontal-to-vertical spectral ratio (HVSR) seismic method involves analyzing measurements of ambient seismic noise in three dimensions to determine the fundamental site resonance frequency. Resonance is excited by the interaction of surface waves (Rayleigh and Love) and body waves (vertically incident shear) with the high-contrast acoustic impedance boundary at the bedrock-sediment interface. Measurements were made to determine the method's utility for estimating thickness of unconsolidated glacial sediments at 18 locations at the South Well Field, Franklin County, OH, and at six locations in Pickaway County where sediment thickness was already known. Measurements also were made near a high-capacity production well (with pumping on and off ) and near a highway and a limestone quarry to examine changes in resonance frequencies over a 20-hour period. Although the regression relation for resonance frequency and sediment thickness had a relatively low r 2(0.322), estimates of sediment thickness were, on average, within 14 percent of known thicknesses. Resonance frequencies for pumping on and pumping off were identical, although the amplitude of the peak was nearly double under pumping conditions. Resonance frequency for the 20-hour period did not change, but the amplitude of the peak changed considerably, with a maximum amplitude in the early afternoon and minimum in the very early morning hours. Clay layers within unconsolidated sediments may influence resonance frequency and the resulting regression equation, resulting in underestimation of sediment thickness; however, despite this and other complicating factors, hydrogeologists should consider this method when thickness data are needed for unconsolidated sediments. ?? 2011 by The Ohio Academy of Science. All Rights Reserved.
How long-term dynamics of sediment subduction controls short-term dynamics of seismicity
NASA Astrophysics Data System (ADS)
Brizzi, S.; van Zelst, I.; van Dinther, Y.; Funiciello, F.; Corbi, F.
2017-12-01
Most of the world's greatest earthquakes occur along the subduction megathrust. Weak and porous sediments have been suggested to homogenize the plate interface and thereby promote lateral rupture propagation and great earthquakes. However, the importance of sediment thickness, let alone their physical role, is not yet unequivocally established. Based on a multivariate statistical analysis of a global database of 62 subduction segments, we confirm that sediment thickness is one of the key parameters controlling the maximum magnitude a megathrust can generate. Moreover, Monte Carlo simulations highlighted that the occurrence of great earthquakes on sediment-rich subduction segments is very unlikely (p-value≪0.05) related to pure chance. To understand how sediments in the subduction channel regulate earthquake size, this study extends and demystifies multivariate, spatiotemporally limited data through numerical modeling. We use the 2D Seismo-Thermo-Mechanical modeling approach to simulate both the long- and short-term dynamics of subduction and related seismogenesis (van Dinther et al., JGR, 2013). These models solve for the conservation of mass, momentum and energy using a visco-elasto-plastic rheology with rate-dependent friction. Results show that subducted sediments have a strong influence on the long-term evolution of the convergent margin. Increasing the sediment thickness on the incoming plate from 0 to 6 km causes a decrease of slab dip from 23° to 10°. This, in addition to increased radiogenic heating, extends isotherms, thereby widening the seismogenic portion of the megathrust from 80 to 150 km. Consequently, over tens of thousands of years, we observe that the maximum moment magnitude of megathrust earthquakes increases from 8.2 to 9.2 for these shallower and warmer interfaces. In addition, we observe more and larger splay faults, which could enhance vertical seafloor displacements. These results highlight the primary role of subducted sediments in controlling the seismogenic behavior of subduction megathrusts. Furthermore, they illustrate the distinct impact long-term subduction dynamics can have on short-term seismogenesis. This impact likely surpasses the effect a lower static friction would have on seismogenesis, especially for the maximum magnitude of subduction segments.
NASA Astrophysics Data System (ADS)
Brizzi, S.; Sandri, L.; Funiciello, F.; Corbi, F.; Piromallo, C.; Heuret, A.
2018-03-01
The observed maximum magnitude of subduction megathrust earthquakes is highly variable worldwide. One key question is which conditions, if any, favor the occurrence of giant earthquakes (Mw ≥ 8.5). Here we carry out a multivariate statistical study in order to investigate the factors affecting the maximum magnitude of subduction megathrust earthquakes. We find that the trench-parallel extent of subduction zones and the thickness of trench sediments provide the largest discriminating capability between subduction zones that have experienced giant earthquakes and those having significantly lower maximum magnitude. Monte Carlo simulations show that the observed spatial distribution of giant earthquakes cannot be explained by pure chance to a statistically significant level. We suggest that the combination of a long subduction zone with thick trench sediments likely promotes a great lateral rupture propagation, characteristic of almost all giant earthquakes.
Valley fill in the Roswell-Artesia area, New Mexico
Lyford, Forest P.
1973-01-01
Drill samples from 225 water and oil wells in an area 70 miles long and 20 miles wide in the Roswell-Artesia area, southeastern New Mexico were examined. A thickness map and a saturated thickness map of the valley-fill sediments were constructed. Maximum depth of valley fill is about 300 feet in large closed depressions near Roswell, Hagerman, and Artesia. The depressions were formed by the solution of carbonates and evaporites that underlie the fill. Maximum saturated thickness is about 250 feet in depressions near Hagerman and Artesia and about 300 feet in a depression near Roswell.
Gravity anomalies and flexure of the lithosphere at the Middle Amazon Basin, Brazil
NASA Astrophysics Data System (ADS)
Nunn, Jeffrey A.; Aires, Jose R.
1988-01-01
The Middle Amazon Basin is a large Paleozoic sedimentary basin on the Amazonian craton in South America. It contains up to 7 km of mainly shallow water sediments. A chain of Bouguer gravity highs of approximately +40 to +90 mGals transects the basin roughly coincident with the axis of maximum thickness of sediment. The gravity highs are flanked on either side by gravity lows of approximately -40 mGals. The observed gravity anomalies can be explained by a steeply sided zone of high density in the lower crust varying in width from 100 to 200 km wide. Within this region, the continental crust has been intruded/replaced by more dense material to more than half its original thickness of 45-50 km. The much wider sedimentary basin results from regional compensation of the subsurface load and the subsequent load of accumulated sediments by flexure of the lithosphere. The observed geometry of the basin is consistent with an elastic lithosphere model with a mechanical thickness of 15-20 km. Although this value is lower than expected for a stable cratonic region of Early Proterozoic age, it is within the accepted range of effective elastic thicknesses for the earth. Rapid subsidence during the late Paleozoic may be evidence of a second tectonic event or lithospheric relaxation which could lower the effective mechanical thickness of the lithosphere. The high-density zone in the lower crust, as delineated by gravity and flexural modeling, has a complex sinuous geometry which is narrow and south of the axis of maximum sediment thickness on the east and west margins and wide and offset to the north in the center of the basin. The linear trough geometry of the basin itself is a result of smoothing by regional compensation of the load in the lower crust.
NASA Astrophysics Data System (ADS)
Mohan, Kapil; Chaudhary, Peush; Patel, Pruthul; Chaudhary, B. S.; Chopra, Sumer
2018-02-01
The Kachchh Mainland Fault (KMF) is a major E-W trending fault in the Kachchh region of Gujarat extending >150 km from Lakhpat village in the west to the Bhachau town in the east. The Katrol Hill Fault (KHF) is an E-W trending intrabasinal fault located in the central region of Kachchh Basin and the south of KMF. The western parts of both of the faults are characterized, and the sediment thickness has been estimated in the region using a Magnetotelluric (MT) survey at 17 sites along a 55 km long north-south profile with a site spacing of 2-3 km. The analysis reveals that the maximum sediment thickness is 2.3 km (Quaternary, Tertiary, and Mesozoic) in the region, out of which, the Mesozoic sediments feature a maximum thickness of 2 km. The estimated sediment thickness is found consistent with the thickness suggested by a deep borehole (depth approx. 2.5 km) drilled by Oil and Natural Gas Corporation (ONGC) at Nirona (Northern part of the study area). From 2-D inversion of the MT data, three conductive zones are identified from north to south. The first conductive zone is dipping nearly vertical down to 7-8 km depth. It becomes north-dipping below 8 km depth and is inferred as KMF. The second conductive zone is found steeply dipping into the southern limbs near Manjal village (28 km south of Nirona), which is inferred as the KHF. A vertical-dipping (down to 20 km depth) conductive zone has also been observed near Ulat village, located 16 km north of Manjal village and 12 km south of Nirona village. This conductive zone becomes listric north-dipping beyond 20 km depth. It is reported first time by a Geophysical survey in the region.
Phillips, Jeffrey D.; Grauch, V.J.S.
2004-01-01
In the southern Espa?ola basin south of Santa Fe, New Mexico, weakly magnetic Santa Fe Group sediments of Oligocene to Pleistocene age, which represent the primary aquifers for the region, are locally underlain by moderately to strongly magnetic igneous and volcaniclastic rocks of Oligocene age. Where this relationship exists, the thickness of Santa Fe Group sediments, and thus the maximum thickness of the aquifers, can be estimated from quantitative analysis of high-resolution aeromagnetic data. These thickness estimates provide guidance for characterizing the ground-water resources in between scattered water wells in this area of rapid urban development and declining water supplies. This report presents one such analysis based on the two-step extended Euler method for estimating depth to magnetic sources. The results show the general form of a north-trending synclinal basin located between the Cerrillos Hills and Eldorado with northward thickening of Santa Fe Group sediments. The increase in thickness is gradual from the erosional edge on the south to a U-shaped Santa Fe embayment hinge line, north of which sediments thicken much more dramatically. Along the north-south basin axis, Santa Fe Group sediments thicken from 300 feet (91 meters) at the hinge line near latitude 35o32'30'N to 2,000 feet (610 meters) at the Cerrillos Road interchange at Interstate 25, north of latitude 35o36'N. The depth analysis indicates that, superimposed on this general synclinal form, there are many local areas where the Santa Fe Group sediments may be thickened by a few hundred feet, presumably due to erosional relief on the underlying Oligocene volcanic and volcaniclastic rocks. Some larger areas of greater apparent thickening occur where the presence of magnetic rocks directly underlying the Santa Fe Group is uncertain. Where magnetic rocks are absent beneath the Santa Fe Group, the thickness cannot be estimated from the aeromagnetic data.
NASA Astrophysics Data System (ADS)
Qiu, Jiandong; Liu, Jian; Saito, Yoshiki; Yang, Zigeng; Yue, Baojing; Wang, Hong; Kong, Xianghuai
2014-10-01
Based on the stratigraphic sequence formed since the last glaciation and revealed by 3000 km long high-resolution shallow seismic profiles and the core QDZ03 acquired recently off the southern Shandong Peninsula, we addressed the sedimentary characteristics of a Holocene subaqueous clinoform in this paper. Integrated analyses were made on the core QDZ03, including sedimentary facies, sediment grain sizes, clay minerals, geochemistry, micro paleontology, and AMS 14C dating. The result indicates that there exists a Holocene subaqueous clinoform, whose bottom boundary generally lies at 15-40 m below the present sea level with its depth contours roughly parallel to the coast and getting deeper seawards. The maximum thickness of the clinoform is up to 22.5 m on the coast side, and the thickness contours generally spread in a banded way along the coastline and becomes thinner towards the sea. At the mouths of some bays along the coast, the clinoform stretches in the shape of a fan and its thickness is evidently larger than that of the surrounding sediments. This clinoform came into being in the early Holocene (about 11.2 cal kyr BP) and can be divided into the lower and upper depositional units (DU 2 and DU 1, respectively). The unit DU 2, being usually less than 3 m in thickness and formed under a low sedimentation rate, is located between the bottom boundary and the Holocene maximum flooding surface (MFS), and represents the sediment of a post-glacial transgressive systems tract; whereas the unit DU 1, the main body of the clinoform, sits on the MFS, belonging to the sediment of a high-stand systems tract from middle Holocene (about 7-6 cal kyr BP) to the present. The provenance of the clinoform differs from that of the typical sediments of the Yellow River and can be considered as the results of the joint contribution from both the Yellow River and the proximal coastal sediments of the Shandong Peninsula, as evidenced by the sediment geochemistry of the core. As is controlled mainly by coactions of multiple factors such as the Holocene sea-level changes, sediment supplies and coastal dynamic conditions, the development of the clinoform is genetically related with the synchronous clinoform or subaqueous deltas around the northeastern Shandong Peninsula and in the northern South Yellow Sea in the spatial distribution and sediment provenance, as previously reported, with all of them being formed from the initial stage of the Holocene up to the present.
Methane Concentrations and Biogeochemistry in Lake Sediments from Stordalen Mire, Sub-Arctic Sweden
NASA Astrophysics Data System (ADS)
Halloran, M.; DeStasio, J.; Erickson, L.; Johnson, J. E.; Varner, R. K.; Setera, J.; Prado, M. F.; Wik, M.; Crill, P. M.
2013-12-01
Lake sediments are an important global carbon sink of both allochthonous and autochthonous inputs. However, lakes are also known to emit carbon in gaseous form, most often as methane (CH4) or carbon dioxide (CO2), which are potent greenhouse gases. As northern latitudes warm, it is increasingly important to understand these gases and the sediments that store them. In July of 2013 we took 48 cores at 16 sites throughout three lakes surrounding a mire underlain by degrading permafrost in sub-arctic Sweden. The goal was to characterize the sedimentology and geochemistry of the lake sediments to better understand the production, distribution, and flux of CO2 and CH4 from these lakes. Villasjön is a shallow lake less than 1.5 meters deep, Mellan Harrsjön has a maximum depth of 7 meters and is stream-fed, and Inre Harrsjön has a maximum depth of 5 meters and is connected to Mellan Harrsjön. Published radiocarbon dates suggest that all three lakes formed approximately 3400 years ago. At each sample site, we retrieved 2 to 4 cores from the lake bottom, approximately 40-80 cm in length. The cores were sub-sampled for measurements of bulk TOC, TC, TN, TS, and CaCO3 (by difference) using a CHNS Elemental Analyzer, and grain size using a laser particle size analyzer. Headspace CO2 and CH4 by gas chromatography and infrared gas analysis (IRGA) yielded production rates and CH4 sediment concentrations. Dissolved inorganic carbon (DIC) from porewater extractions were analyzed using IRGA and stable carbon isotopes of DIC were analyzed via a Quantum Cascade Laser. The recovered sediments in the cores from all three lakes were composed of three layers: an upper layer of organic rich sediment (30-40 cm thick), a middle transition layer of mixed organic and lithogenic materials (5-10 cm thick), and a deep layer of grey lithogenic clay with less organic carbon (of variable thickness). Preliminary results from the 12 Villasjön sites indicate that CH4 is present and produced from the organic-rich layer in the upper 20-40 cm of the sediment. TOC values in this lake range from <1 to 44 wt. %. The TOC maximum (approximately 20-40 wt. %) consistently occurred at the same depth as the methane maximum, centered at ~20 cm. A TOC minimum zone (approximately 0-5 wt. %) occurs from 35-80 cm. Particle size distributions in this lake are dominated by silt and sand size fractions (>4 um). Calcium carbonate (CaCO3) concentrations varied, but the maximum always occurred in the upper 20 cm of the core. Core sites with known high lake surface methane fluxes from bubble trap measurements also show high methane concentrations in the sediment, high DIC concentrations in the pore fluids, and δ 13C signatures of CO2 ranging from 0 to 10, consistent with methanogenesis. Similar results are expected from the integration of pending sediment methane profiles with these data from the other two lakes: Mellan Harrsjön and Inre Harrsjön. Future work, including 14C dating, microbial community profiling, and δ13C signatures of CH4 will yield more insight into the biogeochemical mechanisms that regulate sediment methane distributions. 13C isotopes of methane and DIC should indicate if methane consumption through AOM or diffusion is controlling its distribution.
Implications of Smectite Subduction at the Costa Rican Convergent Margin
NASA Astrophysics Data System (ADS)
Cardace, D.; Morris, J. D.; Underwood, M. B.; Spinelli, G.
2003-12-01
Legs 205/170 of the Ocean Drilling Program (ODP) drilled a reference section on the incoming plate and sites at the toe of the sedimentary prism at the Costa Rican convergent margin. Complete sediment subduction has been documented, with the prism described by Leg 205/170 shipboard scientists as a paleoslump prism. Despite sediment subduction, Costa Rican arc lava geochemistry shows little sediment signal. Though subduction erosion has been posited as a mechanism for damping the geochemical sediment signal, this abstract addresses whether the clay content and distribution in the subducting pile can (a) play a role in localizing the decollement and (b) impact subduction of sediment to depth. X-ray diffraction (XRD) analyses of bulk sediment, with biogenic silica determinations, have been carried out for samples from the prism, through the decollement, to the underthrust sediments. Clay fractions have been isolated and silica studied for a subset of these samples. XRD peak areas of bulk samples were transformed into relative abundances via matrix singular value decomposition (Fisher and Underwood, 1995, Proc. ODP, Init. Repts., 156: 29-37), and adjusted following silica determination; volcanic ash has been neglected as a sedimentary component. Average relative weight percents of dominant minerals and biogenic silica (bSiO2) for prism toe units (Site 1040) are: P1A (silty clay, 74.8 m thick) 82 wt% clay, 5 wt% quartz, 13 wt% plagioclase, 0 wt% calcite; P1B (silty clay, 296.4 m thick) 82.1 wt% clay, 6.0 wt% quartz, 10.4 wt% plagioclase, 0 wt% calcite, 1.4 wt% bSiO2. Below the decollement, underthrust abundances are: U1A (clayey diatomite, 13.2 m thick) 82.7 wt% clay, 5.2 wt% quartz, 8.9 wt% plagioclase, 0 wt% calcite, 3.2 wt% bSiO2; U1B (clayey diatomite, 38.2 m thick) 80.7 wt% clay, 4.4 wt% quartz, 6.6 wt% plagioclase, 0 wt% calcite, 8.2 wt% bSiO2; U2 (silty claystone, 57.1 m thick) 84.8 wt% clay, 4.5 wt% quartz, 6.8 wt% plagioclase, 0 wt% calcite, 3.9 wt% bSiO2; U3A (siliceous nannofossil chalk, 18.1 m thick) 44.1 wt% clay, 2.0 wt% quartz, 5.6 wt% plagioclase, 31.8 wt% calcite, 16.5 wt% bSiO2; U3B (siliceous nannofossil chalk, 75.55 m thick) 1.9 wt% clay, 0 wt% quartz, 1.1 wt% plagioclase, 92.4 wt% calcite, 4.7 wt% bSiO2; and U3C (siliceous nannofossil chalk, 80.18 m thick) 6.6 wt% clay, 6.1 wt% quartz, 4.6 wt% plagioclase, 74.1 wt% calcite, 8.7 wt% bSiO2. XRD peak areas for clay fractions of prism samples above and in the decollement (Site 1254 ˜Site 1040, 300-370 mbsf) were transformed into relative weight percent data with Biscaye weighting factors. Smectites ranged from 77-93 wt%, illites ranged from 0-4 wt%, and kaolinites/chlorites ranged from 5-20 wt%. The maximum smectite value was obtained in the lower decollement. Bulk mineralogy data for sediments subducting at Costa Rica show that the prism and uppermost underthrust sediments are 80-93 wt% clay sized minerals. Clay mineralogy suggests that the smectite maximum occurs in the lower decollement and decreases dramatically below. Low biogenic silica abundances persist down core, emphasizing the importance of clays to the subducting section at Costa Rica.
Large-scale experimental observations of sheet flow on a sandbar under skewed-asymmetric waves
NASA Astrophysics Data System (ADS)
Mieras, Ryan S.; Puleo, Jack A.; Anderson, Dylan; Cox, Daniel T.; Hsu, Tian-Jian
2017-06-01
A novel large wave flume experiment was conducted on a fixed, barred beach with a sediment pit on the sandbar, allowing for the isolation of small-scale bed response to large-scale forcing. Concurrent measurements of instantaneous sheet layer sediment concentration profiles and near-bed velocity profiles were obtained on a sandbar for the first time. Two sediment distributions were used with median grain diameters, d50, of 0.17 and 0.27 mm. Sheet flow occurred primarily under wave crests, where sheet thickness increased with increasing wave height. A proportionality constant, Λ, was used to relate maximum Shields parameter to maximum sheet thickness (normalized by d50), with bed shear stress computed using the quadratic drag law. An enhanced sheet layer thickness was apparent for the smaller sediment experiments (Λ = 18.7), when directly compared to closed-conduit oscillatory flow tunnel data (Λ = 10.6). However, Λ varied significantly (5 < Λ < 31) depending on the procedure used to estimate grain roughness, ks, and wave friction factor, fw. Three models for ks were compared (keeping the model for fw fixed): constant ks = 2.5d50, and two expressions dependent on flow intensity, derived from steady and oscillatory sheet flow experiments. Values of ks/d50 varied by two orders of magnitude and exhibited an inverse relationship with Λ, where Λ ˜ 30 for ks/d50 of O(1) while Λ ˜ 5 for ks/d50 of O(100). Two expressions for fw were also tested (with the steady flow-based model for ks), yielding a difference of 69% (Λ ˜ 13 versus Λ ˜ 22).
Spinelli, G.A.; Field, M.E.
2003-01-01
We identify two surfaces in the shallow subsurface on the Eel River margin offshore northern California, a lowstand erosion surface, likely formed during the last glacial maximum, and an overlying surface likely formed during the most recent transgression of the shoreline. The lowstand erosion surface, which extends from the inner shelf to near the shelfbreak and from the Eel River to Trinidad Head (???80 km), truncates underlying strata on the shelf. Above the surface, inferred transgressive coastal and estuarine sedimentary units separate it from the transgressive surface on the shelf. Early in the transgression, Eel River sediment was likely both transported down the Eel Canyon and dispersed on the slope, allowing transgressive coastal sediment from the smaller Mad River to accumulate in a recognizable deposit on the shelf. The location of coastal Mad River sediment accumulation was controlled by the location of the paleo-Mad River. Throughout the remainder of the transgression, dispersed sediment from the Eel River accumulated an average of 20 m of onlapping shelf deposits. The distribution and thickness of these transgressive marine units was strongly modified by northwest-southeast trending folds. Thick sediment packages accumulated over structural lows in the lowstand surface. The thinnest sediment accumulations (0-10 m) were deposited over structural highs along faults and uplifting anticlines. The Eel margin, an active margin with steep, high sediment-load streams, has developed a thick transgressive systems tract. On this margin sediment accumulates as rapidly as the processes of uplift and downwarp locally create and destroy accommodation space. Sequence stratigraphic models of tectonically active margins should account for variations in accommodation space along margins as well as across them. ?? 2003 Elsevier Science B.V. All rights reserved.
Combined Gravimetric-Seismic Crustal Model for Antarctica
NASA Astrophysics Data System (ADS)
Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad
2018-01-01
The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24-28 km), while in West Antarctica the Moho depth minima are along the West Antarctic Rift System under the Bentley depression (20-22 km) and Ross Sea Ice Shelf (16-24 km). The gravimetric result confirmed a maximum extension of the Antarctic continental margins under the Ross Sea Embayment and the Weddell Sea Embayment with an extremely thin continental crust (10-20 km).
NASA Astrophysics Data System (ADS)
Hudson, P. H.; Heitmuller, F. T.; Kesel, R. H.
2012-04-01
The geomorphic effectiveness of extreme events has long been a fundamental topic within Earth sciences. The 2011 flood along the lower Mississippi River (3.2 x 10-6 km2) was an extreme event and presented an ideal opportunity to consider controls on the magnitude and pattern of floodplain sedimentation. The study reach was located between Natchez, Mississippi and St. Francisville, Louisiana, the lowermost reaches of the alluvial valley, and the same location utilized in a well documented sedimentation study from a comparable flood event in 1973. Thus, the 2011 field study provided a rare opportunity to directly compare floodplain sedimentation from two extreme events on Earth's third largest fluvial system. Although flood stage along the Lower Mississippi River is influenced by an extensive levee system the field setting is distinctive because it is not embanked by main-line levees. The field site was flooded for nearly two months, from early May to late June 2011. The flood crest exceeded long standing (> 100 yr) stage heights, including the infamous 1927, 1937, and 1973 events. The maximum discharge at Vicksburg, Mississippi, upstream of the study sites, was 65,695 m3/s, one of the larger discharge events along the Lower Mississippi River. Field work was conducted soon after flood waters receded and before bioturbation disrupted the integrity of the flood deposits. We sampled flood deposits at fifty-five locations within a range of floodplain depositional environments to quantify and qualify the sedimentary, hydrologic, and hydraulic characteristics of the flood, and to make explicit comparison with the 1973 study. The average thickness of flood deposits ranged from < 1 mm to 650 mm, but was highly variable. Although natural levees had the thickest flood deposits several reaches along natural levees had no measureable deposits, despite being inundated by ~4 m of flood water. In such cases the angle of the upstream channel relative to the downstream cutbank is suggested as a possible control on the pattern of sedimentation. Despite the magnitude and duration of the 2011 flood, the overall thickness of flood deposits was not very high and the geologic legacy of the event is likely to be unimpressive. Most sediment samples was < 10 mm in thickness, which could be due to the timing of the flood event superimposed upon an overall declining trend in suspended sediment load. The peak discharge was associated with a suspended sediment load of 727,400 tonnes/day. This is notably lower than the maximum suspended sediment load of 1,046,000 tonnes/day, which likely caused sediment exhaustion because of occurring about two months prior to inundation. The thickness of the 2011 flood deposits were about an order of magnitude less than the 1973 flood deposits (11 to 530 mm). Since the early 1900s the sediment budget of the Lower Mississippi has been fundamentally altered. Suspended sediment loads have declined by more than fifty percent, and could contribute to the overall low amount of sedimentation.
Buldir Depression - A Late Tertiary graben on the Aleutian Ridge, Alaska
Marlow, M. S.; Scholl, D. W.; Buffington, E.C.; Boyce, R.E.; Alpha, T.R.; Smith, P.J.; Shipek, C.J.
1970-01-01
Buldir Depression is a large, rectilinear basin that lies on the northern edge of the Aleutian Ridge and is aligned with the arcuate chain of active volcanoes on the ridge crest. The depression appears to be a volcanic-tectonic feature, which began to form in Late Tertiary time and which is still forming. It is a graben formed by extensional rifting and accompanied by contemporaneous volcanism on the Aleutian Ridge. Subsidence rates for the depression are estimated at 20-70 cm/1,000 years. Sediments in the depression are 300 m thick and are probably pelagic and turbidite deposits of Pleistocene age. The turbidites were apparently derived from the plateau area of the Aleutian Ridge surrounding the depression. Older sediments on the northern slope of the Aleutian Ridge have a maximum thickness of 550 m and are deformed and slumped toward the Bering Sea. These sediments are postulated to overlie a mid-flank terrace on the northern Aleutian Ridge that titled to the north during the formation of Buldir Depression. ?? 1970.
Using tsunami deposits to determine the maximum depth of benthic burrowing
Shirai, Kotaro; Murakami-Sugihara, Naoko
2017-01-01
The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface. PMID:28854254
Using tsunami deposits to determine the maximum depth of benthic burrowing.
Seike, Koji; Shirai, Kotaro; Murakami-Sugihara, Naoko
2017-01-01
The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface.
Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum.
Schumann, Dirk; Raub, Timothy D; Kopp, Robert E; Guerquin-Kern, Jean-Luc; Wu, Ting-Di; Rouiller, Isabelle; Smirnov, Aleksey V; Sears, S Kelly; Lücken, Uwe; Tikoo, Sonia M; Hesse, Reinhard; Kirschvink, Joseph L; Vali, Hojatollah
2008-11-18
We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene-Eocene Thermal Maximum (PETM) in a borehole at Ancora, NJ. Aside from previously described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 microm long and hexaoctahedral prisms up to 1.4 microm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical composition, lattice perfection, and oxygen isotopes consistent with an aquatic origin. Electron holography indicates single-domain magnetization despite their large crystal size. We suggest that the development of a thick suboxic zone with high iron bioavailability--a product of dramatic changes in weathering and sedimentation patterns driven by severe global warming--drove diversification of magnetite-forming organisms, likely including eukaryotes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, A.J.; Scholl, D.W.; Vallier, T.L.
1990-05-01
The central segment of the Aleutian Trench (162{degree}W to 175{degree}E) is an intraoceanic subduction zone that contains an anomalously thick sedimentary fill (4 km maximum). The fill is an arcward-thickening and slightly tilted wedge of sediment characterized acoustically by laterally continuous, closely spaced, parallel reflectors. These relations are indicative of turbidite deposition. The trench floor and reflection horizons are planar, showing no evidence of an axial channel or any transverse fan bodies. Cores of surface sediment recover turbidite layers, implying that sediment transport and deposition occur via diffuse, sheetlike, fine-grained turbidite flows that occupy the full width of the trench.more » The mineralogy of Holocene trench sediments document a mixture of island-arc (dominant) and continental source terranes. GLORIA side-scan sonar images reveal a westward-flowing axial trench channel that conducts sediment to the eastern margin of the central segment, where channelized flow cases. Much of the sediment transported in this channel is derived from glaciated drainages surrounding the Gulf of Alaska which empty into the eastern trench segment via deep-sea channel systems (Surveyor and others) and submarine canyons (Hinchinbrook and others). Insular sediment transport is more difficult to define. GLORIA images show the efficiency with which the actively growing accretionary wedge impounds sediment that manages to cross a broad fore-arc terrace. It is likely that island-arc sediment reaches the trench either directly via air fall, via recycling of the accretionary prism, or via overtopping of the accretionary ridges by the upper parts of thick turbidite flows.« less
NASA Astrophysics Data System (ADS)
Mullane, M.; Kumpf, L. L.; Kineke, G. C.
2017-12-01
The Huanghe (Yellow River), once known for extremely high suspended-sediment concentrations (SSCs) that could produce hyperpycnal plumes (10s of g/l), has experienced a dramatic reduction in sediment load following the construction of several reservoirs, namely the Xiaolangdi reservoir completed in 1999. Except for managed flushing events, SSC in the lower river is now on the order of 1 g/l or less. Adaptations of the Chezy equation for gravity-driven transport show that dominant parameters driving hyperpycnal underflows include concentration (and therefore density), thickness of a sediment-laden layer and bed slope. The objectives of this research were to assess the potential for gravity-driven underflows given modern conditions at the active river mouth. Multiple shore-normal transects were conducted during research cruises in mid-July of 2016 and 2017 using a Knudsen dual-frequency echosounder to collect bathymetric data and to document the potential presence of fluid mud layers. An instrumented profiling tripod equipped with a CTD, optical backscatterance sensor and in-situ pump system were used to sample water column parameters. SSCs were determined from near-bottom and surface water samples. Echosounder data were analyzed for bed slopes at the delta-front and differences in depth of return for the two frequencies (50 and 200 kHz), which could indicate fluid muds. Bathymetric data analysis yielded bed slope measurements near or above threshold values to produce gravity-driven underflows (0.46°). The maximum observed thickness of a potential fluid mud layer was 0.7 m, and the highest sampled near-bed SSCs were nearly 14 g/l for both field campaigns. These results indicate that the modern delta maintains potential for sediment gravity-driven underflows, even during ambient conditions prior to maximum summer discharge. These results will inform future work quantitatively comparing the contributions of all sediment dispersal mechanisms near the active Huanghe delta environment, including advection of the buoyant river plume and wave resuspension and transport by tidal currents.
Compaction and sedimentary basin analysis on Mars
NASA Astrophysics Data System (ADS)
Gabasova, Leila R.; Kite, Edwin S.
2018-03-01
Many of the sedimentary basins of Mars show patterns of faults and off-horizontal layers that, if correctly understood, could serve as a key to basin history. Sediment compaction is a possible cause of these patterns. We quantified the possible role of differential sediment compaction for two Martian sedimentary basins: the sediment fill of Gunjur crater (which shows concentric graben), and the sediment fill of Gale crater (which shows outward-dipping layers). We assume that basement topography for these craters is similar to the present-day topography of complex craters that lack sediment infill. For Gunjur, we find that differential compaction produces maximum strains consistent with the locations of observed graben. For Gale, we were able to approximately reproduce the observed layer orientations measured from orbiter image-based digital terrain models, but only with a >3 km-thick donut-shaped past overburden. It is not immediately obvious what geologic processes could produce this shape.
Acoustic Velocity Of The Sediments Offshore Southwestern Taiwan
NASA Astrophysics Data System (ADS)
Tsai, C.; Liu, C.; Huang, P.
2004-12-01
Along the Manila Trench south of 21øXN, deep-sea sediments are being underthrusted beneath the Taiwan accretionary prism which is composed of the Kaoping Slope and Hengchun Ridge. Offshore southwestern Taiwan, foreland sediments and Late Miocene strata of the Tainan Basin are being accreted onto the fold-and thrust belt of the syn-collision accretionary wedge of the Kaoping Slope. The Kaoping Slope consists of thick Neogene to Recent siliciclastics deformed by fold-and-thrust structures and mud diapers. These Pliocene-Quaternary sediments deposited in the Kaoping Shelf and upper slope area are considered to be paleo-channel deposits confined by NNE-SSW trend mud diapiric structure. Seismic P-wave velocities of the sediment deposited in the Kaoping Shelf and Kaoping Slope area are derived from mutichannel seismic reflection data and wide-angle reflection and refraction profiles collected by sonobuoys. Sediment velocity structures constrained from mutichannel seismic reflection data using velocity spectrum analysis method and that derived from sonobuoy data using tau-sum inversion method are compared, and they both provide consistent velocity structures. Seismic velocities were analyzed along the seismic profile from the surface to maximum depths of about 2.0 km below the seafloor. Our model features a sediment layer1 with 400 ms in thickness and a sediment layer2 with 600 ms in thickness. For the shelf sediments, we observe a linear interval velocity trend of V=1.53+1.91T in layer1, and V=1.86+0.87T in layer2, where T is the one way travel time within the layer. For the slop sediment, the trend of V=1.47+1.93T in layer1, and V=1.70+1.55T in layer2. The layer1¡¦s velocities gradients are similar between the shelf (1.91 km/sec2) and the slope(1.93 km/sec2). It means layer1 distributes over the slope and shelf widely. The result of the sediment velocity gradients in this area are in good agreement with that reported for the south Atlantic continental margins.
NASA Astrophysics Data System (ADS)
Hillenbrand, C. D.; Klages, J. P.; Kuhn, G.; Smith, J.; Graham, A. G. C.; Gohl, K.; Wacker, L.
2016-02-01
We present the first age control and sedimentological data for the upper part of a stratified seismic unit that is unusually thick ( 6-9 m) for the outer shelf of the ASE and overlies an acoustically transparent unit. The transparent unit probably consists of soft till deposited during the last advance of grounded ice onto the outer shelf. We mapped subtle mega-scale glacial lineations (MSGL) on the seafloor and suggest that these are probably the expressions of bedforms originally moulded into the surface of the underlying till layer. We note that the lineations are less distinct when compared to MSGLs recorded in bathymetric data collected further upstream and suggest that this is because of the blanketing influence of the thick overlying drape. The uppermost part (≤ 3 m) of the stratified drape was sampled by two of our sediment cores and contains sufficient amounts of calcareous foraminifera throughout to establish reliable age models by radiocarbon dating. In combination with facies analysis of the recovered sediments the obtained radiocarbon dates suggest deposition of the draping unit in a sub-ice shelf/sub-sea ice to seasonal-open marine environment that existed on the outer shelf from well before (>45 ka BP) the Last Glacial Maximum until today. This indicates the maximum extent of grounded ice at the LGM must have been situated south of the two core locations, where a well-defined grounding-zone wedge (`GZWa') was deposited. The third sediment core was recovered from the toe of this wedge and retrieved grounding-line proximal glaciogenic debris flow sediments that were deposited by 14 cal. ka BP. Our new data therefore provide direct evidence for 1) the maximum extent of grounded ice in the easternmost ASE at the LGM (=GZWa), 2) the existence of a large shelf area seawards the wedge that was not covered by grounded ice during that time, and 3) landward grounding line retreat from GZWa prior to 14 cal. ka BP. This knowledge will help to improve LGM ice sheet reconstructions and to quantify precisely the volume of LGM ice-sheet build-up in Antarctica. Our study also alludes to the possibility that refugia for Antarctic shelf benthos may have existed in the ASE during the last glacial period.
Comparison of Physical Properties of Marine and Arctic Gas-Hydrate-Bearing Deposits
NASA Astrophysics Data System (ADS)
Winters, W. J.; Walker, M.; Collett, T. S.; Bryant, S. L.; Novosel, I.; Wilcox-Cline, R.; Bing, J.; Gomes, M. L.
2009-12-01
Gas hydrate (GH) occurs in both marine settings and in arctic environments within a wide variety of sediment types. Grain-size analyses from both environments indicate that intrinsic host-sediment properties have a strong influence on gas-hydrate distribution and morphologic characteristics. Depending on the amount formed or dissociated, gas hydrate can significantly change in situ sediment acoustic, mechanical, and hydraulic properties. The U.S. Geological Survey, in cooperation with the U.S. Dept. of Energy, BP Expl.-Alaska, Nat. GH Prog. of India, Canadian Geological Survey, Int. Ocean Drilling Program, Japan Oil Gas and Metals Nat. Corp., Japan Pet. Expl. Co., Int. Marine Past Global Changes Study (IMAGES) program, and Paleoceanography of the Atlantic and Geochemistry (PAGE) program, determined physical properties from marine and arctic sediments and their relation to the presence of GH. At two arctic sites, the Mount Elbert well on the Alaskan North Slope and the Mallik wells on the Mackenzie Delta, NWT, >10-m thick gas-hydrate-bearing (GHB) sandy deposits are capped by finer-grained sediments that may reduce gas migration. In the Mount Elbert well, average median grain sizes (MGS) for the two thickest GHB deposits are 65 and 60 µm. Finer-grained (average MGS of 9 and 28 µm) sediments have plug permeabilities that are 300 and 14 times smaller than underlying GHB sediment. Average MGS of GHB sediment from the Mallik 2L well is ~ 111 µm, compared to overlying sediment with an average MGS of ~ 32 µm. Gas hydrate morphology in the Gulf of Mexico (GOM) and offshore India is substantially more complex than in the arctic, and is related to pervasive, although not exclusive, finer-grained deposits. Massive, several-cm thick, GH layers were recovered in piston cores in the northern GOM, in sediment with little visible lithologic variability (average MGS ~ 0.8 µm). In wells off the east coast of India, GH was present in sand-rich, fractured clay, and reservoirs with both characteristics. Maximum MGS measured on more than 1200 samples was 46 µm, but the average MGS for 14 wells varied from 5 to 10 µm. At Site 10, in the Krishna-Godavari Basin, GH was observed in several morphologic configurations, including complex high-angle planar and rotational veins, solid nodules, and disseminated, in sediment with average MGS of 5 µm, liquid limits between 70 and 98, and plastic limits between 33 and 49. Sediment in a 692-m deep well drilled off the Andaman Islands sporadically hosted disseminated GH in thin coarser-grained ash beds and ash-rich zones. Average and maximum MGS in this well is 6 and 17 µm, respectively. To date, sandy GH reservoirs (with some exceptions, e.g., Nankai Trough) are typically associated with the arctic. However, the presence of thick offshore sand-rich GHB reservoirs is the subject of current investigations, such as by the Gulf of Mexico Joint Industry Project (JIP).
Deep sediment resuspension and thick nepheloid layer generation by open-ocean convection
NASA Astrophysics Data System (ADS)
Durrieu de Madron, X.; Ramondenc, S.; Berline, L.; Houpert, L.; Bosse, A.; Martini, S.; Guidi, L.; Conan, P.; Curtil, C.; Delsaut, N.; Kunesch, S.; Ghiglione, J. F.; Marsaleix, P.; Pujo-Pay, M.; Séverin, T.; Testor, P.; Tamburini, C.
2017-03-01
The Gulf of Lions in the northwestern Mediterranean is one of the few sites around the world ocean exhibiting deep open-ocean convection. Based on 6 year long (2009-2015) time series from a mooring in the convection region, shipborne measurements from repeated cruises, from 2012 to 2015, and glider measurements, we report evidence of bottom thick nepheloid layer formation, which is coincident with deep sediment resuspension induced by bottom-reaching convection events. This bottom nepheloid layer, which presents a maximum thickness of more than 2000 m in the center of the convection region, probably results from the action of cyclonic eddies that are formed during the convection period and can persist within their core while they travel through the basin. The residence time of this bottom nepheloid layer appears to be less than a year. In situ measurements of suspended particle size further indicate that the bottom nepheloid layer is primarily composed of aggregates between 100 and 1000 µm in diameter, probably constituted of fine silts. Bottom-reaching open ocean convection, as well as deep dense shelf water cascading that occurred concurrently some years, lead to recurring deep sediments resuspension episodes. They are key mechanisms that control the concentration and characteristics of the suspended particulate matter in the basin, and in turn affect the bathypelagic biological activity.
Nearshore Tsunami Inundation Model Validation: Toward Sediment Transport Applications
Apotsos, Alex; Buckley, Mark; Gelfenbaum, Guy; Jaffe, Bruce; Vatvani, Deepak
2011-01-01
Model predictions from a numerical model, Delft3D, based on the nonlinear shallow water equations are compared with analytical results and laboratory observations from seven tsunami-like benchmark experiments, and with field observations from the 26 December 2004 Indian Ocean tsunami. The model accurately predicts the magnitude and timing of the measured water levels and flow velocities, as well as the magnitude of the maximum inundation distance and run-up, for both breaking and non-breaking waves. The shock-capturing numerical scheme employed describes well the total decrease in wave height due to breaking, but does not reproduce the observed shoaling near the break point. The maximum water levels observed onshore near Kuala Meurisi, Sumatra, following the 26 December 2004 tsunami are well predicted given the uncertainty in the model setup. The good agreement between the model predictions and the analytical results and observations demonstrates that the numerical solution and wetting and drying methods employed are appropriate for modeling tsunami inundation for breaking and non-breaking long waves. Extension of the model to include sediment transport may be appropriate for long, non-breaking tsunami waves. Using available sediment transport formulations, the sediment deposit thickness at Kuala Meurisi is predicted generally within a factor of 2.
Edwards, L.E.; Powars, D.S.; Browning, J.V.; McLaughlin, P.P.; Miller, K.G.; ,; Kulpecz, A.A.; Elbra, T.
2009-01-01
A 443.9-m-thick, virtually undisturbed section of postimpact deposits in the Chesapeake Bay impact structure was recovered in the Eyreville A and C cores, Northampton County, Virginia, within the "moat" of the structure's central crater. Recovered sediments are mainly fine-grained marine siliciclastics, with the exception of Pleistocene sand, clay, and gravel. The lowest postimpact unit is the upper Eocene Chickahominy Formation (443.9-350.1 m). At 93.8 m, this is the maximum thickness yet recovered for deposits that represent the return to "normal marine" sedimentation. The Drummonds Corner beds (informal) and the Old Church Formation are thin Oligocene units present between 350.1 and 344.7 m. Above the Oligocene, there is a more typical Virginia coastal plain succession. The Calvert Formation (344.7-225.4 m) includes a thin lower Miocene part overlain by a much thicker middle Miocene part. From 225.4 to 206.0 m, sediments of the middle Miocene Choptank Formation, rarely reported in the Virginia coastal plain, are present. The thick upper Miocene St. Marys and Eastover Formations (206.0-57.8 m) appear to represent a more complete succession than in the type localities. Correlation with the nearby Kiptopeke core indicates that two Pliocene units are present: Yorktown (57.8-32.2 m) and Chowan River Formations (32.2-18.3 m). Sediments at the top of the section represent an upper Pleistocene channel-fill and are assigned to the Butlers Bluff and Occohannock Members of the Nassawadox Formation (18.3-0.6 m). ?? 2009 The Geological Society of America.
Northern Victoria Land (western Ross Sea-Antarctica): inner shelf fine sedimentation
NASA Astrophysics Data System (ADS)
Colizza, E.; Finocchiaro, F.; Ivaldi, R.; Pittà, A.; Tolotti, R.; Brambati, A.
2003-04-01
The Holocene sedimentation conditions are represented, in the western Ross Sea, by diatomaceous ooze in the uppermost part of sedimentary sequences, while diamicton deposited during Last Glacial Maximum are the basal unit of most cores. Thick layer (> 2 m) of diatomaceous ooze were sampled in the northern Joides Basin and into Granite Harbour. In Drygalski Ice Tongue area and along the coasts of northern Victoria Land, prevails coarse sedimentation, due to seaward flowing of large outlet glacier that drain the Transantarctic Mountain. During 1998-99 and 2001-02 PNRA antarctic cruises, favourable sea ice conditions, has allowed to sample inner shelf area, both in Wood Bay and south of Drygalski ice tongue (Nordenskjold basin). In both sites fine laminated diatomaceous mud are present. Preliminary seismostratigraphy and sedimentological data are here reported. This is the first note of new sites of fine sedimentation in the Ross Sea inner shelf.
Stochastic sediment property inversion in Shallow Water 06.
Michalopoulou, Zoi-Heleni
2017-11-01
Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.
NASA Astrophysics Data System (ADS)
Lamparski, Piotr
2014-05-01
The paper present results of investigations, which have made on a biogenic plain in the north-east part of the vicinity of the Czechowskie Lake. The basin of Lake Czechowskie occupies a deep depression located in the immediate hinterland of the maximum range of the Pomeranian Phase ice sheet in the northern part of Poland (Błaszkiewicz 2005). Drillings carried out within the peat plain in the western part of the lake basin indicate that there are relatively diversified lake sediments of up to 12 m in thickness. The ground penetrating radar profiling method (GPR) was used to determine a thickness of biogenic sediments. To tests was used GSS'I SIR SYSTEM-2000™ radar device with two antennae - the high resolution 400 MHz central frequency - for shallow prospecting of the subsurface layers and the low resolution 35 MHz - for determining the shape of the mineral bedrock. Overall, 33 GPR profiles was made all in all more than 3000 meters along and crosswise the longer axis of the biogenic plain. The range of radar penetration was set to 200 ns for 400 MHz antenna and 600 ns for the 35 MHz one, what is the equivalent respectively 4 m and 12,5 m in depth of biogenic sediments thickness. Horizontal scaling was made by GSSI survey wheel device. The thickness of biogenic sediments recognized by GPR reaches 10 meters only using 35 MHz antenna. In the case of the 400 MHz antenna, relatively high conductivity water-saturated peat and gyttia did not allow for the achievement of greater thickness than 3-4 meters testing. In a large part of the profiles was able to see the shape of the mineral bedrock in the form of a former lake basin. Also observed elevations and thresholds in the bedrock. Depth of the mineral deposits forming former lake bottom was confirmed by drillings. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association. References: Błaszkiewicz M, 2005. Późnoglacjalna i wczesnoholoceńska ewolucja obniżeń jeziornych na Pojezierzu Kociewskim (wschodnia część Pomorza). (Late Glacial and early Holocene evolution of the lake basins in the Kociewskie Lakeland - eastern part of the Pomeranian Lakeland). Prace Geograficzne, 201.
NASA Astrophysics Data System (ADS)
Leal-Acosta, M. L.; Shumilin, E.
2016-12-01
The intertidal geothermal hot springs (GHS) in Bahia Concepcion, Gulf of California are the source of potentially toxic elements to the adjacent marine environment surrounded by mangroves trees. The anoxic sediments enriched in organic carbon accumulate As, Hg and other heavy metals that can be bioavailable for the biota. To know the vertical distribution of these elements the geochemistry of a short sediment core was carried out. It was collected in June, 2010 in the mangrove area near to GHS (1 m) during a low tide, pushing manually a polypropylene tube into the sediments. The extracted sediment core was cut with plastic knife on 1 cm thick sub-samples, stored in plastic bags and transported on ice to the laboratory. The major and trace elements contents were determinate by ICP-MS after total digestion with stronger acids (HClO4-HNO3-HCl-HF). Certificate reference materials were used for the quality control of the method obtaining good recoveries for most of the elements (80-105%). The sediment core had high maximum contents of CaCO3 (70%) and total organic carbon (12%). The concentration of Hg along the core ranges from 650 to 74300 mg kg-1 and had more than three orders of magnitude above the reference values of 40 mg kg-1 for the Upper Continental Crust (UCC)1. In contrast, As ranges from 12 to 258 mg kg-1 resulting in more than one order of magnitude respect to UCC1 (1.7 mg kg-1). Similar pattern result for Mn, Cu, Pb, and Zn with the maximum values of 3200 mg kg-1, 42 mg kg-1, 12.4 mg kg-1, 71 mg kg-1 respectively that coincide with the maximum for As at the same core depth (4 cm). The Ca, Li, Co, Sb, U, and Mg also show high contents in comparison with the UCC1reference values. The maximum contents of Mo and Cd coincide with maximum concentration of sulfur (2%) at 6 to 8 cm. The enrichment factor calculated using Al as normalizing element showed Cd (7-280), As (26-329) and Hg (23-1196) as highly enriched mainly in the first centimeters of the sediment core. 1 Wedephol (1995)
A simple model for calculating tsunami flow speed from tsunami deposits
Jaffe, B.E.; Gelfenbuam, G.
2007-01-01
This paper presents a simple model for tsunami sedimentation that can be applied to calculate tsunami flow speed from the thickness and grain size of a tsunami deposit (the inverse problem). For sandy tsunami deposits where grain size and thickness vary gradually in the direction of transport, tsunami sediment transport is modeled as a steady, spatially uniform process. The amount of sediment in suspension is assumed to be in equilibrium with the steady portion of the long period, slowing varying uprush portion of the tsunami. Spatial flow deceleration is assumed to be small and not to contribute significantly to the tsunami deposit. Tsunami deposits are formed from sediment settling from the water column when flow speeds on land go to zero everywhere at the time of maximum tsunami inundation. There is little erosion of the deposit by return flow because it is a slow flow and is concentrated in topographic lows. Variations in grain size of the deposit are found to have more effect on calculated tsunami flow speed than deposit thickness. The model is tested using field data collected at Arop, Papua New Guinea soon after the 1998 tsunami. Speed estimates of 14??m/s at 200??m inland from the shoreline compare favorably with those from a 1-D inundation model and from application of Bernoulli's principle to water levels on buildings left standing after the tsunami. As evidence that the model is applicable to some sandy tsunami deposits, the model reproduces the observed normal grading and vertical variation in sorting and skewness of a deposit formed by the 1998 tsunami.
NASA Astrophysics Data System (ADS)
Jordan, Hannah; Hamilton, Ken; Lawley, Russell; Price, Simon James
2016-01-01
Reconstruction of artificial or anthropogenic topographies, sediment thicknesses and volumes provides a mechanism for quantifying anthropogenic changes to sedimentary systems in the context of the proposed Anthropocene epoch. We present a methodology for determining the volumetric contribution of anthropogenic deposits to the geological and geomorphological record and apply it to the Great Yarmouth area of Norfolk, UK. 115 boreholes, drilled to a maximum depth of 6 m below ground level, were used to determine the thickness and distribution of seven geo-archaeological units comprising natural and anthropogenic deposits in the central Great Yarmouth area. This was supplemented by additional depth information derived from 467 existing ground investigation boreholes and published 1:50 000 scale geological maps. The top and base of each geo-archaeological unit were modelled from elevations recorded in the borehole data. Grids were produced using a natural neighbour analysis with a 25 m cell size using MapInfo 8.0 Vertical Mapper 3.1 to produce palaeotopographical surfaces. Maximum, minimum and average elevations for each geo-archaeological unit generally increase with decreasing age with the exception of the Early-Medieval palaeotopographical surface which locally occurs at higher elevations than that of the younger Late-Medieval unit. The total sediment volume for the combined Modern, Post-Medieval, Late-Medieval and Early-Medieval geo-archaeological units is 10.91 × 105 m3. The total sediment volume for the Aeolian, River Terrace and Marine geo-archaeological units combined is 65.58 × 105 m3. Anthropogenic sedimentation rates were calculated to increase from 590 m3/yr during the Early-Medieval period, 1500 m3/yr during the Post-Medieval period and 2300 m3/yr during the Modern period. It is estimated that the combined anthropogenic geo-archaeological units contribute approximately 15% of the total volume of sediments that would have been traditionally considered natural Holocene deposits in the Great Yarmouth area. The results indicate that an approach combining geological and archaeological deposit modelling can be used to quantify anthropogenic landscape impact and its associated sediment flux.
20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.
Molnia, B.F.; Post, A.; Carlson, P.R.
1996-01-01
Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations exceeds 10 m year-1.
NASA Astrophysics Data System (ADS)
Carton, Alberto; Bondesan, Aldino; Fontana, Alessandro; Meneghel, Mirco; Miola, Antonella; Mozzi, Paolo; Primon, Sandra; Surian, Nicola
2010-05-01
Aim of this study is the definition of sediment production, transfer and deposition in the Piave River system from the Last Glacial Maximum to the Present, through a basin-scale approach. The Piave River flows from North to South in the eastern sector of the Italian Alps and reaches the Adriatic Sea. Its length is 220 km and the catchment is 3899 km2. The fluvial system consists of a mountainous portion, with maximum elevation of 3343 m a.s.l., and a lower part where the river flows in the Venetian alluvial plain. Average precipitation is 1350 mm/a; the runoff coefficient is 0.63 and the mean discharge at the mouth is 60 m3/s. The highest sediment delivery to the plain was at the peak of LGM, when the Piave glacier had its maximum expansion and reached the Alpine piedmont. In this period the Piave megafan received large volumes of sediments through glaciofluvial streams and achieved its maximum expansion. LGM alluvial sediments in the distal portion of the megafan are 20-30 m thick. The last glacial advance in the Vittorio Veneto terminal moraines, at the debouch of the valley in the Venetian Plain, dates 17.6 ka 14C BP. Deglaciation started immediately afterwards and the retreat of the glacial front was rather fast, considering that at around 15.0 ka 14C BP the Prealpine tract of valley was already ice-free. Following the onset of deglaciation until about 8.0 ka 14C BP, alluvial sediments were mostly trapped in the terminal valley tracts, while the whole alluvial plain experienced a severe erosive phase, comprising the whole Lateglacial and early Holocene. At ca. 8.0 ka 14C BP, the Piave River started to downcut its Prealpine valley fill, an event which re-mobilized the alluvial sediments and contributed to delta formation on the Adriatic coast since 6.0 ka 14C BP. Post-glacial aggradation in the distal tract of the Nervesa megafan started only at about 4.0 - 3.0 ka 14C BP. In Roman times the fluvial system was rather stable, while between the 5th and 10th century AD there were several major avulsions in the distal Nervesa megafan. The last 100 years are characterized by a dramatic decrease of sediment transport due to a range of human activities (e.g. sediment mining and dams). Climate change was the main external driving factor in this fluvial system at the LGM termination, controlling both sediment production in the catchment and sea-level position. Local factors, such as the occurrence of large landslides, lake formation, post-glacial reforestation and valley topography had a major impact on sediment transfer from source to sink. Holocene millennial- and centennial-scale climatic fluctuations were able to modulate the sediment flux, increasingly intermingling with human impact during the last 6 millennia.
Luo, Lian-Cong; Qin, Bo-Qiang; Zhu, Guang-Wei
2004-01-01
Investigation was made into sediment depth at 723 irregularly scattered measurement points which cover all the regions in Taihu Lake, China. The combination of successive correction scheme and geostatistical method was used to get all the values of recent sediment thickness at the 69 x 69 grids in the whole lake. The results showed that there is the significant difference in sediment depth between the eastern area and the western region, and most of the sediments are located in the western shore-line and northern regimes but just a little in the center and eastern parts. The notable exception is the patch between the center and Xishan Island where the maximum sediment depth is more than 4.0 m. This sediment distribution pattern is more than likely related to the current circulation pattern induced by the prevailing wind-forcing in Taihu Lake. The numerical simulation of hydrodynamics can strong support the conclusion. Sediment effects on water quality was also studied and the results showed that the concentrations of TP, TN and SS in the western part are obviously larger than those in the eastern regime, which suggested that more nutrients can be released from thicker sediment areas.
Song, Tian-Shun; Peng-Xiao; Wu, Xia-Yuan; Zhou, Charles C
2013-07-01
Sediment microbial fuel cells (SMFCs) could be used as power sources and one type of new technology for the removal of organic matters in sediments. In order to improve electrode materials and enhance their effect on the performance, we deposited multi-walled carbon nanotube (MWNT) on stainless steel net (SSN). Electrophoretic deposition technique as a method with low cost, process simplicity, and thickness control was used for this electrode modification and produced this novel SSN-MWNT electrode. The performances of SMFCs with SSN-MWNT as electrode were investigated. The results showed that the maximum power density of SMFC with SSN-MWNT cathode was 31.6 mW m(-2), which was 3.2 times that of SMFC with an uncoated stainless steel cathode. However, no significant increase in the maximum power density of SMFC with SSN-MWNT anode was detected. Further electrochemical analysis showed that when SSN-MWNT was used as the cathode, the cathodic electrochemical activity and oxygen reduction rate were significantly improved. This study demonstrates that the electrophoretic deposition of carbon nanotubes on conductive substrate can be applied for improving the performance of SMFC.
Snyder, Noah P.; Rubin, David M.; Alpers, Charles N.; Childs, Jonathan R.; Curtis, Jennifer A.; Flint, Lorraine E.; Wright, Scott A.
2004-01-01
Studies of reservoir sedimentation are vital to understanding scientific and management issues related to watershed sediment budgets, depositional processes, reservoir operations, and dam decommissioning. Here we quantify the mass, organic content, and grain-size distribution of a reservoir deposit in northern California by two methods of extrapolating measurements of sediment physical properties from cores to the entire volume of impounded material. Englebright Dam, completed in 1940, is located on the Yuba River in the Sierra Nevada foothills. A research program is underway to assess the feasibility of introducing wild anadromous fish species to the river upstream of the dam. Possible management scenarios include removing or lowering the dam, which could cause downstream transport of stored sediment. In 2001 the volume of sediments deposited behind Englebright Dam occupied 25.5% of the original reservoir capacity. The physical properties of this deposit were calculated using data from a coring campaign that sampled the entire reservoir sediment thickness (6–32 m) at six locations in the downstream ∼3/4 of the reservoir. As a result, the sediment in the downstream part of the reservoir is well characterized, but in the coarse, upstream part of the reservoir, only surficial sediments were sampled, so calculations there are more uncertain. Extrapolation from one-dimensional vertical sections of sediment sampled in cores to entire three-dimensional volumes of the reservoir deposit is accomplished via two methods, using assumptions of variable and constant layer thickness. Overall, the two extrapolation methods yield nearly identical estimates of the mass of the reservoir deposit of ∼26 × 106 metric tons (t) of material, of which 64.7–68.5% is sand and gravel. Over the 61 year reservoir history this corresponds to a maximum basin-wide sediment yield of ∼340 t/km2/yr, assuming no contribution from upstream parts of the watershed impounded by other dams. The uncertainties and limitations of the estimates of overall sediment quantities are discussed. Implications for watershed management and future reservoir sedimentation studies are also presented.
Shideler, G.L.
1981-01-01
A monitoring study of suspended sediment on the South Texas Continental Shelf indicates that a turbid benthic nepheloid layer is regionally persistent. A sequence of quasi-synoptic measurements of the water column obtained during six cruises in an 18-month period indicates substantial spatial and temporal variability in nepheloidlayer characteristics. Regionally, the thickness of the shelf nepheloid layer increases both seaward and in a convergent alongshelf direction. Greatest thicknesses occur over a muddy substrate, indicating a causal relationship; maximum observed local thickness is 35 m which occurs along the southern shelf break. Analyses of suspended particulate matter in shelf bottom waters indicate mean concentrations ranging from 49 ?? 104 to 111 ?? 104 particle counts/cc; concentrations persistently increase shoreward throughout the region. Bottom particulate matter is predominantly composed of inorganic detritus. Admixtures of organic skeletal particles, primarily diatoms, are generally present but average less than 10% of the total particulate composition. Texturally, the particulate matter in bottom waters is predominantly poorly sorted sediment composed of very fine silt (3.9-7.8 ??m). The variability in nepheloid-layer characteristics indicates a highly dynamic shelf feature. The relationship of nepheloid-layer characteristics to hydrographic and substrate conditions suggests a conceptual model whereby nepheloid-layer development and maintenance are the results of the resuspension of sea-floor sediment. Bottom turbulence is attributed primarily to vertical shear and shoaling progressive internal waves generated by migrating shelf-water masses, especially oceanic frontal systems, and secondarily to shoaling surface gravity waves. ?? 1981.
Modern Estuarine Sedimentation in Suisun Bay, California
NASA Astrophysics Data System (ADS)
Chin, J. L.; Orzech, K.; Anima, R. J.; Jaffe, B.
2002-12-01
Suisun Bay is the northeasternmost part of San Francisco Bay (California), the largest estuary on the Pacific Coast of the United States. Suisun Bay's geographic and morphologic position are unique in that it occupies the head of the estuary and is subject to the maximum freshwater inflow and sediment input of the Sacramento-San Joaquin Rivers, whose drainage basin covers 40% of the land area of California. Suisun Bay consists of two smaller subembayments, Grizzly and Honker Bays. Gravity cores obtained in 1990-1991 and 1999 were analyzed to delineate depositional environments and sedimentation patterns in Suisun Bay. Major depositional environments include: tidal channel (subtidal), tidal channel banks (subtidal), tidal flat (intertidal to subtidal), and bay mouth (subtidal). The tidal channel environment includes both large and small channels in Suisun Bay as well as the tidal sloughs Suisun and Montezuma Sloughs. The coarsest sediment, usually sand or muddy sand, characterize this environment and water depths range from 2 to 11 m. Thin (1-2 mm) and discontinuous silt and clay laminae are common. Suisun and Montezuma Sloughs are the exception to this pattern in that they consist of massive, intensely bioturbated muds. Tidal channel banks (both "cut" and "accretionary" channel margins), particularly accretionary banks, are characterized by low-to-moderate bioturbation and sandy mud to muddy sand lithology. Typically alternating sand and mud beds (1-6 cm thick) are present; both types of beds consist of 1mm to 1cm thick subhorizontal to inclined laminae. Laminae composed of organic detritus are also present. Where this environment is transitional with the tidal flat environment water depths range from 2-8 m. Tidal flat environments include the "sand" shoals present on bathymetry charts, and are typically a bioturbated muddy sand to sandy mud. Sand and mud beds, 1-3 cm thick, are often characterized by very fine 1-2 mm thick silt and mud laminae. Water depths range from 2 to 4.5 m where these laminated tidal flat sediments occur. Bay mouth environments occur only in the distal portions of Grizzly and Honker Bays, subembayments of Suisun Bay proper. This environment is transitional with both tidal channel bank and tidal flat environments and shares characteristics with each. Massive to interbedded mud is the most common lithology, although sandy mud to muddy sand also occurs. Centimeters thick sand and mud beds typically alternate vertically. Bioturbation is low to moderate. Water depths over this environment range from 2 to 3 m. Depositional environments present in Suisun Bay are the result of a full range of tidal and fluvial processes as shown by the lithologies and alternating sediment stratigraphic patterns observed in cores. Very thin beds and intense bioturbation evidence intervals of very slow to negligible sedimentation. Rapid deposition and/or resuspension are evidenced by thick sediment intervals and by laminae that are continuous and apparently unbioturbated. Very fine scale sedimentation that may represent individual ebb and flood events as well as longer term seasonal sedimentation patterns are also present. An additional observation is that almost a quarter of the gravity cores reveal that modern estuarine deposits overlie an erosional surface that separate them from an organic-rich mud. This organic-rich mud, in one core to date, has been radiocarbon dated at roughly 4500 yrs. B.P. (J.Chin and K. Orzech, 2002, unpublished data). The organic-rich mud is interpreted as a tidal marsh deposit that pre-dates the present tidal marshes occurring in Suisun Bay.
Wilber, R. Jude; Milliman, John D.; Halley, Robert B.
1990-01-01
High-resolution seismic profiles and submersible observations along the leeward slope of western Great Bahama Bank show large-scale export of bank-top sediment and rapid progradation of the slope during the Holocene. A wedge-shaped sequence, up to 90 m thick, is present along most of the slope and consists of predominantly aragonite mud derived from the bank since flooding of the platform 6-8 ka. Total sediment volume of the slope sequence is 40%-80% that of Holocene sediment currently retained on the bank. Maximum rates of vertical accumulation and lateral progradation are 11-15 m/ka and 80-110 m/ka, respectively: 10 to 100 times greater than previously known for periplatform muds. Slope deposition of exported mud during sea-level highs appears to have been a major mechanism for the westward progradation of Great Bahama Bank throughout the Quaternary; this may provide a critical modern analogue for ancient progradational margins.
Surface sedimentary units of the Gulf of Alaska continental shelf: Montague Island to Yakutat Bay
Molnia, Bruce F.
1977-01-01
Four major sedimentary units occur on the sea floor of the continental shelf in the northern Gulf of Alaska. These units, defined on the basis of seismic and sedimentologic data, are: (1) Holocene sediments, (2) Holocene mind moraines, C3) Quaternary glacial marine sediments, and (4) Tertiary and Pleistocene lithified deposits. A wedge of Holocene fine sand to clayey silt covers most of the inner shelf, reaching maximum thicknesses of about 350 m seaward of the Copper River and about 200 m seaward of Icy Bay. Holocene end moraines are found at the mouth of Icy Bay, south of Bering Glacier, and at the mouth of Yakutat Bay. Quaternary glacial marine sediments are found in a narrow arc that borders, on the north and west side of Tart Bank and in a large arc 20 km or more offshore that parallels the shoreline between Kayak Island and Yakutat Bay. Tertiary or Pleistocene stratified sedimentary rocks, which in profile commonly are folded, faulted, and truncated, crop out on Tarr Bank, offshore of Montague Island, and in several localities southeast and southwest of Cape Yakataga. The lack of Holocene cover on Tarr Bank and Middleton, Kayak and Montague Island platforms may be due to the scouring action of swift bottom currents and large storm waves. West of Kayak Island the Copper River is the primary source of Holocene sediment. East of Kayak Island the major sediment sources are streams draining the larger ice fields, notably, the Malaspina and Bering Glaciers. Transport of bottom and suspended sediment is predominantly to the west. If deglaciation of the shelf was completed by 10,000 years B.P., maximum rates of accumulation of Holocene sediment on the inner shelf may be as high as 10-35 m per 1,000 years.
Radioactive equilibrium in ancient marine sediments
Breger, I.A.
1955-01-01
Radioactive equilibrium in eight marine sedimentary formations has been studied by means of direct determinations of uranium, radium and thorium. Alpha-particle counting has also been carried out in order to cross-calibrate thick-source counting techniques. The maximum deviation from radioactive equilibrium that has been noted is 11 per cent-indicating that there is probably equilibrium in all the formations analyzed. Thick-source alpha-particle counting by means of a proportional counter or an ionization chamber leads to high results when the samples contain less than about 10 p.p.m. of uranium. For samples having a higher content of uranium the results are in excellent agreement with each other and with those obtained by direct analytical techniques. The thorium contents that have been obtained correspond well to the average values reported in the literature. The uranium content of marine sediments may be appreciably higher than the average values that have been reported for sedimentary rocks. Data show that there is up to fourteen times the percentage of uranium as of thorium in the formations studied and that the percentage of thorium never exceeds that of uranium. While the proximity of a depositional environment to a land mass may influence the concentration of uranium in a marine sediment, this is not true with thorium. ?? 1955.
NASA Astrophysics Data System (ADS)
Tian, X.; Buck, W. R.
2017-12-01
Seaward dipping reflectors (SDRs) are found at many rifted margins. Drilling indicates SDRs are interbedded layers of basalts and sediments. Multi-channel seismic reflection data show SDRs with various width (2 100 km), thickness (1 15 km) and dip angles (0 30). Recent studies use analytic thin plate models (AtPM) to describe plate deflections under volcanic loads. They reproduce a wide range of SDRs structures without detachment faulting. These models assume that the solidified dikes provide downward loads at the rifting center. Meanwhile, erupted lava flows and sediments fill in the flexural depression and further load the lithosphere. Because the strength of the lithosphere controls the amount and wavelength of bending, the geometries of SDRs provide a window into the strength of the lithosphere during continental rifting. We attempt to provide a quantitative mapping between the SDR geometry and the lithospheric strength and thickness during rifting. To do this, we first derive analytic solutions to two observables that are functions of effective elastic thickness (Te). One observable (Xf) is the horizontal distance for SDRs to evolve from flat layers to the maximum bent layers. Another observable is the ratio between the thickness and the tangent of the maximum slope of SDRs at Xf. We then extend the AtPM to numerical thin plate models (NtPM) with spatially restricted lava flows. AtPM and NtPM show a stable and small relative difference in terms of the two observables with different values of Te. This provides a mapping of Te between NtPM and AtPM models. We also employ a fully two-dimensional thermal-mechanical treatment with elasto-visco-plastic rheology to simulate SDRs formation. These models show that brittle yielding due to bending can reduce the Te of the lithosphere by as much as 50% of the actual brittle lithospheric thickness. Quantification of effects of plastic deformation on bending allow us to use Te to link SDRs geometries to brittle lithospheric thickness. From published seismic reflection data, we obtain a global map of Te at volcanic rifted margins that ranges from 2 12 km using the AtPM and NtPM mapping. The corresponding brittle lithospheric thickness ranges from 6 20 km. In addition, preliminary results show Te increases along a given margin with distance away from a Large Igneous Province.
NASA Astrophysics Data System (ADS)
Burnette, Matthew C.; Genereux, David P.; Birgand, François
2016-08-01
The hydraulic conductivity (K) of streambeds is a critical variable controlling interaction of groundwater and surface water. The Hvorslev analysis for estimating K from falling-head test data has been widely used since the 1950s, but its performance in layered sandy sediments common in streams and lakes has not previously been examined. Our numerical simulations and laboratory experiments show that the Hvorslev analysis yields accurate K values in both homogenous sediment (for which the analysis was originally derived) and layered deposits with low-K sand over high-K sand. K from the Hvorslev analysis deviated significantly from true K only when two conditions were present together: (1) high-K sand was present over low-K sand, and (2) the bottom of the permeameter in which K was measured was at or very near the interface between high-K and low-K. When this combination of conditions exists, simulation and laboratory sand tank results show that in-situ Hvorslev K underestimates the true K of the sediment within a permeameter, because the falling-head test is affected by low-K sediment outside of (below the bottom of) the permeameter. In simulation results, the maximum underestimation (occurring when the bottom of the permeameter was at the interface of high K over low K) was by a factor of 0.91, 0.59, and 0.12 when the high-K to low-K ratio was 2, 10, and 100, respectively. In laboratory sand tank experiments, the underestimation was by a factor of about 0.83 when the high-K to low-K ratio was 2.3. Also, this underestimation of K by the Hvorslev analysis was about the same whether the underlying low-K layer was 2 cm or 174 cm thick (1% or 87% of the domain thickness). Numerical model simulations were useful in the interpretation of in-situ field K profiles at streambed sites with layering; specifically, scaling the model results to the maximum measured K at the top of the field K profiles helped constrain the likely ratio of high K to low K at field locations with layered heterogeneity. Vertical K values are important in field studies of groundwater-surface water interaction, and the Hvorslev analysis can be a useful tool, even in layered media, when applied carefully.
Johnson, Carole D.; Lane, John W.
2016-01-01
Determining sediment thickness and delineating bedrock topography are important for assessing groundwater availability and characterizing contamination sites. In recent years, the horizontal-to-vertical spectral ratio (HVSR) seismic method has emerged as a non-invasive, cost-effective approach for estimating the thickness of unconsolidated sediments above bedrock. Using a three-component seismometer, this method uses the ratio of the average horizontal- and vertical-component amplitude spectrums to produce a spectral ratio curve with a peak at the fundamental resonance frequency. The HVSR method produces clear and repeatable resonance frequency peaks when there is a sharp contrast (>2:1) in acoustic impedance at the sediment/bedrock boundary. Given the resonant frequency, sediment thickness can be determined either by (1) using an estimate of average local sediment shear-wave velocity or by (2) application of a power-law regression equation developed from resonance frequency observations at sites with a range of known depths to bedrock. Two frequently asked questions about the HVSR method are (1) how accurate are the sediment thickness estimates? and (2) how much do sediment thickness/bedrock depth estimates change when using different published regression equations? This paper compares and contrasts different approaches for generating HVSR depth estimates, through analysis of HVSR data acquired in the vicinity of Tylerville, Connecticut, USA.
Stillings, Lisa L.; Mack, Thomas J.; Chornack, Michael P.; Kalaly, Siddiq S.; Ahmadi, M. Idrees; Akbar, A. Qasim
2015-01-01
Interpretation of the data from the passive seismic survey suggests that the maximum sediment thickness in the northern lobe of the basin is 107 m, and in the southern lobe of the basin it is 173 m. Although the boreholes did not extend to the basin floor, the low Li concentration observed in pore waters does not suggest the presence of a viable Li brine resource at Dasht-e-Nawar.
Optically stimulated luminescence dating of sediments
NASA Astrophysics Data System (ADS)
Troja, S. O.; Amore, C.; Barbagallo, G.; Burrafato, G.; Forzese, R.; Geremia, F.; Gueli, A. M.; Marzo, F.; Pirnaci, D.; Russo, M.; Turrisi, E.
2000-04-01
Optically stimulated luminescence (OSL) dating methodology was applied on the coarse grain fraction (100÷500 μm thick) of quartz crystals (green light stimulated luminescence, GLSL) and feldspar crystals (infrared stimulated luminescence, IRSL) taken from sections at different depths of cores bored in various coastal lagoons (Longarini, Cuba, Bruno) in the south-east coast of Sicily. The results obtained give a sequence of congruent relative ages and maximum absolute ages compatible with the sedimentary structure, thus confirming the excellent potential of the methodology.
Hawaiian submarine manganese-iron oxide crusts - A dating tool?
Moore, J.G.; Clague, D.A.
2004-01-01
Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae landslide southwest of Oahu has yielded samples with the greatest manganese-iron oxide crusts (9.5 mm thick) and therefore apparently represents the oldest submarine material yet found in the study area. The submarine volcanic field 100 km southwest of Oahu is apparently younger than the Waianae landslide. ?? 2004 Geological Society of America.
Effect of clay type on the velocity and run-out distance of cohesive sediment gravity flows
NASA Astrophysics Data System (ADS)
Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian
2016-04-01
Novel laboratory experiments in a lock-exchange flume filled with natural seawater revealed that sediment gravity flows (SGFs) laden with kaolinite clay (weakly cohesive), bentonite clay (strongly cohesive) and silica flour (non-cohesive) have strongly contrasting flow properties. Knowledge of cohesive clay-laden sediment gravity flows is limited, despite clay being one of the most abundant sediment types on earth and subaqueous SGFs transporting the greatest volumes of sediment on our planet. Cohesive SGFs are particularly complex owing to the dynamic interplay between turbulent and cohesive forces. Cohesive forces allow the formation of clay flocs and gels, which increase the viscosity and shear strength of the flow, and attenuate shear-induced turbulence. The experimental SGFs ranged from dilute turbidity currents to dense debris flows. For each experiment, the run-out distance, head velocity and thickness distribution of the deposit were measured, and the flow properties were recorded using high-resolution video. Increasing the volume concentration of kaolinite and bentonite above 22% and 17%, respectively, reduced both the maximum head velocity and the run-out distances of the SGFs. We infer that increasing the concentration of clay particles enhances the opportunity for the particles to collide and flocculate, thus increasing the viscosity and shear strength of the flows at the expense of turbulence, and reducing their forward momentum. Increasing the volume concentration in the silica-flour laden flows from 1% to 46% increased the maximum head velocity, owing to the gradual increase in excess density. Thereafter, however, intergranular friction is inferred to have attenuated the turbulence, causing a rapid reduction in the maximum head velocity and run-out distance as suspended sediment concentration was increased. Moving from flows carrying bentonite via kaolinite to silica flour, a progressively larger volumetric suspended sediment concentration was needed to produce similar run-out distances and maximum head velocities. Strongly cohesive bentonite flows were able to create a stronger network of particle bonds than weakly cohesive kaolinite flows of a similar concentration, thus producing the lower maximum head velocities and run-out distances observed. The lack of cohesion in the silica-flour laden flows meant that extremely high suspended sediment concentrations, i.e. close to the cubic packing density, were required to produce a high enough frictional strength to reduce the forward momentum of these flows. These experimental results can be used to improve our understanding of the deposit geometry and run-out distance of fine-grained SGFs in the natural environment. We suggest that natural SGFs that carry weakly cohesive clays (e.g. kaolinite) reach a greater distance from their origin than flows that contain strongly cohesive clays (e.g. bentonite) at similar suspended sediment concentrations, whilst equivalent fine-grained, non-cohesive SGFs travel the furthest. In addition, weakly cohesive SGFs may cover a larger surface area and have thinner deposits, with important ramifications for the architecture of stacked event beds.
NASA Astrophysics Data System (ADS)
Biggs, T. W.; Dunne, T.; Holmes, K.; Martinelli, L. A.
2001-12-01
Topography plays an important role in determining soil properties, stream solute concentrations and landscape denudation rates. Stallard (1985) suggested that catchment denudation rates should depend on soil thickness. Areas with low slopes are limited by the rate of transport of sediment, and typically contain thick soils that prevent interaction of stream waters with underlying bedrock [Stallard 1985]. Steep areas typically have thin soils, but a lower hydrologic residence time that may prevent soil water from coming into thermodynamic equilibrium with the soil-rock complex. In a survey of streams in the Brazilian Amazon basin, Biggs et al. (2001) found that stream solute concentrations correlate with soil cation contents in the humid tropics, but the mechanism underlying the correlation has not been determined. We combine chemical analyses of water samples from ~40 different streams with soil surveys, geology maps, and a 100m resolution DEM to examine the relationship between topography, rock type, soil cation contents, and stream solute concentrations in the Brazilian Amazon state of Rondônia. The basins are all more than 60% forested at the time of stream sampling and lie on granite-gneiss rocks, tertiary sediments, or sandstone. The catchment-averaged slope correlates positively with both soil cation contents and stream concentrations of P, Na, Ca, Mg, K, Si, ANC, and pH. Though we have no data about the relationship between soil depth and average slope, we assume an inverse correlation, so the data demonstrates that thick soils yield lower solute concentrations. Stream concentrations of Ca, Mg, ANC and pH reach a maximum at intermediate average slopes (3 degrees), suggesting that denudation rates may increase with slope up to a maximum, when the catchment becomes limited by the weathering rate of the basement rock. Catchments on mica-schists or mafic rocks have low average slopes and higher concentrations of Ca, Mg, Si, ANC, and pH than catchments on granite-gneiss, tertiary sediments or sandstone.
NASA Astrophysics Data System (ADS)
Ribó, Marta; Puig, Pere; Muñoz, Araceli; Lo Iacono, Claudio; Masqué, Pere; Palanques, Albert; Acosta, Juan; Guillén, Jorge; Gómez Ballesteros, María
2016-01-01
Detailed analysis of recently acquired swath bathymetry, together with high-resolution seismic profiles and bottom sediment samples, revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. As many other deep-water sediment waves, these features were previously attributed to gravitational slope failure, related to creep-like deformation, and are here reinterpreted as sediment wave fields extending from 250 m depth to the continental rise, at 850 m depth. Geometric parameters were computed from the high-resolution multibeam dataset. Sediment wave lengths range between 500 and 1000 m, and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to minimum values of 2 m high. Sediment waves on the lower part of the slope are quasi-stationary vertically accreting, whereas they show an upslope migrating pattern from the mid-slope to the upper part of the continental slope. High-resolution seismic profiles show continuous internal reflectors, with sediment waves merging down-section and sediment wave packages decreasing in thickness downslope. These sediment packages are thicker on the crest of each individual sediment wave and thinner on the downslope flank. 210Pb analyses conducted on sediment cores collected over the sediment wave fields also indicate slightly higher sediment accumulation rates on the wave crests. Sediment wave formation processes have been inferred from contemporary hydrodynamic observations, which reveal the presence of near-inertial internal waves interacting with the Gulf of Valencia continental slope. Internal wave activity is suggested to be the preferential mechanism for the transport and deposition of sediment, and the maintenance of the observed sediment wave fields.
NASA Astrophysics Data System (ADS)
Ferraro, Serena; Sulli, Attilio; Di Stefano, Enrico; Giaramita, Luigi; Incarbona, Alessandro; Graham Mortyn, P.; Sprovieri, Mario; Sprovieri, Rodolfo; Tonielli, Renato; Vallefuoco, Mattia; Zizzo, Elisabetta; Tranchida, Giorgio
2018-06-01
The Malta Graben is a deep tectonic depression in the Sicily Channel, bounded by NW-SE normal faults and filled by thick Pliocene-Quaternary deposits. A previous analysis of a giant piston core (LC09) from the Malta Graben had revealed a wide range of sedimentary features (carbonate turbidites, bioturbated mud and scours), although the chronostratigraphic constraint of the stacking pattern has remained elusive. After establishing a reliable chronological framework based on seven radiocarbon dates for a shorter core from the Malta Graben (ANSIC03-735), a down-core analysis of planktonic foraminifer and coccolith abundance, stable isotopes and sediment grain size was carried out. Since the last glacial maximum, palaeoenvironmental conditions (surface fertility and deep chlorophyll maximum during the last glacial and the Younger Dryas; warm and oligotrophic water masses, with a deep nutricline and intense winter mixing during the Holocene) as well as selected calcareous plankton taxa trends and peaks seem to be similar to those reported for other central and western Mediterranean sites, possibly in spite of a unique response of these areas to late Quaternary climatic fluctuations. Four distinct layers, each tens of centimetres thick, are barren of foraminifers but not of coccoliths. Morphobathymetric data as well as new high-resolution and high-penetration seismic profiles show that prolonged contouritic activity has persisted on the western side of the Malta Graben. It is thus likely that layers barren of foraminifers are due to the overflow of fine-grained (clayey) material beyond drift channel dikes.
NASA Astrophysics Data System (ADS)
Ferraro, Serena; Sulli, Attilio; Di Stefano, Enrico; Giaramita, Luigi; Incarbona, Alessandro; Graham Mortyn, P.; Sprovieri, Mario; Sprovieri, Rodolfo; Tonielli, Renato; Vallefuoco, Mattia; Zizzo, Elisabetta; Tranchida, Giorgio
2018-03-01
The Malta Graben is a deep tectonic depression in the Sicily Channel, bounded by NW-SE normal faults and filled by thick Pliocene-Quaternary deposits. A previous analysis of a giant piston core (LC09) from the Malta Graben had revealed a wide range of sedimentary features (carbonate turbidites, bioturbated mud and scours), although the chronostratigraphic constraint of the stacking pattern has remained elusive. After establishing a reliable chronological framework based on seven radiocarbon dates for a shorter core from the Malta Graben (ANSIC03-735), a down-core analysis of planktonic foraminifer and coccolith abundance, stable isotopes and sediment grain size was carried out. Since the last glacial maximum, palaeoenvironmental conditions (surface fertility and deep chlorophyll maximum during the last glacial and the Younger Dryas; warm and oligotrophic water masses, with a deep nutricline and intense winter mixing during the Holocene) as well as selected calcareous plankton taxa trends and peaks seem to be similar to those reported for other central and western Mediterranean sites, possibly in spite of a unique response of these areas to late Quaternary climatic fluctuations. Four distinct layers, each tens of centimetres thick, are barren of foraminifers but not of coccoliths. Morphobathymetric data as well as new high-resolution and high-penetration seismic profiles show that prolonged contouritic activity has persisted on the western side of the Malta Graben. It is thus likely that layers barren of foraminifers are due to the overflow of fine-grained (clayey) material beyond drift channel dikes.
Groundwater exploration in a Quaternary sediment body by shear-wave reflection seismics
NASA Astrophysics Data System (ADS)
Pirrung, M.; Polom, U.; Krawczyk, C. M.
2008-12-01
The detailed investigation of a shallow aquifer structure is the prerequisite for choosing a proper well location for groundwater exploration drilling for human drinking water supply and subsequent managing of the aquifer system. In the case of shallow aquifers of some 10 m in depth, this task is still a challenge for high-resolution geophysical methods, especially in populated areas. In areas of paved surfaces, shallow shear-wave reflection seismics is advantageous compared to conventional P-wave seismic methods. The sediment body of the Alfbach valley within the Vulkaneifel region in Germany, partly covered by the village Gillenfeld, was estimated to have a maximum thickness of nearly 60 m. It lies on top of a complicated basement structure, constituted by an incorporated lava flow near the basement. For the positioning of new well locations, a combination of a SH-wave land streamer receiver system and a small, wheelbarrow-mounted SH-wave source was used for the seismic investigations. This equipment can be easily applied also in residential areas without notable trouble for the inhabitants. The results of the 2.5D profiling show a clear image of the sediment body down to the bedrock with high resolution. Along a 1 km seismic profile, the sediment thickness varies between 20 to more than 60 m in the centre of the valley. The reflection behaviour from the bedrock surface corroborates the hypothesis of a basement structure with distinct topography, including strong dipping events from the flanks of the valley and strong diffractions from subsurface discontinuities. The reflection seismic imaging leads to an estimation of the former shape of the valley and a reconstruction of the flow conditions at the beginning of the sedimentation process.
NASA Astrophysics Data System (ADS)
van der Land, C.; Sena, C.; Loudin, L. C.; Zhang, Z.
2014-12-01
The rapid deposition of volcanogenic sediments, highly susceptible to alteration by seawater has led to distinct pore water geochemical profiles throughout the sedimentary basins of the Izu-Bonin-Mariana Arc. Drilling at Site U1438, in the Amami-Sankaku Basin, recovered a 1300 m thick volcaniclastic section overlain by a 160 m thick section of sediments largely devoid of volcanic input. At Site U1438, 67 porewater samples were analyzed onboard for salinity, pH, oxidation-reduction potential and major and trace element concentrations. Here we focus on the depth profiles of elements which were also analyzed at Sites U1201, 792 and 793. Chloride and Bromide concentrations display similar trends; near constant in the upper 160 m and a linear downward increase to maximum concentrations from 600 mbsf onwards. This increase is likely caused by uptake of water by secondary minerals, resulting in chloride and bromide enrichment in the porewater. Calcium and magnesium porewater concentrations display opposite trends in the upper 440 m; the first increases from 11.5 to 140 mM, and the latter decreases from 53 mM until its depletion in the porewater. Leaching of Ca from the glass-rich sediments and underlying igneous basement are potential sources for Ca in the porewater, while Mg, Na and K presumably replace Ca through cation-exchange. Compared to Site U1438, similar trends of major elements concentration in the pore water were observed at the nearby Sites U1201 (serpentine mud volcano in the forearc of the Mariana subduction system), 792 and 793 (both in the Izu-Bonin forearc sedimentary basin). However, differences in depositional rates, thickness and age of the sedimentary basins, geothermal gradients and the influence of serpentine mud flows, have led to distinct pore water geochemical profiles.
NASA Astrophysics Data System (ADS)
Tomasovych, Adam; Gallmetzer, Ivo; Haselmair, Alexandra; Kaufman, Darrell S.; Zuschin, Martin
2016-04-01
Stratigraphic changes in temporal resolution of fossil assemblages and the degree of their stratigraphic mixing in the Holocene deposits are of high importance in paleoecology, conservation paleobiology and paleoclimatology. However, few studies quantified downcore changes in time averaging and in stratigraphic disorder on the basis of dating of multiple shells occurring in individual stratigraphic layers. Here, we investigate downcore changes in frequency distribution of postmortem ages of the infaunal bivalve Gouldia minima in two, ~150 cm-thick piston cores (separated by more than 1 km) in the northern Adriatic Sea, close to the Slovenian city Piran at a depth of 24 m. We use radiocarbon-calibrated amino acid racemization to obtain postmortem ages of 564 shells, and quantify age-frequency distributions in 4-5 cm-thick stratigraphic intervals (with 20-30 specimens sampled per interval). Inter-quartile range for individual 4-5 cm-thick layers varies between 850 and 1,700 years, and range encompassing 95% of age data varies between 2,000 and 5,000 years in both cores. The uppermost sediments (20 cm) are age-homogenized and show that median age of shells is ~700-800 years. The interval between 20 and 90 cm shows a gradual increase in median age from ~2,000 to ~5,000 years, with maximum age ranging to ~8,000 years. However, the lowermost parts of both cores show a significant disorder, with median age of 3,100-3,300 years. This temporal disorder implies that many shells were displaced vertically by ~1 m. Absolute and proportional abundance of the bivalve Gouldia minima strongly increases towards the top of the both cores. We hypothesize that such increase in abundance, when coupled with depth-declining reworking, can explain stratigraphic disorder because numerically abundant young shells from the top of the core were more likely buried to larger sediment depths than less frequent shells at intermediate sediment depths.
Piper, D.J.W.; Hiscott, R.N.; Normark, W.R.
1999-01-01
The uppermost Quaternary deposits of the Hueneme and Dume submarine fans in the Santa Monica Basin have been investigated using a closed-spaced grid of boomer seismic-reflection profiles, which give vertical resolution of a few tens of centimetres with acoustic penetration to 50 m. Acoustic facies integrated with geometry define six architectural elements, some with discrete subelements that are of a scale that can be recognized in outcrops of ancient turbidite systems. In the Santa Monica Basin, the relationship of these elements to fan morphology, stratigraphy and sediment source is precisely known. The width of upper Hueneme fan valley has been reduced from 5 km since the last glacial maximum to 1 km at present by construction of laterally confined sandy levees within the main valley. The middle fan comprises three main subelements: thick sand deposits at the termination of the fan valley, low-gradient sandy lobes typically 5 km long and < 10 m thick, and scoured lobes formed of alternating sand and mud beds with many erosional depressions. The site of thickest lobe sediment accumulation shifts through time, with each sand bed deposited in a previous bathymetric low (i.e. compensation cycles). The lower fan and basin plain consists of sheet-like alternations of sand and mud with shallow channels and lenses. Variations in the rate of late Quaternary sea level rise initiated changes in sediment facies distribution. At lowstand, and during the approximately 11 ka stillstand in sea level, the Hueneme Fan was fed largely by hyperpycnal flow from the Santa Clara River delta, depositing high sediment waves on the right hand levee and thick sandy lobes on the middle fan. At highstand of sea level, most turbidity currents were generated by failure of silty prodelta muds. In contrast, the smaller Dume Fan was apparently always fed from littoral drift of sand through a single-canyon point source.
Dickinson, Jesse; Pool, D.R.; Groom, R.W.; Davis, L.J.
2010-01-01
An airborne transient electromagnetic (TEM) survey was completed in the Upper San Pedro Basin in southeastern Arizona to map resistivity distributions within the alluvial aquifer. This investigation evaluated the utility of 1D vertical resistivity models of the TEM data to infer lithologic distributions in an alluvial aquifer. Comparisons of the resistivity values and layers in the 1D resistivity models of airborne TEM data to 1D resistivity models of ground TEM data, borehole resistivity logs, and lithologic descriptions in drill logs indicated that the airborne TEM identified thick conductive fine-grained sediments that result in semiconfined groundwater conditions. One-dimensional models of ground-based TEM surveys and subsurface lithology at three sites were used to determine starting models and constraints to invert airborne TEM data using a constrained Marquardt-styleunderparameterized method. A maximum structural resolution of six layers underlain by a half-space was determined from the resistivity structure of the 1D models of the ground TEM data. The 1D resistivity models of the airborne TEM data compared well with the control data to depths of approximately 100 m in areas of thick conductive silt and clay and to depths of 200 m in areas of resistive sand and gravel. Comparison of a 3D interpolation of the 1D resistivity models to drill logs indicated resistive (mean of 65 ohm-m ) coarse-grained sediments along basin margins and conductive (mean of 8 ohm-m ) fine-grained sediments at the basin center. Extents of hydrologically significant thick silt and clay were well mapped by the 1D resistivity models of airborne TEM data. Areas of uncertain lithology remain below conductive fine-grained sediments where the 1D resistivity structure is not resolved: in areas where multiple lithologies have similar resistivity values and in areas of high salinity.
NASA Astrophysics Data System (ADS)
Tarlati, S.; Benetti, S.; Callard, L.; O'Cofaigh, C.; Dunlop, P.; Chiverrell, R. C.; Fabel, D.; Moreton, S.; Clark, C.
2016-12-01
During the last glacial maximum the British-Irish Ice Sheet (BIIS) covered the majority of Ireland and Britain. Recent studies have described the BIIS as largely marine-based and highly dynamic with several advances and retreats recorded on the continental shelf. The focus of this study is the more recent sediment record from the Donegal Barra Fan (DBF), the largest sediment depocentre formed by the ice streaming of the western BIIS onto the North Atlantic continental margin. In this project, well-preserved, glacially-derived, deep-water sediments from 3 cores, up to 6.7 m long and retrieved from the DBF, are used to investigate and chronologically constrain the pattern of deglaciation of the BIIS. Deep-water sediments can record continuous sedimentation through time, avoiding hiatuses and erosional surfaces characteristic of a glacial environment and allow a detailed reconstruction of deglacial processes. Five lithofacies have been identified using sedimentology, x-rays, physical properties and grain size analysis. They include bioturbated foraminifera-bearing muds, interpreted as hemipelagic and contouritic deposits from interglacial periods. Chaotic and laminated muds, ice-rafted debris (IRD)-rich layers and laminated mud to sand couplets are characteristic of the glacial period including ice-sheet maximum extent and the beginning of retreat. These represent downslope mass movements, plumites from meltwater alongside melting icebergs and turbidites. Radiocarbon dates from foraminifera suggest that the deglacial sedimentary sequence is up to 5m thick. The IRD concentration and abundance of the foraminifera Neogloboquadrina pachyderma sinistral indicate a minimum of 3 different calving events during deglaciation and a marked Younger Dryas cooling and ice calving period. Additionally the δ 18O record will be used to investigate the record of climatic changes in the region and x-ray fluorescence will be used to assess sediment provenance during deglaciation.
NASA Astrophysics Data System (ADS)
Bigl, M.; Kelly, M. A.
2012-12-01
Subsequent to the last glacial maximum, the Laurentide Ice Sheet retreated northward through New England and New York and large glacial lakes formed in the Hudson, Connecticut and Merrimack Valleys. Varved sediments in these former lake basins preserve an incredible record of the timing and rates of ice sheet recession as well as regional climatic conditions. Here, we test the hypothesis that these varves also preserve a history of the lowering and drainage of the lakes. We present evidence of sudden increases in varve thicknesses within the former Glacial Lake Hitchcock (GLH) basin in the Connecticut River Valley of New Hampshire and Vermont and test the hypothesis that these result from lake-level lowering events. GLH existed in the Connecticut Valley due to a sediment dam at its southern end near Rocky Hill, CT. At its maximum, it may have extended from Rocky Hill to near Lyndon, VT. A breach of the Rocky Hill dam at ~13.5 ka caused the drainage of the southern basin of GLH, located south of the Holyoke Range in Massachusetts, but the northern basin of GLH (in the Upper Valley region of New Hampshire and Vermont) retained water until ~11.5 ka (Stone, 1999). However, no studies have focused on lake level fluctuation, exact timing of GLH drainage, and whether the lake drained in one episode or as a longer sequence of drainage events. We use sediment cores from modern lake basins to examine the lowering and final drainage of GLH in the Upper Valley region. As GLH lowered, these modern basins emerged (with higher elevation basins emerging first) and deposition in each basin transitioned from glacial varves to non-varved and organic-rich sediments. We hypothesize that during a lowering event a basin submerged by GLH would have received an increase in sediment flux from deposits exposed at the lakeshore and, thus, a sudden thickening of varves would occur. We test this hypothesis by comparing the age of the transition from glacial varves to non-varved and organic-rich sediments in higher elevation basins with the age of the sudden thickening of varves in lower elevation basins. An alternative hypothesis is that a sudden thickening of varves results from a colder or wetter climatic conditions that caused an increased sediment flux to GLH. In winter 2012, we obtained sediment cores using a modified Livingstone corer from six modern lake basins in the Upper Valley region. All of these basins are located beneath the level of GLH and contain glacial varved sediments below ~6-9 m of Holocene organic-rich sediments. On an isostatically depressed landscape reconstructed for this study, the modern basins occur over a range of ~80 m of elevation, from near the highest level of GLH to near the modern elevation of the Connecticut River. We are using high-resolution line-scan images obtained at the Limnological Research Center (LRC) at the University of Minnesota to measure varve thicknesses in the sediment cores and correlate these with the North American Varve Chronology (NAVC). This method of correlation has been used successfully with varved sediments in the Hudson, Connecticut, and Merrimack Valleys to develop the NAVC. Where possible, we will use radiocarbon dating of terrestrial macrofossils within varved sediment and organic-rich sediment to test the varve correlations.
NASA Astrophysics Data System (ADS)
Mendoza, Ursula; Ayres Neto, Arthur; C. Abuchacra, Rodrigo; Fernandes Barbosa, Cátia; G. Figueiredo, Alberto; C. Gomes, Manoela; Belem, Andre L.; Capilla, Ramsés; S. Albuquerque, Ana Luiza
2014-08-01
The Cabo Frio region in the state of Rio de Janeiro, southeast coast of Brazil, is characterized by a local coastal upwelling system and converging littoral sediment transport systems that are deflected offshore at Cabo Frio, as a consequence of which a thick cross-shelf sediment deposit has developed over time. To investigate the evolution of this muddy deposit, geophysical, sedimentological and geochemical data from four sediment cores (3.8-4.1 m in length) recovered in water depths between 88 and 141 m were analyzed. The high-resolution seismic data show variable sediment thicknesses ranging from 1 to 20 m, comprising two sedimentary units separated by a high-impedance layer at a depth of about 10 m below the seafloor at the coring sites. According to the available age datings, the upper sedimentary unit is late Pleistocene to Holocene in age, whereas the lower unit (not dated) must, by implication, be entirely Pleistocene in age. The boomer-seismic reflection signal can be divided into three echo-types, namely transparent (inner shelf), stratified (middle shelf) and reflective (outer shelf), each type seemingly related to the local sediment composition. The upper 4 m of the upper sedimentary unit is dominated by silty sediment on the middle shelf, and by upward-fining sediments (silty sand to sandy silt) on the inner and outer shelf. The downcore trends of P-wave velocity, gamma-ray density and acoustic impedance are largely similar, but generally reversed to those of water and organic carbon contents. Total organic carbon contents increase with decreasing mean grain size, periodic fluctuations suggesting temporal changes in the regional hydrodynamics and primary productivity fuelled by the local upwelling system. The reconstruction of sedimentation rates in the course of the Holocene is based on 35 AMS age datings of organic material recovered from variable downcore depths. These range from a maximum of 13.3 cm/decade near the base of the inner shelf core (7.73-7.70 ka BP) to generally very low values (<0.11 cm/century) over the last thousand years in all cores. Over the last 6 ka there appear to have been three distinct sedimentation peaks, one between 6 and 5 ka BP, another between 4 and 3 ka PB, and one around 1 ka BP. Due to different time intervals between dates, not every peak is equally well resolved in all four cores. Based on the similar sedimentology of the inner and outer shelf cores, an essentially identical sedimentation model is proposed to have been active in both cases, albeit at different times. Thus, already during the last glacial maximum, alongshore sediment transport was deflected offshore by a change in shoreline orientation caused by the Cabo Frio structural high. The source of terrigenous material was probably a barrier-island complex that was subsequently displaced landward in the course of sea-level rise until it stabilized some 6.5 ka BP along the modern coast.
Glacimarine Sedimentary Processes and Deposits at Fjord-Terminating Tidewater Glacier Margins
NASA Astrophysics Data System (ADS)
Streuff, K.; O'Cofaigh, C.; Lloyd, J. M.; Noormets, R.; Nielsen, T.; Kuijpers, A.
2016-12-01
Many fjords along Arctic coasts are influenced by tidewater glaciers, some of them fast-flowing ice sheet outlets. Such glaciers provide important links between terrestrial and marine environments, and, due to their susceptibility to climatic and oceanographic changes, have undergone a complex history of advance and retreat since the last glacial maximum (LGM). Although a growing body of evidence has led to a better understanding of the deglacial dynamics of individual glaciers since the LGM, their overall Holocene glacimarine processes and associated sedimentary and geomorphological products often remain poorly understood. This study addresses this through a detailed analysis of sediment cores, swath bathymetric and sub-bottom profiler data collected from seven fjords in Spitsbergen and west Greenland. The sediment cores preserve a complex set of lithofacies, which include laminated and massive muds in ice-proximal, and bioturbated mud in more ice-distal settings, diamicton in iceberg-dominated areas and massive sand occurring as lenses, laminae and thick beds. These facies record the interplay of three main glacimarine processes, suspension settling, iceberg rafting and sediment gravity flows, and collectively emphasise the dominance of glacial meltwater delivery to sedimentation in high Arctic fjords. The seafloor geomorphology in the fjords shows a range of landforms that include glacial lineations associated with fast ice-flow, terminal moraines and debris lobes marking former maximum glacier extents, and small transverse moraines formed during deglaciation by glaciotectonic deformation at the grounding line and crevasse-squeezing. Additional landforms such as iceberg ploughmarks, submarine channels, pockmarks, and debris lobes formed during or after deglaciation by iceberg calving, erosion by meltwater, and sediment reworking. We present here a new model for sedimentary and geomorphological processes in front of contemporary tidewater glaciers, which integrates our findings with those from Alaska, Canada, and east Greenland.
NASA Astrophysics Data System (ADS)
Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.
2017-05-01
Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.
Drake, D.E.
1999-01-01
Sediment grain-size characteristics observed on the Eel shelf have been analyzed using a wet-sieving technique that minimizes breakage of aggregates. At several sites on the 70-m isobath north of the river, where a 1995 flood layer attained a maximum thickness of about 9 cm, replicate box cores were collected on seven cruises during February 1995 to January 1997. These samples provide a unique opportunity to follow the evolution of a flood layer over a two-year period as it was modified and gradually buried. One month after the flood, a layer of tan-colored, high-porosity sediment with up to 96% of its particles in the size range of 0-20 ??m had accumulated on the central part of the shelf, 7-30 km north of the river and principally between the 50-m and 90-m isobaths. Substantial coarsening of this layer occurred between February 1995 and May 1995, particularly along the southern and the landward edge of the deposit in water depths of <70 m. The early stage of coarsening was probably caused by physical reworking of the surface 0.5-cm of the deposit and by addition of new sediment from shallower regions of the shelf. Temporal changes in inventories of several grain-size fractions show that physical processes continued to add coarse sediment to the flood layer after May 1995, but the large increases in thickness of the surface mixed layer could only be attributed to bioturbation by a recovering, or seasonally fluctuating, benthic community. The 1995 flood layer has evolved from exhibiting limited variability and normal grading (i:e., upward fining) to a layer that (1) shows significant spatial variability on scales from centimeters to 10's of meters, (2) is substantially coarser owing to additions of sediment from the inner shelf, (3) is inversely graded (i.e., coarsens upward), and (4) is intensely bioturbated to depths of 4-5 cm.
Utilizing Time Domain Reflectometry on monitoring bedload in a mountain stream
NASA Astrophysics Data System (ADS)
Miyata, S.; Fujita, M.
2015-12-01
Understanding bedload transport processes in steep mountain streams is essential for disaster mitigation as well as predicting reservoir capacity and restoration of river ecosystem. Despite various monitoring methods proposed previously, precise bedload monitoring in steep streams still remains difficulty. This study aimed to develop a bedload monitoring system by continuous measurement of thickness and porosity of sediment under water that can be applicable to retention basins and pools in steep streams. When a probe of TDR (Time Domain Reflectometry) measurement system is inserted as to penetrate two adjacent layers with different dielectric constants, analysis of TDR waveform enables us to determine position of the layer boundary and ratio of materials in the layer. Methodology of analyzing observed TDR waveforms were established based on results of a series of column experiment, in which a single TDR probe with length of 40 cm was installed in a column filled with water and, then, sand was supplied gradually. Flume experiment was performed to apply the TDR system on monitoring sediment volume under flowing water conditions. Eight probes with lengths of 27 cm were distributed equally in a model retention basin (i.e., container), into which water and bedload were flowed from a connected flume. The model retention basin was weighed by a load cell and the sediment volume was calculated. A semi-automatic waveform analysis was developed to calculate continuously thicknesses and porosities of the sediment at the eight probes. Relative errors of sediment volume and bedload (=time differential of the volume) were 13 % at maximum, suggesting that the TDR system proposed in this study with multiple probes is applicable to bedload monitoring in retention basins of steep streams. Combination of this system and other indirect bedload monitoring method (e.g., geophone) potentially make a breakthrough for understanding sediment transport processes in steep mountain streams.
Anatomy of the Kitimat fiord system, British Columbia
NASA Astrophysics Data System (ADS)
Shaw, John; Stacey, Cooper D.; Wu, Yongsheng; Lintern, D. Gwyn
2017-09-01
The geomorphic complexity of the Kitimat fiord system, on the active margin of British Columbia, Canada, is analysed from several perspectives. Sub-glacial landforms and sediments show that grounded ice exiting the fiord system at the last glacial maximum streamed down Moresby Trough towards the Queen Charlotte trough mouth fan. After brief halts on the inner shelf, grounded ice margins cleared the fiord threshold perhaps by c. 15.5 ka cal. yrs BP, and certainly before 13 ka cal. yrs BP. Just outside the fiords, meltwater plumes deposited stratified glaciomarine sediments interbedded with submarine slides. Inside the fiords, thick glaciomarine sediments were deposited, and large transverse moraines formed during temporary halts in retreat. Several glacial outburst floods eroded the Kitkiata moraine and deposited distinctive mud deposits. Postglacial sedimentation on fiord floors has been spatially variable: drifts of mud > 90 m-thick corresponding with areas of low current velocity alternate with areas of non-deposition and erosion corresponding with areas of high velocity. The fiord system hosts more than a hundred morphologically diverse fan deltas that can be classified in the Prior and Bornhold (1989, 1990) system. Submarine mass transport was most frequent immediately following ice retreat (15.5-11.5 ka cal. yrs BP). The largest event ( 1.2 km3) involved failure of glaciomarine sediment on a submarine moraine at Squally Channel, and consequent movement of material into the adjacent deep basin. This event occurred post-13 ka cal. yrs BP. In the postglacial phase, mass transport continued on a lesser scale up to the present day, most intensively in Kitimat Arm. From the perspective of glacial landforms, postglacial sedimentation and mass transport, this Pacific active margin fiord system has some parallels with fiord systems on Canada's east coast passive margin, and with Norwegian fiords, but the intensive development of Holocene fan deltas is strongly distinctive.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick
2014-05-01
Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.
ACEX: A First Look at Arctic Ocean Cenozoic History
NASA Astrophysics Data System (ADS)
Moran, K.; Backman, J.
2004-12-01
The first Integrated Ocean Drilling Program mission specificplatform expedition (ACEX - Arctic Coring Expedition) drilled and recovered core from five holes at four sites through Cenozoic sediments draping the crest of the Lomonosov Ridge in the central Arctic Ocean. Coring continued into the underlying Cretaceous sedimentary bedrock. Sites are located only a few nautical miles apart along a single seismic line (AWI-91090), showing an identical and coherent Cenozoic seismostratigraphy. Preliminary results from shipboard investigations of core-catcher-based bio- and lithostratigraphy, pore water analyses and core logger data describe a thick (~160 m) middle Miocene through Pleistocene sequence that shows large amplitude, cyclic variability in the density, magnetic susceptibility and acoustic velocity of the sediments. Sediments are largely carbonate free. Pleistocene sedimentation rates are close to 3 cm/ka, whereas Pliocene sediments are by-and-large missing. A sharp change in physical properties at ~200 m defines the transition into a 200+ m thick Paleogene sequence that is initially dominated by large numbers of dinoflagellate cysts. The early Miocene, Oligocene and late Eocene appear to be largely missing in a hiatus. However, a 32 m thick interval separates the overlying middle Miocene from the underlying middle Eocene and presumably preserves some of the early Neogene and late Paleogene sections. Dinoflagellate cysts, diatoms, ebridians and silicoflagellates are common to abundant in the middle Eocene section, which bottoms in a spectacular layer showing massive occurrences of glochidia and massulae (megaspores) of the freshwater hydropterid fern Azolla (duckweed) at the early/middle Eocene boundary (~306 m), suggesting strongly reduced surface water salinity or perhaps even a brief episode of fresh water conditions at the surface. Biosilica is not present prior to the late early Eocene (~320 m). The (sub-) tropical dinoflagellate species Apectodinium augustum occurs abundantly at around 380m in pyrite-rich mudstones, indicating that the Paleocene/Eocene boundary and the associated Carbon Isotope Excursion (CIE) interval were recovered, and that the Arctic Ocean experienced surface temperatures on the order of 20°C during the Paleocene Eocene Thermal Maximum (PETM). Benthic foraminifers indicate that the early Eocene through latest Paleocene sediments were deposited in shallow-marine, neritic to inner neritic, environments. The mudstone of late Paleocene age rests unconformably on Campanian marine sands, sandstone and mudstone.
Role of Erosion in Shaping Point Bars
NASA Astrophysics Data System (ADS)
Moody, J.; Meade, R.
2012-04-01
A powerful metaphor in fluvial geomorphology has been that depositional features such as point bars (and other floodplain features) constitute the river's historical memory in the form of uniformly thick sedimentary deposits waiting for the geomorphologist to dissect and interpret the past. For the past three decades, along the channel of Powder River (Montana USA) we have documented (with annual cross-sectional surveys and pit trenches) the evolution of the shape of three point bars that were created when an extreme flood in 1978 cut new channels across the necks of two former meander bends and radically shifted the location of a third bend. Subsequent erosion has substantially reshaped, at different time scales, the relic sediment deposits of varying age. At the weekly to monthly time scale (i.e., floods from snowmelt or floods from convective or cyclonic storms), the maximum scour depth was computed (by using a numerical model) at locations spaced 1 m apart across the entire point bar for a couple of the largest floods. The maximum predicted scour is about 0.22 m. At the annual time scale, repeated cross-section topographic surveys (25 during 32 years) indicate that net annual erosion at a single location can be as great as 0.5 m, and that the net erosion is greater than net deposition during 8, 16, and 32% of the years for the three point bars. On average, the median annual net erosion was 21, 36, and 51% of the net deposition. At the decadal time scale, an index of point bar preservation often referred to as completeness was defined for each cross section as the percentage of the initial deposit (older than 10 years) that was still remaining in 2011; computations indicate that 19, 41, and 36% of the initial deposits of sediment were eroded. Initial deposits were not uniform in thickness and often represented thicker pods of sediment connected by thin layers of sediment or even isolated pods at different elevations across the point bar in response to multiple floods during a water year. Erosion often was preferential and removed part or all of pods at lower elevations, and in time left what appears to be a random arrangement of sediment pods forming the point bar. Thus, we conclude that the erosional process is as important as the deposition process in shaping the final form of the point bar, and that point bars are not uniformly aggradational or transgressive deposits of sediment in which the age of the deposit increases monotonically downward at all locations across the point bar.
In-situ geotechnical investigation of sediment dynamics over `The Bar', Raglan, New Zealand
NASA Astrophysics Data System (ADS)
Stark, N.; Greer, D.; Phillips, D. J.; Borrero, J. C.; Harrison, S.; Kopf, A.
2010-12-01
The geotechnical characteristics of surficial sediments on a highly mobile, N-S-oriented ebb tidal shoal (‘The Bar’) near the entrance to Whaingaroa Harbour, in Raglan, NZ, were investigated using the dynamic penetrometer Nimrod, which is suitable for deployments in areas characterized by strong currents and active wave climate common to this site. Vertical sediment strength, based upon penetrometer deceleration and a quasi-static bearing capacity equivalent, was profiled at 23 positions along as well as in the vicinity of ‘The Bar’ during slack water. Recently deposited or loose sediment was detected as a top layer of lower sediment strength (quasi-static bearing capacity equivalent [qs. bc.] < 10 kPa) over a stiff substratum (mean maximum qs. bs. ~ 105 kPa), and quantified (thickness: 0 - 7 cm) indicating areas of sediment accumulation and areas of sediment erosion. These results were correlated to mean current velocities and directions predicted by ASR Ltd.’s Whaingaroa Harbour Model. In relation to sediment dynamics, ‘The Bar’ area can be divided into different zones: (i) the channel connecting ‘The Bar’ to the harbor, (ii) the southern arm, (iii) the mid-section, (iv) the northern arm, and (v, vi) the northern and southern wings covering the area between ‘The Bar’ and the shore. The channel is characterized by high current velocities (up to 1.7 m/s) along the W-E-axis, suggesting strong sediment erosion and no (re-)deposition. However, despite the high mean current velocities, the penetrometer results hint at sediment deposition. This is most likely explained by the deep trench in the channel that could trap sediment. Comparing the northern and the southern wing, the currents follow the bathymetry and coastline alignment and are mirrored at the W-E-axis, but the mean current velocities are higher at the southern wing (northern wing: up to 0.4 m/s; southern wing: up to 0.6 m/s). The penetrometer results suggest strong sediment erosion on the southern wing (qs. bc. up to 155 kPa, top layer thickness ~ 2 cm), and show no evidence of sediment remobilization on the northern wing (no layering). On the northern and southern arms, low currents (~ 0.3 m/s) with very mixed directions were predicted. In front (west) of the most southern corner an area of strong sediment accumulation was localized following the penetrometer results (top layer thickness: 7 cm). This leads to the hypothesis that in the ebb-shoal system at Whaingaroa Harbour, mobile sediment is mainly transported via the southern wing of the ‘The Bar’ potentially leading to an increase of sediment erosion in this area due to effects like sanding. Sediment deposition might occur in the trench of the channel as well as in the vicinity of the southernmost portion of the sandbar. This matches observations according to which the southern arm shifted about 220 m whereas the northern arm only moved 20 m within one year. The in-situ penetrometer as well as the numerical results compare favorably with observations of ‘The Bar’s morphology. Both methods provide valuable insights which enhance our understanding of the sediment dynamics in this area.
Wong, Florence L.; Grim, Muriel S.
2015-01-01
Contours and derivative raster files of depth-to-basement, sediment-thickness, and bathymetry data for the area offshore of Washington, Oregon, and California are provided here as GIS-ready shapefiles and GeoTIFF files. The data were used to generate paper maps in 1992 and 1993 from 1984 surveys of the U.S. Exclusive Economic Zone by the U.S. Geological Survey for depth to basement and sediment thickness, and from older data for the bathymetry.
Sedimentation and mobility of PDCs: a reappraisal of ignimbrites' aspect ratio.
Giordano, Guido; Doronzo, Domenico M
2017-06-30
The aspect ratio of ignimbrites is a commonly used parameter that has been related to the energy of the parent pyroclastic density currents (PDCs). However this parameter, calculated as the ratio between the average thickness and the average lateral extent of ignimbrites, does not capture fundamental differences in pyroclastic flow mobility nor relates to lithofacies variations of the final deposits. We herein introduce the "topological aspect ratio" (ARt) as the ratio of the local deposit thickness (Ht) to the distance between the local site and the maximum runout distance (Lt), where Ht is a proxy for the PDC tendency to deposit, and Lt a proxy for the PDC mobility or its tendency to further transport the pyroclastic material. The positive versus negative spatial gradient d(ARt)/dx along flow paths discriminate zones where PDCs are forced (i.e. where they transport the total energy under the action of mass discharge rate) from zones where they are inertial (i.e. where they transport the total energy under the action of viscous or turbulent fluidization). Though simple to apply, the topological aspect ratio and its spatial gradient are powerful descriptors of the interplay between sedimentation and mobility of PDCs, and of the resulting lithofacies variations.
Stratigraphy and depositional sequences of the US Atlantic shelf and slope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poag, C.W.; Valentine, P.C.
1985-01-01
Litho-, bio-, and seismostratigraphic analyses of Georges Bank basin, Baltimore Canyon trough, and Blake Plateau basin reveal common aspects of stratigraphic framework and depositional history. Synrift graben-fill is inferred to be chiefly coarse terrigenous siliciclastics of Triassic-Early Jurassic age, as thick as 5 km. Following widespread erosion, restricted marine carbonates and evaporites formed initial post-rift deposits during an Early-Middle Jurassic transition to sea floor spreading. As sea floor spreading proceeded, shallow-water limestones and shelf-edge reefs built up, culminating in a discontinuous, margin-rimming reefal bank during the Late Jurassic-Early Cretaceous. During the Early Cretaceous, thick siliciclastics buried the shelf-edge barrier northmore » of Cape Hatteras, whereas shallow-water carbonates persisted in the Blake Plateau basin. Late Cretaceous deposits became increasingly finer-grained as they accumulated beneath a deepening shelf-sea; maximum thickness is more than 2 km. Cretaceous deposition was terminated by marginwide erosion and followed by widespread carbonate deposition in the Paleogene. Neogene and Quaternary deposition was chiefly siliciclastic, characterized by deltaic progradation. Cenozoic sediment thickness reaches 2 km in the Baltimore Canyon trough.« less
NASA Astrophysics Data System (ADS)
Rack, Wolfgang; Haas, Christian; Langhorne, Pat J.
2013-11-01
We present airborne measurements to investigate the thickness of the western McMurdo Ice Shelf in the western Ross Sea, Antarctica. Because of basal accretion of marine ice and brine intrusions conventional radar systems are limited in detecting the ice thickness in this area. In November 2009, we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure several thickness and freeboard profiles across the ice shelf. The maximum electromagnetically detectable ice thickness was about 55 m. Assuming hydrostatic equilibrium, the simultaneous measurement of ice freeboard and thickness was used to derive bulk ice densities ranging from 800 to 975 kg m-3. Densities higher than those of pure ice can be largely explained by the abundance of sediments accumulated at the surface and present within the ice shelf, and are likely to a smaller extent related to the overestimation of ice thickness by the electromagnetic induction measurement related to the presence of a subice platelet layer. The equivalent thickness of debris at a density of 2800 kg m-3 is found to be up to about 2 m thick. A subice platelet layer below the ice shelf, similar to what is observed in front of the ice shelf below the sea ice, is likely to exist in areas of highest thickness. The thickness and density distribution reflects a picture of areas of basal freezing and supercooled Ice Shelf Water emerging from below the central ice shelf cavity into McMurdo Sound.
Thickness of surficial sediment at and near the Idaho National Engineering Laboratory, Idaho
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, S.R.; Liszewski, M.J.; Ackerman, D.J.
1996-06-01
Thickness of surficial sediment was determined from natural-gamma logs in 333 wells at and near the Idaho National Engineering Laboratory in eastern Idaho to provide reconnaissance data for future site-characterization studies. Surficial sediment, which is defined as the unconsolidated clay, silt, sand, and gravel that overlie the uppermost basalt flow at each well, ranges in thickness from 0 feet in seven wells drilled through basalt outcrops east of the Idaho Chemical Processing Plant to 313 feet in well Site 14 southeast of the Big Lost River sinks. Surficial sediment includes alluvial, lacustrine, eolian, and colluvial deposits that generally accumulated duringmore » the past 200 thousand years. Additional thickness data, not included in this report, are available from numerous auger holes and foundation borings at and near most facilities.« less
The origin and distribution of subbottom sediments in southern Lake Champlain.
Freeman-Lynde, R. P.; Hutchinson, D.R.; Folger, D.W.; Wiley, B.H.; Hewett, M.J.
1980-01-01
3 units, correlatable with recent Lake Champlain, late-glacial marine Champlain Sea, and proglacial Lake Vermont sediments, have been identified from seismic reflection profiles and 8 piston cores. Lake Vermont deposits are nonfossiliferous and range from thin to absent nearshore and on bedrock highs to more than 126 m thick near Split Rock Point. Champlain Sea sediments contain marine foraminifers and ostracodes and are fairly uniform in thickness (20-30 m). Recent Lake Champlain sediments range in thickness from 0 to 25 m. Average sedimentation rates for Lake Vermont are considerably higher (4-8 cm/yr) than those for the Champlain Sea (0.8-1.2 cm/yr) and Lake Champlain (0.14-0.15 cm/yr). Bedrock, till, and deltaic and alluvial deposits were also identified.- from Authors
Banks, William S.L.; Johnson, Carole D.
2011-01-01
This investigation focused on selected regions of the study area, particularly in the coves where sediment accumulations were presumed to be thickest. GPR was the most useful tool for interpreting sediment thickness, especially in these shallow coves. The radar profiles were interpreted for two surfaces of interest-the water bottom, which was defined as the "2007 horizon," and the interface between Lake sediments and the original Lake bottom, which was defined as the "1925 horizon"-corresponding to the year the Lake was impounded. The ground-penetrating radar data were interpreted on the basis of characteristics of the reflectors. The sediments that had accumulated in the impounded Lake were characterized by laminated, parallel reflections, whereas the subsurface below the original Lake bottom was characterized by more discontinuous and chaotic reflections, often with diffractions indicating cobbles or boulders. The reflectors were picked manually along the water bottom and along the interface between the Lake sediments and the pre-Lake sediments. A simple graphic approach was used to convert traveltimes to depth through water and depth through saturated sediments using velocities of the soundwaves through the water and the saturated sediments. Nineteen cross sections were processed and interpreted in 9 coves around Deep Creek Lake, and the difference between the 2007 horizon and the 1925 horizon was examined. In most areas, GPR data indicate a layer of sediment between 1 and 7 feet thick. When multiple cross sections from a single cove were compared, the cross sections indicated that sediment thickness decreased toward the center of the Lake.
Saffer, D.M.; Bekins, B.A.
2006-01-01
At many subduction zones, accretionary complexes form as sediment is off-scraped from the subducting plate. Mechanical models that treat accretionary complexes as critically tapered wedges of sediment demonstrate that pore pressure controls their taper angle by modifying basal and internal shear strength. Here, we combine a numerical model of groundwater flow with critical taper theory to quantify the effects of sediment and de??collement permeability, sediment thickness, sediment partitioning between accretion and underthrusting, and plate convergence rate on steady state pore pressure. Our results show that pore pressure in accretionary wedges can be viewed as a dynamically maintained response to factors which drive pore pressure (source terms) and those that limit flow (permeability and drainage path length). We find that sediment permeability and incoming sediment thickness are the most important factors, whereas fault permeability and the partitioning of sediment have a small effect. For our base case model scenario, as sediment permeability is increased, pore pressure decreases from near-lithostatic to hydrostatic values and allows stable taper angles to increase from ??? 2.5?? to 8??-12.5??. With increased sediment thickness in our models (from 100 to 8000 m), increased pore pressure drives a decrease in stable taper angle from 8.4??-12.5?? to 15?? to <4??) with increased sediment thickness (from <1 to 7 km). One key implication is that hydrologic properties may strongly influence the strength of the crust in a wide range of geologic settings. Copyright 2006 by the American Geophysical Union.
Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change
NASA Astrophysics Data System (ADS)
Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.
2014-12-01
Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181
Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.
2013-01-01
The U.S. Geological Survey and the Massachusetts Department of Fish and Game, Division of Ecological Restoration, collaborated to collect baseline information on the quantity and quality of sediment impounded behind selected dams in Massachusetts, including sediment thickness and the occurrence of contaminants potentially toxic to benthic organisms. The thicknesses of impounded sediments were measured, and cores of sediment were collected from 32 impoundments in 2004 and 2005. Cores were chemically analyzed, and concentrations of 32 inorganic elements and 108 organic compounds were quantified. Sediment thicknesses varied considerably among the 32 impoundments, with an average thickness of 3.7 feet. Estimated volumes also varied greatly, ranging from 100,000 cubic feet to 81 million cubic feet. Concentrations of toxic contaminants as well as the number of contaminants detected above analytical quantification levels (also known as laboratory reporting levels) varied greatly among sampling locations. Based on measured contaminant concentrations and comparison to published screening thresholds, bottom sediments were predicted to be toxic to bottom-dwelling (benthic) organisms in slightly under 30 percent of the impoundments sampled. Statistically significant relations were found between several of the contaminants and individual indicators of urban land use and industrial activity in the upstream drainage areas of the impoundments. However, models developed to estimate contaminant concentrations at unsampled sites from upstream landscape characteristics had low predictive power, consistent with the long and complex land-use history that is typical of many drainage areas in Massachusetts.
NASA Astrophysics Data System (ADS)
Jakobsson, M.; Hogan, K.; Mayer, L. A.; Mix, A. C.; Nielsen, T.; Kamla, E.; Stranne, C.; Eriksson, B.; Jerram, K.
2016-12-01
During the Petermann 2015 Expedition of the Swedish icebreaker Oden more than 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) were acquired in Petermann Fjord and Nares Strait in the area immediately outside of the fjord. The sub-bottom profiles reveal a highly-variable distribution of post-glacial sediment that appears to be largely controlled by the rugged relief of the underlying bedrock. Sediment thicknesses are between 0-60 m above bedrock and comprise predominantly acoustically-stratified, homogeneous to transparent acoustic facies. In Petermann Fjord itself unlithified sediment cover typically comprises two units: an underlying acoustically-transparent unit overlain by an acoustically-stratified unit. Both of these units are conformable over scoured and fairly flat bedrock terrain; small basins are present only locally. Outside of the fjord are a few local sedimentary basins containing up to 40 m of stratified basin-fill deposits, and several areas of stacked mass-flow deposits. Glacial lineations both in the fjord and Nares Strait are formed in an acoustically-homogenous unit that underlies stratified and transparent units. In addition to the sub-bottom profiles, approximately 780 line-km of 2D seismic reflection profiles were acquired using an airgun (210 cu in.) and a 300-m long streamer. These profiles have allowed us to map full unlithified sediment thicknesses down to basement in the area. Here we present the results of this mapping and we calculate the volumes of a prominent grounding-zone wedge at the mouth of Petermann Fjord, and smaller GZWs in Kennedy Channel. These features demarcate former still-stand positions of grounded ice retreating through this system, both towards the present-day grounding line of Petermann Glacier and southwards through Nares Strait. Post-glacial sediment volumes are also calculated and the sedimentary processes responsible for their distribution examined. These data, when combined with chronological information, will provide sediment fluxes through the Petermann system and help us to identify how the system has responded to a past global warming event, namely the last deglaciation. This is particularly important in light of the recent thinning and acceleration of NW Greenland's marine-terminating outlet glaciers at present.
Xu, Kuan; Liu, Bo; Wang, Guo-Xiang; Ma, Jiu-Yuan; Cao, Xun; Zhou, Feng
2013-07-01
Using Indoor simulation method, the effect of Vallisneria spiralis on the physicochemical propertise of black and stink sediment was investigated. The surface sediment of urban sluggish river which had been heavily polluted was used as material in the study. The results showed that the redox environment of the sediment was significantly improved by Vallisneria spiralis. During the experiment, the Eh of surface sediment rose from -70 mV to 90 mV. The ferrous content was reduced by 25% in the experiment group while increased by 38% in the control group; the organic matter was decomposed effectively, prevented from natural decomposition to the smelly substances. There was a 3 mm thick greyish yellow oxide layer after 7 days in the experimental group, and the oxide layer gradually thickened over time. The thickness of the oxide layer reached 11 mm at the end of the experiment, and no significant odor was detected. On the contrary, the oxide layer in the control group was only 1 mm thick and the thickness remained unchanged. Meanwhile, an obnoxious odor existed during the whole experiment. The roots of Vallisneria spiralis had significant influence on the porosity of sediment. On one hand, the densification of sediment could be improved by Vallisneria spiralis. On the other hand, Vallisneria spiralis was able to change the state of the surface sediment flows, reduce the erosion of river sediment and inhibit the transfer of black-odor substances, which has a positive ecological meaning.
Holocene Paleolimnological Records from Thule, Northwestern Greenland
NASA Astrophysics Data System (ADS)
Corbett, L.; Osterberg, E. C.; Kelly, M. A.; Axford, Y.
2012-12-01
Assessing Holocene climatic and environmental variability around the margin of the Greenland Ice Sheet provides important information against which to compare ice sheet margin fluctuations. Here, we report preliminary results from ongoing research in northwestern Greenland. We present records of physical properties of lake sediments and use these to make inferences about the evolution of the lake and its surroundings over the latter half of the Holocene. We collected two sediment cores, 90 and 72 cm in length, from a small (surface area ~0.3 km2), shallow (maximum depth ~4.5 m) lake at 76°33'40''N 68°26'31''W near Thule Air Base in July 2012. The length of the cores was limited by the length of the core barrel and does not reflect the total thickness of sediment in the lake. The lake is situated within the glacial limit and likely formed subsequent to deglaciation of the region during early Holocene time. No glaciers exist within the lake's catchment today; the primary modern source of sediment is a perennial inflow from the west. We developed a preliminary depth-age model using radiocarbon ages of terrestrial organic macrofossils. Thus far, we have analyzed the sediments for magnetic susceptibility and loss-on-ignition. A radiocarbon age of 6069 ± 90 cal yr BP at the base of the core indicates that the sediments preserve a continuous record of middle to late Holocene conditions. The top of both cores consists of a thick (~12 cm) layer of dark gray unlaminated sediments, while the rest of the material in both cores is lighter brown to olive, finely laminated sediment. The upper layer is characterized by low water content (<25%), low loss-on-ignition (<5%), and high magnetic susceptibility (~150-250 x10-6). Conversely, the laminated sediments beneath have higher water content (~40-50%), higher loss-on-ignition (~5-10%), and much lower magnetic susceptibility (<50 x10-6). We hypothesize that the upper, less organic unit may represent a single event in the lake's recent history. We are refining the depth-age model with more radiocarbon ages, measuring grain size and carbon to nitrogen ratios of the sediments, and evaluating possible linkages between the sediment physical properties and precipitation as recorded by annual accumulation in ice cores in northwestern Greenland and Arctic Canada. This project will provide a foundation for future work in Thule investigating Holocene fluctuations of local ice cap and ice sheet margin positions.
NASA Astrophysics Data System (ADS)
Hodder, Kyle; Suchan, Jared
2015-04-01
Spatial and temporal variability of recent lacustrine sedimentation rates are examined for glacier-fed Mud Lake, in the Monashee Mountains of British Columbia. Clastic varve sequences in alpine, glacier-fed environments have been linked elsewhere with temperature (summer, annual), precipitation (autumn, total snowpack), and runoff (glacial, floods), and the use of varved sediments as hydroclimatic proxies is well-developed from single, but rarely multiple, core samples. In this study, a network of sediment cores (n=63) were extracted using a dense grid-sampling scheme within the 2.5 km2 distal lake basin to assess varve thickness spatially, and through time. A radioisotope profile, sediment traps and repeated coring among multiple years were used to calibrate varve-years with calendar years. Measurements of varve thickness, and sub-annual laminae thickness, were collated among cores and spanned the period 1919 - 2013 AD. The resulting five-dimensional dataset (easting, northing, depth, varve/sub-laminae thickness, time) provides a unique opportunity to explore lacustrine sedimentation. Two clear trends emerge: a general down-lake trend in thickness among most years, which is punctuated by atypical years in which thicker varves appeared in only specific portions of the lake. In the latter case, thick varves appeared either (a) along the north (right-hand) side of the lake where inflow 'hugs' the shoreline, or (b) in the deepest, distal portion of the basin. In both cases, however, atypical varves of type (a) or (b) only punctuate the general down-lake trend in thickness that develops during most years. The clear implication is that sedimentation patterns, and rates, can (but do not always) differ between years and between points in Mud Lake: there is no 'single optimum' site for a core sample. To illustrate the potential consequences on hydroclimate proxy/inference, we show how the statistical relationships between hydroclimatic records and varve thickness vary spatially. Our hydroclimatic dataset includes homogenized local climatic data available from the Meteorological Service of Canada (MSC) since 1929 (temperature, precipitation, snow course), and discharge data from a river into which Mud Lake drains available from the Water Survey of Canada (WSC) since 1915. Our results show that varve records from different positions within the same lake reveal statistical relationships of markedly differing strength, and differing type, with the same hydroclimatic dataset. We conclude that (1) varve thickness is a key indicator in a hydroclimatic proxy context, but an adjunct consideration should include (2) how varve thickness varies spatially within the basin; varve thickness at a single site is an inconsistent indicator of basin-wide thickness in some years. Our findings do not complicate the use of varved sediments as hydroclimatic proxies, but highlight that a core network can yield potentially greater insight into a range of hydroclimatic processes in comparison with one, or few, core samples.
Morton, Robert A.; Buckley, Mark L.; Gelfenbaum, Guy; Richmond, Bruce M.; Cecioni, Adriano; Artal, Osvaldo; Hoffmann, Constanza; Perez, Felipe
2010-01-01
The February 27, 2010, Chilean tsunami substantially altered the coastal landscape and left a permanent depositional record that may be preserved at many locales along the central coast of Chile. From April 24 to May 2, 2010, a team of U.S. Geological Survey (USGS) and Chilean scientists examined the geological impacts of the tsunami at five sites along a 200-km segment of coast centered on the earthquake epicenter. Significant observations include: (1) substantial tsunami-induced erosion and deposition (+/- 1 m) on the coastal plain; (2) erosion from return flow, inundation scour around the bases of trees, and widespread planation of the land surface; (3) tsunami sand deposits at all sites that extended to near the limit of inundation except at one site; (4) evidence of multiple strong onshore waves that arrived at different times and from different directions; (5) vegetation height and density controlled the thickness of tsunami deposits at one site, (6) the abundance of layers of plane-parallel stratification in some deposits and the presence of large bedforms at one site indicated at least some of the sediment was transported as bed load and not as suspended load; (7) shoreward transport of mud boulders and rock cobbles where they were available; and (8) the maximum tsunami inundation distance (2.35 km) was up an alluvial valley. Most of the tsunami deposits were less than 25 cm thick, which is consistent with tsunami-deposit thicknesses found elsewhere (for example, Papua New Guinea, Peru, Sumatra, Sri Lanka). Exceptions were the thick tsunami deposits near the mouths of Rio Huenchullami (La Trinchera) and Rio Maule (Constitucion), where the sediment supply was abundant. The substantial vertical erosion of the coastal plain at Constitucion
Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle
NASA Astrophysics Data System (ADS)
Willeit, M.; Ganopolski, A.
2015-09-01
Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.
NASA Astrophysics Data System (ADS)
Drenth, Benjamin John
This dissertation includes three separate chapters, each demonstrating the interpretive utility of potential field (gravity and magnetic) geophysical datasets at various scales and in various geologic environments. The locations of these studies are the central San Luis Basin of Colorado and New Mexico, the San Juan Mountains of southwestern Colorado, and southern and western Afghanistan. The San Luis Basin is the northernmost of the major basins that make up the Rio Grande rift, and interpretation of gravity and aeromagnetic data reveals patterns of rifting, rift-sediment thicknesses, distribution of pre-rift volcanic and sedimentary rocks, and distribution of syn-rift volcanic rocks. Syn-rift Santa Fe Group sediments have a maximum thickness of ˜2 km in the Sanchez graben near the eastern margin of the basin along the central Sangre de Cristo fault zone. Under the Costilla Plains, thickness of these sediments is estimated to reach ˜1.3 km. The Santa Fe Group sediments also reach a thickness of nearly 1 km within the Monte Vista graben near the western basin margin along the San Juan Mountains. A narrow, north-south-trending structural high beneath San Pedro Mesa separates the graben from the structural depression beneath the Costilla Plains. Aeromagnetic anomalies are interpreted to mainly reflect variations of remanent magnetic polarity and burial depth of the 5.3-3.7 Ma Servilleta basalt of the Taos Plateau volcanic field. Magnetic-source depth estimates indicate patterns of subsidence following eruption of the basalt and show that the Sanchez graben has been the site of maximum subsidence. One of the largest and most pronounced gravity lows in North America lies over the rugged San Juan Mountains in southwestern Colorado. A buried, low-density silicic batholith related to an Oligocene volcanic field coincident with the San Juan Mountains has been the accepted interpretation of the source of the gravity low since the 1970s. However, this interpretation was based on gravity data processed with standard techniques that break down in the SJVF region. We applied an unconventional processing procedure that uses geologically appropriate densities for the uppermost crust and digital topography to mostly remove the effect of the low density units that underlie the topography associated with the SJVF. We also reinterpreted vintage seismic refraction data that indicate the presence of two low-velocity zones under the SJVF. Assuming that the source of the gravity low on the improved gravity anomaly map is the same as the source of the low seismic velocities, integrated modeling defined the dimensions and overall density contrast of the batholith complex. Models show that the thickness of the batholith complex varies significantly laterally, with the greatest thickness (˜20 km) under the western SJVF, and lesser thicknesses (< 10 km) under the eastern SJVF. The Afghan block, a series of Gondwanan terranes that lie between the Eurasian and Indian plates, is coincident with most of southern and western Afghanistan. Recently acquired regional aeromagnetic and aerogravity datasets were used to examine the geophysical expressions of plutons related to magmatic arcs, major tectonic blocks within the broader Afghan block, Himalayan deformation, and the Helmand basin. Numerous plutons are reflected as aeromagnetic highs, allowing these to be mapped in areas where they do not crop out. The Farah and Helmand blocks have distinctive geophysical expressions that separate them from the adjacent Eurasian and Indian plates. West-southwestward crustal extrusion, an effect of the Himalayan orogeny, is indicated to have occurred with greater displacement along the Farah block than along the Helmand block.
NASA Astrophysics Data System (ADS)
Ribeiro, Carlos; Terrinha, Pedro; Andrade, Alexandre; Fonseca, Bruno; Caetano, Miguel; Neres, Marta; Font, Eric; Mirão, José; Dias, Cristina; Rosado, Lúcia; Maurer, Anne-France; Manhita, Ana
2017-04-01
The sedimentary record of the Mesozoic Algarve Basin (south Portugal) spans from the Triassic to the Lower Cretaceous. Following the initial phase of Pangaea breakup and the related continental sedimentation during the Triassic, the sedimentation evolved through transitional (Triassic-Jurassic transition) to marine (Jurassic) environments. During the Hettangian a thick sequence of evaporites deposited in the basin. Most of the occurrences of these deposits have undetermined volumes, due to the post depositional diapiric movements. At the central Algarve, under the town of Loulé, a salt wall of up to > 1 km across, > 3 km in length and > 2 km in height has been exploited for the chemical industry (Loulé Diapir - LD). Most of the sediments that constitute LD are halides (> 99% halite), the exception being a package of non-halide sediments, constituted by carbonates (dolomite and magnesite) and sulphates (anhydrite) in various proportions with a maximum thickness of 3 meters. This package has a distinctive mesoscopic aspect of three layers of approximately the same thickness, different colours and primary sedimentary structures: black-brow-grey, from bottom to top. The sediments of this package were studied with a multidisciplinary approach aiming their mineralogical and chemical characterization, the determination of the organic matter content and origin, as well as the characterization and understanding of the chemical processes that occurred during the emplacement and compression of the LD: (i) X-ray diffraction for the determination of the mineral phases present and semi-quantification using the RIR-Reference Intensity Ratio method; (ii) micro analysis of the mineralogical samples by Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy; (iii) REE content determination by ICP-MS; (iv) determination of the carbon content by CHN Elemental analysis; (v) determination of the organic matter content by elemental analysis and their composition by pyrolysis-GC-MS; (vi) determination of the carbon and nitrogen stable isotopic ratios of the organic matter; (vii) anisotropy of the magnetic susceptibility to study it emplacement mode. The LD is deformed by a set of shear-zones and thrusts formed during the Cenozoic Alpine compression that are underlined by the presence of a fine grained, non-halide material, whose nature and characterization was also done, using the same analytical methods. The preliminary mineralogical and geochemical results show a clear pattern in the evolution of the environmental conditions of the sedimentation with influence on the availability of the dissolved cations. The three of the sediment package showed distinct organic carbon content reaching 4.42% in the black horizon, five times the values found in the adjacent layers. By using the rare earth elements as geochemical tracers of sediment provenance, shale normalised profiles suggest that sediment particles from the three layers have the same origin. However, the non-halide sediments retained in the shear zones showed a different profile with an increase of MREE and a positive Eu anomaly. This work was done in the scope of the MEDSALT - Uncovering the Mediterranean salt giant, COST action CA15103.
Haeussler, Peter J.; Parsons, Thomas E.; Finlayson, David P.; Hart, Patrick J.; Chaytor, Jason D.; Ryan, Holly F; Lee, Homa J.; Labay, Keith A.; Peterson, Andrew; Liberty, Lee
2014-01-01
The 1964 Alaska M w 9.2 earthquake triggered numerous submarine slope failures in fjords of southern Alaska. These failures generated local tsunamis, such as at Whittier, where they inundated the town within 4 min of the beginning of shaking. Run-up was up to 32 m, with 13 casualties. We collected new multibeam bathymetry and high-resolution sparker seismic data in Passage Canal, and we examined bathymetry changes before and after the earthquake. The data reveal the debris flow deposit from the 1964 landslides, which covers the western 5 km of the fjord bottom. Individual blocks in the flow are up to 145-m wide and 25-m tall. Bathymetry changes show the mass transfer deposits originated from the fjord head and Whittier Creek deltas and had a volume of about 42 million m3. The 1964 deposit has an average thickness of ∼5.4 m. Beyond the debris flow, the failures likely deposited a ∼4.6-m thick megaturbidite in a distal basin. We have studied the 1964 submarine landslides in three fjords. All involved failure of the fjord-head delta. All failures eroded basin-floor sediments and incorporated them as they travelled. All the failures deposited blocks, but their size and travel distances varied greatly. We find a correlation between maximum block size and maximum tsunami run-up regardless of the volume of the slides. Lastly, the fjord’s margins were influenced by increased supply of glacial sediments during the little ice age, which along with a long interseismic interval (∼900 years) may have caused the 1964 earthquake to produce particularly numerous and large submarine landslides.
Detailed sections from auger holes in the Elizabethtown 1:100,000-scale map sheet, North Carolina
Weems, Robert E.; Lewis, William C.; Murray, Joseph H.; Queen, David B.; Grey, Jeffrey B.; DeJong, Benjamin D.
2011-01-01
The Elizabethtown 1:100,000 quadrangle is in the west-central part of the Coastal Plain of southeastern North Carolina. The Coastal Plain, in this region, consists mostly of unlithified sediments that range in age from Late Cretaceous to Holocene. These sediments lie with profound unconformity on complexly deformed metamorphic and igneous rocks similar to rocks found immediately to the west in the Piedmont province. Coastal Plain sediments generally dip gently to the southeast or south and reach a maximum thickness of about 850 feet (ft) in the extreme southeast part of the map area. The gentle southerly and southeasterly dip is disrupted in several areas by faulting. The U.S. Geological Survey recovered one core and augered 196 research test holes in the Elizabethtown 1:100,000 quadrangle to supplement sparse outcrop data in the map area. The recovered sediments were studied and data from these sediments recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented Coastal Plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries. The detailed descriptions of the subsurface data can be used by geologists, hydrologists, engineers, and community planners to provide a detailed shallow-subsurface stratigraphic framework for the Elizabethtown map region.
NASA Astrophysics Data System (ADS)
Nyssen, Jan; Frankl, Amaury; Pontzeele, Jolien; De Visscher, Maarten; Billi, Paolo
2013-04-01
With the recovery of the European beaver (Castor fiber) and their capacity to engineer fluvial landscapes, questions arise as to how they influence river discharge and sediment transport. The Chevral river (Ardennes, Belgium) contains two beaver dam sequences which appeared in 2004 and count now about 30 dams. Flow discharges and sediment fluxes were measured at the in- and outflow of each dam sequence. Volumes of sediment deposited behind the dams were measured. Between 2004 and 2011, peak flows were topped off, and the magnitude of extreme events decreased. 1710 m³ of sediment were deposited behind the beaver dams, with an average sediment thickness of 25 cm. The thickness of the sediment layer is related to the area of the beaver ponds. Along the stream, beaver pond sediment thickness displayed a sinusoidal deposition pattern, in which ponds with thick sediment layers were preceded by a series of ponds with thinner sediment layers. A downstream textural coarsening in the dam sequences was also observed, probably due to dam failures subsequent to surges. Differences in sediment flux between the in- and outflow at the beaver pond sequence were related to the river hydrograph, with deposition taking place during the rising limbs and slight erosion during the falling limbs. The seven-year-old sequences have filtered 190 tons of sediment out of the Chevral river, which is of the same order of magnitude as the 374 tons measured in pond deposits, with the difference between the values corresponding to beaver excavations (60 tons), inflow from small tributaries, and runoff from the valley flanks. Hydrogeomorphic effects of C. fiber and C. canadensis activity are similar in magnitude. The detailed analysis of changes to hydrology in beaver pond sequences confirms the potential of beavers to contribute to river and wetland restoration and catchment management.
NASA Astrophysics Data System (ADS)
Ridgway, K. D.; Witmer, J. W.; Enkelmann, E.; Plafker, G.; Brennan, P. R.
2011-12-01
Over 5 km of Neogene sedimentary strata are well exposed in the Chugach-St. Elias Ranges within the southern Alaska syntaxis. This syntaxis forms where the Pacific-North America plate boundary changes from the northwest-trending Queen Charlotte-Fairweather transform system to the southwest-trending Alaska-Aleutian subduction zone. Active collision and subduction of the buoyant Yakutat microplate in the syntaxis results in a wide collisional zone defined by active mountain belts, extensive glaciation, and thick packages of synorogenic strata. New stratigraphic and U-Th/He thermochronologic data from Neogene synorogenic strata, named the Yakataga and Redwood Formations, provide insights on collisional tectonics, glacial erosion, and sediment transport, deposition, burial, and exhumation from the onshore Chugach and St. Elias Ranges to the exposed accretionary prism of the Aleutian trench. Stratigraphic analyses show that along the southeastern part of the syntaxis, Neogene strata are characterized by deposition in braid delta, shallow marine, and glaciomarine slope apron depositional systems that resulted in construction of a broad continental shelf. In the central part of the syntaxis, marine shelf and upper slope environments deposited thick-bedded sandstone and mudstone in a thrust belt/foreland basin system. Along the southwestern part of the syntaxis, Neogene strata were deposited in a regional submarine fan system that filled the easternmost part of the Aleutian trench. Geologic mapping of the contact between the Yakataga Formation and underlying strata along the syntaxis document an angular unconformity with maximum stratigraphic separation (> 5 km) in the central part of the syntaxis. Along strike, this unconformity becomes conformable along both the southwestern and southeastern parts of the syntaxis. The regional angular unconformity and facies transitions both point to the importance of the central part of the syntaxis in the generation and distribution of synorogenic sediment. Apatite and zircon U-Th/He thermochronologic data from granitoid and gneissic clasts in conglomerate suggest that Neogene sediments were buried no deeper than ~2 km in the central and southeastern parts of the syntaxis, and that burial temperatures did not exceed ~40-45°C. In contrast, Neogene sediment deposited by submarine fans in the Aleutian trench along the southwestern part of the syntaxis were buried at depths of 5 to 7.5 km and reached temperatures between ~120-160°C. These strata were subsequently exhumed as the trench fill was incorporated into the growing accretionary prism. Collectively, our data show that the first-order sediment pathway along a glaciated syntaxis is dynamically linked to tectonic uplift, focused glacial erosion, deposition of thick packages of glacial marine sediment, and rapid exhumation along thrust belts and accretionary prisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz De Gamero, M.L.; Giffuni, G.; Castro Mora, M.
1993-02-01
The eastern region of the Falcon Basin in northwestern Venezuela comprises a thick sedimentary sequence deposited from a deep marine bathyal to neritic environment, ranging in age from the Middle Eocene to the Pliocene. A detailed biostratigraphic study (foraminifera and calcareous nannoplankton) was carried out in two sedimentary sequences outcropping in Cumarebo and Piritu, adjacent areas of eastern Falcon, representing: platform, slope and basinal settings. The Cumarebo section is continuous in the studied interval, from the Middle Miocene to the Pliocene. The Piritu section is continuous from the Lower to the lower Upper Miocene, terminating unconformably beneath a thin intervalmore » of middle Pliocene platform sediments, indicating tectonism during the latest Miocene. The sequence stratigraphical interpretation was based on the biostratigraphic analysis of the benthic and planktonic fossils, facies distribution and sedimentological data. Systems tracts, sequence boundaries and maximum flooding surfaces from cycles TB2.4 to TB3.5 of the cycle chart were identified. In the Cumarebo section, the upper Middle and Upper Miocene is mostly composed of shales, with some turbiditic sands belonging to a LSW system tract. The upper most Miocene contains a thick carbonate buildup (HST), and it is overlain by a Pliocene section that shallows upward from upper slope to outer shelf depositional environments. In the basinal (Piritu) section, most of the sediments are deep-water shales belonging to a LSW system tract, with some turbiditic sands in the upper Lower Miocene. TST and HST sediments, with scattered carbonate buildups in the upper Middle Miocene were also identified.« less
High resolution analysis of northern Patagonia lake sediments
NASA Astrophysics Data System (ADS)
Jarvis, S. W.; Croudace, I. W.; Langdon, P. G.; Rindby, A.
2009-04-01
Sediment cores covering the period from the last glacial maximum through the Holocene to the present have been collected from sites in the Chacubuco valley, southern Chile (around 47°08'S, 72°25'W, to the east of the North Patagonian Icecap). Cores were taken from five lakes and one recently dried lake bed. Short cores (0.2 to 0.5m), covering approximately the last two hundred years, were taken from all the lakes. Additionally, long sequences were obtained from one of the lakes and from the dried lake bed, the latter sequence extending back to the last glacial maximum as indicated by thick clay at the base. Each of the lakes are small-medium sized and are open systems situated at 300-1000m above sea level. The shorter cores comprise predominantly clastic gyttja but show a number of distinct changes in colour and chemical composition that suggest major environmental changes over the period of sediment accumulation. This is also reflected in variations in the loss on ignition of samples from the cores and in elemental profiles produced by scanning the cores with the Itrax micro-XRF corescanner at 200μm resolution. The long sequence from the dried lake bed has very low organic content glacial clay at the base, interpreted as last glacial maximum basal clay following determination in the field that this layer exceeded 2m in thickness. Similar sediments occur within a stratigraphically discrete section of approximately 14cm and may relate to a stadial event. The latter section also shows a drop in organic content and appears to be glacial clay incorporating some coarse sandy components indicative of detrital input from the catchment. The second long sequence, from a carbonate lake, includes two mineral layers indicating increased detrital input from the catchment. The deeper and thicker of these layers appears similar to the 14cm layer in the first long sequence, while the upper layer comprises a fine grain size indicative of rock flour and hence also of glacial activity in the catchment. Variation of elemental composition of these ‘glacial' layers is also clear from the Itrax data. It therefore appears that there have been significant reglaciation events in the catchment since the last glacial maximum. Many cores contain tephra layers, identified both visually and from the Itrax scans. Some of these have been confirmed as volcanic ash from the 1991 eruption of Mt Hudson, which at 45°54'S, 72°58'W is the southern-most volcano in the Chilean Andes and only 140km from the study area. Further work is underway to confirm and identify the source and age of other suspected tephra layers. Sediment accumulation rates in the upper parts of the cores are of the order of 1mm/yr (as determined by lead-210, caesium-137 dating and the 1991 Hudson tephra). Given XRF scan resolutions of up to 200μm there is thus the potential for investigation of sub-annual variability. Funding has been obtained to determine carbon-14 dates for the lower parts of the longer cores. The reproducibility and accuracy of the Itrax data has been validated using conventional WD-XRF spectrometry and the work presented will also include geochemical interpretation of the XRF data and comparison with recorded and proxy-inferred climate data for the region.
NASA Astrophysics Data System (ADS)
Eyles, Nicholas; Mullins, Henry T.; Hine, Albert C.
1991-09-01
This paper presents the first detailed data regarding the newly discovered deep infill of Okanagan Lake. Okanagan Lake (50°00'N, 119°30'W) is 120 km long, ˜ 3-5 km wide and occupies a glacially overdeepened bedrock basin in the southern interior of British Columbia. This basin, and other elongate lakes of the region (e.g. Shuswap, Kootenay, Kalamalka, Canim and Mahood lakes), mark the site of westward flowing ice streams within successive Cordilleran ice sheets. An air gun seismic survey of Okanagan Lake shows that the bedrock floor is nearly 650 m below sea-level, more than 2000 m below the rim of the surrounding plateau. The maximum thickness of Pleistocene sediment in Okanagan Lake basin approaches 800 m. Forty-six seismic reflection traverses and an axial profile show a relatively simple stratigraphy composed of three seismic sequences argued to be no older than the last glacial cycle (< 30 ka). A discontinuous basal unit (sequence I) characterized by large-scale diffractions, and up to 460 m thick, infills the narrow, V-shaped bedrock floor of the basin and is interpreted as a boulder gravel deposited by subglacial meltwaters. Overlying seismic sequence II is composed of two sub-sequences. Sub-sequence IIa is a chaotic to massive facies up to 736 m thick. Lakeshore exposures close to where this unit reaches lake level show deformed and chaotically-bedded glaciolacustrine silts containing gravel lens and large ice-rafted boulders. The surface topography of this sub-sequence is irregular and in general mimics the form of the underlying bedrock as a result of compaction. This sequence passes laterally into stratified facies (sub-sequence IIb) at the northern end of the basin. Seismic sequence II appears to record rapid ice-proximal dumping of glaciolacustrine silt as the Okanagan glacier backwasted upvalley in a deep lake. A thin (60 m max.) laminated seismic sequence (III) drapes the hummocky surface of sequence II and represents postglacial sedimentation from fan-deltas. The extreme thickness of sequences I and II in Okanagan Lake reflects the focussing of large volumes of meltwater and sediment into the basin during deglaciation; pre-existing sediments that pre-date the last glacial cycle appear to have been completely eroded. Glaciological conditions during sedimentation may have been similar to marine-based outlet glaciers calving in deep water in fiord basins. In contrast to marine settings where ice bergs are free to disperse, large volumes of dead ice were trapped within the basin; structural evidence for sedimentation around dead ice blocks has been previously used to argue that the Cordilleran Ice Sheet downwasted in situ. We emphasize in contrast, the trapping of dead ice left behind by rapidly calving lake-based outlet glaciers.
NASA Astrophysics Data System (ADS)
Schrott, Lothar; Hufschmidt, Gabi; Hankammer, Martin; Hoffmann, Thomas; Dikau, Richard
2003-09-01
Spatial patterns of sediment storage types and associated volumes using a novel approach for quantifying valley fill deposits are presented for a small alpine catchment (17 km 2) in the Bavarian Alps. The different sediment storage types were analysed with respect to geomorphic coupling and sediment flux activity. The most landforms in the valley in terms of surface area were found to be talus slopes (sheets and cones) followed by rockfall deposits and alluvial fans and plains. More than two-thirds of the talus slopes are relict landforms, completely decoupled from the geomorphic system. Notable sediment transport is limited to avalanche tracks, debris flows, and along floodplains. Sediment volumes were calculated using a combination of polynomial functions of cross sections, seismic refraction, and GIS modelling. A total of, 66 seismic refraction profiles were carried out throughout the valley for a more precise determination of sediment thicknesses and to check the bedrock data generated from geomorphometric analysis. We calculated the overall sediment volume of the valley fill deposits to be 0.07 km 3. This corresponds to a mean sediment thickness of 23.3 m. The seismic refraction data showed that large floodplains and sedimentation areas, which have been developed through damming effects from large rockfalls, are in general characterised by shallow sediment thicknesses (<20 m). By contrast, the thickness of several talus slopes is more than twice as much. For some locations (e.g., narrow sections of valley), the polynomial-generated cross sections resulted in overestimations of up to one order of magnitude; whereas in sections with a moderate valley shape, the modelled cross sections are in good accordance with the obtained seismic data. For the quantification of valley fill deposits, a combined application of bedrock data derived from polynomials and geophysical prospecting is highly recommended.
Sedimentation survey of Lago Cerrillos, Ponce, Puerto Rico, April-May 2008
Soler-López, Luis R.
2011-01-01
Lago Cerrillos dam, located in the municipality of Ponce in southern Puerto Rico, was constructed in 1991 as part of the multipurpose Rio Portugues and Bucana Project. This project provides flood protection, water supply, and recreation facilities for the municipio of Ponce. The reservoir had an original storage capacity of 38.03 million cubic meters at maximum conservation pool elevation of 174.65 meters above mean sea level and a drainage area of 45.32 square kilometers. Sedimentation in Lago Cerrillos reservoir has reduced the storage capacity from 38.03 million cubic meters in 1991 to 37.26 million cubic meters in 2008, which represents a total storage loss of about 2 percent. During July 29 to August 23, 2002, 8,492 cubic meters of sediment were removed from the Rio Cerrillos mouth of the reservoir. Taking into account this removed material, the total water-storage loss as of 2008 is 778,492 cubic meters, and the long-term annual water-storage capacity loss rate is about 45,794 cubic meters per year or about 0.12 percent per year. The Lago Cerrillos net sediment-contributing drainage area has an average sediment yield of about 1,069 cubic meters per square kilometer per year. Sediment accumulation in Lago Cerrillos is not uniformly distributed and averages about 3 meters in thickness. This represents a sediment deposition rate of about 18 centimeters per year. On the basis of the 2008 reservoir storage capacity of 37.26 million cubic meters per year and a long-term sedimentation rate of 45,794 cubic meters per year, Lago Cerrillos is estimated to have a useful life of about 814 years or until the year 2822.
Predicting Sediment Thickness on Vanished Ocean Crust Since 200 Ma
NASA Astrophysics Data System (ADS)
Dutkiewicz, A.; Müller, R. D.; Wang, X.; O'Callaghan, S.; Cannon, J.; Wright, N. M.
2017-12-01
Tracing sedimentation through time on existing and vanished seafloor is imperative for constraining long-term eustasy and for calculating volumes of subducted deep-sea sediments that contribute to global geochemical cycles. We present regression algorithms that incorporate the age of the ocean crust and the mean distance to the nearest passive margin to predict sediment thicknesses and long-term decompacted sedimentation rates since 200 Ma. The mean sediment thickness decreases from ˜220 m at 200 Ma to a minimum of ˜140 m at 130 Ma, reflecting the replacement of old Panthalassic ocean floor with young sediment-poor mid-ocean ridges, followed by an increase to ˜365 m at present-day. This increase reflects the accumulation of sediments on ageing abyssal plains proximal to passive margins, coupled with a decrease in the mean distance of any parcel of ocean crust to the nearest passive margin by over 700 km, and a doubling of the total passive margin length at present-day. Mean long-term sedimentation rates increase from ˜0.5 cm/ky at 160 Ma to over 0.8 cm/ky today, caused by enhanced terrigenous sediment influx along lengthened passive margins, superimposed by the onset of ocean-wide carbonate sedimentation. Our predictive algorithms, coupled to a plate tectonic model, provide a framework for constraining the seafloor sediment-driven eustatic sea-level component, which has grown from ˜80 to 210 m since 120 Ma. This implies a long-term sea-level rise component of 130 m, partly counteracting the contemporaneous increase in ocean basin depth due to progressive crustal ageing.
Megathrust Earthquakes and Sediment Input to the Subduction Channel
NASA Astrophysics Data System (ADS)
Scholl, David W.; Keranen, Katie; von Huene, Roland; Wells, Ray; Ryan, Holly; Kirby, Stephen
2010-05-01
HABITATS OF GREAT MEGATHRUST EARTHQUAKES: Great megathrust earthquakes (Mw8.5 or higher) most commonly (~65%) nucleate along subduction zones (SZ) bordered by laterally continuous (more than 500 km), sediment-flooded trenches. Examples include: south-central Chile (1922, Mw8.5; 1960, Mw9.5), eastern Alaska (1964, Mw9.2), Sumatra (2004, Mw9.1), Cascadia (1700, Mw9.0), Colombia (1906, Mw8.8), Sumatra (1883, Mw8.8), west-central Aleutian (1965, Mw8.7), central Aleutian (1986, Mw8.7), Sumatra (2005, Mw8.6), and Nankai (1707, Mw8.5). All known megathrust events greater than Mw9 ruptured at sediment-charged SZs (Alaska, S.C. Chile, Sumatra). Sediment entering high-seismicity SZs is typically a 1-3-km-thick wedge of trench-axis turbidite beds overlying a 0.3-2-km-thick sequence of hemipelagic or abyssal turbiditic deposits that accrued seaward of the trench. Most commonly, laterally-continuous turbidite wedges are built by down-axis flowing turbidity currents sourced from mountainous and/or glaciated drainages (e.g., SE Alaska, Cascadia, Southern Andes, Himalaya). Great rupture events also occur at SZs receiving little sediment, for example Kamchatka (1952, Mw9.0), Kuril Islands (1963, Mw8.5) and north Chile SZs (1868, Mw9.0). These SZs exhibit evidence of upper plate thinning, subsidence, and truncation effected by frontal and basal subduction erosion. They also have a SC filled with ~1 km or more of debris in transport toward the mantle. WORKINGS OF THE SUBDUCTION CHANNEL (SC): Beneath the submerged forearc, the SC functions to transport subducted ocean floor sediment and tectonically eroded forearc debris toward and ultimately into the mantle. The SC is the lowest structural unit containing upper plate crustal material and the seismogenic zone runs along the SC's upper boundary. It has long been conjectured (e.g., Ruff, 1989; PAGEOPH, v. 129. Nos 1/2) that a laterally uninterrupted, sediment- or debris-charged SC serves to smooth the surface of interplate slip to set up conditions for lengthy, high moment-release ruptures. Maximum slip is commonly concentrated beneath a locally thinned, upper plate crust underlying prominent forearc basins. These structures, in positive feed back, are likely deepened co-seismically by enhance basal subduction erosion. The removed material presumably lowers the effective stress on the decollement and sets up conditions for follow-on events of high, co-seismic slip. The SC also works tectonically to underplate the base of the inner submerged forearc and induce co-seismic uplift at high-angle reverse faults. SEISMIC CONSEQUENCES OF SUBDUCTION ZONE FEEDING: Observations imply that subducted bathymetric ridges and seamounts act to both nucleate seismic rupture and also arrest lateral rupturing. Thick sections of sedimentary and erosional debris entering the subduction channel appear to act differently and favor (1) continuation of rupture, (2) large slip beneath forearc basins, and (3) propogation of slip upward at outer-forearc splay faults and nearshore reverse faults to generate both local and trans-oceanic tsunamis. The potential for nucleation of great megathrust earthquakes along thickly sediment SZs, no matter the rate or lower plate underthrusting, obliquity of convergence, or crustal age, must be set high. Similarly, seismogenic risk for highly erosional SZs little perturbed by subducting relief must also be set high.
Smith, D. Charlie
2016-12-14
Lead and zinc were mined in the Tri-State Mining District (TSMD) of southwest Missouri, northeast Oklahoma, and southeast Kansas for more than 100 years. The effects of mining on the landscape are still evident, nearly 50 years after the last mine ceased operation. The legacies of mining are the mine waste and discharge of groundwater from underground mines. The mine-waste piles and underground mines are continuous sources of trace metals (primarily lead, zinc, and cadmium) to the streams that drain the TSMD. Many previous studies characterized the horizontal extent of mine-waste contamination in streams but little information exists on the depth of mine-waste contamination in these streams. Characterizing the vertical extent of contamination is difficult because of the large amount of coarse-grained material, ranging from coarse gravel to boulders, within channel sediment. The U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife service, collected channel-sediment samples at depth for subsequent analyses that would allow attainment of the following goals: (1) determination of the relation between concentration and depth for lead, zinc and cadmium in channel sediments and flood-plain sediments, and (2) determination of the volume of gravel-bar sediment from the surface to the maximum depth with concentrations of these metals that exceeded sediment-quality guidelines. For the purpose of this report, volume of gravel-bar sediment is considered to be distributed in two forms, gravel bars and the wetted channel, and this study focused on gravel bars. Concentrations of lead, zinc, and cadmium in samples were compared to the consensus probable effects concentration (CPEC) and Tri-State Mining District specific probable effects concentration (TPEC) sediment-quality guidelines.During the study, more than 700 sediment samples were collected from borings at multiple sites, including gravel bars and flood plains, along Center Creek, Turkey Creek, Shoal Creek, Tar Creek, and Spring River in order to characterize the vertical extent of mine waste in select streams in the TSMD. The largest concentrations of lead, zinc, and cadmium in gravel bar-sediment samples generally were detected in Turkey Creek and Tar Creek and the smallest concentrations were detected in Shoal Creek followed by the Spring River. Gravel bar-sediment samples from Turkey Creek exceeded the CPEC for cadmium (minimum of 70 percent of samples), lead (94 percent), and zinc (99 percent) at a slightly higher frequency than similar samples from Tar Creek (69 percent, 88 percent, and 96 percent, respectively). Gravel bar-sediment samples from Turkey Creek also contained the largest concentrations of cadmium (174 milligrams per kilogram [mg/kg]) and lead (7,520 mg/kg) detected; however, the largest zinc concentration (46,600 mg/kg) was detected in a gravel bar-sediment sample from Tar Creek. In contrast, none of the 65 gravel bar-sediment samples from Shoal Creek contained cadmium above the x-ray fluorescence reporting level of 12 mg/kg, and lead and zinc exceeded the CPEC in only 12 percent and 74 percent of samples, respectively. In most cases, concentrations of lead and zinc above the CPEC or TPEC were present at the maximum depth of boring, which indicated that nearly the entire thickness of sediment in the stream has been contaminated by mine wastes. Approximately 284,000 cubic yards of channel sediment from land surface to the maximum depth that exceeded the CPEC and approximately 236,000 cubic yards of channel sediment from land surface to the maximum depth that exceeded the TPEC were estimated along 37.6 of the 55.1 miles of Center Creek, Turkey Creek, Shoal Creek, and Tar Creek examined in this study. Mine-waste contamination reported along additional reaches of these streams is beyond the scope of this study. Flood-plain cores collected in the TSMD generally only had exceedances of the CPEC and TPEC for lead and zinc in the top 1 or 2 feet of soil with a few exceptions, such as cores in low areas near the stream or cores in areas disturbed by past mining.
First-order control of syntectonic sedimentation on crustal-scale structure of mountain belts
NASA Astrophysics Data System (ADS)
Erdős, Zoltán.; Huismans, Ritske S.; van der Beek, Peter
2015-07-01
The first-order characteristics of collisional mountain belts and the potential feedback with surface processes are predicted by critical taper theory. While the feedback between erosion and mountain belt structure has been fairly extensively studied, less attention has been given to the potential role of synorogenic deposition. For thin-skinned fold-and-thrust belts, recent studies indicate a strong control of syntectonic deposition on structure, as sedimentation tends to stabilize the thin-skinned wedge. However, the factors controlling basement deformation below fold-and-thrust belts, as evident, for example, in the Zagros Mountains or in the Swiss Alps, remain largely unknown. Previous work has suggested that such variations in orogenic structure may be explained by the thermotectonic "age" of the deforming lithosphere and hence its rheology. Here we demonstrate that sediment loading of the foreland basin area provides an additional control and may explain the variable basement involvement in orogenic belts. When examining the role of sedimentation, we identify two end-members: (1) sediment-starved orogenic systems with thick-skinned basement deformation in an axial orogenic core and thin-skinned deformation in the bordering forelands and (2) sediment-loaded orogens with thick packages of synorogenic deposits, derived from the axial basement zone, deposited on the surrounding foreland fold-and-thrust belts, and characterized by basement deformation below the foreland. Using high-resolution thermomechanical models, we demonstrate a strong feedback between deposition and crustal-scale thick-skinned deformation. Our results show that the loading effects of syntectonic sediments lead to long crustal-scale thrust sheets beneath the orogenic foreland and explain the contrasting characteristics of sediment-starved and sediment-loaded orogens, showing for the first time how both thin- and thick-skinned crustal deformations are linked to sediment deposition in these orogenic systems. We show that the observed model behavior is consistent with observations from a number of natural orogenic systems.
Twichell, David C.; Cross, VeeAnn A.; Rudin, Mark J.; Parolski, Kenneth F.
1999-01-01
Sidescan sonar imagery and high-resolution seismic-reflection profiles were collected in Las Vegas Bay and Boulder Basin of Lake Mead to determine the surficial geology as well as the distribution and thickness of sediment that has accumulated in these areas of the lake since the completion of Hoover Dam in 1935 (Gould, 1951). Results indicate that the accumulation of post-impoundment sediment is restricted to the original Colorado River bed which runs down the axis of Boulder Basin from Boulder Canyon to Hoover Dam, and the old Las Vegas Creek bed that bisects Las Vegas Bay. The sediment cover along the original Colorado River bed is continuous and is typically greater than 10-m thick throughout much of its length with the thickness in some areas exceeding 35 meters. The flat-lying nature of the deposits suggests that they are the result of turbidity currents that flow the length of the lake. The sediment cover in Las Vegas Bay is much thinner (rarely exceeding 2 m in thickness) and more discontinuous. The source for these sediments presumably is Las Vegas Wash and a series of other ephemeral washes that empty into this part of the lake. The presence of sediments along the entire length of the Las Vegas Creek bed suggests that turbidity currents probably are active here as well, and that sediment has been transported from these streams at least 10 km down the axis of this valley to where it enters Boulder Basin. Alluvial deposits and rock outcrops are still exposed on large parts of the lake floor.
Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.
2018-01-01
Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river avulsed through the valley, rather than continuing toward Lake Manix, during the late Pleistocene. Two dextral strike-slip fault zones, the Lockhart and the Mt. General, fold and displace the distinctive stratigraphic units, as well as surficial late Pleistocene and Holocene deposits. The sedimentary architecture and the two fault zones provide a framework for evaluating groundwater flow in Hinkley Valley.
Weems, Robert E.; Schindler, J. Stephen; Lewis, William C.
2010-01-01
The Emporia 1:100,000-scale quadrangle straddles the Tidewater Fall Line in southern Virginia and includes a small part of northernmost North Carolina. Sediments of the coastal plain underlie the eastern three-fifths of this area. These sediments onlap crystalline basement rocks toward the west and dip gently to the east, reaching a maximum known thickness of 821 feet in the extreme southeastern part of the map area. The gentle eastward dip is disrupted in several areas due to faulting delineated during the course of mapping. In order to produce a new geologic map of the Emporia 1:100,000-scale quadrangle, the U.S. Geological Survey drilled one corehole to a depth of 223 feet and augered 192 shallow research test holes (maximum depth 135 feet) to supplement sparse outcrop data available from the coastal plain part of the map area. The recovered sediments were studied and data from them recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented coastal plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries that will be shown on the forthcoming Emporia geologic map, but much of the detailed subsurface data cannot be shown readily through this map product. Therefore, the locations and detailed descriptions of the auger test holes and one corehole are provided in this open-file report for geologists, hydrologists, engineers, and community planners in need of a detailed shallow-subsurface stratigraphic framework for much of the Emporia map region.
NASA Astrophysics Data System (ADS)
Phillips, Emrys; Cotterill, Carol; Johnson, Kirstin; Crombie, Kirstin; James, Leo; Carr, Simon; Ruiter, Astrid
2018-01-01
High resolution seismic data from the Dogger Bank in the central southern North Sea has revealed that the Dogger Bank Formation records a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonic deformation. These processes led to the development of a large thrust-block moraine complex which is buried beneath a thin sequence of Holocene sediments. This buried glacitectonic landsystem comprises a series of elongate, arcuate moraine ridges (200 m up to > 15 km across; over 40-50 km long) separated by low-lying ice marginal to proglacial sedimentary basins and/or meltwater channels, preserving the shape of the margin of this former ice sheet. The moraines are composed of highly deformed (folded and thrust) Dogger Bank Formation with the lower boundary of the deformed sequence (up to 40-50 m thick) being marked by a laterally extensive décollement. The ice-distal parts of the thrust moraine complex are interpreted as a "forward" propagating imbricate thrust stack developed in response to S/SE-directed ice-push. The more complex folding and thrusting within the more ice-proximal parts of the thrust-block moraines record the accretion of thrust slices of highly deformed sediment as the ice repeatedly reoccupied this ice marginal position. Consequently, the internal structure of the Dogger Bank thrust-moraine complexes can be directly related to ice sheet dynamics, recording the former positions of a highly dynamic, oscillating Weichselian ice sheet margin as it retreated northwards at the end of the Last Glacial Maximum.
Reconstructing recent volcanic histories from high-resolution AUV sidescan sonar imagery
NASA Astrophysics Data System (ADS)
Yeo, I. A.
2016-12-01
Detecting high-resolution differences in age between young basaltic lava flows on the seafloor is notoriously difficult. However, using sediment thickness as a proxy for age it is possible to derive information on spatial extents, surface morphologies and lava flow age simultaneously using high-resolution sidescan sonar imagery. Ground truthing of this new method on cruise POS502 (July 2016) using photogrammetry from ROV cameras has provided constraints on the method allowing the detailed morphological changes and sediment cover thicknesses to be calibrated to produce reliable, quantitative ages for individual flow units. Sediment thickness is shown to be the primary controlling factor in backscatter intensity in most cases, although sediment redistribution by different flow morphologies can also affect the recorded reflection amplitudes. Seafloor lava flows were found to be very morphologically complicated on small scales, which may explain their relative unimportance when amplitude values are averaged over several tens of meters.
Role of storms and forest practices in sedimentation of an Oregon Coast Range lake
NASA Astrophysics Data System (ADS)
Richardson, K.; Hatten, J. A.; Wheatcroft, R. A.; Guerrero, F. J.
2014-12-01
The design of better management practices in forested watersheds to face climate change and the associated increase in the frequency of extreme events requires a better understanding of watershed responses to extreme events in the past and also under management regimes. One of the most sensitive watershed processes affected is sediment yield. Lake sediments record events which occur in a watershed and provide an opportunity to examine the interaction of storms and forest management practices in the layers of the stratigraphy. We hypothesize that timber harvesting and road building since the 1900s has resulted in increases in sedimentation; however, the passage of the Oregon Forest Practices Act (OFPA) in 1972 has led to a decrease in sedimentation. Sediment cores were taken at Loon Lake in the Oregon Coast Range. The 32-m deep lake captures sediment from a catchment highly impacted by recent land use and episodic Pacific storms. We can use sedimentological tools to measure changes in sediment production as motivated by extreme floods before settlement, during a major timber harvesting period, and after installation of forestry Best Management Practices. Quantification of changes in particle size and elemental composition (C, N, C/N) throughout the cores can elucidate changes in watershed response to extreme events, as can changes in layer thickness. Age control in the cores is being established by Cesium-137 and radiocarbon dating. Given the instrumental meteorological data and decadal climate reconstructions, we will disentangle climate driven signals from changes in land use practices. The sediment shows distinct laminations and varying thickness of layers throughout the cores. Background deposition is composed of thin layers (<0.5 cm) of fine silts and clays, punctuated by thicker layers (3-25 cm) every 10 to 75 cm. These thick layers consist of distinctly textured units, generally fining upward. We interpret the thick layers in Loon Lake to be deposited by sediment-producing floods throughout much of the 1500-year lifespan of this lake. We will explore the relationship between sedimentation, land use, and climate forcing events to determine if the OFPA is having an effect on reducing sedimentation rates as a result of extreme magnitude storm events.
Frozen-bed Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Kleman, Johan; Hättestrand, Clas
1999-11-01
The areal extents of the Laurentide and Fennoscandian ice sheets during the Last Glacial Maximum (about 20,000 years ago) are well known, but thickness estimates range widely, from high-domed to thin, with large implications for our reconstruction of the climate system regarding, for example, Northern Hemisphere atmospheric circulation and global sea levels. This uncertainty stems from difficulties in determining the basal temperatures of the ice sheets and the shear strength of subglacial materials, a knowledge of which would better constrain reconstructions of ice-sheet thickness. Here we show that, in the absence of direct data, the occurrence of ribbed moraines in modern landscapes can be used to determine the former spatial distribution of frozen- and thawed-bed conditions. We argue that ribbed moraines were formed by brittle fracture of subglacial sediments, induced by the excessive stress at the boundary between frozen- and thawed-bed conditions resulting from the across-boundary difference in basal ice velocity. Maps of glacial landforms from aerial photographs of Canada and Scandinavia reveal a concentration of ribbed moraines around the ice-sheet retreat centres of Quebec, Keewatin, Newfoundland and west-central Fennoscandia. Together with the evidence from relict landscapes that mark glacial areas with frozen-bed conditions, the distribution of ribbed moraines on both continents suggest that a large area of the Laurentide and Fennoscandian ice sheets was frozen-based-and therefore high-domed and stable-during the Last Glacial Maximum.
NASA Astrophysics Data System (ADS)
Snyder, N. P.; Johnson, K. M.; Waltner, M.; Hopkins, A. J.; Dow, S.; Ames, E.; Merritts, D. J.; Walter, R. C.; Rahnis, M. A.
2016-12-01
Walter and Merritts (2008, and subsequent papers) show that legacy sediment associated with deposition in millponds is a common feature in river valleys of the Mid-Atlantic Piedmont region, with 1-5 m of fine sand and silt overlying Holocene soil and Pleistocene periglacial deposits. For this project, we seek to test the hypothesis that these field relationships are seen in New England, a formerly glaciated region with similar history and intensity of forest clearing and milldam construction during the 17-19th centuries. We study three watersheds, using field observations of bank stratigraphy, radiocarbon dating, and mapping of terraces and floodplains using lidar digital elevation models and other GIS datasets. The 68 km2 South River watershed in western Massachusetts exhibits the most extensive evidence for legacy sediment storage. We visited 17 historic dam sites in the watershed and found field evidence for fine sand and silt legacy sediment storage at 14, up to 2.2 m thick. In the 558 km2 Sheepscot River watershed in coastal Maine, we visited 12 historic dam sites, and found likely legacy sediment at six, up to 2.3 m thick. In the 171 km2 upper Charles River watershed in eastern Massachusetts, we investigated 14 dam sites, and found legacy sediment at two, up to 1.8 m thick. Stratigraphically, we identified the base of legacy sediment from a change in grain size to gravel at most sites, or to Pleistocene marine clay at some Sheepscot River sites. In the Sheepscot River, we observed cut timbers underlying historic sediment at several locations, likely associated with sawmill activities. Only at the Charles River were we able to radiocarbon date the underlying gravel (1281-1391 calibrated CE). At no site did we find a buried Holocene soil, in contrast to the field relations commonly observed in the Mid-Atlantic region. This may indicate that the New England sites have eroded to the pre-historic river bed, not floodplain surfaces. We attribute the variation in thickness and presence of legacy sediment at the New England sites to the existence or absence of upstream sediment supply in the form of thick (>5 m) glacial deposits. Of the three study watersheds, the South River has the most extensive glacial sediments, having been occupied by one or more ice-dammed lakes during the late Pleistocene, and the most legacy sediment storage.
An application of sedimentation simulation in Tahe oilfield
NASA Astrophysics Data System (ADS)
Tingting, He; Lei, Zhao; Xin, Tan; Dongxu, He
2017-12-01
The braided river delta develops in Triassic low oil formation in the block 9 of Tahe oilfield, but its sedimentation evolution process is unclear. By using sedimentation simulation technology, sedimentation process and distribution of braided river delta are studied based on the geological parameters including sequence stratigraphic division, initial sedimentation environment, relative lake level change and accommodation change, source supply and sedimentary transport pattern. The simulation result shows that the error rate between strata thickness of simulation and actual strata thickness is small, and the single well analysis result of simulation is highly consistent with the actual analysis, which can prove that the model is reliable. The study area belongs to braided river delta retrogradation evolution process, which provides favorable basis for fine reservoir description and prediction.
Regional biostratigraphy and paleoenvironmental history of Miocene of onshore and offshore Alabama
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C.C.
1989-09-01
Subsurface Miocene sediments of coastal Alabama and the adjoining state and federal waters consist of a clastic wedge varying in thickness from less than 1,000 ft in southern Alabama to a maximum of about 6,000 ft in the northeastern portion of the Main Pass area. Relatively deep-water and open-marine transgressive basal Miocene clays and shales unconformably overlie a gently southwestward-dipping late Oligocene-earliest Miocene carbonate platform. Middle and late Miocene sediments consist of a regressive offlapping sequence of sand and shale deposited in varying neritic paleoenvironments. Analysis of planktonic and benthonic foraminifera has resulted in a refined biostratigraphic zonation of thesemore » sediments, permitting the recognition of several regional time-equivalent datum levels, or biohorizons. These biohorizons are shown on a series of subsurface cross sections that show the dramatic southwestward thickening of middle and late Miocene sediments as well as illustrate the relationships of the producing intervals within the Cibicides carstensi and Discorbis 12 interval zones. The paleoenvironmental history of the Miocene has been reconstructed on a series of paleobathymetric maps drawn for selected regional biohorizons. Among other features, these maps have proven the existence and outlined the margins of previously unrecognized shallow-meritic deltaic sediments in southeastern Mobile County and in the Chandeleur and Viosca Knoll (north) areas. Analysis of sedimentation rates, which range from less than 25 to 1,370 ft/m.y., further aids in understanding the coastal shelf, deltaic, and open-marine depositional history of the Miocene of Alabama and the adjoining state and federal waters.« less
In situ measurement of radioactive contamination of bottom sediments.
Zhukouski, A; Anshakou, O; Kutsen, S
2018-04-30
A gamma spectrometric method is presented for in situ radiation monitoring of bottom sediments with contaminated layer of unknown thickness to be determined. The method, based on the processing of experimental spectra using the results of their simulation by the Monte Carlo method, is proposed and tested in practice. A model for the transport of gamma radiation from deposited radionuclides 137 Cs and 134 Cs to a scintillation detection unit located on the upper surface of the contaminated layer of sediments is considered. The relationship between the effective radius of the contaminated site and the thickness of the layer has been studied. The thickness of the contaminated layer is determined by special analysis of experimental and thickness-dependent simulated spectra. The technique and algorithm developed are verified as a result of full-scale studies performed with the submersible gamma-spectrometer. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Allemand, P.; Lajeunesse, E.; Devauchelle, O.; Delacourt, C.
2012-04-01
he volume of sediment exported from a tropical watershed is dramatically increased during extreme climatic events, such as storms and tropical cyclones (Dadson et al. 2004; Hilton et al. 2008). Indeed, the exceptionally high rainfall rates reached during these events generate runoff and trigger landslides which accumulate a significant amount of sediments in flooded rivers (Gabet et al., 2004; Lin et al., 2008). We estimate the volume of sediments mobilized by the storm Helena (26 to 28 October 1963) on Basse-Terre Island in the archipelago of Guadeloupe. This is achieved using images acquired by IGN (Institut Géographique National) a few weeks after the storm which produced numerous landslides. All the available images from this campaign have been pseudo-orthorectified and included in a GIS with a Digital Elevation Model with a resolution of 10 m. Two hundred fifty three landslides have been identified and mapped. Most of them are located in the center of the island, where the highest slopes are. The cumulated surface of the landslides is 0.5 km2. Field observations on Basse-Terre show that landslides mobilized the whole regolith layer, which is about 1m thick. Assuming an average landslide thickness of 1m, we find that the total volume of sediment mobilized by the storm Helena is 0.5 km3. The associated denudation averaged over all watersheds affected by landslides is 1.4 mm with a maximum of 5 mm for the watersheds of Vieux-Habitants and Capesterre. The impact of the storm Helena is then discussed with respect to 1) the erosion induced on the Capesterre catchment by the highest flood available in a two years survey record (less than 0.1 mm/y); 2) the long term denudation rate of the major watersheds of Basse-Terre estimated by reconstructing the initial volcanic topography (between 0.1 and 0.4 mm/y).
Evolution of sediment plumes in the Chesapeake bay and implications of climate variability.
Zheng, Guangming; DiGiacomo, Paul M; Kaushal, Sujay S; Yuen-Murphy, Marilyn A; Duan, Shuiwang
2015-06-02
Fluvial sediment transport impacts fisheries, marine ecosystems, and human health. In the upper Chesapeake Bay, river-induced sediment plumes are generally known as either a monotonic spatial shape or a turbidity maximum. Little is known about plume evolution in response to variation in streamflow and extreme discharge of sediment. Here we propose a typology of sediment plumes in the upper Chesapeake Bay using a 17 year time series of satellite-derived suspended sediment concentration. On the basis of estimated fluvial and wind contributions, we define an intermittent/wind-dominated type and a continuous type, the latter of which is further divided into four subtypes based on spatial features of plumes, which we refer to as Injection, Transport, Temporary Turbidity-Maximum, and Persistent Turbidity-Maximum. The four continuous types exhibit a consistent sequence of evolution within 1 week to 1 month following flood events. We also identify a "shift" in typology with increased frequency of Turbidity-Maximum types before and after Hurricane Ivan (2004), which implies that extreme events have longer-lasting effects upon estuarine suspended sediment than previously considered. These results can serve as a diagnostic tool to better predict distribution and impacts of estuarine suspended sediment in response to changes in climate and land use.
NASA Astrophysics Data System (ADS)
Gwiazda, R.; Paull, C. K.; Alexander, C. R.; Ussler, W.
2012-12-01
The mode and magnitude of fine-grained sediment accumulation on the Monterey Fan off the California central coast was investigated using pesticide concentrations and radioactive tracer profiles in sediment cores. DDT is a man-made pesticide that was used extensively in central California between 1945 and 1970. As such, its presence in marine sediments is a telltale sign of a modern sedimentation age. DDT and its metabolites, DDE and DDD, (collectively referred to as DDTr) were measured in fifty-five ~20cm-long sediment cores collected from the surface of the Monterey Fan up to 250 km to the south and 210 km to the west of the Monterey Canyon head, and in four transects across the Monterey Canyon channel at maximum water depths of 3160, 3380, 3580, and 3880 meters. Profiles of excess 210Pb (210Pbxs) and 137Cs were measured in 5 cores from the Fan to estimate recent sedimentation rates. Detectable levels of DDTr were observed in all but one of these cores, with DDTr concentrations characteristically highest at the surface and decreasing with depth. The area-normalized and depth-integrated DDTr content measured in all the cores in the Fan and in the deepest two channel transects was geographically fairly homogenous, with no statistical relationship between DDTr inventory and distance from the main channel crossing the Fan. The total sediment mass deposited on the Fan over the last 60 years, inferred from the total inventory of DDTr present in the area surveyed, is consistent with the amount of sediment delivered by the Salinas River over the same time period. 210Pbxs activities are fairly homogeneous within an uppermost layer of variable thickness (4.6-8cm) and decrease exponentially below it, but these exponential decreases are often interrupted by horizons with constant or increased 210Pbxs activity. Moreover, the coexistence of variable DDTr concentrations with homogeneous 210Pbxs activities in the top sediment indicates that the uniformity of 210Pbxs is not due primarily to bioturbation but rather the result of deposition of thick layers with constant 210Pbxs. These data indicate that fine-grained sedimentation on the Monterrey Fan appears to have a dual modality consisting of sustained slow accumulation at a modest rate during quiescent periods interrupted by episodes of rapid accumulation during discrete events. Median sedimentation rates during quiescent periods are 0.07 cm yr-1, but over the 110 year period of detectable 210Pbxs, which includes both slow continuous sedimentation and rapid accumulation events, the median overall sedimentation rate, calculated from the deepest detectable 210Pbxs samples, is 0.19 cm yr-1. On a per mass basis, sedimentation on the Fan has been equally divided between periods of continual slow accumulation and episodes of fast accumulation. The rapidly deposited layers on the Monterey Fan are inferred to result from the injection of fluvial sediments onto the Fan during episodic and exceptionally large floods of the Salinas River.
Project SUMATRA: The Fore-arc Basin System of Sumatra
NASA Astrophysics Data System (ADS)
Neben, S.; Franke, D.; Gaedicke, C.; Ladage, S.; Berglar, K.; Damm, V.; Ehrhardt, A.; Heyde, I.; Schnabel, M.; Schreckenberger, B.
2006-12-01
The main scientific objective of the project SUMATRA is to determine or estimate the geological setting and evolution of the Sumatra fore-arc region. RV SONNE cruise SO189 Leg 1 was designed to investigate the architecture, sedimentary thickness, sedimentary evolution and subsidence history of the fore-arc basins Siberut, Nias and Simeulue off Sumatra. During the cruise a total of 4375km of multichannel seismic (MCS), magnetics (M) and gravity (G) data were acquired and additional 990km with M and G alone. Along two lines with a total length of 390km refraction/wide-angle seismic experiments were carried out. 41 MCS lines cover as close grids the three fore- arc basins. Five lines extend nearly orthogonal to the subduction front covering the whole subduction system from the adjacent oceanic plate, the trench and accretionary prism over the Outer Arc High to the fore-arc basins. In the Simeulue Basin it was possible to connect the seismic lines to three industry wells and to correlate the seismic horizons to the results from the wells. The Simeulue Basin is divided into a northern and southern sub- basin. The maximum thickness was determined to be 6s TWT. In the southern sub-basin carbonate build-ups (which were already identified during the SEACAUSE project), bright spots and Bottom Simulating Reflectors (BSRs) are wide spread. The narrowest basin surveyed was the Nias Basin. As the Simeulue Basin the Nias Basin is divided into two sub-basins which are separated by a structural high. Although the basin has a maximum width of only 55km the maximum sediment thickness exceeds 5s TWT. The largest investigated fore-arc basin is the Siberut Basin. It extends over 550km and has a maximum width of 140km between Siberut and Sumatra. The maximum sediment thickness in this basin is 4.8s TWT. The basin geometry is uniform along its axis. At the basins termination on the western side to the Outer Arc High the Mentawai Fault Zone could be traced. In the Siberut Basin BSRs are very wide spread and very good recognizable over the Mentawai Fault Zone. Along the Mentawai Fault and along the eastern rim of the basin the seismic data show strong indications for active venting. As offshore northern Sumatra, both landward and seaward verging folds are developed at the deformation front off Nias and Siberut. For the first time landward verging folds have now been imaged in this domain of the Sunda subduction zone. Two refraction lines were acquired parallel to the subduction front at 2.5N and 1.5S approximately 40-50km seaward of Simeulue and Siberut Island, respectively. The lines were designed to identify the segment boundaries in the subduction system as well as to detect and decipher the subducted aseismic Investigator Ridge. The gravity data set is consists now of over 38,000km (combining the GINCO, SEACAUSE I and II and the SUMATRA data). With this it was possible to compile a map of the free-air gravity from the northern tip of Sumatra (6.5N/95E) to Mid Java (8.5S/110E). Gravity modelling in parallel with refraction seismic data interpretation was carried out along two lines during the cruise. The preliminary results show that the incoming oceanic crust is at 5-6 km unusual thin, both in the south off Nias (5km) and in the north off Simeulue (6km).
Richmond, Bruce M.; Buckley, Mark; Etienne, Samuel; Chagué-Goff, Catherine; Clark, Kate; Goff, James; Dominey-Howes, Dale; Strotz, Luke
2011-01-01
The September 29th 2009 tsunami caused widespread coastal modification within the islands of Samoa and northern Tonga in the South Pacific. Preliminary measurements indicate maximum runup values of around 17 m (Okal et al., 2010) and shore-normal inundation distances of up to ~ 620 m (Jaffe et al., 2010). Geological field reconnaissance studies were conducted as part of an UNESCO-IOC International Tsunami Survey Team survey within three weeks of the event in order to document the erosion, transport, and deposition of sediment by the tsunami. Data collected included: a) general morphology and geological characteristics of the coast, b) evidence of tsunami flow (inundation, flow depth and direction, wave height and runup), c) surficial and subsurface sediment samples including deposit thickness and extent, d) topographic mapping, and e) boulder size and location measurements. Four main types of sedimentary deposits were identified: a) gravel fields consisting mostly of isolated cobbles and boulders, b) sand sheets from a few to ~ 25 cm thick, c) piles of organic (mostly vegetation) and man-made material forming debris ramparts, and d) surface mud deposits that settled from suspension from standing water in the tsunami aftermath. Tsunami deposits within the reef system were not widespread, however, surficial changes to the reefs were observed. PMID:27065478
NASA Astrophysics Data System (ADS)
Kiyokawa, Shoichi; Ueshiba, Takuya
2015-04-01
Hydrothermal activity is common in the fishing port of Nagahama Bay, a small semi-enclosed bay located on the southwest coast of Satsuma Iwo-Jima Island (38 km south of Kyushu Island, Japan). The bay contains red-brown iron oxyhydroxides and thick deposits of sediment. In this work, the high concentration and sedimentation rates of oxyhydroxide in this bay were studied and the sedimentary history was reconstructed. Since dredging work in 1998, a thickness of 1.0-1.5 m of iron oxyhydroxide-rich sediments has accumulated on the floor of the bay. To estimate the volume of iron oxyhydroxide sediments and the amount discharged from hydrothermal vents, sediment traps were operated for several years and 13 sedimentary core samples were collected to reconstruct the 10-year sedimentary history of Nagahama Bay. To confirm the timing of sedimentary events, the core data were compared with meteorological records obtained on the island, and the ages of characteristic key beds were thus identified. The sedimentation rate of iron oxyhydroxide mud was calculated, after correcting for sediment input from other sources. The sediments in the 13 cores from Nagahama Bay consist mainly of iron oxyhydroxide mud, three thick tephra beds, and a topmost thick sandy mud bed. Heavy rainfall events in 2000, 2001, 2002, and 2004-2005 coincide with tephra beds, which were reworked from Iwo-Dake ash deposits to form tephra-rich sediment. Strong typhoon events with gigantic waves transported outer-ocean-floor sediments and supplied quartz, cristobalite, tridymite, and albite sands to Nagahama Bay. These materials were redeposited together with bay sediments as the sandy mud bed. Based on the results from the sediment traps and cores, it is estimated that the iron oxyhydroxide mud accumulated in the bay at the relatively rapid rate of 33.3 cm/year (from traps) and 2.8-4.9 cm/year (from cores). The pore water contents within the sediment trap and core sediments are 73%-82% and 47%-67%, respectively. The estimated production of iron oxyhydroxide for the whole fishing port from trap cores is 142.7-253.3 t/year/5000 m2. From sediment cores, however, the accumulation of iron oxyhydroxide sediments on the sea floor is 39-95 t/year/5000 m2. This finding indicates that the remaining 63%-73% of iron was transported out to sea from Nagahama Bay. Even with a high rate of iron oxyhydroxide production, the sedimentation rate of iron oxyhydroxides in the bay is considerably higher than that observed in modern deep-ocean sediments. This example of rapid and abundant oxyhydroxide sedimentation might provide a modern analog for the formation of iron deposits in the geological record, such as ironstones and banded iron formations.
McCulloch, David S.; Bonilla, Manuel G.
1970-01-01
In the 1964 Alaska earthquake, the federally owned Alaska Railroad sustained damage of more than $35 million: 54 percent of the cost for port facilities; 25 percent, roadbed and track; 9 percent, buildings and utilities; 7 percent, bridges and culverts; and 5 percent, landslide removal. Principal causes of damage were: (1) landslides, landslide-generated waves, and seismic sea waves that destroyed costly port facilities built on deltas; (2) regional tectonic subsidence that necessitated raising and armoring 22 miles of roadbed made susceptible to marine erosion; and (3), of greatest importance in terms of potential damage in seismically active areas, a general loss of strength experienced by wet waterlaid unconsolidated granular sediments (silt to coarse gravel) that allowed embankments to settle and enabled sediments to undergo fiowlike displacement toward topographic depressions, even in fiat-lying areas. The term “landspreading” is proposed for the lateral displacement and distension of mobilized sediments; landspreading appears to have resulted largely from liquefaction. Because mobilization is time dependent and its effects cumulative, the long duration of strong ground motion (timed as 3 to 4 minutes) along the southern 150 miles of the rail line made landspreading an important cause of damage. Sediments moved toward natural and manmade topographic depressions (stream valleys, gullies, drainage ditches, borrow pits, and lakes). Stream widths decreased, often about 20 inches but at some places by as much as 6.5 feet, and sediments moved upward beneath stream channels. Landspreading toward streams and even small drainage ditches crushed concrete and metal culverts. Bridge superstructures were compressed and failed by lateral buckling, or more commonly were driven into, through, or over bulkheads. Piles and piers were torn free of superstructures by moving sediments, crowded toward stream channels, and lifted in the center. The lifted piles arched the superstructures. Vertical pile displacement was independent of the depth of the pile penetration in the sediment and thus was due to vertical movement of the sediments, rather than to differential compaction. The fact that bridge piles were carried laterally without notable tilting suggests that mobilization exceeded pile depths, which averaged about 20 feet. Field observations, largely duplicated by vibrated sandbox models of stream channels, suggest that movement was distributed throughout the sediments, rather than restricted to finite failure surfaces. Landspreading generated stress that produced cracks in the ground surface adjacent to depressions. The distribution of this stress controlled the crack patterns: tension cracks parallel to straight or concave streambanks, shear cracks intersecting at 45° to 70° on convex banks where there was some component of radial spreading, and orthogonal cracks on the insides of tight meander bends or islands where spreading was omnidirectional. Ground cracks of these kinds commonly extended 500 feet, and occasionally about 1,000 feet, back from streams, which indicates that landspreading occurred over large areas. In areas of landspreading, highway and railroad embankments, pavements, and rails were pulled apart endways and were displaced laterally if they lay at an angle to the direction of sediment displacement. Sediment movement commonly skewed bridges that crossed streams obliquely. The maximum horizontal skew was 10 feet. Embankment settlement, nearly universal in areas of landspreading, also occurred in areas where there was no evidence for widespread loss of strength in the unconsolidated sediments. In the latter areas embankments themselves clearly caused the loss of bearing strength in the underlying sediment. In both areas, settlement was accompanied by the formation of ground cracks approximately parallel to the embankment in the adjacent sediments. Sediment-laden ground water was discharged from the cracks, and extreme local settlements (as much as 6 ft) were associated with large discharges. Landspreading was accompanied by transient horizontal displacement of the ground that pounded bridge ends with slight or considerable force. The deck of a 105-foot bridge was repeatedly arched up off its piles by transient compression. Bridges may also have developed high horizontal accelerations. One bridge deck, driven through its bulkhead, appears to have had an acceleration of at least 1.1 to 1.7 g; however, most evidence for high accelerations is ambiguous. Limited standard penetration data show that landspreading damage was not restricted to soft sediments. Some bridges were severely damaged by displacement of piles driven in sediments classified as compact and dense. Total thickness of unconsolidated sediments strongly controlled the degree of damage. In areas underlain by wet water-laid sediments the degree of damage to uniformly designed and built wooden railroad bridges shows a closer correlation with total sediment thickness at the bridge site than with the grain size of the material in which the piles were driven. Local geology and physiography largely controlled the kind, distribution, and severity of damage to the railroad. This relationship is so clear that maps of surficial geology and physiography of damaged areas of the rail belt show that only a few geologic-physiographic units serve to identify these areas: 1. Bedrock and glacial till on bedrock. No foundation displacements, but ground vibration increased toward the area of maximum strain-energy release. 2. Glacial outwash terraces. Landspreading and damage ranged from none where the water table was low and the terrace undissected to severe where the water table was near the surface and the terrace dissected by streams. 3. Inactive flood plains. Landspreading, ground cracking, flooding by ejected ground water, and damage were generally slight but increased to severe toward lower, wetter active flood plains or river channels. 4. Active flood plains. Landspreading, ground cracking, and flooding were nearly universal and were greater than on adjacent inactive flood plains. 5. Fan deltas. Radial downhill spreading and ground cracking were considerable near the lower edges of the fan deltas and were accompanied by ground-water discharge. Landslides were common from edges of deltas. Damage, landspreading, ground crack-ing, vibration, and flooding by ground water generally increased with (1) increasing thickness of unconsolidated sediments, (2) decreasing depth to the water table, (3) proximity to topographic depressions, and (4) proximity to the area of maximum strain-energy release.
Mattick, Robert E.; Hennessy, Jacqueline L.
1980-01-01
On September 23, 1977, the U.S. Department of the Interior announced the tentative selection of 136 tracts for Sale No. 49 of oil and gas leases in the Baltimore Canyon Trough on the U.S. Atlantic Continental Shelf and Slope. This report summarizes the geology and petroleum potential of the area. The Baltimore Canyon Trough is an elongate, seaward-opening sedimentary basin filled by as much as 14 km of Mesozoic and Cenozoic sedimentary rocks. The basin first formed under the New Jersey shelf and gradually spread west and south as the area subsided after the rifting that formed the Atlantic basin. Rocks of the Triassic and Jurassic Systems together are more than 8 km thick in a depocenter areally restricted to the northern part of the trough. Basal Jurassic rocks are apparently nonmarine sedimentary rocks bedded with evaporite deposits. Direct evidence that some salt is in the basal Jurassic section comes from the Houston Oil and Minerals 676-1 well, which penetrated salt at a depth of about 3.8 km. During the Middle and Late Jurassic, more open marine conditions prevailed than in the Early Jurassic, and carbonate banks and reefs formed discontinuously along the seaward side of the shelf. Sand flats likely occupied the central part of the shelf, and these probably graded shoreward into nonmarine red beds that accumulated in a bordering coastal plain. Thick nonmarine sands and silty shales of Late Jurassic age were deposited in what is now the nearshore and midshelf area. These sedimentary rocks probably grade into thick marine carbonate rocks near the present shelf edge. During the Cretaceous, less sediment accumulated (about 4 km) than during the Jurassic, and most was deposited during Early Cretaceous time. The Cretaceous units show two main trends through time-a diminishing rate of sediment accumulation and an increase in marine character of sediments. During the Middle and Late Cretaceous, calcareous sand and mud filled the basin, buried the shelf-edge reefs and later spilled across the reefs into the oceanic basin as worldwide sea level reached a maximum. Cenozoic deposits are spread over the present shelf and adjacent Coastal Plain in overlapping sheets of marine and nonmarine sediment. The maximum thickness (1.5 km) is along the outer part of the present shelf. Major tectonic deformation in the Baltimore Canyon Trough area appears to have terminated near the end of the Early Cretaceous, when at least one large mafic intrusion (Great Stone dome) was emplaced. Upper Cretaceous sedimentary rocks are arched above older uplifted fault blocks near the shelf edge; this arching may be the result of draping due to differential compaction or, perhaps, minor movement of the fault blocks during Late Cretaceous time. The dominance of terrestrial over marine-derived organic matter in sediment samples from the COST No. B-2 well indicates that economic amounts of liquid petroleum hydrocarbons were probably not generated in the area but suggests a high potential for generation of wet or dry gas. Supporting evidence for the presence of natural-gas deposits on the slope comes from AMCOR 6021, the upper 305 m of which penetrated sediments that contained methane, ethane, and propane. Texaco, Inc., has announced that its 598-1 well yielded nearly 479,000 m s of natural gas per day from two zones during early testing. Further indication of possible gas deposits comes from analyzing the amplitude (bright spots) of seismic data. Geochemical studies of the COST No. B-2 well have shown that the shelf area of the Baltimore Canyon Trough has a relatively low geothermal gradient today and that it apparently has had a gradient as low or even lower throughout the Cretaceous to Holocene. A controversy exists concerning the maturity of the basal sediments penetrated by the COST No. B-2 well. Although significant amounts of gaseous hydrocarbons may have been generated, large amounts of liquid petroleum hydrocarbons probably hav
NASA Astrophysics Data System (ADS)
Andika, F.; Saad, R.; Saidin, M. M.; Muztaza, N. M.; Amsir
2018-04-01
Sungai Batu is an earliest civilization in Southeast Asia with evidenced by the discovery of riverside jetty, iron smelting, and ritual monuments. The evidences can lead to prediction of buried river caused by geological and sedimentation process. This study was conducted to study sediment deposit characteristic and to map thickness of the sediments using 2-D resistivity imaging and seismic refraction for ancient river mapping. A total of thirty, 2-D resistivity and nine seismic survey lines were conducted at the study area. Four of the lines R1-R4 and S1-S4 were correlated and validated with existing on site boreholes BH1-BH4 to identify sediment type and thickness. The validated values applied to the remaining survey lines which no borehole record to map the subsurface of the study area. Based on the results, Sungai Batu area consist of clay with resistivity value of 6.6-25.9 Ω.m and velocity value of 716.9-1606.9 m/s; sandy clay with resistivity value of 6-265.1 Ω.m and velocity value of 1003.6-1901.4 m/s; while shale was identified with resistivity value of >668.6 Ω.m and velocity value of >2051.7 m/s. Boundary between clay/sandy clay with shale was identified with resistivity value of 314 Ω.m and velocity value of 1822 m/s. The integration of the 2-D resistivity and seismic refraction identified that the thickness of Sungai Batu sediment is 0-150 m and Sungai Batu ancient river was successfully map based on thickness of sediment which is >45 m.
River sedimentation and channel bed characteristics in northern Ethiopia
NASA Astrophysics Data System (ADS)
Demissie, Biadgilgn; Billi, Paolo; Frankl, Amaury; Haile, Mitiku; Lanckriet, Sil; Nyssen, Jan
2016-04-01
Excessive sedimentation and flood hazard are common in ephemeral streams which are characterized by flashy floods. The purposes of this study was to investigate the temporal variability of bio-climatic factors in controlling sediment supply to downstream channel reaches and the effect of bridges on local hydro-geomorphic conditions in causing the excess sedimentation and flood hazard in ephemeral rivers of the Raya graben (northern Ethiopia). Normalized Difference Vegetation Index (NDVI) was analyzed for the study area using Landsat imageries of 1972, 1986, 2000, 2005, 2010, and 2012). Middle term, 1993-2011, daily rainfall data of three meteorological stations, namely, Alamata, Korem and Maychew, were considered to analyse the temporal trends and to calculate the return time intervals of rainfall intensity in 24 hours for 2, 5, 10 and 20 years using the log-normal and the Gumbel extreme events method. Streambed gradient and bed material grain size were measured in 22 river reaches (at bridges and upstream). In the study catchments, the maximum NDVI values were recorded in the time interval from 2000 to 2010, i.e. the decade during which the study bridges experienced the most severe excess sedimentation problems. The time series analysis for a few rainfall parameters do not show any evidence of rainfall pattern accountable for an increase in sediment delivery from the headwaters nor for the generation of higher floods with larger bedload transport capacities. Stream bed gradient and bed material grain size data were measured in order to investigate the effect of the marked decrease in width from the wide upstream channels to the narrow recently constructed bridges. The study found the narrowing of the channels due to the bridges as the main cause of the thick sedimentation that has been clogging the study bridges and increasing the frequency of overbank flows during the last 15 years. Key terms: sedimentation, ephemeral streams, sediment size, bridge clogging
Sediment burial stimulates the growth and propagule production of Spartina alterniflora Loisel.
NASA Astrophysics Data System (ADS)
Deng, Zifa; An, Shuqing; Zhao, Congjiao; Chen, Lin; Zhou, Changfang; Zhi, Yingbiao; Li, Hongli
2008-03-01
Spartina alterniflora Loisel., an extensively invasive species on the Chinese coast, is a focus of increasing management concern due to its high expansion rate in estuaries and tidal zone, and the significant damage it causes to native ecosystems. In order to understand the processes and mechanisms of invasion of S. alterniflora in China, the impact of three sediment types (sand, sand-loam mixture and loam) and five buried patterns (unburied, 50% burial of initial plant height, 75% burial of initial plant height, complete burial and repeated burial) on the growth of seedlings or ramets was investigated. Results showed that each of the three factors (sediment types, burial pattern and plant materials) and interactions between/among them, significantly affected height and clonal growth, and biomass accumulation and allocation. Plant height, total biomass and number of new vegetative propagules significantly increased with progressive burial treatments. However, the complete burial treatment resulted in the death of all plant materials, and the maximum values of three parameters were found in the 50% burial or repeated burial treatments. Plant responses were determined by the instantaneous thickness of sediment of each time burial rather than by the total quantity of repeated burial. The growth of S. alterniflora was not shown to be dependent on specific types of sediment in sedimentation environment. In contrast to the unburied control, the proportion of primary tillers produced directly from initial individuals and the ratio between the aboveground and belowground biomass were greater under burial treatments. Seedlings produced more new vegetative propagules than vegetative offspring in all experimental treatments, and the former were apt to produce ramets from rhizomes rather than primary tillers. It is concluded that under various sedimentation environments, the clonal spread efficiency of seedlings was higher than that of vegetative offspring, and there is a positive feedback relationship between sedimentation and the growth of S. alterniflora. Thus, moderate sedimentation may stimulate the invasion of exotic species, S. alterniflora in coastal China.
The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat
NASA Technical Reports Server (NTRS)
Jorgensen, B. B.; Des Marais, D. J.
1990-01-01
Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.
Geological effects and implications of the 2010 tsunami along the central coast of Chile
NASA Astrophysics Data System (ADS)
Morton, Robert A.; Gelfenbaum, Guy; Buckley, Mark L.; Richmond, Bruce M.
2011-12-01
Geological effects of the 2010 Chilean tsunami were quantified at five near-field sites along a 200 km segment of coast located between the two zones of predominant fault slip. Field measurements, including topography, flow depths, flow directions, scour depths, and deposit thicknesses, provide insights into the processes and morphological changes associated with tsunami inundation and return flow. The superposition of downed trees recorded multiple strong onshore and alongshore flows that arrived at different times and from different directions. The most likely explanation for the diverse directions and timing of coastal inundation combines (1) variable fault rupture and asymmetrical slip displacement of the seafloor away from the epicenter with (2) resonant amplification of coastal edge waves. Other possible contributing factors include local interaction of incoming flow and return flow and delayed wave reflection by the southern coast of Peru. Coastal embayments amplified the maximum inundation distances at two sites (2.4 and 2.6 km, respectively). Tsunami vertical erosion included scour and planation of the land surface, inundation scour around the bases of trees, and channel incision from return flow. Sheets and wedges of sand and gravel were deposited at all of the sites. Locally derived boulders up to 1 m in diameter were transported as much as 400 m inland and deposited as fields of dispersed clasts. The presence of lobate bedforms at one site indicates that at least some of the late-stage sediment transport was as bed load and not as suspended load. Most of the tsunami deposits were less than 25 cm thick. Exceptions were thick deposits near open-ocean river mouths where sediment supply was abundant. Human alterations of the land surface at most of the sites provided opportunities to examine some tsunami effects that otherwise would not have been possible, including flow histories, boulder dispersion, and vegetation controls on deposit thickness.
Geological effects and implications of the 2010 tsunami along the central coast of Chile
Morton, R.A.; Gelfenbaum, G.; Buckley, M.L.; Richmond, B.M.
2011-01-01
Geological effects of the 2010 Chilean tsunami were quantified at five near-field sites along a 200. km segment of coast located between the two zones of predominant fault slip. Field measurements, including topography, flow depths, flow directions, scour depths, and deposit thicknesses, provide insights into the processes and morphological changes associated with tsunami inundation and return flow. The superposition of downed trees recorded multiple strong onshore and alongshore flows that arrived at different times and from different directions. The most likely explanation for the diverse directions and timing of coastal inundation combines (1) variable fault rupture and asymmetrical slip displacement of the seafloor away from the epicenter with (2) resonant amplification of coastal edge waves. Other possible contributing factors include local interaction of incoming flow and return flow and delayed wave reflection by the southern coast of Peru. Coastal embayments amplified the maximum inundation distances at two sites (2.4 and 2.6. km, respectively). Tsunami vertical erosion included scour and planation of the land surface, inundation scour around the bases of trees, and channel incision from return flow. Sheets and wedges of sand and gravel were deposited at all of the sites. Locally derived boulders up to 1. m in diameter were transported as much as 400. m inland and deposited as fields of dispersed clasts. The presence of lobate bedforms at one site indicates that at least some of the late-stage sediment transport was as bed load and not as suspended load. Most of the tsunami deposits were less than 25. cm thick. Exceptions were thick deposits near open-ocean river mouths where sediment supply was abundant. Human alterations of the land surface at most of the sites provided opportunities to examine some tsunami effects that otherwise would not have been possible, including flow histories, boulder dispersion, and vegetation controls on deposit thickness. ?? 2011.
Geological impacts and implications of the 2010 tsunami along the central coast of Chile
Morton, Robert A.; Gelfenbaum, Guy; Buckley, Mark L.; Richmond, Bruce M.
2011-01-01
Geological effects of the 2010 Chilean tsunami were quantified at five near-field sites along a 200 km segment of coast located between the two zones of predominant fault slip. Field measurements, including topography, flow depths, flow directions, scour depths, and deposit thicknesses, provide insights into the processes and morphological changes associated with tsunami inundation and return flow. The superposition of downed trees recorded multiple strong onshore and alongshore flows that arrived at different times and from different directions. The most likely explanation for the diverse directions and timing of coastal inundation combines (1) variable fault rupture and asymmetrical slip displacement of the seafloor away from the epicenter with (2) resonant amplification of coastal edge waves. Other possible contributing factors include local interaction of incoming flow and return flow and delayed wave reflection by the southern coast of Peru. Coastal embayments amplified the maximum inundation distances at two sites (2.4 and 2.6 km, respectively). Tsunami vertical erosion included scour and planation of the land surface, inundation scour around the bases of trees, and channel incision from return flow. Sheets and wedges of sand and gravel were deposited at all of the sites. Locally derived boulders up to 1 m in diameter were transported as much as 400 m inland and deposited as fields of dispersed clasts. The presence of lobate bedforms at one site indicates that at least some of the late-stage sediment transport was as bed load and not as suspended load. Most of the tsunami deposits were less than 25 cm thick. Exceptions were thick deposits near open-ocean river mouths where sediment supply was abundant. Human alterations of the land surface at most of the sites provided opportunities to examine some tsunami effects that otherwise would not have been possible, including flow histories, boulder dispersion, and vegetation controls on deposit thickness.
Benthic nepheloid layers in the Gulf of Maine and Alexandrium cyst inventories
Pilskaln, C.H.; Hayashi, K.; Keafer, B.A.; Anderson, D.M.; McGillicuddy, D.J.
2014-01-01
Cysts residing in benthic nepheloid layers (BNLs) documented in the Gulf of Maine have been proposed as a possible source of inoculum for annual blooms of a toxic dinoflagellate in the region. Herein we present a spatially extensive data set of the distribution and thickness of benthic nepheloid layers in the Gulf of Maine and the abundance and inventories of suspended Alexandrium fundyense cysts within these near-bottom layers. BNLs are pervasive throughout the gulf and adjacent Bay of Fundy with maximum layer thicknesses of 50–60 m observed. Mean BNL thickness is 30 m in the eastern gulf and Bay of Fundy, and 20 m in the western gulf. Cyst densities in the near-bottom particle resuspension layers varied by three orders of magnitude across the gulf with maxima of 105 cysts m−3. An important interconnection of elevated BNL cyst densities is observed between the Bay of Fundy, the Maine Coastal Current and the south-central region of the gulf. BNL cyst inventories estimated for the eastern and western gulf are each on the order of 1015 cysts, whereas the BNL inventory in the Bay of Fundy is on the order of 1016 . Although BNL cyst inventories in the eastern and western gulf are 1–2 orders of magnitude smaller than the abundance of cysts in the upper 1 cm of sediment in those regions, BNL and sediment-bound cyst inventories are comparable in the Bay of Fundy. The existence of widespread BNLs containing substantial cyst inventories indicates that these near-bottom layers represent an important source of germinating A. fundyense cysts in the region. PMID:25419055
Benthic nepheloid layers in the Gulf of Maine and Alexandrium cyst inventories.
Pilskaln, C H; Hayashi, K; Keafer, B A; Anderson, D M; McGillicuddy, D J
2014-05-01
Cysts residing in benthic nepheloid layers (BNLs) documented in the Gulf of Maine have been proposed as a possible source of inoculum for annual blooms of a toxic dinoflagellate in the region. Herein we present a spatially extensive data set of the distribution and thickness of benthic nepheloid layers in the Gulf of Maine and the abundance and inventories of suspended Alexandrium fundyense cysts within these near-bottom layers. BNLs are pervasive throughout the gulf and adjacent Bay of Fundy with maximum layer thicknesses of 50-60 m observed. Mean BNL thickness is 30 m in the eastern gulf and Bay of Fundy, and 20 m in the western gulf. Cyst densities in the near-bottom particle resuspension layers varied by three orders of magnitude across the gulf with maxima of 10 5 cysts m -3 . An important interconnection of elevated BNL cyst densities is observed between the Bay of Fundy, the Maine Coastal Current and the south-central region of the gulf. BNL cyst inventories estimated for the eastern and western gulf are each on the order of 10 15 cysts, whereas the BNL inventory in the Bay of Fundy is on the order of 10 16 . Although BNL cyst inventories in the eastern and western gulf are 1-2 orders of magnitude smaller than the abundance of cysts in the upper 1 cm of sediment in those regions, BNL and sediment-bound cyst inventories are comparable in the Bay of Fundy. The existence of widespread BNLs containing substantial cyst inventories indicates that these near-bottom layers represent an important source of germinating A. fundyense cysts in the region.
NASA Astrophysics Data System (ADS)
Stephani, E.; Fortier, D.; Shur, Y.
2012-12-01
In some areas that remained unglaciated during the Late Pleistocene, inorganic and organic sedimentation supported syngenetic upward permafrost development and the creation of so-called yedoma deposits (Ice Complex). This type of periglacial deposit is usually very ice-rich and is highly unstable upon thawing. As this deposit thaws, the landscape goes from a carbon sink to a carbon and inorganic sediment source. This carbon can be released into the environment or transformed to CH4. Yedoma deposits have been extensively studied in Russia and more recently in Alaska. However, very few studies have focused on yedomas of Yukon. With the objective to provide regional information on yedoma distribution in North America, we present here preliminary field evidences of a yedoma deposit near Beaver Creek, close to current Alaska border. 28 boreholes were core-drilled, and cores were described and analyzed in the laboratory. Well-developed microlenticular cryostructures in silt and numerous small rootlets are typical of yedoma deposit. Tiny ice lenses are formed in fine-grained sediment by cryosuction and rootlets gets incorporated into the permafrost as the table rises syngenetically in response to surface sedimentation. During sedimentary accumulation, when sedimentation slows down, peat layers can be formed at the surface. This change in material properties often lead to the development of belt-like cryostructures (thick ice lenses separated by reticulate ice veins). At Beaver Creek, the microlenticular and belt-like cryofacies with rootlets (typical of syngenetic ice-rich yedoma) were abundant in Units 2A and 2C. The average ice content of Units 2A and 2C was respectively 91 % and 109 %, and the organic matter content (loss on ignition) was 6 % and 8 %. Significant thaw strain was measured in Units 2A (50%) and 2C (35%). Interestingly Unit 2B was very ice-poor (gravimetric ice content: 47 %, thaw strain: 9 %) and showed only porous cryostructure (interstitial ice) in silt (3 % organic matter). This was interpreted as ice-rich fine-grained soils that thawed, drained, and refroze afterward. This ice-poor layer with sediment deformations (e.g. fold, fault, diapir) is called 'taberal deposit' in the Russian literature. This layer can be observed in yedoma deposit in areas which were affected by permafrost degradation. Yedoma deposits are usually characterized by the presence of tall and wide ice wedges. These wedges form continuously as the permafrost table rises in response to surface sedimentation and their size is thus a function of sedimentation rate and time. In our study, we observed ice wedges at least 8 m tall (tip of the wedge > maximum coring depth). The bottom of the ice wedges was located in lodgement till (> 11 m below surface). This deposit was covered by woody peat deposit up to 4.9 m thick and was thus interpreted to be older than MIS 3. We propose that frost cracking first occurred in the peat and the underlying diamicton after the last interglacial and that upward syngenetic ice wedge growth followed silt accumulation over thousands of years sometimes during the last glacial period. The top of the ice wedges were located at about 2.5 m depth in Unit 2B. This indicates that ice wedge growth was interrupted by an episode of permafrost degradation and resumed afterward during accumulation of unit 2A.
NASA Astrophysics Data System (ADS)
Giordano, Guido
1998-12-01
The distribution of lithic clasts within two trachytic, small volume, pumiceous ignimbrites are described from the Quaternary `White Trachytic Tuff Cupa' formation of Roccamonfina volcano, Italy. The ignimbrites show a downslope grading of lithics, with a maximum size where there is a major break in the volcano's slope, rather than at proximal locations. This is also the location where ignimbrites are thickest and most massive. The break in slope is interpreted to have reduced flow capacity and velocity, increasing the sedimentation rate, so that massive ignimbrite formed by hindered settling sedimentation. Ignimbrite Cc, exhibits no vertical grading of lithics, though it does show downslope grading with maximum size at the major break in slope and a rapid decrease further downslope. Ignimbrite Cc thins away from the break in slope, and shows an upward fining of the grain size within the topmost few decimeters of the unit. The ignimbrite is stratified proximally, and grades to massive facies at the break in slope, and distally to stratified facies with numerous inverse-graded beds. The simplest mechanism accounting for these downslope variations is progressive aggradation from a quasi-steady, nonuniform pyroclastic density current. The changes in deposit thickness and facies are interpreted to record downcurrent changes in sedimentation rate. The upward fining reflects waning flow. Inversely graded, bedded depositional facies in distal areas is interpreted to reflect flow unsteadiness and a decrease in suspended sediment load. Ignimbrite Cd shows vertical, as well as downslope grading of lithics. This characteristic, coupled with the widespread massive facies of the deposit and the tabular unit geometry are features that can be reconciled with both the debris flow/plug analogy for pyroclastic flows ( Sparks, 1976) and the progressive aggradation model ( Branney and Kokelaar, 1992). However, none of them appears to satisfy completely the field evidences, implying that when dealing with massive ignimbrites, other evidence than lithic grading needs to be presented to better understand the related transport and depositional processes.
NASA Astrophysics Data System (ADS)
Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.; Driscoll, N. W.; Kell, A. M.; Kent, G. M.; Harding, A. J.; Gonzalez-Fernandez, A.; Lázaro-Mancilla, O.
2015-12-01
Continental rifting ultimately creates a deep accommodation space for sediment. When a major river flows into a late-stage rift, thick deltaic sediment can change the thermal regime and alter the mechanisms of extension and continental breakup. The Salton Trough, the northernmost rift segment of the Gulf of California plate boundary, has experienced the same extension as the rest of the Gulf, but is filled to sea level by sediment from the Colorado River. Unlike the southern Gulf, seafloor spreading has not initiated. Instead, seismicity, high heat flow, and minor volcanoes attest to ongoing rifting of thin, transitional crust. Recently acquired controlled-source seismic refraction and wide-angle reflection data in the Salton Trough provide constraints upon crustal architecture and active rift processes. The crust in the central Salton Trough is only 17-18 km thick, with a strongly layered but relatively one-dimensional structure for ~100 km in the direction of plate motion. The upper crust includes 2-4 km of Colorado River sediment. Crystalline rock below the sediment is interpreted to be similar sediment metamorphosed by the high heat flow and geothermal activity. Meta-sediment extends to at least 9 km depth. A 4-5 km thick layer in the middle crust is either additional meta-sediment or stretched pre-existing continental crust. The lowermost 4-5 km of the crust is rift-related mafic magmatic intrusion or underplating from partial melting in the hot upper mantle. North American lithosphere in the Salton Trough has been almost or completely rifted apart. The gap has been filled by ~100 km of new transitional crust created by magmatism from below and sedimentation from above. These processes create strong lithologic, thermal, and rheologic layering. While heat flow in the rift is very high, rapid sedimentation cools the upper crust as compared to a linear geotherm. Brittle extension occurs within new meta-sedimentary rock. The lower crust, in comparison, is maintained hot and weak by the overlying sedimentary thermal blanket. The lower crust stretches by ductile flow and magmatism is not localized. In this passive rift driven by distant plate motions, rapid sedimentation and its thermal effects delay final breakup of the crust and the onset of seafloor spreading.
Ground-water conditions and quality in the western part of Kenai Peninsula, southcentral Alaska
Glass, R.L.
1996-01-01
The western part of Kenai Peninsula in southcentral Alaska is bounded by Cook Inlet and the Kenai Mountains. Ground water is the predominant source of water for commercial, industrial, and domestic uses on the peninsula. Mean daily water use in an oil, gas, and chemical processing area north of Kenai is more than 3.5 million gallons. Unconsolidated sediments of glacial and fluvial origin are the most productive aquifers. In the upper (northwestern) peninsula, almost all water used is withdrawn from unconsolidated sediments, which may be as thick as 750 feet. In the lower peninsula, unconsolidated sediments are thinner and are absent on many hills. Water supplies in the lower peninsula are obtained from unconsolidated sediments and bedrock, and a public-water supply in parts of Homer is obtained from Bridge Creek. Throughout the peninsula, ground-water flow occurs primarily as localized flow controlled by permeability of aquifer materials and surface topography. The concentration of constituents analyzed in water from 312 wells indicated that the chemical quality of ground water for human consumption varies from marginal to excellent. Even though the median concentration of dissolved solids is low (152 milligrams per liter), much of the ground water on the peninsula does not meet water-quality regulations for public drinking water established by the U.S. Environmental Protection Agency (USEPA). About 8 percent of wells sampled yielded water having concentrations of dissolved arsenic that exceeded the USEPA primary maximum contaminant level of 50 micrograms per liter. Concentrations of dissolved arsenic were as great as 94 micrograms per liter. Forty-six percent of wells sampled yielded water having concentrations of dissolved iron greater than the USEPA secondary maximum contaminant level of 300 micrograms per liter. Unconsolidated sediments generally yield water having calcium, magnesium, and bicarbonate as its predominant ions. In some areas, ground water at depths greater than a few hundred feet may be naturally too salty for human consumption. The leaking and spilling of fuel and chemical products and the disposal of industrial wastes has degraded the quality of ground water at numerous sites.
NASA Astrophysics Data System (ADS)
Parkin, C. J.; White, R. S.; Kusznir, N. J.
2005-05-01
The amount of melt generated by mantle decompression beneath an oceanic spreading centre and hence the oceanic crustal thickness is controlled in part by the temperature of the mantle. By measuring the thickness of the oceanic crust formed immediately after breakup of the northern North Atlantic during the early Tertiary, we are able to deduce the maximum elevated mantle temperatures caused by the presence of the Iceland mantle plume. Crustal thickness variations are caused by temporal variations in the mantle plume temperature: at the present Reykjanes Ridge spreading centre the plume temperature pulses on a 3-5 Myr timescale with temperature variations of c.30 K. We show results from two long-offset profiles acquired over oceanic crust; firstly a 170km line perpendicular to the Faroes rifted continetal margin where oceanic spreading developed close to the Iceland mantle plume; and secondly, a 200km line perpendicular to the Hatton rifted continental margin where oceanic spreading developed 800km south of the plume. Each survey recorded long-offset refractions and reflections on OBS (Ocean Bottom Seismometers); 25 instruments, with a spacing of 2-3 km, were used for the Faroes line; and 45 instruments, with a spacing of 4-10 km were used for the Hatton-Rockall line. Accurate information for sediment velocity and thickness was acquired for the Faroes profile using a 12 km long streamer; whilst adequate sediment information was determined for the Hatton-Rockall profile using a 2.4 km streamer. By incorporating sediment structure into a joint reflection and refraction tomographic inversion of the wide-angle OBS data, we have been able to map crustal thickness across the oceanic crust in both regions. Crustal sections across the Faroes and Hatton lines cover the first 14 Myr and 17 Myr respectively, corresponding to the time interval from continental breakup through to mature seafloor spreading. With no apparent decrease in spreading rate observed thinning of the crust oceanwards suggests a mantle temperature decrease of 50 K for the Faroes profile and 70 K for the Hatton profile. For both profiles early oceanic formation seems to have been dominated by a transient high temperature anomaly, while for later spreading there is more dependance on the distance of each profile from the plume. Mantle plume temperature variations during this period would have caused rapid changes in uplift of the north-west European margin and probably controlled Tertiary sedimentation patterns west of Britain. The iSIMM Scientific Team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, R Spitzer, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms, J Eccles and D Healy. The iSIMM project is supported by Liverpool and Cambridge Universities, Schlumberger Cambridge Research, Badley Technology Limited, WesternGeco, Amerada Hess, Anadarko, BP, ConocoPhillips, ENI-UK, Statoil, Shell, the NERC and DTI.
NASA Astrophysics Data System (ADS)
Hamahashi, Mari; Screaton, Elizabeth; Tanikawa, Wataru; Hashimoto, Yoshitaka; Martin, Kylara; Saito, Saneatsu; Kimura, Gaku
2017-07-01
Subduction of the buoyant Cocos Ridge offshore the Osa Peninsula, Costa Rica substantially affects the upper plate structure through a variety of processes, including outer forearc uplift, erosion, and focused fluid flow. To investigate the nature of a major seismic reflector (MSR) developed between slope sediments (late Pliocene-late Pleistocene silty clay) and underlying higher velocity upper plate materials (late Pliocene-early Pleistocene clayey siltstone), we infer possible mechanisms of sediment removal by examining the consolidation state, microstructure, and zeolite assemblages of sediments recovered from Integrated Ocean Drilling Program Expedition 344 Site U1380. Formation of Ca-type zeolites, laumontite and heulandite, inferred to form in the presence of Ca-rich fluids, has caused porosity reduction. We adjust measured porosity values for these pore-filling zeolites and evaluated the new porosity profile to estimate how much material was removed at the MSR. Based on the composite porosity-depth curve, we infer the past burial depth of the sediments directly below the MSR. The corrected and uncorrected porosity-depth curves yield values of 800 ± 70 m and 900 ± 70 m, respectively. We argue that deposition and removal of this entire estimated thickness in 0.49 Ma would require unrealistically large sedimentation rates and suggest that normal faulting at the MSR must contribute. The porosity offset could be explained with maximum 250 ± 70 m of normal fault throw, or 350 ± 70 m if the porosity were not corrected. The porosity correction significantly reduces the amount of sediment removal needed for the combination of mass movement and normal faulting that characterize the slope in this margin.
NASA Astrophysics Data System (ADS)
Martin, A.; Hurtado, J. C.; Weber, B.; Schmitt, A. K.
2016-12-01
Quaternary volcanism in the northern Gulf of California provides a unique opportunity to characterize active crustal accretion under thick deltaic sedimentation from the Colorado River. Up to 17 volcanic seamounts are identified by high-resolution bathymetry and seismic reflexion profiles, principally in the Lower Delfin and the sheared peninsular margin north of Canal de Ballenas. Samples from eight subaereal and three submarine volcanoes are distinctively composed of andesite to rhyolite, and no basaltic eruptions are yet recognized, although dolerite sills and xenoliths of microphyric gabbro are reported in geothermal wells both, in the Salton and Cerro Prieto basins and saucer shape sills in the Lower Delfin basin indicate shallow mafic intrusions. Sr-Nd isotope data indicate that parent magma derives from partial melting of the Pacific mantle indicating that continental rupture is complete in the active rift basins. However, these rocks also demonstrate evidence of assimilation (eNd 1 to 5) and thus are compositionally modified as they are transported through the thick sequence of water rich sediments. Re-melting of hydrothermally altered mafic intrusives, crystal fractionation and variable (<20%) assimilation of continental crust and sediments produce the observed compositional spectra of Quaternary to Holocene eruptions. We explore the effects of thick, poorly consolidated sediments in the ascent of basaltic magma by means of a hydrostatic model that consider the crustal density structure in the Upper Delfin basin and sediment density logs from exploration wells. The hydrostatic model predicts that basaltic magma (2.68 g/cc) stalls 1 to 1.5 km beneath the seafloor and only andesite to rhyolite magmas reach shallower levels, where they exsolve volatiles and produce volcanic eruptions. We conclude that thick deltaic deposits promote magmatic differentiation and formation of a hybrid type of new crust in narrow rift basins in the northern Gulf of California and the Salton Trough.
Mercury distribution in ancient and modern sediment of northeastern Bering Sea
Nelson, C.H.; Pierce, D.E.; Leong, K.W.; Wang, F.F.H.
1975-01-01
Reconnaissance sampling of surface and subsurface sediment to a maximum depth of 80 m below the sea floor shows that typical values of 0.03 p.p.m. and anomalies of 0.2-1.3 p.p.m. mercury have been present in northeastern Bering Sea since Early Pliocene time. Values are highest in modern beach (maximum 1.3 and mean 0.22 p.p.m. Hg) and nearshore subsurface gravels (maximum 0.6 and mean 0.06 p.p.m. Hg) along the highly mineralized Seward Peninsula and in clayey silt rich in organic matter (maximum 0.16 and mean 0.10 p.p.m. Hg) throughout the region. Although gold mining may be partly responsible for high mercury levels in the modern beach near Nome, Alaska (maximum 0.45 p.p.m.), equally high or greater concentrations of mercury occur in buried Pleistocene sediments immediately offshore (maximum 0.6 p.p.m.) and in modern unpolluted beach sediments at Bluff (maximum 1.3 p.p.m.); this suggests that the contamination effects of mining may be no greater than natural concentration processes in the Seward Peninsula region. The mercury content of offshore surface sediment, even adjacent to mercury-rich beaches, corresponds to that of unpolluted marine and fresh-water sediment elsewhere. The normal values that prevail offshore may be attributable to entrapment of mercury-bearing heavy minerals on beaches near sources and/or dilution effects of offshore sedimentation. The few minor anomalies offshore occur in glacial drift derived from mercury source regions of Chukotka (Siberia) and Seward Peninsula; Pleistocene shoreline processes have reworked the drift to concentrate the heavy metals. The distribution pattern of mercury indicates that particulate mercury-bearing minerals have not been widely dispersed from onland deposits in quantities sufficient to increase mercury levels above normal in offshore sediments of Bering Sea; however, it shows that natural sedimentary processes can concentrate this mercury in beaches of the coastal zone where there already is concern because of potential pollution from man's activities.
NASA Astrophysics Data System (ADS)
Woodburn, T. L.; Hasiotis, S. T.; Johnson, W. C.
2012-12-01
The Old Wauneta Roadcut site in southwestern Nebraska exhibits a 1.2 meter-thick exposure of the Brady Soil, a buried paleosol which formed within loess during the Pleistocene-Holocene transition. Excavation of the loess-paleosol sequence has revealed considerable bioturbation by plant roots, invertebrates, and small vertebrates. Bioturbation was not restricted to a single time period, but occurred continually throughout soil development, as evidenced by differing sediment fills and crosscutting relationships. The Brady Soil is an accretionary soil within the uppermost part of the Last Glacial Maximum Peoria Loess. At the base of the solum, the Bkb horizon exhibits an increased illuvial clay and carbonate content, and contains extensive, small (~2cm width), backfilled burrows typically produced by cicada nymphs (Cicadidae) or beetle larvae. The most stable period of the Brady Soil is expressed by the dark (9.8 YR 4/1), thick Ab horizon. This is overlain by an ACb horizon, where soil formation was being extinguished by the onset of Holocene-age Bignell Loess deposition. Within the upper solum and Bignell Loess, a shift in biota activity occurs as indicated by the large burrow (6-12 cm width) and chamber (30-40 cm width) systems observed. Trace sizes suggest that a burrowing rodent, such as the prairie dog (Cynomys sp.) or ground squirrel (Spermophilus sp.), was responsible for their creation. Soil micromorphology was used to distinguish sediment-size classes, mineralogy, and clay morphology of specific loess deposits and soil horizons in order to track displacement of sediment through the profile due to bioturbation. Five block samples were taken in undisturbed sediment and soil horizons for thin-section analysis. Twelve additional samples of burrow cross-sections or bioturbated sediment were analyzed for comparison. Soil features produced by faunal and floral activity were differentiated from features produced by pedologic processes through the identification and classification of granular and spongy microstructures indicative of excrement, calcitic biospheroids, infilling, meniscate backfilling, channel microstructures, and well-oriented clay coatings. Sediment morphology, mineralogy of the infill and backfill material, and biosilicate assemblages were used to trace the material to the source sediment location providing a timeline for events of bioturbation. Defining localized versus deep-mixing events provides an assessment of the disturbance to paleoclimate proxies and age data and will allow for a more accurate paleoclimate reconstruction in this heavily bioturbated paleosol.
IODP Expedition 351 Izu-Bonin-Mariana Arc Origins: Age Model for Site U1438
NASA Astrophysics Data System (ADS)
Morris, A.; Aljahdali, M. H.; Bandini, A. N.; do Monte Guerra, R.; Kender, S.; Maffione, M.
2014-12-01
We report preliminary paleomagnetic and paleontological results from International Ocean Discovery Program (IODP) Expedition 351, which recovered an unprecedented ~1.4 km thick volcaniclastic sedimentary record documenting the initiation and subsequent evolution of the Izu-Bonin-Mariana (IBM) intra-oceanic arc-basin system. Magnetostratigraphic and biostratigraphic constraints provide a high-resolution temporal framework for interpretation of this record.Paleomagnetic analyses of archive half core samples provide a continuous record of the geomagnetic field inclination down to 847 mbsf that allows construction of a detailed site magnetostratigraphy that closely matches the Geomagnetic Polarity Timescale (Gradstein et al., 2012). A total of 87 geomagnetic reversals have been recognized in the studied succession, extending back to ~36 Ma. Despite sporadic microfossil occurrences in parts, calcareous nannofossils, planktonic foraminifera and radiolarians each contribute to the age model for the entire Site. All nannofossil marker species for Oligocene to Eocene Zones NP25 to NP19/20 are recognised. Beneath paleomagnetic control (847-1449 mbsf), foraminifera and radiolarians provide the only age control.The most salient features of the age model are that: (i) average linear sedimentation rates during the Plio-Pleistocene range from 1.4 to 2.2 cm/ka; (ii) there was a reduction in sedimentation rates to 0.25 - 0.5 cm/ka throughout the Miocene; and (iii) sedimentation rates sharply increase again in the Oligocene to Late Eocene to a maximum of ~20 cm/ka. These quantitative constraints closely match (non-quantitative) inferences based on the lithostratigraphy of the site, with fine-grained/coarse-grained sediments dominating in periods with low/high sedimentation rates respectively.
IODP Expedition 351 Izu-Bonin-Mariana Arc Origins: Age model for Site U1438
NASA Astrophysics Data System (ADS)
Morris, Antony; Maffione, Marco; Kender, Sev; Aljahdali, Mohammed; Bandini, Alexandre; Guerra, Rodrigo do Monte
2015-04-01
We report preliminary paleomagnetic and paleontological results from International Ocean Discovery Program (IODP) Expedition 351, which recovered an unprecedented ~1.4 km thick volcaniclastic sedimentary record documenting the initiation and subsequent evolution of the Izu-Bonin-Mariana (IBM) intra-oceanic arc-basin system. Magnetostratigraphic and biostratigraphic constraints provide a high-resolution temporal framework for interpretation of this record. Paleomagnetic analyses of archive half core samples provide a continuous record of the geomagnetic field inclination down to 847 mbsf that allows construction of a detailed site magnetostratigraphy that closely matches the Geomagnetic Polarity Timescale (Gradstein et al., 2012). A total of 87 geomagnetic reversals have been recognized in the studied succession, extending back to ~36 Ma. Despite sporadic microfossil occurrences in parts, calcareous nannofossils, planktonic foraminifera and radiolarians each contribute to the age model for the entire Site. All nannofossil marker species for Oligocene to Eocene Zones NP25 to NP19/20 are recognised. Beneath paleomagnetic control (847-1449 mbsf), foraminifera and radiolarians provide the only age control. The most salient features of the age model are that: (i) average linear sedimentation rates during the Plio-Pleistocene range from 1.4 to 2.2 cm/ka; (ii) there was a reduction in sedimentation rates to 0.25 - 0.5 cm/ka throughout the Miocene; and (iii) sedimentation rates sharply increase again in the Oligocene to Late Eocene to a maximum of ~20 cm/ka. These quantitative constraints closely match (non-quantitative) inferences based on the lithostratigraphy of the site, with fine-grained/coarse-grained sediments dominating in periods with low/high sedimentation rates respectively.
Neogene sequence stratigraphy, Nam Con Son Basin, offshore Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillen, K.J.; Do Van Luu; Lee, E.K.
1996-12-31
An integrated well log, biostratigraphic, and seismic stratigraphic study of Miocene to Recent deltaic sediments deposited in the Nam Con Son Basin offshore from southern Vietnam shows the influence of eustacy and tectonics on sequence development. Sediments consist of Oligocene non-marine rift-basin fill (Cau Formation), early to middle Miocene tide-dominated delta plain to delta front sediments (TB 1.5 to TB 2.5, Due and Thong Formations), and late Miocene to Recent marine shelf sediments (TB. 2.6 to TB 3.1 0, Mang Cau, Nam Con Son, and Bien Dong Formations). Eustacy controlled the timing of key surfaces and sand distribution in themore » tectonically-quiet early Miocene. Tectonic effects on middle to late Miocene sequence development consist of thick transgressive systems tracts due to basin-wide subsidence and transgression, sand distribution in the basin center, and carbonate sedimentation on isolated fault blocks within the basin. Third-order sequence boundaries (SB) are identified by spore peaks, sand stacking patterns, and channel incision. In the basin center, widespread shale beds with coal occur above sequence boundaries followed by transgressive sandstone units. These TST sandstones merge toward the basin margin where they lie on older HST sandstones. Maximum flooding surfaces (MFS) have abundant marine microfossils and mangrove pollen, a change in sand stacking pattern, and often a strong seismic reflection with downlap. Fourth-order genetic-type sequences are also interpreted. The MFS is the easiest marker to identify and correlate on well logs. Fourth-order SB occur within these genetic units but are harder to identify and correlate.« less
Neogene sequence stratigraphy, Nam Con Son Basin, offshore Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillen, K.J.; Do Van Luu; Lee, E.K.
1996-01-01
An integrated well log, biostratigraphic, and seismic stratigraphic study of Miocene to Recent deltaic sediments deposited in the Nam Con Son Basin offshore from southern Vietnam shows the influence of eustacy and tectonics on sequence development. Sediments consist of Oligocene non-marine rift-basin fill (Cau Formation), early to middle Miocene tide-dominated delta plain to delta front sediments (TB 1.5 to TB 2.5, Due and Thong Formations), and late Miocene to Recent marine shelf sediments (TB. 2.6 to TB 3.1 0, Mang Cau, Nam Con Son, and Bien Dong Formations). Eustacy controlled the timing of key surfaces and sand distribution in themore » tectonically-quiet early Miocene. Tectonic effects on middle to late Miocene sequence development consist of thick transgressive systems tracts due to basin-wide subsidence and transgression, sand distribution in the basin center, and carbonate sedimentation on isolated fault blocks within the basin. Third-order sequence boundaries (SB) are identified by spore peaks, sand stacking patterns, and channel incision. In the basin center, widespread shale beds with coal occur above sequence boundaries followed by transgressive sandstone units. These TST sandstones merge toward the basin margin where they lie on older HST sandstones. Maximum flooding surfaces (MFS) have abundant marine microfossils and mangrove pollen, a change in sand stacking pattern, and often a strong seismic reflection with downlap. Fourth-order genetic-type sequences are also interpreted. The MFS is the easiest marker to identify and correlate on well logs. Fourth-order SB occur within these genetic units but are harder to identify and correlate.« less
NASA Astrophysics Data System (ADS)
Grace, M.; Butler, K. E.; Peter, S.; Yamazaki, G.; Haralampides, K.
2016-12-01
The Mactaquac Hydroelectric Generating Station, located on the Saint John River in New Brunswick, Canada, is approaching the end of its life due to deterioration of the concrete structures. As part of an aquatic ecosystem study, designed to support a decision on the future of the dam, sediment in the headpond, extending 80 km upriver, is being examined. The focus of this sub-study lies in (i) mapping the thickness of sediments that have accumulated since inundation in 1968, and (ii) imaging the deeper glacial and post-glacial stratigraphy. Acoustic sub-bottom profiling surveys were completed during 2014 and 2015. An initial 3.5 kHz chirp sonar survey proved ineffective, lacking in both resolution and depth of the penetration. A follow-up survey employing a boomer-based "Seistec" sediment profiler provided better results, resolving sediment layers as thin as 12 cm, and yielding coherent reflections from the deeper Quaternary sediments. Post-inundation sediments in the lowermost 25 km of the headpond, between the dam and Bear Island, are interpreted to average 26 cm in thickness with the thickest deposits (up to 65 cm) in deep water areas overlying the pre-inundation riverbed west of Snowshoe Island, and south and east of Bear Island. A recent coring program confirmed the presence of silty sediment and showed good correlation with the Seistec thickness estimates. In the 15 km stretch upriver of Bear Island to Nackawic, the presence of gas in the uppermost sediments severely limits sub-bottom penetration and our ability to interpret sediment thicknesses. Profiles acquired in the uppermost 40 km reach of the headpond, extending to Woodstock, show a strong, positive water bottom reflection and little to no sub-bottom penetration, indicating the absence of soft post-inundation sediment. Deeper reflections observed within 5 km of the dam reveal a buried channel cut into glacial till, extending up to 20 m below the water bottom. Channel fill includes a finely laminated unit interpreted to be glaciolacustrine clay-silt and a possible esker - similar to stratigraphy found 20 - 30 km downriver at Fredericton. Future plans include a small scale survey in late summer, 2016 to evaluate the suitability of waterborne ground penetrating radar (GPR) profiling as an alternative to acoustic profiling in areas of gas-charged sediment.
Piper, D.Z.
1988-01-01
Pelagic sediment recovered at DOMES Site A in the equatorial North Pacific (151??W, 9?? 15???N) consists of a surface homogeneous layer, approximately 10 cm thick, overlying a strongly mottled layer that is lighter in color. The radiolarian composition of both units is Quaternary. In areas where this sediment was only a few centimeters thick, the underlying sediment was early Tertiary. Clay mineralogy and major oxide composition of the two Quaternary sediments are uniform. Their similarity to continental shale suggests that the sediment has a terrigenous source. Clay mineralogy and major oxide composition of the Tertiary sediment also are uniform, although they differ markedly from the Quarternary sediment. In contrast to the major oxides, concentrations of Mn, Co, Cu, and Ni soluble in hydroxylamine hydrochlorideacetic acid are strongly different in the surface and subsurface Quaternary sediment. Mn and Ni exhibit pronounced depletions in the subsurface sediment, Ni slightly more than Mn. Cu is also depleted in the subsurface sediment, but less than Mn. It is also depleted in the subsurface Tertiary sediment, whereas the Mn concentration remains high. Concentration of Co relative to Mn increases into the subsurface Quaternary sediment to a constant Co:Mn ratio of 3 ?? 10-2. The trivalent REE (the REE exclusive of Ce) and Fe exhibit little down-core variation. Distribution of elements in these sediments is closely related to their concentration in associated surface ferromanganese nodules. The nodules are of two distinct types: those from the area where the Quaternary sediment is relatively thick have ??-MnO2 as the dominant manganese mineral. The ratios of Ni:Mn, Cu:Mn, and Fe:Mn in these nodules approximate the corresponding ratios of the soluble fraction of surface sediment. Todorokite is the dominant mineral of nodules recovered from areas where the Quaternary sediment is thin. Relatively high Cu/Mn, Ni/Mn, and low Fe/Mn ratios of these nodules mirror differences between the soluble fraction of surface and subsurface Quaternary sediment. These compositional trends of sediment and nodules at DOMES Site A reflect a diagenetic origin for the todorokite nodules and a predominantly hydrogenous origin for the ??-MnO2 nodules. ?? 1988.
Basement structures over Rio Grande Rise from gravity inversion
NASA Astrophysics Data System (ADS)
Constantino, Renata Regina; Hackspacher, Peter Christian; de Souza, Iata Anderson; Lima Costa, Iago Sousa
2017-04-01
The basement depth in the Rio Grande Rise (RGR), South Atlantic, is estimated from combining gravity data obtained from satellite altimetry, marine surveys, bathymetry, sediment thickness and crustal thickness information. We formulate a crustal model of the region by inverse gravity modeling. The effect of the sediment layer is evaluated using the global sediment thickness model of National Oceanic and Atmospheric Administration (NOAA) and fitting the sediment compaction model to observed density values from Deep Sea Drilling Project (DSDP) reports. The Global Relief Model ETOPO1 and constraining data from seismic interpretation on crustal thickness are integrated in the inversion process. The modeled Moho depth values vary between 6 and 27 km over the area, being thicker under the RGR and also in the direction of São Paulo Plateau. The inversion for the gravity-equivalent basement topography is applied to gravity residual data, which is free from the gravity effect of sediments and from the gravity effect of the estimated Moho interface. We find several short-wavelengths structures not present in the bathymetry data. Our model shows a rift crossing the entire Rio Grande Rise deeper than previously presented in literature, with depths up to 5 km in the East Rio Grande Rise (ERGR) and deeper in the West Rio Grande Rise (WRGR), reaching 6.4 km. An interesting NS structure that goes from 34°S and extends through de São Paulo Ridge may be related to the South Atlantic Opening and could reveal an extinct spreading center.
Ins and outs of a complex subduction zone: C cycling along the Sunda margin, Indonesia
NASA Astrophysics Data System (ADS)
House, B. M.; Bebout, G. E.; Hilton, D. R.
2016-12-01
Subduction of C in marine sediments and altered oceanic crust is the main mechanism for reintroducing C into the deep earth and removing it from communication with the ocean and atmosphere. However, detailed studies of individual margins - which are necessary to understanding global C cycling - are sparse. The thick, C-rich sediment column along the Sunda margin, Indonesia makes understanding this margin crucial for constructing global C cycling budgets. Furthermore it is an ideal location to compare cycling of organic and carbonate C due to the abrupt transition from carbonate-dominated sediments in the SE to sediments rich in organic C from the Nicobar Fan in the NW. To quantify and characterize C available for subduction, we analyzed samples from DSDP 211, 260, 261, and ODP 765, all outboard of the trench, as well as piston and gravity cores of locally-sourced terrigenous trench fill. We created a 3-D model of overall sediment thickness and the thicknesses of geochemically distinct sedimentary units using archived and published seismic profiles to infer unit thicknesses at and along the 2500 km trench. This model vastly improves estimates of the C available for subduction and also reveals that the Christmas Island Seamount Province serves as a barrier to turbidite flow, dividing the regions of the trench dominated by organic and inorganic C input. Incorporating best estimates for the depth of the decollement indicates that the terrigenous trench fill, with up to 1.5 wt % organic C, is entirely accreted as is the thick section of carbonate-rich turbidites that dominate the southeastern portion of the margin (DSDP 261/ODP 765). Organic C accounts for most of the C bypassing the accretionary complex NW of the Christmas Island Seamount Province, and C inputs to the trench are lower there than to the SE where carbonate units near the base of the sediment column are the dominant C source. Release of C from altered oceanic crust - a C reservoir up to 10 times greater than sediments - can resolve the apparent conflict between the carbonate signal in volcanic emissions and scarcity of carbonate in subducting sediments along the NW of the arc. This study lays the foundation for refined methods of comparing subduction inputs and arc outputs of C at convergent margins.
NASA Astrophysics Data System (ADS)
Abd el-aal, Abd el-aziz Khairy
2018-05-01
In this contribution, new relationship between the fundamental site frequency and the thickness of soft sediments is obtained for many sites in Egypt. The Horizontal-to-Vertical Spectral Ratio ("H/V") technique (known as Nakamura technique) can be used as a robust tool to determine the thickness of soft sediments layers overlaying bedrock from observations and measurements of seismic ambient noise data. In Egypt, numerous seismic ambient noise measurements have been conducted in several areas to determine the dynamic properties of soft soil for engineering purposes. At each site in each studied area, the fundamental site frequency was accurately estimated from the main peak in the spectral ratio between the horizontal and vertical component. Consequently, an extensive database of microtremor measurements, well logging data, and shallow seismic refraction data have been configured and assembled for the studied areas. New formula between fundamental site frequency (f 0 ) and thickness of soft sediments (h) is established. The new formula has been validated and compared with other formulas of earlier scientists, and the results indicate that the calculated depth and geometry of the bedrock surface using new formula are in a good agreement with well logs data and previously published seismic refraction surveys in the investigated sites.
NASA Astrophysics Data System (ADS)
Parker, E. Horry, Jr.; Hawman, Robert B.; Fischer, Karen M.; Wagner, Lara S.
2016-09-01
Deconvolved waveforms for two earthquakes (Mw: 6.0 and 5.8) show clear postcritical SsPmp arrivals for broadband stations deployed across the coastal plain of Georgia, allowing mapping of crustal thickness in spite of strong reverberations generated by low-velocity sediments. Precritical SsPmp arrivals are also identified. For a basement in which velocity increases linearly with depth, a bootstrapped grid search suggests an average basement velocity of 6.5 ± 0.1 km/s and basement thickness of 29.8 ± 2.0 km. Corresponding normal-incidence Moho two-way times (including sediments) are 10.6 ± 0.6 s, consistent with times for events interpreted as Moho reflections on coincident active-source reflection profiles. Modeling of an underplated mafic layer (Vp = 7.2-7.4 km/s) using travel time constraints from SsPmp data and vertical-incidence Moho reflection times yields a total basement thickness of 30-35 km and average basement velocity of 6.35-6.65 km/s for an underplate thickness of 0-15 km.
NASA Astrophysics Data System (ADS)
Flury, Sabine; Røy, Hans; Dale, Andrew W.; Fossing, Henrik; Tóth, Zsuzsanna; Spiess, Volkhard; Jensen, Jørn Bo; Jørgensen, Bo Barker
2016-09-01
Shallow gas accumulates in coastal marine sediments when the burial rate of reactive organic matter beneath the sulfate zone is sufficiently high and the methanogenic zone is sufficiently deep. We investigated the controls on methane production and free methane gas accumulation along a 400 m seismo-acoustic transect across a sharp transition from gas-free into gas-bearing sediment in Aarhus Bay (Denmark). Twelve gravity cores were taken, in which the pore water was analyzed for inorganic solutes while rates of organic carbon mineralization were measured experimentally by 35SO42- radiotracer method. The thickness of organic-rich Holocene mud increased from 5 to 10 m along the transect concomitant with a shallowing of the depth of the sulfate-methane transition from >4 m to 2.5 m. In spite of drastic differences in the distribution of methane and sulfate in the sediment along the transect, there were only small differences in total mineralization, and methanogenesis was only equivalent to about 1% of sulfate reduction. Shallow gas appeared where the mud thickness exceeded 8-9 m. Rates of methanogenesis increased along the transect as did the upward diffusive flux of methane. Interestingly, the increase in the sedimentation rate and Holocene mud thickness had only a modest direct effect on methanogenesis rates in deep sediments. This increase in methane flux, however, triggered a shallowing of the sulfate-methane transition which resulted in a large increase in methanogenesis at the top of the methanogenic zone. Thus, our results demonstrate a positive feedback mechanism that causes a strong enhancement of methanogenesis and explains the apparently abrupt appearance of gas when a threshold thickness of organic-rich mud is exceeded.
A modeling framework that can be used to evaluate sedimentation in stream networks is described. This methodology can be used to determine sediment Total Maximum Daily Loads (TMDLs) in sediment impaired waters, and provide the necessary hydrodynamic and sediment-related data t...
NASA Astrophysics Data System (ADS)
Kim, Yoon-Mi; Lee, Sang-Mook
2018-01-01
The Ulleung Basin (UB), one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental-rifting end-member of back-arc basin system, but is much less understood compared to the nearby Yamato Basin (YB) and Japan Basin (JB). This study examines the gravity anomalies of the UB since the variation in crustal thickness can provide important insights on the mode of extension during basin opening. Our analysis shows that the Moho depth (from the sea surface) varies from 16 km at the basin center to 22 km at the edges. However, within the central part of the basin, the crustal thickness (not including sediment) is more or less the same (10-12 km), by varying only about 10-20% of the total thickness, contrary to the previous suggestions. Our finding of anomalous but uniformly thick crust is consistent with the recent seismic results from the YB (14 km on average). A mantle residual gravity anomaly high (∼20 mGal) exists in the northeastern part of the UB. This feature is interpreted as the location of maximum extension (slightly thinner crust by ∼1 km). Together with another moderate gravity high to the southwest, the two anomalies form a NNE-SSW line, which corresponds to the direction of the major tectonic structures of the Korean Peninsula. We argue that the a massive magmatic emplacement took place extensively in the lower crust of the UB during the opening, significantly increasing its overall thickness to almost twice as that of the JB where a mid-ocean-ridge style seafloor spreading occurred. Two important post-opening processes took place after the formation of uniformly thick crust: post-rift volcanic intrusions in the north, especially in its northeast sections but had little effect on the residual gravity anomaly itself, and the deflection of crust in response to differential sediment loading towards the south, producing the median high in the basement in response to the flexural bending. We also conducted a simple test to examine what effect the variations in the mantle potential temperature and degree of extension may have on the gravity anomaly. According to our model, the latter case is much more likely to cause the variations in gravity anomaly than the former.
Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary.
Foreman, Brady Z; Heller, Paul L; Clementz, Mark T
2012-11-01
Climate strongly affects the production of sediment from mountain catchments as well as its transport and deposition within adjacent sedimentary basins. However, identifying climatic influences on basin stratigraphy is complicated by nonlinearities, feedback loops, lag times, buffering and convergence among processes within the sediment routeing system. The Palaeocene/Eocene thermal maximum (PETM) arguably represents the most abrupt and dramatic instance of global warming in the Cenozoic era and has been proposed to be a geologic analogue for anthropogenic climate change. Here we evaluate the fluvial response in western Colorado to the PETM. Concomitant with the carbon isotope excursion marking the PETM we document a basin-wide shift to thick, multistoried, sheets of sandstone characterized by variable channel dimensions, dominance of upper flow regime sedimentary structures, and prevalent crevasse splay deposits. This progradation of coarse-grained lithofacies matches model predictions for rapid increases in sediment flux and discharge, instigated by regional vegetation overturn and enhanced monsoon precipitation. Yet the change in fluvial deposition persisted long after the approximately 200,000-year-long PETM with its increased carbon dioxide levels in the atmosphere, emphasizing the strong role the protracted transmission of catchment responses to distant depositional systems has in constructing large-scale basin stratigraphy. Our results, combined with evidence for increased dissolved loads and terrestrial clay export to world oceans, indicate that the transient hyper-greenhouse climate of the PETM may represent a major geomorphic 'system-clearing event', involving a global mobilization of dissolved and solid sediment loads on Earth's surface.
NASA Astrophysics Data System (ADS)
Ehrhold, A.; Gregoire, G., Jr.; Sabine, S.; Jouet, G.; Le Roy, P., Sr.
2016-12-01
Despite its importance in term of human activities (military and commercial harbor, aquaculture farm, scallop dredging on maerl beds), there are only few studies of the sedimentation in the Bay of Brest. This coastal region, located at the western-most part of Brittany, is an original estuary system connected with the Atlantic Ocean by a narrow strait (the Goulet). Two rivers, Aulne in the South and Elorn in the North, discharge into the system by an undersea valley. 40 % of the bay concerns the shallow areas (depth < 10m) corresponding to a succession of small bights and were characterized by a superficial cover of muddy sediments colonized by maerl beds. These sediment deposits correspond to the late Holocene HST that constitutes the last sedimentary unit of 1 to 2 meter thick. With the support of the Brittany region and the LabexMer, this work aims to present the first large-scale investigation of the present-day sedimentation framework in the Bay of Brest and his evolution since few thousand years (3000-3500 B.P.). Interface and gravity cores were collected during SERABEQ cruises in 2014 and 2015. Sedimentation intensity was characterized on a century timescale using a multi-tracer approach (210Pb, 137Cs, 232Th) and AMS 14C measurements. Surface 210Pbxs activities are comprised between 30 and 64 mBq g-1, and excesses are detected at depth ranging between 5 and 25 cm, depending on the sites, testifying to large differences in sedimentation rates. The highest sedimentation intensities, up to 0.5 cm yr-1, are observed in the Elorn and Daoulas estuaries but are very low compared of other French atlantic coast estuaries. In the South-West sector of the Bay of Brest, in the Fret and Poulmic inlets, 210Pbxs-derived sediment rates are much lower, < 0.15 cm yr-1. Differences are mainly due to relative position of the studied cores regarding the sediment input, the local hydrodynamics factors (tidal currents and hydrology), but also the sedimentary cover characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggert, D.L.
1983-09-01
The Springfield Coal Member is a time transgressive coal that formed during the Pennsylvanian on a delta platform within the slowly subsiding Illinois basin. In Gibson County, Indiana, the locations of the major Galatia channel and the minor Leslie Cemetery channel were determined by differential compaction of precursor sediments beneath this platform. The springfield coal is thick proximal to both channels, but proximal to the Galatia channel it is either a low-sulfur or a high-sulfur coal. It is a low-sulfur coal where it is underlain by a thick platform of shale with some sandstone and overlain by nonmarine shale. Itmore » is a high-sulfur coal where it is underlain by a thick platform of fluvial sandstone and overlain by brackish to marine rocks. Distal to both channels the coal is thin and high in sulfur. At distal locations the Springfield is underlain by a platform of either thick bay-fill sandstone or fluvial sandstone and overlain by brackish to marine shale and limestone. Compaction of pre-Springfield delta sediments allowed for accumulation of thicker peat along the axis of more rapid local subsidence. Compaction of muddy parts of the delta platform proximal to the Galatia channel resulted in rapid subsidence and the deposition of nonmarine shale over the peat. In the areas underlain by bay-fill and fluvial sandstone where compaction was less, the peat became a relatively thin and high-sulfur coal. Differences in coal thickness and quality in this 500 mi/sup 2/ (1,300 km/sup 2/) area of Gibson County can be explained largely by differential compaction and deltaic sedimentation.« less
Thickness and roughness measurements for air-dried longleaf pine bark
Thomas L. Eberhardt
2015-01-01
Bark thicknesses for longleaf pine (Pinus palustris Mill.) were investigated using disks collected from trees harvested on a 70-year-old plantation. Maximum inner bark thickness was relatively constant along the tree bole whereas maximum outer bark thickness showed a definite decrease from the base of the tree to the top. The minimum whole bark thickness followed the...
PCT MAO’s Enhanced Performance by Specially Designed Sealers for Superior Service & Environments
2014-11-01
PCT’s Process is with low silicon content. • Aluminized Steel + PCT MAO can be a cost effective alternative to Stainless Steel, Super Duplex...is applied PCT – P seal • Typical Layer thickness: 40-80 micron* • Organic sealer • Hydrophobic surface, reduces sedimentation...PCT - S seal • Typical Layer thickness: 10-40 micron* • Organo-ceramic sealer • Hydrophobic surface, reduces sedimentation. PCT Classic 1000
Sedimentation and provenance of the Antofagasta region of the southern Puna Plateau, central Andes
NASA Astrophysics Data System (ADS)
Zhou, Renjie; Schoenbohm, Lindsay M.; Sobel, Edward R.; Carrapa, Barbara; Davis, Donald W.
2014-05-01
Stratigraphic and provenance studies of Cenozoic non-marine sedimentary basins in the Central Andean Puna Plateau provide insight into the regional development and dynamics. The southern plateau hosts several poorly exposed intramontane basins bounded by basement-involved ~N-S striking thrust faults; their origin is explained differently by contrasting geodynamic models. This study focuses on the Antofagasta region (NW Argentina). The top of the studied basin was over-thrust by basement rocks along a west-dipping thrust fault, which was likely active during exhumation of the Calalaste range to the west (25-29 Ma, Carrapa et al., 2005). We studied three sections SW of Antofagasta de la Sierra. S3 (552 m) is the lowest section and is composed of mud playa to sandflat sediments, with at least two paleosol horizons. Lower S2 (1,263 m) contains ~300 meters of proximal alluvial fan sediments. Upper S2 is composed of fluvial to shallow lacustrine sediments. The separation between the top of S2 and the bottom of S1 (1,062 m) is ~540 m. The lower ~600 m of S1 is composed of thick, distal alluvial fan and braided river sediments. In the upper S1, the depositional environment changes to fluvial-alluvial, with a paleosol developed at the top of S1. Imbricated pebbles suggest prevailing eastward paleoflow. Modal compositions of 18 sandstones plot in the mixed zone on a Qm-F-Lt plot, and the transitional continental and recycled orogenic zones on a Qt-F-L plot (Dickinson, 1985). Their compositions cluster and do not show any evolutionary trends, despite being sampled from a ~3000 m-thick sedimentary column. However, when combined with data from the Quinoas Formation (Late Eocene to Late Oligocene) and the Chacras Formation (Late Oligocene to Early Miocene), outcropped west of the study site (Carrapa et al., 2005), the Antofagasta samples mark the beginning of an evolving trend towards the dissected arc and transitional arc zones. We analyzed U-Pb ages of detrital zircons from eight samples. Four young grains from three samples near the top of S2 yield ages of 38-39.5 Ma. If these grains were derived from air-fall volcanics, they indicate a late Eocene depositional age for the studied strata, but otherwise they give a maximum age estimate. We tentatively favour the former interpretation. For all samples, detrital zircon U-Pb age spectra show significant late Cambrian to early Ordovician and Precambrian (~1000-1400 Ma, ~1700-1900 Ma) sources. The ~1000-1400 Ma cluster is well matched with ages from the Sierra de Maz, to the west. A minor Permian-Triassic source (~240-290 Ma) is also present which could reflect limited exposures of plutonic rocks west of the study site. Our work suggests that the ~3000 meter thick unit in the Antofagasta basin is time-equivalent of the Quinoas Formation and accumulated with a high sedimentation rate. The sediments were sourced primarily from the west, with little input from volcanics. The consistent western source regions and the rapid subsidence lead us to favour a foreland-type origin for the late Eocene Antofagasta Basin.
Lead-rich sediments, Coeur d'Alene River Valley, Idaho: area, volume, tonnage, and lead content
Bookstrom, Arthur A.; Box, Stephen E.; Campbell, Julie K.; Foster, Kathryn I.; Jackson, Berne L.
2001-01-01
In north Idaho, downstream from the Coeur d?Alene (CdA) silver-lead-zinc mining district, lead-rich sediments, containing at least 1,000 ppm of lead, cover approximately 61 km2 (or 73 percent) of the 84-km2 floor of the CdA River valley, from the confluence of its North and South Forks to the top of its delta-front slope, in CdA Lake. Concentrations of lead (Pb) in surface sediments range from 15 to about 38,500 ppm, and average 3,370 ppm, which is 112 times the mean background concentration (30 ppm) of Pb in uncontaminated sediments of the CdA and St. Joe River valleys. Most of the highest concentrations of Pb are in sediments within or near the river channel, or near the base of the stratigraphic section of Pb-rich sediments. Ranges of Pb concentration in Pb-rich sediments gradually decrease with increasing distance from the river and its distributaries. Ranges of thickness of Pb-rich sediments generally decrease abruptly with increasing distance from the river, from about 3 + 3 m in the river channel to about 1 + 1m on upland riverbanks, levees and sand splays, to about 0.3 + 0.3 m in back-levee marshes and lateral lakes. Thickness of Pb-rich dredge spoils (removed from the river and deposited on Cataldo-Mission Flats) is mostly in the range 4 + 4 m, thinning away from an outfall zone north and west of the river, near the formerly dredged channel reach near Cataldo Landing. We attribute lateral variation in ranges of thickness and Pb content of Pb-rich sediments to the dynamic balance between decreasing floodwater flow velocity with increasing distance from the river and the quantity, size, density, and Pb content of particles mobilized, transported, and deposited. We present alternative median- and mean-based estimates of the volume of Pbrich sediments, their wet and dry tonnage, and their tonnage of contained Pb. We calculate separate pairs of estimates for 23 Estimation Units, each of which corresponds to a major depositional environment, divided into down-valley segments. We favor median-based estimates of the thickness and thickness-interval weighted-average Pb concentration, because uncommonly thick and Pb-rich sections may excessively influence mean estimates. Nevertheless, data from partial sections of Pb-rich sediments are included in most estimates, and these tend to reduce both median- and mean-based estimates. Median-based estimates indicate a volume of 32 M m3 of Pb-rich sediments in the CdA River valley, with a dry tonnage of 47 + 4 M t, containing 250 + 75 kt of Pb (considering analytical uncertainties only). An equivalent tonnage of dry CdA River valley sediments of the pre-mining era, with the mean background concentration of 30 ppm of Pb, would contain about 1.4 kt of Pb. Thus, the amount of Pb added to CdA River valley sediments deposited since the onset of mining is estimated as 249 + 75 kt of Pb, or about 99.5 percent of the estimated Pb contained. Of an estimated 850 + 10 kt of Pb lost to streams as a result of mining-related activities, an estimated total of 739 + 319 kt of Pb has been deposited in sediments of the South Fork drainage basin, the CdA River valley, and the bottom of CdA Lake (combined). Based on mid-range values from a set of preferred estimates with uncertainty ranges up to + 50 percent, roughly 24 percent of the 850 + 10 kt of mining-derived Pb lost to streams has been added to sediments of the South Fork drainage basin, 29 percent to sediments of the CdA River valley floor, and 34 percent to sediments on the bottom of CdA Lake. This amounts to roughly 87 percent of the Pb lost to streams, not including Pb contained in sediments of the North Fork drainage basin and the Spokane River valley, the tonnages of which have not yet estimated.
NASA Astrophysics Data System (ADS)
Eichhorn, Luise; Lange, Thomas; Engelhardt, Jörn; Polom, Ulrich; Pirrung, Michael; Büchel, Georg
2015-04-01
In the southeastern part of the Quaternary West Eifel Volcanic Field, the Alf valley with its morphologically wide (~ 500 m) and flat valley bottom is visibly outstanding. This flat valley bottom was formed during the Marine Isotope Stage 2 due to fluviolacustrine sediments which deposited upstream of a natural volcanic dam. The dam consisted of lava and scoria breccia from the Wartgesberg Volcano complex (Cipa 1958, Hemfler et al. 1991) that erupted ~ 31 BP (40Ar/ 39Ar dating on glass shards, Mertz, pers. communication 2014). Due to this impoundment, the Alf creek turned into a dendritic lake, trapping the catchment sediments. The overall aim is to create the sedimentation architecture of the Alf valley. In comparison to maar archives like Holzmaar or Meerfelder Maar in the vicinity, the fluviolacustrine sediments of the Alf valley show clay-silt lamination despite the water percolation. This archive covers the transition from the Last Glacial Maximum to Early Holocene (Pirrung et al. 2007). Focus of this study is the creation of a 3D model by applying the program ESRI ArcGIS 10.2 to reconstruct the pre-volcanic Alf valley. Moreover, the sedimentation architecture is reconstructed and the sediment fill quantified. Therefore, the digital elevation model with 5 m resolution from the State Survey and Geobasis Information of Rhineland-Palatinate, polreduced magnetic data measured on top of the Strohn lava stream, shear seismic data and core stratigraphies were utilized. Summarizing previous results, Lake Alf had a catchment area of ~ 55 km² (Meerfelder Maar: 1.27 km²) and a surface area of 8.2 km² (Meerfelder Maar: 0.24 km²) considering a maximum lake water level of 410 m a.s.l.. In the deepest parts (~ 50 m) of Lake Alf, lake sediments are laminated, up to 21 m thick and show a very high sedimentation rate ~ 3 mm a-1 (Dehner Maar ~ 1.5 mm a-1, (Sirocko et al. 2013)). The sediments become coarser upstream und stratigraphically above the fine-grained lake sediments. Due to the density of core locations in the valley and shear seismic data, an architecture model of this high resolution archive was established. Cipa, W. (1958). Erdmagnetische Vermessung einiger Lavaströme und Tuffschlote in der Vorder-Eifel. Geologisches Jahrbuch 75. Hemfler, M. and G. Büchel (1991). Influente Verhältnisse als Folge der Trinkwassergewinnung im Alfbachtal bei Strohn (Westeifel). Pollichia 78. Pirrung, M., G. Büchel and K.-H. Köppen (2007). Hochauflösende fluviolakustrine Sedimente des jüngeren Pleistozän aus dem Alfbachtal bei Gillenfeld (Westeifel) - erste Ergebnisse. Mainzer geowissenschaftliche Mitteilungen 35. Sirocko, F., S. Dietrich, D. Veres, P. M. Grootes, K. Schaber-Mohr, K. Seelos, M.-J. Nadeau, B. Kromer, L. Rothacker, M. Röhner, M. Krbetschek, P. Appleby, U. Hambach, C. Rolf, M. Sudo and S. Grim (2013). Multi-proxy dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany. Quaternary Science Reviews 62.
Estimation of soft sediment thickness in Kuala Lumpur based on microtremor observation data
NASA Astrophysics Data System (ADS)
Chiew, Chang Chyau; Cheah, Yi Ben; Tan, Chin Guan; Lau, Tze Liang
2017-10-01
Seismic site effect is one of the major concerns in earthquake engineering. Soft ground tends to amplify the seismic wave in surficial geological layers. The determination of soft ground thickness on the surface layers of the earth is an important input for seismic hazard assessment. This paper presents an easy and convenient approach to estimate the soft sediment thickness at the site using microtremor observation technique. A total number of 133 survey points were conducted in selected sites around Kuala Lumpur area using a microtremor measuring instrument, but only 103 survey points contributed to the seismic microzonation and sediment thickness plots. The bedrock of Kuala Lumpur area is formed by Kenny Hill Formation, limestone, granite, and the Hawthornden Schist; however, the thickness of surface soft ground formed by alluvial deposits, mine tailings, and residual soils remains unknown. Hence, the predominant frequency of the ground in each site was determined based on Nakamura method. A total number of 14 sites with known depth to bedrock from the supply of geotechnical reports in the study area were determined. An empirical correlation was developed to relate the ground predominant frequency and soft ground thickness. This correlation may contribute to local soil underlying the subsurface of Kuala Lumpur area. The finding provides an important relationship for engineers to estimate the soft ground thickness in Kuala Lumpur area based on the dynamic characteristics of the ground measured from microtremor observation.
Sheet flow and suspended sediment due to wave groups in a large wave flume
Dohmen-Janssen, C. M.; Hanes, D.M.
2005-01-01
A series of sand bed experiments was carried out in the Large Wave Flume in Hannover, Germany as a component of the SISTEX99 experiment. The experiments focussed on the dynamic sediment response due to wave group forcing over a flat sand bed in order to improve understanding of cross-shore sediment transport mechanisms and determine sediment concentrations, fluxes and net transport rates under these conditions. Sediment concentrations were measured within the sheet flow layer (thickness in the order of 10 grain diameters) and in the suspension region (thickness in the order of centimetres). Within the sheet flow layer, the concentrations are highly coherent with the instantaneous near-bed velocities due to each wave within the wave group. However, in the suspension layer concentrations respond much more slowly to changes in near-bed velocity. At several centimetres above the bed, the suspended sediment concentrations vary on the time scale of the wave group, with a time delay relative to the peak wave within the wave group. The thickness of the sheet flow changes with time. It is strongly coherent with the wave forcing, and is not influenced by the history or sequence of the waves within the group. The velocity of the sediment was also measured within the sheet flow layer some of the time (during the larger wave crests of the group), and the velocity of the fluid was measured at several cm above the sheet flow layer. The grain velocity and concentration estimates can be combined to estimate the sediment flux. The estimates were found to be consistent with previous measurements under monochromatic waves. Under these conditions, without any significant mean current, the sediment flux within the sheet flow layer was found to greatly exceed the sediment flux in the suspension layer. As a result, net transport rates under wave groups are similar to those under monochromatic waves. ?? 2004 Elsevier Ltd. All rights reserved.
Crustal structure along the DESERT 2000 Transect inferred from 3-D gravity modelling
NASA Astrophysics Data System (ADS)
El-Kelani, R.; Goetze, H.; Rybakov, M.; Hassouneh, M.; Schmidt, S.
2003-12-01
A three-dimensional interpretation of the newly compiled Bouguer anomaly map is part of the DESERT 2000 Transect. That is multi-disciplinary and multinational project studying for first time the Dead Sea Transform (DST) fault system (DST) from the Mediterranean Sea to Saudi Arabia across the international border in the NW-SE direction. The negative Bouguer anomalies (with magnitude reached "C130 mGal), located into transform valley, are caused by the internal sedimentary basins filled by the light density young sediments (Y10 km). A high-resolution 3-D model constrained with the seismic results reveals a possible crustal thickness and density distribution beneath the DST valley. The inferred zone of intrusion coincides with the maximum gravity anomaly over the eastern flank of the DST. The intrusion is displaced at different sectors along the NW-SE direction. The zone of the maximum crustal thinning (30 km) is attained in the western sector at the Mediterranean. The southeastern plateau, on the other hand, shows by far the largest crustal thickness in the region (38-42 km). Linked to the left lateral movement of ~ 105 km at the boundary between the African and Arabian plate, and constrained with the DESERT 2000 seismic data, a small asymmetric topography of the Moho beneath the DST was modelled. The thickness and density of the crust suggest that a continental crust underlies the DST. The deep basins, the relatively large nature of the intrusion and the asymmetric topography of the Moho lead to the conclusion that a small-scale asthenospheric upwelling(?) might be responsible for the thinning of the crust and subsequent rifting of the Dead Sea graben during the left lateral movement.
NASA Astrophysics Data System (ADS)
Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.
2016-12-01
The Salton Seismic Imaging Project (SSIP) illuminated crustal and upper mantle structure of the Salton Trough, the northern-most rift segment of the Gulf of California plate boundary. The crust is 17-18 km thick and homogeneous for 100 km in the plate motion direction. New crust is being created by distributed rift magmatism, Colorado River sedimentation, and metamorphism of the sediment. A 5 km thick pre-existing crustal layer may still exist. The crust has not broken apart to enable initiation of seafloor spreading. A one-dimensional time-dependent kinematic and thermal model was developed to simulate these observations. We assume that all crustal layers are stretched uniformly during extension. Distributed mafic magmatism and sedimentation are added simultaneously to compensate for the crustal thinning. The ratio of magmatism to sedimentation is constrained by the seismic observations. Heat is transported by thermal conduction and by advection due to stretching of the crust. A constant temperature boundary at the Moho is used to represent partial melting in the upper mantle. Assuming a constant plate motion rate, the zone of active rifting extends linearly with time. The crustal thickness and internal structure also evolve with time. The model constraints are the observed seismic structure and heat flow. The model rapidly reaches quasi-steady state, and could continue for many millions of years. The observed seismic structure and heat flow are reproduced after 3 Myr. The yield strength profile calculated from lithology and model temperature indicates that ductile deformation in the middle and lower crust dominates the crustal rheology. Rapid sedimentation delays crustal breakup and the initiation of seafloor spreading by maintaining the thickness of the crust and keeping it predominantly ductile. This process probably occurs wherever a large river flows into an active rift driven by far-field extension. It may have built passive margins in many locations globally, such as the Gulf of Mexico. This type of passive margin consists of mostly new crust created by magmatism and metamorphism of sediment. Along such margins, metamorphosed sediment could be misinterpreted as stretched pre-existing continental crust.
NASA Astrophysics Data System (ADS)
Keim, Lorenz; Brandner, Rainer
2001-11-01
A stratigraphic model for carbonate platform evolution in the Dolomites during the late Ladinian-early Carnian is presented. New light on pre-Raibl growth of individual carbonate platforms of the western Dolomites was shed by biostratigraphic data combined with a revised lithostratigraphy. At the Schlern, Langkofel and Sella, the carbonate factory (Upper Schlern Dolomite) remained productive into the lowermost Carnian (Cordevolian = Aon Zone), and caused a levelling-out of the former steep platform-to-basin relief. In the eastern Dolomites, platforms were producing till basal Julian 2 (Austriacum Zone). At the Sella and Langkofel, the sedimentation pattern after deposition of the Upper Schlern Dolomite was strongly influenced by synsedimentary tectonics. A first phase of extensional tectonics led to local fissures, block-tilting, graben structures and breccia deposits. Composition and fabric of the reworked clasts argue for local-source sediments and short transport distances. The extensional structures are sealed by sediments of Lower Carnian age. Two facies belts (Schlernplateau beds and Dürrenstein Dolomite), which interfinger at the western side of the Sella, reflect the shallow marine environment with terrigenous-volcanoclastic input in the western Dolomites. A second generation of breccias at the Sella documents local fracturing of the Dürrenstein and Upper Schlern Dolomite. Depositional environments across the western and eastern Dolomites were largely dependent on differential subsidence. The sediments of early Carnian age on top of the Schlern platform are a few metres thick only, whereas, in the eastern Dolomite, up to 400-m-thick carbonate sediments ('Richthofen reef' and Settsass platform) were deposited. The most incomplete stratigraphic record is present at the Mendel platform in the west, where Ladinian volcanics are unconformably overlain by late Carnian 'Raibl beds'. The increase in sediment thickness towards the eastern Dolomites becomes partly visible at the eastern flank of the Sella platform. Differential subsidence across western and eastern Dolomites caused local fracturing of platform sediments. Synsedimentary extensional tectonics was a significant controlling factor to the lithofacies and thickness variations of early Carnian platform sediments in the Dolomites.
Entrainment of bed sediment by debris flows: results from large-scale experiments
Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.
2011-01-01
When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.
NASA Astrophysics Data System (ADS)
Kramkowski, M. A.; Filbrandt-Czaja, A.; Ott, F.; Slowinski, M. M.; Tjallingii, R.; Błaszkiewicz, M.; Brauer, A.
2016-12-01
Lake Jelonek is located in Northern Poland. The lake covers an area of 19,9 ha and has a maximum depth of 13,8 m. Three overlapping series of 14,3 m - long sediment records have been cored with an UWITEC 90 mm diameter piston corer from the deepest part of the lake. The cores were split in half, lithologically described, photographed and correlated with each other by 28 marker layers to construct a composite profile covering 1426cm. Here we present detailed varve micro-facies for different sediment intervals and the preliminary chronology based on AMS 14C dating of 10 terrestrial macro remains samples and the Askja AD-1875 tephra. Here we present initial results from thin section analyses for two intervals. First (I) the uppermost 0-256 cm and second (II) the interval from 768-1296 cm. Intercalated between these two varved interval is a thick section (512 cm) of homogeneous organic-ditomaceous sediments. We present varve micro-facies data in combination with µ-XRF element scanning for comprehensive reconstruction of the sedimentation processes in Lake Jelonek. Varve counting reveals that the lower floating varve interval covers the time period from 1850 - 10500 cal a BP, while the uppermost 256 cm varved sediments comprise ca 925 years (2008-1083 AD). The main goal is to synchronize the sediment record from Lake Jelonek with European and Worldly records, to achieve a comprehensive knowledge of landscape forming processes and to distinguish between local, regional and global impacts during the past. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415, National Science Centre, Poland grant 2015/19/N/ST10/02655 and from the Science and Research Funds for 2015-2016 allocated to a co-financed international project, CONTRACT No. 3500/ICLEA/15/2016/0.
NASA Astrophysics Data System (ADS)
Owen, Matthew J.; Maslin, Mark A.; Day, Simon J.; Long, David
2018-05-01
The Peach Slide is the largest known submarine mass movement on the British continental margin and is situated on the northern flank of the glacigenic Barra Fan. The Barra Fan is located on the northwest British continental margin and is subject to cyclonic ocean circulation, with distinct differences between the circulation during stadial and inter-stadial periods. The fan has experienced growth since continental uplift during the mid-Pliocene, with the majority of sediments deposited during the Pleistocene when the fan was a major depocentre for the British-Irish Ice Sheet (BIIS). Surface and shallow sub-surface morphology of the fan has been mapped using newly digitised archival paper pinger and deep towed boomer sub-bottom profile records, side scan sonar and multibeam echosounder data. This process has allowed the interpretation and mapping of a number of different seismic facies, including: contourites, hemipelagites and debrites. Development of a radiocarbon based age model for the seismic stratigraphy constrains the occurrence of two periods of slope failure: the first at circa 21 ka cal BP, shortly after the BIIS's maximum advance during the deglaciation of the Hebrides Ice Stream; and the second between 12 and 11 ka cal BP at the termination of the Younger Dryas stadial. Comparison with other mass movement events, which have similar geological and oceanographic settings, suggests that important roles are played by contouritic and glacigenic sedimentation, deposited in inter-stadial and stadial periods respectively when different thermohaline regimes and sediment sources dominate. The effect of this switch in sedimentation is to rapidly deposit thick, low permeability, glacigenic layers above contourite and hemipelagite units. This process potentially produced excess pore pressure in the fan sediments and would have increased the likelihood of sediment failure via reduced shear strength and potential liquefaction.
NASA Astrophysics Data System (ADS)
Zalikhanov, M. Ch.; Kondratieva, N. V.; Adzhiev, A. Kh.; Razumov, V. V.
2016-09-01
The area of investigation was subject to multifactor analysis of the relationship between the maximum amount of mudflow solid sediments ( W) and parameters such as the mudflow basin area ( S), average channel slope (α), and mudflow channel length ( L). They were used to obtain analytical expressions in order to approximate the W( S, L, α) relation based on the mudflow genesis and source height. Statistical data on mudflow manifestations in different basins in the North Caucasus covering more than fifty years were used to obtain the analytical expressions in order to assess the maximum volume of mudflow solid sediments.
Cahoon, D.R.
2003-01-01
Hurricanes can be important agents of geomorphic change in coastal marshes and mangrove forests. Hurricanes can cause large-scale redistribution of sediments within the coastal environment resulting in sedimentation, erosion, disruption of vegetated substrates, or some combination of these processes in coastal wetlands. It has been proposed that such sediment pulsing events are important at maintaining wetland sediment elevations in sediment-poor settings with high rates of relative sea-level rise, such as the Mississippi River Delta. But do these pulsing events result in a net gain in sediment elevation even when substantial amounts of sediment are deposited? Clearly sediment erosion and scour would result in a loss of elevation. But will a substantial sediment deposit on poorly consolidated sediments always result in a net gain in elevation? If the wetland vegetation is killed by wind, tidal surge, or the introduction of saline water, will there be a collapse of sediment elevation in the absence of root production and ongoing decomposition of root matter? During the past decade several wetlands where my colleagues and I have monitored sedimentation and elevation change have been struck by one to several hurricanes. This paper describes the range of sediment elevation responses to hurricane strikes, the suggested mechanisms driving those responses, the implications for estimating long-term trends in relative sea-level rise, and future research needs for improving our understanding of the role that major storms play in wetland sediment elevation dynamics. For many wetlands the change in sediment elevation was directly proportional to the amount of sediment deposited by the storm. But surprisingly, there was a loss of elevation in some wetlands with substantial sediment deposits. In these wetlands, the impact of the storm was either direct (sedimentation and compaction) or indirect (vegetation death), and the effect on sediment elevation was either permanent or temporary. For example, 2 cm of sediment deposited by Hurricane Andrew on a healthy salt marsh in south Louisiana had a direct and positive effect on sediment elevation. But in a deteriorated salt marsh a 3 cm thick sediment deposit was associated with a permanent loss in elevation (we have monitored this site for 10 years). The apparent mechanism driving elevation loss was compaction of the weakened substrate by the weight of the sediment deposit, the storm surge waters, or both. Clearly, storm-related sediment pulses are not going to save this marsh from becoming submerged by rising sea level. A temporary loss in elevation, as much as 2 cm, was observed in a North Carolina salt marsh with a highly organic substrate after each of 3 successive hurricanes even when sediment was deposited. The loss in elevation was apparently related to degassing of the chronically flooded substrate while the rebound in elevation was apparently related to a temporary drawdown of marsh water levels. Interestingly, sediment elevation increased after Hurricane Dennis in 1999, although the increase was less than the thickness of the sediment deposit. Further research is required to determine the mechanisms driving storm-related elevation change (i.e., compaction and expansion) in this marsh. There were two marshes where the gain in sediment elevation was greater than the thickness of the sediment deposit, but the effect was short-lived. In a high salt marsh in southern California, we hypothesize that the temporary spike in elevation was related to the flushing of salts from the hypersaline soils, which enhanced root growth that led to an increase in elevation. In a marsh with a highly organic substrate in north Florida, temporary increases in elevation (as much as 2 cm) greater than the thickness of the sediment deposit were apparently related to groundwater fluxes, which may have been influenced by enhanced runoff from storm rainfall. Lastly, Hurricane Mitch
Geochemistry and microbiology at gas hydrate and mud volcano sites in the black sea
NASA Astrophysics Data System (ADS)
Drews, M.; Schmaljohann, R.; Wallmann, K.
2003-04-01
We present geochemical and microbiological results which were obtained from sediments at gas hydrate and mud volcano sites in the Sorokin Trough (northern Black Sea, south east of the Crimean peninsula) at water depths of about 1800 to 2100 m during the METEOR cruise 52-1. The surface near sub-bottom accumulations of gas hydrates (occuring at depths of several meters or less beneath the sea floor) in the Black Sea are associated with numerous mud volcanos. At stations we investigated gas hydrates occurred below 10 cm to 100 cm with a significant influence on the sediment biochemistry. Analyses revealed high methane concentrations, anoxic and sulfidic conditions, a steep sulfate gradient, carbonate precipitation, and high anaerobic methane oxidation rates. In proximity of the so called Odessa mud volcano one investigated sampling station showed maximum methane oxidation rates in the depth horizon of a firm 2 cm thick carbonate crust layer, adhered to by a bacterial mat. This observation is taken to indicate that the bacteria are causing or mediating the crust formation by their anaerobic methane oxidation metabolism. The station was further characterised by two layers of gas hydrate fragments and lenses below 1 m depth. A 2 to 4 cm thick carbonate crust with attached bacterial mat from a Yalta mud vulcano sample (2124 m water depth) was investigated under the scanning electron microscope. The stiff gelatinous mat showed a dense and morphologically uniform population of rod shaped bacteria with only a few nests of coccoid cells. Purified mat material exhibited anaerobic methane oxidation activity. These mats resemble the type previously found in the shallow NW methane seep area of the Black Sea, where it covers carbonate chimneys. Samples from two sites atop the summit of the active but flat-topped Dvurechenskii mud volcano were characterised by very high methane oxidation rates (up to 563 nmol/cm3/d) at the sediment surface. Strong pore water gradients of chloride, bromide, ammonium, methane, and temperature proved the existence of a rich upward flow of warm fluids from the deeper sediment. At both stations no carbonate crusts or bacterial mats were found. The lack of hemipelagic sediments and at the same time abundance of mud breccia gives ample evidence of the recency of the mud flow.
NASA Astrophysics Data System (ADS)
Pizzati, Mattia; Balsamo, Fabrizio; Iacumin, Paola; Swennen, Rudy; Storti, Fabrizio
2017-04-01
In this contribution we describe the architecture and petrophysical properties of the Rocca di Neto extensional fault zone in loose and poorly lithified sediments, located in the Crotone forearc basin (south Italy). To this end, we combined fieldwork with microstructural observations, grain size analysis, and in situ permeability measurements. The studied fault zone has an estimated maximum displacement of 80-90 m and separates early Pleistocene age (Gelasian) sands in the footwall from middle Pleistocene (Calabrian) silty clay in the hangingwall. The analysed outcrop consists of about 70 m section through the fault zone mostly developed in the footwall block. Fault zone consists of four different structural domains characterized by distinctive features: (1) <1 m-thick fault core (where the majority of the displacement is accommodated) in which bedding is transposed into foliation imparted by grain preferential orientation and some black gouges decorate the main slip surfaces; (2) zone of tectonic mixing characterized by a set of closely spaced and anastomosed deformation bands parallel to the main slip surface; (3) about 8 m-thick footwall damage zone characterized by synthetic and antithetic sets of deformation bands; (4) zone of background deformation with a few, widely-spaced conjugate minor faults and deformation bands. The boundary between the relatively undeformed sediments and the damage zone is not sharp and it is characterized by a progressive decrease in deformation intensity. The silty clay in the hangingwall damage zone is characterized by minor faults. Grain size and microstructural data indicate that particulate flow with little amount of cataclasis is the dominant deformation mechanism in both fault core rocks and deformation bands. Permeability of undeformed sediments is about 70000 mD, whereas the permeability in deformation bands ranges from 1000 to 18000 mD; within the fault core rocks permeability is reduced up to 3-4 orders of magnitude respect to the undeformed domains. Structural and petrophysical data suggest that the Rocca di Neto fault zone may compartmentalize the footwall block due to both juxtaposition of clay-rich lithology in the hangingwall and the development of low permeability fault core rocks.
Ferric Iron Precipitation in the Nagahama Bay, Satsuma Iwo-Jima Island, Kagoshima
NASA Astrophysics Data System (ADS)
Nagata, T.; Kiyokawa, S.; Ikehara, M.; Oguri, K.; Goto, S.; Ito, T.; Yamaguchi, K. E.; Ueshiba, T.
2010-12-01
Satsuma-Iwojima island is active volcanic island and 6 x 3 km in size, located 38km south of Kyushu island, Japan. The reddish brown water along the coast of the Iwo-dake volcano at the center of the island formed by neutralization through mixing of shallow hydrothermal fluid and seawater. The reddish brown water contains reddish ferrihydrite (Fe3+) that is derived from oxidation of Fe2+ from acidic hot spring (Shikaura and Tazaki, 2001). In the Nagahama Bay with its opening to the south, red-colored Fe-rich water is affected by tidal current, but sedimentation of the ferric hydroxide is confirmed to occur in the ocean bottom (Ninomiya and Kiyokawa, 2009). Here we focus other lines of evidence from long term observations and meteorological records as important factor to form thick iron rich sediments. Meteorological and stationary observations: We used weather record in the Satsuma Iwo-jima and cross-checked with stationary observations, which enabled us to observe color changes of the surface of Nagahama Bay. It was made clear that north wind condition in the Nagahama Bay resulted in changes of the color of its surface, from red to green, by intrusion of ocean water coming from outside. Long term temperature monitoring: The temperature of seawater in the Nagahama Bay fluctuated synchronically with the air temperature. But that of hot spring water rather remained constant regardless of the seasonal change. We observed that seawater temperature in the Nagahama Bay is low at high tide and high at low tide, and the rage of temperature change is maximum at the spring tide and minimum at the neap tide. In other words, the amount of discharge of hot spring and that of seawater inflow vary inversely. Core sample: In the Nagahama Bay, iron rich sediments that is more than 1 m thick were identified. The core sample shows lithology as following; upper part, 10-20cm thick, formed loose Fe-rich deposit, lower portion formed alteration of weakly consolidated Fe-rich orange-colored mud, the organic-rich black mud and volcanic ash layers. The basal part has distinctive pink ash layer, which was identified as 1997 volcanic activity. Therefore, the core samples have records of the past 12 years and show average deposition rate of 8cm/year. Sediment trap: There accumulated 7.5cm-thick materials, dominated by ferrihydrite, during the 82 days experiment (2009/July/12~Oct./03). Sedimentation rate is 2.8cm/month (33.3cm/year). Estimated deposition rate of the core sample is 8cm/year. These differences suggest that about three-forth of Fe-hydroxide formed the Nagahama Bay would have been flashed to the open ocean by tidal and storm effects. These lines of evidence suggest that neap tide supports relatively quiet and has enough supply of hot spring into seawater and south wind works as a cap. The fine-grained iron Fe-hydroxide in the Nagahama Bay is provided and deposited at neap tide and south wind condition.
NASA Astrophysics Data System (ADS)
Obryk, M.; Doran, P. T.; Priscu, J. C.; Morgan-Kiss, R. M.; Siebenaler, A. G.
2012-12-01
The perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica have been extensively studied under the Long Term Ecological Research project. But sampling has been spatially restricted due to the logistical difficulty of penetrating the 3-6 m of ice cover. The ice covers restrict wind-driven turbulence and its associated mixing of water, resulting in a unique thermal stratification and a strong vertical gradient of salinity. The permanent ice covers also shade the underlying water column, which, in turn, controls photosynthesis. Here, we present results of a three-dimensional record of lake processes obtained with an autonomous underwater vehicle (AUV). The AUV was deployed at West Lake Bonney, located in Taylor Valley, Dry Valleys, to further understand biogeochemical and physical properties of the Dry Valley lakes. The AUV was equipped with depth, conductivity, temperature, under water photosynthetically active radiation (PAR), turbidity, chlorophyll-and-DOM fluorescence, pH, and REDOX sensors. Measurements were taken over the course of two years in a 100 x 100 meter spaced horizontal sampling grid (and 0.2 m vertical resolution). In addition, the AUV measured ice thickness and collected 200 images looking up through the ice, which were used to quantify sediment distribution. Comparison with high-resolution satellite QuickBird imagery demonstrates a strong correlation between aerial sediment distribution and ice cover thickness. Our results are the first to show the spatial heterogeneity of lacustrine ecosystems in the McMurdo Dry Valleys, significantly improving our understanding of lake processes. Surface sediment is responsible for localized thinning of ice cover due to absorption of solar radiation, which in turn increases total available PAR in the water column. Higher PAR values are negatively correlated with chlorophyll-a, presenting a paradox; historically, long-term studies of PAR and chlorophyll-a have shown positive trends. We hypothesized that this paradox is a result of short-term photoadaptation of phytoplanktonic communities to spatial and temporal variations of PAR within the water column. To test this hypothesis, we established phytoplankton enrichment cultures from depths of maximum primary production (13 m) and tested whether dry valley lake phytoplankton respond to daily variations in controlled light environment. Laboratory-grown cultures exhibited a strong response at 12 hr:12 hr day:night cycle at the level of both photochemistry and chlorophyll biosynthesis, indicating that Lake Bonney possess the ability to quickly respond to changes in their light environment.
Yu, Ju-hua; Zhong, Ji-cheng; Fan, Cheng-xin; Huang, Wei; Shang, Jing-ge; Gu, Xiao-zhi
2015-12-01
Growth of rooted aquatic macrophytes was affected by the nature and composition of lake bottom sediments. Obviously, it has been recognized as an important ecological restoration measure by improving lake substrate and then reestablishing and restoring aquatic macrophytes in order to get rid of the environmental problem of lake. This study simulated five covering thickness to give an insight into the influence of substrate amelioration on Phragmites communis growth and photosynthetic fluorescence characteristics. The results showed that the total biomass, plant height, leaf length and leaf width of Phragmites communis under capping 5 cm were much more significant than those of capping 18 cm (P < 0.01), at the 120 d, the underground: shoot biomass ratio and fine root: underground biomass ratio were also much higher than those of other treatments (P < 0.05), which indicated that capping 18 cm treatment would significantly inhibit the growth of Phragmites communis , but the growth of control group Phragmites communis was slightly constrained by eutrophicated sediment. In addition, as the capping thickness growing, the underground: shoot biomass ratio of the plant would be reduced dramatically, in order to acquire much more nutrients from sediment for plant growing, the underground biomass of Phragmites communis would be preferentially developed, especially, the biomass of fine root. However, Photosystem II (PS II) photochemical efficiency (Fv/Fm), quantum yield (Yield), photochemical quenching (qP), non-photochemical quenching (qN) of Phragmites communis under different treatments had no significant differences (P > 0.05), furthermore, with much greater capping thickness, the photosynthesis structure of PS II would be much easier destroyed, and PS II would be protected by increasing heat dissipating and reducing leaf photosynthetic area and leaf light-captured pigment contents. In terms of the influence of sediment amelioration by soil exchange on the growth and photosynthetic fluorescence characteristics of Phragmites communis, plant growth could be effectively promoted under capping 2 cm and capping 5 cm by increasing the Eh value and nutrient content, whereas plant under capping 18 cm would be much easier adaptive to low-light stress in winter season, of which capping 2 cm treatment was conducive to enhance the initial slope of RLCs (α), maximum electron transport rate (ETRmax) and minimum saturating irradiance (Ek). With regard to the harness of environmental problem of lake, the eutrophication status of lake will be mitigated by using multi-ecological measures to control the internal nutrients content once the external loading was first effectively controlled.
Ice thickness estimations based on multi-temporal glacier inventories - potential and challenges
NASA Astrophysics Data System (ADS)
Helfricht, Kay; Huss, Matthias; Otto, Jan-Christoph
2016-04-01
The ongoing glacier retreat exposes a large number of surface depressions in the former glacier bed that can be filled with water or act as sediment traps. This has already been observed at various sites in Austria and in other mountain areas worldwide. The formation of glacial lakes can constitute an important environmental and socio-economic impact on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. In general, information on ice thickness distribution is the basis for simulating future glacier change. We used the approach proposed by Huss and Farinotti (2012) to model the ice thickness distribution and potential locations of subglacial depressions. The study is part of the FUTURELAKE project that seeks to model the formation of new glacier lakes and their possible future evolution in the Austria Alps. The required data on glacier extent, surface elevation and slope were taken from the Austrian Glacier Inventories GI1 from 1969, GI2 from 1998 and GI3 from2006 (Fischer et al., 2015). The different glacier outlines and surface elevations from the inventories enable us to evaluate (i) the robustness of the modelled bedrock depressions with respect to different glacier settings, (ii) the power of the model to simulate recently formed glacial lakes, (iii) the similarities in calculated ice thickness distributions across the inventories and (iv) the feasibility of simulating observed changes in ice thickness and glacier volume. In general, the modelled localization of large potential depressions was relatively stable using the observed glacier settings. A number of examples show that recently formed glacial lakes could be detected by the model based on previous glacier extents. The locations of maximum ice depths within different elevation zones appeared to be sensitive to changes in glacier width. However, observed ice thickness changes and, thus, volume changes between the inventories could only partly be reproduced by the model. This may be explained by differences in the dynamical state of the glacier among the considered periods with almost balanced mass balance conditions (GI1 - GI2) and strong disequilibrium (GI2 - GI3). Huss, M., and D. Farinotti (2012), Distributed ice thickness and volume of all glaciers around the globe, J. Geophys. Res., 117, F04010, doi:10.1029/2012JF002523. Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann, J. (2015), Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753-766, doi:10.5194/tc-9-753-2015.
NASA Astrophysics Data System (ADS)
Morellón, Mario; Anselmetti, Flavio S.; Ariztegui, Daniel; Brushulli, Brunhilda; Sinopoli, Gaia; Wagner, Bernd; Sadori, Laura; Gilli, Adrian; Pambuku, Arben
2016-03-01
Lake Butrint (39°47 N, 20°1 E) is a ca. 21 m deep, coastal lagoon located in SW Albania where finely-laminated sediments have been continuously deposited during the last millennia. The multi-proxy analysis (sedimentology, high-resolution elemental geochemistry and pollen) of a 12 m long sediment core, supported by seven AMS radiocarbon dates and 137Cs dating, enable a precise reconstruction of the environmental change that occurred in the central Mediterranean region during the last ∼4.5 cal kyrs BP. Sediments consist of triplets of authigenic carbonates, organic matter and clayey laminae. Fluctuations in the thickness and/or presence of these different types of seasonal laminae indicate variations in water salinity, organic productivity and runoff in the lake's catchment, as a result of the complex interplay of tectonics, anthropogenic forcing and climate variability. The progradation of the Pavllo river delta, favoured by variable human activity from the nearby ancient city of Butrint, led to the progressive isolation of this hydrological system from the Ionian Sea. The system evolved from an open bay to a restricted lagoon, which is consistent with archaeological data. An abrupt increase in mass-wasting activity between 1515 and 1450 BC, likely caused by nearby seismic activity, led to the accumulation of 24 homogenites, up to 17 cm thick. They have been deposited during the onset of finely laminated sedimentation, which indicates restricted, anoxic bottom water conditions and higher salinity. Periods of maximum water salinity, biological productivity, and carbonate precipitation coincide with warmer intervals, such as the early Roman Warm Period (RWP) (500 BC-0 AD), the Medieval Climate Anomaly (MCA) (800-1400 AD) and recent times (after 1800 AD). Conversely, lower salinity and more oxic conditions, with higher clastic input were recorded during 1400-500 BC, the Late Roman and the Early Medieval periods (0-800 AD) and during the Little Ice Age (1400-1800 AD). Hydrological fluctuations recorded in Butrint are in phase with most central and western Mediterranean records and correlate with NAO variability. In contrast, opposite hydrological patterns have been recorded in the Eastern Balkans and the Levant during the last millennium, emphasizing a complex spatial variability in the region. Phases of maximum settlement intensity in Butrint (Roman-Late Antique) coincide with warmer and/or stable climate periods (0-800 AD and MCA, respectively), indicating a long-term influence of climatic conditions on human activities. The Late Holocene sedimentary record of Lake Butrint demonstrates the complex interplay of climate variability, tectonics and human impact in the recent evolution of coastal Mediterranean regions.
NASA Astrophysics Data System (ADS)
Handwerger, A. L.; Huang, M. H.; Booth, A. M.; Fielding, E. J.
2017-12-01
Slow-moving, deep-seated landslides are highly erosive features that can remain active for periods of decades to centuries, playing a major role in landscape evolution. In the Eel River catchment, Northern California, slow-moving landslides are the primary contributor of sediment to the channel network, delivering >50% of the regional sediment flux despite occupying <10% of the landscape. While detailed, regional-scale measurements of surface kinematics can be made using remote sensing data like interferometric synthetic aperture radar (InSAR) or pixel tracking with SAR or optical images, subsurface measurements including landslide thickness are sparse. As a result, thickness estimates are often approximated from topographic data and globally-derived volume-area scaling relationships that may under- or over-predict landslide volumes by up to an order of magnitude at specific field sites. Furthermore, these relationships assume that the thickness is constant along the entire landslide body. To improve our measurements of landslide volume and kinematics we use repeat-pass InSAR from the NASA/JPL UAVSAR airborne radar acquired with 4 different look directions to quantify 3D surface displacements of 20 landslides across a 550 km2 area. We apply mass conservation techniques to 1) invert for landslide thickness and 2) solve for landslide rheology (i.e. depth-averaged velocity), which enables us to better constrain both volume and sediment flux. Our preliminary results indicate that the landslide thickness is highly variable with changes up to tens of meters along the landslide body. We also find that the landslides have a power law rheology with a plug-flow vertical velocity profile. Estimates of sediment flux contributed by individual landslides ranges from 103 to 104 m3/yr. The application of UAVSAR data represents a major advance from previous InSAR studies in this region and provides one of the first datasets containing 3D displacement measurements for multiple landslides occurring under nearly identical environmental conditions. Future work is aimed at using these subsurface and kinematic data to calculate landslide erosion rates and regional sediment flux and to better understand the controls on landslide dynamics over short- and long-timescales.
NASA Astrophysics Data System (ADS)
Metzger, T. L.; Pizzuto, J. E.; Schook, D. M.; Hasse, T. R.; Affinito, R. A.
2017-12-01
Dendrochronological dating of buried trees precisely determines the germination year and identifies the stratigraphic context of germination for the trees. This recently developed application of dendrochronology provides accurate time-averaged sedimentation rates of overbank deposition along floodplains and can be used to identify burial events. Previous studies have demonstrated that tamarisk (Tamarix ramosissima) and sandbar willow (Salix exigua) develop anatomical changes within the tree rings (increased vessel size and decreased ring widths) on burial, but observations of plains cottonwood (Populus deltoides ssp. monilifera) are lacking. In September 2016 and June 2017, five buried plains cottonwoods were excavated along a single transect of the interior of a meander bend of the Powder River, Montana. Sediment samples were obtained near each tree for 210Pb and 137Cs dating, which will allow for comparison between dendrochronological and isotopic dating methods. The plains cottonwood samples collected exhibit anatomical changes associated with burial events that are observed in other species. All trees germinated at the boundary between thinly bedded fine sand and mud and coarse sand underlain by sand and gravel, indicating plains cottonwoods germinate on top of point bars prior to overbank deposition. The precise germination age and depth provide elevations and minimum age constraints for the point bar deposits and maximum ages for the overlying sediment, helping constrain past channel positions and overbank deposition rates. Germination years of the excavated trees, estimated from cores taken 1.5 m above ground level, range from 2014 to 1862. Accurate establishment years determined by cross-dating the buried section of the tree can add an additional 10 years to the cored age. The sedimentation rate and accumulation thickness varied with tree age. The germination year, total sediment accumulation, and average sedimentation rate at the five sampled trees is: 2011, 35 cm, 7.0 cm/year; 1973, 77 cm, 1.8 cm/year; 1962, 140 cm, 2.6 cm/year; 1960, 123 cm, 2.2 cm/year; and 1862, 112 cm, 0.7 cm/year. These sedimentation rates indicate that the cumulative sedimentation decreases as a power law with increasing tree age.
Twichell, D.C.; Cross, V.A.
2009-01-01
Sidescan-sonar imagery collected in Lake Mead during 1999-2001, a period of high lake level, has been used to map the surficial geology of the floor of this large reservoir that formed upon completion of the Hoover Dam in 1935. Four surficial geologic units were identified and mapped: rock exposures and alluvial deposits that existed prior to the formation of the lake and thin post-impoundment sediments ( 1 m) deposited since the lake formed. Exposures of rock are most extensive in the narrow, steep-sided sections of the lake, while alluvial deposits are most extensive on the gentle flanks of the broader basin sections of the lake. Post-impoundment sediment is restricted to the floors of the original river valleys that now lie below lake level. These sediments are thickest in the deltas that form at the mouths of the Colorado River and its tributaries, but cover the entire length of the valley floors of the lake. This sediment distribution is consistent with deposition from turbidity currents. Lake level has dropped more than 30 m between collection of the sidescan imagery and publication of this report. During this time, thick delta deposits have been eroded and redistributed to deeper parts of the lake by turbidity currents. While present-day post-impoundment sediment distribution should be similar to what it was in 2001, the thickness may be greater in some of the deeper parts of the lake now.
Degnan, James R.; Teeple, Andrew; Johnston, Craig M.; Marvin-DiPasquale, Mark C.; Luce, Darryl
2011-01-01
The former Chlor-Alkali Facility in Berlin, New Hampshire, was listed on the U.S. Environmental Protection Agency National Priorities List in 2005 as a Superfund site. The Chlor-Alkali Facility lies on the east bank of the Androscoggin River. Elemental mercury currently discharges from that bank into the Androscoggin River. The nature, extent, and the speciation of mercury and the production of methyl mercury contamination in the adjacent Androscoggin River is the subject of continuing investigations. The U.S. Geological Survey, in cooperation with Region I of the U.S. Environmental Protection Agency, used geophysical methods to determine the distribution, thickness, and physical properties of sediments in the Androscoggin River channel at a small area of an upstream reference reach and downstream from the site to the New Hampshire–Maine State border. Separate reaches of the Androscoggin River in the study area were surveyed with surface geophysical methods including ground-penetrating radar and step-frequency electromagnetics. Results were processed to assess sediment characteristics including grain size, electrical conductivity, and pore-water specific conductance. Specific conductance measured during surface- and pore-water sampling was used to help interpret the results of the geophysical surveys. The electrical resistivity of sediment samples was measured in the laboratory with intact pore water for comparison with survey results. In some instances, anthropogenic features and land uses, such as roads and power lines affected the detection of riverbed properties using geophysical methods; when this occurred, the data were removed. Through combining results, detailed riverbed sediment characterizations were made. Results from ground-penetrating radar surveys were used to image and measure the depth to the riverbed, depth to buried riverbeds, riverbed thickness and to interpret material-type variations in terms of relative grain size. Fifty two percent of the riverbed in the study area was covered with gravel and finer sediments. The electrically resistive river water and sediment in this study area were conducive to the penetration of the ground-penetrating radar and step-frequency electromagnetic signals and allowed for effective sediment characterization by geophysical methods. The reach between the former Chlor-Alkali Facility and the Riverside Dam, had small areas of fine sediment (estimated 11 percent of riverbed area), found on the upstream left bank and the downstream right bank, with an electromagnetic conductivity (31.4 millisiemens per meter (mS/m) maximum) that was higher than the upstream reference reach. The greatest electromagnetic conductivity (195 mS/m), pore-water specific conductance (324 mS/m) and lab measured sediment conductivity of (76.8 mS/m, measured with a direct-current resistivity test box) in the study were measured approximately 1 mile (mi) downstream of the site from a sandbar on the left bank. Reaches adjacent to and within 2 mi downstream from the site had elevated electromagnetic conductivity despite having lower estimated percentages of riverbed area covered in sediment (11, 25, and 61 percent, respectively) than the reference reach (97). Typically finer grained sediment with similar mineralogy will be more conductive. The Shelburne Reservoir is approximately 8 mi downstream from the site had the second greatest pore-water specific conductance measured, 45.8 mS/m. Many of the locations with the largest step-frequency electromagnetic values have not been sampled for pore water and sediment.
Brand, Andreas; Lacy, Jessica R.; Hsu, Kevin; Hoover, Daniel; Gladding, Steve; Stacey, Mark T.
2010-01-01
We investigated the driving forces of sediment dynamics at the shoals in South San Francisco Bay. Two stations were deployed along a line perpendicular to a 14 m deep channel, 1000 and 2000 m from the middle of the channel. Station depths were 2.59 and 2.19 m below mean lower low water, respectively. We used acoustic Doppler velocimeters for the simultaneous determination of current velocities, turbulence, sediment concentration and fluxes. Maximum current shear velocities were 0.015 m s−1 at the station further from the channel (closer to the shore) and 0.02 m s−1 at the station closer to the channel. Peak wave-induced shear velocities exceeded 0.015 m s−1 at both stations. Maximum sediment concentrations were around 30 g m−3 during calm periods (root mean square wave height −3 and sediment fluxes were 5 times higher than in calm conditions (0.02 g m−2 s−1 versus >0.10 g m−2 s−1) at the station further from the channel 0.36 m above the bed. Closer to the channel, sediment concentrations and vertical fluxes due to wind wave resuspension were persistently lower (maximum concentrations around 50 g m−3 and maximum fluxes around 0.04 g m−2 s−1). Most resuspension events occurred during flood tides that followed wave events during low water. Although wave motions are able to resuspend sediment into the wave boundary layer at low tide, the observed large increases in sediment fluxes are due to the nonlinear interaction of wind waves and the tidal currents.
Radiological responses of different types of Egyptian Mediterranean coastal sediments
NASA Astrophysics Data System (ADS)
El-Gamal, A.; Rashad, M.; Ghatass, Z.
2010-08-01
The aim of this study was to identify gamma self-absorption correction factors for different types of Egyptian Mediterranean coastal sediments. Self-absorption corrections based on direct transmission through different thicknesses of the most dominant sediment species have been tested against point sources with gamma-ray energies of 241Am, 137Cs and 60Co with 2% uncertainties. Black sand samples from the Rashid branch of the Nile River quantitatively absorbed the low energy of 241Am through a thickness of 5 cm. In decreasing order of gamma energy self-absorption of 241Am, the samples under investigation ranked black sand, Matrouh sand, Sidi Gaber sand, shells, Salloum sand, and clay. Empirical self-absorption correction formulas were also deduced. Chemical analyses such as pH, CaCO 3, total dissolved solids, Ca 2+, Mg 2+, CO 32-, HCO 3- and total Fe 2+ have been carried out for the sediments. The relationships between self absorption corrections and the other chemical parameters of the sediments were also examined.
NASA Astrophysics Data System (ADS)
Antonopoulou, Evangelia; Rohmann-Shaw, Connor F.; Sykes, Thomas C.; Cayre, Olivier J.; Hunter, Timothy N.; Jimack, Peter K.
2018-03-01
Understanding the sedimentation behaviour of colloidal suspensions is crucial in determining their stability. Since sedimentation rates are often very slow, centrifugation is used to expedite sedimentation experiments. The effect of centrifugal acceleration on sedimentation behaviour is not fully understood. Furthermore, in sedimentation models, interparticle interactions are usually omitted by using the hard-sphere assumption. This work proposes a one-dimensional model for sedimentation using an effective maximum volume fraction, with an extension for sedimentation under centrifugal force. A numerical implementation of the model using an adaptive finite difference solver is described. Experiments with silica suspensions are carried out using an analytical centrifuge. The model is shown to be a good fit with experimental data for 480 nm spherical silica, with the effects of centrifugation at 705 rpm studied. A conversion of data to Earth gravity conditions is proposed, which is shown to recover Earth gravity sedimentation rates well. This work suggests that the effective maximum volume fraction accurately captures interparticle interactions and provides insights into the effect of centrifugation on sedimentation.
Five 'Supercool' Icelandic Glaciers
NASA Astrophysics Data System (ADS)
Knudsen, O.; Roberts, M. J.; Roberts, M. J.; Tweed, F. S.; Russell, A. J.; Lawson, D. E.; Larson, G. J.; Evenson, E. B.; Bjornsson, H.
2001-12-01
Sediment entrainment by glaciohydraulic supercooling has recently been demonstrated as an effective process at Matanuska glacier, Alaska. Although subfreezing meltwater temperatures have been recorded at several Alaskan glaciers, the link between supercooling and sediment accretion remains confined to Matanuska. This study presents evidence of glaciohydraulic supercooling and associated basal ice formation from five Icelandic glaciers: Skeidarárjökull, Skaftafellsjökull, Kvíárjökull, Flaájökull, and Hoffellsjökull. These observations provide the best example to-date of glaciohydraulic supercooling and related sediment accretion outside Alaska. Fieldwork undertaken in March, July and August 2001 confirmed that giant terraces of frazil ice, diagnostic of the presence of supercooled water, are forming around subglacial artesian vents. Frazil flocs retrieved from these vents contained localised sandy nodules at ice crystal boundaries. During periods of high discharge, sediment-laden frazil flocs adhere to the inner walls of vents, and continue to trap suspended sediment. Bands of debris-rich frazil ice, representing former vents, are texturally similar to basal ice exposures at the glacier margins, implying a process-form relationship between glaciohydraulic freeze-on and basal ice formation. It is hypothesised that glaciohydraulic supercooling is generating thick sequences of basal ice. Observations also confirm that in situ melting of basal ice creates thick sedimentary sequences, as sediment structures present in the basal ice can be clearly traced into ice-marginal ridges. Glaciohydraulic supercooling is an effective sediment entrainment mechanism at Icelandic glaciers. Supercooling has the capacity to generate thick sequences of basal ice and the sediments present in basal ice can be preserved. These findings are incompatible with established theories of intraglacial sediment entrainment and basal ice formation; instead, they concur with, and extend, the current model of Matanuska-type glaciohydraulic supercooling. This work adds a new dimension to the understanding of debris entrainment in temperate glaciers.
NASA Astrophysics Data System (ADS)
Valentine, Greg A.; van Wyk de Vries, Benjamin
2014-03-01
A Miocene age volcanic-hypabyssal structure comprising volcaniclastic deposits and mafic intrusions is exposed with vertical relief of ˜110 m on the side of Gergovie Plateau (Auvergne, France). Three main volcaniclastic facies are: (1) Fluidal tuff breccia composed of juvenile basalt and sediment clasts with dominantly fluidal shapes, with several combinations of basalt and sediment within individual clasts. (2) Thickly bedded lapilli tuff composed of varying proportions of fine-grained sediment derived from Oligocene-Miocene lacustrine marls and mudstones and basaltic lapilli, blocks, and bombs. (3) Planar-bedded tuff forming thin beds of fine to coarse ash-size sedimentary material and basalt clasts. Intrusive bodies in the thickly bedded lapilli tuff range from irregularly shaped and anastomosing dikes and sills of meters to tens of meters in length, to a main feeder dike that is up to ˜20 m wide, and that flares into a spoon-shaped sill at ˜100 m in diameter and 10-20 m thick in the eastern part of the structure. Volcaniclastic deposits and structural features suggest that ascending magma entrained soft, saturated sediment host material into the feeder dike and erupted fluidal magma and wet sediment via weak, Strombolian-like explosions. Host sediment and erupted material subsided to replace the extracted sediments, producing the growth subsidence structure that is similar to upper diatreme facies in typical maar diatremes but lacks evidence for explosive disruption of diatreme fill. Irregularly shaped small intrusions extended from the main feeder dike into the diatreme, and many were disaggregated due to shifting and subsidence of diatreme fill and recycled via eruption. The Mardoux structure is an "unconventional" maar diatreme in that it was produced mainly by weak explosive activity rather than by violent phreatomagmatic explosions and is an example of complex coupling between soft sediment and ascending magma.
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.
2012-12-01
It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a "synthetic" gravity derived RDA. Sediment corrected RDA for oceanic crust in the Gulf of Aden are positive (+750m) indicating anomalous uplift with respect to normal subsidence. Gravity inversion predicts normal thickness oceanic crust and a zero "synthetic" gravity derived RDA in the oceanic domain. The difference between the positive sediment corrected RDA and the zero "synthetic" gravity derived RDA, implies that the anomalous subsidence reported in the Gulf of Aden is the result of mantle dynamic uplift. For the oceanic crust outboard of Galicia Bank both the sediment corrected RDA and the "synthetic" gravity derived RDA are negative (-800m) and of similar magnitude, indicating anomalous subsidence, which is the result of anomalously thin oceanic crust, not mantle dynamic topography. We conclude that there is negligible mantle dynamic topography influencing the Galicia Bank region. In the Gulf of Lions, gravity inversion predicts thinner than average oceanic crust. Both sediment corrected RDA (-1km) and "synthetic" gravity derived RDA (-500m) are negative. The more negative sediment corrected RDA compared with the "synthetic" gravity derived RDA implies that the anomalous subsidence in the Gulf of Lions is the result of mantle dynamic subsidence as well as thinner than average oceanic crust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, M A.; Karl, H; Murray, Christopher J.
2001-12-01
Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km{sup 2}, which encompasses a volume of about 3.2 million m{sup 3}. The deposit's basal reflector is acoustically distinct overmore » most of the mapped area, implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30 m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs.« less
Pleistocene environments and glacial history of the northern North Sea
NASA Astrophysics Data System (ADS)
Reinardy, Benedict; Hjelstuen, Berit; Petter Sejrup, Hans; Augedal, Hans; Jørstad, Arild
2017-04-01
Based on new geochronological and lithological data combined with analyses of 3D seismic data, the Pliocene-Pleistocene development of the central northern North Sea has been investigated. At the start of the Plio-Pleistocene Transition the study area was dominated by a deltaic, shallow marine or tidal depositional environment with sediments mainly sourced from the west with a local provenance. Directly above the base Quaternary a 60 m thick layer of mud-rich sediments of glacimarine origin were deposited at a rate of 12 cm/ka between 2-1.5 Ma and up to 80 cm/ka between 1.5 - 1.2 Ma possibly reflecting glacial ice advancing to the Norwegian coastline. The high rate of deposition in the Early Pleistocene occurred immediately before the initiation of the Norwegian Channel Ice Stream at 1.1 Ma. Following this, a large part of the sediment input from Fennoscandia seems to have been directed away from the study area to the shelf break. At the start of the Mid Pleistocene Transition (MPT), subaerial conditions allowed the formation of a >50 km long fluvial channel across the study area draining water from the east to the south west. The earliest evidence of grounded ice in the investigated area comes from mega scale glacial lineations formed during the MPT, at or just after 1.2 Ma. Following this, a regional unconformity was formed by one or more grounded ice advances across the study area possibly during or directly after the MPT and likely marks the boundary between the Early and Mid Pleistocene glacimarine sediments. The Mid to Late Pleistocene stratigraphy is dominated by glacimarine sediments and tills and is associated with multiple generations of tunnel valleys observed within the seismic data. A high shear strength till containing chalk clasts transported from the west and/or south of the study area was likely deposited during MIS6 and may have been more conducive to tunnel valley formation in comparison to lower shear strength tills deposited by later ice advances. A thick till unit overlain by a sand layer in the study area was deposited by grounded ice during the Last Glacial Maximum and subsequent drainage of an ice dammed lake in the southern North Sea during the last deglaciation (MIS2) of the study area. This study shows that much of the Quaternary age sediments within the northern North Sea were deposited relatively rapidly during short periods of time probably leaving significant hiatuses within the stratigraphic record. This finding has implications for previous studies that use a chronological framework assuming a relatively continuous sedimentation rate and record for the Early Pleistocene within the North Sea.
Recent Russian Geophysical and Geological Investigations on Siberian Continental Margin
NASA Astrophysics Data System (ADS)
P. v., A.; K. v., D.; B. v., V.
2007-12-01
In July-August, 2005 new geophysical and geological data were acquired in the Mendeleev Rise (MR) region during "Arctic-2005" cruise aboard M/V "Akademik Fedorov". The study was concentrated in the southern part of MR in the area of its junction with East Siberian shelf. On-ice deep seismic sounding investigations (with offsets up to 250 km) and helicopter-supported seismic reflection soundings were performed along 600 km-long sub- longitudinal profile. Seismic survey was accompanied by on-ice gravity observations and geological sampling. Air-borne magnetic and air gravity measurements at scale 1:1,000,000 were also performed within a 100 km- wide corridor along the central seismic profile. Processing and analysis of new evidence included the compilation of deep seismic section, 2D seismic-gravity modeling of the Earth crust, 3D modeling of basement and Moho relief, and estimation of sediment and earth crust thickness. The results were integrated with earlier data and used for advanced structural and tectonic interpretations. The following main conclusions were obtained: Thickness of sediment cover along seismic line varies from 12 km in the south (in the North-Chukchi Trough) to 3-4 km in the northern MR. Crust thickness beneath MR is on the order of 30-35 km with a maximum value of 38 km in its southern part. The thinnest crust (28 km) is observed in the North-Chukchi Trough. Potential fields indicate existence of several blocks differing in gravity and magnetic anomalies. In the southern MR these blocks appear separated by grabens and display distinct continental characteristics accentuated by thickness of the crust, its seismic velocities and potential field pattern. At some of the shallowest (possibly eroded?) bathymetric highs the results of bottom sampling seem to point to the possibility of local derivation of coarse bottom debris. The proposed tectonic model implies structural continuity between MR and the adjacent East Siberian shelf. Brief information about the latest Russian geophysical and geological cruise "Arctic-2007" to the Lomonosov Ridge and its transition to the Siberian shelf will also be presented.
Joint inversion of high resolution S-wave velocity structure underneath North China Basin
NASA Astrophysics Data System (ADS)
Yang, C.; Li, G.; Niu, F.
2017-12-01
North China basin is one of earthquake prone areas in China. Many devastating earthquakes occurred in the last century and before, such as the 1937 M7.0 Heze Earthquake in Shandong province, the 1966 M7.2 Xingtai Earthquake and 1976 Tangshan Earthquake in Hebei province. Knowing the structure of the sediment cover is of great importance to predict strong ground motion caused by earthquakes. Unconsolidated sediments are loose materials, ranging from clay to sand to gravel. Earthquakes can liquefy unconsolidated sediments, thus knowing the distribution and thickness of the unconsolidated sediments has significant implication in seismic hazard analysis of the area. Quantitative estimates of the amount of extension of the North China basin is important to understand the thinning and evolution of the eastern North China craton and the underlying mechanism. In principle, the amount of lithospheric stretching can be estimated from sediment and crustal thickness. Therefore an accurate estimate of the sediment and crustal thickness of the area is also important in understanding regional tectonics. In this study, we jointly invert the Rayleigh wave phase-velocity dispersion and Z/H ratio data to construct a 3-D S-wave velocity model beneath North China area. We use 4-year ambient noise data recorded from 249 temporary stations, and 139 earthquake events to extract Rayleigh wave Z/H ratios. The Z/H ratios obtained from ambient noise data and earthquake data show a good agreement within the overlapped periods. The phase velocity dispersion curve was estimated from the same ambient noise data. The preliminary result shows a relatively low Z/H ratio and low velocity anomaly at the shallow part of sediment basins.
Paper plant effluent revisited-southern Lake Champlain, Vermont and New York
Haupt, R.S.; Folger, D.W.
1993-01-01
We used geologic and geochemical techniques to document the change with time of the distribution and concentration of contaminated bottom sediments in southern Lake Champlain near an International Paper Company plant. Our work, initiated in 1972, was expanded on behalf of Vermont citizens in a class-action suit against the International Paper Company. To update our 1972-1973 results, we collected nine cores in 1988 upstream and downstream from the paper plant effluent diffuser. Water content, volatile solids, organic carbon, and three ratios, Al/Si, Cl/Si, and S/Si, in addition to megascopic and microscopic observations, were evaluated to identify and trace the distribution of effluent and to measure the thickness of sediment affected by or containing components of effluent. Analyses were carried out on samples from the cores as well as from effluent collected directly from the plant's waste treatment facility. In 1973, two years after the plant opened, we cored near the diffuser; sediment contaminated with effluent was 4.5 cm thick. In 1988, in the same area, sediment contaminated with effluent was 17 cm thick. In 15 years, water content increased from 72 to 85 percent, volatile solids from 7 to 20 percent, and organic carbon from 2 to 12 percent. Cl/Si and S/Si were high only near the diffuser and were zero elsewhere. In the area of the diffuser, contaminated sediment appears to be accumulating at a rate of about 1 cm/yr. At a control location 22 km upstream (south) from the plant, the top, poorly consoli-dated layer was only 1 cm or less thick both in 1973 and in 1988. The class-action suit was settled in favor of the plaintiffs for $5 million. ?? 1993 Springer-Verlag.
Petroleum geology and resources of the Volga-Ural province, U.S.S.R.
Peterson, James A.; Clarke, James W.
1983-01-01
The Volga-Ural petroleum province is, in general, coincident with the Volga-Ural regional high, a broad upwarp of the east-central part of the Russian (East European) Platform. The central part of the province is occupied by the Tatar arch, which contains the major share of the oilfields of the province. The Komi-Perm arch forms the northeastern part of the regional high, and the Zhigulevsko-Pugachev and Orenburg arches make up the southern part. These arches are separated from one another by elongate downwarps. The platform cover overlies an Archean crystalline basement and consists of seven main sedimentation cycles. (1) Riphean (lower Bavly) continental sandstone, shale, and conglomerate beds, from 500 to 5,000 m thick, were deposited in aulacogens. (2) Vendian (upper Bavly) continental and marine shale and sandstone are up to 3,000 m thick. (3) Middle Devonian-Tournaisian transgressive deposits, which are sandstone, siltstone, and shale in the lower part and carbonates and abundant reefs in the upper part, range from 300 to 1,000 m in thickness. The upper carbonate part includes the Kamsko-Kinel trough system, which consists of narrow, interconnected, deepwater troughs. (4) The Visean-Namurian-Bashkirian cycle began with deposition of Visean clastic deposits, which draped over reefs of the previous cycle and filled in an erosional relief that had formed in some places on the sediments of the previous cycle. The Visean clastic deposits are overlain by marine carbonate beds. The cycle is from 50 to 800 m thick. (5) The lower Moscovian-Lower Permian cycle consists of 1,000 to 3,000 m of terrigenous clastic deposits and marine carbonate beds. (6) The upper Lower Permian-Upper Permian cycle reflects the maximum growth of the Ural Mountains and the associated Ural foredeep. Evaporite deposits were first laid down, followed by marine limestones and dolomites, which intertongue eastward with clastic sediments from the Ural Mountains. (7) Continental red beds of Triassic age and mixed continental and marine clastic beds of Jurassic and Cretaceous age were deposited on the western, southwestern, and northern margins of the Russian Platform; they are generally absent in the Volga-Ural province, however. Approximately 600 oilfields and gasfields and 2,000 pools have been found in the Volga-Ural province. Nine productive sequences are recognized; these are, in general, the same as the sedimentation cycles, although some subdivisions have been added. The clastic section of Middle and early Late Devonian age contains the major recoverable oil accumulations, including the supergiant Romashkino field. Cumulative production to 1980 is estimated at 30 to 35 billion barrels of oil equivalent, identified reserves at about 10 billion barrels of oil equivalent, and undiscovered resources at about 7 billion barrels of oil equivalent. Identified reserves of natural gas are estimated at 100 trillion cubic feet and undiscovered resources at 63 trillion cubic feet.
Lorenson, T.D.; Collett, T.S.
2000-01-01
Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997, which contained much less ethane (up to 86 ppmv). Up to 19 ppmv propane and other higher homologues were noted; however, these gases are likely contaminants derived from sediment in some hydrate samples. CO2 concentrations are less in gas hydrate than in the surrounding sediment, likely an artifact of core depressurization, which released CO2 derived from dissolved organic carbon (DIC) into sediment. The isotopic composition of methane from gas hydrate ranges from ??13C of -62.5??? to -70.7??? and ??D of -175??? to -200??? and is identical to the isotopic composition of methane from surrounding sediment. Methane of this isotopic composition is mainly microbial in origin and likely produced by bacterial reduction of bicarbonate. The hydrocarbon gases here are likely the products of early microbial diagenesis. The isotopic composition of CO2 from gas hydrate ranges from ??13C of -5.7 to -6.9, about 15??? lighter than CO2 derived from nearby sediment.
NASA Astrophysics Data System (ADS)
Van Noten, K.; Lecocq, T.; Camelbeeck, T.
2013-12-01
Between 2008 and 2010, the Royal Observatory of Belgium received numerous ';Did You Feel It'-reports related to a 2-year lasting earthquake swarm at Court-Saint-Etienne, a small town in a hilly area 20 km SE of Brussels, Belgium. These small-magnitude events (-0.7 ≤ ML ≤ 3.2, n = c. 300 events) were recorded both by the permanent seismometer network in Belgium and by a locally installed temporary seismic network deployed in the epicentral area. Relocation of the hypocenters revealed that the seismic swarm can be related to the reactivation of a NW-SE strike-slip fault at 3 to 6 km depth in the basement rocks of the Lower Palaeozoic London-Brabant Massif. This sequence caused a lot of emotion in the region because more than 60 events were felt by the local population. Given the small magnitudes of the seismic swarm, most events were more often heard than felt by the respondents, which is indicative of a local high-frequency earthquake source. At places where the bedrock is at the surface or where it is covered by thin alluvial sediments (<10 m), such as in incised river valleys and on hill slopes, reported macroseismic intensities are higher than those on hill tops where respondents live on a thicker Quaternary and Cenozoic sedimentary cover (> 30 m). In those river valleys that have a considerable alluvial sedimentary cover, macroseismic intensities are again lower. To explain this variation in macroseismic intensity we present a macroseismic analysis of all DYFI-reports related to the 2008-2010 seismic swarm and a pervasive H/V spectral ratio (HVSR) analysis of ambient noise measurements to model the thickness of sediments covering the London-Brabant Massif. The HVSR method is a very powerful tool to map the basement morphology, particularly in regions of unknown subsurface structure. By calculating the soil's fundamental frequency above boreholes, we calibrated the power-law relationship between the fundamental frequency, shear wave velocity and the thickness of sediments. This relationship is useful for places where the sediment thickness is unknown and where the fundamental frequency can be calculated by H/V spectral ratio analysis of ambient noise. In a subsequent research step macroseismic intensity of the different felt events is compared to sediment thickness in order to investigate if the people's perception of earthquake strong ground motions relates to the local sediment column above bedrock. We discovered that the decrease in macroseismic intensity of the felt/heard events on the hill tops can be explained by the absorption of high frequency seismic energy due the thickness of the local sediment column. Our results illustrate that it is fundamental to study regional soil properties to understand the effects of earthquake strong ground motions in an intraplate tectonic setting.
Recent and relict topography of Boo Bee patch reef, Belize
Halley, R.B.; Shinn, E.A.; Hudson, J.H.; Lidz, B.; Taylor, D.L.
1977-01-01
Five core borings were taken on and around Boo Bee Patch Reef to better understand the origin of such shelf lagoon reefs. The cores reveal 4 stages of development: (1) subaerial exposure of a Pleistocene "high" having about 8 meters of relief, possibly a Pleistocene patch reef; (2) deposition of peat and impermeable terrigenous clay 3 meters thick around the high; (3) initiation of carbonate sediment production by corals and algae on the remaining 5 meters of hard Pleistocene topography and carbonate mud on the surrounding terrigenous clay; and (4) accelerated organic accumulation on the patch reef. Estimates of patch reef sedimentation rates (1.6 m/1000 years) are 3 to 4 times greater than off-reef sedimentation rates (0.4-0.5 m/1000 years). During periods of Pleistocene sedimentation on the Belize shelf, lagoon patch reefs may have grown above one another, stacking up to form reef accumulation of considerable thickness.
Sedimentary Facies and Stratigraphy of the Changjiang (Yangtze River) Delta
NASA Astrophysics Data System (ADS)
Dalrymple, R. W.; Zhang, X.; Lin, C. M.
2017-12-01
A disproportionate number of the world's largest deltas are tide-dominated or strongly tide-influenced, in part because the low gradient of these rivers allows the tide to penetrate far inland, generating strong tidal currents at the river mouth. These deltas also tend to be mud-dominated because a significant fraction of the bedload is trapped farther inland. Despite their great importance as sediment depo-centers, as analogues for ancient sedimentary successions, and as areas of intense human occupation, they are the most poorly understood coastal system. The Changjiang (Yangtze River), the 4th largest river in the world in terms of sediment discharge, is one such tide-dominated system, with a mean tidal range of 2.7 m and tidal-current speeds of 1 m/s at its mouth. It shows a fairly typical series of low-relief channels and bars in the mouth-bar area and passes seaward and down-drift into a coastal mud belt that extends 800 km to the south of the river mouth. The deposits from both the transgressive-phase and modern delta are all dominated by mud, except for the fluvial-channel deposits that are clean sand. Channel-floor deposits in areas with appreciable tidal influence contain abundant fluid-mud layers (1-3 cm thick), intercalated with relatively coarse sand; such mud layers show evidence of tidal cyclicity. The overlying tidal-bar deposits commonly become sandier upward because of the upward loss of fluid-mud layers. The tidal channels and bars that characterize the mouth-bar and delta-front area are dominated by randomly organized structureless mud layers, 5-30 cm thick, that are interpreted to be storm-generated fluid-mud deposits. These mud layers become less abundant upward, generating upward-sanding successions. These facies are very similar to those seen in the Amazon and Fly River deltas, suggesting that this is a common motif, and indicating the importance of fluid mud in the dynamics of such systems. Facies proximality can be determined by careful comparison of sand-size trends, tidal mud-layer thicknesses (relative to the turbidity maximum) and the abundance of wave-generated fluid-mud layers. Application of these concepts shows that the transgressive phase of the delta consists of three retrogradationally stacked parasequences, each 7-15 m thick, overlain by the 40 m-thick highstand delta.
Stratigraphic framework and lake level history of Lake Kivu, East African Rift
NASA Astrophysics Data System (ADS)
Wood, Douglas A.; Scholz, Christopher A.
2017-10-01
Sediment cores and seismic reflection data acquired from the eastern basin of Lake Kivu, Rwanda reveal extensive limnologic variations due to changes in regional climate and basin structure. The eastern basin of the lake contains a sedimentary wedge which is > 1.5 km in thickness on its western side, and basal sediments are estimated to be at least 1.5 million years old. Sediments are likely to be thicker and older than this in the northern, Congolese basin of the lake. Above the ∼300 m iosbath only a thin layer of Holocene sediments are observed indication that this may have been the lake's high stand prior to that time. There are at least three erosional unconformities interpreted as desiccation or near-desiccation events which are estimated to have occurred at ∼475 ka, ∼100 ka, and ∼20 ka; the two most recent of these low stages likely developed during the African Megadrought and Last Glacial Maximum (LGM) periods. Following the LGM, the water levels rose to form a ∼100 m deep lake with its surface ∼370 m below the current lake level. The lake remained near that level for several thousand years and during this time the Virunga Volcanic Province expanded. At ∼12.2 ka a change to wetter climate conditions rapidly filled the lake to spill out of the Bukavu Bay basin southward toward Lake Tanganyika. Tephra sampled from the cores show that there have been at least 24 large local volcanic events since the early Holocene lake transgression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C.C.
1989-03-01
Miocene sedimentary rocks of the study area consist of a predominantly regressive sequence of clay and quartzose sand deposited on a carbonate platform which dips toward the southwest at 50-100 ft/mi. This clastic wedge ranges in thickness from 1000 ft in central Mobile and Baldwin Counties to a maximum of about 5800 ft in the northeastern portion of the Main Pass area. Analysis of planktonic and benthic foraminifera has resulted in a refined biostratigraphic zonation of these rocks, which indicates that basal Miocene transgressive shale assignable to the Amphistegina B interval zone immediately overlies the upper Oligocene regional carbonate platform.more » Thus, both lower and lower middle Miocene sedimentary rocks are absent throughout the area of investigation. Biostratigraphic analysis of the middle and upper Miocene rocks has resulted in a series of cross sections illustrating the dramatic thickening southwestward into the federal offshore continental shelf and showing the relationships of producing intervals in the Cibicides carstensi and Discorbis ''12'' interval zones. Paleoenvironmental interpretations are illustrated on a series of maps constructed for selected regional biostratigraphic zones. These maps have outlined previously unrecognized late middle and early late Miocene deltaic sedimentation in the southeastern Mobile County and Chandeleur-Viosca Knoll (north) areas. Study of sedimentation rates, which range from less than 25 up to 1370 ft/m.y., further aids in understanding the deltaic and coastal shelf sedimentation of the Miocene within Alabama and adjoining state and federal waters areas.« less
Spatio-Temporal Patterns in Rhizosphere Oxygen Profiles in the Emergent Plant Species Acorus calamus
Wenlin, Wang; Ruiming, Han; Yinjing, Wan; Bo, Liu; Xiaoyan, Tang; Bin, Liang; Guoxiang, Wang
2014-01-01
Rhizosphere oxygen profiles are the key to understanding the role of wetland plants in ecological remediation. Though in situ determination of the rhizosphere oxygen profiles has been performed occasionally at certain growing stages within days, comprehensive study on individual roots during weeks is still missing. Seedlings of Acorus calamus, a wetland monocot, were cultivated in silty sediment and the rhizosphere oxygen profiles were characterized at regular intervals, using micro-optodes to examine the same root at four positions along the root axis. The rhizosphere oxygen saturation culminated at 42.9% around the middle part of the root and was at its lowest level, 3.3%, at the basal part of the root near the aboveground portion. As the plant grew, the oxygen saturation at the four positions remained nearly constant until shoot height reached 15 cm. When shoot height reached 60 cm, oxygen saturation was greatest at the point halfway along the root, followed by the point three-quarters of the way down the root, the tip of the root, and the point one-quarter of the way down. Both the internal and rhizosphere oxygen saturation steadily increased, as did the thickness of stably oxidized microzones, which ranged from 20 µm in younger seedlings to a maximum of 320 µm in older seedlings. The spatial patterns of rhizosphere oxygen profiles in sediment contrast with those from previous studies on radial oxygen loss in A. calamus that used conventional approaches. Rhizosphere oxygen saturation peaked around the middle part of roots and the thickness of stably oxidized zones increased as the roots grew. PMID:24866504
Geology and hydrocarbon habitat of the Amu-Darya region (central Asia)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoecklin, J.; Orassianou, T.
1991-08-01
The Amu-Darya region, shared by the Soviet Republics of Turkmenistan, Uzbekistan, and Tadzhikistan, is the second-largest gas province of the USSSR after western Siberia both production and reserves. Its more than 180 gas, gas-condensate, and minor oil fields include 6 giants with reserves of over 3 tcf, such as the Sovietabad field of eastern Turkmenistan, which in 1989 produced nearly 1 tcf of gas and which had an initial recoverable reserve of 38 tcf of gas. oil in addition to gas is produced mainly in the eastern Uzbekian and Tadzhikian parts. The region represents a large depression covering the southeasternmore » portion of the epi-Hercynian Turan platform to the north of the Alpine-Himalayan fold belts of northeastern Iran and northern Afghanistan. Continental, paralic, lagoonal, and shallow-marine environments characterized Mesozoic-Tertiary platform sedimentation, with maximum sediment thicknesses of about 10 km in the Alpine foredeeps at the southern platform margin. Large amounts of essentially gas-prone organic matter accumulated in the Late Triassic to Middle Jurassic. Main hydrocarbon reservoirs are Callovian-Oxfordian shelf-platform and reefal carbonates under cover of thick Kimmeridgian-Tithonian salt, and shale-sealed Lower Cretaceous continental and near-shore deltaic sandstones. In the Tadzhik basin in the extreme east, oil is contained in Lower Tertiary fractured carbonates interbedded with bituminous shales. Synsedimentary differential movements and gently folding in the Miocene to Pliocene were the main trap mechanisms. The region has still a considerable undrilled future potential, particularly in its deeper southern parts.« less
NASA Astrophysics Data System (ADS)
Babault, Julien; Viaplana-Muzas, Marc; Legrand, Xavier; Van Den Driessche, Jean; González-Quijano, Manuel; Mudd, Simon M.
2018-05-01
The island of New Guinea is the result of continent-arc collision that began building the island's Central Range during the late Miocene. Recent studies have shown that rapid subduction, uplift and exhumation events took place in response to rapid, oblique convergence between the Pacific and the Australian plates. The tectonic and sedimentary evolution of Cenderawasih Bay, in the northwestern part of the New Guinea Island is still poorly understood: this bay links a major structural block, the Kepala Burung block, to the island's Central Ranges. Previous studies have shown that Cenderawasih Bay contains a thick (>8 km) sequence of undated sediments. One hypothesis claims that the embayment resulted from a 3 Ma opening created by anticlockwise rotation of the Kepala Burung block with respect to the northern rim of the Australian plate. Alternatively, the current configuration of Cenderawasih Bay could have resulted from the southwest drift of a slice of volcanics and oceanic crust between 8 and 6 Ma. We test these hypotheses using (i) a geomorphologic analysis of the drainage network dynamics, (ii) a reassessment of available thermochronological data, and (iii) seismic lines interpretation. We suggest that sediments started to accumulate in Cenderawasih Bay and onshore in the Waipoga Basin in the late Miocene since the inception of growth of the Central Range, beginning at 12 Ma, resulting in sediment accumulation of up to 12,200 m. This evidence is more consistent with the second hypothesis, and the volume of sediment accumulated means it is unlikely that the embayment was the result of recent (2-3 Ma) rotation of structural blocks. At first order, we predict that infilling is mainly composed of siliciclastics sourced in the graphite-bearing Ruffaer Metamorphic Belt and its equivalent in the Weyland Overthrust. Ophiolites, volcanic arc rocks and diorites contribute minor proportions. From the unroofing paths in the Central Range we deduce two rates of solid phase accumulation (SPAR) since 12 Ma, the first one at a mean SPAR ranging between 0.12 and 0.25 mm/a with a maximum SPAR of 0.23-0.58 mm/a, and the second during the last 3 Ma, at a mean SPAR ranging between 0.93 and 1.62 mm/a and with a maximum SPAR between 2.13 and 3.17 mm/a, i.e., 6700-10,000 m of Plio-Pleistocene sediment accumulation. Local transtensional tectonics may explain these unusually high rates of sedimentation in an overall sinistral oblique convergence setting.
McFarland, Randolph E.
2013-01-01
Sediments of the heavily used Potomac aquifer broadly contrast across major structural features of the Atlantic Coastal Plain Physiographic Province in eastern Virginia and adjacent parts of Maryland and North Carolina. Thicknesses and relative dominance of the highly interbedded fluvial sediments vary regionally. Vertical intervals in boreholes of coarse-grained sediment commonly targeted for completion of water-supply wells are thickest and most widespread across the central and southern parts of the Virginia Coastal Plain. Designated as the Norfolk arch depositional subarea, the entire sediment thickness here functions hydraulically as a single interconnected aquifer. By contrast, coarse-grained sediment intervals are thinner and less widespread across the northern part of the Virginia Coastal Plain and into southern Maryland, designated as the Salisbury embayment depositional subarea. Fine-grained intervals that are generally avoided for completion of water-supply wells are increasingly thick and widespread northward. Fine-grained intervals collectively as thick as several hundred feet comprise two continuous confining units that hydraulically separate three vertically spaced subaquifers. The subaquifers are continuous northward but merge southward into the single undivided Potomac aquifer. Lastly, far southeastern Virginia and northeastern North Carolina are designated as the Albemarle embayment depositional subarea, where both coarse- and fine-grained intervals are of only moderate thickness. The entire sediment thickness functions hydraulically as a single interconnected aquifer. A substantial hydrologic separation from overlying aquifers is imposed by the upper Cenomanian confining unit. Potomac aquifer sediments were deposited by a fluvial depositional complex spanning the Virginia Coastal Plain approximately 100 to 145 million years ago. Westward, persistently uplifted granite and gneiss source rocks sustained a supply of coarse-grained sand and gravel. Immature, high-gradient braided streams deposited longitudinal bars and channel fills across the Norfolk arch subarea. By contrast, across the Salisbury and Albemarle embayment subareas, mature, medium- to low-gradient meandering streams deposited medium- to coarse-grained channel fills and point bars segregated from fine-grained overbank deposits. The Virginia depositional complex merged northward across the Salisbury embayment subarea with another complex in Maryland. Here, additional sediments were received from schist source rocks that underwent three cycles of initial uplift and rapid erosion followed by crustal stability and erosional leveling. Because of the predominance of coarse-grained sediments, transmissivity, hydraulic conductivity, and regional velocities of lateral flow through the Potomac aquifer are greatest across the Norfolk arch depositional subarea, but decrease progressively northward with increasingly fine-grained sediments. Confining units hydraulically separate the Potomac aquifer from overlying aquifers, as indicated by large vertical hydraulic gradients. By contrast, most of the Potomac aquifer internally functions hydraulically as a single interconnected aquifer, as indicated by uniformly small vertical gradients. Most fine-grained sediments within the aquifer do not hydraulically separate overlying and underlying coarse-grained sediments. Across the Salisbury embayment depositional subarea, however, hydraulic separation among the vertically spaced subaquifers is imposed by the intervening confining units. The Potomac aquifer is the largest and most heavily used source of groundwater in the Virginia Coastal Plain. Water-level declines as great as 200 feet create the potential for saltwater intrusion. Conventional stratigraphic correlation has been generally ineffective at accurately characterizing complexly distributed fluvial sediments that compose the Potomac aquifer. Consequently, the aquifer’s internal hydraulic connectivity and overall hydrologic function have not been well understood. Water-supply planning and development efforts have been hampered, and interpretations of regulatory criteria for allowable water-level declines have been ambiguous. An investigation undertaken during 2010–11 by the U.S. Geological Survey, in cooperation with the Virginia Department of Environmental Quality, provides a comprehensive regional description of the spatial distribution of Potomac aquifer sediments and their relation to hydrologic conditions. Altitudes and thicknesses of 2,725 vertical sediment intervals represent the spatial distribution of Potomac aquifer sediments in the Virginia Coastal Plain and adjacent parts of Maryland and North Carolina. Sediment intervals are designated as either dominantly coarse or fine grained and were determined by interpretation of geophysical logs and ancillary information from 456 boreholes. Sediment-interval and borehole summary statistical data indicate regional trends in sediment lithology and stratigraphic continuity, upon which three structurally based and hydrologically distinct sediment depositional subareas are designated. Broad patterns of sediment deposition over time are inferred from published sediment pollen-age data. Discrepancies in previously drawn hydrostratigraphic relations between southeastern Virginia and northeastern North Carolina are partly resolved based on borehole geophysical logs and a recently documented geologic map and corehole. A conceptual model theorizes the depositional history of the sediments and geologically accounts for their distribution. Documented pumping tests of the Potomac aquifer at 197 locations produced 336 values of transmissivity and 127 values of storativity. Based on effective aquifer thicknesses, 296 values of sediment hydraulic conductivity and 113 values of sediment specific storage are calculated. Vertical hydraulic gradients are calculated from 9,479 pairs of water levels measured between November 17, 1953, and October 4, 2011, in 129 closely spaced pairs of wells. Borehole sediment-interval and related data provide a means to achieve high yielding production wells in the Potomac aquifer by site-specific targeting of drilling operations toward water-bearing coarse-grained sand and gravel. Advance knowledge of the potential of different parts of the aquifer also aids in planning optimal groundwater-development areas. Depositional subareas further provide a possible context for resource management. Current (2013) regulatory limits on water-level declines are relative to top surfaces of subdivided upper, middle, and lower Potomac aquifers across the entire Virginia Coastal Plain, but have the potential to exceed the same limit relative to a single undivided Potomac aquifer. By contrast, designation of the sediments as a single aquifer in the Norfolk arch and Albemarle embayment subareas—and as a series of vertically spaced subaquifers and intervening confining units in the Salisbury embayment subarea—best reflects understanding of the Potomac aquifer and can avoid the potential for excessive water-level declines. Simulation modeling to evaluate effects of groundwater withdrawals could be designed similarly, including vertical discretization and (or) zonation of the Potomac aquifer based on depositional subareas and a geostatistical distribution of aquifer properties derived from borehole sediment-interval data. Further resource-management information needs extend beyond the developed part of the Potomac aquifer, particularly across the Northern Neck and Middle Peninsula where only the shallowest part of the aquifer is known, and include structural aspects such as faults, basement bedrock, and the Chesapeake Bay impact crater.
Jackson, N.L.; Smith, D.R.; Nordstrom, K.F.
2005-01-01
This study was undertaken to determine whether nourished and un-nourished estuarine beaches have conspicuous differences in sediment size and sorting that could affect their value as habitat for horseshoe crabs. Comparisons are made of beach profiles and sediment samples gathered at 0.15 m and 0.30 m depths on the backshore, at spring tide elevation, neap tide elevation, and the lower foreshore on 5 un-nourished and 3 nourished beaches in Delaware Bay, where tidal range is <2.0 m. The backshore is at least 0.5 m higher on the recently nourished beaches than on a nearby un-nourished beach reworked by storm waves. Nourishing these beaches to elevations higher than natural overwash heights will restrict natural evolution of the upper beach. Sediments at spring tide elevation on un-nourished sites average 0.72 mm in diameter at 0.15 m depth and 0.67 mm at 0.30 m depth.The similarity in size implies a relatively deep active layer in the zone of maximum cut and fill associated with cyclic profile change during low frequency, high magnitude storms. Sedimentary changes at neap tide elevation may be influenced more by depth of activation by waves than by cycles of deposition and erosion. Sediment at 0.15 m depth at spring and neap locations on the foreshore of nourished beaches is finer (0.51 mm) and better sorted (0.82 phi) than at 0.30 m depth (0.91 mm, 1.38 phi), implying that waves have not reworked the deeper sediments. Differences in sediment characteristics at depth may persist on eroding nourished beaches, where unreworked fill is close to the surface. Sediment texture influences horseshoe crab egg viability and development. Lower rates of water movement through the foreshore and greater thickness of the capillary fringe on nourished sites suggests that greater moisture retention will occur where horseshoe crabs bury eggs and may provide more favorable conditions for egg development, but the depth of these conditions will not be great on a recently nourished beach. ?? 2005 Gebru??der Borntraeger.
Geochemistry of Permian rocks from the margins of the Phosphoria Basin
Perkins, Robert B.; McIntyre, Brandie; Hein, James R.; Piper, David Z.
2003-01-01
The Permian Phosphoria Formation and interbedded units of the Park City Formation and Shedhorn Sandstone in western Wyoming represent deposition along a carbonate ramp at the eastern margin of the Phosphoria Basin, with portions of the Phosphoria units reflecting periods of upwelling and widespread phosphogenesis. Thickness-weighted slab-samples of these units were collected at a maximum interval of 3 m along an 80+ m-length of unweathered core and analyzed for major-, minor-, and trace-element contents. Interpretations of geochemistry were made within the confines of a previously recognized sequence stratigraphy framework. Major shifts in element ratios characteristic of terrigenous debris that occur at sequence boundaries at the base of the Meade Peak and Retort Members of the Phosphoria Formation are attributed to changing sediment sources. Inter-element relationships in the marine fraction indicate that bottom waters of the Phosphoria Basin were predominantly denitrifying during deposition of the Ervay, Grandeur, and Phosphoria sediments, although sulfate-reducing conditions may have existed during deposition of the lower Meade Peak sediments. Oxic conditions were prevalent during deposition of a large part of the Franson Member, which represents sedimentation in a shallow, inner- to back-ramp setting. Variations in sediment facies and organic matter and trace element contents largely reflect changes in Permian sea level. Changes in sea level in basin-margin areas, such as represented by the study section, may have affected the oxidation of settling organic matter, the foci of intersection of upwelling bottom waters with the photic zone, the rate of terrigenous sedimentation, and, ultimately, the overall environment of deposition. Our study suggests that phosphogenesis can occur under lowstand, transgressive, and highstand conditions in marginal areas, assuming water depths sufficient for upwelling to occur. Formation of phosphorite layers under upwelling conditions appears to have been most dependent on a lack of dilution by terrigenous sedimentation and carbonate shoaling. Differences in the geochemistry between two similar environments represented by the upper and lower Phosphoria units are largely attributed to higher rates of diluting terrigenous sediment during deposition of the upper unit. This is consistent with prior interpretations of a more shoreward setting for the upper Phosphoria.
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; IJpelaar, Thijs
2017-09-01
Models for glacial isostatic adjustment (GIA) routinely include the effects of meltwater redistribution and changes in topography and coastlines. Since the sediment transport related to the dynamics of ice sheets may be comparable to that of sea level rise in terms of surface pressure, the loading effect of sediment deposition could cause measurable ongoing viscous readjustment. Here, we study the loading effect of glacially induced sediment redistribution (GISR) related to the Weichselian ice sheet in Fennoscandia and the Barents Sea. The surface loading effect and its effect on the gravitational potential is modeled by including changes in sediment thickness in the sea level equation following the method of Dalca et al. (2013). Sediment displacement estimates are estimated in two different ways: (i) from a compilation of studies on local features (trough mouth fans, large-scale failures, and basin flux) and (ii) from output of a coupled ice-sediment model. To account for uncertainty in Earth's rheology, three viscosity profiles are used. It is found that sediment transport can lead to changes in relative sea level of up to 2 m in the last 6000 years and larger effects occurring earlier in the deglaciation. This magnitude is below the error level of most of the relative sea level data because those data are sparse and errors increase with length of time before present. The effect on present-day uplift rates reaches a few tenths of millimeters per year in large parts of Norway and Sweden, which is around the measurement error of long-term GNSS (global navigation satellite system) monitoring networks. The maximum effect on present-day gravity rates as measured by the GRACE (Gravity Recovery and Climate Experiment) satellite mission is up to tenths of microgal per year, which is larger than the measurement error but below other error sources. Since GISR causes systematic uplift in most of mainland Scandinavia, including GISR in GIA models would improve the interpretation of GNSS and GRACE observations there.
Sedimentation in Goose Pasture Tarn, 1965-2005, Breckenridge, Colorado
Elliott, John G.; Char, Stephen J.; Linhart, Samuel M.; Stephens, V. Cory; O'Neill, Gregory B.
2006-01-01
Goose Pasture Tarn, a 771-acre-foot reservoir in Summit County, Colorado, is the principal domestic water-storage facility for the Town of Breckenridge and collects runoff from approximately 42 square miles of the upper Blue River watershed. In the 40 years since the reservoir was constructed, deltaic deposits have accumulated at the mouths of two perennial streams that provide most of the inflow and sediment to the reservoir. The Blue River is a low-gradient braided channel and transports gravel- to silt-size sediment. Indiana Creek is a steep-gradient channel that transports boulder- to silt-size sediment. Both deltas are composed predominantly of gravel, sand, and silt, but silt has been deposited throughout the reservoir. In 2004, the U.S. Geological Survey, in cooperation with the Town of Breckenridge, began a study to determine the volume of accumulated sediment in Goose Pasture Tarn, the long-term sedimentation rate for the reservoir, and the particle-size and chemical characteristics of the sediment. Exposed delta deposits occupied 0.91 acre and had an estimated volume of 0.6 acre-foot in 2005. Aerial photographic analysis indicated both the Blue River and Indiana Creek deltas grew rapidly during time intervals that included larger-than-average annual flood peaks on the Blue River. Sediment-transport relations could not be developed for the Blue River or Indiana Creek because of minimal streamflow and infrequently observed sediment transport during the study; however, suspended-sediment loads ranged from 0.02 to 1.60 tons per day in the Blue River and from 0.06 to 1.55 tons per day in Indiana Creek. Bedload as a percentage of total load ranged from 9 to 27 percent. New reservoir stage-area and stage-capacity relations were developed from bathymetric and topographic surveys of the reservoir bed. The original 1965 reservoir bed topography and the accumulated sediment thickness were estimated from a seismic survey and manual probing. The surface area of Goose Pasture Tarn in 2005 was 66.4 acres, and the reservoir capacity was 771.1 acre-feet at a full-pool elevation of 9,886.4 feet. The 1965 surface area was 67.1 acres, and the reservoir capacity was 818.0 acre-feet, indicating that the reservoir surface area has decreased by 0.7 acre, or about 1.1 percent, and the reservoir capacity has decreased by 46.9 acre-feet, or about 5.7 percent over a 40-year period. Sediment thickness determined with seismic profiling ranged from 0 to 4.0 feet and averaged 0.7 foot, with lesser thicknesses in the deeper parts of the reservoir and greater thicknesses near the deltas. Probe-determined sediment thickness ranged from 1.0 to 4.4 feet and averaged 2.8 feet near the Blue River delta and ranged from 0.3 to 6.0 feet and averaged 3.6 feet near the Indiana Creek delta. Approximately 47.5 acre-feet of sediment has accumulated in Goose Pasture Tarn and in the Blue River and Indiana Creek deltas, or an average of 1.19 acre-feet per year. Sediment cores from several locations in the reservoir showed stratification, which is indicative of different depositional dates or mechanisms. Metal and trace-constituent levels from the cores were compared with three standards. Silver, cadmium, europium, lead, and zinc were present in greater concentrations than Southern Rocky Mountain background levels in four sediment cores, and cadmium, lead, and zinc levels also were equal to or exceeded the Threshold Effect Concentration standards. Lead exceeded the Probable Effect Concentration standard in silt from the Blue River delta and deep water near the north shore. Tin was present in greater concentrations than Southern Rocky Mountain background levels in deep water near the east shore, and chromium and copper levels were equal to or exceeded the Threshold Effect Concentration standards in these cores.
Sub-basaltic Imaging of Ethiopian Mesozoic Sediments Using Surface Wave Dispersion
NASA Astrophysics Data System (ADS)
Mammo, T.; Maguire, P.; Denton, P.; Cornwell, D.
2003-12-01
The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) involved the deployment of a 400km NW-SE cross-rift profile across the Main Ethiopian Rift. The profile extended to about 150km on either side of the rift over the uplifted Ethiopian plateau characterized by voluminous Tertiary flood basalts covering a thick sequence of Mesozoic sediments. These consist of three major stratigraphic units, the Cretaceous Upper Sandstone (medium grained, friable and moderately to well-sorted) overlying the Jurassic Antalo limestone (with intercalations of marl, shale, mudstone and gypsum) above the Triassic Adigrat sandstone. These sediments are suggested to be approximately 1.5km thick at the north-western end of the profile, thickening to the south-east. They are considered a possible hydrocarbon reservoir and therefore crucial to the economy of Ethiopia. The EAGLE cross-rift profile included the deployment of 97 Guralp 6TD seismometers (30sec - 80Hz bandwidth) at a nominal 5km spacing. A 5.75 tonne explosion from the Muger quarry detonated specifically for the EAGLE project generated the surface waves used in this study. Preliminary processing involving the multiple filter technique has enabled the production of group velocity dispersion curves. These curves have been inverted to provide 1-D shear wave models, with the intention of providing an in-line cross-rift profile of Mesozoic sediment thickness. Preliminary results suggest that the sediments can be distinguished from both overlying plateau basalt and underlying basement, with their internal S-wave velocity structure possibly indicating that the three sediment units described above can be separately identified.
Deciphering Depositional Signals in the Bed-Scale Stratigraphic Record of Submarine Channels
NASA Astrophysics Data System (ADS)
Sylvester, Z.; Covault, J. A.
2017-12-01
Submarine channels are important conduits of sediment transfer from rivers and shallow-marine settings into the deep sea. As such, the stratigraphic record of submarine-channel systems can store signals of past climate- and other environmental changes in their upstream sediment-source areas. This record is highly fragmented as channels are primarily locations of sediment bypass; channelized turbidity currents are likely to leave a more complete record in areas away from and above the thalweg. However, the link between the thick-bedded axial channel deposits that record a small number of flows and the much larger number of thin-bedded turbidites forming terrace- and levee deposits is poorly understood. We have developed a relatively simple two-dimensional model that, given a number of input flow parameters (mean velocity, grain size, duration of deposition, flow thickness), predicts the thickness and composition of the turbidite that is left behind in the channel and in the overbank areas. The model is based on a Rouse-type suspended sediment concentration profile and the Garcia-Parker entrainment function. In the vertical direction, turbidites tend to rapidly become thinner and finer-grained with height above thalweg, due to decreasing concentration. High near-thalweg concentrations result in thick axial beds. However, an increase in flow velocity can result in high entrainment and no deposition at the bottom of the channel, yet a thin layer of sand and mud is still deposited higher up on the channel bank. If channel thalwegs are largely in a bypass condition, relatively minor velocity fluctuations result in a few occasionally preserved thick beds in the axis, and numerous thin turbidites - and a more complete record - on the channel banks. We use near-seafloor data from the Niger Delta slope and an optimization algorithm to show how our model can be used to invert for likely flow parameters and match the bed thickness and grain size of 100 turbidites observed in a core taken from a slope channel terrace.
NASA Astrophysics Data System (ADS)
Yang, C.; Wang, T.; Chen, Z.
2016-12-01
Separate interpretation of the evidence on tectonic, sedimentology or climate is insufficient to reappear the dynamic process of the evolution of the Earth surface, thus, tectonic, sedimentology and climate should be considered as a coupled system. Thick carbonate succession is overlaying on the paleo-uplift which is divided into two parts by a fluted belt in the center of Sichuan Basin. Sinian carbonate rocks is commonly composed by algae dolomite, while at the top of the Sinian succession the rocks had experienced meteoric karstification. Grain dolostones, fine-grained siliciclastic sandstones with mudstone appeare as the regional sediment of Cambrian. However, extraordinary thick mudstone had settled in the fluted belt, and the succession could be divided in to siliciclastic mud of the lower and clay-carbonate mud of the upper. The geochemistry and well log synthesized profile of Z4 well indicate that the chemical condition of siliciclastic mud and clay-carbonate mud had changed from oxidation to reduction, however the siliciclastic mud only appeared within the fluted belt. The fluted belt does not exist on the map of the gravity anomaly, but it had been convinced by the seismic data. The precursor of the fluted belt might be a sag within the platform basement, while with the sea level gradually raising up, the growth of algal mound exacerbated the geomorphology difference. Then a regression had happened at the end of the Sinian, starved all the algae and caused weather crust. Meanwhile, the fluted belt became a closed lagoon, received the sediment including algal mound fragment and biosilic crystals. Afterwards, rapidly increasing of the sea level deposited thick cay-carbonate mud that could be recognized as the sediment of maximum flooding surface. Then with the sea level decreasing, siliciclastic sandstones and inorganic grain carbonate became the main petrology of the Cambrian strata. Fine-grained eolian siliciclastic sandstones within the Cambrian carbonate indicate the influence of the continent, but this terrigenous clastics not exist in Sinian carbonate because the location of the platform moved closer to the continent in Cambrian. Meanwhile, there is no algal within Cambrian carbonate, it means the platform might drift to inhospitable place for the algal during the period.
NASA Astrophysics Data System (ADS)
Nanson, Rachel A.; Nanson, Gerald C.; Huang, He Qing
2010-04-01
At-a-station and bankfull hydraulic geometry analyses of peatland channels at Barrington Tops, New South Wales, Australia, reveal adjustments in self-forming channels in the absence of sediment load. Using Rhodes ternary diagram, comparisons are made with hydraulic geometry data from self-forming channels carrying bedload in alluvial settings elsewhere. Despite constraints on channel depths caused at some locations by the restricted thickness of peat, most stations have cohesive, near-vertical, well-vegetated banks, and width/depth (w/d) ratios of ∼ 2 that are optimal for sediment-free flow. Because banks are strong, resist erosion and can stand nearly vertical, and depth is sometimes constrained, adjustments to discharge are accommodated largely by changes in velocity. These findings are consistent with the model of maximum flow efficiency and the overarching least action principle in open channels. The bankfull depth of freely adjusting laterally active channels in clastic alluvium is well known to be related to the thickness of floodplain alluvium and a similar condition appears to apply to these swamps that grow in situ and are formed almost entirely of organic matter. The thickness of peat in these swamps rarely exceeds that required to form a bankfull channel of optimum w/d ratio for the transport of sediment-free water. Swamp vegetation is highly dependent on proximity to the water table. To maintain a swamp-channel and associated floodplain system, the channels must flow with sufficient water much of the time; they not only offer an efficient morphology for flow but do so in a way that enables bankfull conditions to occur many times a year. They also prevent the swamp from growing above a level linked to the depth of the channel. Once the channel attains the most efficient cross section, further growth of the swamp vertically is restricted by enhanced flow velocities and limited flow depths. This means that the volume of peat in such swamps is determined by the hydraulic efficiency of their channels. The development and maintenance of the hydraulic geometry of these swamp channels is biogeomorphic and biohydraulic in nature and yet accords to the same optimising principles that govern the formation of self-adjusting channels and floodplains in clastic alluvium.
Effect of Various Interface Thicknesses on the Behaviour of Infilled frame Subjected to Lateral Load
NASA Astrophysics Data System (ADS)
Senthil, K.; Muthukumar, S.; Rupali, S.; Satyanarayanan, K. S.
2018-03-01
Two dimensional numerical investigations were carried out to study the influence of interface thickness on the behaviour of reinforced concrete frames subjected to in-plane lateral loads using commercial finite element tool SAP 2000. The cement mortar, cork and foam was used as interface material and their effect was studied by varying thicknesses as 6, 8, 10, 14 and 20 mm. The effect of lateral loads on infill masonry wall was also studied by varying arbitrary loads as 10, 20, 40 and 60 kN. The resistance of the frame with cement mortar was found maximum with the interface thickness 10 mm therefore, it is concluded that the maximum influence of interface thickness of 10 mm was found effective. The resistance of integral infill frame with cork and foam interface was found maximum with the interface thickness 6 mm and it is concluded that 6 mm thick interface among the chosen thickness was found effective.
Late Pliocene-Pleistocene environments and glacial history of the northern North Sea
NASA Astrophysics Data System (ADS)
Reinardy, Benedict T. I.; Hjelstuen, Berit O.; Sejrup, Hans Petter; Augedal, Hans; Jørstad, Arild
2017-02-01
Based on new geochronological (amino acids and Sr-isotopes) and lithological data combined with analyses of 3D seismic data, the Pliocene-Pleistocene development of the central northern North Sea has been investigated. At the start of the Plio-Pleistocene Transition the study area was dominated by a deltaic, shallow marine or tidal depositional environment with sediments mainly sourced from the west. These sand-rich sediments include green glauconitic grains that belong to the Utsira Sand with a local provenance. Directly above the base Quaternary (R2) a 60 m thick layer of mud-rich sediments of glacimarine origin were deposited at a rate of ∼12 cm/ka between ∼2-1.5 Ma and up to 80 cm/ka between 1.5 and 1.2 Ma possibly reflecting glacial ice advancing to the Norwegian coastline. The high rate of deposition in the Early Pleistocene occurred immediately before the initiation of the Norwegian Channel Ice Stream at ∼1.1 Ma. Following this, a large part of the sediment input from Fennoscandia seems to have been directed away from the study area to the shelf break. At the start of the Mid Pleistocene Transition (MPT), subaerial conditions allowed the formation of a >50 km long fluvial channel across the study area draining water from the east to the south west. The earliest evidence of grounded ice in the investigated area comes from mega scale glacial lineations formed during the MPT, at or just after ∼1.2 Ma. Following this, a regional unconformity (R4) was formed by one or more grounded ice advances across the study area possibly during or directly after the MPT and likely marks the boundary between the Early and Mid Pleistocene glacimarine sediments. The Mid to Late Pleistocene stratigraphy is dominated by glacimarine sediments and tills and is associated with multiple generations of tunnel valleys observed within the seismic data. A high shear strength till containing chalk clasts transported from the west and/or south of the study area was likely deposited during MIS6 and may have been more conducive to tunnel valley formation in comparison to lower shear strength tills deposited by later ice advances. A thick till unit overlain by a sand layer in the study area was deposited by grounded ice during the Last Glacial Maximum and subsequent drainage of an ice dammed lake in the southern North Sea during the last deglaciation (MIS2) of the study area. This study shows that much of the Quaternary age sediments within the northern North Sea were deposited relatively rapidly during short periods of time probably leaving significant hiatuses within the stratigraphic record. This finding has implications for previous studies that use a chronological framework assuming a relatively continuous sedimentation rate and record for the Early Pleistocene within the North Sea.
[Characteristic of ammonia nitrogen adsorption on karst underground river sediments].
Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui
2011-02-01
Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions and pollution history. The other reason maybe the article is lack of research on pH, salinity and others factors which may affect adsorption and desorption.
Multiple time scale analysis of sediment and runoff changes in the Lower Yellow River
NASA Astrophysics Data System (ADS)
Chi, Kaige; Gang, Zhao; Pang, Bo; Huang, Ziqian
2018-06-01
Sediment and runoff changes of seven hydrological stations along the Lower Yellow River (LYR) (Huayuankou Station, Jiahetan Station, Gaocun Station, Sunkou Station, Ai Shan Station, Qikou Station and Lijin Station) from 1980 to 2003 were alanyzed at multiple time scale. The maximum value of monthly, daily and hourly sediment load and runoff conservations were also analyzed with the annually mean value. Mann-Kendall non-parametric mathematics correlation test and Hurst coefficient method were adopted in the study. Research results indicate that (1) the runoff of seven hydrological stations was significantly reduced in the study period at different time scales. However, the trends of sediment load in these stations were not obvious. The sediment load of Huayuankou, Jiahetan and Aishan stations even slightly increased with the runoff decrease. (2) The trends of the sediment load with different time scale showed differences at Luokou and Lijin stations. Although the annually and monthly sediment load were broadly flat, the maximum hourly sediment load showed decrease trend. (3) According to the Hurst coefficients, the trend of sediment and runoff will be continue without taking measures, which proved the necessary of runoff-sediment regulation scheme.
NASA Astrophysics Data System (ADS)
Filipponi, Federico; Zucca, Francesco; Taramelli, Andrea; Valentini, Emiliana
2015-12-01
Monitoring sediment fluxes patterns in coastal area, like dispersion, sedimentation and resuspension processes, is a relevant topic for scientists, decision makers and natural resources management. Time series analysis of Earth Observation (EO) data may contribute to the understanding and the monitoring of processes in sedimentary depositional marine environment, especially for shallow coastal areas. This research study show the ability of optical medium resolution imagery to interpret the evolution of sediment resuspension from seafloor in coastal areas during intense wind forcings. Intense bora wind events in northern Adriatic Sea basin during winter season provoke considerable wave-generated resuspension of sediments, which cause variation in water column turbidity. Total Suspended Matter (TSM) product has been selected as proxy for qualitative and quantitative analysis of resuspended sediments. In addition, maximum signal depth (Z90_max), has been used to evaluate the evolution of sediment concentration in the water column.
Recycling of Pleistocene valley fills dominates 125 ka of sediment flux, upper Indus River
NASA Astrophysics Data System (ADS)
Munack, Henry; Blöthe, Jan Henrik; Fülöp, Réka-Hajnalka; Codilean, Alexandru T.; Fink, David; Korup, Oliver
2016-04-01
Rivers draining the semiarid Transhimalayan Ranges along the western Tibetan Plateau margin underwent alternating phases of massive valley infill and incision in Pleistocene times. The imprints of these cut-and-fill cycles on long-term sediment fluxes have remained largely elusive. We investigate the timing and geomorphic consequences of headward incision of the Zanskar River, which taps the vast More Plains valley fill that currently impedes drainage of the endorheic high-altitude basins of Tso Kar and Tso Moriri. In situ 10Be exposure dating and topographic analyses indicate that a phase of valley infill gave way to net dissection of the >250-m thick sedimentary stacks ˜125 ka ago, i.e. during the last interglacial (MIS 5e). Rivers eroded >14.7 km3 of sediment from the Zanskar headwaters since then, fashioning specific sediment yields that surpass 10Be-derived denudation rates from neighbouring catchments by factors of two to ten. We conclude that recycling of Pleistocene valley fills has provided Transhimalayan headwater rivers with more sediment than bedrock denudation, at least since the beginning of the last glacial cycle. This protracted liberation of sediment stored in thick valley fills could bias rate estimates of current sediment loads and long-term bedrock denudation.
NASA Astrophysics Data System (ADS)
Scholl, D. W.; Kirby, S. H.; Keranen, K. M.; Wells, R. E.; Blakely, R. J.; Michael, F.; von Huene, R.
2007-12-01
HABITATS OF GREAT OFFSHORE EARTHQUAKES: High-magnitude earthquakes (Mw = or >8.5) and trans- oceanic tsunamis commonly nucleate along subduction zones (SZ) bordered by laterally continuous, sediment- flooded trenches. Examples include: south-central Chile (1960 Mw=9.5), eastern Alaska (1964 Mw=9.2), Sumatra (2004, Mw=9.1), Cascadia (historic 1700 Mw=9.0), Colombia (1906 Mw=8.8), Sumatra (historic 1883, Mw=8.8), west-central Aleutian (1965 Mw=8.7), central Aleutian (1986, Mw=8.7), Sumatra (2005 Mw=8.6), and Nankai (historic 1707, Mw=8.5). In thickness, sediment entering these SZ ranges from 2 to 3 km and the column is axially continuous for more than 800 km. The depositional pile is typically the clastic beds of a trench-axis turbidite wedge and underlying fan and abyssal plain deposits that accrued seaward of the trench axis. Great rupture events also occur at subduction zones receiving little sediment, for example the Kamchatka (1952, Mw=9.0) and the north Chile SZs (historic 1868 Mw=8.9). Both SZs are areas of rapid upper plate thinning, subsidence, and truncation effected by subduction erosion. WORKINGS OF THE SUBDUCTION CHANNEL (SC): Beneath the submerged forearc, the SC functions to transport subducted ocean floor sediment and tectonically eroded forearc debris toward and into the mantle. The SC is the lowest structural unit containing upper plate crustal material. It hosts the seismogenic zone, which probably runs along the SC's upper boundary commonly referred to as the interplate decollement. A thick, laterally continuous SC structurally smoothes or simplifies the surface of the interplate decollement and sets up conditions for lengthy, high moment-release ruptures. Maximum slip is commonly concentrated beneath the thinned crust underlying forearc basins. These structures, in positive feed-back, are likely deepened co- seismically by high-slip-rate enhanced basal subduction erosion. The detached material lowers the effective stress on the decollement and further evens this interface. The channel also works tectonically to underplate the base of the inner margin and induce uplift and co-seismic activation of high-angle reverse faults. CONSEQUENCES OF WHAT IS FED SUBDUCTION ZONES: Ridges and high relief entering the SZ can act to arrest lateral rupturing. Supplying sedimentary and erosional debris to the subduction channel appears to act differently and favors the continuation of rupture, rapid slip beneath crustally thinned areas that can be translated upward at forearc splay faults to generate trans-oceanic tsunamis, and nearshore reverse-fault can spawn near- field tsunamis. The potential for great earthquake nucleation along thickly sediment SZs must be set high. Similarly, seismogenic risk for highly erosional SZ little perturbed by subducting relief must also be set high. Margins undergoing rapid tectonic erosion produce regional tsunamis but perhaps not trans-oceanic waves of great destructiveness.
Preliminary appraisal of the hydrology of the Blocker area, Pittsburg County, Oklahoma
Marcher, Melvin V.; Bergman, D.L.; Stoner, J.D.; Blumer, S.P.
1981-01-01
Bedrock in the Blocker area of southeastern Oklahoma consists principally of shale, siltstone, and sandstone of the Boggy and Savanna Formations of Pennsylvanian age. These rocks have been folded to form the Panther Mountain syncline on the south and the Kinta anticline on the north. Alluvium along streams is less than 15 feet thick and consists mainly of sandy silt. Water in bedrock is under artesian conditions. Well depths range from 11 to 213 feet and average 75 feet. In 86% of the wells measured, the water level was less than 30 feet below the land surface. Because the rocks have minimal permeability, well yields probably are less than 5 gallons per minute. Ground water is commonly a mixed cation bicarbonate type with dissolved solids ranging from about 300 to 2,000 milligrams per liter. No relationship between water chemistry and well depth or geographic distribution is apparent. Streams in the area are ephemeral and there are extended periods of no flow. Blue Creek was dry 30% of the time during 1976-80 and had flows of less than 0.1 cubic foot per second for at least 80 consecutive days. Stream water is generally a mixed cation sulfate type. The maximum dissolved-solids concentration determined in stream water was 3670 milligrams per liter. Maximum suspended sediment discharge, in tons per day, was about 235 for Blue Creek, 40 for Blue Creek tributary, and 630 for Mathuldy Creek. Silt-clay particles (diameters less than 0.062 millimeter) are the dominant sediment size. Surface mining for coal undoubtedly will have some effect on the environment. The most likely deleterious effects are increased sediment loads in streams and increased mineralization of stream waters. However, these effects should be of only limited extent and duration if appropriate mining and reclamation practices are followed. (USGS)
Chemistry of the Marlboro Clay in Virginia and Implications for the Paleocene-Eocene Thermal Maximum
NASA Astrophysics Data System (ADS)
Zimmer, M.; Cai, Y.; Corley, A.; Liang, J. A.; Powars, D.; Goldstein, S. L.; Kent, D. V.; Broecker, W. S.
2017-12-01
The Paleocene-Eocene Thermal Maximum (PETM) was a global hyperthermal ( 5ºC warming) event marked by a rapid carbon isotope excursion (CIE) of >1‰ in the marine carbonate record (e.g. Zeebe et al. Nature Geoscience 2009). Possible explanations for the CIE include intrusion of a sill complex into organic carbonate (Aarnes et al. J. Geol. Soc. 2015), dissolution of methane hydrates (Thomas et al. Geology 2002), and a comet impact event (Schaller et al. Science 2016). Here we present new data across the PETM from the VirginiaDEQ-USGS Surprise Hill (SH) core, Northumberland Co., VA. We analyzed the Marlboro Clay, a thick, kaolinite-rich clay unit that marks the initiation of the PETM in the mid-Atlantic Coastal Plain of North America, as well as units above and below it. Bulk sediment records a δ13C excursion of approximately -5‰ across the CIE, while benthic foraminifera (Cibicidoides spp.) record a synchronous excursion of approximately -4.5‰. These results are consistent with other records from the New Jersey Coastal Plain (Makarova et al. Paleoceanography 2017). The excursion coincides with an increase in magnetic susceptibility, a decrease in bulk CaCO3 content, and an 2.5‰ decrease of δ18O in both the bulk sediment and benthic foraminifera of the SH core. Pb isotope analyses of the <63 μm fraction sediments indicate a unique provenance make-up for the Marlboro Clay. The results of the study thus indicate that PETM Marlboro Clay was not generated simply by intensified weathering of the same source area as the underlying Aquia Formation and overlying Nanjemoy Formation. Any hypothesis that aims to explain the mechanism that triggered the PETM must also account for the observed distinct provenance make-up of the Marlboro Clay.
NASA Astrophysics Data System (ADS)
Weber, M. E.; Reichelt, L.; Kuhn, G.; Thurow, J. W.; Ricken, W.
2009-12-01
We present software-based tools for rapid and quantitative detection of sediment lamination. The BMPix tool extracts color and gray-scale curves from images at ultrahigh (pixel) resolution. The PEAK tool uses the gray-scale curve and performs, for the first time, fully automated counting of laminae based on three methods. The maximum count algorithm counts every bright peak of a couplet of two laminae (annual resolution) in a Gaussian smoothed gray-scale curve. The zero-crossing algorithm counts every positive and negative halfway-passage of the gray-scale curve through a wide moving average. Hence, the record is separated into bright and dark intervals (seasonal resolution). The same is true for the frequency truncation method, which uses Fourier transformation to decompose the gray-scale curve into its frequency components, before positive and negative passages are count. We applied the new methods successfully to tree rings and to well-dated and already manually counted marine varves from Saanich Inlet before we adopted the tools to rather complex marine laminae from the Antarctic continental margin. In combination with AMS14C dating, we found convincing evidence that the laminations from three Weddell Sea sites represent true varves that were deposited on sediment ridges over several millennia during the last glacial maximum (LGM). There are apparently two seasonal layers of terrigenous composition, a coarser-grained bright layer, and a finer-grained dark layer. The new tools offer several advantages over previous tools. The counting procedures are based on a moving average generated from gray-scale curves instead of manual counting. Hence, results are highly objective and rely on reproducible mathematical criteria. Since PEAK associates counts with a specific depth, the thickness of each year or each season is also measured which is an important prerequisite for later spectral analysis. Since all information required to conduct the analysis is displayed graphically, interactive optimization of the counting algorithms can be achieved quickly and conveniently.
Fluvial sediment and chemical quality of water in the Little Blue River basin, Nebraska and Kansas
Mundorff, J.C.; Waddell, K.M.
1966-01-01
The Little Blue River drains about 3,37)0 square miles in south-central Nebraska and north-central Kansas. The uppermost bedrock in the basin is limestone and shale of Permian age and sandstone, shale, and limestone of Cretaceous age. Bedrock is exposed in many places in the lower one-third of the basin but elsewhere is buried beneath a thin to thick mantle of younger sediments, mostly of Quaternary age. These younger sediments are largely fluvial and eolian deposits but also include some glacial till. Consisting in large part of sand and gravel, the fluvial deposits are an important source of ground-water supplies throughout much of the upper two-thirds of the basin. Loess, an eolian deposit of clayey silt, is by far the most widespread surficial deposit. The climate is continental. Temperatures ranging from -38 ? F to 118 ? F have been recorded in the basin. Average annual precipitation as low as 10.31 and as high as 49.32 inches has been recorded. During most years in the period 1956-62, when nearly all the water-quality data were obtained, annual precipitation and annual runoff were greater than normal. Flow-duration data indicate, however, that the flow distribution for the period was near normal. The Little Blue River has the same suspended-sediment characteristics as nearly all unregulated streams in the Great Plains--a wide range in concentrations, low concentrations during low-flow periods, and high concentrations during almost all periods of significant overland runoff. The maximum instantaneous concentration normally occurs many hours before maximum water discharge during any given rise in stage; the maximum daily mean concentration during any given year normally occurs at a moderate stream stage, not during a major flood. Suspended-sediment data for Little Blue River near Deweese, Nebr., which receives drainage from the upstream third of the basin, approximately, show that during the 1!}57-61 water years concentrations of 100 ppm (parts per million) or less prevailed about 42 percent of the time and concentrations of 1,000 ppm or less prevailed about 85 percent of the time. Observed concentrations ranged from 2 to 21,000 ppm: daily mean concentrations ranged from 2 to 13,800 ppm. The discharge-weighted suspended-sediment concentration was computed as about 2,800 ppm at Little Blue River near Deweese, about 3,300 ppm near Fairbury (Endicott), and about 3,000 ppm at Waterville. These stations receive drainage from about one-third, two-thirds, and nearly all the basin, respectively. Water-utilization problems resulting from high concentrations are not significant in the basin ; use of water from the Little Blue River is quantitatively negligible. Concentrations and, consequently, discharges of sediment are greater at a given water discharge on a rising stage than at the same discharge on the falling stage of the same runoff event. Also, a wide range in sediment discharge occurs at similar water discharges during different runoff events. Daily sediment discharges at Little Blue River near Deweese ranged from about 1,400 to 16,000 tons at daily mean water discharges of about 500 cfs (cubic feet per second) and from almost 7,500 to 28,000 tons at water discharges of about 1,000 cfs. The estimated long-term sediment discharge at Little Blue River near Deweese is about 400,000 tons per year: near Fairbury, about 1,200,000 tons per year: and at Waterville, about 1.900,000 tons per year. The high sediment discharge from the downstream part of the basin is due to greater precipitation and runoff--not to higher concentrations of suspended sediment--in the downstream parts of the basin. Nearly all the suspended sediment is silt and clay. The streambed material is mainly medium sand to gravel. The median particle size of bed material observed was about 0.73 mm near Deweese and about 0.77 mm near Fairbury. A few computations of total sediment discharge of Little Blue River near Deweese indicate that suspended-sedim
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syuhada, E-mail: hadda9@gmail.com; Research Centre for Physics - Indonesian Institute of Sciences; Hananto, Nugroho D.
2015-04-24
We analyzed receiver functions to estimate the crustal thickness and velocity structure beneath two stations of Geofon (GE) network in the Sunda-Banda arc transition zone. The stations are located in two different tectonic regimes: Sumbawa Island (station PLAI) and Timor Island (station SOEI) representing the oceanic and continental characters, respectively. We analyzed teleseismic events of 80 earthquakes to calculate the receiver functions using the time-domain iterative deconvolution technique. We employed 2D grid search (H-κ) algorithm based on the Moho interaction phases to estimate crustal thickness and Vp/Vs ratio. We also derived the S-wave velocity variation with depth beneath both stationsmore » by inverting the receiver functions. We obtained that beneath station PLAI the crustal thickness is about 27.8 km with Vp/Vs ratio 2.01. As station SOEI is covered by very thick low-velocity sediment causing unstable solution for the inversion, we modified the initial velocity model by adding the sediment thickness estimated using high frequency content of receiver functions in H-κ stacking process. We obtained the crustal thickness is about 37 km with VP/Vs ratio 2.2 beneath station SOEI. We suggest that the high Vp/Vs in station PLAI may indicate the presence of fluid ascending from the subducted plate to the volcanic arc, whereas the high Vp/Vs in station SOEI could be due to the presence of sediment and rich mafic composition in the upper crust and possibly related to the serpentinization process in the lower crust. We also suggest that the difference in velocity models and crustal thicknesses between stations PLAI and SOEI are consistent with their contrasting tectonic environments.« less
NASA Astrophysics Data System (ADS)
Tang, H.; Weiss, R.
2016-12-01
GeoClaw-STRICHE is designed for simulating the physical impacts of tsunami as it relates to erosion, transport and deposition. GeoClaw-STRICHE comprises GeoClaw for the hydrodynamics and the sediment transport model we refer to as STRICHE, which includes an advection diffusion equation as well as bed-updating. Multiple grain sizes and sediment layers are added into GeoClaw-STRICHE to simulate grain-size distribution and add the capability to develop grain-size trends from bottom to the top of a simulated deposit as well as along the inundation. Unlike previous models based on empirical equations or sediment concentration gradient, the standard Van Leer method is applied to calculate sediment flux. We tested and verified GeoClaw-STRICHE with flume experiment by Johnson et al. (2016) and data from the 2004 Indian Ocean tsunami in Kuala Meurisi as published in Apotsos et al. (2011). The comparison with experimental data shows GeoClaw-STRICHE's capability to simulate sediment thickness and grain-size distribution in experimental conditions, which builds confidence that sediment transport is correctly predicted by this model. The comparison with the data from the 2004 Indian Ocean tsunami reveals that the pattern of sediment thickness is well predicted and is of similar quality, if not better than the established computational models such as Delft3D.
NASA Astrophysics Data System (ADS)
Shillington, D. J.; Becel, A.; Nedimovic, M. R.; Li, J.; Kuehn, H.; Webb, S. C.; Abers, G. A.; Keranen, K. M.; Saffer, D. M.
2014-12-01
Downdip and along-strike changes in slip behavior at subduction zones are often attributed to changes in the properties of the megathrust. Here we review information on the subduction megathrust offshore of the Alaska Peninsula from MCS reflection and wide-angle seismic data acquired in 2011 during the Alaska Langseth Experiment to Understand the megaThrust (ALEUT) program, and compare them with constraints from other data and experiments. This region encompasses the full spectrum of coupling: 1) the weakly coupled Shumagin Gap; 2) the Semidi segment, which last ruptured in the 1938 M8.2 event, appears to be locked at present, and 3) the western Kodiak asperity, which marked the western extent of the 1964 M9.2 rupture and also appears to be locked. Our data reveal substantial along-strike variations in incoming sediment thickness and plate structure and along-strike and downdip variations in megathrust reflection characteristics. Over 1 km of sediment is observed on the incoming oceanic plate in the Semidi segment prior to subduction, and a relatively thick and continuous layer interpreted as subducted sediment can be imaged at the plate boundary here up to ~50 km from the trench . In the Shumagin Gap, where the incoming sediment section is half as thick and more pervasively faulted at the outer rise, a subducting sediment layer is also observed but it is thinner, less continuous and is not observed to continue as far from the trench. ,Although the Semidi segment is capable of producing great earthquakes, the comparatively thick sediment here may contribute to the relative paucity of seismicity compared with adjacent segments. At greater depths, simple and bright reflections are generally observed at depths of ~12-25 km, ~40-100 km from the trench, within the center of the estimated locked zone. The character changes where the megathrust appears to intersect the forearc mantle wedge to a wide (~2 km thick), bright band of reflections and may arise from a change in deformation style, distribution of fluids, and/or plate boundary properties. Although the overall patterns in reflection characteristics are consistent between profiles across different segments, this transition in reflection characteristics occurs at larger distances from the trench within the Semidi segment than in the Shumagin Gap.
NASA Astrophysics Data System (ADS)
Stoecklin, A.; Friedli, B.; Puzrin, A. M.
2017-11-01
The volume of submarine landslides is a key controlling factor for their damage potential. Particularly large landslides are found in active sedimentary regions. However, the mechanism controlling their volume, and in particular their thickness, remains unclear. Here we present a mechanism that explains how rapid sedimentation can lead to localized slope failure at a preferential depth and set the conditions for the emergence of large-scale slope-parallel landslides. We account for the contractive shearing behavior of the sediments, which locally accelerates the development of overpressures in the pore fluid, even on very mild slopes. When applied to the Santa Barbara basin, the mechanism offers an explanation for the regional variation in landslide thickness and their sedimentation-controlled recurrence. Although earthquakes are the most likely trigger for these mass movements, our results suggest that the sedimentation process controls the geometry of their source region. The mechanism introduced here is generally applicable and can provide initial conditions for subsequent landslide triggering, runout, and tsunami-source analyses in sedimentary regions.
Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples
Morton, Robert A.; Gelfenbaum, Guy; Jaffe, Bruce E.
2007-01-01
Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity. Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally 30 cm thick, generally extend The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly
The Northeast Greenland Shelf - Evidence of the existence of a pronounced salt-province
NASA Astrophysics Data System (ADS)
Schmitz, T.; Jokat, W.
2003-04-01
The Northeast Greenland shelf (NEGS) is the part of the continental margin of east Greenland located between the Jan Mayen Fracture Zone at about 72°N in the south and the Spitzbergen Fracture Zone at 81°N in the north. The eastern boundary, at the shelf edge, is the approximate position of the boundary between continental and oceanic crust and the western boundary is the coastline of Greenland. The shelf has a N-S orientation, is about 1000 km long, and between 125 km (southern part) and 380 km (at 78°N) wide. Based on present data the NEGS can be subdivided into a southern part influenced by Tertiary tectonism and volcanism (approx. 72°N to 75°N) and a northern, nonvolcanic, part (approx. 75°N to 81°N). Today the sedimentary history, stratigraphy, structure and origin of the basement below the sedimentary shelf south of 74°N are reasonable known, but only sparse information exists about the northern part of the shelf. Until 1990 there weren't any seismic lines north of 74°N, and all interpretations of stratigraphy and basin structures of the northern part of the NEGS were based on aeromagnetic data. During the last decade, the first seismic lines were shot over the northern part of the shelf to give more detailed information about sediment thickness, stratigraphy, and the structure of the sedimentary shelf. The area under investigation lies on the nonvolcanic northern part of the shelf between 78°30'N and 81°N. The sea floor topography indicates some submarine banks with water depth as shallow as 30 m, which are separated by valleys up to 500 m deep. These valleys were formed through erosion processes caused by cyclic movements of big grounded glacier tongues during the last ice-ages with a maximum expansion during the Wisconsin-Weichselian glaciation. During two scientific expeditions with the German research icebreaker Polarstern in 1997 and 1999, more than 1100 km of multichannel seismic data were collected. The cruise tracks during seismic measurement were diverted by heavy ice. The seismic equipment consisted of a 64-channel streamer (1600m long), 14 sonobuoys for data acquisition and an airgun cluster with a total volume of 24l (8 VLF airguns) as seismic source. Analysis of the results shows an upper sediment layer of 600 to 1000 m thickness with apparent velocities between 2.5 and 3.8 km/s. A second layer of up to 4600 m thickness has apparent velocities between 4.2 and 5.2 km/s. The sediment thickness increases towards the continental slope. The NEGS appears to be a glacial shaped shelf with intense eroded and compacted sediments near the sea floor which are caused by the cyclic advancement and retreat of the Greenland Ice Sheet. These compacted sediments generate the unusually high apparent velocities right under the sea floor. The seismic records from the shelf are heavily superimposed by sea floor multiples which are due to the overcompacted and very hard sea floor. The seismic reflection lines indicate sedimentary structures which we interpret as a province of salt domes, salt ridges and salt walls which reaches more than 90 km further north than mentioned by Escher and Pulvertaft in 1995. Negative anomalies in the shipborne gravity data as well as satellite measurements from over the NEGS support this interpretation.
In-Line Ultrasonic Monitoring for Sediments Stuck on Inner Wall of a Polyvinyl Chloride Pipe
2014-01-01
This research verified the applicability and effectiveness of the ultrasonic monitoring of sediments stuck on the inner wall of polyvinyl chloride (PVC) pipes. For identifying the transmittance of acoustic energy and the speed of sound in the PVC material, the pulse-echo ultrasonic testing was conducted for PVC sheets of different thicknesses. To simulate the solidified sediment, the hot melt adhesive (HMA) was covered on the inner wall of the PVC pipe in different heights. From the experiment, the speeds of sound in the PVC and the HMA materials were obtained as about 2258 and 2000 m/s, respectively. The thickness of the materials was calculated through the signal processing such as taking the absolute value and low pass filtering, the echo detection, and the measurement of the time of flight. The errors between actual and measured thicknesses of PVC sheets were below 5%. In the case of the substance stuck on the inner wall, the errors were below 2.5%. Since the pulse-echo ultrasonic inspection is available on the outer surface and its measurement accuracy was over 95%, it can be an efficient and effective in-service structural health monitoring for the sediment on the wall of PVC pipes. PMID:25243223
Brenner, Richard C; Magar, Victor S; Ickes, Jennifer A; Foote, Eric A; Abbott, James E; Bingler, Linda S; Crecelius, Eric A
2004-04-15
Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contaminant transport into the food chain by limiting bioturbation of contaminated surface or near-surface sediments. This study evaluated the natural recovery of surface sediments contaminated with polychlorinated biphenyls (PCBs) at the Sangamo-Weston/Twelvemile Creek/Lake Hartwell Superfund Site (Lake Hartwell), Pickens County, SC. The primary focus was on sediment recovery resulting from natural capping processes. Total PCB (t-PCB), lead-210 (210Pb), and cesium-137 (137Cs) sediment core profiles were used to establish vertical t-PCB concentration profiles, age date sediments, and determine surface sedimentation and surface sediment recovery rates in 18 cores collected along 10 transects. Four upgradient transects in the headwaters of Lake Hartwell were impacted by historical sediment releases from three upgradient sediment impoundments. These transects were characterized by silt/ clay and sand layering. The highest PCB concentrations were associated with silt/clay layers (1.8-3.5% total organic carbon (TOC)), while sand layers (0.05-0.32% TOC) contained much lower PCB concentrations. The historical sediment releases resulted in substantial burial of PCB-contaminated sediment in the vicinity of these four cores; each core contained less than 1 mg/kg t-PCBs in the surface sand layers. Cores collected from six downgradient Lake Hartwell transects consisted primarily of silt and clay (0.91-5.1% TOC) and were less noticeably impacted by the release of sand from the impoundments. Vertical t-PCB concentration profiles in these cores began with relatively low PCB concentrations at the sediment-water interface and increased in concentration with depth until maximum PCB concentrations were measured at approximately 30-60 cm below the sediment-water interface, ca. 1960-1980. Maximum t-PCB concentrations were followed by progressively decreasing concentrations with depth until the t-PCB concentrations approached the detection limit, where sediments were likely deposited before the onset of PCB use at the Sangamo-Weston plant. The sediments containing the maximum PCB concentrations are associated with the period of maximum PCB release into the watershed. Sedimentation rates averaged 2.1 +/- 1.5 g/(cm2 yr) for 12 of 18 cores collected. The 1994 Record of Decision cleanup requirement is 1.0 mg/kg; two more goals (0.4 and 0.05 mg/kg t-PCBs) also were identified. Average surface sedimentation requirements to meet the three goals were 1.4 +/- 3.7, 11 +/- 4.2, and 33 +/- 11 cm, respectively. Using the age dating results, the average recovery dates to meet these goals were 2000.6 +/- 2.7, 2007.4 +/- 3.5, and 2022.7 +/- 11 yr, respectively. (The 95% prediction limits for these values also are provided.) Despite the reduction in surface sediment PCB concentrations, PCB concentrations measured in largemouth bass and hybrid bass filets continue to exceed the 2.0 mg/kg FDA fish tolerance level.
Estuarine methylation of tin and its relationship to the microbial sulfur cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmour, C.C.
This work describes the first quantitative measurement of tin methylation in nature. Central to this research was development of a technique for the determination of methyltin species in sediment with detection limits of about 1 pg per gm dry weight sediment. Methyltin concentrations measured in Chesapeake Bay sediments ranged from 0.005 to 8 ng per gm dry weight sediment, with monomethyltin the predominant species. Estuarine tin methylation occurred only in anoxic, sulfidic sediments and was microbially mediated. Sulfate-reducing bacteria were correlated with methyltin production in sediments, and capable of tin methylation in pure culture without sediment. Conversely, excess sulfide concentrationsmore » inhibited methylation. Sulfate reduction rates and reduced inorganic sulfur distribution between acid-volatile and non-volatile sulfides for Chesapeake sediments were also determined. Monomethyltin was the predominant product of stepwise inorganic tin methylation in sediments and bacterial cultures, with di- and trimethylated tins produced in lesser amounts. Methylation rates based on accumulation of all detectable methyltin species were quite low. Maximum concentrations of methyltins formed were quite low. Maximum concentrations of methyltins formed were 10 ng total methyltins per ml culture, or 4 ng per gm dry weight sediment. Trimethyltin, the most toxic product, was produced in the smallest quantities, never more than 50 pg per gm sediment.« less
Predicting gravity and sediment thickness in Afghanistan
NASA Astrophysics Data System (ADS)
Jung, W.; Brozena, J.; Peters, M.
2013-02-01
The US Naval Research Laboratory conducted comprehensive high-altitude (7 km above mean sea level) aero-geophysical surveys over Afghanistan in 2006 (Rampant Lion I). The surveys were done in collaboration with the US Geological Survey and upon the request of Islamic Republic of Afghanistan Ministry of Mines. In this study, we show that a best fitting admittance between topography and airborne gravity in western Afghanistan can be used to predict airborne gravity for the no-data area of eastern Afghanistan where the mountains are too high to conduct airborne surveys, due to the threat of ground fire. The differences between the airborne and the predicted gravity along a tie-track through the no-data area were found to be within ±12 mGal range with rms difference 7.3 mGal, while those between the predicted gravity from a simple Airy model (with compensation depth of 32 km and crustal density of 2.67 g cm-3) and the airborne gravity were within ±22 mGal range with rms difference 10.3 mGal. A combined airborne free-air anomaly has been constructed by merging the predicted gravity with the airborne data. We also demonstrate that sediment thickness can be estimated for basin areas where surface topography and airborne free-air anomaly profiles do not show a correlation presumably because of thick sediments. In order to estimate sediment thickness, we first determine a simple linear relationship from a scatter plot of the airborne gravity points and the interpolated Shuttle Radar Topography Mission (SRTM) topography along the Rampant Lion I tracks, and computed corresponding quasi-topography tracks by multiplying the linear relationship with the airborne free-air anomalies. We then take the differences between the SRTM and quasi-topography as a first-order estimate of sediment thickness. A global gravity model (GOCO02S), upward continued to the same altitude (7 km above mean sea level) as the data collection, was compared with the low-pass filtered (with cutoff wavelength 132 km which is approximately equivalent to the reported safe degree and order 250 of GOCO02S at 34º N) combined airborne free-air anomalies. The rms difference between the two data sets was 12.4 mGal. The observed admittance in the western Afghanistan mountains appears to be best fit to a theoretical elastic plate compensation model (with an effective elastic thickness of 5 km and crustal thickness of 22 km) where the ratio between surface load and subsurface load is equal.
Simulation of water-table aquifers using specified saturated thickness
Sheets, Rodney A.; Hill, Mary C.; Haitjema, Henk M.; Provost, Alden M.; Masterson, John P.
2014-01-01
Simulating groundwater flow in a water-table (unconfined) aquifer can be difficult because the saturated thickness available for flow depends on model-calculated hydraulic heads. It is often possible to realize substantial time savings and still obtain accurate head and flow solutions by specifying an approximate saturated thickness a priori, thus linearizing this aspect of the model. This specified-thickness approximation often relies on the use of the “confined” option in numerical models, which has led to confusion and criticism of the method. This article reviews the theoretical basis for the specified-thickness approximation, derives an error analysis for relatively ideal problems, and illustrates the utility of the approximation with a complex test problem. In the transient version of our complex test problem, the specified-thickness approximation produced maximum errors in computed drawdown of about 4% of initial aquifer saturated thickness even when maximum drawdowns were nearly 20% of initial saturated thickness. In the final steady-state version, the approximation produced maximum errors in computed drawdown of about 20% of initial aquifer saturated thickness (mean errors of about 5%) when maximum drawdowns were about 35% of initial saturated thickness. In early phases of model development, such as during initial model calibration efforts, the specified-thickness approximation can be a very effective tool to facilitate convergence. The reduced execution time and increased stability obtained through the approximation can be especially useful when many model runs are required, such as during inverse model calibration, sensitivity and uncertainty analyses, multimodel analysis, and development of optimal resource management scenarios.
Coastal Modeling System: Dredging Module
2016-06-01
nonuniform sediments, spatially variable placement thicknesses or depths, and a user-friendly interface within the SMS. ERDC/CHL CHETN-I-90 June...and W. Wu. 2011. Nonuniform sediment transport modeling and Grays Harbor, WA. In Proceedings of the Coastal Sediments’11. Jacksonville, FL. Stark, J
Depositional environments during the Late Palaeozoic ice age (LPIA) in northern Ethiopia, NE Africa
NASA Astrophysics Data System (ADS)
Bussert, Robert
2014-11-01
The Late Palaeozoic sediments in northern Ethiopia record a series of depositional environments during and after the Late Paleozoic ice age (LPIA). These sediments are up to 200 m thick and exceptionally heterogeneous in lithofacies composition. A differentiation of numerous types of lithofacies associations forms the basis for the interpretation of a large range of depositional processes. Major glacigenic lithofacies associations include: (1) sheets of diamictite, either overlying glacially eroded basement surfaces or intercalated into the sediment successions, and representing subglacial tillites, (2) thick massive to weakly stratified muddy clast-poor diamictites to lonestone-bearing laminated mudstones originating from a combination of suspension settling of fines and iceberg rainout, (3) lensoidal or thin-bedded diamictites deposited from debris flows, (4) wedges of traction and gravity transported coarse-grained sediments deposited in outwash fans, (5) irregular wedges or sheets of mudstones deformed primarily by extension and incorporating deformed beds or rafts of other lithofacies formed by slumping, and (6) irregular bodies of sandstone, conglomerate and diamictite deformed by glacial pushing. The dominance of laminated or massive clast-bearing mudstones in most successions indicates ice-contact water bodies as the major depositional environment. Into this environment, coarse-grained sediments were transported by various gravity driven transport processes, including dropstone activity of ice-bergs, slumping, cohesive debris flow, hyperconcentrated to concentrated flow, hyperpycnal flow, and by turbidity flow. Close to glacier termini, wedge-shaped bodies of conglomerate, sandstone, diamictite and mudstone were deposited primarily in subaqueous outwash-fans. Soft-sediment deformation of these sediments either records ice push during glacier advance or re-sedimentation by slumping. Apart from an initial glacier advance when thick ice of temperate or polythermal glaciers covered the whole basin, many sections document at least a second major phase of ice advance and retreat, and some sections additional minor advance-retreat cycles. Whether most of the LPIA sediments in northern Ethiopia were deposited in lakes or in fjords is not yet clear. Although univocal evidence of marine conditions is missing, the presence of carbonate-rich beds and the trace fossil assemblage are compatible with a restricted marine environment such as broad palaeofjords affected by strong freshwater discharge during deglaciation. A restricted marine environment for most of the sediments in northern Ethiopia could challenge models of the LPIA sediments in Arabia as primarily glaciolacustrine and glaciofluviatile deposits.
Anomalous Subsidence at the Ocean Continent Transition of the Gulf of Aden Rifted Continental Margin
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie
2013-04-01
It has been proposed that some rifted continental margins have anomalous subsidence and that at break-up they were elevated at shallower bathymetries than the isostatic response predicted by classical rift models (McKenzie, 1978). The existence of anomalous syn- or early-post break-up subsidence of this form would have important implications for our understanding of the geodynamics of continental break-up and sea-floor spreading initiation. We have investigated subsidence of the young rifted continental margin of the eastern Gulf of Aden, focussing on the western Oman margin (break-up age 17.6 Ma). Lucazeau et al. (2008) have found that the observed bathymetry here is approximately 1 km shallower than the predicted bathymetry. In order to examine the proposition of an anomalous early post break-up subsidence history of the Omani Gulf of Aden rifted continental margin, we have determined the subsidence of the oldest oceanic crust adjacent to the continent-ocean boundary (COB) using residual depth anomaly (RDA) analysis corrected for sediment loading and oceanic crustal thickness variation. RDAs corrected for sediment loading using flexural backstripping and decompaction have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous subsidence of the Gulf of Aden rifted continental margin. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions of Crosby and McKenzie (2009). Non-zero RDAs at the Omani Gulf of Aden rifted continental margin can be the result of non standard oceanic crustal thickness or the effect of mantle dynamic topography or a non-classical rift and break-up model. Oceanic crustal basement thicknesses from gravity inversion together with Airy isostasy have been used to predict a "synthetic" gravity RDA, in order to determine the RDA contribution from non-standard oceanic crustal thickness. Gravity inversion, used to determine crustal basement thickness, incorporates a lithosphere thermal gravity anomaly correction and uses sediment thicknesses from 2D seismic data. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The difference between the sediment corrected RDA and the "synthetic" gravity derived RDA gives the component of the RDA which is not due to variations in oceanic crustal thickness. This RDA corrected for sediment loading and crustal thickness variation has a magnitude between +600m and +1000m (corresponding to anomalous uplift) and is comparable to that reported (+1km) by Lucazeau et al. (2008). We are unable to distinguish whether this anomalous uplift is due to mantle dynamic topography or anomalous subsidence with respect to classical rift model predictions.
NASA Astrophysics Data System (ADS)
Vieira, Ivo; Lobo, Francisco José; Montoya-Montes, Isabel; Siegle, Eduardo; Passos, Jorge Luiz; De Mahiques, Michel Michaelovitch
2018-02-01
São Sebastião Island (SSI) marks the latitudinal boundary between two sedimentological and geochemical provinces in the São Paulo Bight, an arc-shaped sector of the southeastern Brazilian Shelf. The island is separated from the continent by the narrow, deep São Sebastião Channel (SSC). A relatively thick sediment wedge—the São Sebastião Wedge (SSW)—has been formed offshore SSI. This study explores the possible genetic and evolutionary mechanisms of the wedge, bearing in mind that clinoform wedges can form at considerable distances from major fluvial sources. For that, a marine geological database has been interpreted comprising high-resolution seismic data, a surficial sediment map and several sediment cores, from which radiocarbon dates were obtained and sedimentation rates deduced. A wave model was also applied to obtain the dominant wave directions. The SSW is a wedge-shaped deposit, and its internal structure presents three seismic units. The two lowest are wedge shaped and arranged in a backstepping pattern. The most recent unit is mostly aggradational and can be divided into three seismic subunits. Sedimentological data show that at least the most recent unit is composed of a mixture of sands and silts. Modeled wave conditions indicate a major influence from southerly waves that are able to remobilize shelf sediments and to create a bypass sediment zone until the foreset of the deposit is reached at the water depths where the SSW is found. Taken together, these data suggest that the SSW formed through contributions from different sediment sources, and should be regarded as an intermediate case of a non-deltaic clinoform wedge. Sand transport in the area involves wind-driven currents passing through the SSC and sediment remobilization by energetic southerly waves. Fine-grained sediment is derived mostly from the joint contributions of many minor catchments located north of the island, and this sediment is later transported southwestward by the prevailing surface currents. The morphological obstacle presented by the island leads to current veering and subsequent sediment deposition. The internal architecture of the wedge indicates that its deposition was probably initiated during the last part of the postglacial transgression, but its present-day morphology is mostly a product of episodic highstand sedimentation that began under conditions of gently falling sea levels during the last 5 ka, after the Holocene glacio-eustatic maximum.
Development of Miocene-Pliocene reef trend, St. Croix, U. S. Virgin Islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, I.; Eby, D.E.; Hubbard, D.K.
1988-01-01
The Miocene-Pliocene reef trend on St. Croix, U.S. Virgin Islands, rims the present southern western coasts of the island and includes accompanying lagoonal and forereef facies. The reef trend was established on a foram-algal bank facies that represents basinal shallowing from the deep-water pelagic and hemipelagic facies of the Miocene Kingshill Limestone. Information on facies distribution and thickness is derived from rock exposures and 22 test wells drilled to a maximum depth of 91 m. The greatest thickness of the reef facies exists in a subsidiary graben on the south coast of St. Croix. The thickness of the reef sectionmore » in this locality is due to preservation of the section in a downdropped block. Reef faunas include extant corals, as well as several extinct genera. Extant corals (e.g. Montastrea annularis, Diploria sp., and Porites porites) and extinct corals (e.g., Stylophora affinis, Antillea bilobata, and Thysanus sp.) are the main reef frame-builders. Coralline algea and large benthic foraminifera are significant contributors to the sediments both prior to and during scleractinian reef growth. Dolomitization and calcite cementation occur prominantly in an area corresponding to a Holocene lagoon. The spatial distribution of the dolomite suggests that the lagoon is a Tertiary feature directly related to the dolomitization process. Stable isotopic values suggest dolomitization of fluids of elevated salinity.« less
NASA Astrophysics Data System (ADS)
Bever, A. J.; Harris, C. K.; McNinch, J.
2006-12-01
Poverty Bay is a small embayment located on the eastern shore of New Zealand's North Island. The modern Waipaoa River, a small mountainous river that drains highly erodible mudstone and siltstone, discharges ~15 million tons of sediment per year to Poverty Bay. Rates of bay infilling from fluvial sediment have varied since the maximum shoreline transgression, ~7000 kya. The evolving geometry of Poverty Bay has likely impacted sediment dispersal over these timescales, and thereby influenced the stratigraphic architecture, rates of shoreline progradation, and sediment supply to the continental shelf. This modeling study investigates sediment transport within both modern and paleo, ~7000 kya, Poverty Bays. The Regional Ocean Modeling System was used to examine sediment transport within modern and ~7000 kya Poverty Bay basin geometries. The numerical model includes hydrodynamics driven by winds and buoyancy, and sediment resuspension from energetic waves and currents. Strong winds and waves from the southeast were used, along with high Waipaoa freshwater and sediment discharge, consistent with storm conditions. Besides shedding light on short term transport mechanisms, these results are being incorporated into a stratigraphic model by Wolinsky and Swenson. The paleo basin geometry narrowed at the head of the bay, causing currents to converge and promoting near- field sediment deposition. Buoyancy and wind driven across-shelf currents in the modern bay transport sediment away from the river mouth. Sediment was deposited closer to the river mouth in the paleo than the modern bay, and the modern bay exported much more sediment to the continental shelf than predicted for the middle Holocene bay. Net across-shelf fluxes decreased from a maximum at the head of the bay to nearly zero at the mouth during the paleo run. The modern run, however, had net across-shelf fluxes still half the maximum at the bay mouth. Results from short term model runs indicated that, with similar river discharges, the 7000 kya Poverty Bay shoreline should have prograded rapidly as sediment was deposited near the river mouth at the head of the bay, an area of little accommodation space. The trapping of sediment within the bay would have lead to a relatively sediment starved continental shelf. As the river mouth progressed towards the wider section of the bay, progradation should have been reduced as both proximal accommodation space and sediment export to the continental shelf increased.
Shelf evolution along a transpressive transform margin, Santa Barbara Channel, California
Johnson, Samuel Y.; Hartwell, Stephen; Sorlien, Christopher C.; Dartnell, Peter; Ritchie, Andrew C.
2017-01-01
High-resolution bathymetric and seismic reflection data provide new insights for understanding the post–Last Glacial Maximum (LGM, ca. 21 ka) evolution of the ∼120-km-long Santa Barbara shelf, located within a transpressive segment of the transform continental margin of western North America. The goal is to determine how rising sea level, sediment supply, and tectonics combine to control shelf geomorphology and history. Morphologic, stratigraphic, and structural data highlight regional variability and support division of the shelf into three domains. (1) The eastern Santa Barbara shelf is south of and in the hanging wall of the blind south-dipping Oak Ridge fault. The broad gently dipping shelf has a convex-upward shape resulting from thick post-LGM sediment (mean = 24.7 m) derived from the Santa Clara River. (2) The ∼5–8-km-wide Ventura Basin obliquely crosses the shelf and forms an asymmetric trough with thick post-LGM sediment fill (mean = 30.4 m) derived from the Santa Clara and Ventura Rivers. The basin is between and in the footwalls of the Oak Ridge fault to the south and the blind north-dipping Pitas Point fault to the north. (3) The central and western Santa Barbara shelf is located north of and in the hanging wall of the North Channel–Pitas Point fault system. The concave-up shape of the shelf results from folding, marine erosion, and the relative lack of post-LGM sediment cover (mean = 3.8 m). Sediment is derived from small steep coastal watersheds and largely stored in the Gaviota bar and other nearshore mouth bars. Three distinct upper slope morphologies result from a mix of progradation and submarine landsliding.Ages and rates of deformation are derived from a local sea-level-rise model that incorporates an inferred LGM shoreline angle and the LGM wave-cut platform. Post-LGM slip rates on the offshore Oak Ridge fault are a minimum of 0.7 ± 0.1 mm/yr. Slip rates on the Pitas Point fault system are a minimum of 2.3 ± 0.3 mm/yr near Pitas Point, and decrease to the west across the Santa Barbara Channel. Documentation of fault lengths, slip rates, and rupture modes, as well as potential zones of submarine landsliding, provide essential information for enhanced regional earthquake and tsunami hazard assessment.
NASA Astrophysics Data System (ADS)
Yang, R.; Liu, J. T.; Fan, D.; Burr, G.; Lin, H. L.; Chen, T.
2016-02-01
Taiwan is located in the collision zone of two tectonic plates, and receives impacts from the monsoons and typhoons. They contribute to the high sediment load delivered to the sea by small mountainous rivers on this island. The disproportionally large sediment load and the rising sea level constitute a favorable receiving-basin condition for the formation of river deltas. In this study, FATES-HYPERS team drilled two bore-holes on both sides of the Zhuoshui River mouth in central Taiwan. The length of each core was 104m (JRD-S) and 98m (JRD-N). Through AMS 14C dating from over 70 samples in each core a reliable age model was established to reconstruct the paleoenvironment of at the Zhuoshui River mouth during late Quaternary. These transitions indicate that the paleo-river mouth began to develop a transgressive-estuarine system at 10,000 yr BP, when the paleo-river mouth was inundated by the rising sea. The sediments that were come from Zhuoshui River accumulated slower than the sea-level rise. This resulted in gradually deeper environment. The evidence of maximum flooding surface (MFS) suggests transgression progressed until 5700 yr BP. Combined with findings from previous studies the position of MFS display a shallowing trend from the south to north. This implies that the deposition rate in the north was higher than that in the south. Therefore it is reasonable to assume that the paleo-river mouth was located north to the present position. After the sea level became stable, because of large terrestrial sediments discharge the paleo-river mouth was soon switched from a transgressive system to an aggradational delta system. The Zhuoshui River delta, unlike many well-known river delta systems, is limited by the depth of the Taiwan Strait. Shallow water depth and energetic hydrodynamics result in the non-deposition of muddy sediments near the river mouth. This caused the absence of thick muddy prodelta deposits in the upper part of the JRD cores. This caused the absence of thick muddy prodelta deposits in the upper part of the JRD cores. Moreover, the offshore morphology influenced the tidal current that become parallel to the shoreline in a short distance from the shore. The currents enabled the delta to develop a parallel coast tidal ridge at the delta front. This creates a unique depositional model for the Zhuoshui River delta.
NASA Astrophysics Data System (ADS)
Chappell, A.; Kusznir, N. J.
2005-05-01
The southern Rockall Trough south of 57 N has previously been interpreted as either an intra-continental rift floored with highly extended continental crust, or a failed oceanic rift formed by Cretaceous sea floor spreading. Satellite gravity, bathymetry data and seismic estimates of sediment thickness are used to derive crustal basement thickness for the southern Rockall Trough and adjacent regions using a gravity inversion method incorporating a correction for the large negative thermal gravity component present in oceanic and stretched continental lithosphere. The marine Bouguer anomaly, derived from satellite free air gravity (Sandwell & Smith 1997) and Gebco 2003 bathymetry data, is inverted using the method of Oldenberg (1974), incorporating an iteratively applied thermal anomaly correction, to give Moho depth. For oceanic crust the thermal anomaly correction is calculated using isochron ages (Muller et al. 1997) and for continental crust from the beta stretching factors resulting from gravity derived crustal basement thickness and an assumed rift age. When sediment thickness and volcanic addition are assumed to be zero, the resulting upper bound of crustal thickness from the gravity inversion is as little as 10 km in the southern Rockall Trough. A segmented axial thickening of the crust at the centre of the Rockall Trough is predicted, between the Barra volcanic ridge and the Anton Dohrn seamount and is interpreted as having a volcanic origin. Inclusion of a sediment thickness correction in the gravity inversion further reduces predicted crustal thickness. A pseudo-sediment-thickness map has been constructed from the available wide-angle data and incorporated in the gravity inversion. The addition of up to 5.5 km of sediment in the gravity inversion reduces the upper bound of crustal thickness to less than 3 km in some locations. The segmented axial thickening and thin crust shown by the gravity inversion, the lack of intra-basinal faulting, and the volcanic origin for the axis shown by normal incidence seismic data, are consistent with a sea-floor spreading origin for the southern Rockall Trough and not formation by intra-continental rifting. We investigate the formation of the southern Rockall Trough using SfMargin, a new model of continental lithosphere thinning leading to continental breakup and sea-floor spreading initiation. Comparisons of the geometry of the southern Rockall Trough predicted by SfMargin with that observed are consistent with a short period (20Ma) of slow Cretaceous sea-floor spreading, followed by thermal subsidence to present day. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, ConocoPhillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.
NASA Astrophysics Data System (ADS)
Bassi, Davide; Nebelsick, James H.; Puga-Bernabéu, Ángel; Luciani, Valeria
2013-11-01
The Middle Eocene Calcari nummulitici formation from northeastern Italy, Venetian area, represents a shallow-marine carbonate ramp developed on the northern Tethyan margin. In the Monti Berici area, its main components are larger foraminifera and coralline red algal communities that constitute thick carbonate sedimentary successions. Middle ramp and proximal outer ramp environments are recognized using component relationships, biofacies and sedimentary features. The middle-ramp is characterized by larger flattened-lenticular Nummulites on palaeohighs between which rhodoliths formed. Larger Nummulites palaeohighs containing Nummulites millecaput, Nummulites crassus, Nummulites discorbinus and Nummulites cf. gizehensis developed more basin-wards. The following relatively quiet environments of basin-wards of the palaeohighs represent areas of maximum carbonate production. The transition between the distal middle- and the proximal outer-ramp settings is marked in the study area by a large erosional surface which is interpreted to have been formed as a result of an erosive channel body filled in by deposits re-sedimented from shallower depths. These off-shore re-sedimented channelized deposits, ascribed to the Shallow Benthic Zone SBZ 15, lying on hemipelagic marls (planktonic foraminiferal zone E9 (P11)) allow for a biostratigraphic correlation to the Late Lutetian. The studied deposits, represented by packstone to rudstones, were displaced whilst still unlithified. The Lutetian-Bartonian regression along with the local tectonic activity promoted the production of a high amount of biogenic shallow-water carbonates mainly produced in the Mossano middle-ramp settings. These prograded towards the basinal areas with high-sedimentation rate of carbonate deposits characterized by the larger Nummulites rudstones. Such high amounts of sediment led to sediment instability which potentially could be mobilized either by return currents due to occasional major storms or by earthquakes induced by tectonic activity. These will have led to the offshore re-deposition of the Nummulites sediments into deeper water setting via the observed channels. Since potential migration pathways are short, such distal re-sedimented channel-filled material surrounded by hemipelagic marls is optimally placed for the formation of potential subsurface oil reservoirs.
Crustal Structure of Iraq from Receiver Functions and Surface Wave Dispersion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gok, R; Mahdi, H; Al-Shukri, H
2006-08-31
We report the crustal structure of Iraq, located in the northeastern Arabian plate, estimated by joint inversion of P-wave receiver functions and surface wave group velocity dispersion. Receiver functions were computed from teleseismic recordings at two temporary broadband seismic stations in Mosul (MSL) and Baghdad (BHD), separated by approximately 360 km. Group velocity dispersion curves at the sites were derived from continental-scale tomography of Pasyanos (2006). The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km atmore » station MSL and 7 km at BHD, agreeing well with the existing models. Ignoring the sediments, the crustal velocities and thicknesses are remarkably similar between the two stations, suggesting that the crustal structure of the proto-Arabian Platform in northern Iraq was uniform before subsidence and deposition of the sediments in the Cenozoic. Deeper low velocity sediments at BHD are expected to result in higher ground motions for earthquakes.« less
Jiang, Min; Tuan, Le Huy; Mei, Wei-Ping; Ruan, Hui-Hui; Wu, Hao
2014-07-01
The spatial and temporal distribution of 16 polycyclic aromatic hydrocarbons (PAHs) has been investigated in water and sediments of Zhoushan coastal area every two months in 2012. The concentrations of total PAHs ranged from 382.3 to 816.9 ng x L(-1), with the mean value of 552.5 ng x L(-1) in water; whereas it ranged from 1017.9 to 3047.1 ng x g(-1), with the mean value of 2 022.4 ng x g(-1) in sediment. Spatial distribution showed that Yangshan and Yanwoshan offshore area had the maximum and minimum of total PAHs contents in water, while the maximum and minimum occurred at Yangshan and Zhujiajian Nansha offshore area in sediment. Temporal distribution revealed that total PAHs contents in water reached the maximum and minimum values in October and June, however in sediments these values were found in August and June, respectively. The PAHs pollution was affected by oil emission, charcoal and coal combustion. Using the biological threshold and exceeded coefficient method to assess the ecological risk of PAHs in Zhoushan coastal area, the result showed that sigma PAHs had a lower probability of potential risk, while there was a higher probability of potential risk for acenaphthylene monomer, and there might be ecological risk for acenaphthene and fluorene. Distribution of PAHs between sediment and water showed that Zhoushan coastal sediment enriched a lot of PAHs, meanwhile the enrichment coefficient (K(d) value) of sediment in Daishan island was larger than that in Zhoushan main island.
NASA Astrophysics Data System (ADS)
Joye, S. B.
2016-02-01
The fate of oil derived from natural seepage in the marine environment is poorly constrained. In the aftermath of the 2010 BP/Macondo oil well blowout, sedimentation of oil-containing material to the seafloor was an important fate for discharged oil. Though the amount of oil accounted for by sedimentation processes remains poorly constrained, sedimentation is now considered an important fate of oil during large open water spills that generate extensive surface slicks. In the Gulf of Mexico, vigorous natural oil seeps generate extensive, sometimes thick, surface slicks. In the case of highly active seeps, these surface oil slicks persist at the sea surface over the seep site a majority of the time. We investigated the fate of oil released through natural seepage and the potential for the sedimentation of surface-slick derived oil at two vigorous hydrocarbon seeps in the Gulf of Mexico, Green Canyon block 600 and block 767. Hydrocarbon analyses were performed on samples collected from oil vents at the seafloor, in surface slicks, and in sediments cores apparently containing sedimented oil. Sediment cores collected from both of these active seep sites away from known oil vents contained distinct (1-3 cm thick) layers that were brown in coloration and which displayed distinct sedimentology compared to deeper strata. The oil fingerprint was also different, suggesting this material was not the result of weathering during transit through the sediment column. Available data suggest that sedimentation of weathered oil also occurs at vigorous natural seeps. Detailed studies of the weathered oil sedimentation process at natural seeps will help reveal the mechanisms driving this phenomena and are important for understanding the fate of oil released during accidental discharges and spills.
NASA Astrophysics Data System (ADS)
Ferrier, K.; Mitrovica, J. X.
2015-12-01
In sedimentary deltas and fans, sea-level changes are strongly modulated by the deposition and compaction of marine sediment. The deposition of sediment and incorporation of water into the sedimentary pore space reduces sea level by increasing the elevation of the seafloor, which reduces the thickness of sea-water above the bed. In a similar manner, the compaction of sediment and purging of water out of the sedimentary pore space increases sea level by reducing the elevation of the seafloor, which increases the thickness of sea water above the bed. Here we show how one can incorporate the effects of sediment deposition and compaction into the global, gravitationally self-consistent sea-level model of Dalca et al. (2013). Incorporating sediment compaction requires accounting for only one additional quantity that had not been accounted for in Dalca et al. (2013): the mean porosity in the sediment column. We provide a general analytic framework for global sea-level changes including sediment deposition and compaction, and we demonstrate how sea level responds to deposition and compaction under one simple parameterization for compaction. The compaction of sediment generates changes in sea level only by changing the elevation of the seafloor. That is, sediment compaction does not affect the mass load on the crust, and therefore does not generate perturbations in crustal elevation or the gravity field that would further perturb sea level. These results have implications for understanding sedimentary effects on sea-level changes and thus for disentangling the various drivers of sea-level change. ReferencesDalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.
Booth, J.S.; Winters, W.J.; Dillon, William P.; Clennell, M.B.; Rowe, M.M.
1998-01-01
This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). Questions concerning clathrate hydrate as an energy resource, as a factor in modifying global climate and as a triggering mechanism for mass movements invite consideration of what factors promote hydrate concentration, and what the quintessential hydrate-rich sediment may be. Gas hydrate field data, although limited, provide a starting point for identifying the environments and processes that lead to more massive concentrations. Gas hydrate zones are up to 30 m thick and the vertical range of occurrence at a site may exceed 200 m. Zones typically occur more than 100m above the phase boundary. Thicker zones are overwhelmingly associated with structural features and tectonism, and often contain sand. It is unclear whether an apparent association between zone thickness and porosity represents a cause-and-effect relationship. The primary control on the thickness of a potential gas hydrate reservoir is the geological setting. Deep water and low geothermal gradients foster thick gas hydrate stability zones (GHSZs). The presence of faults, fractures, etc. can favour migration of gas-rich fluids. Geological processes, such as eustacy or subsidence, may alter the thickness of the GHSZ or affect hydrate concentratiion. Tectonic forces may promote injection of gas into the GHSZ. More porous and permeable sediment, as host sediment properties, increase storage capacity and fluid conductivity, and thus also enhance reservoir potential.
Gas-controlled seafloor doming on Opouawe Bank, offshore New Zealand
NASA Astrophysics Data System (ADS)
Koch, Stephanie; Berndt, Christian; Bialas, Joerg; Haeckel, Matthias; Crutchley, Gareth; Papenberg, Cord; Klaeschen, Dirk; Greinert, Jens
2015-04-01
The process of gas accumulation and subsequent sediment doming appears to be a precursory process in the development of methane seep sites on Opouawe Bank and might be a common characteristic for gas seeps in general. Seabed domes appear as unimpressive topographic highs with diameters ranging from 10-1000 m and exhibit small vertical displacements and layer thickness in comparison to their width. The dome-like uplift of the sediments results from an increase in pore pressure caused by gas accumulation in near-seabed sediments. In this context sediment doming is widely discussed to be a precursor of pockmark formation. Our results suggest that by breaching of domed seafloor sediments a new seep site can develop and contrary to ongoing discussion does not necessarily lead to the formation of pockmarks. There are clear differences in individual gas migration structures that indicate a progression through different evolutionary stages, which range from channeled gas flow and associated seismic blanking, to gas trapping beneath relatively low-permeability horizons, and finally overpressure accumulation and doming. We present high resolution sub-bottom profiler (Parasound) and 2D multichannel seismic data from Opouawe Bank, an accretionary ridge at the Hikurangi Margin, offshore New Zealand's North Island. Beneath this bank, methane migrates along stratigraphic pathways from a maximum source depth of 1500-2100 mbsf (meter below seafloor) towards active cold seeps at the seafloor. We show that, in the shallow sediment of the upper 100 mbsf, this primary migration mechanism changes into a process of gas accumulation leading to sediment doming. Modeling the height of the gas column necessary to create different dome geometries, shows that doming due to gas accumulation is feasible and consistent with field observations. The well-stratified, sub-horizontal strata that exist beneath Opouawe Bank provide favorable conditions for this type of seep development because shallow sub-vertical gas migration is forced to traverse sedimentary layering in the absence of faults that might otherwise have provided more efficient gas migration pathways. Thus, gas has to generate its own migration pathways through the progressive process of doming and breaking through the strata. The data from offshore New Zealand document that shallow sediment doming does not have to be associated with seafloor pockmarks and that models in which fluid migration through soft sediments necessarily culminates in pockmark formations are not applicable everywhere.
Salt tectonics in an experimental turbiditic tank
NASA Astrophysics Data System (ADS)
Sellier, Nicolas; Vendeville, Bruno
2010-05-01
We modelled the effect of the deposition of clastic sediments wedges along passive margin by combining two different experimental approaches. The first approach, which uses flume experiments in order to model turbiditic transport and deposition, had focused, so far mainly on the stratigraphic architecture and flow properties. But most experiments have not accounted for the impact of syndepositional deformation. The second approach is the classic tectonic modelling (sand-box experiments) is aimed essentially at understanding deformation, for example the deformation of a sediment wedge deposited onto a mobile salt layer. However, with this approach, the sediment transport processes are crudely modelled by adding each sediment layer uniformly, regardless of the potential influence of the sea-floor bathymetry on the depositional pattern. We designed a new tectono-stratigraphic modelling tank, which combines modelling of the turbiditic transport and deposition, and salt-related deformation driven by sediment loading. The set-up comprises a channel connected to a main water tank. A deformation box is placed at the mouth of the channel, on the base of the tank. The base of the box can be filled with various kinds of substrates either rigid (sand) or viscous (silicone polymer, simulating mobile salt layer having varying length and thickness). A mixture of fine-grained powder and water is maintained in suspension in a container, and then released and channelled toward the basin, generating an analogue of basin-floor fans or lobes. We investigated the effect of depositing several consecutive turbiditic lobes on the deformation of the salt body and its overburden. The dynamics of experimental turbidity currents lead to deposits whose thickness varied gradually laterally: the lobe is thick in the proximal region and thins progressively distally, thus creating a very gentle regional surface slope. As the fan grows by episodic deposition of successive turbiditic lobes, the model deforms spontaneously by vertical collapse and lateral spreading of the entire overburden. We conducted a series of systematic experiments varying the length and thickness of the salt body, as well as the sediment input and nature.
A New Method for the Determination of Annual Sediment Fluxes from Varved Lake Sediments
NASA Astrophysics Data System (ADS)
Francus, P.; Massa, C.; Lapointe, F.
2013-12-01
Calculation of sediment mass accumulation rates instead of thickness accumulation is preferable for paleoclimatic reconstruction as it eliminates the effects of dilution and compaction. Annually laminated lake sediment sequences (varved) theoretically allow for the estimation of sediment fluxes at annual scale, but the calculation is limited by discrete bulk density measurements, often carried out at a much lower resolution (usually 1 cm) than the varves (ranging from 0.07 to 27.3 mm, average 1.84 mm according to Ojala et al. 2012). Since many years the development of automated logging instruments made available continuous and high resolution sediment property data, in a non-destructive fashion. These techniques can easily be used to extract the physical and chemical parameters of sediments at the varve scale (down to 100 μm). Here we present a robust method to calculate annual sediment fluxes from varved lake sediments by combining varves thickness measurements to core logging data, and provide an example for its applications. Several non-destructive densitometric methods applied to the Strathcona Lake sediment, northern Ellesmere Island, Canada (78°33'N; 82°05'W) were compared: Hounsfield Units from a CT-Scan, coherent/incoherent ratio and X-ray radiography (of both split core and sediment slabs, from an Itrax core Scanner), and gamma ray attenuation density. Core logging data were statistically compared to 400 discrete measurements of dry bulk density, wet bulk density and water content performed at 2 mm contiguous intervals. A very strong relationship was found between X-ray grey level on sediment slab and dry bulk density. Relative X-ray densities, at 100μm resolution, were then successfully calibrated against real densities. The final step consisted in binning the calibrated densities to the corresponding varve thickness and then to calculate the annual mass accumulation rates by multiplying the two parameters for each varve year. Strathcona Lake is located directly downstream of the Agassiz ice cap and contains laminated sediments whose accumulation is directly related to hydrological inputs generated by the melting of the ice cap. Over the last 65 years, annual sediment accumulation rates in Strathcona Lake documented an increase in high-energy hydrologic discharge events from 1990 to 2009. This timing is in agreement with evidence for an increase in the amount of melt on the adjacent Agassiz Ice Cap, as recorded in ice cores. A good correspondence was also found between annual mass accumulation rates and Eureka air temperature records, suggesting that temperature changes affected the extent of summer melting on the Agassiz Ice Cap, leading to high sediment yield to Strathcona Lake. Ojala, A.E.K., Francus, P., Zolitschka, B., Besonen, M. and Lamoureux, S.F. (2012) Characteristics of sedimentary varve chronologies - A review. Quaternary Science Reviews, 43, 45-60.
Salt lake Laguna de Fuente de Piedra (S-Spain) as Late Quaternary palaeoenvironmental archive
NASA Astrophysics Data System (ADS)
Höbig, Nicole; Melles, Martin; Reicherter, Klaus
2014-05-01
This study deals with Late Quaternary palaeoenvironmental variability in Iberia reconstructed from terrestrial archives. In southern Iberia, endorheic basins of the Betic Cordilleras are relatively common and contain salt or fresh-water lakes due to subsurface dissolution of Triassic evaporites. Such precipitation or ground-water fed lakes (called Lagunas in Spanish) are vulnerable to changes in hydrology, climate or anthropogenic modifications. The largest Spanish salt lake, Laguna de Fuente de Piedra (Antequera region, S-Spain), has been investigated and serves as a palaeoenvironmental archive for the Late Pleistocene to Holocene time interval. Several sediment cores taken during drilling campaigns in 2012 and 2013 have revealed sedimentary sequences (up to 14 m length) along the shoreline. A multi-proxy study, including sedimentology, geochemistry and physical properties (magnetic susceptibility) has been performed on the cores. The sedimentary history is highly variable: several decimetre thick silty variegated clay deposits, laminated evaporites, and even few-centimetre thick massive gypsum crystals (i.e., selenites). XRF analysis was focussed on valuable palaeoclimatic proxies (e.g., S, Zr, Ti, and element ratios) to identify the composition and provenance of the sediments and to delineate palaeoenvironmental conditions. First age control has been realized by AMS-radiocarbon dating. The records start with approximately 2-3 m Holocene deposits and reach back to the middle of MIS 3 (GS-3). The sequences contain changes in sedimentation rates as well as colour changes, which can be summarized as brownish-beige deposits at the top and more greenish-grey deposits below as well as highly variegated lamination and selenites below ca. 6 m depth. The Younger Dryas, Bølling/Allerød, and the so-called Mystery Interval/Last Glacial Maximum have presumably been identified in the sediment cores and aligned to other climate records. In general, the cores of the Laguna de Fuente de Piedra show cyclic deposition including evaporitic sequences throughout the Holocene and Late Pleistocene, indicating higher fluxes and reworking of organic/inorganic carbon as well as other indicative proxy elements like Ti, Zr and Ca/Sr ratio during Late Pleistocene times. In order to achieve a better understanding of the palaeoenvironmental history in the study area further studies are planned which encompass biological/palaeontological indicators (e.g., pollen, diatoms) as well as another geochemical isotopic techniques on evaporitic deposits such as fluid inclusion analysis.
Sedimentation in the Kane fracture zone, western North Atlantic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaroslow, G.E.
1991-03-01
The Kane fracture zone, a deep narrow trough in oceanic crust, has provided an ideal depocenter for reservation on the seismic stratigraphic record of the North Atlantic basin. The acoustic stratigraphy in single-channel and multichannel seismic reflection profiles crossing the Kane fracture zone in the western North Atlantic has been examined in order to scrutinize age processes within a fracture zone. Maps of total sediment thickness have provided insight into overall sediment distribution and the influence of topography on sedimentation. Eight reflectors have been traced and correlated with lithostratigraphy at Deep Sea Drilling Project (DSDP) sites. The Bermuda Rise, amore » prominent topographic feature, has had a profound effect on the distribution of sediments within the fracture zone. Since late Eocene, the rise has blocked transport by turbidity currents of terrigenous sediments to distal portions of the fracture valley. A 1,000-m-thick turbidite pond within the fracture zone east of the Bermuda Rise has been determined to have been derived from local sources. Within the ponded sequence a seismic discontinuity is estimated to be early Oligocene and postdates the emergence of the Bermuda Rise, adding an independent age constraint on the development of the rise. The pond terminates against a structural dam at 55{degree}20W, east of which the fracture zone is essentially sediment starved.« less
NASA Astrophysics Data System (ADS)
Yamada, K.; Gotanda, K.; Yonenobu, H.; Shinozuka, Y.; Kitagawa, J.; Makohonienko, M.; Schwab, M.; Haraguchi, T.; Yasuda, Y.
2007-12-01
37 m-long non-glacial varved sequences were taken from Ichi-no-Megata maar in Oga Peninsula, Akita, northern part of Japan. Ichi-no-Megata maar occupies 0.25 km2 with a maximum water depth of ca. 45.1 m. The shape of lake is a kettle-type basin and the deepest bottom basin is very flat. We took core samples (named IMG06 core) at the center of the lake in November to December in 2006. In order to take completely continuous maar sediment, we drilled three holes and take every sample from each hole which apart only few meters. In this drilling campaign, we can 37 m-long continuous maar sediment except thick volcanic deposits from 26.5 to 31.7m in core. The sedimentological feature of IMG06 core is dominated by thin lamination clay/silt from most top part up to 37 m with turbidites characterized upward fining structure. The SEM image observation of lamination reveals that sponge-like lamina consists of diatom assemblage against dark colored lamina consists of mixture of detritus minerals, clay minerals, and diatom. It means sponge-like lamina deposits during spring season, and later one deposits during another three seasons, and then these thin lamination of IMG06 core could be identified as annual lamination (varves). This interpretation is supported by the correlation of historic event as earthquake and tunnel construction. In this IMG06 core, six volcanic ashes are found and we have also analyzed radiocarbon dating from 38 horizons of the core to use leaf and seeds inter-bedded varves. As the results, the IMG06 core covers from 25,000 to 4,000 14C yr BP with stable sedimentation rates (0.71mm/year).
SCS-CN based time-distributed sediment yield model
NASA Astrophysics Data System (ADS)
Tyagi, J. V.; Mishra, S. K.; Singh, Ranvir; Singh, V. P.
2008-05-01
SummaryA sediment yield model is developed to estimate the temporal rates of sediment yield from rainfall events on natural watersheds. The model utilizes the SCS-CN based infiltration model for computation of rainfall-excess rate, and the SCS-CN-inspired proportionality concept for computation of sediment-excess. For computation of sedimentographs, the sediment-excess is routed to the watershed outlet using a single linear reservoir technique. Analytical development of the model shows the ratio of the potential maximum erosion (A) to the potential maximum retention (S) of the SCS-CN method is constant for a watershed. The model is calibrated and validated on a number of events using the data of seven watersheds from India and the USA. Representative values of the A/S ratio computed for the watersheds from calibration are used for the validation of the model. The encouraging results of the proposed simple four parameter model exhibit its potential in field application.
2013-01-01
Breginjski kot is among the most endangered seismic zones in Slovenia with the seismic hazard assessed to intensity IX MSK and the design ground acceleration of 0.250 g, both for 500-year return period. The most destructive was the 1976 Friuli Mw = 6.4 earthquake which had maximum intensity VIII-IX. Since the previous microzonation of the area was based solely on the basic geological map and did not include supplementary field research, we have performed a new soil classification of the area. First, a detailed engineering geological mapping in scale 1 : 5.000 was conducted. Mapped units were described in detail and some of them interpreted anew. Stiff sites are composed of hard to medium-hard rocks which were subjected to erosion mainly evoked by glacial and postglacial age. At that time a prominent topography was formed and different types of sediments were deposited in valleys by mass flows. A distinction between sediments and weathered rocks, their exact position, and thickness are of significant importance for microzonation. On the basis of geological mapping, a soil classification was carried out according to the Medvedev method (intensity increments) and the Eurocode 8 standard (soil factors) and two microzonation maps were prepared. The bulk of the studied area is covered by soft sediments and nine out of ten settlements are situated on them. The microzonation clearly points out the dependence of damage distribution in the case of 1976 Friuli earthquake to local site effects. PMID:24453884
Detailed Sections from Auger Holes in the Roanoke Rapids 1:100,000 Map Sheet, North Carolina
Weems, Robert E.; Lewis, William C.
2007-01-01
Introduction The Roanoke Rapids 1:100,000 map sheet straddles the Coastal Plain / Piedmont boundary in northernmost North Carolina (Figure 1). Sediments of the Coastal Plain underlie the eastern three-fourths of this area, and patchy outliers of Coastal Plain units cap many of the higher hills in the western one-fourth of the area. Sediments dip gently to the east and reach a maximum known thickness in the extreme southeast part of the map area (Figure 2). The gentle eastward dip is disrupted in several areas due to faulting. The U.S. Geological Survey recovered one core and augered 97 research test holes within the Roanoke Rapids 1:100,000 map sheet to supplement sparse outcrop data available from the Coastal Plain portion of the map area. The recovered sediments were studied and data from them recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented Coastal Plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries that will be shown on the forthcoming Roanoke Rapids geologic map, but much of the detailed subsurface data cannot be shown readily through this map product. Therefore, detailed descriptions have been collected in this open-file report for geologists, hydrologists, engineers, and community planners to provide a detailed shallow-subsurface stratigraphic framework for much of the Roanoke Rapids map region.
Statistical inference of seabed sound-speed structure in the Gulf of Oman Basin.
Sagers, Jason D; Knobles, David P
2014-06-01
Addressed is the statistical inference of the sound-speed depth profile of a thick soft seabed from broadband sound propagation data recorded in the Gulf of Oman Basin in 1977. The acoustic data are in the form of time series signals recorded on a sparse vertical line array and generated by explosive sources deployed along a 280 km track. The acoustic data offer a unique opportunity to study a deep-water bottom-limited thickly sedimented environment because of the large number of time series measurements, very low seabed attenuation, and auxiliary measurements. A maximum entropy method is employed to obtain a conditional posterior probability distribution (PPD) for the sound-speed ratio and the near-surface sound-speed gradient. The multiple data samples allow for a determination of the average error constraint value required to uniquely specify the PPD for each data sample. Two complicating features of the statistical inference study are addressed: (1) the need to develop an error function that can both utilize the measured multipath arrival structure and mitigate the effects of data errors and (2) the effect of small bathymetric slopes on the structure of the bottom interacting arrivals.
NASA Astrophysics Data System (ADS)
Shahraki, Meysam; Schmeling, Harro; Haas, Peter
2018-01-01
Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.
Schwab, William C.; Denny, Jane F.; Baldwin, Wayne E.
2014-01-01
The U.S. Geological Survey mapped approximately 336 square kilometers of the lower shoreface and inner continental shelf offshore of Fire Island, New York, in 2011 by using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents maps of bathymetry, acoustic backscatter, the coastal plain unconformity, the Holocene marine transgressive surface, and modern sediment thickness. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island.
NASA Astrophysics Data System (ADS)
Hermidas, Navid; Luthi, Stefan; Eggenhuisen, Joris; Silva Jacinto, Ricardo; Toth, Ferenc; Pohl, Florian; de Leeuw, Jan
2016-04-01
Debris flows are driven by gravity, which in the tail region is overcome by the yield strength of the flow, forcing it to freeze. These flows are capable of achieving staggeringly large run-out distances on low gradients. The case in point, described in previous publications, is the flow which resulted in the deposit of Bed 5 of the Agadir megaslide on the north-west African margin. Debrites of this flow have been recorded several hundred kilometres away from the original landslide. Previous studies have attributed such long run-out distances to hydroplaning, low yield strength, and flow transformation. It is known that the net force acting on a volume of fluid in equilibrium is zero. In this work we show that clay-laden flows are capable of approaching equilibrium. The flows which can achieve the maximum run-out distance are cohesive enough to resist some of the surrounding disturbances, that can upset the equilibrium, and reach close to equilibrium conditions, yet are dilute enough to have low viscous stress, and relatively low yield strength and lose little sediment due to deposition. A flow that is not in equilibrium will always seek to approach equilibrium conditions by speeding up or slowing down, depositing sediment, eroding the substrate, contracting in the form of the tail approaching the head, stretching, entraining water and growing in height, or dewatering and collapsing. Here we present a theory that shows that two dimensional (2D) flows in equilibrium do not grow in height. 2D flume experiments were conducted on different mixtures of kaolinite, sand, silt, and water, on varying slopes and a transitionally rough bed (sand glued), and using various discharge rates, in order to map out different stages in the evolution of a density flow from a cohesive plug flow into a turbidity current. The following flow types were observed: high density turbidity currents, plug flows, and no flow. From the velocity profiles, certain runs demonstrated close to equilibrium behaviour. For these flows, very little flow height growth and velocity variation was observed over the length of the flume. In all cases the flow appeared to be laminar within the boundary layer with Kelvin-Helmholtz instabilities at the top which were suppressed to a large extent for higher sediment concentrations. A deposit consisting of thick muddy sand, with approximately uniform thickness, was observed for higher sediment concentrations, indicating relatively higher yield strength values, while a thinner more sandy deposit was observed for more dilute flows. It was concluded that high sediment concentrations on more moderate slopes result in slower moving plug flows which are capable of suppressing turbulence at the top, while lower sediment concentrations on steeper slopes result in faster moving, more turbulent currents. The flows which can achieve the largest run-out distance are located between these two extremes.
Potential for Suboxic Ammonium Oxidation in Louisiana Continental Shelf Sediments
Sediments deposited onto the Louisiana continental shelf (LCS) west of the Mississippi River Delta form mobile muds varying in thickness from meters near the outfall to centimeters on the western portion of the shelf. The muds have high concentrations of iron which promote rapid...
[Impacts of forest and precipitation on runoff and sediment in Tianshui watershed and GM models].
Ouyang, H
2000-12-01
This paper analyzed the impacts of foret stand volume and precipitation on annual erosion modulus, mean sediment, maximum sediment, mean runoff, maximum runoff, minimum runoff, mean water level, maximum water level and minimum water level in Tianshui watershed, and also analyzed the effect of the variation of forest stand volume on monthly mean runoff, minimum runoff and mean water level. The dynamic models of grey system GM(1, N) were constructed to simulate the changes of these hydrological elements. The dynamic GM models on the impact of stand volumes of different forest types(Chinese fir, masson pine and broad-leaved forests) with different age classes(young, middle-aged, mature and over-mature) and that of precipitation on the hydrological elements were also constructed, and their changes with time were analyzed.
NASA Astrophysics Data System (ADS)
Bendle, Jacob M.; Palmer, Adrian P.; Thorndycraft, Varyl R.; Matthews, Ian P.
2017-12-01
Glaciolacustrine varves offer the potential to construct continuous, annually-resolved chronologies for ice-sheet deglaciation, and improved understanding of glacier retreat dynamics. This paper investigates laminated glaciolacustrine sediments deposited around the waning margins of the Patagonian Ice Sheet, following the local Last Glacial Maximum (LGM). Detailed macro- and microfacies analyses confirm an annual (varve) structure within these sediments. The correlation of annual layers (varves) across five sites in eastern Lago Buenos Aires yields a 994 ± 36 varve-year (vyr) chronology and thickness record. The floating chronology has been anchored to the calendar-year timescale through identification of the Ho tephra (17,378 ± 118 cal a BP) in the varve sequences. Using a Bayesian age model to integrate the new varve chronology with published moraine ages, the onset of deglaciation at 46.5°S is dated to 18,086 ± 214 cal a BP. New age estimates for deglacial events are combined with high-resolution analysis of varve thickness trends, and new lithostratigraphic data on ice-margin position(s), to reconstruct ice-margin retreat rates for the earliest ca. 1000 years of ice-sheet demise. Glacier retreat rates were moderate (5.3-10.3 m yr-1) until 17,322 ± 115 cal a BP, but subsequently accelerated (15.4-18.0 m yr-1). Sustained influxes of ice-rafted debris (IRD) after 17,145 ± 122 cal a BP suggest retreat rates were enhanced by calving after ice contracted into deeper lake waters. Ice persisted in eastern Lago Buenos Aires until at least 16,934 ± 116 cal a BP, after which the glacier started to retreat towards the Patagonian mountains.
Identifying tectonic parameters that influence tsunamigenesis
NASA Astrophysics Data System (ADS)
van Zelst, Iris; Brizzi, Silvia; van Dinther, Ylona; Heuret, Arnauld; Funiciello, Francesca
2017-04-01
The role of tectonics in tsunami generation is at present poorly understood. However, the fact that some regions produce more tsunamis than others indicates that tectonics could influence tsunamigenesis. Here, we complement a global earthquake database that contains geometrical, mechanical, and seismicity parameters of subduction zones with tsunami data. We statistically analyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson's product-moment correlation coefficients reveal high positive correlations of 0.65 between, amongst others, the maximum water height of tsunamis and the seismic coupling in a subduction zone. However, these correlations are mainly caused by outliers. The Spearman's rank correlation coefficient results in more robust correlations of 0.60 between the number of tsunamis in a subduction zone and subduction velocity (positive correlation) and the sediment thickness at the trench (negative correlation). Interestingly, there is a positive correlation between the latter and tsunami magnitude. In an effort towards multivariate statistics, a binary decision tree analysis is conducted with one variable. However, this shows that the amount of data is too scarce. To complement this limited amount of data and to assess physical causality of the tectonic parameters with regard to tsunamigenesis, we conduct a numerical study of the most promising parameters using a geodynamic seismic cycle model. We show that an increase in sediment thickness on the subducting plate results in a shift in seismic activity from outerrise normal faults to splay faults. We also show that the splay fault is the preferred rupture path for a strongly velocity strengthening friction regime in the shallow part of the subduction zone, which increases the tsunamigenic potential. A larger updip limit of the seismogenic zone results in larger vertical surface displacement.
Mercury distribution in ancient and modern sediments of northeastern Bering Sea
Nelson, C. Hans; Pierce, D.E.; Leong, K.W.; Wang, F.F.
1972-01-01
A reconnaissance of surface and subsurface sediments to a maximum depth of 244 feet below the sea floor shows that natural mercury anomalies from 0.2 to 1.3 ppm have been present in northeastern Bering Sea since early Pliocene. The anomalies and mean values are highest in modern beach (maximum 1.3 and mean 0.22 ppm Hg) and nearshore subsurface gravels (maximum 0.6 and mean .06 ppm Hg) along the highly mineralized Seward Peninsula and in organic rich silt (maximum 0.16 and mean 0.10 ppm Hg) throughout the region; the mean values are lowest in offshore sands (0.03 ppm Hg) . Although gold mining may be partially responsible for high mercury levels in the beaches near Nome, Alaska, equally high or greater concentrations of mercury occur in ancient glacial sediments immediately offshore (0.6 ppm) and in modern unpolluted beach sediments at Bluff (0.45 - 1.3 ppm); this indicates that the contamination effects of mining may be no greater than natural concentration processes in the Seward Peninsula region. The background content of mercury (0.03) throughout the central area of northeastern Bering Sea is similar to that elsewhere in the world. The low mean values (0.04 ppm) even immediately offshore from mercury-rich beaches, suggests that in the surface sediments of northeastern Bering Sea, the highest concentrations are limited to the beaches near mercury sources; occasionally, however, low mercury anomalies occur offshore in glacial drift derived from mercury source regions of Chukotka and Seward Peninsula and reworked by Pleistocene shoreline processes. The minimal values offshore may be attributable to beach entrapment of heavy minerals containing mercury and/or dilution effects of modern sedimentation.
The crustal thickness of West Antarctica
NASA Astrophysics Data System (ADS)
Chaput, J.; Aster, R. C.; Huerta, A.; Sun, X.; Lloyd, A.; Wiens, D.; Nyblade, A.; Anandakrishnan, S.; Winberry, J. P.; Wilson, T.
2014-01-01
P-to-S receiver functions (PRFs) from the Polar Earth Observing Network (POLENET) GPS and seismic leg of POLENET spanning West Antarctica and the Transantarctic Mountains deployment of seismographic stations provide new estimates of crustal thickness across West Antarctica, including the West Antarctic Rift System (WARS), Marie Byrd Land (MBL) dome, and the Transantarctic Mountains (TAM) margin. We show that complications arising from ice sheet multiples can be effectively managed and further information concerning low-velocity subglacial sediment thickness may be determined, via top-down utilization of synthetic receiver function models. We combine shallow structure constraints with the response of deeper layers using a regularized Markov chain Monte Carlo methodology to constrain bulk crustal properties. Crustal thickness estimates range from 17.0±4 km at Fishtail Point in the western WARS to 45±5 km at Lonewolf Nunataks in the TAM. Symmetric regions of crustal thinning observed in a transect deployment across the West Antarctic Ice Sheet correlate with deep subice basins, consistent with pure shear crustal necking under past localized extension. Subglacial sediment deposit thicknesses generally correlate with trough/dome expectations, with the thickest inferred subice low-velocity sediment estimated as ˜0.4 km within the Bentley Subglacial Trench. Inverted PRFs from this study and other published crustal estimates are combined with ambient noise surface wave constraints to generate a crustal thickness map for West Antarctica south of 75°S. Observations are consistent with isostatic crustal compensation across the central WARS but indicate significant mantle compensation across the TAM, Ellsworth Block, MBL dome, and eastern and western sectors of thinnest WARS crust, consistent with low density and likely dynamic, low-viscosity high-temperature mantle.
Wynn, Jeff
2006-01-01
This report summarizes the results of two airborne geophysical surveys conducted in the upper San Pedro Valley of southeastern Arizona in 1997 and 1999. The combined surveys cover about 1,000 square kilometers and extend from the Huachuca Mountains on the west to the Mule Mountains and Tombstone Hills on the east and from north of the Babocomari River to near the Mexican border on the south. The surveys included the acquisition of high-resolution magnetic data, which were used to map depth to the crystalline basement rocks underlying the sediments filling the basin. The magnetic inversion results show a complex basement morphology, with sediment thickness in the center of the valley ranging from ~237 meters beneath the city of Sierra Vista to ~1,500 meters beneath Huachuca City and the Palominas area near the Mexican border. The surveys also included acquisition of 60-channel time-domain electromagnetic (EM) data. Extensive quality analyses of these data, including inversion to conductivity vs. depth (conductivity-depth-transform or CDT) profiles and comparisons with electrical well logs, show that the electrical conductor mapped represents the subsurface water-bearing sediments throughout most of the basin. In a few places (notably the mouth of Huachuca Canyon), the reported water table lies above where the electrical conductor places it. These exceptions appear to be due to a combination of outdated water-table information, significant horizontal displacement between the wells and the CDT profiles, and a subtle calibration issue with the CDT algorithm apparent only in areas of highly resistive (very dry) overburden. These occasional disparities appear in less than 5 percent of the surveyed area. Observations show, however, that wells drilled in the thick unsaturated zone along the Huachuca Mountain front eventually intersect water, at which point the water rapidly rises high into the unsaturated zone within the wellbore. This rising of water in a wellbore implies some sort of confinement below the thick unsaturated zone, a confinement that is not identified in the available literature. Occasional disparities notwithstanding, maps of the electrical conductor derived from the airborne EM system provide a synoptic view of the presence of water underlying the upper San Pedro Valley, including its three-dimensional distribution. The EM data even show faults previously only inferred from geologic mapping. The magnetic and electromagnetic data together appear to show the thickness of the sediments, the water in the saturated sediments down to a maximum of about 400 meters depth, and even places where the main ground-water body is not in direct contact with the San Pedro River. However, the geophysical data cannot reveal anything directly about hydraulic conductivity or ground-water flow. Estimating these characteristics requires new hydraulic modeling based in part on this report. One concern to reviewers of this report is the effect that clays may have on the electrical conductor mapped with the airborne geophysical system. Although the water in the basin is unusually conductive, averaging 338 microsiemens per centimeter, reasoning cited below suggests that the contribution of clays to the overall conductivity would be relatively small. Basic principles of sedimentary geology suggest that silts and clays should dominate the center of the basin, while sands and gravels would tend to dominate the margins. Although clay content may increase the amplitude of the observed electrical conductors somewhat, it will not affect the depths to the conductor derived from depth inversions. Further, fine-grained sediments generally have higher porosity and tend to lie toward a basin center, a fact in general agreement with the observed geophysical data.
NASA Astrophysics Data System (ADS)
Carlier, Benoit; Arnaud-Fassetta, Gilles; Fort, Monique; Bouccara, Fanny; Sourdot, Grégoire; Tassel, Adrien; Lissak, Candide; Betard, François; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier
2014-05-01
The upper Guil catchment (Southern Alps) is prone to hydro-geomorphic hazards. Major hazards are related to catastrophic floods, with an amplification of their impacts due to strong hillslope-channel connectivity as observed in 1957 and 2000. In both cases, the rainfall intensity, aggravated by the pre-existing saturated soils, explained the instantaneous response of the fluvial system, such as destabilisation of slopes, high sediment discharge, and subsequent damages to exposed structures and settlements present in the floodplain and at confluence sites. The Peynin junction with the Guil River is one of these sites, where significant land-use change during the last decades in relation to the development of handicraft and tourism economy has increased debris flow threat to population. Here, we adopt a sediment budget analysis aimed at better understanding the functioning of this small subcatchment. This latter offers a combination of factors that favour torrential and gravitational activity. It receives abundant and intense rainfall during "Lombarde" events (moist air mass from Mediterranean Sea). Its elongated shape and small surface area (15 km²) together with asymmetric slopes (counter dip slope on the left bank) accelerate runoff on a short response time. In addition highly tectonised shaly schists supply a large volume of debris (mostly platy clasts and fine, micaceous sediment). The objectives of this study, carried out in the frame of SAMCO (ANR) project, are threefold: Identify the different sediment storages; Characterise the processes that put sediment into motion; Quantify volumes of sediment storages. We produced a geomorphic map using topographic surveys and aerial photos in order to locate the different sediment storage types and associated processes. This analysis was made with respect to geomorphic coupling and sediment flux activity. In terms of surface area, the dominant landforms in the valley were found to be mass wasting, talus slopes and alluvial fans and plains. Most of these forms are relict landforms, decoupled from the present geomorphic system. Notable sediment transport is limited to avalanche tracks, debris flows, and along floodplains. Sediment volumes were calculated using a combination of polynomial functions of cross sections and GIS modelling. We calculated the overall sediment volume of the valley fill deposits to be 1.05 km3. This corresponds to a mean sediment thickness of 90.2 m. Landslides appear as the major sediment storage, representing more than 35% of the sediment volume stored in the Peynin subcatchment. For some locations, the polynomial-generated cross sections resulted in overestimations of sediment thickness, therefore, these results have to be considered as an order of magnitude. Future investigations will include seismic refraction profiles that may provide bedrock depth, hence a better control on sediment thickness (estimates generated thanks to GIS). Eventually, we expect our results to be used to better model, hence prevent future debris-flow events at the confluence of Peynin stream with the Guil River.
NASA Astrophysics Data System (ADS)
Prancevic, Jeffrey P.; Lamb, Michael P.; Palucis, Marisa C.; Venditti, Jeremy G.
2018-01-01
The occurrence of seepage-induced shallow landslides on hillslopes and steep channel beds is important for landscape evolution and natural hazards. Infinite-slope stability models have been applied for seven decades, but sediment beds generally require higher water saturation levels than predicted for failure, and controlled experiments are needed to test models. We initiated 90 landslides in a 5 m long laboratory flume with a range in sediment sizes (D = 0.7, 2, 5, and 15 mm) and hillslope angles (θ = 20° to 43°), resulting in subsurface flow that spanned the Darcian and turbulent regimes, and failures that occurred with subsaturated and supersaturated sediment beds. Near complete saturation was required for failure in most experiments, with water levels far greater than predicted by infinite-slope stability models. Although 3-D force balance models predict that larger landslides are less stable, observed downslope landslide lengths were typically only several decimeters, not the entire flume length. Boundary stresses associated with short landslides can explain the increased water levels required for failure, and we suggest that short failures are tied to heterogeneities in granular properties. Boundary stresses also limited landslide thicknesses, and landslides progressively thinned on lower gradient hillslopes until they were one grain diameter thick, corresponding to a change from near-saturated to supersaturated sediment beds. Thus, landslides are expected to be thick on steep hillslopes with large frictional stresses acting on the boundaries, whereas landslides should be thin on low-gradient hillslopes or in channel beds with a critical saturation level that is determined by sediment size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, A.T.; Becker, K.; Narasimhan, T.
1990-06-01
Pore fluids are passively convecting through young oceanic sediments and crust around Deep Sea Drilling Project (DSDP) site 504 on the southern flank of the Costa Rica Rift, as inferred from a variety of geological, geochemical, and geothermal observations. The presence of a fluid circulation system is supported by new data collected on Ocean Drilling Program (ODP) Leg 111 and a predrilling survey cruise over the heavily sedimented, 5.9 Ma site; during the latter, elongated heat flow anomalies were mapped subparallel to structural strike, with individual measurements of twice the regional mean value, and large lateral and vertical geochemical gradientsmore » were detected in pore waters squeezed from sediment cores. Also, there is a strong correlation between heat flow, bathymetry, sediment thickness, and inferred fluid velocities up through the sediments. On an earlier DSDP leg, an 8-bar underpressure was measured in the upper 200 m of basement beneath thick sediment cover. The widely varied geothermal and hydrogeological observations near site 504 are readily explained by a model that combines (1) basement relief, (2) irregular sediment drape, (3) largely conductive heat transfer through the sediments overlying the crust, and (4) thermal and geochemical homogenization of pore fluids at the sediment/basement interface, which results from (5) topographically induced, passive hydrothermal circulation with large aspect ratio, convection cells. This convection involves mainly the permeable, upper 200-300 m of crust; the deeper crust is not involved. This convection is induced through a combination of buoyancy fluxes, owing to heating from below, and topographic variations on the seafloor and at the basement-sediment interface.« less
Relationship between the parent material and the soil, in plain and mountainous areas
NASA Astrophysics Data System (ADS)
Kerek, Barbara; Kuti, Laszlo; Dobos, Timea; Vatai, Jozsef; Szentpetery, Ildiko
2013-04-01
One of the most important tasks of the soil is the nutrition of plants. This function is determinated by those parts of the geological media on what is the soil situated and from what the soil was formed (those two can be different). Soil can be formed definitely just from sediment, so it is more proper to speak about parent material than parent rock. Soil forming sediment is defined as the loose sediment on the surface, which is the upper layer of near-surface rocks in flat and hilly regions, and it is the upper layer of the sediment-ensemble situated on the undisturbed bedrock in mountainous areas. Considering its origin, these sediments could be autochthon or allochton. Soil forming is determinated, besides other factors (climate, elevation, vegetation, etc.), by the parent material, which has a crucial influence on the type, quality and fertility of soils through its mineral composition, physical and chemical characteristics. Agrogeological processes happen in the superficial loose sediments in mountainous areas, but the underlying solid rock (where on the surface or close to it, there is solid rock), has an effect on them. The plain and hilly regions covered by thick loose sediment and the areas build up by solid rock and covered with thinner loose sediment in mountainous areas should be searched separately. In plain areas the near-surface formations have to be studied as a whole down to the saturated zone, but at least to 10 m. In regions of mountain and mountain fronts, the thickness, the composition and genetics of the young unconsolidated sediments situated above the older solid rocks have a vital importance, and also the relations among the soils, soil forming sediments and the base rocks have to be understood.
NASA Astrophysics Data System (ADS)
Hautot, Sophie; Whaler, Kathryn; Gebru, Workneh; Desissa, Mohammednur
2006-03-01
The northwestern Plateau of Ethiopia is almost entirely covered with extensive Tertiary continental flood basalts that mask the underlying formations. Mesozoic and Tertiary sediments are exposed in a few locations surrounding the Lake Tana area suggesting that the Tana depression is an extensional basin buried by the 1-2 km thick Eocene-Oligocene flood basalt sequences in this region. A magnetotelluric survey has been carried out to investigate the deep structure of the Tana area. The objectives were to estimate the thickness of the volcanics and anticipated underlying sedimentary basin. We have collected 27 magnetotelluric soundings south and east of Lake Tana. Two-dimensional inversion of the data along a 160 km long profile gives a model consistent with a NW-SE trending sedimentary basin beneath the lava flows. The thickness of sediments overlying the Precambrian basement averages 1.5-2 km, which is comparable to the Blue Nile stratigraphic section, south of the area. A 1 km thickening of sediments over a 30-40 km wide section suggests that the form of the basin is a half-graben. It is suggested that electrically resistive features in the model are related to volcanic materials intruded within the rift basin sediments through normal faults. The results illustrate the strong control of the Precambrian fracture zones on the feeding of the Tertiary Trap series.
Schwab, William C.; Baldwin, Wayne E.; Denny, Jane F.
2016-01-15
This report documents the changes in seabed morphology and modern sediment thickness detected on the inner continental shelf offshore of Fire Island, New York, before and after Hurricanes Irene and Sandy made landfall. Comparison of acoustic backscatter imagery, seismic-reflection profiles, and bathymetry collected in 2011 and in 2014 show that sedimentary structures and depositional patterns moved alongshore to the southwest in water depths up to 30 meters during the 3-year period. The measured lateral offset distances range between about 1 and 450 meters with a mean of 20 meters. The mean distances computed indicate that change tended to decrease with increasing water depth. Comparison of isopach maps of modern sediment thickness show that a series of shoreface-attached sand ridges, which are the dominant sedimentary structures offshore of Fire Island, migrated toward the southwest because of erosion of the ridge crests and northeast-facing flanks as well as deposition on the southwest-facing flanks and in troughs between individual ridges. Statistics computed suggest that the modern sediment volume across the about 81 square kilometers of common sea floor mapped in both surveys decreased by 2.8 million cubic meters, which is a mean change of –0.03 meters, which is smaller than the resolution limit of the mapping systems used.
A seismic study of the Mekong subaqueous delta: Proximal versus distal sediment accumulation
NASA Astrophysics Data System (ADS)
Liu, J. Paul; DeMaster, David J.; Nittrouer, Charles A.; Eidam, Emily F.; Nguyen, Thanh T.
2017-09-01
The Mekong River Delta is one of the largest in Asia. To understand its sediment distribution, thickness, mass budget, stratigraphic sequences and sediment-transport process, extensive geophysical and geochemical surveys were conducted on the inner portions of the adjacent continental shelf. Analyses of > 80 high-resolution Chirp-sonar profiles show the Mekong River has formed a classic sigmoidal cross-shelf clinoform in the proximal areas, up to 15 m thick, with topset, foreset and bottomset facies, but constrained to water depths of < 20 m. Beyond this depth, the East Sea/western South China Sea shelf is dominated by relict silt, sand and gravel with patches of early to middle Holocene mud deposits. Parallel to shore, the Mekong-derived sediment has extended > 250 > 300 km southwestward to the tip of the Ca Mau Peninsula, forming a distal mud depocenter up to 22 m thick, and extending into the Gulf of Thailand. A large erosional trough or channel (up to 8 m deeper than the surrounding seafloor and parallel to the shore) was found on the top of the clinoform, east of the Ca Mau Peninsula. Based on the thicknesses and distribution revealed by Chirp sonar profiles, the total estimated volume of the Mekong River subaqueous clinoform on the shelf is 120 km3, which is equivalent to 120-140 × 109 t of sediment using an average sediment dry-bulk density of 1.0-1.2 g/cm3. Assuming the subaqueous deltaic deposit has formed within 1000 yr, the calculated millennial-timescale average sediment discharge to the shelf could be 120-140 × 106 t per year. Spatially, the proximal subaqueous delta has accumulated 45 × 109 t ( 33%) of sediment; the distal part around the Ca Mau Peninsula has received 55 × 109 t ( 42%) of sediment; and the remaining 35 × 109 t ( 25%) has accumulated within the central transition area, although the coastline and shoreface in this area are presently eroding. The spatially averaged 1000-yr-scale accumulate rate is up to 2 cm/yr. Compared to other tide-dominated fluvial dispersal systems, the Mekong River system has a relatively young (≤1000 yr) subaqueous delta, a shallow rollover at 4-6 m water depth, gentle foreset gradients (0.03-0.57°), and a short cross-shelf dimension of 15-20 km within 20-m water depth. Like the Amazon, Po, and Yangtze rivers, the Mekong River has developed a pervasive along-shelf deposit, which in this case extends > 250 > 300km to the southwest as a result of the superimposed tidal processes, wave-induced resuspension, and a strong low-flow season coastal current.
NASA Astrophysics Data System (ADS)
Klimchitskaya, G. L.; Mostepanenko, V. M.
2018-06-01
The analytic expressions for the maximum and minimum reflectances of optical films coated with gapped graphene are derived in the application region of the Dirac model taking into account multiple reflections. The respective film thicknesses are also found. In so doing the film material is described by the frequency-dependent index of refraction and graphene by the polarization tensor defined along the real frequency axis. The developed formalism is illustrated by an example of the graphene-coated film made of amorphous silica. Numerical computations of the maximum and minimum reflectances and respective film thicknesses are performed at room temperature in two frequency regions belonging to the near-infrared and far-infrared domains. It is shown that in the far-infrared domain the graphene coating has a profound effect on the values of maximum reflectance and respective film thickness leading to a relative increase in their values by up to 65% and 50%, respectively. The maximum transmittance of a graphene-coated film of appropriately chosen thickness is shown to exceed 90%. Possible applications of the obtained results are discussed.
Bush, John H; Garwood, Dean L; Dunlap, Pamela
2016-01-01
The Moscow-Pullman basin, located on the eastern margin of the Columbia River flood basalt province, consists of a subsurface mosaic of interlayered Miocene sediments and lava flows of the Imnaha, Grande Ronde, Wanapum, and Saddle Mountains Basalts of the Columbia River Basalt Group. This sequence is ~1800 ft (550 m) thick in the east around Moscow, Idaho, and exceeds 2300 ft (700 m) in the west at Pullman, Washington. Most flows entered from the west into a topographic low, partially surrounded by steep mountainous terrain. These flows caused a rapid rise in base level and deposition of immature sediments. This field guide focuses on the upper Grande Ronde Basalt, Wanapum Basalt, and sediments of the Latah Formation.Late Grande Ronde flows terminated midway into the basin to begin the formation of a topographic high that now separates a thick sediment wedge of the Vantage Member to the east of the high from a thin layer to the west. Disrupted by lava flows, streams were pushed from a west-flowing direction to a north-northwest orientation and drained the basin through a gap between steptoes toward Palouse, Washington. Emplacement of the Roza flow of the Wanapum Basalt against the western side of the topographic high was instrumental in this process, plugging west-flowing drainages and increasing deposition of Vantage sediments east of the high. The overlying basalt of Lolo covered both the Roza flow and Vantage sediments, blocking all drainages, and was in turn covered by sediments interlayered with local Saddle Mountains Basalt flows. Reestablishment of west-flowing drainages has been slow.The uppermost Grande Ronde, the Vantage, and the Wanapum contain what is known as the upper aquifer. The water supply is controlled, in part, by thickness, composition, and distribution of the Vantage sediments. A buried channel of the Vantage likely connects the upper aquifer to Palouse, Washington, outside the basin. This field guide locates outcrops; relates them to stratigraphic well data; outlines paleogeographic basin evolution from late Grande Ronde to the present time; and notes structures, basin margin differences, and features that influence upper aquifer water supply.
ECOLOGICAL ENDPOINT MODELING FOR TMDLS: EFFECTS OF SEDIMENT ON FISH POPULATIONS
Sediment is one of the primary stressors of concern for Total Maximum Daily Loads (TMDLs) for streams, and often it is a concern because of its impact on ecological endpoints. A modeling approach relating sediment to stream fish population dynamics is presented. Equations are d...
Nutrients and suspended sediments in streams and large rivers are two major issues facing state and federal agencies. Accurate estimates of nutrient and sediment loads are needed to assess a variety of important water-quality issues including total maximum daily loads, aquatic ec...
Systematic Heat Flow Measurements Across the Wagner Basin, Northern Gulf of California
NASA Astrophysics Data System (ADS)
Neumann, F.; Negrete-Aranda, R.; Harris, R. N.; Contreras, J.; Sclater, J. G.; Gonzalez-Fernandez, A.
2017-12-01
A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. Seismic reflection profiles show sediment in excess of 5 s two-way travel time, implying a sediment thickness of > 7 km. The heat flow profile is 40 km long, has a nominal measurement spacing of 1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Most measurements are of good quality in that the probe fully penetrated sediments and measurements were stable enough to invert for heat flow and thermal properties. We have estimated corrections for environmental perturbations due to changes in bottom water temperature and sedimentation. The mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220±60, 99±14, 1058±519 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Based on an observed fault depth of 1.75 km we estimated the maximum Darcy velocities through the western and eastern flanks as 3 and 10 cm yr-1, respectively. Heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.
Effects of Elastoplastic Material Properties on Shallow Fault Slip and Surface Displacement Fields
NASA Astrophysics Data System (ADS)
Nevitt, J. M.; Brooks, B. A.; Minson, S. E.; Lockner, D. A.; Moore, D. E.; Ericksen, T. L.; Hudnut, K. W.; Glennie, C. L.; Madugo, C. M.
2016-12-01
A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. Seismic reflection profiles show sediment in excess of 5 s two-way travel time, implying a sediment thickness of > 7 km. The heat flow profile is 40 km long, has a nominal measurement spacing of 1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Most measurements are of good quality in that the probe fully penetrated sediments and measurements were stable enough to invert for heat flow and thermal properties. We have estimated corrections for environmental perturbations due to changes in bottom water temperature and sedimentation. The mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220±60, 99±14, 1058±519 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Based on an observed fault depth of 1.75 km we estimated the maximum Darcy velocities through the western and eastern flanks as 3 and 10 cm yr-1, respectively. Heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.
The Origin and Age of Scallop Floodplain Benches from Difficult Run, Fairfax County, Virginia.
NASA Astrophysics Data System (ADS)
Scamardo, J. E.; Pizzuto, J. E.; Skalak, K.; Benthem, A.
2015-12-01
Sediment is deposited within scallop-shaped erosional scarps that form between trees armoring the banks of Difficult Run, a suburban watershed with a forested riparian zone. These deposits create small (surface area 85 m2, volume 300 m3), low-lying floodplain landforms this group terms Scallop Floodplain Benches (SFB). It is hypothesized that SFB formed within the past couple decades initially forming as transversal accretion deposits and eventually gaining floodplain features dominated by vertical accretion. Stratigraphic data supports that SFB deposits begin laterally as sand and gravel bars approximately 100 cm thick, and continue to grow by vertical accretion of sand, silt, and clay. As a SFB reaches its maximum height, a distinctive levee develops adjacent to the channel, and fine-grained silt and clay are deposited behind the levee. Core samples to a depth of 118 cm and additional samples from an overbank event that occurred on June 20, 2015 were collected from one of two SFB on Difficult Run near Leesburg Pike. The grain size distribution was measured using a Coulter Counter and activities of Pb-210, Cs-137, and Be-7 were measured using High Purity Germanium Detectors. Cs-137 activities are relatively constant with depth without a well-defined peak, suggesting that the SFB was deposited after 1963. Be-7 is present in the recent flood deposits, but is absent below the surface, suggesting that the SFB deposits are at least several years old. Excess Pb-210 activities decrease exponentially with depth, and can be fit using the Constant Rate of Supply method to determine an average age of approximately 13.5 years for the SFB. The SFB is storing sediment at a rate of 27 tons/year, which is equal to 0.35% of the annual sediment load of Difficult Run, based on this average age. SFB appear to be a significant component of the sediment storage of Difficult Run and therefore should be considered in the sediment budget.
A giant sediment trap in the Florida keys
Shinn, E.A.; Reich, C.D.; Locker, S.D.; Hine, A.C.
1996-01-01
Aerial photography, high-resolution seismic profiling, coring and jet probing have revealed a large sediment-filled sinkhole in the Key Largo National Marine Sanctuary off Key Largo, Florida. The 600-m-diameter feature straddles coral reef and carbonate-sand facies and contains >55 m of marine lime sand and aragonite mud. Bulk 14C age determinations of mud from a 30- m sediment core indicate infilling rates exceeding 20 m/ka between 3 and 5.6 ka. The total thickness and nature of the sediment near the base of the sinkhole are not known.
Mackay, Alana K; Taylor, Mark P; Hudson-Edwards, Karen A
2011-07-01
This article presents the geochemical characteristics and physicochemical properties of water and sediment from twelve semi-permanent, dryland pools in the upper Leichhardt River catchment, north-west Queensland, Australia. The pools were examined to better understand the quality of sediments and temporary waters in a dryland system with a well-established metal contamination problem. Water and sediment sampling was conducted at the beginning of the hydroperiod in May and September 2007. Water samples were analyzed for major solute compositions (Ca, Na, K, Mg, Cl, SO(4), HCO(3)) and water-soluble (operationally defined as the <0.45 μm fraction) metals (Cd, Cu, Pb, Zn). Sediment samples were analyzed for total extractable and bioaccessible metals (As, Cd, Cu, Pb, Zn), elemental composition and grain morphology. At the time of sampling a number of pools contained water and sediment with elevated concentrations, compared to Australian regulatory guidelines, of Cu (maximum: water 28 μg L(-1); sediment 770 mg kg(-1)), Pb (maximum: water 3.4 μg L(-1); sediment 630 mg kg(-1)) and Zn (maximum: water 150 μg L(-1); sediment 780 mg kg(-1)). Concentrations of Cd and As in pools were relatively low and generally within Australian regulatory guideline values. Localized factors, such as the interaction of waters with anthropogenic contaminants from modern and historic mine wastes (i.e. residual smelter and slag materials), exert influence on the quality of pool waters. Although the pools of the upper Leichhardt River catchment are contaminated, they do not appear to be the primary repository of water and sediment associated metals when compared to materials in the remainder channel and floodplain. Nevertheless, a precautionary approach should be adopted to mitigating human exposure to contaminated environments, which might include the installation of appropriate warning signs by local health and environmental authorities.
NASA Astrophysics Data System (ADS)
Babault, J.; Viaplana-Muzas, M.; Legrand, X.; Van Den Driessche, J.; González-Quijano, M.; Mudd, S. M.; Kergaravat, C.; Ringenbach, J. C.; Callot, J. P.; Vetel, W.; Dhont, D.
2017-12-01
The island of Papua New Guinea is the result of continent-arc collision that began building the island's Central Range during the late Miocene. The tectono-sedimentary evolution of the Cenderawasih Bay, in the northwestern part of the island of Papua New Guinea (Indonesia), which links the Kepala Burung block to the Central Range is still poorly understood. Previous studies have shown that this bay contains a thick (> 8 km) sequence of undated sediments. Hypothesis claim that the embayment resulted from a 3 Ma aperture created by anticlockwise rotation of the Kepala Burung block with respect to the northern rim of the Australian plate, or from the southwest drift of a slice of volcanics/oceanic crust between 8 and 6 Ma. Using a source-to-sink approach, based on i) a geomorphologic analysis of the drainage network dynamics, ii) a reassessment of available thermochronological data, and iii) seismic lines interpretation, we suggest that sediments started to accumulate in the Cenderawasih Bay and onshore in the Waipoga Basin in the late Miocene since the beginning of the Central Range building at 12 Ma, resulting in sediment accumulation of up to 12200 m. At first order, we predict that infilling is mainly composed of siliciclastics sourced in the graphite-bearing Ruffaer Metamorphic Belt and its equivalent in the Weyland Overthrust. From the unroofing paths in the Central Range we deduce two rates of solid phase accumulation (SPAR) since 12 Ma, the first one at a mean SPAR ranging between 0.12-0.25 mm/a with a maximum SPAR of 0.23-0.58 mm/a, and the second during the last 3 Ma, at a mean SPAR ranging between 0.93-1.62 mm/a and with a maximum SPAR between 2.13-3.17 mm/a, i.e., 6700-10000 m of Plio-Pleistocene sediment accumulation. Local transtensional tectonics may explain these unusually high rates of sedimentation in an overall sinistral oblique convergence setting. We further extended this approach to the Gulf of Papua (Papua New Guinea), a foreland basin developed in the passive margin of the Coral Sea and fed by the Papuan fold-and-thrust belt and Aure fold-and-thrust belt. We compare these two source-to-sink systems to highlight the tectonic control on sedimentary flux, provenance and SPAR in the Cenderawasih Bay and Gulf of Papua.
Sediment retention in a bottomland hardwood wetland in Eastern Arkansas
Kleiss, B.A.
1996-01-01
One of the often-stated functions of wetlands is their ability to remove sediments and other particulates from water, thus improving water quality in the adjacent aquatic system. However, actual rates of suspended sediment removal have rarely been measured in freshwater wetland systems. To address this issue, suspended sediment dynamics were measured in a 85-km2 bottomland hardwood (BLH) wetland adjacent to the highly turbid Cache River in eastern Arkansas during the 1988-1990 water years. A suspended sediment mass balance was calculated using depth-integrated, flow-weighted daily measurements at wetland inflow and outflow points. Over the three-year period, suspended sediment load decreased an average of 14% between upstream and downstream sampling points. To test the idea that the suspended sediments were retained by the adjacent wetland and to determine what portion of the BLH forest was most responsible for retaining the suspended sediments, concurrent measurements of sediment accretion were made at 30 sites in the wetland using feldspar clay marker horizons, sedimentation disks, the 137cesium method, and dendrogeomorphic techniques. Sedimentation rates exceeding 1 cm/yr were measured in frequently flooded areas dominated by Nyssa aquatica and Taxodium distichum. Maximum sedimentation rates did not occur on the natural levee, as would be predicted by classical fluvial geomorphology, but in the "first bottom," where retention time of the water reached a maximum. Multiple regression was used to relate sedimentation rates with several physical and biological factors. A combination of distance from the river, flood duration, and tree basal area accounted for nearly 90% of the variation in sedimentation rates.
Calculation of Suspended Sediment Transport by Combined Wave-Current Flows.
1994-11-01
Anderson, and Silberg (1985) presented a model that had an eddy viscosity and boundary layer thickness that varied in time. The reference concentration was...sediment model. This model, along with that of Fredsoe, Anderson, and Silberg (1985), are the only two models that account for both the sediment and the...ignores any correlation between the periodic components of the velocity and the concentration. Even in the model of Fredsoe, Anderson, and Silberg (1985
Reconstruction of the pre-breakup crustal thickness in Australia/Antarctica
NASA Astrophysics Data System (ADS)
Goncharov, A.
2003-04-01
Some 140 million years ago, Australia and Antarctica were parts of a single continent Gondwana. Before it broke into parts there was a process of extensive crustal extension. Thinning of the crust during this process was accompanied by deposition of vast amounts of sedimentary rocks along Australia’s Southern Margin, where the total sediment thickness locally (e.g., Ceduna Sub-basin) reaches 15 km. These sedimentary rocks may have been involved in oil and gas formation. Knowledge of the pre-breakup crustal thickness in Australia/Antarctica is important because it provides additional constraints for plate tectonic reconstructions of the two continents and ultimately leads to a more accurate assessment of the petroleum potential of Australia’s Southern Margin. Most reliable estimates of crustal thickness come from refraction seismic measurements which define the depth to the Moho boundary, where seismic velocity increases to 8 km/s or more. Such measurements were used in this research for Australia. Unlike Australia, Antarctica has poor coverage of seismic measurements of crustal thickness. For Antarctica, seismic measurements were supplemented by values predicted by the regression between seismically defined crustal thickness and upwardly continued gravity. Upward continuation emphasizes the effects of variations in crustal thickness in the total gravity signal. After compilation and computation of crustal thickness was completed, data points located on Australian continent were reconstructed to their pre-breakup position. The most up-to-date finite rotation parameters defining the movement of Australia relative to Antarctica were used in this process. To ensure that pre-breakup extension and thinning of the crust (during the 140 to 95 Ma time interval) were accounted for, points with crustal thickness values less than 30 km on both Australian and Antarctic margins were excluded from subsequent gridding. Crust thinner than 30 km was taken to have been affected by pre-breakup extension. The resultant reconstructed pre-extensional crustal thickness may have existed in this part of Gondwana prior to the pre-breakup extension, assuming that geological processes on both continents (excluding margins) have not affected it significantly since then. Crustal thickness along the zone of subsequent Australia/Antarctica separation is clearly reduced and its width varies substantially. Thin crust is generally weaker than thick crust, so it is not surprising that the continents broke apart along this zone. A distinct zone of thick crust, which spans across Australia/Antarctica from the Eastern Highlands in Australia to the Transantarctic Mountains, is another obvious feature on the map of pre-extensional crustal thickness. This may explain why the break-up of the continents between Tasmania and Northern Victoria Land occurred as the last stage of the separation process. Thick crust in this region essentially served as a lock: only after this lock was broken did final separation occur. Clearly, thickest sediment has accumulated where the width of the zone of pre-extensional thin crust was minimal in the Ceduna Sub-basin. This may be due to the higher rate of subsidence in the zone with the steepest slope on the Moho. Rheology of the crust and sediment supply were also among the contributing factors; relative contributions of these factors will be studied in more detail in the future. Sedimentation in the Otway, Sorell, Bass and Gippsland basins to the north and west of Tasmania, unlike other basins on the Southern Margin, commenced in a thick crust environment: all four are located within the Eastern Highlands - Transantarctic Mountains zone. Although, crustal thickness immediately underneath the basins is not much different from the western part of the Margin, clearly there are two prominent (up to 45 km) Moho lows to the north and south of them. Onset of pre-breakup crustal extension within this zone was probably different from the western part of the Southern Margin: thicker crust is harder to break. Also, thicker crust generally means higher heat flow. These differences may have affected both the style of crustal extension and hydrocarbon maturation in deposited sediments. Non-uniform pre-extensional crustal thickness along Australian Southern and conjugate Antarctic margins, as well as implied differences in heat flow distribution, must be taken into consideration in modelling crustal extension and the formation of sedimentary basins.
Numerical simulation of two-phase flow for sediment transport in the inner-surf and swash zones
NASA Astrophysics Data System (ADS)
Bakhtyar, R.; Barry, D. A.; Yeganeh-Bakhtiary, A.; Li, L.; Parlange, J.-Y.; Sander, G. C.
2010-03-01
A two-dimensional two-phase flow framework for fluid-sediment flow simulation in the surf and swash zones was described. Propagation, breaking, uprush and backwash of waves on sloping beaches were studied numerically with an emphasis on fluid hydrodynamics and sediment transport characteristics. The model includes interactive fluid-solid forces and intergranular stresses in the moving sediment layer. In the Euler-Euler approach adopted, two phases were defined using the Navier-Stokes equations with interphase coupling for momentum conservation. The k-ɛ closure model and volume of fluid approach were used to describe the turbulence and tracking of the free surface, respectively. Numerical simulations explored incident wave conditions, specifically spilling and plunging breakers, on both dissipative and intermediate beaches. It was found that the spatial variation of sediment concentration in the swash zone is asymmetric, while the temporal behavior is characterized by maximum sediment concentrations at the start and end of the swash cycle. The numerical results also indicated that the maximum turbulent kinetic energy and sediment flux occurs near the wave-breaking point. These predictions are in general agreement with previous observations, while the model describes the fluid and sediment phase characteristics in much more detail than existing measurements. With direct quantifications of velocity, turbulent kinetic energy, sediment concentration and flux, the model provides a useful approach to improve mechanistic understanding of hydrodynamic and sediment transport in the nearshore zone.
NASA Astrophysics Data System (ADS)
Camerlenghi, Angelo; Rebesco, Michele; Pedrosa, Mayte; Demol, Ben; Giulia Lucchi, Renata; Urgeles, Roger; Colmenero-Hidalgo, Elena; Andreassen, Karin; Sverre Laberg, Jan; Winsborrow, Monica
2010-05-01
IPY Activity N. 367 focusing on Neogene ice streams and sedimentary processes on high- latitude continental margins (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental margin in response to natural climate change. The paleo-ice streams drained ice from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. In the outer trough of southern Storfjorden, lobate moraines superimpose and are cut by very large linear features attributed to mega-iceberg scours. In the adjacent Kveithola trough, a fresh morphology includes mega-scale glacial lineations overprinted by transverse grounding-zone wedges, diagnostic of episodic ice stream retreat. A 15 m thick glacimarine drape suggests an high post-deglaciation sedimentation rate. Preliminary interpretation suggests that the retreat of the Svalbard/Barents Sea Ice Sheet was highly dynamic and that grounded ice persisted on Spitsbergen Bank for some thousands years after the main Barents Sea deglaciation.The Storfjorden continental slope is divided into three wide lobes. Opposite the two northernmost lobes the slope is dominated by straight gullies in the upper part, and deposition of debris lobes on the mid and lower parts. In contrast, the southernmost lobe is characterized by widespread occurrence of submarine landslides. Sediment failure has accompanied the evolution of the southern Storfjorden and Kveithola margin throughout the Late Neogene, with very large mass transport deposits up to 200 m thick in the early phases of the development of the glacially influenced margin. Conversely, the central and northern parts of the Storfjorden margin have prograded without appreciable episodes of mass failure. Sedimentation has occurred through alternate layering of decimeter-thick glacial debris flows deposits, with laminated and acoustically transparent interglacial sediment drape. Gullies and paleo-gullies incise the glacial debris flows and are covered by the interglacial drape. They are formed early during each deglaciation phase, most likely by the erosive action of short-lived hyperpycnal flows generated by sediment-laden subglacial meltwater discharge. In sediment cores thick finely-laminated sedimentary beds on the upper continental slope of the southern part of the margin indicate preferential deposition by settlement of meltwater sediment plumes. High sedimentation rates of plumites may contribute to the slope instability and suggest that meltwater discharge was focused on the southern Storfjorden and Kveithola paleo-ice streams.
Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data
NASA Astrophysics Data System (ADS)
Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.
2018-01-01
Surface waves generated by earthquakes that occurred near Sumatra, Andaman-Nicobar Island chain and Sunda arc are used to estimate crustal and upper mantle S wave velocity structure of Bay of Bengal. Records of these seismic events at various stations located along the eastern coast of India and a few stations in the north eastern part of India are selected for such analysis. These stations lie within regional distance of the selected earthquakes. The selected events are shallow focused with magnitude greater than 5.5. Data of 65, 37, 36, 53 and 36 events recorded at Shillong, Bokaro, Visakhapatnam, Chennai and Trivandrum stations respectively are used for this purpose. The ray paths from the earthquake source to the recording stations cover different parts of the Bay of Bengal. Multiple Filtering Technique (MFT) is applied to compute the group velocities of surface waves from the available data. The dispersion curves thus obtained for this data set are within the period range of 15-120 s. Joint inversion of Rayleigh and Love wave group velocity is carried out to obtain the subsurface information in terms of variation of S wave velocity with depth. The estimated S wave velocity at a given depth and layer thickness can be considered to be an average value for the entire path covered by the corresponding ray paths. However, we observe variation in the value of S wave velocity and layer thickness from data recorded at different stations, indicating lateral variation in these two parameters. Thick deposition of sediments is observed along the paths followed by surface waves to Shillong and Bokaro stations. Sediment thickness keeps on decreasing as the surface wave paths move further south. Based on velocity variation the sedimentary layer is further divided in to three parts; on top lay unconsolidated sediment, underlain by consolidated sediment. Below this lies a layer which we consider as meta-sediments. The thickness and velocity of these layers decrease from north to south. The crustal material has higher velocity at the southern part compared to that at the northern part of Bay of Bengal indicating that it changes from more oceanic type in the southern part of the Bay to more continental type to its north. Both Moho and lithosphere - asthenosphere boundary (LAB) dips gently towards north. Thicknesses of both lithosphere and asthenosphere also increase in the same direction. The mantle structure shows complex variation from south to north indicating possible effect of repeated changes in type of tectonic activity in the Bay of Bengal.
Tadayon, Saeid; Smith, C.F.
1994-01-01
Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.
Aldega, L.; Eberl, D.D.
2005-01-01
Illite crystals in siliciclastic sediments are heterogeneous assemblages of detrital material coming from various source rocks and, at paleotemperatures >70 ??C, of superimposed diagenetic modification in the parent sediment. We distinguished the relative proportions of 2M1 detrital illite and possible diagenetic 1Md + 1M illite by a combined analysis of crystal-size distribution and illite polytype quantification. We found that the proportions of 1Md + 1M and 2M1 illite could be determined from crystallite thickness measurements (BWA method, using the MudMaster program) by unmixing measured crystallite thickness distributions using theoretical and calculated log-normal and/or asymptotic distributions. The end-member components that we used to unmix the measured distributions were three asymptotic-shaped distributions (assumed to be the diagenetic component of the mixture, the 1Md + 1M polytypes) calculated using the Galoper program (Phase A was simulated using 500 crystals per cycle of nucleation and growth, Phase B = 333/cycle, and Phase C = 250/ cycle), and one theoretical log-normal distribution (Phase D, assumed to approximate the detrital 2M1 component of the mixture). In addition, quantitative polytype analysis was carried out using the RockJock software for comparison. The two techniques gave comparable results (r2 = 0.93), which indicates that the unmixing method permits one to calculate the proportion of illite polytypes and, therefore, the proportion of 2M1 detrital illite, from crystallite thickness measurements. The overall illite crystallite thicknesses in the samples were found to be a function of the relative proportions of thick 2M1 and thin 1Md + 1M illite. The percentage of illite layers in I-S mixed layers correlates with the mean crystallite thickness of the 1Md + 1M polytypes, indicating that these polytypes, rather than the 2M1 polytype, participate in I-S mixed layering.
NASA Astrophysics Data System (ADS)
Nomikou, P.; Hübscher, C.; Papanikolaou, D.; Farangitakis, G. P.; Ruhnau, M.; Lampridou, D.
2018-01-01
New bathymetric and seismic reflection data from the Santorini-Amorgos Tectonic Zone in the southern Cyclades have been analysed and a description of the morphology and tectonic structure of the area has been presented. The basins of Anhydros, Amorgos and Santorini-Anafi have been distinguished together with the intermediate Anhydros Horst within the NE-SW oriented Santorini-Amorgos Tectonic Zone which has a length of 60-70 km and a width of 20-25 km. The basins represent tectonic grabens or semi-grabens bordered by the active marginal normal faults of Santorini-Anafi, Amorgos, Ios, Anhydros and Astypalaea. The Santorini-Anafi, Amorgos and Ios marginal faults have their footwall towards the NW where Alpine basement occurs in the submarine scarps and their hangingwall towards the southeast, where the Quaternary sediments have been deposited with maximum thickness of 700 m. Six sedimentary Units 1-6 have been distinguished in the stratigraphic successions of the Santorini-Anafi and the western Anhydros Basin whereas in the rest area only the upper four Units 3-6 have been deposited. This shows the expansion of the basin with subsidence during the Quaternary due to ongoing extension in a northwest-southeast direction. Growth structures are characterized by different periods of maximum deformation as this is indicated by the different sedimentary units with maximum thickness next to each fault. Transverse structures of northwest-southeast direction have been identified along the Santorini-Amorgos Tectonic Zone with distinction of the blocks/segments of Santorini, Anhydros/Kolumbo, Anhydros islet and Amorgos. Recent escarpments with 7-9 m offset observed along the Amorgos Fault indicate that this was activated during the first earthquake of the 7.5 magnitude 1956 events whereas no recent landslide was found in the area that could be related to the 1956 tsunami.
NASA Astrophysics Data System (ADS)
Sedláček, Jan; Bábek, Ondřej; Kielar, Ondřej
2016-02-01
We present a comprehensive study concerning sedimentary processes in fluvial sediment traps within the Morava River catchment area (Czech Republic) involving three dammed reservoirs, four meanders and oxbow lakes, and several natural floodplain sites. The objective of the study was to determine sediment accumulation rates (SAR), estimate erosion rates, calculating these using a combination of the 137Cs method and historical data. Another purpose of this study was to provide insight into changing erosion and accumulation rates over the last century. Extensive water course modifications were carried out in the Morava River catchment area during the twentieth century, which likely affected sedimentation rates along the river course. Other multiproxy stratigraphic methods (X-ray densitometry, magnetic susceptibility, and visible-light reflectance spectrometry) were applied to obtain additional information about sediment infill. Sediment stratigraphy revealed distinct distal-to-proximal patterns, especially in reservoirs. Granulometrically, silts and sandy silts prevailed in sediments. Oxbow lakes and meanders contained larger amounts of clay and organic matter, which is the main difference between them and reservoirs. Pronounced 137Cs peaks were recorded in all studied cores (maximum 377 Bq·kg- 1), thus indicating Chernobyl fallout from 1986 or older events. Calculated sediment accumulation rates were lowest in distal parts of reservoirs (0.13-0.58 cm/y) and floodplains (0.45-0.88 cm/y), moderately high rates were found in proximal parts of reservoirs and oxbow lakes (2.27-4.4 cm/y), and the highest rates in some oxbow lakes located near the river (6-8 cm/y). The frequency of the inundation still can be high in some natural areas as in the Litovelské Pomoraví protected area, whereas the decreasing frequency of the inundation in other modified parts can contribute to a lower sedimentation rate. The local effects such as difference between SARs in oxbow lakes and reservoirs, different grain size distribution in both systems, and high variability in thickness of their proximal and distal parts play a crucial role in the analysis of regional accumulation rates. Local effects are much stronger than regional effects, such as rainfall and land use. Combined with the low resolution of time scales (usually only three datums are available: reservoir construction datum, 137Cs fallout event, and top of sediment), these effects may obscure the general trends of regionally increasing or decreasing net SARs, making the analysis of erosion rates from the sedimentary record an extremely difficult task.
NASA Astrophysics Data System (ADS)
Kämpf, Lucas; Brauer, Achim; Mueller, Philip; Güntner, Andreas; Merz, Bruno
2015-04-01
The relation of changing climate and the occurrence of strong flood events has been controversially debated over the last years. One major limitation in this respect is the temporal extension of instrumental flood time series, rarely exceeding 50-100 years, which is too short to reflect the full range of natural climate variability in a region. Therefore, geoarchives are increasingly explored as natural flood recorders far beyond the range of instrumental flood time series. Annually laminated (varved) lake sediments provide particularly valuable archives since (i) lakes form ideal traps in the landscape continuously recording sediment flux from the catchment and (ii) individual flood events are recorded as detrital layers and can be dated with seasonal precision by varve counting. Despite the great potential of varved lake sediments for reconstructing long flood time series, there are still some confinements with respect to their interpretation due to a lack in understanding processes controlling the formation of detrital layers. For this purpose, we investigated the formation of detrital flood layers in Lake Mondsee (Upper Austria) in great detail by monitoring flood-related sediment flux and comparing detrital layers in sub-recent sediments with river runoff data. Sediment flux at the lake bottom was trapped over a three-year period (2011-2013) at two locations in Lake Mondsee, one located 0.9 km off the main inflow (proximal) and one in a more distal position at a distance of 2.8 km. The monitoring data include 26 floods of different amplitude (max. hourly discharge=10-110 cbm/s) which triggered variable fluxes of catchment sediment to the lake floor (4-760 g/(sqm*d)). The comparison of runoff and sediment data revealed empiric runoff thresholds for triggering significant detrital sediment influx to the proximal (20 cbm/s) and distal lake basin (30 cbm/s) and an exponential relation between runoff amplitude and the amount of deposited sediment. A succession of 20 sub-millimetre to maximum 8 mm thick flood-triggered detrital layers, deposited between 1976 and 2005, was detected in two varved surface sediment cores from the same locations as the sediment traps. Calibration of the detrital layer record with river runoff data revealed empirical thresholds for flood layer deposition. These thresholds are higher than those for trapped sediment flux but, similarly to the trap results, increasing from the proximal (50-60 cbm/s; daily mean=40 cbm/s) to the distal lake basin (80 cbm/s, 2 days>40 cbm/s). Three flood events above the threshold for detrital layer formation in the proximal and one in the distal lake basin were also recorded in the monitoring period. These events resulted in exceptional sediment transfer to the lake of more than 400 g/sqm at both sites, which is therefore interpreted as the minimum sediment amount for producing a visible detrital layer.
NASA Astrophysics Data System (ADS)
Podrecca, L.; Miller, K. G.; Wright, J. D.; Browning, J. V.; Emge, T.
2017-12-01
The Paleocene-Eocene boundary marks a time of swift global climatic change. Constraining the timeframe of this event is a first order question necessary for ascertaining the origin of the event and the potential for its use as an analog for modern climate change. The New Jersey shelf sediments of the Marlboro Formation records this time period with exceptionally thick (5-15m) records of the period of global low carbon isotopic values ("the core") which requires minimum sedimentation rates of 10's cm/kyr. Rhythmic layers have been previously reported from Wilson Lake & Millville, NJ (IODP Leg 174AX). These structures coined "laminae couplets" consist of semi-periodic 1-2mm thick raised laminations separated by matrix of varying width (averaging 1.8cm). These have been dismissed as artifacts of drilling "biscuits". We report here on a series of shallow auger cores drilled on a transect at Medford, NJ, without using drilling fluid. These cores also show a similar set of structures on the 2cm scale verifying that they are primary depositional features. The mm width laminae in the auger core show remarkable swelling within minutes of splitting. XRD, XRF, bulk carbonate geochemistry, and grain size analysis have been determined at regular depth intervals throughout the core. We have analyzed differences in these parameters between the laminae and interbedded matrix material, as well as across the transect as a whole. In general, the Marlboro formation at this updip location consists of micaceous, lignitic, very clayey silt (mean size 6 micrometers) with occasional organic debris indicating proximal deposition from a fluvial system. Paleodepth of 40m and normal marine salinities are estimated using a paleoslope model and the presence of common though not abundant planktonic foraminifera. We discuss a model of deposition for the Marlboro Formation as fluid mud (nearbed suspension flows) associated with the "Appalachian Amazon" alluding toward the finer grained inter-laminae representing settling events. These may be either hemipelagics associated with episodic flood events or seasonal periods of in-river sediment discharge and the benthic salinity front.
Tian, Yigeng; Xia, Mingfeng; Zhang, Shuai; Fu, Zhen; Wen, Qingbin; Liu, Feng; Xu, Zongzhen; Li, Tao; Tian, Hu
2016-01-01
Plastic biliary stents used to relieve obstructive jaundice are frequently blocked by sediment, resulting in loss of drainage. We prepared stents coated with silver nanoparticles (AgNPs) and compared their ability to resist sedimentation with Teflon stents in a beagle model of obstructive jaundice. AgNP-coated Teflon biliary stents were prepared by chemical oxidation-reduction and evaluated in an obstructive jaundice model that was produced by ligation of common bile duct (CBD); animals were randomized to two equal groups for placement of AgNP-coated or Teflon control stents. Liver function and inflammatory index were found to be similar in the two groups, and the obstruction was relieved. Stents were removed 21 days after insertion and observed by scanning and transmission electron microscopy. The AgNP coating was analyzed by energy dispersive X-ray analysis (EDXA), and the composition of sediment was assayed by Fourier-transform infrared (FTIR) spectroscopy. Electron microscopy revealed a black, closely adherent AgNP stent coating, with thicknesses of 1.5-6 µm. Sediment thickness and density were greater on Teflon than on AgNP-coated stents. EDXA confirmed the stability and integrity of the AgNP coating before and after in vivo animal experimentation. FTIR spectroscopy identified stent sediment components including bilirubin, cholesterol, bile acid, protein, calcium, and other substances. AgNP-coated biliary stents resisted sediment accumulation in this canine model of obstructive jaundice caused by ligation of the CBD.
Tian, Yigeng; Xia, Mingfeng; Zhang, Shuai; Fu, Zhen; Wen, Qingbin; Liu, Feng; Xu, Zongzhen; Li, Tao; Tian, Hu
2016-01-01
Objective Plastic biliary stents used to relieve obstructive jaundice are frequently blocked by sediment, resulting in loss of drainage. We prepared stents coated with silver nanoparticles (AgNPs) and compared their ability to resist sedimentation with Teflon stents in a beagle model of obstructive jaundice. Methods AgNP-coated Teflon biliary stents were prepared by chemical oxidation–reduction and evaluated in an obstructive jaundice model that was produced by ligation of common bile duct (CBD); animals were randomized to two equal groups for placement of AgNP-coated or Teflon control stents. Liver function and inflammatory index were found to be similar in the two groups, and the obstruction was relieved. Stents were removed 21 days after insertion and observed by scanning and transmission electron microscopy. The AgNP coating was analyzed by energy dispersive X-ray analysis (EDXA), and the composition of sediment was assayed by Fourier-transform infrared (FTIR) spectroscopy. Results Electron microscopy revealed a black, closely adherent AgNP stent coating, with thicknesses of 1.5–6 µm. Sediment thickness and density were greater on Teflon than on AgNP-coated stents. EDXA confirmed the stability and integrity of the AgNP coating before and after in vivo animal experimentation. FTIR spectroscopy identified stent sediment components including bilirubin, cholesterol, bile acid, protein, calcium, and other substances. Conclusion AgNP-coated biliary stents resisted sediment accumulation in this canine model of obstructive jaundice caused by ligation of the CBD. PMID:27217749
NASA Astrophysics Data System (ADS)
Boswell, Steven M.; Toucanne, Samuel; Creyts, Timothy T.; Hemming, Sidney R.
2018-05-01
We introduce a methodology for determining the transport distance of subglacially comminuted and entrained sediments. We pilot this method on sediments from the terminal margin of the Baltic Ice Stream, the largest ice stream of the Fennoscandian Ice Sheet during the Last Glacial Maximum. A strong correlation (R2 = 0.83) between the εNd and latitudes of circum-Baltic river sediments enables us to use εNd as a calibrated measure of distance. The proportion of subglacially transported sediments in a sample is estimated from grain size ratios in the silt fraction (<63 μm). Coupled εNd and grain size analyses reveal a common erosion source for the Baltic Ice Stream sediments located near the Åland sill, more than 850 km upstream from the terminal moraines. This result is in agreement with both numerical modeling and geomorphological investigations of Fennoscandinavian erosion, and is consistent with rapid ice flow into the Baltic basins prior to the Last Glacial Maximum. The methodology introduced here could be used to infer the distances of glacigenic sediment transport from Late Pleistocene and earlier glaciations.
Schwab, William C.; Baldwin, Wayne E.; Denny, Jane F.
2015-01-01
The U.S. Geological Survey mapped approximately 336 square kilometers of the lower shoreface and inner continental shelf offshore of Fire Island, New York, in 1996 and 1997, using high-resolution sidescan-sonar and seismic-reflection systems, and again in 2011, using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents a comparison of sediment thickness and distribution as mapped during these two investigations. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island.
A closer look at the Neogene erosion and accumulation rate increase
NASA Astrophysics Data System (ADS)
Willenbring, J.; von Blanckenburg, F.
2008-12-01
Glacial erosion and Quaternary cold-stage warm-stage climate cycling have been cited as mechanisms to explain observations of increased Neogene marine sedimentation rates. Quantification of long-term glacial erosion rates from cosmogenic radionuclides from large areas mostly covered by cold-based ice during the Quaternary show very low erosion rates over several glacial cycles. In addition, isotope ratio proxies of dissolved metals in seawater, measured in chemical ocean sediments, lack clear evidence for an increase in terrigenous denudation. In particular, the stable isotope 9Be, derived from continental erosion, shows no change in its ratio to meteoric cosmogenic nuclide 10Be, derived from rain over the past 10 My. Radiogenic Pb and Nd isotopes, mainly show a change in the style of denudation from more chemical to more physical processes in the Quaternary. These data are at odds with a suggested increase in marine sedimentation rates during the late Cenozoic. In order to resolve this contradiction we have scrutinized these sedimentation rate calculations from ocean cores to identify whether they might show only apparent increases in the Neogene sections. Potential explanations are that in some cases, measured sediment thicknesses for different time intervals lack corrections for sediment compaction. Compaction of the lower portions of the cores drastically increases the apparent thickness of the more recent (Quaternary) sediment. In addition, sedimentation rates often only appear higher for recent sections in cores due to an artifact of an averaging timescale that decreases up-core. Such an averaging time scale decrease arises from better chronological resolution in recent times (Sadler et al., 1999). Cannibalization of older sediment might add to this effect. Together, these data question a clear, global-scale Quaternary climate-erosion connection that would be unique in Earth's history.
Lee, Yoo Seok; An, Junyeong; Kim, Bongkyu; Park, HyunJun; Kim, Jisu; Chang, In Seop
2015-01-01
We report a methodology for enhancing the mass transfer at the anode electrode of sediment microbial fuel cells (SMFCs), by employing a fabric baffle to create a separate water-layer for installing the anode electrode in sediment. The maximum power in an SMFC with the anode installed in the separate water-layer (SMFC-wFB) was improved by factor of 6.6 compared to an SMFC having the anode embedded in the sediment (SMFC-woFB). The maximum current density in the SMFC-wFB was also 3.9 times higher (220.46 mA/m2) than for the SMFC-woFB. We found that the increased performance in the SMFC-wFB was due to the improved mass transfer rate of organic matter obtained by employing the water-layer during anode installation in the sediment layer. Acetate injection tests revealed that the SMFC-wFB could be applied to natural water bodies in which there is frequent organic contamination, based on the acetate flux from the cathode to the anode.
NASA Astrophysics Data System (ADS)
Bahlburg, H.; Nentwig, V.; Kreutzer, M.
2016-12-01
On September 16, 2015, a Mw 8.3 earthquake occurred off the coast of Central Chile, 46 km west of the town of Illapel, the hypocenter was at a depth of 8.7 km in the transition zone from the Chilean flat slab to the central Chilean steep slab subduction geometry, and near the intersection of the Juan Fernandez Ridge with the South America plate. The quake caused a tsunami registered which at Coquimbo and La Serena (c. 30°S) attained wave heights of 4.5 m leading to flooding and destruction of infrastructure. Maximum inundation distance was c. 700 m in Coquimbo Bay with minor flooding at the beaches of La Serena to the N. Tsunami deposits are usually the only observable evidence of past events. In view of a limited preservation potential, it is of paramount importance to undertake detailed studies in the wake of actual events. We report initial field data of a sedimentological post-tsunami field survey undertaken in October 2015. The most comprehensive sedimentological record of this tsunami is preserved at Playa Los Fuertes in La Serena. Along a 30 m long trench perpendicular to the coast we observed a laminated package of tsunami deposits. Above an erosive basal unconformity with an amplitude of up to 50 cm the deposit consists of 6 layers of variable thickness, ranging between dark laminae a few millimeters thick and rich in heavy minerals, and lighter colored sand layers up to 15 cm thick. The sediments are moderately well to well sorted, unimodal with modes between 1.3 and 2.0 Φ (medium sand). Cross-beds in the lower four layers indicate deposition from tsunami inflow, cross bedding in the penultimate layer records outflow. Water escape through small sand volcanoes was coeval to formation of the overlying sediment layer by traction deposition. This simultaneity is indicated by sand issued from the lower layer which has been preserved as a thin plume deformed in the downcurrent, i.e. landward, direction in the newly forming upper layer. Other sectors of the sediment show sand diapirs intruding up to 15 cm into the overlying tsunami deposit. The assemblage of laminae, layers and sedimentary structures indicates that the deposit records at least 4 events of tsunami inflow and one outflow event. Intervening layers without directional structures cannot be assigned unequivocally to either inflow or outflow deposition.
NASA Astrophysics Data System (ADS)
Weber, M. E.; Reichelt, L.; Kuhn, G.; Pfeiffer, M.; Korff, B.; Thurow, J.; Ricken, W.
2010-03-01
We present tools for rapid and quantitative detection of sediment lamination. The BMPix tool extracts color and gray scale curves from images at pixel resolution. The PEAK tool uses the gray scale curve and performs, for the first time, fully automated counting of laminae based on three methods. The maximum count algorithm counts every bright peak of a couplet of two laminae (annual resolution) in a smoothed curve. The zero-crossing algorithm counts every positive and negative halfway passage of the curve through a wide moving average, separating the record into bright and dark intervals (seasonal resolution). The same is true for the frequency truncation method, which uses Fourier transformation to decompose the curve into its frequency components before counting positive and negative passages. The algorithms are available at doi:10.1594/PANGAEA.729700. We applied the new methods successfully to tree rings, to well-dated and already manually counted marine varves from Saanich Inlet, and to marine laminae from the Antarctic continental margin. In combination with AMS14C dating, we found convincing evidence that laminations in Weddell Sea sites represent varves, deposited continuously over several millennia during the last glacial maximum. The new tools offer several advantages over previous methods. The counting procedures are based on a moving average generated from gray scale curves instead of manual counting. Hence, results are highly objective and rely on reproducible mathematical criteria. Also, the PEAK tool measures the thickness of each year or season. Since all information required is displayed graphically, interactive optimization of the counting algorithms can be achieved quickly and conveniently.
NASA Astrophysics Data System (ADS)
Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.; Anderson, Leif
2016-11-01
Non-linear climate change is often linked to rapid changes in ocean circulation, especially around the North Atlantic. As the Polar Front fluctuated its latitudinal position during the Holocene, Iceland's climate was influenced by both the warm Atlantic currents and cool, sea ice-bearing Arctic currents. Drangajökull is Iceland's fifth largest ice cap. Climate proxies in lake sediment cores, dead vegetation emerging from beneath the ice cap, and moraine segments identified in a new DEM constrain the episodic expansion of the ice cap over the past 3 ka. Collectively, our data show that Drangajökull was advancing at ∼320 BCE, 180 CE, 560 CE, 950 CE and 1400 CE and in a state of recession at ∼450 CE, 1250 CE and after 1850 CE. The Late Holocene maximum extent of Drangajökull occurred during the Little Ice Age (LIA), occupying 262 km2, almost twice its area in 2011 CE and ∼20% larger than recent estimates of its LIA dimensions. Biological proxies from the sediment fill in a high- and low-elevation lake suggest limited vegetation and soil cover at high elevations proximal to the ice cap, whereas thick soil cover persisted until ∼750 CE at lower elevations near the coast. As Drangajökull expanded into the catchment of the high-elevation lake beginning at ∼950 CE, aquatic productivity diminished, following a trend of regional cooling supported by proxy records elsewhere in Iceland. Correlations between episodes of Drangajökull's advance and the documented occurrence of drift ice on the North Icelandic Shelf suggest export and local production of sea ice influenced the evolution of NW Iceland's Late Holocene climate.
1991-01-01
of major and minor stress directions ik associated with 40-m-thick zone. The bedding-subparallel fabric results in accretion (Moran and Christian , 1990...Carson, B., and T.R. Bruns, 1980. Physical properties of sediments from the Moran, K., and H.A. Christian , 1990. Strength and deformation behavior of...Geotechnical properties of lower Cowan, D.S., J.C. Moore, S.M. Roeske , N. Lundberg, and S.E. Lucas, 1984. trench inner slope sediments. Tectonophysics
Doran, P T; Wharton, R A; Lyons, W B; Des Marais, D J; Andersen, D T
2000-01-01
A process-oriented study was carried out in White Smoke lake, Bunger Hills, East Antarctica, a perennially ice-covered (1.8 to 2.8 m thick) epishelf (tidally-forced) lake. The lake water has a low conductivity and is relatively well mixed. Sediments are transferred from the adjacent glacier to the lake when glacier ice surrounding the sediment is sublimated at the surface and replaced by accumulating ice from below. The lake bottom at the west end of the lake is mostly rocky with a scant sediment cover. The east end contains a thick sediment profile. Grain size and delta 13C increase with sediment depth, indicating a more proximal glacier in the past. Sedimentary 210Pb and 137Cs signals are exceptionally strong, probably a result of the focusing effect of the large glacial catchment area. The post-bomb and pre-bomb radiocarbon reservoirs are c. 725 14C yr and c. 1950 14C yr, respectively. Radiocarbon dating indicates that the east end of the lake is >3 ka BP, while photographic evidence and the absence of sediment cover indicate that the west end has formed only over the last century. Our results indicate that the southern ice edge of Bunger Hills has been relatively stable with only minor fluctuations (on the scale of hundreds of metres) over the last 3000 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holliday, V.; Parks, J.M.
The turtle grass (Thalassia testudinum) community has a significant influence on sedimentation in Florida Bay, but the roles other processes may play in the buildup of mud bank and spit sediments are poorly understood. Samples from cores taken from Ramshorn Spit and Ramshorn Shoal were classified into 4 basic types on the basis of particle size distribution, organic content, and faunal assemblages. In order of increasing volumetric importance they are: (1) very thin, discontinuous shelly packstones, representing overbank or storm deposits; (2) thin, continuous basal shelly packstones, the initial marine deposit on the Pleistocene bedrock surface; (3) muddy wackestones, ofmore » variable thickness, deposited in the presence of a seagrass community; (4) very thick, faintly laminated fine mudstones, with very sparse fauna, representing weak current-transported sediments settling out of suspension. Discriminant function analysis confirms the classifications and shows that these sediment layers are indeed correlatable between cores. Interpretation of the core logs from Ramshorn Spit indicates a definite change in stratigraphy southwestward from the spit and bank junction to the tip of the spit itself. The different sediment layers show a small but significant inclination to the southwest. Throughout its depositional history, Ramshorn Spit seems to have been actively accreting outward into the surrounding lake by means of a current-transported fine mud fraction. After settling out at the growing tip of the spit, the sediments are subsequently stabilized at some later time by a turtle-grass cover.« less
Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy
Warner, John C.; Schwab, William C.; List, Jeffrey; Safak, Ilgar; Liste, Maria; Baldwin, Wayne E.
2017-01-01
Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on Oct 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaluate. These regions provide a framework for the coastal zone, are important for navigation, aggregate resources, marine ecosystems, and coastal evolution. Here we provide unprecedented perspective regarding regional inner continental shelf sediment dynamics based on both observations and numerical modeling over time scales associated with these types of large storm events. Oceanographic conditions and seafloor morphologic changes are evaluated using both a coupled atmospheric-ocean-wave-sediment numerical modeling system and observation analysis from a series of geologic surveys and oceanographic instrument deployments focused on a region offshore of Fire Island, NY. The geologic investigations conducted in 2011 and 2014 revealed lateral movement of sedimentary structures of distances up to 450 m and in water depths up to 30 m, and vertical changes in sediment thickness greater than 1 m in some locations. The modeling investigations utilize a system with grid refinement designed to simulate oceanographic conditions with progressively increasing resolutions for the entire US East Coast (5-km grid), the New York Bight (700-m grid), and offshore of Fire Island, NY (100-m grid), allowing larger scale dynamics to drive smaller scale coastal changes. Model results in the New York Bight identify maximum storm surge of up to 3 m, surface currents on the order of 2 ms-1 along the New Jersey coast, waves up to 8 m in height, and bottom stresses exceeding 10 Pa. Flow down the Hudson Shelf Valley is shown to result in convergent sediment transport and deposition along its axis. Modeled sediment redistribution along Fire Island showed erosion across the crests of inner shelf sand ridges and sedimentation in adjacent troughs, consistent with the geologic observations.
NASA Astrophysics Data System (ADS)
Bernhardt, Anne; Schwanghart, Wolfgang; Hebbeln, Dierk; Stuut, Jan-Berend; Strecker, Manfred
2017-04-01
Understanding how Earth-surface processes respond to past climatic perturbations is crucial for making informed predictions about future impacts of climate change on sediment fluxes. Sedimentary records provide the archives for inferring these processes but their interpretation is compromised by our incomplete understanding of how sediment-routing systems respond to millennial-scale climate cycles. We analyzed seven sediment cores recovered from turbidite depositional sites along the continental slope of the Chile convergent margin. These depositional systems represent the ultimate sedimentary archives before sediment gets recycled during subduction processes and provide relatively continuous and well-dated records. The study sites span a pronounced arid-to-humid gradient with variable topographic gradients and related connectivity of terrestrial and marine landscapes on the continental slope. This setting allowed us to study event-related depositional processes from the Last Glacial Maximum to present in different climatic and geomorphic settings. The turbidite record was quantified in terms of turbidite thickness and frequency. The three studied sites show a steep decline of turbidite deposition during deglaciation. High rates of sea-level rise significantly lag the decline in turbidite deposition by 3-6.5 kyrs. However, comparison to paleoclimate proxies shows that this spatio-temporal sedimentary pattern mirrors the deglacial humidity decrease and concomitant warming with little to no lag times. Our results suggest that the deglacial humidity decrease resulted in a decrease of fluvial sediment supply, which propagated rapidly through the highly connected systems into the marine sink in north-central Chile. In contrast, in south-central Chilean systems, connectivity between the Andean erosional zone and the fluvial transfer zone probably decreased abruptly by the deglaciation of piedmont lakes, resulting in a significant and rapid decrease of sediment supply to the ocean. Additionally, reduced moisture supply may have also contributed to the rapid decline of turbidite deposition. These different causes result in similar depositional patterns in the marine sinks. We conclude that turbiditic strata can act as reliable recorders of climate change across a wide range of climatic zones and geomorphic conditions. However, the underlying causes for similar signal manifestations in the sinks may differ, ranging from maintained high system connectivity to abrupt connectivity loss.
Sedimentological characteristics of lake sediment of the Lake Jelonek (North Poland)
NASA Astrophysics Data System (ADS)
Kramkowski, Mateusz; Filbrandt-Czaja, Anna; Ott, Florian; Słowiński, Michał; Tjallingii, Rik; Błaszkiewicz, Mirosław; Brauer, Achim
2016-04-01
Lake Jelonek is located in Northern Poland (53°45'58N, 18°23'30E). The lake is surrounded by forest, covers an area of 19,9 ha and has a maximum depth of 13,8 m. In 2013 and 2014 three overlapping and parallel series of long sediment cores JEL14-A-(1445 cm), JEL14-B-(1430 cm), JEL14-C-(1435 cm) and seven short gravity cores JEL13 (K1-K7) have been recovered from the deepest part of the lake. A continuous composite profile JEL14 covering 1426 cm has been established by correlation based on 28 distinct macroscopic marker layers. The sediment sequence can be divided into 15 (I-XV) lithological units. These units comprise biochemical calcite varves, homogeneous calcite-rich gyttja, homogeneous organic-diatomaceous gyttja, and sandy layers. The chronology established so far is based on 14 AMS 14C dates from terrestrial plant remains and tephrochronology (Askja AD-1875) and covers the interval from the Younger Dryas to present times. Based on the chronology and sedimentological characteristics the composite profile has been correlated to a previous core from which a detailed pollen diagram had been established (Filbrandt-Czaja 2009). Here we present initial results from thin section analyses for two intervals from the new composite record JEL14, (I) the uppermost 0-256 cm and (II) the interval from 768-1296 cm. Intercalated between these two varved interval is a thick section (512 cm) of homogeneous organic-ditomaceous sediments. We present varve micro-facies data in combination with μ-XRF element scanning for comprehensive reconstruction of the sedimentation processes in Lake Jelonek. Preliminary varve counting reveals that the uppermost 256 cm varved sediments comprise ca 925 years (2008-1083 AD), while the lower floating varve interval covers the time period from 1850 - 10500 cal a BP. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415. References: Filbrandt-Czaja, A. 2009: Studia nad historią szaty roślinnej i krajobrazu Borów Tucholskich. pp. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy
NASA Astrophysics Data System (ADS)
Warner, John C.; Schwab, William C.; List, Jeffrey H.; Safak, Ilgar; Liste, Maria; Baldwin, Wayne
2017-04-01
Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on October 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaluate. These regions provide a framework for the coastal zone, are important for navigation, aggregate resources, marine ecosystems, and coastal evolution. Here we provide unprecedented perspective regarding regional inner continental shelf sediment dynamics based on both observations and numerical modeling over time scales associated with these types of large storm events. Oceanographic conditions and seafloor morphologic changes are evaluated using both a coupled atmospheric-ocean-wave-sediment numerical modeling system that covered spatial scales ranging from the entire US east coast (1000 s of km) to local domains (10 s of km). Additionally, the modeled response for the region offshore of Fire Island, NY was compared to observational analysis from a series of geologic surveys from that location. The geologic investigations conducted in 2011 and 2014 revealed lateral movement of sedimentary structures of distances up to 450 m and in water depths up to 30 m, and vertical changes in sediment thickness greater than 1 m in some locations. The modeling investigations utilize a system with grid refinement designed to simulate oceanographic conditions with progressively increasing resolutions for the entire US East Coast (5-km grid), the New York Bight (700-m grid), and offshore of Fire Island, NY (100-m grid), allowing larger scale dynamics to drive smaller scale coastal changes. Model results in the New York Bight identify maximum storm surge of up to 3 m, surface currents on the order of 2 ms-1 along the New Jersey coast, waves up to 8 m in height, and bottom stresses exceeding 10 Pa. Flow down the Hudson Shelf Valley is shown to result in convergent sediment transport and deposition along its axis. Modeled sediment redistribution along Fire Island showed erosion across the crests of inner shelf sand ridges and sedimentation in adjacent troughs, consistent with the geologic observations.
Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 137Cs, and 239,340Pu
Fuller, C.C.; van Geen, Alexander; Baskaran, M.; Anima, R.
1999-01-01
Sediment chronologies based on radioisotope depth profiles were developed at two sites in the San Francisco Bay estuary to provide a framework for interpreting historical trends in organic compound and metal contaminant inputs. At Richardson Bay near the estuary mouth, sediments are highly mixed by biological and/or physical processes. Excess penetration ranged from 2 to more than 10 cm at eight coring sites, yielding surface sediment mixing coefficients ranging from 12 to 170 cm2/year. At the site chosen for contaminant analyses, excess activity was essentially constant over the upper 25 cm of the core with an exponential decrease below to the supported activity between 70 and 90 cm. Both and penetrated to 57-cm depth and have broad subsurface maxima between 33 and 41 cm. The best fit of the excess profile to a steady state sediment accumulation and mixing model yielded an accumulation rate of 0.825 g/cm2/year (0.89 cm/year at sediment surface), surface mixing coefficient of 71 cm2/year, and 33-cm mixed zone with a half-Gaussian depth dependence parameter of 9 cm. Simulations of and profiles using these parameters successfully predicted the maximum depth of penetration and the depth of maximum and activity. Profiles of successive 1-year hypothetical contaminant pulses were generated using this parameter set to determine the age distribution of sediments at any depth horizon. Because of mixing, sediment particles with a wide range of deposition dates occur at each depth. A sediment chronology was derived from this age distribution to assign the minimum age of deposition and a date of maximum deposition to a depth horizon. The minimum age of sediments in a given horizon is used to estimate the date of first appearance of a contaminant from its maximum depth of penetration. The date of maximum deposition is used to estimate the peak year of input for a contaminant from the depth interval with the highest concentration of that contaminant. Because of the extensive mixing, sediment-bound constituents are rapidly diluted with older material after deposition. In addition, contaminants persist in the mixed zone for many years after deposition. More than 75 years are required to bury 90% of a deposited contaminant below the mixed zone. Reconstructing contaminant inputs is limited to changes occurring on a 20-year time scale. In contrast, mixing is much lower relative to accumulation at a site in San Pablo Bay. Instead, periods of rapid deposition and/or erosion occurred as indicated by frequent sand-silt laminae in the X-radiograph. , , and excess activity all penetrated to about 120 cm. The distinct maxima in the fallout radionuclides at 105–110 cm yielded overall linear sedimentation rates of 3.9 to 4.1 cm/year, which are comparable to a rate of 4.5±1.5 cm/year derived from the excess profile.
Quaternary history of the Kiseiba Oasis region, southern Egypt
NASA Astrophysics Data System (ADS)
Maxwell, Ted A.; Haynes, C. Vance; Nicoll, Kathleen; Johnston, Andrew K.; Grant, John A.; Kilani, Ali
2017-12-01
Kiseiba Oasis and depression are located in southern Egypt between the Selima Sand Sheet to the west and the Nile to the east, an important area that hosted Late Cenozoic drainage, Middle Pleistocene lakes, and numerous Paleolithic and Neolithic cultural sites. A synthesis of orbital data, field surveying and near-surface stratigraphy provides new insights into the Quaternary history of this region. Shuttle Imaging Radar data show a complex of fluvial channels that are due to stringers of surficial fluvial lag, subsurface fluvial deposits, and areas of deep alluvium. Three topographic surfaces are described: 1) the Atmur El-Kibeish, above 230 m elevation, which displays a linear pattern of light radar returns, possibly formed from northeast drainage; 2) the Acheulean Surface, at 200 m elevation, that has dark radar patterns resulting from thick alluvium bounded by pebble sand and calcrete strata, and 3) the Kiseiba Surface, below 190 m, that has a complex series of surface and subsurface fluvial and aeolian sediments. Initial drainage from the Early through Middle Pleistocene was to the northeast, which may have lasted through the Last Interglacial. Later reworking of sediments during the Last Glacial Maximum and the Holocene resulted in topographic inversion, with any subsequent local drainage on the Kiseiba Surface to the southwest, towards the Kiseiba Scarp.
The effects of post-accretion sedimentation on the magnetization of oceanic crust
NASA Astrophysics Data System (ADS)
Dyment, J.; Granot, R.
2016-12-01
The presence of marine magnetic anomalies related to seafloor spreading is often considered a key evidence to locate the continent-ocean boundary (COB) at passive margins. Conversely, thermal demagnetization is also advocated to explain the poor shape of such oceanic anomalies under thick sedimentary cover. To investigate the effects of post-accretion sedimentation on marine magnetic anomalies, we focus our study on two conjugate regions of the southern South Atlantic Ocean (Anomalies M4 to M0) that, although formed at the same time and along the same spreading segments, reveal contrasting characters. The anomalies exhibit strong amplitudes (>400 nT) and a well-marked shape off South Africa, where the sediments are less than 3 km-thick, but become weaker ( 200 nT) and much smoother off northern Argentina, where the sedimentary cover is thicker than 5 km. We interpret this observation as reflecting thermal demagnetization of the extrusive layer and its low Curie temperature titanomagnetite. We perform a series of thermo-magnetic models (Dyment and Arkani-Hamed, Geophys. J. Int., 1995, modified to include the sedimentary cover) to simulate the acquisition and loss of remanent magnetization in the oceanic lithosphere. We assume that most of the sediments accumulated shortly after crustal accretion. We investigate a range of possible thermal demagnetization temperatures for the extrusive layer and find that 200°C to 280ºC best explains the observations, in reasonable agreement with Curie temperatures of titanomagnetite, suggesting that most of the extrusive layer may be demagnetized under sediments thicker than 5 km. Thermal demagnetization should therefore be considered while interpreting marine magnetic anomalies for the age and nature of the crust (i.e., continental versus oceanic) in regions with thick sedimentary cover.
Influence of micromachined targets on laser accelerated proton beam profiles
NASA Astrophysics Data System (ADS)
Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran
2018-03-01
High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.
Electricity generation through a photo sediment microbial fuel cell using algae at the cathode.
Neethu, B; Ghangrekar, M M
2017-12-01
Sediment microbial fuel cells (SMFCs) are bio-electrochemical devices generating electricity from redox gradients occurring across the sediment-water interface. Sediment microbial carbon-capture cell (SMCC), a modified SMFC, uses algae grown in the overlying water of sediment and is considered as a promising system for power generation along with algal cultivation. In this study, the performance of SMCC and SMFC was evaluated in terms of power generation, dissolved oxygen variations, sediment organic matter removal and algal growth. SMCC gave a maximum power density of 22.19 mW/m 2 , which was 3.65 times higher than the SMFC operated under similar conditions. Sediment organic matter removal efficiencies of 77.6 ± 2.1% and 61.0 ± 1.3% were obtained in SMCC and SMFC, respectively. With presence of algae at the cathode, a maximum chemical oxygen demand and total nitrogen removal efficiencies of 63.3 ± 2.3% (8th day) and 81.6 ± 1.2% (10th day), respectively, were observed. The system appears to be favorable from a resources utilization perspective as it does not depend on external aeration or membranes and utilizes algae and organic matter present in sediment for power generation. Thus, SMCC has proven its applicability for installation in an existing oxidation pond for sediment remediation, algae growth, carbon conversion and power generation, simultaneously.
Variability in form and growth of sediment waves on turbidite channel levees
Normark, W.R.; Piper, D.J.W.; Posamentier, H.; Pirmez, C.; Migeon, S.
2002-01-01
Fine-grained sediment waves have been observed in many modern turbidite systems, generally restricted to the overbank depositional element. Sediment waves developed on six submarine fan systems are compared using high-resolution seismic-reflection profiles, sediment core samples (including ODP drilling), multibeam bathymetry, 3D seismic-reflection imaging (including examples of burried features), and direct measurements of turbidity currents that overflow their channels. These submarine fan examples extend over more than three orders of magnitude in physical scale. The presence or absence of sediment waves is not simply a matter of either the size of the turbidite channel-levee systems or the dominant initiation process for the turbidity currents that overflow the channels to form the wave fields. Both sediment-core data and seismic-reflection profiles document the upslope migration of the wave forms, with thicker and coarser beds deposited on the up-current flank of the waves. Some wave fields are orthogonal to channel trend and were initiated by large flows whose direction was controlled by upflow morphology, whereas fields subparallel to channel levees resulted from local spillover. In highly meandering systems, sediment waves may mimic meander planform. Larger sediment waves form on channel-levee systems with thicker overflow of turbidity currents, but available data indicate that sediment waves can be maintaned during conditions of relatively thin overflow. Coarser-grained units in sediment waves are typically laminated and thin-bedded sand as much as several centimetres thick, but sand beds as thick as several tens of centimetres have been documented from both modern and buried systems. Current production of hydrocarbons from sediment-wave deposits suggests that it is important to develop criteria for recognising this overbank element in outcrop exposures and borehole data, where the wavelength of typical waves (several kilometres) generally exceeds outcrop scales and wave heights, which are reduced as a result of consolidation during burial, may be too subtle to recognise. Crown Copyright ?? 2002 Published by Elsevier Science B.V. All rights reserved.
Seismic velocity structure of the sediment seaward of Cascadia Subduction Zone deformation front
NASA Astrophysics Data System (ADS)
Han, S.; Gibson, J. C.; Carbotte, S. M.; Canales, J. P.; Nedimovic, M. R.; Carton, H. D.
2015-12-01
We present seismic velocity structure of the sediment section seaward of the Cascadia Subduction Zone deformation front (DF), derived from multichannel seismic data acquired during the 2012 Juan de Fuca Ridge to Trench experiment. Detailed velocity analyses are conducted on every 100th prestack-time-migrated common reflection point gather (625 m spacing) within 45 km seaward of the DF along two ridge-to-trench transects offshore Oregon at 44.6˚N and Washington at 47.4˚N respectively, and on every 200th common mid-point gather (1250 m spacing) along a ~400 km-long trench-parallel transect ~15 km from the DF. We observe a landward increase of sediment velocity starting from ~15-20 km from the DF on both Oregon and Washington transects, which may result from increased horizontal compressive tectonic stress within the accretionary wedge and thermally induced dehydration processes in the sediment column. Although the velocity of near-basement sediments at 30 km from the DF is similar (~3.1 km/s) on both transects, the velocity increases are larger on the Washington transect, to ~4.0 km/s beneath the DF (sediment thickness ~3.2 km), than on the Oregon transect, to ~3.6 km/s beneath the DF (sediment thickness ~3.5 km). The long-wavelength sediment velocity structure on the trench-parallel transect confirms this regional difference in deep sediment velocity and also highlights variations related to a group of WNW-trending strike-slip faults along the margin. Offshore Washington, where higher sediment velocity seaward of the DF is observed, the accretionary wedge is wide with a decollement located close to the basement and landward-verging thrust faults. By contrast, offshore Oregon, the lower sediment velocity seaward of the DF is associated with a narrow accretionary wedge, a shallow decollement ~1 km above the basement, and seaward-verging thrust faults. The regional differences in deep sediment velocity may be related to the along-strike variation in sediment composition, esp. clay mineral content, which may modulate the pore fluid pressure in the sediment through dehydration reactions, and affect the mechanical properties of the accretionary wedge further landward.
NASA Astrophysics Data System (ADS)
Loveless, S. E.; Bense, V.; Turner, J.
2011-12-01
Many aquifers worldwide occur in poorly lithified sediments, often in regions that experience active tectonic deformation. Faulting of these sediments introduces heterogeneities that may affect aquifer porosity and permeability, and consequently subsurface fluid flow and groundwater storage. The specific hydrogeological effects of faults depend upon the fault architecture and deformation mechanisms. These are controlled by factors such as rheology, stratigraphy and burial depth. Here, we analyse fault permeability in poorly lithified sediments as a function of fault displacement. We have carried out detailed outcrop studies of minor normal faults at five study sites within the rapidly extending Corinth rift, Central Greece. Gravel conglomerates of giant Gilbert delta facies form productive but localised shallow aquifers within the region. Exposures reveal dense (average 20 faults per 100 m) networks of minor (0.1 to 50 m displacement) normal faults within the uplifted sequences, proximal to many of the crustal-scale normal faults. Analysis of 42 faults shows that fault zones are primarily composed of smeared beds that can either retain their definition or mix with surrounding sediment. Lenses or blocks of sediment are common in fault zones that cut beds with contrasting rheology, and a few faults have a clay core and/or damage zone. Fault thickness increases at a rate of about 0.4 m per 10 m increase in displacement. Comparison of sediment micro-structures from the field, hand samples and thin sections show grain-scale sediment mixing, fracturing of clasts, and in some cases cementation, within fault zones. In faults with displacements >12 m we also find a number of roughly parallel, highly indurated shear planes, up to 20 mm in thickness, composed of highly fragmented clasts and a fine grained matrix. Image analysis of thin sections from hand samples collected in the field was used to quantify the porosity of fault zones and adjacent undeformed sediment. These data show a reduction in average porosity from 21% (± 4) in undisturbed sediments to 14% (± 8) within fault zones. We find that fault zone porosity decreases by approximately 5% per 1 m displacement (up to 2 m displacement), as sediments undergo greater micro-scale deformation. Porosity within the shear planes of larger displacement faults (> 12 m) is significantly less than 5%. In summary, with an increase in fault displacement there is an increase in fault thickness and decrease in fault zone porosity, in addition to the occurrence of extremely low porosity shear planes. Consequently, the impact of faults in poorly lithified sediment on fluid flow is, to a large degree, dependent upon the magnitude of fault displacement.
NASA Astrophysics Data System (ADS)
Delhaye, R. P.; Jones, A. G.; Rath, V.; Brown, C.; Reay, D.
2014-12-01
We present results from two geophysical investigations of the north of Ireland, one of a concealed sedimentary basin and the other of an area of pre- to mid-Cambrian metasedimentary material with local microseismicity in Donegal. Magnetotelluric data have been acquired over each area as part of the IRETHERM Project in order to assess potential low-enthalpy geothermal resources. In addition, airborne frequency-domain EM response data have been used to assist in the definition of near-surface electrical structure and constraint of magnetotelluric modeling. The Rathlin Basin in Northern Ireland was identified as a potential geothermal resource due both an elevated geothermal gradient (observed in two deep boreholes) and favorable hydraulic properties in thick successions of Permian and Triassic sandstones (measured from core samples). Prior seismic experiments failed to fully image the sediments beneath the overlying flood basalt. A new experiment applying the magnetotelluric method has had more success, as the MT signal is not dissipated by the crystalline overburden. MT data were acquired at 69 sites across the north-eastern portion of the onshore Rathlin Basin and on nearby Rathlin Island in order to image the thickness, depth, and lateral continuity of the target sediments. Analyses and modeling of the data have determined a resistivity model that maps the variation in thickness of the sediment fill and the truncation of the sediments against the structurally-controlling Tow Valley Fault. Further testing of the model sensitivity to variations of the thickness of the Sherwood Sandstone Group within the sediment fill has also been performed, as the overlying sediments have lower porosities and permeabilities from core sampling. Microseismicity in a metasedimentary area of northern Donegal suggests that secondary porosity distributions along fracture planes may have been augmented, leading to elevated electrical conductivity. MT data were acquired over the epicenter and surrounding of a M2.2 earthquake that occurred on 26/01/2012, with both audio-MT and broadband MT data acquired at 59 sites, and solely AMT data at the remaining 29 sites. Forward and inverse modeling of the data have been performed to search for fine conductive structures within the bedrock, as well as to model the general subsurface structure.
Global Paleobathymetry Reconstruction with Realistic Shelf-Slope and Sediment Wedge
NASA Astrophysics Data System (ADS)
Goswami, A.; Hinnov, L. A.; Gnanadesikan, A.; Olson, P.
2013-12-01
We present paleo-ocean bathymetry reconstructions in a 0.1°x0.1° resolution, using simple geophysical models (Plate Model Equation for oceanic lithosphere), published ages of the ocean floor (Müller et al. 2008), and modern world sediment thickness data (Divins 2003). The motivation is to create realistic paleobathymetry to understand the effect of ocean floor roughness on tides and heat transport in paleoclimate simulations. The values for the parameters in the Plate Model Equation are deduced from Crosby et al. (2006) and are used together with ocean floor age to model Depth to Basement. On top of the Depth to Basement, we added an isostatically adjusted multilayer sediment layer, as indicated from sediment thickness data of the modern oceans and marginal seas (Divins 2003). We also created another version of the sediment layer from the Müller et al. dataset. The Depth to Basement with the appropriate sediment layer together represent a realistic paleobathymetry. A Sediment Wedge was modeled to complement the reconstructed paleobathymetry by extending it to the coastlines. In this process we added a modeled Continental Shelf and Continental Slope to match the extent of the reconstructed paleobathymetry. The Sediment Wedge was prepared by studying the modern ocean where a complete history of seafloor spreading is preserved (north, south and central Atlantic Ocean, Southern Ocean between Australia-Antarctica, and the Pacific Ocean off the west coast of South America). The model takes into account the modern continental shelf-slope structure (as evident from ETOPO1/ETOPO5), tectonic margin type (active vs. passive margin) and age of the latest tectonic activity (USGS & CGMW). Once the complete ocean bathymetry is modeled, we combine it with PALEOMAP (Scotese, 2011) continental reconstructions to produce global paleoworld elevation-bathymetry maps. Modern time (00 Ma) was assumed as a test case. Using the above-described methodology we reconstructed modern ocean bathymetry, starting with age of the oceanic crust. We then reconstructed paleobathymetry for PETM (55 Ma) and Cenomanian-Turonian (90 Ma) times. For each case, the final products are: a) a global depth to basement measurement map based on plate model and EarthByte published age of the ocean crust for modern world; b) global oceanic crust bathymetry maps with a multilayer sediment layer (two versions with two types of sediment layers based on: i) observed total sediment thickness of the modern oceans and marginal seas, and ii) EarthByte-estimated global sediment data for 00 Ma); c) global oceanic bathymetry maps (two versions with two types of sediment layers) with reconstructed shelf and slope; and d) global elevation-bathymetry maps (two versions with two types of sediment layers) with continental elevations (PALEOMAP) and ocean bathymetry. Similar maps for other geological times can be produced using this method provided that ocean crustal age is known.
NASA Astrophysics Data System (ADS)
Zhang, Jinyu; Steel, Ronald; Ambrose, William
2017-12-01
Shelf margins prograde and aggrade by the incremental addition of deltaic sediments supplied from river channel belts and by stored shoreline sediment. This paper documents the shelf-edge trajectory and coeval channel belts for a segment of Paleocene Lower Wilcox Group in the northern Gulf of Mexico based on 400 wireline logs and 300 m of whole cores. By quantitatively analyzing these data and comparing them with global databases, we demonstrate how varying sediment supply impacted the Wilcox shelf-margin growth and deep-water sediment dispersal under greenhouse eustatic conditions. The coastal plain to marine topset and uppermost continental slope succession of the Lower Wilcox shelf-margin sediment prism is divided into eighteen high-frequency ( 300 ky duration) stratigraphic sequences, and further grouped into 5 sequence sets (labeled as A-E from bottom to top). Sequence Set A is dominantly muddy slope deposits. The shelf edge of Sequence Sets B and C prograded rapidly (> 10 km/Ma) and aggraded modestly (< 80 m/Ma). The coeval channel belts are relatively large (individually averaging 11-13 m thick) and amalgamated. The water discharge of Sequence Sets B and C rivers, estimated by channel-belt thickness, bedform type, and grain size, is 7000-29,000 m3/s, considered as large rivers when compared with modern river databases. In contrast, slow progradation (< 10 km/Ma) and rapid aggradation (> 80 m/Ma) characterizes Sequence Sets D and E, which is associated with smaller (9-10 m thick on average) and isolated channel belts. This stratigraphic trend is likely due to an upward decreasing sediment supply indicated by the shelf-edge progradation rate and channel size, as well as an upward increasing shelf accommodation indicated by the shelf-edge aggradation rate. The rapid shelf-edge progradation and large rivers in Sequence Sets B and C confirm earlier suggestions that it was the early phase of Lower Wilcox dispersal that brought the largest deep-water sediment volumes into the Gulf of Mexico. Key factors in this Lower Wilcox stratigraphic trend are likely to have been a very high initial sediment flux to the Gulf because of the high initial release of sediment from Laramide catchments to the north and northwest, possibly aided by modest eustatic sea-level fall on the Texas shelf, which is suggested by the early, flat shelf-edge trajectory, high amalgamation of channel belts, and the low overall aggradation rate of the Sequence Sets B and C.
NASA Astrophysics Data System (ADS)
Um, In Kwon; Choi, Man Sik; Lee, Gwang Soo; Chang, Tae Soo
2015-12-01
Despite the well-reconstructed seismic stratigraphy of the Holocene mud deposit in the southeastern Yellow Sea, known as the Heuksan mud belt (HMB), the provenances of these sediments and their depositional environments are unclear, especially for the fine-grained sediments. According to seismic data (extracted from another article in this special issue), the HMB comprises several sedimentary units deposited since the last glacial maximum. Based on analytical results on rare earth elements, fine-grained sediments in all sedimentary units can be interpreted as mixtures of sediments discharged from Chinese and Korean rivers. The proportions of fine-grained sediments from Chinese rivers (74.5 to 80.0%) were constant and higher than those from Korean rivers in all units. This fact demonstrates that all units have the same fine-grained sediment provenance: units III-b and III-a, located in the middle and northern parts of the HMB and directly deposited from Chinese rivers during the sea-level lowstand, could be the sediment source for units II-b and II-a. Unit I, while ambiguous, is of mixed origin combining reworked sediments from nearby mud deposits and Changjiang River-borne material with those of the Keum River. The results of this study indicate that at least 18.6% of bulk sediments in the HMB clearly originate from Chinese rivers, despite its location close to the southwestern coast of Korea.
Printability Optimization For Fine Pitch Solder Bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Sang-Hyun; Lee, Chang-Woo; Yoo, Sehoon
2011-01-17
Effect of metal mask and pad design on solder printability was evaluated by DOE in this study. The process parameters were stencil thickness, squeegee angle, squeegee speed, mask separating speed, and pad angle of PCB. The main process parameters for printability were stencil thickness and squeegee angle. The response surface showed that maximum printability of 1005 chip was achieved at the stencil thickness of 0.12 mm while the maximum printability of 0603 and 0402 chip was obtained at the stencil thickness of 0.05 mm. The bonding strength of the MLCC chips was also directly related with the printability.
Site 765: Sediment Lithostratigraphy
,
1990-01-01
A 935-m-thick succession of Quaternary through Lower Cretaceous sediments was recovered at Site 765 (Fig. 10). A single core of Quaternary sediment was obtained from Hole 765A; drilling terminated and a new hole was drilled in an attempt to establish the mud line. Quaternary through middle Miocene sediments were cored in Hole 765B down to a depth of 395.6 mbsf. Middle Miocene through Lower Cretaceous sediments were cored in Hole 765C, after washing the interval between 0 and 350.2 mbsf. Exact lithologic correlation of the basal cores from Hole 765B with the upper cores from Hole 765C is not possible because of poor recovery; hence, correlation is based solely on matching sub-bottom depths.
Determining Crustal Structure of Bangladesh Using Seismological Techniques
NASA Astrophysics Data System (ADS)
Larson, T. E.; Howe, M.; Steckler, M. S.; Seeber, L.; Kim, W. Y.; Akhter, S. H.
2015-12-01
The Ganges-Brahmaputra Delta lies at the junction between the Indian Plate, Eurasian Plate, and Burma Platelet. In eastern Bangladesh, the delta is colliding with the Indo-Burman Foldbelt, the northward continuation of the Sumatra-Andaman subduction zone. Crustal structure related to subduction of the thick sediment of the delta, which has prograded 300-400 km past the edge of the Indian craton, remains enigmatic. The large impedance contrast between the sediments of the delta and the underlying basement produces phase conversions for a number of regional earthquakes. We investigate these conversions using data collected between February 2007 and December 2014 from three deployments of a portable array of seismographs, supplemented by several permanent seismic stations. Using measured arrival time differences between S-to-P (sP) converted phases and direct S wave arrivals from regional earthquakes, we calculate basement depths at multiple locations across the delta. Results reveal thickening of sediments across the Indian continental margin hinge zone to 15-16 km with greater depths where flexural loading from the foldbelt and Shillong Massif have downbent the crust. Some additional conversions occur within the sediment column, possibly off the megathrust detachment in places. These calculated sediment thicknesses also inform models of crustal structure used in regional moment tensor inversions.
Sea-Ice Conditions in the Norwegian, Barents, and White Seas
1976-08-01
pack, aided by relatively warm water from the Murman coast current, would reduce the maximum ice thickness predicted by the equation used for...THICKNESS With the aid of the ice growth model in the appendix, it is pos- sible to relate the maximum ice thickness attained during a winter season to a...inserted merely to aid the reader in discerning differences between individual winter seasons. As was the case for the 12-month mean temperatures
NASA Astrophysics Data System (ADS)
Dhali, K. K.; Majhi, S.; Mitra, S.; Priestley, K.
2007-12-01
Fundamental mode Rayleigh and Love wave group velocity dispersion for paths crossing the Bay of Bengal have been calculated for earthquakes in the Indo-Burman arc and the Andaman-Sumatra subduction zone recorded at seismographs in the eastern part of Peninsula India and Sri Lanka. The ray-path coverage in this study provides a better spatial sampling than any previous studies of the region. The individual dispersion curves range from 12 to 70~s and have been clustered in four spatial groups to form average dispersion curves representative of the Bengal basin, northern, central and southern Bay of Bengal. These average dispersion curves for Rayleigh and Love waves are jointly inverted to obtain shear wave velocity structure of the lithosphere. The higher frequencies/shorter periods (12--30~s) used in the inversion constrains the sediment shear wave speed and thickness while the longer periods provide information of the upper mantle structure. The results show a remarkable increase in the sediments thickness along the Bengal Fan from south to north ranging from 6 km, around the southern tip of India, to 23 km beneath the Bengal basin. The shear wave velocity models reveal a sediment saturation beyond 7-10 km of burial leading to metamorphism and eventual increase in velocity to continent like material with depth. The average crustal thickness (loose sediments overlying consolidated sediments followed by metasediments and oceanic crust) is anomalously continental (~20-36 km) rather than being simply oceanic crust overlain by sediments. The average shear wave velocity is about 3.5-3.8 km/s which is more representative of continental crusts. Finally the low velocity zone in the uppermost mantle is possibly an effect of the expected increase in temperature due to blanketing of the fan sediments over the Bay of Bengal crust. The misfits to parts of the dispersion data using a 1D isotropic model provides an indication of the presence of polarization anisotropy in the lithosphere and sets a good starting point for modeling the anisotropic structure.
Scaling oxygen microprofiles at the sediment interface of deep stratified waters
NASA Astrophysics Data System (ADS)
Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien
2017-02-01
Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.
Schoellhamer, David H.
1996-01-01
Sediments are an important component of the San Francisco Bay estuarine system. Potentially toxic substances, such as metals and pesticides, adsorb to sediment particles (Kuwabara and others, 1989; Domagalski and Kuivila, 1993). Sediments on the bottom of the bay provide the habitat for benthic communities that can ingest these substances and introduce them into the food web (Luoma and others, 1985). Nutrients, metals, and other substances are stored in bottom sediments and pore water in which chemical reactions occur and which provide an important source and/or sink to the water column (Hammond and others, 1985; Flegal and others, 1991). The transport and fate of suspended sediment is an important factor in determining the transport and fate of the constituents adsorbed on the sediment. Seasonal changes in sediment erosion and deposition patterns contribute to seasonal changes in the abundance of benthic macroinvertebrates (Nichols and Thompson, 1985). Tidal marshes are an ecologically important habitat that were created and are maintained by sedimentation processes (Atwater and others, 1979). In Suisun Bay, the maximum suspended-sediment concentration marks the position of the turbidity maximum, which is a crucial ecological region in which suspended sediment, nutrients, phytoplankton, zooplankton, larvae, and juvenile fish accumulate (Peterson and others, 1975; Arthur and Ball, 1979; Kimmerer, 1992; Jassby and Powell, 1994). Suspended sediments confine the photic zone to the upper part of the water column, and this limitation on light availability is a major control on phytoplankton production in San Francisco Bay (Cloern, 1987; Cole and Cloern, 1987). Suspended sediments also deposit in ports and shipping channels, which must be dredged to maintain navigation (U.S. Environmental Protection Agency, 1992).
Regional Geology of the Southern Lake Erie (Ohio) Bottom: A Seismic Reflection and Vibracore Study.
1982-12-01
identify by block number) Geomorphology Sand resources Seismic reflection Lake Erie Sediments Vibracores Ohio 20. ABST’RACT (Cotfme -n 9e~re .ft if...postglacial deposit thicknesses range from 0 to 22 meters and like the till, the postglacial sediment thickens lakeward. The tills were first deposited on an...ihen Data Entered) PREFACE This report is one of three reports which describe results of the Inner Continental Shelf Sediment and Structure (ICONS
2015-08-01
boundary layer and xPE is the PE thickness (cm). For passive samplers deployed in the sediment bed , the HOC uptake kinetics is also a function of...in sediment beds using performance reference compounds (PRCs) (Adams, Lohmann et al. 2007, Tomaszewski and Luthy 2008, Fernandez, MacFarlane et al...version program was tested for user-friendliness as well as performance. Any reported bugs were fixed, and suggestions on the user-friendliness were
Decadal-scale Evolution of Sediment Flux in the Aulne Estuary
NASA Astrophysics Data System (ADS)
Moskalski, S. M.; Deschamps, A.; Floc'h, F.; Verney, R.; Piete, H.; Fromant, G.; Delacourt, C.
2013-12-01
Estuarine sediment transport processes have the potential to evolve over time in response to alterations in various factors both internal and external to the estuary, such as sediment supply, river discharge, tidal forcing, or changes to bathymetry. Changes in sediment transport can affect many estuarine processes (e.g. budgets of sediment-adsorbed contaminants or nutrients) and ecosystem services, such as aquaculture, primary production and the need to dredge shipping channels. Most studies of decadal-scale changes in estuaries focus on geomorphology or bathymetry, or are performed using models calibrated by a limited set of observational studies. Because of the potential for sediment flux to both affect and be affected by geomorphology and bathymetry, observational studies oriented to sediment flux evolution are needed. This study focuses on two intensive observational studies separated by 30 years to quantify change in suspended sediment concentration (SSC) in the Aulne river, a shallow macrotidal estuary in western Brittany. Moored and vessel-mounted acoustic Doppler current profilers and YSIs were deployed over a three-week period in the winter of 2013 to examine hydrodynamic and sediment transport processes. The results of the modern study were compared to a 1977 investigation of currents, suspended sediment concentration, and erosion/deposition. The 1977 study found that SSC during spring tide and average river discharge was less than 30 mg/L near the mouth and above 300 mg/L landward, with near-bottom concentrations in the turbidity maximum zone occasionally greater than 1000 mg/L. SSC was highest during low tide and remained elevated throughout, in the upstream part of the estuary. Sediment deposition was stronger after flood tide due to a longer slack period, which implies landward sediment transport in the estuary. In the 2013 study, near-bottom SSC during spring tide and average river discharge was also highest during low tide, but SSC was above 1000 mg/L for a longer duration than in 1977 and SSC decreased during low tide slack before increasing again during maximum flooding velocity. Despite strong similarities in SSC, suspended sediment fluxes near the turbidity maximum zone were stronger in the seaward direction in 2013, due to stronger and longer-duration ebbing velocities. Furthermore, fluxes were higher at the upstream observational site and lower near the mouth, indicating a high likelihood of sediment deposition in the lower estuary. The results of this study indicate that decadal-scale changes in observed sediment transport in the Aulne estuary are significant, but this conclusion will be discussed by analyzing discrepancies between data sources and quality between 1977 and 2013.
NASA Astrophysics Data System (ADS)
Ikehara, K.
2017-12-01
Fine-grained turbidite has been used for subaqueous paleoseismology, and has been recognized from shallow- to deep-water environments around the Japanese islands. Stratigraphic occurrence of fine-grained turbidites in the deepest Beppu Bay, south Japan, with its water depth of 75 m suggest clear influence of sea-level changes. Turbidite frequency was high during the post glacial sea-level rising and last 2.7 ka, and was low during the Holocene maximum sea-level highstand (5.3-2.7 ka). Retreat and progress of coastal delta front of the nearby river might affect the sediment supply to the deepest basin. On the other hand, fine-grained turbidites found in the forearc basins ( 3500 and 4500 m in water depths) and trench floor ( 6000 m in water depth) along the southern Ryukyu arc have no clear relation with sea-level changes. Sediment and bathymetric characteristics suggest that origin of these fine-grained turbidites is Taiwan. Remarkable tectonic uplift of Taiwanese coast with small mountainous rivers and narrow shelf may produce the continuous supply of fine-grained turbidites in this area. The Japan Trench floor composes of a series of small basins reflecting subducting horst-graben structure of the Pacific Plate. Each small basin acts as a natural sediment trap receiving the earthquake-induced turbidity currents. Thick fine-grained turbidites are also occurred in the small basins in the Japan Trench floor ( 7500 m in water depth). These are most likely induced by huge earthquakes along the Japan Trench. Thus, their stratigraphic occurrences might have close relation with recurrence of huge earthquakes in the past.
NASA Astrophysics Data System (ADS)
Cornée, Jean-Jacques; Münch, Philippe; Achalhi, Mohammed; Merzeraud, Gilles; Azdimousa, Ali; Quillévéré, Frédéric; Melinte-Dobrinescu, Mihaela; Chaix, Christian; Moussa, Abdelkhalak Ben; Lofi, Johanna; Séranne, Michel; Moissette, Pierre
2016-03-01
New investigations in the Neogene Boudinar basin (Morocco) provide new information about the Messinian Salinity Crisis (MSC) and Zanclean reflooding in the southern part of the Alboran realm (westernmost Mediterranean). Based on a new field, sedimentological and palaeontological analyses, the age and the geometry of both the Messinian erosional surface (MES) and the overlying deposits have been determined. The MES is of late Messinian age and was emplaced in subaerial settings. In the Boudinar basin, a maximum of 200 m of Miocene sediments was eroded, including late Messinian gypsum blocks. The original geometry of the MES is preserved only when it is overlain by late Messinian continental deposits, conglomeratic alluvial fans or lacustrine marly sediments. These sediments are interpreted as indicators of the sea-level fall during the MSC. Elsewhere in the basin, the contact between late Messinian and early Pliocene deposits is a low-angle dipping, smooth surface that corresponds to the early Pliocene transgression surface that subsequently re-shaped the regressive MES. The early Pliocene deposits are characterized by: (i) their onlap onto either the basement of the Rif chain or the late Miocene deposits; (ii) lagoonal deposits at the base to offshore marls and sands at the top (earliest Pliocene; 5.33-5.04 Ma interval; foraminifer zone PL1); (iii) marine recovery occurring in the 5.32-5.26 Ma interval; and (iv) the change from lagoonal to offshore environments occurring within deposits tens of metres thick. This information indicates that at least the end of the reflooding period was progressive, not catastrophic as previously thought.
NASA Astrophysics Data System (ADS)
Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara
2016-04-01
We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.
Characteristics of blue organic light emitting diodes with different thick emitting layers
NASA Astrophysics Data System (ADS)
Li, Chong; Tsuboi, Taiju; Huang, Wei
2014-08-01
We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.
NASA Astrophysics Data System (ADS)
Reat, Ellen J.; Fosdick, Julie C.
2016-04-01
New data from the Argentine Precordillera in the southern Central Andes document changes in depositional environment and sediment accumulation rates during Upper Cretaceous through Oligocene basin evolution, prior to the onset Miocene foredeep sedimentation. This work presents new sedimentology, detrital geochronology, and geologic mapping from a series of continental strata within this interval to resolve the timing of sedimentation, nature of depositional environments, and basin paleogeography at the nascent phase of Andean orogenic events, prior to the uplift and deformation of the Precordillera to the west. Five stratigraphic sections were measured across both limbs of the Huaco Anticline, detailing sedimentology of the terrestrial siliciclastic upper Patquía, Ciénaga del Río Huaco (CRH), Puesto la Flecha, Vallecito, and lower Cerro Morado formations. Paleocurrent data indicate a flow direction change from predominantly NE-SW in the upper Patquía and the lower CRH to SW-NE directed flow in the upper CRH, consistent with a large meandering river system and a potential rise in topography towards the west. This interpretation is further supported by pebble lag intervals and 1-3 meter scale trough cross-bedding in the CRH. The thinly laminated gypsum deposits and siltstones of the younger Puesto la Flecha Formation indicate an upsection transition into overbank and lacustrine sedimentation during semi-arid climatic conditions, before the onset of aeolian dune formation. New maximum depositional age results from detrital zircon U-Pb analysis indicate that the Puesto la Flecha Formation spans ~57 Myr (~92 to ~35 Ma) across a ~48 m thick interval without evidence for major erosion, indicating very low sedimentation rates. This time interval may represent distal foredeep or forebulge migration resultant from western lithospheric loading due to the onset of Andean deformation at this latitude. Detrital zircon U-Pb age spectra also indicate shifts in sediment routing pathways over time, consistent with a transition from local basement-sourced quartz-rich sediments during the Triassic-Cretaceous to increased volcanic and sedimentary lithics from the rising Andes in the west during Paleocene-Eocene time. We therefore interpret these changes in depositional character as representing a transition from a large fluvial system with craton-sourced sediments during the Triassic-Cretaceous CRH to low energy lacustrine and ephemeral playa environments with an increase in westerly derived sediments during the Paleocene-Eocene Puesto la Flecha, prior to the reported Oligocene onset of the Andean continental foredeep represented by the Vallecito Formation.
Borrelli, Raffaella; Tcaciuc, A Patricia; Verginelli, Iason; Baciocchi, Renato; Guzzella, Licia; Cesti, Pietro; Zaninetta, Luciano; Gschwend, Philip M
2018-06-01
Laboratory and field studies were used to evaluate the performance of low-density polyethylene (PE) passive samplers for assessing the freely dissolved concentrations of DDT and its degradates (DDD and DDE, together referred to as DDx) in an Italian lake environment. We tested commercially available 25 μm thick PE sheets as well as specially synthesized, 10 μm thick PE films which equilibrated with their surroundings more quickly. We measured PE-water partitioning coefficients (K pew ) of the 10 μm thick PE films, finding good correspondence with previously reported values for thicker PE. Use of the 10 μm PE for ex situ sampling of a lake sediment containing DDx in laboratory tumbling experiments showed repeatability of ±15% (= standard deviation/mean). Next, we deployed replicate 10 μm and 25 μm PE samplers (N = 4 for 10 d and for 30 d) in the water and sediment of a lake located in northern Italy; the results showed dissolved DDx concentrations in the picogram/L range in porewater and the bottom water. Values deduced from 10 μm thick PE films compared well (95% of all comparison pairs matched within a factor of 5) with those obtained using PE films of 25 μm thickness when dissolved DDx concentrations were estimated using performance reference compound (PRC) corrections, whether left at the bed-water interface for 10 or 30 days. These results demonstrated the potential of this sampling method to provide estimation of the truly dissolved DDx concentrations, and thereby the mobile and bio-available fractions in both surface waters and sediment beds. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mapping beneath the seafloor: AUV sub-bottom profilers, sediment thickness and resource potential
NASA Astrophysics Data System (ADS)
Yeo, I. A.; Vardy, M. E.; Holwell, D.; North, L.; Murton, B. J.
2017-12-01
Most AUV seafloor exploration focuses primarily on collecting high-resolution bathymetric and backscatter data in order to identify and map features of interest. Sub-bottom profiler data provides an essential third dimension that can illuminate not only the thickness of overlying sediment packets, but also the scale and tectonic setting of surface features. In this study we present results of high-resolution sub-bottom profiler surveys of Tropic Seamount, a 3000m tall, 40km wide, flat-topped gyot located 400km south of the Canary Islands. We show how the application of AUV derived sub-bottom profiler data can be used to assess the thickness and extent of ferromanganese crusts covering the summit and underlying thin pelagic sediment cover. Bespoke chirp signals at two altitudes were used to increase the likelihood of resolving thin (tens of cm) layers of crust. Drill cores were obtained from an ROV and used to constrain and calibrate the profiler data. The cores show variable crustal thicknesses of zero to 14 cm of FeMn crustal cover over a partially phosphoritised, vuggy, often poorly lithified limestone basement. Initial measurements of sound velocities suggest differences between the limestone basement and the crust of only a few hundred meters per second. Sub-cores, drilled from large samples collected during the cruise were analysed in the NOC Acoustic Pulse Tube and with X-Ray Computer Tomography to better understand how variations in lithology, crustal thickness, surface texture and internal structure affect the returning geoacoustic signal. We discuss the pros and cons of different surveying patterns, altitudes and chirps, the relative usefulness of sub-bottom profiler data in different environments, and the value added by sub-bottom profiler surveying as opposed to bathymetric surveying alone.
NASA Astrophysics Data System (ADS)
Dix, George R.; Parras, Ana
2014-06-01
A condensed (~ 20-m-thick) marine transgressive-highstand succession comprises the upper San Julián Formation (upper Oligocene-lower Miocene) of the northern retroarc Austral Basin, southern Patagonia. Mixed-sediment facies identify a shelf-interior setting, part of an overall warm-temperate regional platform of moderate energy. Giant oyster-dominated skeletal-hiatal accumulations along the maximum flooding surface and forming high-energy event beds in the highstand succession preserve relict micrite in protected shelter porosity, and identify periods of reduced sediment accumulation. The stratigraphic distribution of marine-derived glaucony and diagenetic carbonates is spatially related to sequence development. Depositional siderite coincides with prominent marine transgression, defining transient mixing of marine and meteoric waters across coastal-plain deposits. Chemically evolved autochthonous glaucony coincides with periods of extended seafloor exposure and transgressions that bracket the marine succession, and within the oyster-dominated skeletal accumulations. Seafloor cement, likely once magnesian calcite, formed in association with an encrusting/boring biota along the maximum flooding surface in concert with incursion of cool (11-13 °C) water. The cement is present locally in skeletal event beds in the highstand succession suggesting a possible association with high-order base-level change and cooler water. As the highstand succession coincides with elevated global sea level in the late Oligocene-early Miocene, the locally marine-cemented glauconitic skeletal event beds in the highstand succession may identify higher order glacio-eustatic control. Local stratal condensation, however, is best explained by regional differences in basement subsidence. In the burial realm, carbonate diagenesis produced layers of phreatic calcrete coincident with skeletal-rich deposits. Zeolite (clinoptilolite-K) cement is restricted to the lowermost marine transgressive interval probably due to initial elevated metastability of reworked weathered silicates. Clay (illite)-cement is restricted to siliciclastic-rich intervals wherein skeletal carbonate did not buffer pore-water pH. Diagenetic carbonate geochemistry (Sr, Na, and δ18O and δ13C) shows that, with burial, the transgressive and highstand system tracts developed as distinct paleoaquifers resulting from different proximities to meteoric recharge zones.
Geophysical Surveys of the Hydrologic Basin Underlying Yosemite Valley, California.
NASA Astrophysics Data System (ADS)
Maher, E. L.; Shaw, K. A.; Carey, C.; Dunn, M. E.; Whitman, S.; Bourdeau, J.; Eckert, E.; Louie, J. N.; Stock, G. M.
2017-12-01
UNR students in an Applied Geophysics course conducted geophysical investigations in Yosemite Valley during the months of March and August 2017. The goal of the study is to understand better the depth to bedrock, the geometry of the bedrock basin, and the properties of stratigraphy- below the valley floor. Gutenberg and others published the only prior geophysical investigation in 1956, to constrain the depth to bedrock. We employed gravity, resistivity, and refraction microtremor(ReMi) methods to investigate the interface between valley fill and bedrock, as well as shallow contrasts. Resistivity and ReMi arrays along three north-south transects investigated the top 50-60m of the basin fill. Gravity results constrained by shallow measurements suggest a maximum depth of 1000 m to bedrock. ReMi and resistivity techniques identified shallow contrasts in shear velocity and electrical resistivity that yielded information about the location of the unconfined water table, the thickness of the soil zone, and spatial variation in shallow sediment composition. The upper several meters of sediment commonly showed shear velocities below 200 m/s, while biomass-rich areas and sandy river banks could be below 150 m/s. Vs30 values consistently increased towards the edge of the basin. The general pattern for resistivity profiles was a zone of relatively high resistivity, >100 ohm-m, in the top 4 meters, followed by one or more layers with decreased resistivity. According to gravity measurements, assuming either -0.5 g/cc or -0.7 g/cc density contrast between bedrock and basin sediments, a maximum depth to bedrock is found south of El Capitan at respectively, 1145 ± 215 m or 818 ± 150 m. Longitudinal basin geometry coincides with the basin depth geometry discussed by Gutenberg in 1956. Their results describe a "double camel" shape where the deepest points are near El Capitan and the Ahwahnee Hotel and is shallowest near Yosemite Falls, in a wider part of the valley. An August Deep ReMi measurement campaign might provide further corroboration between gravity and seismic results for basement depth. This investigation should be useful for refining geologic and hydrologic models, and informing future scientific pursuits in Yosemite Valley.
NASA Astrophysics Data System (ADS)
Scholz, C. A.; Hutchinson, D. R.
Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian-American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by tying the delta sequences to the site of the Baikal Drilling Project 1993 Drill Hole. Although the drill hole is only 100m deep, and the base of the cores is only 670ka in age, ages were extrapolated to deeper stratigraphic intervals using the Reflection-Seismic-Radiocarbon method of Cohen et al. (1993). The deep prograding delta sequences now observed in the MCS data probably formed in response to major fluctuations in sediment supply, rather than in response to shifts in lake level. This stratigraphic framework and age model suggest that the deep delta packages developed at intervals of approximately 400ka and may have formed as a consequence of climate changes affiliated with the northern hemisphere glaciations. The stratigraphic analysis also suggests that the Selenga Basin and Syncline developed as a distinct depocentre only during the past 2-3Ma.
Sarikhani, Ali; Motalebizadeh, Abbas; Kamali Doost Azad, Babak
2016-01-01
The insole shape and the resulting plantar stress distribution have a pivotal impact on overall health. In this paper, by Finite Element Method, maximum stress value and stress distribution of plantar were studied for different insoles designs, which are the flat surface and the custom-molded (conformal) surface. Moreover, insole thickness, heel's height, and different materials were used to minimize the maximum stress and achieve the most uniform stress distribution. The foot shape and its details used in this paper were imported from online CT-Scan images. Results show that the custom-molded insole reduced maximum stress 40% more than the flat surface insole. Upon increase of thickness in both insole types, stress distribution becomes more uniform and maximum stress value decreases up to 10%; however, increase of thickness becomes ineffective above a threshold of 1 cm. By increasing heel height (degree of insole), maximum stress moves from heel to toes and becomes more uniform. Therefore, this scenario is very helpful for control of stress in 0.2° to 0.4° degrees for custom-molded insole and over 1° for flat insole. By changing the material of the insole, the value of maximum stress remains nearly constant. The custom-molded (conformal) insole which has 0.5 to 1 cm thickness and 0.2° to 0.4° degrees is found to be the most compatible form for foot. PMID:27843284
NASA Astrophysics Data System (ADS)
Qin, Yanfang; Singh, Satish C.
2017-04-01
The nature of incoming sediments defines the locking mechanism on the megathrust, and the development and evolution of the accretionary wedge. Here we present results from seismic full waveform inversion of 12 km long offset seismic reflection data within the trench in the 2004 Sumatra earthquake rupture zone area that provide detailed quantitative information on the incoming oceanic sediments and the trench-fill sediments. The thickness of sediments in this area is 3-4 km, and P wave velocity is as much as 4.5 km/s just above the oceanic crust, suggesting the presence of silica-rich highly compacted and lithified sediments leading to a strong coupling up to the subduction front. We also find an 70-80 m thick low-velocity layer, capped by a high-velocity layer, at 0.8 km above the subducting plate. This low-velocity layer, previously identified as high-amplitude negative polarity reflection, could have porosity of up to 30% containing overpressured fluids, which could act as a protodécollement seaward from the accretionary prism and décollement beneath the forearc. This weak protodécollement combined with the high-velocity indurated sediments above the basement possibly facilitated the rupture propagating up to the front during the 2004 earthquake and enhancing the tsunami. We also find another low-velocity layer within the sediments that may act as a secondary décollement observed offshore central Sumatra, forming bivergent pop-up structures and acting as a conveyer belt in preserving these pop-up structures in the forearc region.
NASA Astrophysics Data System (ADS)
Hernandez-Marin, M.; Pacheco, J.; Ortiz-Lozano, J. A.; Ramirez-Cortes, A.; Araiza, G.
2014-12-01
Surface deformation in the form of land subsidence and ground failure in the Chapala Basin has caused serious damage to structures, mostly homes. In this work, the conditions for the occurrence of deformation particularly regarding the physical and mechanical properties of the soil are discussed. In 2012 a maximum land subsidence of 7.16 cm in a short period of 8 months was recorded with maximum velocities of deformation close to 0.89 centimeters per month. Natural conditions of the zone of study include a lacustrine low land with the perennial Chapala Lake, surrounded by ranges formed by volcanic extrusive rocks, mostly basalts and andesites. Two soil cores of 11 meters depth show the predominance of fine soil but with the incrustation of several sandy lenses of volcanic ash. In the first core closer to the piedmont, the volcanic ash presents an accumulated thickness close to three meters, starting at 4.5 meters depth; on the contrary, this thickness in the second core closer to the lake is critically reduced to no more than 50 centimeters. Even though the predominance of fine soil is significant, water-content averages 100 % and the liquid limit is low, suggesting amongst other possibilities, low content of clay or at least low content of smectites or allophanes in the clayey portion. Other properties of the soil are being determined for analyses. The occurrence of three alignments of ground failures in the community of Jocotepec at the west, mostly faults, suggests highly heterogeneous subsoil. The high volumes of groundwater withdrawn from the local aquifers mainly for agriculture are directly contributing to the increase of the effective stress and surface deformation, however, the relationship between level descents and surficial deformation is still not clear.
Seismic Characterization of the Jakarta Basin
NASA Astrophysics Data System (ADS)
Cipta, A.; Saygin, E.; Cummins, P. R.; Masturyono, M.; Rudyanto, A.; Irsyam, M.
2015-12-01
Jakarta, Indonesia, is home to more than 10 million people. Many of these people live in seismically non-resilient structures in an area that historical records suggest is prone to earthquake shaking. The city lies in a sedimentary basin composed of Quaternary alluvium that experiences rapid subsidence (26 cm/year) due to groundwater extraction. Forecasts of how much subsidence may occur in the future are dependent on the thickness of the basin. However, basin geometry and sediment thickness are poorly known. In term of seismic hazard, thick loose sediment can lead to high amplification of seismic waves, of the kind that led to widespread damage in Mexico city during the Michoacan Earthquake of 1985. In order to characterize basin structure, a temporary seismograph deployment was undertaken in Jakarta in Oct 2013- Jan 2014. A total of 96 seismic instrument were deployed throughout Jakarta were deployed throughout Jakarta at 3-5 km spacing. Ambient noise tomography was applied to obtain models of the subsurface velocity structure. Important key, low velocity anomalies at short period (<8s) correspond to the main sedimentary sub-basins thought to be present based on geological interpretations of shallow stratigraphy in the Jakarta Basin. The result shows that at a depth of 300 m, shear-wave velocity in the northern part (600 m/s) of the basin is lower than that in the southern part. The most prominent low velocity structure appears in the northwest of the basin, down to a depth of 800 m, with velocity as low as 1200 m/s. This very low velocity indicates the thickness of sediment and the variability of basin geometry. Waveform computation using SPECFEM2D shows that amplification due to basin geometry occurs at the basin edge and the thick sediment leads to amplification at the basin center. Computation also shows the longer shaking duration occurrs at the basin edge and center of the basin. The nest step will be validating the basin model using earthquake events recorded by the Jakarta array. The Bohol 2013 earthquake is one good candidate event for model validation. This will require using a source model for the Bohol earthquake and a plane wave input to SPECFEM3D.
The Laurentian Fan: Sohm Abyssal Plain
Piper, D.J.W.; Stow, D.A.V.; Normark, W.R.
1984-01-01
The 0.5- to 2-km thick Quaternary Laurentian Fan is built over Tertiary and Mesozoic sediments that rest on oceanic crust. Two 400-km long fan valleys, with asymmetric levees up to 700-m high, lead to an equally long, sandy, lobate basin plain (northern Sohm Abyssal Plain). The muddy distal Sohm Abyssal Plain is a further 400-km long. The sediment supplied to the fan is glacial in origin, and in part results from seismically triggered slumping on the upper continental slope. Sandy turbidity currents, such as the 1929 Grand Banks earthquake event, probably erode the fan-valley floors; but thick muddy turbidity currents build up the high levees. ?? 1984 Springer-Verlag New York Inc.
Suspended-sediment and nutrient loads for Waiakea and Alenaio Streams, Hilo, Hawaii, 2003-2006
Presley, Todd K.; Jamison, Marcael T.J.; Nishimoto, Dale C.
2008-01-01
Suspended sediment and nutrient samples were collected during wet-weather conditions at three sites on two ephemeral streams in the vicinity of Hilo, Hawaii during March 2004 to March 2006. Two sites were sampled on Waiakea Stream at 80- and 860-foot altitudes during March 2004 to August 2005. One site was sampled on Alenaio Stream at 10-foot altitude during November 2005 to March 2006. The sites were selected to represent different land uses and land covers in the area. Most of the drainage area above the upper Waiakea Stream site is conservation land. The drainage areas above the lower site on Waiakea Stream, and the site on Alenaio Stream, are a combination of conservation land, agriculture, rural, and urban land uses. In addition to the sampling, continuous-record streamflow sites were established at the three sampling sites, as well as an additional site on Alenaio Stream at altitude of 75 feet and 0.47 miles upstream from the sampling site. Stage was measured continuously at 15-minute intervals at these sites. Discharge, for any particular instant, or for selected periods of time, were computed based on a stage-discharge relation determined from individual discharge measurements. Continuous records of discharge were computed at the two sites on Waiakea Stream and the upper site on Aleniao Stream. Due to non-ideal hydraulic conditions within the channel of Alenaio Stream, a continuous record of discharge was not computed at the lower site on Alenaio Stream where samples were taken. Samples were analyzed for suspended sediment, and the nutrients total nitrogen, dissolved nitrite plus nitrate, and total phosphorus. Concentration data were converted to instantaneous load values: loads are the product of discharge and concentration, and are presented as tons per day for suspended sediment or pounds per day for nutrients. Daily-mean loads were computed by estimating concentrations relative to discharge using graphical constituent loading analysis techniques. Daily-mean loads were computed at the two Waiakea Stream sampling sites for the analyzed constituents, during the period October 1, 2003 to September 30, 2005. No record of daily-mean load was computed for the Alenaio Stream sampling site due to the problems with computing a discharge record. The maximum daily-mean loads for the upper site on Waiakea Stream for suspended sediment was 79 tons per day, and the maximum daily-mean loads for total nitrogen, dissolved nitrite plus nitrate, and total phosphorus were 1,350, 13, and 300 pounds per day, respectively. The maximum daily-mean loads for the lower site on Waiakea Stream for suspended sediment was 468 tons per day, and the maximum daily-mean loads for total nitrogen, nitrite plus nitrate, and total phosphorus were 913, 8.5, and 176 pounds per day, respectively. From the estimated continuous daily-mean load record, all of the maximum daily-mean loads occurred during October 2003 and September 2004, except for suspended sediment load for the lower site, which occurred on September 15, 2005. Maximum values were not all caused by a single storm event. Overall, the record of daily-mean loads showed lower loads during storm events for suspended sediments and nutrients at the downstream site of Waiakea Stream during 2004 than at the upstream site. During 2005, however, the suspended sediment loads were higher at the downstream site than the upstream site. Construction of a flood control channel between the two sites in 2005 may have contributed to the change in relative suspended-sediment loads.
van, Afferden M.; Hansen, A.M.; Fuller, C.C.
2005-01-01
Historical trend in deposition of DDT and its metabolites has been reconstructed by analyzing sediment cores of the Zempoala Lagoon, in the center of Mexico. The small watershed of this mountain lagoon is closed, and it is located between 2.800 and 3.700 masl. It ls neither affected by agriculture nor by permanent populations. The Zempoala Lagoon has an average depth of 3.9 mand a maximum depth of 8.8 m. Sediments were extracted with a eore sampler and analyzed by isotope methods (137CS and 2'OPb) for dating. Average sedimentation rate was determined in 0.129 9 cm" yr', corresponding to a maximum age of the 44 cm eore of approximately 60 years. The first presence of total-DDT oecurs in a depth between 28 and 32 cm of the sediment profile, corresponding to the 1960's, with a concentration of 5.3 I1g kg-'. The maximum eoncentration of total-DDT (13.0I1g kg-') occurs in sediment layers representing the late 1970's and beginning 1980's. More recently the concentration decreases towards the present concentration of 1.6 I1g kg-'. This concentration is below most DDT levels reported in recent sediment studies in the USA. The results indicate that the Zempoala Lagoon represents a natural reeipient for studies of the reconstruction of historical trends of atmospheric contaminant deposition in this region. The limitations of the methodology applied, due to the influenee of biodegradation on the definition of correct historical coneentrations of DDT depositions, are demonstrated.
Sediment characteristics of small streams in southern Wisconsin, 1954-59
Collier, Charles R.
1963-01-01
The results of investigations of the sediment and water discharge characteristics of Black Earth Creek, Mount Vernon Creek, and Yellowstone River from 1954 to 1959 and Dell Creek for 1958 and 1959 indicate large differences in annual runoff and sediment yields. The suspended-sediment discharge of Black Earth Creek averaged 3,260 tons per year or 71 tons per square mile : the annual yields ranged from 27 to 102 tons per square mile. The annual suspended-sediment yield of Mount Vernon Creek ranged from 48 to 171 tons per square mile and averaged 96 tons per square mile. The maximum daily discharge was 1,120 tons on April 1, 1960, during a storm which produced 67 percent of the suspended load for that water year and exceeded the discharge for the preceding 3 years. The sediment discharge of the Yellowstone River averaged 6,870 tons per year or 236 tons per square riffle. The maximum daily sediment discharge, 3,750 tons on April 1, 1959, occurred during a 14-day period of high flow during which the sediment discharge was 15,480 tons. In 1958 and 1959, Dell Creek had suspended-sediment yields of 4.7 and 26 tons per square mile of drainage area. The suspended sediment transported by Black Earth and Mount Vernon Creeks is about two-thirds clay and one-third silt. For Yellowstone River the particle-size distribution of the suspended sediment ranged from three-fourths clay and one-fourth silt during periods of low sediment discharge to one-third clay and two-thirds silt during high sediment discharges. For Dell Creek nearly all of the suspended sediment is clay, but the bed load is sand. The mean sediment concentration of storm runoff averaged two to three times more in the summer than in the winter. No significant changes with time occurred in the relation between storm runoff and sediment yield.
Stroup, Caleb N.; Welhan, John A.; Davis, Linda C.
2008-01-01
The statistical stationarity of distributions of sedimentary interbed thicknesses within the southwestern part of the Idaho National Laboratory (INL) was evaluated within the stratigraphic framework of Quaternary sediments and basalts at the INL site, eastern Snake River Plain, Idaho. The thicknesses of 122 sedimentary interbeds observed in 11 coreholes were documented from lithologic logs and independently inferred from natural-gamma logs. Lithologic information was grouped into composite time-stratigraphic units based on correlations with existing composite-unit stratigraphy near these holes. The assignment of lithologic units to an existing chronostratigraphy on the basis of nearby composite stratigraphic units may introduce error where correlations with nearby holes are ambiguous or the distance between holes is great, but we consider this the best technique for grouping stratigraphic information in this geologic environment at this time. Nonparametric tests of similarity were used to evaluate temporal and spatial stationarity in the distributions of sediment thickness. The following statistical tests were applied to the data: (1) the Kolmogorov-Smirnov (K-S) two-sample test to compare distribution shape, (2) the Mann-Whitney (M-W) test for similarity of two medians, (3) the Kruskal-Wallis (K-W) test for similarity of multiple medians, and (4) Levene's (L) test for the similarity of two variances. Results of these analyses corroborate previous work that concluded the thickness distributions of Quaternary sedimentary interbeds are locally stationary in space and time. The data set used in this study was relatively small, so the results presented should be considered preliminary, pending incorporation of data from more coreholes. Statistical tests also demonstrated that natural-gamma logs consistently fail to detect interbeds less than about 2-3 ft thick, although these interbeds are observable in lithologic logs. This should be taken into consideration when modeling aquifer lithology or hydraulic properties based on lithology.
Chang, Yin-Jung; Lai, Chi-Sheng
2013-09-01
The mismatch in film thickness and incident angle between reflectance and transmittance extrema due to the presence of lossy film(s) is investigated toward the maximum transmittance design in the active region of solar cells. Using a planar air/lossy film/silicon double-interface geometry illustrates important and quite opposite mismatch behaviors associated with TE and TM waves. In a typical thin-film CIGS solar cell, mismatches contributed by TM waves in general dominate. The angular mismatch is at least 10° in about 37%-53% of the spectrum, depending on the thickness combination of all lossy interlayers. The largest thickness mismatch of a specific interlayer generally increases with the thickness of the layer itself. Antireflection coating designs for solar cells should therefore be optimized in terms of the maximum transmittance into the active region, even if the corresponding reflectance is not at its minimum.
NASA Astrophysics Data System (ADS)
Widada, Sugeng; Saputra, Sidhi; Hariadi
2018-02-01
Semarang City is located in the northern coastal plain of Java which is geologically composed of alluvial deposits. The process of the sediment diagenesis has caused a land subsidence. On the other hand, the development of the industrial, service, education and housing sectors has increased the number of building significantly. The number of building makes the pressure of land surface increased, and finally, this also increased the rate of land subsidence. The drilling data indicates that not all layers of lithology are soft layers supporting the land subsidence. However, vertical distribution of the soft layer is still unclear. This study used Resistivity method to map out the soft zone layers of lithology. Schlumberger electrode configuration with sounding system method was selected to find a good vertical resolution and maximum depth. The results showed that the lithology layer with resistivity less than 3 ohm is a layer of clay and sandy clay that has the low bearing capacity so easily compressed by pressure load. A high land subsidence is happening in the thick soft layer. The thickness of that layer is smaller toward the direction of avoiding the beach. The improvement of the bearing capacity of this layer is expected to be a solution to the problem of land subsidence.
Microstructure of agglomerated suspended sediments in northern chesapeake bay estuary.
Zabawa, C F
1978-10-06
Suspended sediments in the turbidity maximum of Chesapeake Bay include composite particles which contain platy mineral grains, arranged both in pellets (attributable to fecal pelletization) and in networks of angular configuration (attributable to electrochemical flocculation and coagulation).
NASA Astrophysics Data System (ADS)
Smith, R. M. H.; Eriksson, P. G.; Botha, W. J.
1993-02-01
The Karoo Basin of South Africa was one of several contemporaneous intracratonic basins in southwestern Gondwana that became active in the Permo-Carboniferous (280 Ma) and continued to accumulate sediments until the earliest Jurassic, 100 million years later. At their maximum areal extent, during the early Permian, these basins covered some 4.5 million km 2. The present outcrop area of Karoo rocks in southern Africa is about 300 000 km 2 with a maximum thickness of some 8000 m. The economic importance of these sediments lies in the vast reserves of coal within the Ecca Group rocks of northern and eastern Transvaal and Natal, South Africa. Large reserves of sandstone-hosted uranium and molybdenum have been proven within the Beaufort Group rocks of the southern Karoo trough, although they are not mineable in the present market conditions. Palaeoenvironmental analysis of the major stratigraphic units of the Karoo succession in South Africa demonstrates the changes in depositional style caused by regional and localized tectonism within the basin. These depocentres were influenced by a progressive aridification of climate which was primarily caused by the northward drift of southwestern Gondwana out of a polar climate and accentuated by the meteoric drying effect of the surrounding land masses. Changing palaeoenvironments clearly influenced the rate and direction of vertebrate evolution in southern Gondwana as evidenced by the numerous reptile fossils, including dinosaurs, which are found in the Karoo strata of South Africa, Lesotho, Namibia and Zimbabwe. During the Late Carboniferous the southern part of Gondwana migrated over the South Pole resulting in a major ice sheet over the early Karoo basin and surrounding highlands. Glacial sedimentation in upland valleys and on the lowland shelf resulted in the Dwyka Formation at the base of the Karoo Sequence. After glaciation, an extensive shallow sea covered the gently subsiding shelf, fed by large volumes of meltwater. Marine clays and muds accumulated under cool climatic conditions (Lower Ecca Group) including the distinctive Mesosaurus-bearing carbonaceous shales of the Whitehill Formation. Subduction of the palaeo-Pacific plate reslted in an extensive chain of mountains which deformed and later truncated the southern rim of the main Karoo Basin. Material derived from these "Gondwanide" mountains as well as from the granitic uplands to the north-east, accumulated in large deltas that prograded into the Ecca sea (Upper Ecca Group). The relatively cool and humid climate promoted thick accumulations of peat on the fluvial and delta plains which now constitute the major coal reserves of southern Africa. As the prograding deltas coalesced, fluvio-lacustrine sediments of the Beaufort Group were laid down on broad gently subsiding alluvial plains. The climate by this time (Late Permian) had warmed to become semi-arid with highly seasonal rainfall. Vegetation alongside the meander belts and semi-permanent lakes supported a diverse reptilian fauna dominated by therapsids or "mammal-like reptiles". Pulses of uplift in the southern source areas combined with possible orographic effects resulted in the progadation of two coarse-grained alluvial fans into the central parts of the basin (Katberg Sandstone Member and Molteno Formation). In the upper Karoo Sequence, progressive aridification and tectonic deformation of the basin through the late Triassic and early Jurassic led to the accumulation, in four separate depositories, of "redbeds" which are interpreted as fluvial and flood-fan, playa and dune complexes (Elliot Formation). This eventually gave way to westerly wind-dominated sedimentation that choked the remaining depositories with fine-grained dune sand. The interdune areas were damp and occasionally flooded and provided a habitat for small dinosaurs and the earliest mammals. During this time (Early Jurassic), basinwide volcanic activity began as a precursor to the break-up of Gondwana in the late Jurassic and continued until the early Cretaceous. This extrusion of extensive flood basalts (Drakensberg Group) onto the Clarens landscape eventually brought Karoo sedimentation to a close.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... TMDL for nutrients (nitrogen and phosphorus) and sediment for each of the 92 segments in the tidal... nitrogen and phosphorus, and sediment. EPA, in coordination with the Bay watershed jurisdictions of... nitrogen, phosphorus and sediment, for each of the 92 segments in the Bay and tidal tributaries. EPA...
Influence of perched groundwater on base flow
Niswonger, Richard G.; Fogg, Graham E.
2008-01-01
Analysis with a three‐dimensional variably saturated groundwater flow model provides a basic understanding of the interplay between streams and perched groundwater. A simplified, layered model of heterogeneity was used to explore these relationships. Base flow contribution from perched groundwater was evaluated with regard to varying hydrogeologic conditions, including the size and location of the fine‐sediment unit and the hydraulic conductivity of the fine‐sediment unit and surrounding coarser sediment. Simulated base flow was sustained by perched groundwater with a maximum monthly discharge in excess of 15 L/s (0.6 feet3/s) over the length of the 2000‐m stream reach. Generally, the rate of perched‐groundwater discharge to the stream was proportional to the hydraulic conductivity of sediment surrounding the stream, whereas the duration of discharge was proportional to the hydraulic conductivity of the fine‐sediment unit. Other aspects of the perched aquifer affected base flow, such as the depth of stream penetration and the size of the fine‐sediment unit. Greater stream penetration decreased the maximum base flow contribution but increased the duration of contribution. Perched groundwater provided water for riparian vegetation at the demand rate but reduced the duration of perched‐groundwater discharge nearly 75%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanier, W.P.; Feldman, H.R.; Archer, A.W.
The Tonganoxie Sandstone Member of the Stranger Formation (Douglas Group, Upper Pennsylvanian, Kansas) was deposited in a funnel-shaped, northeast-southwest-trending paleovalley that was incised during the uppermost Missourian sealevel lowstand and backfilled during the subsequent transgression. Quarry exposures of the Tonganoxie near Ottawa, Kansas, include [approximately] 5 m of sheetlike, vertically accreted siltstones and sandy siltstones, bounded above and below by thin coals with upright plant fossils and paleosols. Strata range from submillimeter-thick, normally graded rhythmites to graded bedsets up to 12.5 cm thick with a vertical sedimentary structure sequence (VSS) consisting of the following intervals: (A) a basal massive tomore » normally graded interval; (B) a parallel-laminated interval; (C) a ripple-cross-laminated interval; and (D) an interval of draped lamination. The Tonganoxie succession has many similarities to fluvial overbank/floodplain deposits: sheetlike geometry, upright plant fossils, lack of bioturbation and body fossils, dominance of silt, and a punctuated style of rapid sedimentation from suspension-laden waning currents. Analysis of stratum-thickness variations through the succession suggests that tides significantly influenced sediment deposition. A fluvial-to-estuarine transitional depositional setting is interpreted for the Tonganoxie by analogy with modern depositional settings that show similar physical and biogenic sedimentary structures, vertical sequences of sedimentary structures, and aggradation rates.« less
Geomorphically based predictive mapping of soil thickness in upland watersheds
NASA Astrophysics Data System (ADS)
Pelletier, Jon D.; Rasmussen, Craig
2009-09-01
The hydrologic response of upland watersheds is strongly controlled by soil (regolith) thickness. Despite the need to quantify soil thickness for input into hydrologic models, there is currently no widely used, geomorphically based method for doing so. In this paper we describe and illustrate a new method for predictive mapping of soil thicknesses using high-resolution topographic data, numerical modeling, and field-based calibration. The model framework works directly with input digital elevation model data to predict soil thicknesses assuming a long-term balance between soil production and erosion. Erosion rates in the model are quantified using one of three geomorphically based sediment transport models: nonlinear slope-dependent transport, nonlinear area- and slope-dependent transport, and nonlinear depth- and slope-dependent transport. The model balances soil production and erosion locally to predict a family of solutions corresponding to a range of values of two unconstrained model parameters. A small number of field-based soil thickness measurements can then be used to calibrate the local value of those unconstrained parameters, thereby constraining which solution is applicable at a particular study site. As an illustration, the model is used to predictively map soil thicknesses in two small, ˜0.1 km2, drainage basins in the Marshall Gulch watershed, a semiarid drainage basin in the Santa Catalina Mountains of Pima County, Arizona. Field observations and calibration data indicate that the nonlinear depth- and slope-dependent sediment transport model is the most appropriate transport model for this site. The resulting framework provides a generally applicable, geomorphically based tool for predictive mapping of soil thickness using high-resolution topographic data sets.
NASA Astrophysics Data System (ADS)
Betka, P. M.; Seeber, L.; Buck, W. R.; Steckler, M. S.; Sincavage, R.; Zoramthara, C.; Thomson, S.
2017-12-01
The Indo-Burma Ranges (IBR) are the result of ongoing oblique subduction along the northern Sunda subduction zone and accretion of the 19 km thick Ganges-Brahmaputra delta. The IBR forearc is subaerial and in one of the most densely populated (>200M people) regions of the planet, with the potential to generate a >Mw 8.2 megathrust earthquake. Despite the seismic hazard, the structure of the accretionary prism and up-dip part of the megathrust is poorly known. We present a geologically constrained structural model of the frontal part ( 150 km wide) of the IBR. A shallow, 3.1-3.2 ± 0.1 km deep, blind, subhorizontal décollement separates sandy shallow marine and fluvial deposits in the upper plate from under-thrust, fine-grained deep marine strata that are overpressured. Upper plate shortening of 42 ± 6 km yields a minimum geologic shortening rate of 4.6 mm/yr based on maximum detrital ages ( 9 Ma) of the deformed strata, about 35% of the geodetic convergence rate ( 13-17 mm/yr). The existence of the shallow décollement implies that either the 16 km thick sediment pile below it is subducted, or an additional, deep, blind décollement must exist to accrete the incoming sediment. We combine the structural results with critical taper theory and mechanical modeling to predict a range of plausible megathrust geometries. The IBR has an extremely low slope (0.1-0.5˚), thus, highly elevated pore-fluid pressures (>0.95 of the lithostatic pressure) are required to produce the low taper (0.3-0.6˚). These theoretical constraints are consistent with pore-fluid pressure ratios of 0.92-0.97 that were measured at 3 km depth in a well that pierces an anticline near the front of the wedge. We carried out a numerical modeling experiment to predict the formation of the shallow décollement. If the effective friction coefficient for several layers of the core of the wedge is reduced by a factor of 15 to account for high pore-fluid pressures, two subhorizontal décollements localize at the top and bottom of the weak overpressured zone. A ramp that links the two décollements propagates forward to accrete the incoming sediment. We argue that a mechanically stratified incoming sedimentary pile may result in the formation of multiple décollement horizons, and thus, influence the development of the critical wedge and the magnitude of the seismic hazard.
Global Climate Change and Sedimentation Patterns in the Neogene Baringo Basin, Central Kenya Rift
NASA Astrophysics Data System (ADS)
Deino, A. L.; Kingston, J. D.; Wilson, K. E.; Hill, A.
2010-12-01
The Tugen Hills are part of a ~100 km N-S tilted fault block, just west of Lake Baringo within the Central Kenyan Rift Valley. Sediments exposed in this block span the last 16 Ma and have yielded abundant and diverse fossil assemblages including a number of hominoid and hominid specimens. Much research has also focused on documenting the paleoecology of the succession through analyses of fossil floral, faunal, and biogeochemical proxies. Data from the Tugen Hills have revealed a complex evolutionary history of ecosystems characterized by spatial and temporal heterogeneity with no clear evidence of any long-term trends. While these studies suggest that the patterns of heterogeneity may be shifting at short time-scales (104-105 ka), limited temporal resolution has until now generally precluded assessments of environmental change at these scales. Recently published investigations in the Baringo Basin have provided evidence of orbitally mediated environmental change over periods which include hominid fossil localities (Deino et al., 2006; Kingston et al., 2007). The Baringo data represent the only empirical evidence for significant local environmental shifts that can directly be correlated with insolation patterns in equatorial Africa. Sedimentation patterns in the Baringo Basin between ca. 2.70 and 2.55 Ma, controlled by climatic factors, provide a detailed paleoenvironmental record including a sequence of diatomites that record rhythmic cycling of major freshwater lake systems consistent with ~23 kyr Milankovitch precessional periodicity modulated by eccentricity. The timing of the paleolakes most closely approximates insolation maximum for the June/July 30○N insolation curve, suggesting that precipitation patterns in the region are controlled by the African monsoon system. More recent fieldwork has identified older sequences that similarly demonstrate rhythmic cycling of freshwater lake systems. Preliminary 40Ar/39Ar dating of intercalated tephra reveals that these deposits occur at ~3.7-3.8 Ma, ~4.8-4.9 Ma, and ~5.7-5.8 Ma, though each occurrence is unique in terms of the number of cycles recorded, the thickness of diatomites, and the nature of the non-lacustrine sediments. The oldest of these packages is characterized by very thick (>50 m), continuous diatomite accumulation interrupted only by deposition of pyroclastic deposits. This unit is laterally quite extensive, with exposures extending over 150 km2, indicating the establishment of a large, deep, and persistent paleolake. The development of this major water body, possibly the largest recorded in the Baringo Basin, may be in part a consequence of hemisphere-wide climate disruptions accompanying dessication events in the Mediterranean during the Messinian.
NASA Astrophysics Data System (ADS)
Pickering, K. T.; Pouderoux, H.; Milliken, K. L.; Carter, A.; Chemale, F., Jr.; Kutterolf, S.; Mukoyoshi, H.; Backman, J.; McNeill, L. C.; Dugan, B.; Expedition 362 Scientists, I.
2017-12-01
IODP Expedition 362 (6 Aug-6 Oct 2016) was designed to drill the input materials of the north Sumatran subduction zone, part of the 5000 km long Sunda subduction system and to understand the origin of the Mw 9.2 earthquake and tsunami that devastated coastal communities around the Indian Ocean in 2004 linked to unexpectedly shallow seismogenic slip and a distinctive forearc prism structure (1,2,3). Two sites, U1480 and U1481 on the Indian oceanic plate 250 km SW of the subduction zone on the eastern flank of the Ninetyeast Ridge, were drilled, cored, and logged to a maximum depth of 1500 m below seafloor. The input materials of the north Sumatran subduction zone are a thick (up to 4-5 km) succession mainly of Bengal-Nicobar Fan siliciclastic sediments overlying a mainly pelagic/hemipelagic succession, with igneous and volcaniclastic material above oceanic basement. At Sites U1480 and U1481, above the igneous basement ( 60-70 Ma), the sedimentary succession comprises deep-marine tuffaceous deposits with igneous intrusions, overlain by pelagic deposits, including chalk, and a thick Nicobar Fan succession of sediment gravity-flow (SGF) deposits, mainly turbidites and muddy debrites. The Nicobar Fan deposits (estimated total volume of 9.2 x 106 km3: 3) represent >90% of the input section at the drill sites and many of the beds are rich in plant material. These beds are intercalated with calcareous clays. Sediment accumulation rates reached 10-40 cm/kyr in the late Miocene to Pliocene, but were much reduced since 1.6 Ma. The onset of Nicobar Fan deposition at the drill sites ( 9.5 Ma; 2) is much younger than was anticipated precruise ( 30-40 Ma), based on previous regional analyses of Bengal-Nicobar Fan history and presumptions of gradual fan progradation. Our preliminary results suggest that the Nicobar Fan was active between 1.6 and 9.5 Ma, and possibly since 30 Ma (3). The observed mineralogical assemblage of the SGF deposits and zircon age dating are consistent with a provenance from a northerly Himalayan and Indo-Burmese source area. 1. Dugan, McNeill, Petronotis, and the Expedition 362 Scientists, 2017. https://doi.org/10.14379/iodp.pr.362.2017. 2. Hüpers, and the Expedition 362 Scientists. Science, 356, 841-844. 3. McNeill, and the Expedition 362 Scientists 2017. Earth and Planetary Science Letters, in press.
NASA Astrophysics Data System (ADS)
Fanget, Anne-Sophie; Berné, Serge; Jouet, Gwénaël; Bassetti, Maria-Angela; Dennielou, Bernard; Maillet, Grégoire M.; Tondut, Mathieu
2014-05-01
The modern Rhone delta in the Gulf of Lions (NW Mediterranean) is a typical wave-dominated delta that developed after the stabilization of relative sea level following the last deglacial sea-level rise. Similar to most other deltas worldwide, it displays several stacked parasequences and lobes that reflect the complex interaction between accommodation, sediment supply and autogenic processes on the architecture of a wave-dominated delta. The interpretation of a large set of newly acquired very high-resolution seismic and sedimentological data, well constrained by 14C dates, provides a refined three-dimensional image of the detailed architecture (seismic bounding surfaces, sedimentary facies) of the Rhone subaqueous delta, and allows us to propose a scenario for delta evolution during the last deglaciation and Holocene. The subaqueous delta consists of “parasequence-like” depositional wedges, a few metres to 20-30 m in thickness. These wedges first back-stepped inland toward the NW in response to combined global sea-level rise and overall westward oceanic circulation, at a time when sediment supply could not keep pace with rapid absolute (eustatic) sea-level rise. At the Younger Dryas-Preboreal transition, more rapid sea-level rise led to the formation of a major flooding surface (equivalent to a wave ravinement surface). After stabilization of global sea level in the mid-Holocene, accommodation became the leading factor in controlling delta architecture. An eastward shift of depocentres occurred, probably favoured by higher subsidence rate within the thick Messinian Rhone valley fill. The transition between transgressive (backstepping geometry) and regressive (prograding geometry) (para)sequences resulted in creation of a Maximum Flooding Surface (MFS) that differs from a “classical” MFS described in the literature. It consists of a coarse-grained interval incorporating reworked shoreface material within a silty clay matrix. This distinct lithofacies results from condensation/erosion, which appears as an important process even within supply-dominated deltaic systems, due to avulsion of distributaries. The age of the MFS varies along-strike between ca. 7.8 and 5.6 kyr cal. BP in relation to the position of depocentres and climatically-controlled sediment supply. The last rapid climate change of the Holocene, the Little Ice Age (1250-1850 AD), had a distinct stratigraphic influence on the architecture and lithofacies of the Rhone subaqueous delta through the progradation of two deltaic lobes. In response to changes in sediment supply linked to rapid climate changes (and to anthropic factors), the Rhone delta evolved from wave-dominated to fluvial dominated, and then wave dominated again.
NASA Astrophysics Data System (ADS)
Shobe, Charles M.; Tucker, Gregory E.; Barnhart, Katherine R.
2017-12-01
Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock
rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for channel slope, alluvium thickness, and sediment flux, and show that SPACE matches predicted behavior in detachment-limited, transport-limited, and mixed conditions. We provide an example of landscape evolution modeling in which SPACE is coupled with hillslope diffusion, and demonstrate that SPACE provides an effective framework for simultaneously modeling 2-D sediment transport and bedrock erosion.
Pepin, Scott R; Griffith, Chad J; Wijdicks, Coen A; Goerke, Ute; McNulty, Margaret A; Parker, Josh B; Carlson, Cathy S; Ellermann, Jutta; LaPrade, Robert F
2009-11-01
There has recently been increased interest in the use of 7.0-T magnetic resonance imaging for evaluating articular cartilage degeneration and quantifying the progression of osteoarthritis. The purpose of this study was to evaluate articular cartilage cross-sectional area and maximum thickness in the medial compartment of intact and destabilized canine knees using 7.0-T magnetic resonance images and compare these results with those obtained from the corresponding histologic sections. Controlled laboratory study. Five canines had a surgically created unilateral grade III posterolateral knee injury that was followed for 6 months before euthanasia. The opposite, noninjured knee was used as a control. At necropsy, 3-dimensional gradient echo images of the medial tibial plateau of both knees were obtained using a 7.0-T magnetic resonance imaging scanner. Articular cartilage area and maximum thickness in this site were digitally measured on the magnetic resonance images. The proximal tibias were processed for routine histologic analysis with hematoxylin and eosin staining. Articular cartilage area and maximum thickness were measured in histologic sections corresponding to the sites of the magnetic resonance slices. The magnetic resonance imaging results revealed an increase in articular cartilage area and maximum thickness in surgical knees compared with control knees in all specimens; these changes were significant for both parameters (P <.05 for area; P <.01 for thickness). The average increase in area was 14.8% and the average increase in maximum thickness was 15.1%. The histologic results revealed an average increase in area of 27.4% (P = .05) and an average increase in maximum thickness of 33.0% (P = .06). Correlation analysis between the magnetic resonance imaging and histology data revealed that the area values were significantly correlated (P < .01), but the values for thickness obtained from magnetic resonance imaging were not significantly different from the histology sections (P > .1). These results demonstrate that 7.0-T magnetic resonance imaging provides an alternative method to histology to evaluate early osteoarthritic changes in articular cartilage in a canine model by detecting increases in articular cartilage area. The noninvasive nature of 7.0-T magnetic resonance imaging will allow for in vivo monitoring of osteoarthritis progression and intervention in animal models and humans for osteoarthritis.
Grain Size Biasing of 230Th-derived Focusing Factors in the Panama Basin
NASA Astrophysics Data System (ADS)
Loveley, M. R.; Marcantonio, F.; Lyle, M. W.; Ibrahim, R.; Wang, J. K.; Hertzberg, J. E.
2014-12-01
In this study, we attempt to understand how differing grain size classes in Panama Basin sediments may create biasing of 230Th as a constant-flux proxy. Greater amounts of 230Th are contained in fine grained particles, which, if fractionated from coarser grained counterparts may lead to biasing of 230Th-derived mass accumulation rates (MARs) and sediment focusing factors. We examined sediments that span the past 25 kyr from four new sediment cores retrieved from two different localities close to the ridges that bound the Panama Basin. Each locality contained paired sites that were seismically interpreted to have undergone sediment redistribution, i.e., thick focused sites versus thin winnowed sites. Two sediment cores were retrieved from the northern part of the Panama basin, Cocos Ridge, (MV1014-01-"4JC", 5° 44.7'N 85° 45.5' W, 1730 m depth; MV1014-01-"8JC", 6° 14.0'N 86° 2.6' W, 1993 m depth), and two were retrieved from the southern part of the basin, Carnegie Ridge, (MV1014-02-"11JC", 0° 41.6'S 85° 20.0' W, 2452 m depth; MV1014-02-"17JC" 0° 10.8'S 85° 52.0' W, 2846 m depth). Cores 4JC and 11JC lie closer to the ridge tops of the Cocos and Carnegie Ridges, respectively, and have thin sediment drapes, while deeper cores, 8JC (Cocos) and 17JC (Carnegie), have thicker sediment drapes and lie downslope from the ridge top cores. Age-model-derived sand MARs, which likely represent the vertical rain of particles that cannot be transported by bottom currents, are similar at each of the paired sites in Holocene and glacial time slices. However, 230Th-normalized MARs are about 50% lower, on average at each of the paired sites during the same time slices. Both Holocene and glacial samples from "thin" cores (4,11JC) contain, surprisingly, significant amounts (up to 50%) of the 230Th within the coarse grained (>63 μm) fraction which makes up 40-70% of the bulk samples analyzed. On the contrary, Holocene and glacial samples from "thick" cores, (8,17JC), contain the greatest amounts of 230Th (up to 49%) in the finest grain-sized fraction (<4μm), which makes up 26-40% of the bulk samples analyzed. Although, redistribution of sediment has taken place, our analysis indicates that 230Th-derived focusing factors are being overestimated at thick sites and underestimated at thin sites.
NASA Astrophysics Data System (ADS)
Richardt, Nadine; Wilmsen, Markus
2013-04-01
The formations of the Saxonian Cretaceous have been combined in the so-called Elbtal Group. Their sedimentation took place in a terrestrial to neritic environment palaeogeographically located between the Mid-European Island (MEI) in the SW and the Lusatian Massif in the NE. The through extended from the narrow marine strait of Saxony into the broad Bohemian Cretaceous Basin (Czech Republic) further to the SE. Deposition has been dominated by marine siliciclastics that accumulated on a graded shelf with basically three main facies zones: the coarse-grained nearshore zone ("Küstensandsteinzone"), the transitional zone ("Faziesübergangszone") and the fine-grained marly offshore facies zone ("Plänerfazies"). In general, transgression proceeded in late Early Cenomanian times from the N. Relictic remains of these marine bioclastic conglomerates (Meißen Formation) only occur in the northwesternmost area of the basin around Meißen and are related to the highstand of the depositional sequence Cenomanian 3 (DS Ce 3). After a short stratigraphic gap, onlap continued in the Middle Cenomanian with the following Niederschöna Formation consisting of coarse-grained braided river deposits at the base grading via carbonaceous point-bar cycles of a meandering river system into bioturbated, partly cross-bedded estuarine sediments toward the top. These sediments record DS Ce 4 and are capped by a paleosol. Sedimentation of DS Ce 5 started with a renewed transgressional pulse initiating the Late Cenomanian. The strata consist of bioturbated, cross-bedded predominantly fine- to medium-grained quartz sandstones with some shell-rich horizons corresponding to the Oberhäslich Formation. The unconformably overlying DS Tu 1 comprises the uppermost Cenomanian Dölzschen Formation and the Lower Turonian part of the Schmilka Formation. The onset of this depositional sequence is marked by a major transgression ("plenus Transgression) drowning the remaining pre-transgression topography (onlap of Dölzschen Formation onto basement highs). The lowermost Turonian "Lohmgrund Marl" defines the base of the Schmilka Formation changing gradually into strongly bioturbated, silty Pläner and coarsening upward into moderately bioturbated, thick-bedded-massive, mainly fine-grained quartz sandstones with occasional clayey or silty layers, shell-rich horizons and sparse wood remains. After an interruption in sedimentation indicated by a root horizon or a conspicuous erosional surface, the Schmilka Formation continues with similar lithology into the early Middle Turonian. It is replaced up-section by the overlying Middle-Upper Turonian Postelwitz Formation, characterized by decreasing thickness of bedding and stronger sedimentary variability (grain size, bioturbation, glauconite and fossil content), including the intercalation of thick units of silty Pläner. The lithological variations of sandy and Pläner intervals nicely reflect the Middle-Late Turonian sea-level changes of DS Tu 2 (early Middle Turonian), DS Tu 3 (late Middle-earliest Late Turonian) and DS Tu 4 (early Late-mid-Late Turonian): Pläner units represent transgressive and highstand conditions, sand packages late highstand as well as falling and lowstand systems tracts. A major mid-Late Turonian sea-level fall is indicated in the upper Postelwitz Formation, initiating DS Tu 5 (Late Turonian) with a strongly basin-ward prograding unit of coarse-grained sandstone. The following transgression culminated in a prominent maximum flooding interval represented by the intercalation of a clayey-fine-grained regional marker bed, forming the base of the Schrammstein Formation (thick-bedded, unfossiliferous medium- to coarse-grained quartz sandstones). In conclusion, all depositional sequences of Middle Cenomanian-Late Turonian age and their bounding unconformities (sequence boundaries SB Ce 4 and 5, SB Tu 1-4) reported from coeval sections around the MEI (e. g., Münsterland Creatceous Basin, Lower Saxonian and Danubian Cretaceous) and other Cretaceous basins in the Tethyan region (e. g., Egypt) are also developed in the Saxonian Cretaceous, supporting eustatic sea-level changes as main triggers for the sequence stratigraphic architecture of the Elbtal Group.
NASA Astrophysics Data System (ADS)
Palozzi, Jason; Pantopoulos, George; Maravelis, Angelos G.; Nordsvan, Adam; Zelilidis, Avraam
2018-02-01
This investigation presents an outcrop-based integrated study of internal division analysis and statistical treatment of turbidite bed thickness applied to a Carboniferous deep-water channel-levee complex in the Myall Trough, southeast Australia. Turbidite beds of the studied succession are characterized by a range of sedimentary structures grouped into two main associations, a thick-bedded and a thin-bedded one, that reflect channel-fill and overbank/levee deposits, respectively. Three vertically stacked channel-levee cycles have been identified. Results of statistical analysis of bed thickness, grain-size and internal division patterns applied on the studied channel-levee succession, indicate that turbidite bed thickness data seem to be well characterized by a bimodal lognormal distribution, which is possibly reflecting the difference between deposition from lower-density flows (in a levee/overbank setting) and very high-density flows (in a channel fill setting). Power law and exponential distributions were observed to hold only for the thick-bedded parts of the succession and cannot characterize the whole bed thickness range of the studied sediments. The succession also exhibits non-random clustering of bed thickness and grain-size measurements. The studied sediments are also characterized by the presence of statistically detected fining-upward sandstone packets. A novel quantitative approach (change-point analysis) is proposed for the detection of those packets. Markov permutation statistics also revealed the existence of order in the alternation of internal divisions in the succession expressed by an optimal internal division cycle reflecting two main types of gravity flow events deposited within both thick-bedded conglomeratic and thin-bedded sandstone associations. The analytical methods presented in this study can be used as additional tools for quantitative analysis and recognition of depositional environments in hydrocarbon-bearing research of ancient deep-water channel-levee settings.
Changes of freshwater-lens thickness in basaltic island aquifers overlain by thick coastal sediments
Rotzoll, Kolja; Oki, Delwyn S.; El-Kadi, Aly I.
2010-01-01
Freshwater-lens thickness and long-term changes in freshwater volume in coastal aquifers are commonly assessed through repeated measurement of salinity profiles from monitor wells that penetrate into underlying salt water. In Hawaii, the thickest measured freshwater lens is currently 262 m in dike-free, volcanic-rock aquifers that are overlain by thick coastal sediments. The midpoint depth (depth where salinity is 50% salt water) between freshwater and salt water can serve as an indicator for freshwater thickness. Most measured midpoints have risen over the past 40 years, indicating a shrinking lens. The mean rate of rise of the midpoint from 1999–2009 varied locally, with faster rates in highly developed areas (1.0 m/year) and slower rates in less developed areas (0.5 m/year). The thinning of the freshwater lenses is the result of long-term groundwater withdrawal and reduced recharge. Freshwater/salt-water interface locations predicted from measured water levels and the Ghyben-Herzberg principle may be deeper than measured midpoints during some periods and shallower during other periods, although depths may differ up to 100 m in some cases. Moreover, changes in the midpoint are slower than changes in water level. Thus, water levels may not be a reliable indicator of the amount of freshwater in a coastal aquifer.
NASA Astrophysics Data System (ADS)
Chiu, Tzu-Hsuan; Tien-Shun Lin, Andrew; Chi, Wen-Rong; Wang, Shih-Wei
2017-04-01
Lithofacies and paleo-environmental analyses of the Pliocene-Pleistocene deposits of Taiwan provide a framework to understand the stratigraphic development of foreland basin to the west of the orogenic belt. In this study, we performed lithofacies analyses and biostratigraphic studies on calcareous nannofossils in two areas in south-central Taiwan, the Jhuoshuei River, and the Hushan Reservoir, respectively. The studied lithostratigraphic units are the Chinshui Shale, the Cholan Formation, and the Toukoshan Formation, in an ascending order, with a total stratigraphic thickness more than 3500 m in central Taiwan. Sixteen lithofacies and four lithofacies associations are identified, pertaining to tide-dominated deltaic systems bordering a shallow marine setting in the foreland basin. A few wide-spread layers of thickly-bedded sandstones featuring ball-and-pillow structures are interpreted as resulting from earthquake shaking (i.e., seismites). In addition, the vertical facies change shows a coarsening and shallowing-upward succession, indicating the gradually filling up of the foreland basin by sediment progradation. The progradation is interpreted to result from westward migrating orogenic belt and an increase in sediment supply. The top 2000-m thick foreland succession (i.e., the uppermost part of the Cholan Formation, and the Toukoshan Formation) is dominantly fluvial deposits with occasional intercalations of shoreface sediments, indicating an extremely rapid and balanced rate of basin subsidence and sediment supply for the past 1.5 Ma. Vertebrate fossils of deer and elephants are identified in the upper Cholan Formation deposited in coastal to fluvial settings. Keywords: Pliocene-Pleistocene Epoch, lithofacies, foreland basin, Taiwan
NASA Astrophysics Data System (ADS)
Fosdick, Julie C.; Graham, Stephan A.; Hilley, George E.
2014-12-01
Flexural subsidence in foreland basins is controlled by applied loads—such as topography, water/sediment, and subcrustal forces—and the mechanical properties of the lithosphere. We investigate the controls on subsidence observed within the Upper Cretaceous Magallanes retroarc foreland basin of southern South America to evaluate the impact of lateral variations in flexural rigidity due to Late Jurassic extension. Conventional elastic models cannot explain the observed basin deflection and thick accumulation of deep-water Cenomanian-Turonian basin strata. However, models in which the lithosphere has been previously thinned and deflects under topographic and sedimentary loads successfully reproduce regional subsidence patterns. Results satisfy paleobathymetric observations in the Magallanes Basin and suggest that lithospheric thinning is necessary to produce both long-wavelength and deep subsidence during Late Cretaceous basin evolution. Results indicate that elastic thickness decreases westward from 45-25 km in the distal foreland to 37-15 km beneath the foredeep. These findings are consistent with a westward reduction in crustal thickness associated with the Jurassic extensional history of the Patagonian lithosphere. Our results also show that sediment loading exerts an important control on regional deflection patterns and promotes a wider region of subsidence and reduced forebulge uplift. We propose that lateral variations in mechanical properties and large sediment loads restrict depocenter migration and may cause the foredeep to remain fixed for prolonged periods of time. These findings confirm that loading of thinned lithosphere imposes different mechanical controls on the flexural profile and have potential implications for other retroarc foreland basins characterized by earlier extensional histories.
NASA Astrophysics Data System (ADS)
Chu, Guoqiang; Sun, Qing; Yang, Ke; Li, Aiguo; Yu, Xiaohan; Xu, Tao; Yan, Fen; Wang, Hua; Liu, Meimei; Wang, Xiaohua; Xie, Manman; Lin, Yuan; Liu, Qiang
2011-01-01
We report glacial varves in the sediment of Lake Xinluhai, Tibetan Plateau. Independent data of 137Cs and 210Pb indicate that these are annually deposited varves. Varves appear as rhythmic units of light-colored silt layer capped by a dark clay layer under microscope. Varve thickness in Lake Xinluhai is sensitive to precipitation because sediment accumulation is strongly affected by monsoon rainfall in the area. A general decreasing trend can be observed in the varve thickness over the past 160 years. Spectral analyses of the varve record are dominated by cycles which are similar to ENSO periodicities. It implies that the decreasing trend of the South Asia monsoon may be linking with ENSO. Spatially, the decreasing trend can be observed across different proxy records in the south of the Tibetan Plateau. Although arguments still remain for the dynamic mechanisms and spatial rainfall difference, the South Asian summer monsoon could be weakened due to rising temperatures.
Interactions of frazil and anchor ice with sedimentary particles in a flume
Kempema, E.W.; Reimnitz, E.; Clayton, J.R.; Payne, J.R.
1993-01-01
Frazil and anchor ice forming in turbulent, supercooled water have been studied extensively because of problems posed to man-made hydraulic structures. In spite of many incidental observations of interactions of these ice forms with sediment, their geologic effects remain unknown. The present flume study was designed to learn about the effects of salinity, current speed, and sediment type on sediment dynamics in supercooled water. In fresh-water, frazil ice formed flocs as large as 8 cm in diameter that tended to roll along a sandy bottom and collect material from the bed. The heavy flocs often came to rest in the shelter of ripples, forming anchor ice that subsequently was buried by migrating ripples. Burial compressed porous anchor ice into ice-bonded, sediment-rich masses. This process disrupts normal ripple cross-bedding and may produce unique sedimentary structures. Salt-water flocs were smaller, incorporated less bed load, and formed less anchor ice than their fresh-water counterparts. In four experiments, frazil carried a high sediment load only for a short period in supercooled salt water, but released it with slight warming. This suggests that salt-water frazil is either sticky or traps particles only while surrounded by supercooled water (0.05 to 0.1 ??C supercooling), a short-lived phase in simple, small tanks. Salt water anchor ice formed readily on blocks of ice-bonded sediment, which may be common in nature. The theoretical maximum sediment load in neutrally-buoyant ice/sediment mixture is 122 g/l, never reported in nature so far. The maximum sediment load measured in this laboratory study was 88 g/l. Such high theoretical and measured sediment concentrations suggest that frazil and anchor ice are important sediment transport agents in rivers and oceans. ?? 1993.
NASA Astrophysics Data System (ADS)
Tengberg, A.; Stahl, H.; Gust, G.; Müller, V.; Arning, U.; Andersson, H.; Hall, P. O. J.
2004-01-01
The hydrodynamic properties and the capability to measure sediment-water solute fluxes, at assumed steady state conditions, were compared for three radically different benthic chamber designs: the “Microcosm”, the “Mississippi” and the “Göteborg” chambers. The hydrodynamic properties were characterized by mounting a PVC bottom in each chamber and measuring mixing time, diffusive boundary layer thickness (DBL thickness) shear velocity (u ∗) , and total pressure created by the water mixing. The Microcosm had the most even distribution of DBL thickness and u ∗, but the highest differential pressure at high water mixing rates. The Mississippi chamber had low differential pressures at high u ∗. The Göteborg chamber was in between the two others regarding these properties. DBL thickness and u ∗ were found to correlate according to the following empirical formula: DBL=76.18(u ∗) -0.933. Multiple flux incubations with replicates of each of the chamber types were carried out on homogenized, macrofauna-free sediments in four tanks. The degree of homogeneity was determined by calculating solute fluxes (of oxygen, silicate, phosphate and ammonium) from porewater profiles and by sampling for porosity, organic carbon and meiofauna. All these results, except meiofauna, indicated that there were no significant horizontal variations within the sediment in any of the parallel incubation experiments. The statistical evaluations also suggested that the occasional variations in meiofauna abundance did not have any influence on the measured solute fluxes. Forty-three microelectrode profiles of oxygen in the DBL and porewater were evaluated with four different procedures to calculate diffusive fluxes. The procedure presented by Berg, Risgaard-Petersen and Rysgaard, 1989 [Limnol. Oceanogr. 43, 1500] was found to be superior because of its ability to fit measured profiles accurately, and because it takes into consideration vertical zonation with different oxygen consumption rates in the sediment. During the flux incubations, the mixing in the chambers was replicated ranging from slow mixing to just noticeable sediment resuspension. In the “hydrodynamic characterizations” these mixing rates corresponded to average DBL thickness from 120 to 550 μm, to u ∗ from 0.12 to 0.68 cm/s, and to differential pressures from 0-3 Pa. Although not directly transferable, since the incubations were done on a “real” sediment with a rougher surface while in the characterizations a PVC plate simulated the sediments surface, these data give ideas about the prevailing hydrodynamic condition in the chambers during the incubations. The variations in water mixing did not generate statistically significant differences between the chamber types for any of the measured fluxes of oxygen or nutrients. Consequently it can be concluded that, for these non-permeable sediments and so long as appropriate water mixing (within the ranges given above) is maintained, the type of stirring mechanism and chamber design used were not critical for the magnitude of the measured fluxes. The average measured oxygen flux was 11.2 ± 2.7 (from 40 incubations), while the diffusive flux calculated (from 43 profiles using the Berg et al., 1989 [Limnol. Oceanogr. 43, 1500] procedure) was 11.1 ± 3.0 mmol m -2 day -1. This strongly suggests that accurate oxygen flux measurements were obtained with the three types of benthic chambers used and that the oxygen uptake is diffusive.
NASA Astrophysics Data System (ADS)
de Putter, Thierry; Mees, Florias; Bayon, Germain; Ruffet, Gilles; Smith, Thierry; Delvaux, Damien
2017-04-01
Cretaceous to Recent evolution of the Congo Basin in Central Africa is still poorly documented although its history over the last 75 Myr has potentially recorded global and major regional events, including the Paleocene-Eocene Thermal Maximum at 56 Ma and the Miocene aperture of the Western branch of the East African Rift System along its eastern border at 25 Ma. Available data for associated off-shore deposits show that in parallel, the Congo River delta experienced a starvation period during the Mid- to Late Cretaceous and Paleogene, with endorheic lacustrine to desert environments in the upstream basin, followed by a period marked by high rates of drainage and sediment supply in the Neogene. Here, we combine new observations on the recent tectonic evolution with newly obtained 39Ar-40Ar ages for cryptomelane from Katanga (Kasekelesa) and Kasaï (Mt Mwatshimwa) and the preliminary results of the Landana condensed section ( 45 m) Paleogene-Neogene sequence. The maximum burial in the Congo Basin is estimated at 80 Ma and was followed by the removal of at least 900-1500 m of sediments (Sachse et al., 2012). Soon after the 39Ar-40Ar ages reveal that a major (Campanian or older) surface formed in the Kasai and Katanga before 76 Ma, followed by at least two younger Eocene denudation episodes, during the Lutetian ( 45 Ma) and the Priabonian ( 35 Ma) and more Mio-Pliocene denudation surfaces during the Mio-Pliocene (De Putter et al., 2016). The older surface likely belongs to the subcontinental 'African Surface' that had previously not been identified for Central Africa. During this long-lasting erosional history of the central part of the Congo Basin, the Landana section along the Atlantic coast recorded a condensed ( 45 m) sequence of Paleogene-Neogene sediments. The first 25m are shallow marine carbonates with little detrital input, recording slightly increasing weathering from the Danian to the Lutetian (Bayon et al., 2016). Whether this section had a physical connection with the inland basin at the time is not known. Simultaneously, a 150 m thick eolian sand accumulation (Kalahari Group s.l.) is assumed to have been deposited in the south-western margin of the Congo Basin. The strong silicification at the top of the Lutetian beds of the Landana section indicates a major discontinuity, which would correspond to the Lutetian denudation surface in Katanga. After this hiatus, sedimentation recorded by the Landana section changes sharply to coarse-grained siliciclastics, through a likely (re-established?) connection with the inland basin. A major change in sediment source is confirmed by ɛNd, whereas isotopic proxies of weathering (ɛHf, 30Si) document a major decrease in weathering intensity. The sharp increase in sediment discharge is attributed to uplift along the southern and eastern margins of the Congo Basin, preceding the opening of the East African Rift in the Oligocene. Bayon et al., 2016. Goldschmidt Conf. 2016, abstract book, 181 De Putter et al., 2015. Ore Geol. Rev. 71, 350-362 Sachse, V.F, Delvaux, D. and Littke, R., 2012. AAPG bulletin, 96(2), 277-300.
Wichern, Marc; Lindenblatt, Claus; Lübken, Manfred; Horn, Harald
2008-08-01
A better understanding of wastewater treatment with soil filters is important to optimise plant operation and reduce the risk of clogging. The article presents results of a treatment concept which uses a combination of SBR and vertical-flow sand filter technology. The SBR was mainly used for denitrification and sedimentation of substances in particulate form. Efficient nitrification was achieved by the planted sand filter. Degradation rates of 10gNH(4)-N/(m(2)xd) were measured for periods with peak loadings. The two-dimensional dynamic model reproduces the biofilm growth and decay of heterotrophic and autotrophic biomass. It is capable of describing the clogging of the sand filter by combining a biochemical and a geometric model. After calibration, the model was used for the calculation of maximum nitrogen degradation performances. Maximum degradation rates of 12gNH(4)-N/(m(2)xd) can be achieved if the COD/TKN ratio is reduced before to a level lower than that of municipal wastewater. The COD was further degraded in the filter than we expected comparing it with activated sludge plants. Within the soil filter a biofilm thickness of up to 110microm is simulated depending on the embankment of gravel and grains of sand. Sensitivity analysis of model parameters showed the high impact of the maximum autotrophic growth rate, the autotrophic yield, the diffusion coefficient for oxygen and the number of contact points of the single grains of sand.
Curtis, Jennifer A.
2007-01-01
The U.S. Geological Survey, in cooperation with Point Reyes National Seashore, is studying suspended-sediment transport dynamics in the two primary tributaries to Tomales Bay, Lagunitas Creek and Walker Creek. Suspended-sediment samples and continuous optical backscatter (turbidity) data were collected at three locations during water years 2004?06 (October 1, 2003?September 30, 2006): at two sites in the Lagunitas Creek watershed and at one site in the Walker Creek watershed. Sediment samples were analyzed for suspended-sediment concentration, grain size, and turbidity. Data were used to estimate mean daily and annual seasonal suspended-sediment discharge, which were published in U.S. Geological Survey Annual Water-Data Reports. Data were utilized further in this report to develop field-based optical-backscatter calibration equations, which then were used to derive a continuous time series (15-minute interval) of suspended-sediment concentrations. Sensor fouling and aggradation of the channel bed occurred periodically throughout the project period, resulting in data loss. Although periods of data loss occurred, collection of optical sensor data improved our understanding of suspended-sediment dynamics in the Lagunitas Creek and Walker Creek watersheds by providing continuous time-series storm event data that were analyzed to determine durations of elevated sediment concentrations (periods of time when suspended-sediment concentration was greater than 100 mg/L). Data derived from this project contributed baseline suspended-sediment transport information that will be used to develop and implement sediment total maximum daily loads for Tomales Bay and its tributary watersheds, and provides supporting information for additional total maximum daily loads (pathogens, nutrients, and mercury) and restoration efforts for four federally listed aquatic species that are affected directly by sediment loading in the Tomales Bay watershed. In addition, this project provided an opportunity to evaluate the suitability of using optical data as a surrogate for more traditional labor-intensive methods of measuring suspended-sediment transport in steep coastal watersheds.
Wasson, R.J.; Smith, G.I.; Agrawal, D.P.
1984-01-01
Variations in clastic sediment texture, mineralogy of both evaporites formed at the surface and precipitates formed below the lake floor, and the relative chemical activities of the major dissolved components of the chemical precipitates, have allowed reconstruction of the history of salinity and water-level changes in Didwana Lake, Thar Desert, India. Hypersaline conditions prevailed at about the Last Glacial Maximum, with little evidence of clastic sediments entering the lake. Between ca. 13,000 and 6000 B.P. the lake level fluctuated widely, the lake alternately hypersaline and fresh, and clastic sediments were delivered to the lake at a low rate. Deep-water conditions occurred ca. 6000 B.P. and clastic influx increased abruptly. The water level dropped towards 4000 B.P. when the lake dried briefly. Since 4000 B.P. the lake has been ephemeral with a lowered rate of sedimentation and mildly saline conditions rather like those of today. This sequence of changes documented in the lake parallels changes in vegetation recorded in published pollen diagrams from both the Thar and the Arabian Sea. Correlation of the various lines of evidence suggests that the climate of the Last Glacial Maximum at Didwana was dry and windy with a weak monsson circulation. The monsson was re-established between ca. 13,000 and a little before 6000 B.P., and, when winter rainfall increased ca. 6000 B.P., the lake filled to its maximum depth. ?? 1984.
NASA Astrophysics Data System (ADS)
Marshall, Nicole R.; Piper, David J. W.; Saint-Ange, Francky; Campbell, D. Calvin
2014-10-01
Contourite drifts of alternating sand and mud, shaped by the Labrador Current, formed during the late Quaternary in Flemish Pass seaward of the Grand Banks of Newfoundland, Canada. The drifts preserve a record of Labrador Current flow variations through the last glacial maximum. A high-resolution seismic profile and a transect of four cores were collected across Beothuk drift on the southeast side of Flemish Pass. Downcore and lateral trends in grain size and sedimentation rate provide evidence that, between 16 and 13 ka, sediment was partitioned across Beothuk drift and the adjacent Flemish Pass floor by a strong current flow but, from 29 to 16 ka, sedimentation was more of a blanketing style, represented by draped reflections interpreted as being due to a weaker current. The data poorly resolve the low sedimentation rates since 13 ka, but the modern Labrador Current in Flemish Pass is the strongest it has been in at least the past 29 ka. Pre-29 ka current flow is interpreted based on reflection architecture in seismic profiles. A prominent drift on the southwestern side of Flemish Pass formed above a mid-Miocene erosion surface, but was buried by a mass-transport deposit after the penultimate glacial maximum and after drift deposition switched to eastern Flemish Pass. These findings illustrate the temporal complexity of drift sedimentation and provide the first detailed proxy for Labrador Current flow since the last glacial maximum.
Orlando, James L.; Smalling, Kelly L.; Kuivila, Kathryn
2008-01-01
Water and suspended-sediment samples were collected at eight sites on the Alamo and New Rivers in the Imperial Valley/Salton Sea Basin of California and analyzed for both current-use and organochlorine pesticides by the U.S. Geological Survey. Samples were collected in the fall of 2006 and spring of 2007, corresponding to the seasons of greatest pesticide use in the basin. Large-volume water samples (up to 650 liters) were collected at each site and processed using a flow-through centrifuge to isolate suspended sediments. One-liter water samples were collected from the effluent of the centrifuge for the analysis of dissolved pesticides. Additional samples were collected for analysis of dissolved organic carbon and for suspended-sediment concentrations. Water samples were analyzed for a suite of 61 current-use and organochlorine pesticides using gas chromatography/mass spectrometry. A total of 25 pesticides were detected in the water samples, with seven pesticides detected in more than half of the samples. Dissolved concentrations of pesticides observed in this study ranged from below their respective method detection limits to 8,940 nanograms per liter (EPTC). The most frequently detected compounds in the water samples were chlorpyrifos, DCPA, EPTC, and trifluralin, which were observed in more than 75 percent of the samples. The maximum concentrations of most pesticides were detected in samples from the Alamo River. Maximum dissolved concentrations of carbofuran, chlorpyrifos, diazinon, and malathion exceeded aquatic life benchmarks established by the U.S. Environmental Protection Agency for these pesticides. Suspended sediments were analyzed for 87 current-use and organochlorine pesticides using microwave-assisted extraction, gel permeation chromatography for sulfur removal, and either carbon/alumina stacked solid-phase extraction cartridges or deactivated Florisil for removal of matrix interferences. Twenty current-use pesticides were detected in the suspended-sediment samples, including pyrethroid insecticides and fungicides. Fourteen legacy organochlorine pesticides also were detected in the suspended-sediment samples. Greater numbers of current-use and organochlorine pesticides were observed in the Alamo River samples in comparison with the New River samples. Maximum concentrations of current-use pesticides in suspended-sediment samples ranged from below their method detection limits to 174 micrograms per kilogram (pendimethalin). Most organochlorine pesticides were detected at or below their method detection limits, with the exception of p,p'-DDE, which had a maximum concentration of 54.2 micrograms per kilogram. The most frequently detected current-use pesticides in the suspended-sediment samples were chlorpyrifos, permethrin, tetraconazole, and trifluralin, which were observed in more than 83 percent of the samples. The organochlorine degradates p,p'-DDD and p,p'-DDE were detected in all suspended-sediment samples.
Marine-target craters on Mars? An assessment study
Ormo, J.; Dohm, J.M.; Ferris, J.C.; Lepinette, A.; Fairen, A.G.
2004-01-01
Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine-target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within "contacts 1 and 2," cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long-lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller "contact 2" with a duration of 100,000 yr and the low present crater formation rate, only ???1-2 detectable marine-target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger "contact 1-Meridiani," with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine-target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine-target craters. The implications regarding the discovery of marine-target craters on Mars is not without significance, as such discoveries would help address the ongoing debate of whether large water bodies occupied the northern plains of Mars and would help constrain future paleoclimatic reconstructions. ?? Meteoritical Society, 2004.
NASA Astrophysics Data System (ADS)
Knott, T.; Branney, M. J.; Christiansen, E. H.; Reichow, M. K.; McCurry, M. O.; Shervais, J. W.
2013-12-01
Project HOTSPOT seeks to understand the bimodal volcanism in the Yellowstone-Snake River large igneous province, including the magma generation and eruption history. The 1.9 km-deep Kimberly well in southern Idaho, USA, reveals a proximal mid-Miocene rhyolitic and basaltic volcanic succession marginal to the postulated Twin Falls eruptive centre. Three rhyolitic eruption-units (each we interpret to record a single eruption, based on core descriptions) are separated by basaltic lavas, palaeosols and volcaniclastic sediments, and are being dated by 40Ar-39Ar on plagioclases. Whole-rock and mineral chemical data, from each unit, has been compiled to facilitate correlation with well-studied eruption-units at more distal outcrops, where we have detailed chemical, palaeomagnetic and radiometric characterisation. Results will contribute to frequency and volume calculations for some of the most catastrophic super-eruptions in Earth history. As the volcanism is of Snake River (SR)-type and lacks typical pumice fall deposits and low-moderate grade ignimbrites, interpreting the physical origin of the units can be difficult; many SR-type rheomorphic ignimbrites are flow-banded and resemble lavas, and the distinction between these and true lavas involves interpretation of critical evidence from lower contacts (e.g., distinguishing basal lava autobreccias from peperitic contacts, which can occur at the bases of SR-type lavas and ignimbrites). The lower most eruption-unit, ';Kimberly Rhyolite 1,' is >1323 m thick (base not seen) and suggests ponding in the margin of a caldera. Few vitroclastic textures are preserved, but a rheomorphic ignimbrite origin is inferred by folded fabrics and scattered obsidian chips (2-5 mm in size) within a thick lithoidal zone, which passes sharply upwards into a 39.6 m thick vitrophyre with an autobrecciated top and it is overlain by 18 m (caldera?) lake sediments. However, lithic mesobreccia, that characterise caldera fills elsewhere, are not seen. ';Kimberly Rhyolite 2' is 168.2 m-thick with a non-brecciated base, lithoidal centre and an autobrecciated upper vitrophyre (45 m thick). It also contains 2-5 mm obsidian chips and may represent a proximal outflow correlative of more distal ignimbrites in southern Idaho. It is overlain by laminated sediments (64 m-thick), basalt lavas (67 m thick), 23 m-thick laminated sediments, and a 30 m basalt lava with an upper palaeosol. Overlying this palaeosol is the uppermost unit,' Kimberly Rhyolite 3' (127 m thick) with a 4.5 m vitrophyric basal autobreccia, well-developed flow banding and no visible pyroclasts. The nature of the basal contact, and the lack of any pyroclastic features, suggest its origin is likely a rhyolitic lava and whole rock and mineral chemistries indicate it may be a correlative of the 6.53 Ma, ≤200 m-thick, Shoshone rhyolite lava. The Kimberly well is the only window into potential caldera fills in the SR-Plain, southern Idaho. Any correlations made with this proximal succession would greatly increase the volume of SR-outflow facies by demonstrating caldera fills, that to date, have only been inferred.
Rodriguez, Brian D.; Sawyer, David A.; Hudson, Mark R.; Grauch, V.J.S.
2013-01-01
Two- and three-dimensional electrical resistivity models derived from the magnetotelluric method were interpreted to provide more accurate hydrogeologic parameters for the Albuquerque and Española Basins. Analysis and interpretation of the resistivity models are aided by regional borehole resistivity data. Examination of the magnetotelluric response of hypothetical stratigraphic cases using resistivity characterizations from the borehole data elucidates two scenarios where the magnetotelluric method provides the strongest constraints. In the first scenario, the magnetotelluric method constrains the thickness of extensive volcanic cover, the underlying thickness of coarser-grained facies of buried Santa Fe Group sediments, and the depth to Precambrian basement or overlying Pennsylvanian limestones. In the second scenario, in the absence of volcanic cover, the magnetotelluric method constrains the thickness of coarser-grained facies of buried Santa Fe Group sediments and the depth to Precambrian basement or overlying Pennsylvanian limestones. Magnetotelluric surveys provide additional constraints on the relative positions of basement rocks and the thicknesses of Paleozoic, Mesozoic, and Tertiary sedimentary rocks in the region of the Albuquerque and Española Basins. The northern extent of a basement high beneath the Cerros del Rio volcanic field is delineated. Our results also reveal that the largest offset of the Hubbell Spring fault zone is located 5 km west of the exposed scarp. By correlating our resistivity models with surface geology and the deeper stratigraphic horizons using deep well log data, we are able to identify which of the resistivity variations in the upper 2 km belong to the upper Santa Fe Group sediment
NASA Astrophysics Data System (ADS)
Velez Gonzalez, Jose A.
The development of preferred crystal orientation fabrics (COF) within the ice column can have a strong influence on the flow behavior of an ice sheet or glacier. Typically, COF information comes from ice cores. Observations of anisotropic seismic wave propagation and backscatter variation as a function of antenna orientation in GPR measurements have been proposed as methods to detect COF. For this investigation I evaluate the effectiveness of the GPR and seismic methods to detect COF by conducting a seismic and GPR experiment at the North Greenland Eemian Ice Drilling facility (NEEM) ice core location, where COF data is available. The seismic experiment was conducted 6.5 km North West of the NEEM facility and consisted of three multi-offset seismic gathers. The results of the anisotropy analysis conducted at NEEM yielded mean c-axes distributed over a conical region of I angle of 30 to 32 degrees. No internal ice reflectors were imaged. Direct COF measurements collected in the ice core are in agreement with the results from the seismic anisotropy analysis. The GPR experiment covered an area of 100 km2 and consisted of parallel, perpendicular, oblique and circular (radius: 35 m) acquisition patterns. Results show evidence for COF for the entire 100 km2 area. Furthermore, for the first time it was possible to image three different COF (random, disk and single maxima) and their respective transition zones. The interpretation of the GPR experiment showed a strong correlation with the ice core measurements. Glacier basal drag is also an important, and difficult to predict, property that influences glacier flow. For this investigation I re-processed a 10 km-long high-resolution reflection seismic line at Jakobshavn Isbrae, Greenland, using an iterative velocity determination approach for optimizing sub-glacier imaging. The resultant line imaged a sub-glacier sediment layer ranging in thickness between 35 and 200 meters. I interpret three distinct seismic facies based on the geometry of the reflectors as a basal till layer, accreted sediments and re-worked till. The basal till and accreted sediments vary in thickness between 4 and 93 meters and are thought to be water-saturated actively-deforming sub-glacier sediments. A polarity reversal observed at one location along the ice-sediment interface suggests the presence of water saturated sediments or water ponding 2-4 m thick spanning approximately 240 m across. Using information from the seismic line (bed geometry, ice thickness, till thickness) as well as information available for the area of study (ice surface elevation and ice flow velocity) we evaluate the effect of sub-glacier sediment viscosity on the basal drag using a linearly viscous model and the assumption of a deforming bed. Basal drag values estimated for the study area fall within the range of physically acceptable values. However, the analysis revealed that the assumption of a deforming bed might not be compatible for the area of study given the presence of water at the ice/bed interface.
Airfoil System for Cruising Flight
NASA Technical Reports Server (NTRS)
Shams, Qamar A. (Inventor); Liu, Tianshu (Inventor)
2014-01-01
An airfoil system includes an airfoil body and at least one flexible strip. The airfoil body has a top surface and a bottom surface, a chord length, a span, and a maximum thickness. Each flexible strip is attached along at least one edge thereof to either the top or bottom surface of the airfoil body. The flexible strip has a spanwise length that is a function of the airfoil body's span, a chordwise width that is a function of the airfoil body's chord length, and a thickness that is a function of the airfoil body's maximum thickness.
Sedimentation and contamination patterns of dike systems along the Rhône River (France)
NASA Astrophysics Data System (ADS)
Seignemartin, Gabrielle; Tena, Alvaro; Piégay, Hervé; Roux, Gwenaelle; Winiarski, Thierry
2017-04-01
Humans have historically modified the Rhône River, especially in the last centuries. In the 19th century, the river was systematically embanked for flood protection purposes, and works continued along the 20th century with dike system engineering work for navigation. The Rhône was canalised and its historical course by-passed by a series of hydroelectric dams. Besides, industrial activity polluted the river. For example, high levels of PCB's were attributed to the inputs of the heavily industrialized zone downstream from Lyon. During floods, these contaminants, associated with the suspended sediment, were trapped by the engineering works and the floodplain. Currently, a master plan to reactivate the river dynamics in the alluvial margins by removing the groyne-fields and dikes in the by-passed sections is being implemented. Within this context, this work aims to assess historical dynamics of sediment and associated contaminants in the floodplain (e.g. trace metal elements), notably in the dike system, in order to evaluate the contamination risk related to bank protection removal. With this objective, a transversal methodology has been applied coupling GIS diachronic analysis (old maps, bathymetric data, Orthophotos, LIDAR, etc.) to understand the historical floodplain evolution, sediment survey to obtain sediment thickness (metal rod and Ground Penetrating Radar), and sediment sampling (manual auger and core sampling) to obtain the metal element concentrations (X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometry). By this way, metal element patterns were defined and used as contamination tracing indicators to apprehend the contamination history but also as geochemical background indicators to define the sediment source influence. We found that sediment temporal patterns are directly related with the by-pass construction year. Spatially, fine sediment deposition predominates in the dike systems, being lower in the floodplain already disconnected in the 20th century. Sediment thickness tends to increase in the dike systems following downstream direction. Coupling trace elements (Cu, Zn, Pb) and sediment patterns, metal pollution is mainly observed in the 1970's deposits, similarly to previous studies focused on PCB. These results constitute basic information to inform managers and improve restoration actions that are currently implemented in the Rhône River.
Coking-coal deposits of the western United States
Berryhill, Louise R.; Averitt, Paul
1951-01-01
Geohydrologic systems in the Anadarko basin in the central United States are controlled by topography, climate, geologic structures, and aquifer hydraulic properties, all of which are the result of past geologic and hydrologic processes, including tectonics and diagenesis. From Late Cambrian through Middle Ordovician time, a generally transgressive but cyclic sea covered the area. The first deposits were permeable sand, followed by calcareous mud. During periods of sea transgression, burial diagenesis decreased porosity and permeability. During Pennsylvanian time, rapid sedimentation accompanied rapid subsidence in the Anadarko basin. A geopressure zone probably resulted when sediments with little permeability trapped depositional water in Lower Pennsylvanian sands. Burial diagenesis included compaction and thermal alteration of deeply buried organic material, which released carbon dioxide, water, and hydrocarbons. By Middle Pennsylvanian time, the sea had submerged most of the central United States, including the Ozarks, as tectonic activity reached its maximum. During Late Pennsylvanian and Early Permian time, the Ouachita uplift had been formed and was higher than the Ozarks. Uplift was accompanied by a regional upward tilt toward the Ouachita-Ozarks area; the sea receded westward, depositing large quantities of calcareous mud and clay, and precipitating evaporitic material in the restricted-circulation environment. By the end of Permian time, > 20,000 ft of Pennsylvanian and Permian sediments had been deposited in the Anadarko basin. These thick sediments caused rapid and extreme burial diagensis, including alteration of organic material During Permian time in the Ozarks area, development of the Ozark Plateau aquifer system commenced in the permeable Cambrian-Mississippian rocks near the St. Francois Mountains as the Pennsylvanian confining material was removed. Since Permian time, uplift diagenesis has been more active than burial diagenesis in the Anadarko basin. Synopsis of paleohydrologic interpretation indicates that Cambrian-Mississippian rocks in the Anadarko basin should be relatively impermeable, except for local secondary permeability, because rocks in the basin have undergone little uplift diagenesis. (Lantz-PTT)
Curry, B.; Petras, J.
2011-01-01
A revised chronological framework for the deglaciation of the Lake Michigan lobe of the south-central Laurentide Ice Sheet is presented based on radiocarbon ages of plant macrofossils archived in the sediments of low-relief ice-walled lakes. We analyze the precision and accuracy of 15 AMS 14C ages of plant macrofossils obtained from a single ice-walled lake deposit. The semi-circular basin is about 0.72km wide and formed of a 4- to 16-m-thick succession of loess and lacustrine sediment inset into till. The assayed material was leaves, buds and stems of Salix herbacea (snowbed willow). The pooled mean of three ages from the basal lag facies was 18 270??50 14C a BP (21 810cal. a BP), an age that approximates the switch from active ice to stagnating conditions. The pooled mean of four ages for the youngest fossil-bearing horizon was 17 770??40 14C a BP (21 180cal. a BP). Material yielding the oldest and youngest ages may be obtained from sediment cores located at any place within the landform. Based on the estimated settling times of overlying barren, rhythmically bedded sand and silt, the lacustrine environment persisted for about 50 more years. At a 67% confidence level, the dated part of the ice-walled lake succession persisted for between 210 and 860cal. a (modal value: 610cal. a). The deglacial age of five moraines or morainal complexes formed by the fluctuating margin of the Lake Michigan lobe have been assessed using this method. There is no overlap of time intervals documenting when ice-walled lakes persisted on these landforms. The rapid readvances of the lobe during deglaciation after the last glacial maximum probably occurred at some point between the periods of ice-walled lake sedimentation. ?? 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wolff, C.; Haug, G.; Plessen, B.; Kristen, I.; Verschuren, D.; Participants, C.
2008-12-01
Recently, an increasing number of climate records from low-latitude regions underscore the importance of tropical atmospheric processes in the global climate system. Nevertheless, the regional synchrony of temperature and humidity variations, as well as teleconnecting mechanisms between high and low latitudes are still poorly understood. The EuroCLIMATE project CHALLACEA aims to provide a continuous high- resolution multi-proxy record of temperature and moisture-balance variability in equatorial East Africa from the Last Glacial Maximum (25 ka BP) to the present. Lake Challa is a crater lake located about 40 km east of Mt. Kilimanjaro at an altitude of 880 m a.s.l. It is a freshwater lake whose water column is stratified during most of the year. It is fed by subsurface inflow which derives mainly from percolation of precipitation falling in the montane forest zone higher up the mountain. Within the lake form lacustrine deposits which predominantly consist of autochthonous components (carbonate, biogenic silica, organic matter). The present study focuses on microfacies analyses and isotope measurements. Fine laminations are preserved over wide parts of a 22 m long sediment profile. Microfacies analyses reveal that the light/dark couplets represent true calcite varves. The darker layers contain organic matter and endogenic calcite. Sediment trap studies show that these layers form during the warm season (Nov to Mar) when water temperatures are high and the lake is biological productive. The light layers consist predominantly of diatom frustules. They accumulate in the sediment trap between June and October. By counting and measuring the thickness of the varves on thin sections, we establish a varve record that currently covers the last 1500 years. Stable isotope analyses on bulk carbonates will complement this record and give further insights into the hydrological variability of the region and enhance our knowledge of climate change in the highly sensitive climate region of the Mt. Kilimanjaro area.
Jutzeler, Martin; McPhie, Jocelyn
2017-06-27
Partly situated in the idyllic Mount Rainier National Park, this field trip visits exceptional examples of Oligocene subaqueous volcaniclastic successions in continental basins adjacent to the Ancestral Cascades arc. The >800-m-thick Ohanapecosh Formation (32–26 Ma) and the >300-m-thick Wildcat Creek (27 Ma) beds record similar sedimentation processes from various volcanic sources. Both show evidence of below-wave-base deposition, and voluminous accumulation of volcaniclastic facies from subaqueous density currents and suspension settling. Eruption-fed facies include deposits from pyroclastic flows that crossed the shoreline, from tephra fallout over water, and from probable Surtseyan eruptions, whereas re-sedimented facies comprise subaqueous density currents and debris flow deposits.
Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars
Grotzinger, J.P.; Gupta, S.; Malin, M.C.; Rubin, D.M.; Schieber, J.; Siebach, K.; Sumner, D.Y.; Stack, K.M.; Vasavada, A.R.; Arvidson, R.E.; Calef, F.; Edgar, Lauren; Fischer, W.F.; Grant, J.A.; Griffes, J.L.; Kah, L.C.; Lamb, M.P.; Lewis, K.W.; Mangold, N.; Minitti, M.E.; Palucis, M.C.; Rice, M.; Williams, R.M.E.; Yingst, R.A.; Blake, D.; Blaney, D.; Conrad, P.; Crisp, J.A.; Dietrich, W.E.; Dromart, G.; Edgett, K.S.; Ewing, R.C.; Gellert, R.; Hurowitz, J.A.; Kocurek, G.; Mahaffy, P.G.; McBride, M.J.; McLennan, S.M.; Mischna, M.A.; Ming, D.; Milliken, R.E.; Newsom, H.; Oehler, D.; Parker, T.J.; Vaniman, D.; Wiens, R.C.; Wilson, S.A.
2015-01-01
The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).
Physical Limitations of Phosphor layer thickness and concentration for White LEDs.
Tan, Cher Ming; Singh, Preetpal; Zhao, Wenyu; Kuo, Hao-Chung
2018-02-05
Increasing phosphor layer thickness and concentration can enhance the lumen flux of white LED (W-LED). In this work, we found that increasing the phosphor layer thickness and concentration can increase its temperature, and there is also a maximum thickness and concentration beyond which their increase will not lead to lumen increase, but only temperature increase. Higher thickness and higher concentration also results in warm light instead of White light. The maximum thickness and concentration are found to be limited by the scattering of light rays with higher % decrease of blue light rays than the yellow light rays. The results obtained in this work can also be used to compute the temperature and thermo-mechanical stress distribution of an encapsulated LED, demonstrating its usefulness to the design of encapsulated LED packages. Simulation software like ANSYS and TracePro are used extensively to verify the root cause mechanisms.
The Nordkapp Basin, Norway: Development of salt and sediment interplays for hydrocarbon exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerche, I.; Toerudbakken, B.O.
1996-12-31
Investigation of a particular salt diapir in the Nordkapp Basin, Barents Sea has revealed the following sequence of events: (1) salt started to rise when approximately 1.5 {+-} 0.3 km of sedimentary cover was present (Carboniferous/Permian time); (2) salt reached the sediment surface when about 3.5 {+-} 0.7 km of sediment had been deposited (Triassic time); (3) the mushroom cap on the salt stock top developed over a period of about 75--100 Ma (i.e. during the time when about another km of sediment had been deposited) (Triassic through Base Cretaceous time); (4) the mushroom cap started to dip down significantlymore » ({approximately}1 km) into the sediments around Cretaceous to Tertiary erosion time; (5) oil generation started in the deep sediments of the Carboniferous around the time that salt reached the surface (Triassic time) and continues to the present day at sedimentary depths between about 4 to 7 km (currently Triassic and deeper sediments); (6)gas generation started around mushroom cap development time and continues to the present day at sedimentary depths greater than about 6--7 km (Permian/Carboniferous); (7) the salt stock is currently 3--4 km wide, considerably less than the mushroom cap which is 9 km wide and 1 km thick. The relative timing of mushroom cap development, bed upturning, and hydrocarbon generation makes the salt diapir an attractive exploration target, with suggested reservoir trapping under the downturned mushroom cap on the deep basin side of the salt. In addition, rough estimates of rim syncline fill suggest the basin had an original salt thickness of 2.4--3.3 km, depending upon the amount of salt removed at the Tertiary erosion event.« less
Elementary theory of bed-sediment entrainment by debris flows and avalanches
Iverson, Richard M.
2012-01-01
Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rateEresult from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces toE = 2μ1gh1 cos θ(1 − λ1)/ , where θ is the slope angle, μ1 is the flow's Coulomb friction coefficient, h1 is its thickness, λ1 is its degree of liquefaction, and is its depth-averaged velocity. For values ofλ1ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.
From rifting to orogeny; using sediments to unlock the secrets of the Greater Caucasus
NASA Astrophysics Data System (ADS)
Vincent, Stephen; Guo, Li; Lavrishchev, Vladimir; Maynard, James; Harland, Melise
2017-04-01
The western Greater Caucasus formed by the tectonic inversion of the western strand of the Greater Caucasus Basin, a Mesozoic rift that opened at the southern margin of Laurasia. Facies analysis has identified fault-bounded regions of basinal, turbiditic and hemipelagic sediments. These are flanked by areas of marginal, shallow marine sediments to the north and south. Subsidence analysis derived from lithology, thickness and palaeowater depth data indicates that the main phase of rifting occurred during the Aalenian to Bajocian synchronous with that in the eastern Alborz and, possibly, the South Caspian Basin. Secondary episodes of subsidence during the late Tithonian to Berriasian and Hauterivian to early Aptian are tentatively linked to initial rifting within the western, and possibly eastern, Black Sea, and during the late Campanian to Danian to the opening of the eastern Black Sea. Initial uplift, subaerial exposure and sediment derivation from the western Greater Caucasus occurred at the Eocene-Oligocene transition. Oligocene and younger sediments on the southern margin of the former basin were derived from the inverting basin and uplifted parts of its northern margin, indicating that the western Greater Caucasus Basin had closed by this time. The previous rift flanks were converted to flexural basins that accumulated thick, typically hemipelagic and turbiditic sediments in the early, underfilled, stage of their development. A predominance of pollen representing a montane forest environment (dominated by Pinacean pollen) within these sediments suggests that the uplifting Caucasian hinterland had a paleoaltitude of around 2 km from Early Oligocene time. The closure of the western Greater Caucasus Basin and significant uplift of the range at c. 34 Ma is earlier than stated in many studies and needs to be incorporated into geodynamic models for the Arabia-Eurasia region.
Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model
Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.
2008-01-01
We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay.
Timing of Glacial Lake Missoula Outburst Floods and the southwestern Cordilleran Ice Sheet retreat.
NASA Astrophysics Data System (ADS)
Hendy, I. L.; Bervid, H. D.; Carlson, A. E.
2017-12-01
Glacial Lake Missoula formed when the Purcell Trench Lobe dammed the Clark Fork River in Montana and catastrophically collapsed repeatedly through the last glacial period as the southern Cordilleran Ice Sheet advanced and retreated. A well-dated 50-kyr jumbo piston core MD02-2496 (48.97˚ N, 127.04˚ W, water depth of 1243 m) collected from the continental slope 75 km off Vancouver Island contains evidence of these floods. The in-situ bulk elemental composition of the 35-m core was determined at 1 mm intervals using an ITRAX X-ray Fluorescence (XRF) Core Scanner (Cox Analytical Instruments) at the Sediment Geochemistry Lab of the College of Earth, Ocean, and Atmospheric Sciences at Oregon State University. With 40 mixed planktonic foraminifera and bulk organic carbon 14C ages, the core provides a high-resolution resolution record of glaciomarine sedimentation during deglaciation. A series of >81 layers of fine-grained sediments with ancient (K/Ar ages of 300 Ma and eNd of -8) shale-like (high Rb counts) composition can be found between 19.6 and 9.2 m below coretop. These layers are interspersed by coarser grained, young (K/Ar ages of 100 Ma and eNd of -3) sediments containing ice-rafted debris (IRD). The composition and age of the layers indicates the sediments originated in Glacial Lake Missoula and were transported by ocean currents 250 miles north along the west coast of North America. The flood layers begin at 19.5 ka with five thin (<5 cm thick) layers before thick flood layers (>5 cm thick) appear after 19.3 ka. At 17.1 ka, IRD concentrations increase from <1 grain g-1 to 20 grains g-1, and remain >50 grains g-1 from 16.5-16.35 ka, except in flood layers, as the Juan de Fuca Strait deglaciated. Another 16 flood layers occur from 16.3-15.65 ka; however, the base and top of these layers are diffuse rather than abrupt like earlier flood layers suggesting enhanced mixing between flood and melt waters. The final flood layers from 14.9-14.5 ka are thin (<2 cm thick) suggesting that the final floods were small events similar to the initial floods. This well-dated sequence displays how Glacial Lake Missoula flood sedimentation changed during the advance and retreat of the Cordilleran Ice Sheet.
Towards bridging the gap between climate change projections and maize producers in South Africa
NASA Astrophysics Data System (ADS)
Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus
2018-05-01
Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.
Reflection of acoustic wave from the elastic seabed with an overlying gassy poroelastic layer
NASA Astrophysics Data System (ADS)
Chen, Weiyun; Wang, Zhihua; Zhao, Kai; Chen, Guoxing; Li, Xiaojun
2015-10-01
Based on the multiphase poroelasticity theory, the reflection characteristics of an obliquely incident acoustic wave upon a plane interface between overlying water and a gassy marine sediment layer with underlying elastic solid seabed are investigated. The sandwiched gassy layer is modelled as a porous material with finite thickness, which is saturated by two compressible and viscous fluids (liquid and gas). The closed-form expression for the amplitude ratio of the reflected wave, called reflection coefficient, is derived theoretically according to the boundary conditions at the upper and lower interfaces in our proposed model. Using numerical calculation, the influences of layer thickness, incident angle, wave frequency and liquid saturation of sandwiched porous layer on the reflection coefficient are analysed, respectively. It is revealed that the reflection coefficient is closely associated with incident angle and sandwiched layer thickness. Moreover, in different frequency ranges, the dependence of the wave reflection characteristics on moisture (or gas) variations in the intermediate marine sediment layer is distinguishing.
Suspended-Sediment Impacts on Light-limited Productivity in the Delaware Estuary
NASA Astrophysics Data System (ADS)
McSweeney, J.; Chant, R. J.; Wilkin, J.; Sommerfield, C. K.
2016-12-01
The Delaware Estuary has a history of high anthropogenic nutrient loadings, but has been classified as a high-nutrient, low-growth system due persistent light limitations caused by turbidity. While the biogeochemical implications of light limitation in turbid estuaries has been well-studied, there has been minimal effort focused on the connectivity between hydrodynamics, sediment dynamics, and light-limitation. Our understanding of sediment dynamics in the Delaware Estuary has advanced significantly in the last decade, and this study provides insight about how the spatiotemporal variability of the estuarine turbidity maximum controls the light available for primary productivity. This analysis uses data from eight along-estuary cruises from March, June, September, and December 2010 and 2011 to look at the seasonality of suspended sediment and chlorophyll distributions. By estimating the absorption due to sediment under a range of environmental conditions, we describe how the movement of the turbidity maximum affects light availability. We also use an idealized 2-dimensional Regional Ocean Modeling System (ROMS) numerical model to evaluate how river discharge and spring-neap variability modulate the location of phytoplankton blooms. We conclude that high river flows and neap tides can drive stratification that is strong enough to prevent sediment from being resuspended into the surface layer, thus providing light conditions favorable for primary productivity. This study sheds light on the importance of sediment in the limiting primary productivity, and the role of stratification in promoting production, highlighting the potential limitations of biogeochemical models that do not account for sediment absorption.
Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.
Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju
2011-03-01
Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.
NASA Technical Reports Server (NTRS)
Schenk, P.; Moore, J.; Stoker, C.
1998-01-01
Layered deposits and residual polar caps on Mars may record the deposition of ice and sediment modulated by periodic climate change. Topographic information relating to layer thicknesses, erosional processes, and formation of dark spirals within these deposits has been sparce or unreliable until the arrival of MOLA in orbit in September 1997. To assist in evaluating these terrains prior to launch and to assess formation and erosion processes in the polar deposits, we have assembled Viking stereo mosaics of the region and have produced the first reliable DEM models of the south polar deposits using automated stereogrammetry tools. Here we report our preliminary topographic results, pending final image pointing updates. The maximum total thickness of the layered deposits in the south polar region is 2.5 km. The thick layered deposits consist of a series of megaterraces. Each terrace is several tens of kilometers wide and is flat or slopes very gently toward the pole. These terraces step downward from a central plateau near the south pole. Terraces are bounded by relatively steep scarps 100-500 meters high that face toward the equator. These scarps correspond to the pattern of dark spirals observed within the residual cap in southern summer, and are interpreted as ice or frost-free surfaces warmed by solar insolation. Several tongue-shaped troughs, with rounded cirquelike heads, are observed near the margins of the deposit. These troughs are 300-600 meters in deep and may be similar to troughs observed in the northern polar deposit.
Arctic Oases? - River Aufeis Maintain Perennial Groundwater Habitat in the Arctic
NASA Astrophysics Data System (ADS)
Huryn, A. D.; Gooseff, M. N.; Briggs, M. A.; Terry, N.; Kendrick, M.; Hendrickson, P. J.; Grunewald, E. D.
2017-12-01
Aufeis are massive accumulations of ice found along many arctic rivers, with aufeis on some Alaskan rivers covering 20+ km2 and attaining thicknesses of 5+ m. Although aufeis are prominent landscape features, understanding of their ecology is poor. We propose that aufeis function as summer oases by providing meltwater and nutrients to downstream habitats and winter oases due to insulating layers of ice that maintain below-ground freshwater habitat that would otherwise be frozen in regions of continuous permafrost. To gain information about the ecological roles of aufeis, we installed 50 1-m deep wells in a 1.5 km2aufeis field along the Kuparuk River, an arctic tundra river in Alaska. We assessed the predictions that aufeis provide perennially-unfrozen, below-ground habitat for a specialized invertebrate community while functioning as hot spots for nutrient regeneration. Surface geophysical measurements made during the time of maximum ice thickness in 2017 indicated most of the Kuparuk feature was underlain by several meters of shallow frozen cobbles that were further underlain by a 10 m thick+ zone of thawed material. Ground penetrating radar and surface nuclear magnetic resonance data indicated several spatially-discrete thawed preferential flow zones through the shallow frozen sediment layer that may result from groundwater upwelling observed flowing through fractures in the icepack. Freshwater invertebrates sampled from the wells represent a rich community consisting of flatworms, annelids, copepods, ostracods, chironomids (Krenosmittia, Trichotanypus) and stoneflies. Although the potential for below-ground NH4+ and NO3-regeneration was indicated, analyses were complicated bya surprisingly strong and dynamic coupling of surface and below-ground water.
NASA Astrophysics Data System (ADS)
Martín-Barajas, Arturo; González-Escobar, Mario; Fletcher, John M.; Pacheco, Martín.; Oskin, Michael; Dorsey, Rebecca
2013-09-01
transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfin basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos demonstrates that ~1000% extension is accommodated on a series of NNE striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 s (two-way travel time) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge-shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low-angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low-angle normal faults engendered by a thick sedimentary lid.
NASA Astrophysics Data System (ADS)
Martin, A.; González-Escobar, M.; Fletcher, J. M.; Pacheco, M.; Oskin, M. E.; Dorsey, R. J.
2013-12-01
The transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfín basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos (PEMEX) demonstrates that ~1000% extension is accommodated on a series of NNE-striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 seconds (TWTT) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low angle normal faults engendered by a thick sedimentary lid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shagam, R.; Giegengack, R.F.; Lutz, T.M.
1985-01-01
Postulated stages of orogeny in a continental crustal setting are:- 1. Stresses of plate convergence lead to block uplift and complementary basin subsidence. The basin fills with 12-14 km of illite-rich flysch (1km/3Ma). This about doubles the thickness of K-rich sial. 2. In situ heating of the flysch by radioactive decay provides a thermal gradient of c.35/sup 0/C/km and it is metamorphosed (pre-deformation) to greenschists facies. 3. After maximum crustal subsidence continued compression results in updoming of crust and overlying flysch. Cannibalism of flysch, cooling and mild subsidence follow; autometamorphism declines. 4. Thin deltaic-marine deposits complete basin fill over themore » meta-flysch. The unconformity (a span of only 5-10 Ma) is of minor import. 5. Resetting of the thermal profile of the depressed crust lags far behind that in the flysch. Parallels to the above in the Maracalbo basin fill are: -thickness (approx.11km), nature (flysch abounds), rate of deposition (c.1km/3-4Ma), thermal gradient (c.33/sup 0/C/km) and overall tesselar shape. Presence of impermeable strata in the Maracaibo Basin suggests that large-scale fluid convection is inhibited; conductive models of heat transfer can be used. Computer modeling suggests that radiogenic heat, augmented by exothermic oxidation of organic matter, and with a normal mantle heat flow will explain the autometamorphism of the flysch. Alternative orogenic models invoking pull-apart basins do not explain the great thickness of sediments and absence of volcanic activity.« less
Geometry, structure, and concealed lithology of the San Rafael Basin, southeastern Arizona
Bultman, Mark W.
1999-01-01
The contiguous United States has been well explored for exposed conventional mineral deposits. Therefore, it is likely that many economically viable and strategically significant conventional undiscovered mineral deposits will be found in bedrock concealed beneath basin sediments. Mineral resource assessments must incorporate an understanding of the geometry, structure, and concealed lithology of basins in order to be accurate. This report presents an analysis of the basin geometry and structure of the San Rafael basin in southeastern Arizona. In addition, a new methodology for inferring concealed lithology is presented and applied in the San Rafael basin. Gravity data is used to model the geometry of the basin using recent models of sediment density vs. depth developed in the region. This modeling indicates that the basin has a maximum depth of approximately 1.05 km plus or minus 0.10 km. In the southern portion, the basin can be modeled as an asymmetric graben faulted on the western margin. The northern portion of the basin is structurally more complex and may have high angle faults on the western, northern, and eastern margin. Near-ground closely spaced Earth’s total intensity magnetic field data is used to locate concealed faults within the basin. This data is also used to infer lithology concealed by shallow basin sediments. Airborne Earth’s total intensity magnetic field data is used to help infer concealed lithology in deep portions of the basin. The product of integrating all data and interpretations is a map which presents the geometry of the basin, faults and contacts concealed by basin sediments, and an estimate of the bedrock lithology concealed by basin sediment. Based on basin geometry and concealed lithology, the San Rafael basin has a high potential for concealed mineral deposits on its western and northern margin. In particular, a newly discovered magnetic anomaly in the northern portion of the basin can be modeled as a granitic intrusion with highly altered margins and may represent a potential mineral resource target. Based on the permeability and porosity of upper basin fill found in nearby basins, the San Rafael basin may contain an aquifer up to 300 meters thick over a substantial area of the basin.
Arsenic Attenuation By Oxidized Aquifer Sediments in Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stollenwerk, K.G.; Breit, G.N.; Welch, A.H.
2007-07-13
Recognition of arsenic (As) contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As. Pumping-induced infiltration of high-As groundwater could eventually cause As concentrations in these aquifers to increase. This study investigates the adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. A shallow, chemically-reducing aquifer at this site extends to a depth of 50 m and has maximum As concentrations in groundwater of 900 {micro}g/L. At depths greater than 50 m, geochemical conditions are more oxidizing and groundwatermore » has < 5 {micro}g/L As. There is no thick layer of clay at this site to inhibit vertical transport of groundwater. Arsenite [As(III)] is the dominant oxidation state in contaminated groundwater; however, data from laboratory batch experiments show that As(III) is oxidized to arsenate [As(V)] by manganese (Mn) minerals that are present in the oxidized sediment. Thus, the long-term viability of the deeper aquifers as a source of water supply is likely to depend on As(V) adsorption. The adsorption capacity of these sediments is a function of the oxidation state of As and the concentration of other solutes that compete for adsorption sites. Arsenite that was not oxidized did adsorb, but to a much lesser extent than As(V). Phosphate (P) caused a substantial decrease in As(V) adsorption. Increasing pH and concentrations of silica (Si) had lesser effects on As(V) adsorption. The effect of bicarbonate (HCO{sub 3}) on As(V) adsorption was negligible. Equilibrium constants for adsorption of As(V), As(III), P, Si, HCO3, and H were determined from the experimental data and a quantitative model developed. Oxidation of As(III) was modeled with a first-order rate constant. This model was used to successfully simulate As(V) adsorption in the presence of multiple competing solutes. Results from these experiments show that oxidized sediments have a substantial but limited capacity for removal of As from groundwater.« less
NASA Astrophysics Data System (ADS)
Pierdominici, S.; Schleicher, A.; Kueck, J.; Rodbell, D. T.; Abbott, M. B.
2017-12-01
The lake Junin drilling project, co-funded by the International Continental Drilling Program (ICDP), is located at 4000 m a.s.l. in the tropical Andes of Peru. Several boreholes were drilled with the goal to obtain both high-resolution paleoclimate records from lacustrine sediments and to reconstruct the history of the continental records covering the glacial-interglacial cycles. Lake Junín is characterized by a thick package of lacustrine sediments (> 125 m) deposited at a high rate (0.2 to 1.0 mm yr-1), and it is one of the few lakes in the tropical Andes that is hundreds of thousands of years old with a continuous sedimentation rate preserving a very long and continuous record of past ice age cycles. The boreholes reached a maximum depth of 110.08 m and continuous coring was performed at three sites with 11 boreholes. Additionally, an extensive geophysical downhole logging campaign was performed on five boreholes (1A, 1C, 1D, 2A and 3B) by the Operational Support Group of ICDP. Downhole logging measurements comprise total and spectrum gamma ray, magnetic susceptibility, borehole geometry, temperature, and sonic p-wave velocity. In order to fit the downhole logging depths to the composite profile depths, each borehole was depth-matched with the core data. Interpreting the downhole logging data permits to establish a complete lithological log, to characterize the in-situ physical properties of drilled lacustrine sediments, to determine sedimentary structures and to obtain evidences about palaeoclimatic conditions during up to 200 ka. Th and K values are used as a proxy for a first estimate and characterization of clay content in the sediments, which are present as montmorillonite, smectite, illite, and kaolinite in different amounts. Linking the clay minerals that occur in the core material with the downhole logging data allows assessing the geological history of the lake and the relationship to climate change processes. Additional laboratory analysis will be carried out to understand fluid-rock interaction processes, transport processes, and porosity-permeability changes.
A Long Pleistocene Paleoclimate Record from Stoneman Lake, Arizona
NASA Astrophysics Data System (ADS)
Fawcett, P. J.; Anderson, R. S.; Brown, E. T.; Werne, J. P.; Jimenez-Moreno, G.; Toney, J. L.; Garcia, D.; Garrett, H. L.; Dunbar, N. W.
2015-12-01
Long continuous lake sediment cores provide enormous potential for interpreting climate change. In the American Southwest, long records are revolutionizing our understanding of megadroughts, which have occurred in the past and will most certainly occur in the future with rapidly changing climate. One site with the potential to study ancient megadroughts is Stoneman Lake, central Arizona, whose basin is a circular depression formed by a collapse in late Tertiary volcanics. The lake is spring fed, most recently alternating between a marsh and a lake, with water levels having fluctuated by > 3 meters over the last 25 years. Its small closed drainage basin (ca. 2.5 km2) with one small inflowing stream is key to the sensitivity of the record. Two parallel lacustrine sediment cores (70 m and 30 m deep) were recovered in October of 2014. Our preliminary chronology includes 8 AMS dates in the upper 7 m and two distinct tephras at 30.8 m depth and 36.3 m depth. Radiocarbon dates show a 2.7-m-thick Holocene section, and then a low Pleistocene SAR with an age of 11,000 cal yr B.P. at ~2.8 m to an age of 46,500 cal yr B.P. at 4.2 m depth. We estimate that the 70-m deep hole will provide a climate record back to ~1.3 million years ago. Of particular interest are the interglacials that serve as good analogs for future climate including MIS 11 and MIS 19. Initial core description includes MS, bulk density and high-resolution images. Holocene sediments are characterized by massive, dark organic rich silty clays with no distinct lamination. Sediments from the Last Glacial Maximum are well-laminated, light brown silty clays with few organics present. The distinctive laminations probably represent a very deep lake and therefore a wet cold climate, also verified by pollen data. There are several repeated intervals of laminated sediments deeper in the core that may represent older glacial maxima. Future work will include detailed pollen, plant macrofossil and charcoal analysis, scanning XRF, TOC and carbon isotopic analyses as well as compound specific carbon and hydrogen work.
Arsenic attenuation by oxidized aquifer sediments in Bangladesh
Stollenwerk, K.G.; Breit, G.N.; Welch, A.H.; Yount, J.C.; Whitney, J.W.; Foster, A.L.; Uddin, M.N.; Majumder, R.K.; Ahmed, N.
2007-01-01
Recognition of arsenic (As) contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As. Pumping-induced infiltration of high-As groundwater could eventually cause As concentrations in these aquifers to increase. This study investigates the adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. A shallow, chemically-reducing aquifer at this site extends to a depth of 50??m and has maximum As concentrations in groundwater of 900????g/L. At depths greater than 50??m, geochemical conditions are more oxidizing and groundwater has < 5????g/L As. There is no thick layer of clay at this site to inhibit vertical transport of groundwater. Arsenite [As(III)] is the dominant oxidation state in contaminated groundwater; however, data from laboratory batch experiments show that As(III) is oxidized to arsenate [As(V)] by manganese (Mn) minerals that are present in the oxidized sediment. Thus, the long-term viability of the deeper aquifers as a source of water supply is likely to depend on As(V) adsorption. The adsorption capacity of these sediments is a function of the oxidation state of As and the concentration of other solutes that compete for adsorption sites. Arsenite that was not oxidized did adsorb, but to a much lesser extent than As(V). Phosphate (P) caused a substantial decrease in As(V) adsorption. Increasing pH and concentrations of silica (Si) had lesser effects on As(V) adsorption. The effect of bicarbonate (HCO3) on As(V) adsorption was negligible. Equilibrium constants for adsorption of As(V), As(III), P, Si, HCO3, and H were determined from the experimental data and a quantitative model developed. Oxidation of As(III) was modeled with a first-order rate constant. This model was used to successfully simulate As(V) adsorption in the presence of multiple competing solutes. Results from these experiments show that oxidized sediments have a substantial but limited capacity for removal of As from groundwater.
NASA Astrophysics Data System (ADS)
Peukert, Anne; Schoening, Timm; Alevizos, Evangelos; Köser, Kevin; Kwasnitschka, Tom; Greinert, Jens
2018-04-01
In this study, ship- and autonomous underwater vehicle (AUV)-based multibeam data from the German ferromanganese-nodule (Mn-nodule) license area in the Clarion-Clipperton Zone (CCZ; eastern Pacific) are linked to ground-truth data from optical imaging. Photographs obtained by an AUV enable semi-quantitative assessments of nodule coverage at a spatial resolution in the range of meters. Together with high-resolution AUV bathymetry, this revealed a correlation of small-scale terrain variations ( < 5 m horizontally, < 1 m vertically) with nodule coverage. In the presented data set, increased nodule coverage could be correlated with slopes > 1.8° and concave terrain. On a more regional scale, factors such as the geological setting (existence of horst and graben structures, sediment thickness, outcropping basement) and influence of bottom currents seem to play an essential role for the spatial variation of nodule coverage and the related hard substrate habitat. AUV imagery was also successfully employed to map the distribution of resettled sediment following a disturbance and sediment cloud generation during a sampling deployment of an epibenthic sledge. Data from before and after the disturbance
allow a direct assessment of the impact. Automated image processing analyzed the nodule coverage at the seafloor, revealing nodule blanketing by resettling of suspended sediment within 16 h after the disturbance. The visually detectable impact was spatially limited to a maximum of 100 m distance from the disturbance track, downstream of the bottom water current. A correlation with high-resolution AUV bathymetry reveals that the blanketing pattern varies in extent by tens of meters, strictly following the bathymetry, even in areas of only slightly undulating seafloor ( < 1 m vertical change). These results highlight the importance of detailed terrain knowledge when engaging in resource assessment studies for nodule abundance estimates and defining mineable areas. At the same time, it shows the importance of high-resolution mapping for detailed benthic habitat studies that show a heterogeneity at scales of 10 to 100 m. Terrain knowledge is also needed to determine the scale of the impact by seafloor sediment blanketing during mining operations.
NASA Astrophysics Data System (ADS)
Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan
2018-01-01
A cutting study with a high-power ytterbium-doped fiber laser was conducted for the dismantling of nuclear facilities. Stainless steel and carbon steel plates of various thicknesses were cut at a laser power of 6-kW. Despite the use of a low output of 6-kW, the cutting was successful for both stainless steel and carbon steel plates of up to 100 mm in thickness. In addition, the maximum cutting speeds against the thicknesses were obtained to evaluate the cutting performance. As representative results, the maximum cutting speeds for a 60-mm thickness were 72 mm/min for the stainless steel plates and 35 mm/min for the carbon steel plates, and those for a 100-mm thickness were 7 mm/min for stainless steel and 5 mm/min for carbon steel plates. These results show an efficient cutting capability of about 16.7 mm by kW, whereas other groups have shown cutting capabilities of ∼10 mm by kW. Moreover, the maximum cutting speeds were faster for the same thicknesses than those from other groups. In addition, the kerf widths of 60-mm and 100-mm thick steels were also obtained as another important parameter determining the amount of secondary waste. The front kerf widths were ∼1.0 mm and the rear kerf widths were larger than the front kerf widths but as small as a few millimeters.
Durga, Jane; Bots, Michiel L; Schouten, Evert G; Kok, Frans J; Verhoef, Petra
2005-04-01
We examined whether total homocysteine, B vitamins and the 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism are related to common carotid intima-media thickness, a marker of atherosclerosis, and carotid distension, a marker of arterial stiffness. We used cross-sectional data from 819 individuals aged 50-70 years. B-mode ultrasound of the distal common carotid arteries was performed to determine maximum carotid intima-media thickness, mean carotid intima-media thickness and distension. Carotid intima-media thickness and distension did not differ across homocysteine, serum folate, vitamin B(6) and vitamin B(12) quartiles or between MTHFR C677T genotype. Erythrocyte folate was independently associated with maximum carotid intima-media thickness (mean difference first versus third quartile, 0.03 mm, 95% CI 0.004-0.06 mm; first versus fourth quartile, 0.03 mm, 95% CI -0.002 to 0.06 mm). Further adjustment for homocysteine did not affect this association. Folate deficient subjects had greater maximum carotid intima-media thickness than those with high-normal folate concentrations (serum folate: mean difference 0.05 mm, 95% CI 0.01-0.08 mm; erythrocyte folate: mean difference 0.04 mm, 95% CI -0.03 to 0.11 mm). Low folate concentrations, independent of hyperhomocysteinemia, may promote atherogenesis. Our findings confirm the null association of homocysteine with carotid intima-media thickness observed in other population-based studies, suggesting that hyperhomocysteinemia does not perpetuate atherosclerosis or arterial stiffness.
2003-02-07
In this NASA Mars Odyssey image of eastern Arabia Terra, remnants of a once vast layered terrain are evident as isolated buttes, mesas, and deeply-filled craters. The origin of the presumed sediments that created the layers is unknown, but those same sediments, now eroded, may be the source of the thick mantle of dust that covers much of Arabia Terra today. http://photojournal.jpl.nasa.gov/catalog/PIA04400
Newell, Wayne L.; Clark, Inga; Bricker, Owen
2004-01-01
Overview -- We have interpreted the geomorphology of the submerged landforms to show thick Holocene sediment that accumulated from three different sources during on-going sea level rise that began 10,000 - 12,000 years ago at the end of Pleistocene. We used a variety of subsurface data from the literature and unpublished information to document thicknesses, materials, dates and duration of processes. Although the details of the true extent and thicknesses are unknown, the deposits of different sources have affinity for particular geographic and submerged geomorphic regions of the Chesapeake Bay and its tidal tributaries. During the last Pleistocene glacial event (Wisconsian), the area now occupied by the Chesapeake Bay was exposed, sea level being about 100 m lower than present. The Susquehanna River valley extended beyond the Bay well out on the exposed Atlantic Shelf. The Susquehanna transported glacial outwash from northern Pennsylvania and New York; the glacio-fluvial deposits were graded to the edge of the continental shelf (Colman et al., 1990; Hack, 1957). Other Piedmont and Appalachian Rivers including the Potomac and James Rivers transported large volumes of sediment to confluence with the Susquehanna channel. Locally, across the encompasing coastal plain landscape, intensive headward erosion, gullies, and slope failure, generated extensive debris flows, sheet wash, and terraces of braided alluvial channel deposits. Large volumes of sediment were moved through the river system to the continental shelf. This was accomplished by a cold, wet climate that included much freezing and thawing; steep eroding slopes resulted from the lowering of sea level from the previous high stand (Stage 5e) between glacial events. Across the Delmarva peninsula extensive wind-blown deposits of sand and loess were recycled onto low terraces and uplands from the unvegetated glacio-fluvial sediments moving through the system (Denny et al., 1979). The volume and distribution of sediment eroded and transported from the watershed surrounding the area of the Bay was several orders of magnitude greater than generally observed in transport and storage on the present day landscape.
Experimental Investigation of Terminal Fans Prograding on a Salt Substrate: 3-d Physical Experiments
NASA Astrophysics Data System (ADS)
Chatmas, E.; Kim, W.
2015-12-01
Interactions between geologic features and a mobile substrate layer are present in several passive margin locations throughout the world. Deformation of a substrate layer is primarily due to differential loading of sediment and results in complexities within the morphology and subsequently the stratigraphic record. By using simplified scaled tank experiments, we investigated the relationship between substrate deformation and fan evolution in a fluvial-dump-wind-redistribution setting. In this system, sediment is being eroded from a mountain range and creating terminal fans; fluvial channels form off of the fan body and the deposited fluvial sediment is the source for an aeolian dune field. Several past experimental studies have focused on how deltas and dunes are affected on when deposited on a salt substrate, however terminal fans and channel formation off of fans have not been thoroughly investigated. The current experiments focused on which variables are the most significant in controlling fan growth, channel initiation and channel behavior on the salt substrate. Our experimental basin is 120 cm long, 60 cm wide and 30 cm tall. The materials used for a suite of five experiments involved a polymer polydimethylsiloxane (PDMS) as the deformable substrate analog and 100-μm quartz sand. By isolating certain variables such as substrate thickness, basin slope and sediment discharge we are able to see how terminal fans and channels are affected in different settings. The experimental results show that 1) increase in substrate thickness increased the amount of subsidence around the fan body, limiting sediment transport to channels off of the toe of the fan, 2) a higher basin slope increased the number of channels formed and increased sinuosity and width variations of channels over distance, and 3) a higher sediment discharge rate on a thin substrate allowed for the farthest downstream fan deposits. Preliminary results show that channel behavior and fan morphology is strongly dependent on substrate thickness and basin slope directly influences channel geometry. These findings will also be compared to the Mojave River Wash located in southern California off the San Bernardino Mountains near Zzyzx, CA to further understand the dynamics of terminal fans on a mobile substrate.
Wheatcroft, R.A.; Stevens, A.W.; Hunt, L.M.; Milligan, T.G.
2006-01-01
Event-response coring on the Po River prodelta (northern Adriatic Sea) coupled with shipboard digital X-radiography, resistivity profiling, and grain-size analyses permitted documentation of the initial distribution and physical properties of the October 2000 flood deposit. The digital X-radiography system comprises a constant-potential X-ray source and an amorphous silicon imager with an active area of 29??42 cm and 12-bit depth resolution. Objective image segmentation algorithms based on bulk density (brightness), layer contacts (edge detection) and small-scale texture (fabric) were used to identify the flood deposit. Results indicate that the deposit formed in water depths of 6-29 m immediately adjacent to the three main distributary mouths of the Po (Pila, Tolle and Gnocca/Goro). Maximal thickness was 36 cm at a 20-m site off the main mouth (Pila), but many other sites hadthicknesses >20 cm. The Po flood deposit has a complex internal stratigraphy, with multiple layers, a diverse suite of physical sedimentary structures (e.g., laminations, ripple cross bedding, lenticular bedding, soft-sediment deformation structures), and dramatic changes in grain size that imply rapid deposition and fluctuations in energy during emplacement. Based on the flood deposit volume and well-constrained measurements of deposit bulk density the mass of the flood deposit was estimated to be 16??109 kg, which is about two-thirds of the estimated suspended sediment load delivered by the river during the event. The locus of deposition, overall thickness, and stratigraphic complexity of the flood deposit can best be explained by the relatively long sediment throughput times of the Po River, whereby sediment is delivered to the ocean during a range of conditions (i.e., the storm responsible for the precipitation is long gone), the majority of which are reflective of the fair-weather condition. Sediment is therefore deposited proximal to the river mouths, where it can form thick, but stratigraphically complex deposits. In contrast, floods of small rivers such as the Eel (northern California) are coupled to storm conditions, which lead to high levels of sediment dispersion. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Loveley, Matthew R.; Marcantonio, Franco; Lyle, Mitchell; Ibrahim, Rami; Hertzberg, Jennifer E.; Schmidt, Matthew W.
2017-12-01
Here, we examine how redistribution of differing grain sizes by sediment focusing processes in Panama Basin sediments affects the use of 230Th as a constant-flux proxy. We study representative sediments of Holocene and Last Glacial Maximum (LGM) time slices from four sediment cores from two different localities close to the ridges that bound the Panama Basin. Each locality contains paired sites that are seismically interpreted to have undergone extremes in sediment redistribution, i.e., focused versus winnowed sites. Both Holocene and LGM samples from sites where winnowing has occurred contain significant amounts (up to 50%) of the 230Th within the >63 μm grain size fraction, which makes up 40-70% of the bulk sediment analyzed. For sites where focusing has occurred, Holocene and LGM samples contain the greatest amounts of 230Th (up to 49%) in the finest grain-sized fraction (<4 μm), which makes up 26-40% of the bulk sediment analyzed. There are slight underestimations of 230Th-derived mass accumulation rates (MARs) and overestimations of 230Th-derived focusing factors at focused sites, while the opposite is true for winnowed sites. Corrections made using a model by Kretschmer et al. (2010) suggest a maximum change of about 30% in 230Th-derived MARs and focusing factors at focused sites, except for our most focused site which requires an approximate 70% correction in one sample. Our 230Th-corrected 232Th flux results suggest that the boundary between hemipelagically- and pelagically-derived sediments falls between 350 and 600 km from the continental margin.
NASA Astrophysics Data System (ADS)
Ings, Steven; Albertz, Markus
2014-05-01
Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in autochthonous salt basins and thick packages of pure halite in allochthonous salt sheets.
Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments
NASA Astrophysics Data System (ADS)
Phillips, J. M.; Russell, M. A.; Walling, D. E.
2000-10-01
Fine-grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time-integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment.
Modern sedimentation patterns in Potter Cove, King George Island, Antarctica
NASA Astrophysics Data System (ADS)
Hass, H. Christian; Kuhn, Gerhard; Wölfl, Anne-Cathrin; Wittenberg, Nina; Betzler, Christian
2013-04-01
IMCOAST among a number of other initiatives investigates the modern and the late Holocene environmental development of south King George Island with a strong emphasis on Maxwell Bay and its tributary fjord Potter Cove (maximum water depth: about 200 m). In this part of the project we aim at reconstructing the modern sediment distribution in the inner part of Potter Cove using an acoustic ground discrimination system (RoxAnn) and more than136 ground-truth samples. Over the past 20 years the air temperatures in the immediate working area increased by more than 0.6 K (Schloss et al. 2012) which is less than in other parts of the West Antarctic Peninsula (WAP) but it is still in the range of the recovery of temperatures from the Little Ice Age maximum to the beginning of the 20th century. Potter Cove is a small fjord characterized by a series of moraine ridges produced by a tidewater glacier (Fourcade Glacier). Presumably, the farthest moraine is not much older than about 500 years (LIA maximum), hence the sediment cover is rather thin as evidenced by high resolution seismic data. Since a few years at least the better part of the tidewater glacier retreated onto the island's mainland. It is suggested that such a fundamental change in the fjord's physiography has also changed sedimentation patterns in the area. Potter Cove is characterized by silty-clayey sediments in the deeper inner parts of the cove. Sediments are coarser (fine to coarse sands and boulders) in the shallower areas; they also coarsen from the innermost basin to the mouth of the fjord. Textural structures follow the seabed morphology, i.e. small v-shaped passages through the moraine ridges. The glacier still produces large amounts of turbid melt waters that enter the cove at various places. We presume that very fine-grained sediments fall out from the meltwater plumes and are distributed by mid-depth or even bottom currents, thus suggesting an anti-estuarine circulation pattern. Older sediments that are more distal to the glacier front and sediments in shallower places (e.g. on top of the moraine ridges) become increasingly overprinted by coarser sediments from the shallow areas of the fjord. These areas are prone to wave induced winnowing effects as well as disturbances by ploughing icebergs. It can be concluded that coarsening of the fjord sediments will continue while the supply of fine-grained meltwater sediments might cease due to exhaustion of the reservoirs.
Liu, Bo; Wang, Guo-Xiang; Wang, Feng-He; Du, Xu; Ling, Fen; Xia, Jin
2011-10-01
Water and sediment samples were collected from a heavily polluted urban river in the Xianlin University Town of Nanjing. We examined the effects of different aeration ways (aerating to sediments, aerating to water) on migration and transformation of nitrogen, using the indoor experimental method. The results showed that: nitrogen release from sediments in the form of NH4(+) -N that will accumulate under anaerobic conditions with increasing temperature; the maximum accumulation of NH4(+) -N in overlying water showed that aerating to water group < aerating to sediment group < control group and the maximum concentrations reached 9.40 mg x L(-1), 11.24 mg x L(-1) and 19.30 mg x L(-1), respectively; nitrogen compounds were generally eliminated from experiment system by a process of ammonia volatilization and a combination of two processes, i. e. nitrification and denitrification under aerating conditions; aerating to sediment was more effective for nitrogen removal than aerating to water, which was removed from overlying water, pore water and sediment; at the experimental endpoint, the concentrations of NH4(+) -N in pore water and sediment were significantly decreased by 64.36% and 58.73% respectively compared with those before aeration in aerating to sediment group and that were decreased by 39.53% and 38.78% respectively in aerating to water group; during nitrogen transformation process in overlying water, start-up of nitrification was slowly under aerating conditions; it took 9 days to realize nitrification under aerating to water conditions and 16 days under sediment aeration conditions; the NO2(-) -N accumulation took place in overlying water under the condition of aeration; the sustain time of NO2(-) -N accumulating was 17 days in aerating to water group and that was 14 days in aerating to sediment group.
Grimley, D.A.; Daniel, L.; Kaplan, S.W.; Yansa, C.H.; Curry, B. Brandon; Oches, E.A.
2009-01-01
The Fulton Section, along the Mississippi River in western Tennessee, USA, is a 1km continuous exposure (~20m vertically) of Quaternary fluvial and lacustrine deposits, inset within Eocene sediments and buried by thick loess. Fossiliferous slackwater lake sediments record maximum aggradation during the last two major glaciations, with deposition between ca. 190-140 ka and 24-1814C ka BP, based on amino acid and radiocarbon chronology, respectively. During the onset of full glacial conditions (ca. 24-22 14C ka BP), a relatively permanent shallow lake environment is indicated by ostracods, aquatic molluscs, and both pollen and macrofossils of aquatic plants. By 21.8 14C ka BP, increasing emergent plants, amphibious gastropods (Pomatiopsis) and heavier ??18O compositions suggest marsh-like conditions in a periodically drying lake. The surrounding uplands consisted of Picea-Pinus woodlands mixed with cool-temperate hardwoods (e.g. Quercus, Populus, Carya), grasses and herbs. More open conditions ensued ca. 20 14C ka BP, with loess and slopewash gradually infilling the former lake by 18 14C ka BP. Modern analogue analyses of ostracods and palaeontological evidence imply a full glacial climate similar to today's mixed-boreal zone in central Minnesota, USA, about 98C cooler in mean annual temperature than present-day western Tennessee. Copyright ?? 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Szaniawski, Rafał; Mazzoli, Stefano; Jankowski, Leszek
2017-10-01
Orogenic curvatures can have various origins and are widely debated worldwide. In the Poland-Ukraine border area, the Outer Western Carpathians are characterized by a marked curvature. The origin of this curvature was analysed by integrating stratigraphic information with structural constraints and anisotropy of the magnetic susceptibility (AMS) data. Hangingwall frontal ramp domains are characterized by a relatively simple deformation dominated by layer-parallel shortening and folding around a regional NW-SE trending axis, recorded by an AMS lineation with a similar trend. On the other hand, the N-S trending hangingwall oblique ramp domain is characterized by maximum AMS axes recording transpressional strain either dominated by simple shear (sub-horizontal AMS lineation) or pure shear (steeply plunging AMS lineation) components. Early Miocene basin inversion with two distinct depocentres created a number of different detachment surfaces and thickness variations for the sedimentary successions involved in thrusting. The main depocentre of the Lower-Middle Miocene foredeep was originally located in the recess area of the curved Carpathian front. On the other hand, the occurrence of a salient to the west resulted in the axial zone of the foreland flexure being filled with allochthonous units, thereby dramatically reducing the accommodation space for foredeep sediments in this area. Our results suggest that thrust-belt geometry was controlled by the inherited Mesozoic extensional basin architecture.
Parsons, T.; McCarthy, J.; Kohler, W.M.; Ammon, C.J.; Benz, H.M.; Hole, J.A.; Criley, E.E.
1996-01-01
The Colorado Plateau is a large crustal block in the southwestern United States that has been raised intact nearly 2 km above sea level since Cretaceous marine sediments were deposited on its surface. Controversy exists concerning the thickness of the plateau crust and the source of its buoyancy. Interpretations of seismic data collected on the plateau vary as to whether the crust is closer to 40 or 50 km thick. A thick crust could support the observed topography of the Colorado Plateau isostatically, while a thinner crust would indicate the presence of an underlying low-density mantle. This paper reports results on long-offset seismic data collected during the 1989 segment of the U.S. Geological Survey Pacific to Arizona Crustal Experiment that extended from the Transition Zone into the Colorado Plateau in northwest Arizona. We apply two new methods to analyze long-offset data that employ finite difference travel time calculations: (1) a first-arrival time inverter to find upper crustal velocity structure and (2) a forward-modeling technique that allows the direct use of the inverted upper crustal solution in modeling secondary reflected arrivals. We find that the crustal thickness increases from 30 km beneath the metamorphic core complexes in the southern Basin and Range province to about 42 km beneath the northern Transition Zone and southern Colorado Plateau margin. We observe some crustal thinning (to ???37 km thick) and slightly higher lower crustal velocities farther inboard; beneath the Kaibab uplift on the north rim of the Grand Canyon the crust thickens to a maximum of 48 km. We observe a nonuniform crustal thickness beneath the Colorado Plateau that varies by ???15% and corresponds approximately to variations in topography with the thickest crust underlying the highest elevations. Crustal compositions (as inferred from seismic velocities) appear to be the same beneath the Colorado Plateau as those in the Basin and Range province to the southwest, implying that the plateau crust represents an unextended version of the Basin and Range. Some of the variability in crustal structure appears to correspond to preserved lithospheric discontinuities that date back to the Proterozoic Era.
NASA Astrophysics Data System (ADS)
Fernex, François E.; Braconnot, Jean-Claude; Dallot, Serge; Boisson, Michel
1996-09-01
Observations were made near Cap Ferrat (Station B, about 80 m in water depth) France, in the water column and in the sediment, in order to evaluate to what extent variations in the ammonia and nitrate concentrations of the sediments are related to plankton population abundance and composition. Nitrate, nitrite, ammonia and chlorophyll awere measured several times during 1987 to 1989, at two depths (1 and 40 m). Copepods and salps in the upper 75 m of the water column were counted several times a week from 1987 to 1990. Ammonia and nitrate concentrations and ammonification rate were determined in the underlying sediments. During Spring 1987, phytoplankton biomass showed a maximum at the end of March; copepod populations increased regularly till the end of April, and salps increased from this time to the end of May. These populations were not so well developed during Spring 1988 and 1989. During the blooms, salp were mainly represented by Thalia democratica. The biomass of phytoplankton and zooplankton was low in summer. The sequence suggests that the copepod decline was related to reduced food levels after the phytoplankton decline. Salp population growth was not at the expense of phytoplankton and it can be assumed that the salp fed on other material. In 1987 and 1988, maximum organic nitrogen concentration in the bottom sediment and maximum ammonification rate directly followed the salp spring bloom. In 1987, the highest ammonification rate measured in the surficial sediment (0-2 cm) reached 0·05 μ M cm 3day -1(in June). In 1990, the rate exceeded 0·1 μM cm -3 day -1during an important salp bloom. Therefore, it seems that the sinking of salp fecal pellets plays an important part in the transfer of organic matter to the bottom, and microbial activity in the surficial sediment leads to mineralization of a great part of the organic nitrogen quickly after its deposition.
NASA Astrophysics Data System (ADS)
Michaud, Emma; Aller, Robert, C.; Stora, Georges
2010-11-01
The coupling between biogenic reworking activity and reactive organic matter patterns within deposits is poorly understood and often ignored. In this study, we examined how common experimental treatments of sediment affect the burrowing behavior of the polychaete Nephtys incisa and how these effects may interact with reactive organic matter distributions to alter diagenetic transport - reaction balances. Sediment and animals were recovered from a subtidal site in central Long Island Sound, USA. The upper 15 cm of the sediment was sectioned into sub-intervals, and each interval separately sieved and homogenized. Three initial distributions of sediment and organic substrate reactivity were setup in a series of microcosms: (1) a reconstituted natural pattern with surface-derived sediment overlying sediment obtained from progressively deeper material to a depth of 15 cm (Natural); (2) a 15 cm thick sediment layer composed only of surface-derived sediment (Rich); and (3) a 15 cm thick layer composed of uniformally mixed sediment from the original 15 cm sediment profile (Averaged). The two last treatments are comparable to that used in microcosms in many previous studies of bioturbation and interspecific functional interaction experiments. Sediment grain size distributions were 97.5% silt-clay and showed no depth dependent patterns. Sediment porosity gradients were slightly altered by the treatments. Nepthys were reintroduced and aquariums were X-rayed regularly over 5 months to visualize and quantify spatial and temporal dynamics of burrows. The burrowing behaviour of adult populations having similar total biovolume, biomass, abundance, and individual sizes differed substantially as a function of treatment. Burrows in sediment with natural property gradients were much shallower and less dense than those in microcosms with altered gradients. The burrow volume/biovolume ratio was also lower in the substrate with natural organic reactivity gradients. Variation in food resources or in sediment mechanical properties associated with treatments, the latter in part coupled to remineralization processes such as exopolymer production, may explain the burrowing responses. In addition to demonstrating how species may respond to physical sedimentation events (substrate homogenization) and patterns of reactive organic matter redistribution, these experiments suggest that infaunal species interactions in microcosms, including the absolute and relative fluxes of remineralized solutes, may be subject to artifacts depending on exactly how sediments are introduced experimentally. Nonlocal transport and cylinder microenvironment transport - reaction models readily demonstrate how the multiple interactions between burrowing patterns and remineralization rate distributions can alter relative flux balances, decomposition pathways, and time to steady state.
Three-Dimensional Modeling of Fluid and Heat Transport in an Accretionary Complex
NASA Astrophysics Data System (ADS)
Paula, C. A.; Ge, S.; Screaton, E. J.
2001-12-01
As sediments are scraped off of the subducting oceanic crust and accreted to the overriding plate, the rapid loading causes pore pressures in the underthrust sediments to increase. The change in pore pressure drives fluid flow and heat transport within the accretionary complex. Fluid is channeled along higher permeability faults and fractures and expelled at the seafloor. In this investigation, we examined the effects of sediment loading on fluid flow and thermal transport in the decollement at the Barbados Ridge subduction zone. Both the width and thickness of the Barbados Ridge accretionary complex increase from north to south. The presence of mud diapers south of the Tiburon Rise and an observed southward decrease in heat flow measurements indicate that the increased thickness of the southern Barbados accretionary prism affects the transport of chemicals and heat by fluids. The three-dimensional geometry and physical properties of the accretionary complex were utilized to construct a three-dimensional fluid flow/heat transport model. We calculated the pore pressure change due to a period of sediment loading and added this to steady-state pressure conditions to generate initial conditions for transient simulations. We then examined the diffusion of pore pressure and possible perturbation of the thermal regime over time due to loading of the underthrust sediments. The model results show that the sediment-loading event was sufficient to create small temperature fluctuations in the decollement zone. The magnitude of temperature fluctuation in the decollement was greatest at the deformation front but did not vary significantly from north to south of the Tiburon Rise.
NASA Astrophysics Data System (ADS)
Brengman, C.; Woolery, E. W.; Wang, Z.; Carpenter, S.
2016-12-01
The Central United States Seismic Observatory (CUSSO) is a vertical seismic array located in southwestern Kentucky within the New Madrid seismic zone. It is intended to describe the effects of local geology, including thick sediment overburden, on seismic-wave propagation, particularly strong-motion. The three-borehole array at CUSSO is composed of seismic sensors placed on the surface, and in the bedrock at various depths within the 585 m thick sediment overburden. The array's deep borehole provided a unique opportunity in the northern Mississippi embayment for the direct geological description and geophysical measurement of the complete late Cretaceous-Quaternary sediment column. A seven layer, intra-sediment velocity model is interpreted from the complex, inhomogeneous stratigraphy. The S- and P-wave sediment velocities range between 160 and 875 m/s and between 1000 and 2300 m/s, respectively, with bedrock velocities of 1452 and 3775 m/s, respectively. Cross-correlation and direct comparisons were used to filter out the instrument response and determine the instrument orientation, making CUSSO data ready for analysis, and making CUSSO a viable calibration site for other free-field sensors in the area. The corrected bedrock motions were numerically propagated through the CUSSO soil profile (transfer function) and compared, in terms of both peak acceleration and amplitude spectra, to the recorded surface observations. Initial observations reveal a complex spectral mix of amplification and de-amplification across the array, indicating the site effect in this deep sediment setting is not simply generated by the shallowest layers.
Seismic stratigraphy of the Heuksan mud belt in the southeastern Yellow Sea, Korea
NASA Astrophysics Data System (ADS)
Lee, Gwang-Soo; Yoo, Dong Geun; Bae, Sung Ho; Min, Gun-Hong; Kim, Seong-Pil; Choi, Hunsoo
2015-12-01
To establish the seismic stratigraphy of the Heuksan mud belt (HMB) and reconstruct its depositional history, approximately 1,600 km of high-resolution seismic data were newly obtained using chirp acoustic sub-bottom profiler, sparker, and air-gun seismic systems. Based on seismic stratigraphic analysis, the HMB can be divided into three major seismic units (I, II, and III, from top to bottom) and four subunits (II-a, II-b, III-a, and III-b) overlying transgressive sands, pre-last glacial maximum (LGM) deposits, and the acoustic basement. Each unit and subunit show different seismic facies and geometry, being clearly separated from each other by bounding surfaces formed since the LGM. The spatial distribution, thicknesses and volumes of the seismic units were determined and plotted to document the sequential formation of the HMB. The correlation between deep drill core data (HMB-101, HMB-102, HMB-103, YSDP-101, and YSDP-102) and the seismic data suggests that subunits III-b and III-a were formed by the continuous accumulation of fine-grained sediment with partial sandy sediment in an estuarine/deltaic environment during the early to middle transgressive stage, accompanied by landward migration of the shoreline. Subunits II-b and II-a were probably formed by re-deposition of large volumes of sediment eroded from unit III during the middle transgressive to early highstand stage. Unit I is interpreted as the most recent mud deposit representing the highstand systems tract when sea-level rise terminated. The careful definition of seismic units and their interpretation proposed in this study, on the basis of the large and partly new seismic dataset covering the entire HMB together with deep drill core data, have been instrumental in reconstructing the depositional environment and formation mechanisms of the HMB.
NASA Astrophysics Data System (ADS)
Haberland, Christian; Gibert, Luis; Jurado, María José; Stiller, Manfred; Baumann-Wilke, Maria; Scott, Gary; Mertz, Dieter F.
2017-07-01
The Baza basin is a large Neogene intramontane basin in the Bétic Cordillera of southern Spain that formed during the Tortonian (late Miocene). The Bétic Cordillera was produced by NW-SE oblique convergence between the Eurasian and African Plates. Three seismic reflection lines (each 18 km long; vibroseis method) were acquired across the Baza basin to reveal the architecture of the sedimentary infill and faulting during basin formation. We applied rather conventional CDP data processing followed by first arrival P-wave tomography to provide complementary structural information and establish velocity models for the post-stack migration. These images show a highly asymmetric structure for the Basin with sediments thickening westward, reaching a maximum observed thickness of > 2200 m near the governing Baza Fault zone (BFZ). Three major seismic units (including several subunits) on top of the acoustic basement could be identified. We use stratigraphic information from the uplifted block of the BFZ and other outcrops at the basin edges together with available information from neighboring Bétic basins to tentatively correlate the seismic units to the known stratigraphy in the area. Until new drilling or surface outcrop data is not available, this interpretation is preliminary. The seismic units could be associated to Tortonian marine deposits, and latest Miocene to Pleistocene continental fluvio-lacustrine sediments. Individual strands of the BFZ truncate the basin sediments. Strong fault reflections imaged in two lines are the product of the large impedance contrast between sedimentary fill and basement. In the central part of the Basin several basement faults document strong deformation related to the early stages of basin formation. Some of these faults can be traced up to the shallowest imaged depth levels indicating activity until recent times.
NASA Astrophysics Data System (ADS)
Glas, R. L.; Lautz, L.; McKenzie, J. M.; Mark, B. G.; Baker, E. A.; Aubry-Wake, C.; Somers, L. D.; Wigmore, O.
2015-12-01
As tropical glaciers rapidly recede in response to climate change, the storage and discharge of groundwater will play an increasing role in regulating river baseflow, particularly during the dry season, when stream flow is currently sustained predominantly by glacial melt. Little is understood regarding the hydrogeologic processes controlling base flow characteristics of low-gradient proglacial valleys of the Cordillera Blanca in Northwestern Peru, which has the world's highest density of tropical glaciers. To better understand the processes of groundwater storage and discharge in proglacial meadows, we completed seismic refraction surveys in three representative valleys of the Cordillera Blanca range: the Quilcayhuanca, Yanamarey, and Pachacoto valleys. The locations of survey transects were chosen based on locations of previous sediment core sampling, GPR lines, and quantification of groundwater-surface water interaction derived from dye and temperature tracing experiments. The seismic surveys consisted of 48 vertical component geophones with 2.5 m spacing. Across the three representative valleys a total of 15 surveys were conducted, covering a distance of 1800 m in cross, down, and oblique-valley directions. Preliminary interpretation of the seismic refraction data indicates a maximum imaging depth of 16 m below land surface, and a transition from glacio-lacustrine sediments to buried saturated talus at a depth of 6 m in the Quilcayhuanca valley. The organic-rich glacio-lacustrine sediments in the Yanamarey valley have seismic velocities ranging from 300 to 800 m/s and are >16 m in thickness at mid- valley. Weathered metasedimentary bedrock in the Pachacoto valley was imaged at ~5 m below the valley surface, exhibiting a p-wave velocity of 3400 m/s. The knowledge of hydrogeologic structure derived from seismic refraction surveys will provide crucial boundary conditions for future groundwater models of the valleys of the Cordillera Blanca.
Muhs, D.R.; McGeehin, J.P.; Beann, J.; Fisher, E.
2004-01-01
Although loess-paleosol sequences are among the most important records of Quaternary climate change and past dust deposition cycles, few modern examples of such sedimentation systems have been studied. Stratigraphic studies and 22 new accelerator mass spectrometry radiocarbon ages from the Matanuska Valley in southern Alaska show that loess deposition there began sometime after ???6500 14C yr B.P. and has continued to the present. The silts are produced through grinding by the Matanuska and Knik glaciers, deposited as outwash, entrained by strong winds, and redeposited as loess. Over a downwind distance of ???40 km, loess thickness, sand content, and sand-plus-coarse-silt content decrease, whereas fine-silt content increases. Loess deposition was episodic, as shown by the presence of paleosols, at distances >10 km from the outwash plain loess source. Stratigraphic complexity is at a maximum (i.e., the greatest number of loesses and paleosols) at intermediate (10-25 km) distances from the loess source. Surface soils increase in degree of development with distance downwind from the source, where sedimentation rates are lower. Proximal soils are Entisols or Inceptisols, whereas distal soils are Spodosols. Ratios of mobile CaO, K2O, and Fe2O3 to immobile TiO2 show decreases in surface horizons with distance from the source. Thus, as in China, where loess deposition also takes place today, eolian sedimentation and soil formation are competing processes. Study of loess and paleosols in southern Alaska shows that particle size can vary over short distances, loess deposition can be episodic over limited time intervals, and soils developed in stabilized loess can show considerable variability under the same vegetation. ?? 2004 University of Washington. All rights reserved.
NASA Technical Reports Server (NTRS)
Ham, Seung-Hee; Sohn, Byung-Ju; Kato, Seiji; Satoh, Masaki
2013-01-01
The shape of the vertical profile of ice cloud layers is examined using 4 months of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) global measurements taken on January, April, July, and October 2007. Ice clouds are selected using temperature profiles when the cloud base is located above the 253K temperature level. The obtained ice water content (IWC), effective radius, or extinction coefficient profiles are normalized by their layer mean values and are expressed in the normalized vertical coordinate, which is defined as 0 and 1 at the cloud base and top heights, respectively. Both CloudSat and CALIPSO observations show that the maximum in the IWC and extinction profiles shifts toward the cloud bottom, as the cloud depth increases. In addition, clouds with a base reaching the surface in a high-latitude region show that the maximum peak of the IWC and extinction profiles occurs near the surface, which is presumably due to snow precipitation. CloudSat measurements show that the seasonal difference in normalized cloud vertical profiles is not significant, whereas the normalized cloud vertical profile significantly varies depending on the cloud type and the presence of precipitation. It is further examined if the 7 day Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation results from 25 December 2006 to 1 January 2007 generate similar cloud profile shapes. NICAM IWC profiles also show maximum peaks near the cloud bottom for thick cloud layers and maximum peaks at the cloud bottom for low-level clouds near the surface. It is inferred that oversized snow particles in the NICAM cloud scheme produce a more vertically inhomogeneous IWC profile than observations due to quick sedimentation.
The Glacial and Relative Sea Level History of Southern Banks Island, NT, Canada
NASA Astrophysics Data System (ADS)
Vaughan, Jessica Megan
The mapping and dating of surficial glacial landforms and sediments across southern Banks Island document glaciation by the northwest Laurentide Ice Sheet (LIS) during the last glacial maximum. Geomorphic landforms confirm the operation of an ice stream at least 1000 m thick in Amundsen Gulf that was coalescent with thin, cold-based ice crossing the island's interior, both advancing offshore onto the polar continental shelf. Raised marine shorelines across western and southern Banks Island are barren, recording early withdrawal of the Amundsen Gulf Ice Stream prior to the resubmergence of Bering Strait and the re-entry of Pacific molluscs ~13,750 cal yr BP. This withdrawal resulted in a loss of ~60,000 km2 of ice --triggering drawdown from the primary northwest LIS divide and instigating changes in subsequent ice flow. The Jesse moraine belt on eastern Banks Island records a lateglacial stillstand and/or readvance of Laurentide ice in Prince of Wales Strait (13,750 -- 12,750 cal yr BP). Fossiliferous raised marine sediments that onlap the Jesse moraine belt constrain final deglaciation to ~12,600 cal yr BP, a minimum age for the breakup of the Amundsen Gulf Ice Stream. The investigation of a 30 m thick and 6 km wide stratigraphic sequence at Worth Point, southwest Banks Island, identifies an advance of the ancestral LIS during the Mid-Pleistocene (sensu lato), substantially diversifying the glacial record on Banks Island. Glacial ice emplaced during this advance has persisted through at least two glacial-interglacial cycles, demonstrating the resilience of circumpolar permafrost. Pervasive deformation of the stratigraphic sequence also records a detailed history of glaciotectonism in proglacial and subglacial settings that can result from interactions between cold-based ice and permafrost terrain. This newly recognized history rejects the long-established paleoenvironmental model of Worth Point that assumed a simple 'layer-cake' stratigraphy.
NASA Astrophysics Data System (ADS)
Harthy, M. A.; Gifford, J.
2017-12-01
The Hartselle sandstone is an excellent example of an Oil sand, a resource rich in bitumen. The unit is a light-colored thick-bedded to massive quartzose sandstone, that is widespread across an area from Georgia in the east to Mississippi in the west, and south from Alabama to Kentucky as a northern border. Formation thickness ranges from 0 to more than 150 feet. The unit has been stratigraphically dated to the Middle-Upper Mississippian age. One hypothesis suggests that the sandstone unit formed from the geological remains of barrier islands located in the ocean between Gondwana and Laurentia. The Hartselle is thought to have formed by the movement waves and currents along the shoreline, which carried sand and concentrated it into a set of northwest to southeast trending barrier islands. Transgression-regression events shifted the islands back and forth in relation to the position of the shoreline, leading to the large areal extent of the unit. However, the current data are not enough to explain the geographical position of the Hartselle sandstone unit as it is not running parallel to the ancient shoreline. Another mystery is the source of the sand, some believing the source was from the south (Gondwana) and others that erosion was from the north (Laurentia). Detrital zircon provenance analysis will address the uncertainty in sediment source. We will compare zircon U-Pb age spectra to possible Laurentian and Gondwanan source areas to discriminate between these possibilities. In addition, the age of the youngest detrital zircon population will provide additional constraints on the maximum age of deposition for the unit. These detrital ages will also help us to understand the tectonic setting at the time of Hartselle deposition. Lastly, we aim to explain the widespread nature of the unit and the processes involved in the formation of the Hartselle sandstone. When taken together, these interpretations will illuminate the age, depositional and tectonic setting of a potential petroleum resource.
NASA Astrophysics Data System (ADS)
Loso, M. G.; Anderson, R. S.; Anderson, S. P.; Reimer, P. J.
2007-12-01
In the mountains of southcentral Alaska, recent and widespread glacier retreat is well-documented, but few instrumental or proxy records of temperature are available to place recent changes in a long-term context. The Medieval Warm Period in particular, is poorly documented because subsequent Little Ice Age glacier advances destroyed much of the existing sedimentary record. In a rare exception, sudden and unexpected catastrophic drainage of a previously stable glacier-dammed lake recently revealed lacustrine stratigraphy that spans over 1500 years. Located near the Bagley Icefield in Wrangell-St. Elias National Park and Preserve, Iceberg Lake first drained in A.D. 1999 and has not regained a stable shoreline since that time. Rapid incision of the exposed lakebed provided subaerial exposure of annual laminations (varves, confirmed by radiogenic evidence) that record continuous sediment deposition from A.D. 442 to A.D. 1998. We present a recalculated master chronology of varve thickness that combines measurements from several sites within the former lake. Varve thickness in this chronology is positively correlated with northern hemisphere temperature trends and also with a local, ~600 year long tree ring width chronology. Varve thickness increases in warm summers because of higher melt, runoff, and sediment transport, and also because shrinkage of the glacier dam allows shoreline regression that concentrates sediment in the smaller lake. Relative to the entire record, varve thicknesses and implied summer temperatures were lowest around A.D. 600, high between A.D. 1000 and A.D. 1300, low between A.D. 1500 and A.D 1850, and highest in the late 20th century. Combined with stratigraphic evidence that contemporary jokulhlaups are unprecedented since at least A.D. 442, this record suggests that late 20th century warming was more intense, and accompanied by more extensive glacier retreat, than the Medieval Warm Period or any other time in the last 1500 years. We emphasize that the chronology presented here does not include the entire sedimentary history of the lake. Deeper sediments unexposed by the subaerial exposures we examined may extend this record of summer temperatures back to the onset of significant glaciation in this region. Traditional coring techniques could capture this record before ongoing erosion of the dry lakebed exports it to the Gulf of Alaska.
Plumlee, Geoffrey S.; Foreman, William T.; Griffin, Dale W.; Lovelace, John K.; Meeker, Gregory P.; Demas, Charles R.
2007-01-01
The flooding in the greater New Orleans, La., area that resulted from Hurricanes Katrina and Rita in August and September 2005 left behind accumulations of sediments up to many centimeters thick on streets, lawns, parking lots, and other flat surfaces (fig. 1). During the flood dewatering and subsequent cleanup, there were concerns that these sediments might contain pathogens and chemical contaminants that would pose a health risk to emergency responders, cleanup workers, and local residents who came into contact with the wet sediments or inhaled dusts generated from dried sediments. In response to these concerns, U.S. Geological Survey (USGS) scientists and colleagues characterized the potential environmental and health hazards of hurricane flood sediments from the greater New Orleans and Slidell, La., area.
Major, Jon J.; Spicer, Kurt R.; Collins, Rebecca A.
2010-01-01
In 2007, Marmot Dam on the Sandy River, Oregon, was removed and a temporary cofferdam standing in its place was breached, allowing the river to flow freely along its entire length. Time-lapse imagery obtained from a network of digital single-lens reflex cameras placed around the lower reach of the sediment-filled reservoir behind the dam details rapid erosion of sediment by the Sandy River after breaching of the cofferdam. Within hours of the breaching, the Sandy River eroded much of the nearly 15-m-thick frontal part of the sediment wedge impounded behind the former concrete dam; within 24-60 hours it eroded approximately 125,000 m3 of sediment impounded in the lower 300-meter-reach of the reservoir. The imagery shows that the sediment eroded initially through vertical incision, but that lateral erosion rapidly became an important process.
Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments
Singh, Arvind K.; Sherry, Angela; Gray, Neil D.; Jones, D. Martin; Bowler, Bernard F. J.; Head, Ian M.
2014-01-01
Availability of inorganic nutrients, particularly nitrogen and phosphorous, is often a primary control on crude oil hydrocarbon degradation in marine systems. Many studies have empirically determined optimum levels of inorganic N and P for stimulation of hydrocarbon degradation. Nevertheless, there is a paucity of information on fundamental kinetic parameters for nutrient enhanced crude oil biodegradation that can be used to model the fate of crude oil in bioremediation programmes that use inorganic nutrient addition to stimulate oil biodegradation. Here we report fundamental kinetic parameters (Ks and qmax) for nitrate- and phosphate-stimulated crude oil biodegradation under nutrient limited conditions and with respect to crude oil, under conditions where N and P are not limiting. In the marine sediments studied, crude oil degradation was limited by both N and P availability. In sediments treated with 12.5 mg/g of oil but with no addition of N and P, hydrocarbon degradation rates, assessed on the basis of CO2 production, were 1.10 ± 0.03 μmol CO2/g wet sediment/day which were comparable to rates of CO2 production in sediments to which no oil was added (1.05 ± 0.27 μmol CO2/g wet sediment/day). When inorganic nitrogen was added alone maximum rates of CO2 production measured were 4.25 ± 0.91 μmol CO2/g wet sediment/day. However, when the same levels of inorganic nitrogen were added in the presence of 0.5% P w/w of oil (1.6 μmol P/g wet sediment) maximum rates of measured CO2 production increased more than four-fold to 18.40 ± 1.04 μmol CO2/g wet sediment/day. Ks and qmax estimates for inorganic N (in the form of sodium nitrate) when P was not limiting were 1.99 ± 0.86 μmol/g wet sediment and 16.16 ± 1.28 μmol CO2/g wet sediment/day respectively. The corresponding values for P were 63 ± 95 nmol/g wet sediment and 12.05 ± 1.31 μmol CO2/g wet sediment/day. The qmax values with respect to N and P were not significantly different (P < 0.05). When N and P were not limiting Ks and qmax for crude oil were 4.52 ± 1.51 mg oil/g wet sediment and 16.89 ± 1.25 μmol CO2/g wet sediment/day. At concentrations of inorganic N above 45 μmol/g wet sediment inhibition of CO2 production from hydrocarbon degradation was evident. Analysis of bacterial 16S rRNA genes indicated that Alcanivorax spp. were selected in these marine sediments with increasing inorganic nutrient concentration, whereas Cycloclasticus spp. were more prevalent at lower inorganic nutrient concentrations. These data suggest that simple empirical estimates of the proportion of nutrients added relative to crude oil concentrations may not be sufficient to guarantee successful crude oil bioremediation in oxic beach sediments. The data we present also help define the maximum rates and hence timescales required for bioremediation of beach sediments. PMID:24782848
NASA Astrophysics Data System (ADS)
Olsen, K.; Bangs, N. L.; Arnulf, A. F.; Trehu, A. M.; Contreras Reyes, E.
2017-12-01
In January and February, 2017, we acquired approximately 5,000 km of deep-penetrating 2D seismic reflection data along the Chile trench between 30° - 44°S as a part of the 2017 Crustal Examination from Valdivia to Illapel to Characterize Huge Earthquakes (CEVICHE) project, on the R/V Langseth. We used a 6,600 in3 airgun source to shoot every 50 m and recorded shots on a 15,100 m, 1212 channel streamer. This survey targeted the structure of this subduction zone across the slip regions of the 2015 Illapel (Mw 8.3), the 2010 Maule (Mw 8.8), and 1960 Valdivia (Mw 9.5) earthquakes. Two dip lines between 37.5°S and 39°S, within the overlapping slip areas of the Maule and Valdivia earthquakes, show a range in the style of initial thrust faulting at the deformation front. At 37.5°S, just south of the Arauco Peninsula, protothrusts at the deformation front are typical of many well-sedimented trench sections in subduction zones worldwide. Here we observe incipient landward-dipping thrusts consisting of 15 faults with typical horizontal spacing of 750 m that can be seen to extend down through the entire 2.5 km thick sediment sequence to the top of the subducting ocean crust. Some form conjugate fault pairs, but all have small offsets of 10-50 m. These thrusts appear to sole into a proto-decollement located just above the top of the ocean crust; however, farther landward beneath the lower slope, a thick, 2.5 km, sequence of layered sediment can be traced > 20 km into the subduction zone. The position of the primary decollement appears to be located near the top of the trench sediment sequence, well above the proto-decollement, allowing subduction of the entire trench sequence. A second line at 39°S across the deformation front shows no frontal thrusts or apparent deformation within the 1.5 km thick section of trench sediment. All of the incoming sediment appears to be subducting beneath a stable decollement that we can image near the top of the trench sediment sequence. The decollement along the northern line may be currently stepping down and transitioning from minimal accretion, typical of this segment of the Chile margin, to accretion of the entire trench section. Alternatively, the initial deformation at the toe may cease and allow slip to shift upward to the shallow decollement and continue to subduct the entire trench sediment section.
The differentiation between the concentration of metals associated with suspended sediments and those in the dissolved phase is often of importance in aquatic ecosystems, for such reasons as toxicity evaluation, total maximum daily load calculations, and a better understanding of...
Water Resources Data for California, 1965; Part 2: Water Quality Records
1965-01-01
Water quality information is presented for chemical quality, fluvial sediment, and water temperatures. The chemical quality includes concentrations of individual dissolved constituents and certain properties or characteristics such as hardness, sodium-adsorption-ratio, specific conductance, and pH. Fluvial sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment and bed material. Water temperature data represent once-daily observations except for stations where a continuous temperature recorder furnishes information from which daily minimums and maximums are obtained.
Water Resources Data for California, 1966; Part 2: Water Quality Records
1967-01-01
Water-quality information is presented for chemical quality, fluvial sediment, and water temperatures. The chemical quality includes concentrations of individual dissolved constituents and certain properties or characteristics such as hardness, sodium-adsorption ratio, specific conductance, and pH. Fluvial-sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment and bed material. Water-temperature data represent once-daily observations except for stations where a continuous temperature recorder furnishes information from which daily minimums and maximums are obtained.
NASA Astrophysics Data System (ADS)
Geilhausen, M.; Otto, J.-C.; Schrott, L.
2009-04-01
In the context of Global Climate Change, magnitudes and frequencies of geomorphic processes are subject to climatic controlled variations leading to significant modifications in land surface topography. A sediment budget approach identifies and quantifies sediment transfer processes and sediment storages and clarifies to what extent these system components are coupled to each other. The relationship between sediment storage volumes and present-day sediment transfer rates can contribute to both, an understanding of previous (postglacial) landscape development and the prediction of future topographic evolution. As retreating Alpine glaciers expose landscapes with partly unconsolidated, loose and potentially unstable landforms (e.g. moraine slopes), which are not in equilibrium with changing environmental conditions, glacier forefields react very sensible to climate change and therefore are susceptible to rapid topographic modification. Due to this accelerated, paraglacial geomorphodynamic, sediment budget studies on relative short time scales within glacier forefield landsystems are of specific scientific interest. Within the collaborative research project SedyMONT (Timescales of Sediment Dynamics, Climate and Topographic Change in Mountain Environments, ESF Top Europe programme), these issues are concerned by an individual project of the University of Salzburg. This paper points out the conceptual approach, aims and objectives of this ongoing research project and presents first results within the glacier forefield of the Pasterze. The methodical approach includes orthophoto-interpretation, geomorphological mapping, GIS analyses and a combination of field geophysics (ERT, GPR, RST) in order to identify sediment storages, sediment transfer processes as well as thickness, volumes and internal structures of sediment bodies. Present sediment fluxes will be monitored by a number of different measurements, including hydrological methods (valley bottom) and repeated terrestrial laser scanning (valley bottom and slope processes). The outcomes of the project are i) a high temporarily resoluted data in a proglacial area with rapidly changing sediment budget conditions, ii) the integration of present day fluxes and temporarily stored sediments, and iii) the validation of existing models of landscape development (paraglacial sedimentation). The study site Pasterze is a former lake that has been completely filled up by continuous glacifluvial sedimentation. The glacial melt water stream is the dominant path of sediment transfer through the sandur system. The mean sediment thickness is approx. 6.15 m leading to a calculated volume and mass of 785.700 m³ respectively 1.571.400 t stored in the forefield. More than 50.000 t of suspended load produced by glacial erosion were passed the system in 2006.Compared to channel processes, slope processes play a minor role and sediment input through avalanches, rock falls and debris flows seems to be negligible. Furthermore it is remarkable, that no significant clastic output (bed load) has occurred in 2006 at the outlet of the sandur. The system therefore appears to be partially closed.
Recent paleoseismicity record in Prince William Sound, Alaska, USA
NASA Astrophysics Data System (ADS)
Kuehl, Steven A.; Miller, Eric J.; Marshall, Nicole R.; Dellapenna, Timothy M.
2017-12-01
Sedimentological and geochemical investigation of sediment cores collected in the deep (>400 m) central basin of Prince William Sound, along with geochemical fingerprinting of sediment source areas, are used to identify earthquake-generated sediment gravity flows. Prince William Sound receives sediment from two distinct sources: from offshore (primarily Copper River) through Hinchinbrook Inlet, and from sources within the Sound (primarily Columbia Glacier). These sources are found to have diagnostic elemental ratios indicative of provenance; Copper River Basin sediments were significantly higher in Sr/Pb and Cu/Pb, whereas Prince William Sound sediments were significantly higher in K/Ca and Rb/Sr. Within the past century, sediment gravity flows deposited within the deep central channel of Prince William Sound have robust geochemical (provenance) signatures that can be correlated with known moderate to large earthquakes in the region. Given the thick Holocene sequence in the Sound ( 200 m) and correspondingly high sedimentation rates (>1 cm year-1), this relationship suggests that sediments within the central basin of Prince William Sound may contain an extraordinary high-resolution record of paleoseismicity in the region.
NASA Astrophysics Data System (ADS)
Ridgway, K. D.; Bahlburg, H.; Childress, L. B.; Cowan, E. A.; Forwick, M.; Moy, C. M.; Müller, J.; Ribeiro, F.; Gupta, S.; Gulick, S. P.; Jaeger, J. M.
2013-12-01
The marine sedimentary record of Miocene to Pleistocene tectonics and glaciation is well preserved along the southern Alaska convergent margin. This margin is well suited for linking proximal to distal sediment transport processes because sediment is being generated by glacial erosion in the highest coastal mountain range on earth and subsequently being transported to the Aleutian subduction zone. We will discuss the sedimentary record from two end members of this system: (1) the proximal marine record now exposed onshore in the high peaks of the coastal ranges, and (2) the offshore distal record preserved in the Surveyor submarine fan system that was cored during the 2013 IODP Expedition 341. Onshore the Miocene non-glacial strata are represented by the Poul Creek Fm. This unit is 2000 m thick and in its upper part consists of mudstone, thin sandstone beds (10-30 cm thick), and thick bedded (1-2 m) highly bioturbated green sandstone beds that contain hummocky stratification. We interpret this unit as being deposited mainly in marine shelf environments. A gradational contact between the Poul Creek and the overlying upper Miocene-Pleistocene Yakataga Formation is marked by a transition to mudstone, thick bedded sandstone and glacial diamictite. This transition to glacial dominated deposition is interpreted to have occurred around 5 Ma based on previous studies. The onshore glacimarine strata are 5 km thick and grade up section from submarine fan to marine shelf strata. In the distal submarine fan record at IODP Site U1417, the upper Miocene strata in the lower part of the Site consist of 340 m of highly bioturbated gray to green mud interbedded with coarse sand and sandy diamict. These coarse-grained units are lithic rich with mainly sedimentary, volcanic, and coal clasts. We interpret these units as being derived from coal-bearing sedimentary strata exposed in the onshore thrust belt. These facies are interbedded with diatom ooze; we interpret this combination of facies as representing deposition of coarse-grained detritus originating from sedimentary gravity flows followed by longer periods of hemipelagic deposition. The first clear record of glacial sediment input in the distal submarine fan environment is late Pliocene - early Pleistocene muddy diamict beds that probably are the products of ice-rafting. This unit is about 30 m in thickness. The overlying 260 m of the core are mainly dark gray mud with thin beds of volcanic ash and sand/silt beds. Lonestones are common and are mainly argillite and metasiltstone clasts suggesting at least a component of sediment derivation from onshore metamorphosed parts of the Mesozoic accretionary prism. In general, the overall Neogene sedimentary record in both the proximal and distal marine settings appears to be similar but requires a sediment link between the proximal strata deposited on the Yakutat microplate and the Surveyor fan system deposited on the Pacific Plate.
NASA Astrophysics Data System (ADS)
Peterson, C. D.; Behl, R. J.; Nicholson, C.; Lisiecki, L. E.; Sorlien, C. C.
2009-12-01
High-resolution seismic reflection records and well logs from the Santa Barbara Channel suggest that large parts of the Pleistocene succession records climate variability on orbital to sub-orbital scales with remarkable sensitivity, much like the well-studied sediments of the last glacial cycle (ODP Site 893). Spectral analysis of seismic reflection data and gamma ray logs from stratigraphically similar Pleistocene sections finds similar cyclic character and shifts through the section. This correlation suggests that acoustic impedance and physical properties of sediment are linked by basin-scale, likely climatically-driven, oscillations in lithologic composition and fabric during deposition, and that seismic profiling can provide a method for remote identification and correlation of orbital- and sub-orbital-scale sedimentary cyclicity. Where it crops out along the northern shelf of the central Santa Barbara Channel, the early to middle Pleistocene succession (~1.8-1.2 Ma) is a bathyal hemipelagic mudstone with remarkably rhythmic planar bedding, finely laminated fabric, and well-preserved foraminifera, none of which have been significantly altered, or obscured by post-depositional diagenesis or tectonic deformation. Unlike the coarser, turbiditic successions in the central Ventura and Los Angeles basins, this sequence has the potential to record Quaternary global climate change at high resolution. Seismic reflection data (towed chirp) collected on the R/V Melville 2008 Cruise (MV08) penetrate 10's of meters below seafloor into a ~1 km-long sequence of south-dipping seismic reflectors. Sampling parallel to the seafloor permits acquisition of consistent signal amplitude for similar reflectors without spreading loss. Based on established age ranges for this section, sedimentation rates may range from 0.4 to 1.4 meters/kyr, therefore suggesting that the most powerful cycles are orbital- to sub-orbital-scale. Discrete sets of cycles with high power show an abrupt shift to shorter wavelengths midway through the section. Deep in the section, the strongest cycles indicated by spectral analysis are 50 and 16 meters thick, whereas up section, the strongest cycles are 20 and 12 meters thick. Nearby industry boreholes that penetrate a stratigraphically similar, 1500-meter-thick mudstone section, provide logs of natural gamma ray intensity with a higher sample interval (15 cm), allowing resolution and analysis of even higher frequency lithologic cycles. The strongest cycle deep in the section is 100 meters thick, and up section, the strongest cycle is 12 meters thick. This abrupt decrease in dominant cycle thickness midway through both the seismic and gamma ray records perhaps indicates a basin-wide shift in sedimentation. With improved chronostratigraphy based on Sr-isotope ratios and biostratigraphy, and comparison with paleoclimate proxy data, we will test if seismically resolved lithologic oscillations can be reliably interpreted as representing climatically driven Milankovitch cycles. This method may be used to evaluate the age and paleoceanographic potential of sedimentary strata before a coring vessel is deployed.
NASA Astrophysics Data System (ADS)
Shao, Yue; Shi, Frank G.
2017-07-01
The effective passive radiation cooling that is enabled by silicone-based composites is investigated for its dependence on coating thickness and filler size in the range of nanometers to micrometers. It is established, contrary to prior reports, that the effective passive radiation cooling does not exhibit a filler size dependence, i.e., there is no optimal size at which a maximum cooling would be reached. However, the apparent cooling effect is filler type dependent and among the fillers investigated, Al2O3 exhibits the best apparent cooling effect. In addition, the apparent cooling effect is dependent on coating thickness: the thickness dependence is non-monotonic, and the maximum cooling occurs at an optimal thickness of 70 μm, regardless of filler type. Potential significant implications of the findings are also discussed.
NASA Astrophysics Data System (ADS)
Marchetti, D. W.; Abbott, M. B.; Bailey, C.; Wenrich, E.; Stoner, J. S.; Larsen, D. J.; Finkenbinder, M. S.; Anderson, L.; Brunelle, A.; Carter, V.; Power, M. J.; Hatfield, R. G.; Reilly, B.; Harris, M. S.; Grimm, E. C.; Donovan, J.
2015-12-01
Fish Lake (~7x1.5 km and 2696 m asl) is located on the Fish Lake Plateau in central Utah. The Lake occupies a NE-striking tectonic graben; one of a suite of grabens on the Plateau that cut 21-26 Ma volcanic rocks. The lake outflows via Lake Creek to the NE where it joins Sevenmile Creek to become the Fremont River, a tributary to the Colorado River. A bathymetric survey reveals a mean depth of 27 m and a max depth of 37.2 m. The lake bottom slopes from NW to SE with the deepest part near the SE wall, matching the topographic expression of the graben. Nearby Fish Lake Hightop (3545 m) was glaciated with an ice field and outlet glaciers. Exposure ages indicate moraine deposition during Pinedale (15-23 ka) and Bull Lake (130-150 ka) times. One outlet glacier at Pelican Canyon deposited moraines and outwash into the lake but the main basin of the lake was never glaciated. Gravity measurements indicate that lake sediments thicken toward the SE side of the lake and the thickest sediment package is modeled to be between 210 and 240 m. In Feb 2014 we collected cores from Fish Lake using a 9-cm diameter UWITECH coring system in 30.5 m of water. A composite 11.2-m-long core was constructed from overlapping 2 m drives that were taken in triplicate to ensure total recovery and good preservation. Twelve 14C ages and 3 tephra layers of known age define the age model. The oldest 14C age of 32.3±4.2 cal ka BP was taken from 10.6 m. Core lithology, CT scans, and magnetic susceptibility (ms) reveal three sediment packages: an organic-rich, low ms Holocene to post-glacial section, a fine-grained, minerogenic glacial section with high ms, and a short section of inferred pre-LGM sediment with intermediate composition. Extrapolating the age model to the maximum estimated sediment thicknesses suggest sediments may be older than 500-700 ka. Thus Fish Lake is an ideal candidate for long core retrieval as it likely contains paleoclimatic records extending over multiple glacial cycles.
NASA Astrophysics Data System (ADS)
Dräger, Nadine; Schwab, Valérie F.; Plessen, Birgit; Neugebauer, Ina; Dinies, Michèle; Engel, Max; Brauer, Achim; Gleixner, Gerd
2017-04-01
Holocene hydrological changes in NW Arabia and their influence on human migration and settlement are scarcely studied due to the lack of suitable climate archives. In particular, mechanisms and sources of increased moisture availability as well as the onset of oasis cultivation and culture during the early Holocene humid period are still not well understood. Here, we present the first Holocene lipid biomarker record of the Arabian Peninsula from the Tayma palaeolake sediment sequence. We applied a combined approach of aquatic, terrestrial and faecal lipid biomarker and compound specific hydrogen isotope analyses, which allow tracing both hydrological and anthropogenic signals in the sediment deposits. Our investigations focused on the early Holocene annually laminated (varved) sediment section (ca. 8500 to 8000 cal. a BP) presenting a phase of maximum lake levels probably caused by increased moisture availability (Dinies et al., 2015; Engel et al., 2012). During the early Holocene high lake level phase our results show increased concentrations of long-chain n-alkanes and faecal biomarkers suggesting grassland expansion and probably human occupation. The increase in grassland during this time is further supported by results from pollen analysis (Dinies et a., 2015). However, the increase in n-alkanes and faecal biomarkers did not occur simultaneously. While the rise of n-alkane concentrations predates the onset of varved sediments by about one century, the increase in faecal biomarker coincides with the beginning of varve preservation. Moreover, comparisons with sedimentological and geochemical data (i.e. diatom layer thickness, organic carbon content, δ13Ccarbonate) suggest a coincidence of highest concentrations of faecal biomarkers and increased lake productivity. We discuss possible causes for these coincidences including prehistoric human activities as well as climate and environmental changes. This study is a contribution to the research project "CLEAR - Holocene Climatic Events of Northern Arabia" (https://clear2018.wordpress.com/). Dinies M, Plessen B, Neef R, Kürschner H (2015): When the desert was green: Grassland expansion during the early Holocene in northwestern Arabia. Quaternary International (382), 293-302. Engel M, Brückner H, Pint A, Wellbrock K, Ginau A, Voss P, Grottker M, Klasen N, Frenzel P (2012): The early Holocene humid period in NW Saudi Arabia - Sediments, microfossils and palaeo-hydrological modelling. Quaternary International (266), 131-141.
Zhu, Lin; Li, Xun; Zhang, Chen; Duan, Zengqiang
2017-04-01
Heavily polluted sediment is becoming an important part of water pollution, and this situation is particularly acute in developing countries. Sediment has gradually changed from being the pollution adsorbent to the release source and has influenced the water environment and public health. In this study, we evaluated the pollutant distribution in sediment in a heavily polluted river and agitated the sediment in a heavily polluted river to re-suspend it and re-release pollutants. We found that the levels of chemical oxygen demand (COD), NH₄⁺-N, total nitrogen (TN), and total phosphorus (TP) in overlying water were significantly increased 60 min after agitation. The distribution of the pollutants in the sediment present high concentrations of pollutants congregated on top of the sediment after re-settling, and their distribution decreased with depth. Before agitation, the pollutants were randomly distributed throughout the sediment. Secondly, deep sediment aeration equipment (a micro-porous air diffuser) was installed during the process of sedimentation to study the remediation of the sediment by continuous aeration. The results revealed that deep sediment aeration after re-suspension significantly promoted the degradation of the pollutants both in overlying water and sediment, which also reduced the thickness of the sediment from 0.9 m to 0.6 m. Therefore, sediment aeration after suspension was efficient, and is a promising method for sediment remediation applications.
NASA Astrophysics Data System (ADS)
Cerchiari, Anna; MIttempergher, Silvia; Remitti, Francesca; Festa, Andrea
2017-04-01
The shallowest part of active megathrusts has an intriguing behaviour, characterized by the coexistence of coseismic slips and aseismic creep, slow slip events, low and very low frequency earthquakes. Origins and interplays of these phenomena are actually little known. In this respect, the study of exhumed shallow parts of fossil megathrusts is an advantageous approach in terms of accessibility, costs and resolution. The Sestola-Vidiciatico tectonic Unit in the Northern Apennines has been interpreted as a possible analogue of a shallow, hectometer scale megathrust shear zone, which accommodated subduction of the Adria plate under the Ligurian prism during early-middle Miocene by involving sediments from the seafloor to burial depth corresponding to 150° C maximum temperature. Performing detailed microstructural analysis on samples through optical, cathodoluminescence and scanning electron microscopy, we studied a 5 m thick fault zone marking the base of the SVU. Here, more or less competent marls make up a heterogeneous fault zone assemblage, with a strongly deformed tectonic fabric characterized by mesoscopic cleavage, boudinage, faults and low-angle thrusts coated by calcite veins. At the top of the shear zone, a sharp and continuous shear vein, 20 cm thick cuts all other structures. At the microscale, we identified a primary sedimentary layering, consisting of alternating fine and coarse marly or shaly laminae that are crosscut by "soft-sediment"-type deformation bands derived from the reorientation of mineral grains without fracturing. Parallel to the sedimentary laminae, oriented phyllosilicates define a pervasive foliation in clay-rich domains. More competent calcareous portions are strongly boudinaged and cut by calcite shear veins displaying crack-and-seal texture and locally implosion breccias. Multiple mutually crosscutting generations of extensional veins are recognizable, with dispersed orientations and complex relations with shear veins. Calcite veins appear also to be partially dissolved by pressure-solution processes. Our microstructural findings suggest that deformation started acting on not completely lithified sediments, with a progressive and differential embrittlement of the shear zone, depending on lithology (i. e. competence contrast) and fluid pressure cycles. Features described point out also for thrusting under low differential stress, with decoupling from the footwall and progressive migration and thinning of the shear zone.
Environmental geology of Harrison Bay, northern Alaska
Craig, J.D.; Thrasher, G.P.
1982-01-01
The surficial and shallow subsurface geology of Harrison Bay on the Beaufort Sea coast was mapped as part of the U.S. Geological Survey's prelease evaluation for Outer Continental Shelf (OCS) Oil and Gas Lease Sale 71. During the 1980 summer season, approximately 1600 km of multisensored, high-resolution geophysical profile data were collected along a rectangular grid with 4.8 km line spacing. Interpretation of these data is presented on five maps showing bathymetry, sea-floor microrelief, ice-gouge characteristics, Holocene sediment thickness, and geologic structure to depths of approximately 1000 m. On a broad scale, the seafloor is shallow and almost flat, although microrelief features produced by sediment transport and ice-gouge processes typically vary up to several meters in amplitude. Microrelief bedforms related to hydraulic processes are predominant in water depths less than 12 m. Microrelief caused by ice gouging generally increases with water depth, reaching a maximum of 2 m or more in water depths beyond the 20 m isobath. This intensely gouged area lies beneath the shear zone between the seasonal landfast ice and the mobile polar ice pack. The thickness of recent (Holocene) sediment increases offshore, from 2 m near the Colville River delta to 30 m or more on the outer shelf. The thin Holocene layer is underlain by a complex horizon interpreted to be the upper surface of a Pleistocene deposit similar in composition to the present Arctic Coastal Plain. The base of the inferred Pleistocene section is interpreted to be a low-angle unconformity 100 m below sea level. Beneath this Tertiary-Quaternary unconformity, strata are interpreted to be alluvial fan-delta plain deposits corresponding to the Colville Group and younger formations of Late Cretaceous to Tertiary age. Numerous high-angle faults downthrown to the north trend across the survey area. With few exceptions, these faults terminate at or below the 100 m unconformity, suggesting that most tectonism occurred before Quaternary time. Acoustic anomalies suggesting gas accumulation are rare, and where identified typically occur adjacent to faults. A laterally continuous zone of poor seismic data occurs in the nearshore area and is interpreted to be caused by subsea permafrost. This report describes these geologic conditions in Harrison Bay and discusses potential hazards that they may pose for future oil and gas operations in Sale 71 and adjacent Beaufort Sea shelf areas.
Foster, Helen L.; Karlstrom, Thor N.V.
1967-01-01
The great 1964 Alaska earthquake caused considerable ground breakage in the Cook Inlet area of south-central Alaska. The breakage occurred largely in thick deposits of unconsolidated sediments. The most important types of ground breakage were (1) fracturing or cracking and the extrusion of sand and gravel with ground water along fractures in various types of landforms, and (2) slumping and lateral extension of unconfined faces, particularly along delta fronts. The principal concentration of ground breakage within the area covered by this report was in a northeast-trending zone about 60 miles long and 6 miles wide in the northern part of the Kenai Lowland. The zone cut across diverse topography and stratigraphy. Cracks were as much as 30 feet across and 25 feet deep. Sand, gravel, and pieces of coal and lignite were extruded along many fissures. It is suggested that the disruption in this zone may be due to movement along a fault in the underlying Tertiary rocks. The outwash deltas of Tustumena and Skilak Lakes in the Kenai Lowland, of Eklutna Lake and Lake George in the Chugach Mountains, of Bradley Lake in the Kenai Mountains, and at the outlet of upper Beluga Lake at the base of the Alaska Range showed much slumping, as did the delta of the Susitna River. Parts of the flood plains of the Skilak River, Fox River, and Eagle River were extensively cracked. A few avalanches and slumps occurred along the coast of Cook Inlet in scattered localities. Some tidal flats were cracked. However, in view of the many thick sections of unconsolidated sediments and the abundance of steep slopes, the cracking was perhaps less than might have been expected. Observations along the coasts indicated changes in sea level which, although caused partly by compaction of unconsolidated sediments, may largely be attributed to crus1tal deformation accompanying the earthquake. Most of the Cook Inlet area was downwarped, although the northwest side of Cook Inlet may have been slightly unwarped. Maximum change in the Cook Inlet area was probably less than 6 feet. Little or no regional tilting was detected in the lake basins of Tustumena and Skilak Lakes.
NASA Astrophysics Data System (ADS)
Bohnenstiehl, D. R.; Tolstoy, M.; Thode, A.; Diebold, J. B.; Webb, S. C.
2004-12-01
The potential effect of active source seismic research on marine mammal populations is a topic of increasing concern, and controversy surrounding such operations has begun to impact the planning and permitting of academic surveys [e.g., Malakoff, 2002 Science]. Although no causal relationship between marine mammal strandings and seismic exploration has been proven, any circumstantial evidence must be thoroughly investigated. A 2002 stranding of two beaked whales in the Gulf of California within 50 km of a R/V Ewing seismic survey has been a subject of concern for both marine seismologists and environmentalists. In order to better understand possible received levels for whales in the vicinity of these operations, modeling is combined with ground-truth calibration measurements. A wide-angle parabolic equation model, which is capable of including shear within the sediment and basement layers, is used to generate predictive models of low-frequency transmission loss within the Gulf of California. This work incorporates range-dependent bathymetry, sediment thickness, sound velocity structure and sub-bottom properties. Oceanic sounds speed profiles are derived from the U.S. Navy's seasonal GDEM model and sediment thicknesses are taken from NOAA's worldwide database. The spectral content of the Ewing's 20-airgun seismic array is constrained by field calibration in the spring of 2003 [Tolstoy et al., 2004 GRL], indicating peak energies at frequencies below a few hundred Hz, with energy spectral density showing an approximate power-law decrease at higher frequencies (being ~40 dB below peak at 1 kHz). Transmission loss is estimated along a series of radials extending from multiple positions along the ship's track, with the directivity of the array accounted for by phase-shifting point sources that are scaled by the cube root of the individual airgun volumes. This allows the time-space history of low-frequency received levels to be reconstructed within the Gulf of California. At various times or positions along the ship's track, the predicted mean and maximum sound level in the water column are contoured. By reconstructing the possible positions of the whales during the survey, based on the time of their stranding and reasonable swim velocities, we constrain the sound levels that they may have been subjected to for a series of scenarios. It is hoped that this work will facilitate a better understanding of acoustic propagation during future airgun experiments in similar environments.
Kulpecz, A.A.; Miller, K.G.; Browning, J.V.; Edwards, L.E.; Powars, D.S.; McLaughlin, P.P.; Harris, A.D.; Feigenson, M.D.
2009-01-01
The Eyreville and Exmore, Virginia, core holes were drilled in the inner basin and annular trough, respectively, of the Chesapeake Bay impact structure, and they allow us to evaluate sequence deposition in an impact crater. We provide new high-resolution geochronologic (<1 Ma) and sequence-stratigraphic interpretations of the Exmore core, identify 12 definite (and four possible) postimpact depositional sequences, and present comparisons with similar results from Eyreville and other mid- Atlantic core holes. The concurrence of increases in ??18O with Chesapeake Bay impact structure sequence boundaries indicates a primary glacioeustatic control on deposition. However, regional comparisons show the differential preservation of sequences across the mid-Atlantic margin. We explain this distribution by the compaction of impactites, regional sediment-supply changes, and the differential movement of basement structures. Upper Eocene strata are thin or missing updip and around the crater, but they thicken into the inner basin (and offshore to the southeast) due to rapid crater infilling and concurrent impactite compaction. Oligocene sequences are generally thin and highly dissected throughout the mid-Atlantic region due to sediment starvation and tectonism, except in southeastern New Jersey. Regional tectonic uplift of the Norfolk Arch coupled with a southward decrease in sediment supply resulted in: (1) largely absent Lower Miocene sections around the Chesapeake Bay impact structure compared to thick sections in New Jersey and Delaware; (2) thick Middle Miocene sequences across the Delmarva Peninsula that thin south of the Chesapeake Bay impact structure; and (3) upper Middle Miocene sections that pinch out just north of the Chesapeake Bay impact structure. Conversely, the Upper Miocene-Pliocene section is thick across Virginia, but it is poorly represented in New Jersey because of regional variations in relative subsidence. ?? 2009 The Geological Society of America.
Martin, Raymond G.
1973-01-01
The objectives of this study were to determine the general configuration of the salt surface beneath the Texas-Louisiana continental slope and to isopach the Mesozoic-Cenozoic sedimentary section lying upon it. The structure contour map discloses that the entire slope province between the shelf edge and Sigsbee Escarpment is underlain by salt structures which interconnect at relatively shallow subbottom depths. Salt structures on the slope south of Louisiana and eastern Texas can be grouped according to structural relief and size which define morphological belts of decreasing deformational maturity in a downslope direction. Off northern Mexico and southernmost Texas, salt structures are anticlinal and their trends suggest a structural relationship with the folds of the Mexican Ridge province to the south. Structural trends in the two slope areas meet in the corner of the northwestern gulf where salt structure may have been influenced by a seaward extension of the San Marcos Arch, or an abrupt change in subsalt structural topography. Sediment thickness above the top of salt on the slope averages about 1,400 m (4,620 ft) which is a smaller average than expected from previous estimates. In some synclinal basins between salt structures, sediments may be as thick as 4,000-5,000 m (12,000-17,000 ft). On the average, sedimentary deposits in basins on the upper slope are thicker than on the lower slope. From the isopach map of sediments above salt it is estimated that the U.S. continental slope off Texas and Louisiana contains a sedimentary volume of about 170,000 km3 (41,000 mi3). The bulk of this volume is situated in synclinal basins between domes and principally in those beneath the upper and middle slope regions.
NASA Astrophysics Data System (ADS)
Willard, D. A.; Robinson, M. M.; Self-Trail, J. M.; Wandless, G. A.; Sluijs, A.
2014-12-01
Analyses of pollen and palynofacies from Paleocene-Eocene Thermal Maximum (PETM) sediments from three cores collected on the Atlantic Coastal Plain provide insights into the timing of vegetation and hydrologic changes associated with the PETM in eastern North America. The Mattawoman Creek-Billingsley Road (MCBR2), South Dover Bridge (SDB), and Bass River (ODP Site 1074AX) cores were collected at progressively greater distances from the paleoshoreline in continental shelf deposits in Maryland and New Jersey, USA. The PETM carbon isotope excursion (CIE) at each site is accompanied by sharp increases in pollen and spore concentrations, as well as changes in terrestrial palynomorph assemblage composition. In the two sites proximal to the paleoshoreline in Maryland, CIE fern spore abundance was two- to three times greater than in pre-CIE assemblages. At the distal site at Bass River, fern spores are present in CIE sediments and absent in pre-CIE sediments. Angiosperm pollen is most common in CIE sediments at all three sites. Palynofacies analyses, which quantify contributions of organic material from marine and non-marine sources, indicate that terrestrial influx increased sharply at the CIE onset. This observation is consistent with seasonally increased runoff from the continent.
Monitoring climate signal transfer into the varved lake sediments of Lake Czechowskie, Poland
NASA Astrophysics Data System (ADS)
Groß-Schmölders, Miriam; Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Kaszubski, Michał; Kienel, Ulrike; Brauer, Achim
2015-04-01
In 2012 we started a monitoring program at Lake Czechowskie, Poland, because the lake comprises a long Holocene time series of calcite varves until recent times. The aim of the program is to understand how environmental and climatic conditions influence the hydrological conditions and, ultimately, the sediment deposition processes of the lake. Lake Czechowskie is located in the north of Poland in the Pomeranian Lake District and is part of the national park Tuchola Forest. The landscape and the lake is formed by the glacier retreat after the last glaciation (Weichselian). Lake Czechowskie is a typical hardwater lake and has a length of 1.4 km, an average width of 600 m and a lake surface area of ca 4 km. The maximum depth of 32 m is reached in a rather small hollow in the eastern part of the lake. Two different types of sediment traps provide sediment samples with monthly resolution from different water depths (12m, 26m). In addition, hydrological data including water temperature in different depths, water inflow, throughflow and outflow and the depth of visibility are measured. These data allow to describe strength and duration of lake mixing in spring and autumn and its influence on sedimentation. The sediment samples were analyzed with respect to their dry weight (used to calculate mean daily sediment flux), their inorganic and organic carbon contents, the stable C- and O-isotopes of organic matter and calcite as well as N-isotopes of organic matter. For selected samples dominant diatom taxa are determined. Our first results demonstrate the strong influence of the long winter with ice cover until April in 2013 on the sedimentation. A rapid warming in only 9 days starting on April 9th from -0,3 C° to 15,2 C° resulted in fast ice break-up and a short but intensive lake mixing. In consequence of this short mixing period a strong algal bloom especially of Fragilaria and Crysophycea commenced in April and had its maximum in May. This bloom further induced biogenic calcite precipitation in May leading to the monthly maximum in calcite deposition of 1.18 [g/m2d] (66.31
Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser
NASA Astrophysics Data System (ADS)
Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao
2018-03-01
The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.
Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate
Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.
2016-01-01
Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.
A Bed-Deformation Experiment Beneath Engabreen, Norway
NASA Astrophysics Data System (ADS)
Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.
2001-12-01
Although deformation of sediment beneath ice masses may contribute to their motion and may sometimes enable fast glacier flow, both the kinematics and mechanics of deformation are controversial. This controversy stems, in part, from subglacial measurements that are difficult to interpret. Measurements have been made either beneath ice margins or remotely through boreholes with interpretive limitations caused by uncertain instrument position and performance, uncertain sediment thickness and bed geometry, and unknown disturbance of the bed and stress state by drilling. We have used a different approach made possible by the Svartisen Subglacial Laboratory, which enables human access to the bed of Engabreen, Norway, beneath 230 m of temperate ice. A trough (2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 percent sand and gravel, 20 percent silt, 5 percent clay). Instruments were placed in the sediment to record shear deformation (tiltmeters), dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding water to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sediment, shear deformation and volume change stopped, and total normal stress became constant at 2.2 MPa. Subsequent pump tests, which lasted several hours, induced pore-water pressures greater than 70 percent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice separated from the sediment when effective normal stress was lowest, arresting shear deformation. Displacement profiles during pump tests were similar to those observed by Boulton and co-workers at Breidamerkurjökull, Iceland, with rates of shear strain increasing upward toward the glacier sole. Such deformation does not require viscous deformation resistance and is expected in a Coulomb material, a model for till advocated by B. Kamb.
Thermokarst lake methanogenesis along a complete talik profile
Heslop, J.K.; Walter Anthony, K.M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.; Bondurant, A.; Grosse, G.; Jones, Miriam C.
2015-01-01
Thermokarst (thaw) lakes emit methane (CH4) to the atmosphere formed from thawed permafrost organic matter (OM), but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb) beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel that extends through ice-rich yedoma permafrost soils surrounding the lake and into underlying gravel. Our results showed CH4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD: 5.95 ± 1.67 μg C–CH4 g dw−1 d−1; 125.9 ± 36.2 μg C–CH4 g C−1org d−1). High CH4 production potentials were also observed in recently thawed permafrost (1.18 ± 0.61 μg C–CH4g dw−1 d−1; 59.60± 51.5 μg C–CH4 g C−1org d−1) at the bottom of the talik, but the narrow thicknesses (43 cm) of this horizon limited its overall contribution to total sediment column CH4 production in the core. Lower rates of CH4 production were observed in sediment horizons representing permafrost that has been thawing in the talik for a longer period of time. No CH4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH4production is highly variable in thermokarst lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw and shore erosion of yedoma permafrost are important to lake CH4 production.
NASA Astrophysics Data System (ADS)
McCarthy, K.; Affinito, R. A.; Pizzuto, J. E.; Stotts, S.; Henry, T.; Krauthauser, M.; O'Neal, M. A.
2017-12-01
Quantifying contemporary sediment budgets is essential for restoration and ecosystem management of mid-Atlantic watersheds, but relevant processes and controls are poorly understood. In the 153 km2 White Clay Creek watershed in southeastern Pennsylvania, longitudinal profiles reflect migration of knickpoints though bedrock over Quaternary timescales. In bank exposures along stream valleys, saprolite, bedrock, and matrix-supported cobbly and bouldery diamicton (likely colluvial) commonly underlie finer-grained clay, silt, sand, and gravel deposits of valley floor depositional environments. Overbank sedimentation rates were quantified by measuring the thickness of sediment deposited over the roots of floodplain trees. The sampled trees range in age from 25-270 years with median sediment accumulation rates of approximately 2 mm/yr (range 0-10 mm/yr). Rates of bank retreat (measured from historical aerial imagery or root-exposure dendrochronology) vary from 6-36 cm/yr, with median rates of 10 cm/yr. While bank erosion rates are subject to a variety of controls, including channel curvature, the density of riparian trees, and freeze-thaw processes, the strongest influence appears to be the grain size and thickness of bouldery diamicton exposed along the toes of retreating banks. Cobbles and boulders supplied by eroding diamicton also mantle the bed of the channel, such that 33- 80% of the bed material remains immobile at bankfull stage. A conceptual model of fluvial processes and sediment budgets for these channels must account for the watershed's history of changing climate, tectonics, and land use, requiring mapping of bedrock, colluvium, former mill dam sediments, and other non-alluvial deposits and controls. Efforts to apply hydraulic geometry principles (requiring a precise adjustment to contemporary hydraulic and sediment regime) or to treat these channels as traditional "threshold" rivers are unlikely to be successful.
NASA Astrophysics Data System (ADS)
Dellapenna, T. M.; Carlin, J. A.; Williams, J. R.
2016-02-01
The Brazos River empties into the Gulf of Mexico (GOM) forming a wave-influenced, muddy, subaqueous delta (SAD). Recent research in the estuarine reach of the river and on the SAD, however, found evidence for significant mass wasting of the delta-front and potential evidence of hyperpycnal flow, a processes typically associated with higher gradient and higher sediment yield rivers. The study used high-resolution geophysics on the SAD and water-column profiling in the lower river to investigate the transfer to and fate of fluvial sediment on the shelf. The SAD side scan mosaic combined with core data reveal that the eastern portion was dominated by exposed relict, consolidated sediment; an erosional scarp along the upper shoreface; and a thinning of the Holocene strata immediately downslope of the scarp. Holocene strata thickness increases into deeper water. These features suggest sediment mass wasting on the delta front. After rapidly prograding during the early and mid 20th century, reductions in sediment load due anthropogenic influences, and a shift in the primary depocenter lead to erosion on these abandoned portions of the delta. During an elevated fluvial discharge event, a >1 m thick fluid mud layer was found along a 6 km span of the river 2 km upstream from the mouth. The river's salt wedge was shown to inhibit sediment export from the river to the GOM, and facilitate deposition of mud in the lower river. We believe that the mud layer in the lower river builds during moderate and low discharge periods and remobilized during increased discharge, potentially resulting in hyperpyncnal flow to the shelf. We observed suspended sediment concentrations up to 100 g/l in the fluid mud layer during this event. While our observations did not capture the transition from fluid mud to hyperpycnal flow, we believe that with persistent increased discharge the fluid mud layer could transition to hyperpycnal flow.
Gohn, G.S.; Powars, D.S.; Dypvik, H.; Edwards, L.E.
2009-01-01
An unusually thick section of sedimentary breccias dominated by target-sediment clasts is a distinctive feature of the late Eocene Chesapeake Bay impact structure. A cored 1766-m-deep section recovered from the central part of this marine-target structure by the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) drilling project contains 678 m of these breccias and associated sediments and an intervening 275-m-thick granite slab. Two sedimentary breccia units consist almost entirely of Cretaceous nonmarine sediments derived from the lower part of the target sediment layer. These sediments are present as coherent clasts and as autoclastic matrix between the clasts. Primary (Cretaceous) sedimentary structures are well preserved in some clasts, and liquefaction and fluidization structures produced at the site of deposition occur in the clasts and matrix. These sedimentary breccias are interpreted as one or more rock avalanches from the upper part of the transient-cavity wall. The little-deformed, unshocked granite slab probably was transported as part of an extremely large slide or avalanche. Water-saturated Cretaceous quartz sand below the slab was transported into the seafloor crater prior to, or concurrently with, the granite slab. Two sedimentary breccia units consist of polymict diamictons that contain cobbles, boulders, and blocks of Cretaceous nonmarine target sediments and less common shocked-rock and melt ejecta in an unsorted, unstratified, muddy, fossiliferous, glauconitic quartz matrix. Much of the matrix material was derived from Upper Cretaceous and Paleogene marine target sediments. These units are interpreted as the deposits of debris flows initiated by the resurge of ocean water into the seafloor crater. Interlayering of avalanche and debris-flow units indicates a partial temporal overlap of the earlier avalanche and later resurge processes. A thin unit of stratified turbidite deposits and overlying laminated fine-grained deposits at the top of the section represents the transition to normal shelf sedimentation. ?? 2009 The Geological Society of America.
Sediment transport-based metrics of wetland stability
Ganju, Neil K.; Kirwan, Matthew L.; Dickhudt, Patrick J.; Guntenspergen, Glenn R.; Cahoon, Donald R.; Kroeger, Kevin D.
2015-01-01
Despite the importance of sediment availability on wetland stability, vulnerability assessments seldom consider spatiotemporal variability of sediment transport. Models predict that the maximum rate of sea level rise a marsh can survive is proportional to suspended sediment concentration (SSC) and accretion. In contrast, we find that SSC and accretion are higher in an unstable marsh than in an adjacent stable marsh, suggesting that these metrics cannot describe wetland vulnerability. Therefore, we propose the flood/ebb SSC differential and organic-inorganic suspended sediment ratio as better vulnerability metrics. The unstable marsh favors sediment export (18 mg L−1 higher on ebb tides), while the stable marsh imports sediment (12 mg L−1 higher on flood tides). The organic-inorganic SSC ratio is 84% higher in the unstable marsh, and stable isotopes indicate a source consistent with marsh-derived material. These simple metrics scale with sediment fluxes, integrate spatiotemporal variability, and indicate sediment sources.
NASA Astrophysics Data System (ADS)
Wiśniewska, Daria; Kramkowski, Mateusz; Tyszkowski, Sebastian
2016-04-01
The studies of the laminated lacustrine sediments play a very important role in the analysis of climate change. They provide valuable information related to the response of the ecosystem to changes in the environment. The condition for the development of the annual lamination is calm sedimentation, which can be compromised by the movement of water caused by waving. The depth to which this movement affects depends on the shape of the lake basin as well as the velocity and direction of the wind. During the study of sedimentary processes of laminated deposits in Lake Czechowskie (Tuchola Forest, North Poland, 53°52'N, 18°14' E, 108 m asl), the following question arose: How strong was the influence of the wind on the processes of lacustrine sedimentation? The key in getting the answers was the use of GIS techniques. Lake Czechowskie has an area of 76.6 hectares; it has two deeps separated by a threshold: a deeper one of 33 m (maximum depth of the basin) in the central-eastern part, and a shallower of 13 m in the western part. The speed of movement of water that is able to move sediment from the bottom of the lake, called the orbital wave velocity, is the basis for the designation of areas where re-suspension takes place. To calculate the wave parameters, the process of mixing, as well as the designation of re-suspension zones, the tool-script Wave Model (Rohweder et al. 2008) in the program ArsGIS 10.1 was used. The input data were wind direction and velocity from the meteorological station of Wirty about 15 km away, bathymetric data from acoustic profiling, and the Maximum Orbital Wave Velocity. The elements taken into account include maximum wind velocity of the multi-year 1996-2013, with particular emphasis on hurricanes Ksawery (December 2013) and Yoda (November 2011), during which wind velocity exceeded 120 km/h. In addition, maximum wind velocity ever recorded in the Polish Lowlands was considered. On the basis of the modelling, the authors delimited the areas where re-suspension takes place in medium and extreme conditions, and those in which wind waving does not affect the mixing of the sediment. The areas particularly predisposed to accumulation and preservation of laminated sediments have been identified. The analysis results allow a better understanding of the re-suspension processes, especially in the littoral zone of the lake. This analysis is also helpful in research of the laminated sediments, and is essential for determining locations for their sampling. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415.
Preserving the PCL during the tibial cut in total knee arthroplasty.
Cinotti, G; Sessa, P; Amato, M; Ripani, F R; Giannicola, G
2017-08-01
Previous studies have shown that the PCL insertion may be damaged during the tibial cut performed in total knee arthroplasty. We investigated the maximum thickness of a tibial cut that preserves the PCL insertion and to what extent the posterior slope of the tibial cut and that of the patient's tibial plateaus affect the outcome. MR images of 83 knees were analysed. The maximum thickness of a tibial cut that preserves the PCL using a posterior slope of 0°, 3°, 5° and parallel to the patient's slope of the tibial plateau, was evaluated. Correlations between the results and the degrees of the posterior slope of the patient's tibial plateaus were also investigated. The maximum thickness of a tibial cut that preserves the entire PCL insertion was, on average, 5.5, 4.7, 4.2 and 3.1 mm when a posterior slope of 0°, 3°, 5° and parallel to the patients' tibial plateaus was used, respectively. When the 25th percentile was considered, the maximum thickness of a tibial cut that preserved the PCL was 4 and 3 mm with a tibial cut of 0° and 5° of posterior slope, respectively. The maximum thickness of a tibial cut that preserved the PCL was significantly greater in patients with a sagittal slope of the tibial plateaus more than 8° than in those with a sagittal slope less than 8°. In cruciate retaining implants, the PCL insertion may be spared in the majority of patients by performing a tibial cut of 4 mm, or even less when a posterior slope of 3°-5° is used. The clinical relevance of our study is that the execution of a conservative tibial cut, followed by a second tibial resection to achieve the thickness required for the tibial component to be implanted, may be an alternative technique to spare the PCL in CR TKA. II.
A Simplified Analytic Investigation of the Riverside Effects of Sediment Diversions
2013-09-01
demonstrated that the river bed consists of a sand layer of variable thickness, underlain by erosion resistant strata (either relict glacial deposits...following analysis. Simplifications and Initial Conditions. Consider a river modeled as a wide rectangular channel of constant width (Figure 1). The...CHETN-VII-13 September 2013 14 Short term effects include the redistribution of sediment by erosion upstream of the diversion to deposition
The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa
Dirks, Paul HGM; Roberts, Eric M; Hilbert-Wolf, Hannah; Kramers, Jan D; Hawks, John; Dosseto, Anthony; Duval, Mathieu; Elliott, Marina; Evans, Mary; Grün, Rainer; Hellstrom, John; Herries, Andy IR; Joannes-Boyau, Renaud; Makhubela, Tebogo V; Placzek, Christa J; Robbins, Jessie; Spandler, Carl; Wiersma, Jelle; Woodhead, Jon; Berger, Lee R
2017-01-01
New ages for flowstone, sediments and fossil bones from the Dinaledi Chamber are presented. We combined optically stimulated luminescence dating of sediments with U-Th and palaeomagnetic analyses of flowstones to establish that all sediments containing Homo naledi fossils can be allocated to a single stratigraphic entity (sub-unit 3b), interpreted to be deposited between 236 ka and 414 ka. This result has been confirmed independently by dating three H. naledi teeth with combined U-series and electron spin resonance (US-ESR) dating. Two dating scenarios for the fossils were tested by varying the assumed levels of 222Rn loss in the encasing sediments: a maximum age scenario provides an average age for the two least altered fossil teeth of 253 +82/–70 ka, whilst a minimum age scenario yields an average age of 200 +70/–61 ka. We consider the maximum age scenario to more closely reflect conditions in the cave, and therefore, the true age of the fossils. By combining the US-ESR maximum age estimate obtained from the teeth, with the U-Th age for the oldest flowstone overlying Homo naledi fossils, we have constrained the depositional age of Homo naledi to a period between 236 ka and 335 ka. These age results demonstrate that a morphologically primitive hominin, Homo naledi, survived into the later parts of the Pleistocene in Africa, and indicate a much younger age for the Homo naledi fossils than have previously been hypothesized based on their morphology. DOI: http://dx.doi.org/10.7554/eLife.24231.001 PMID:28483040
M.S. Riedel; J.M. Vose; D.S. Leigh
2003-01-01
We monitored water quality in the Chattooga River Watershed (NE Georgia, NW South Carolina, and SW North Carolina) to compare sediment TMDLs with observed water quality. A judicial consent decree required the EPA to establish TMDLs in one year. The EPA was unable to fully characterize the sediment budgets of these streams and consequently issued phased sediment TMDLs...
High resolution ultrasonography of the tibial nerve in diabetic peripheral neuropathy.
Singh, Kunwarpal; Gupta, Kamlesh; Kaur, Sukhdeep
2017-12-01
High-resolution ultrasonography of the tibial nerve is a fast and non invasive tool for diagnosis of diabetic peripheral neuropathy. Our study was aimed at finding out the correlation of the cross sectional area and maximum thickness of nerve fascicles of the tibial nerve with the presence and severity of diabetic peripheral neuropathy. 75 patients with type 2 diabetes mellitus clinically diagnosed with diabetic peripheral neuropathy were analysed, and the severity of neuropathy was determined using the Toronto Clinical Neuropathy Score. 58 diabetic patients with no clinical suspicion of diabetic peripheral neuropathy and 75 healthy non-diabetic subjects were taken as controls. The cross sectional area and maximum thickness of nerve fascicles of the tibial nerves were calculated 3 cm cranial to the medial malleolus in both lower limbs. The mean cross sectional area (22.63 +/- 2.66 mm 2 ) and maximum thickness of nerve fascicles (0.70 mm) of the tibial nerves in patients with diabetic peripheral neuropathy compared with both control groups was significantly larger, and statistically significant correlation was found with the Toronto Clinical Neuropathy Score ( p < 0.001). The diabetic patients with no signs of peripheral neuropathy had a larger mean cross sectional area (14.40 +/- 1.72 mm 2 ) and maximum thickness of nerve fascicles of the tibial nerve (0.40 mm) than healthy non-diabetic subjects (12.42 +/- 1.01 mm 2 and 0.30 mm respectively). The cross sectional area and maximum thickness of nerve fascicles of the tibial nerve is larger in diabetic patients with or without peripheral neuropathy than in healthy control subjects, and ultrasonography can be used as a good screening tool in these patients.
ECOLOGICAL ENDPOINT MODELING: EFFECTS OF SEDIMENT ON FISH POPULATIONS
Sediment is one of the main stressors of concern for TMDLs (Total Maximum Daily Loads) for streams, and often it is a concern because of its impact on biological endpoints. The National Research Council (NRC) has recommended that the EPA promote the development of models that ca...
Explaining the discrepancy between forced fold amplitude and sill thickness.
NASA Astrophysics Data System (ADS)
Hoggett, Murray; Jones, Stephen M.; Reston, Timothy; Magee, Craig; Jackson, Christopher AL
2017-04-01
Understanding the behaviour of Earth's surface in response to movement and emplacement of magma underground is important because it assists calculation of subsurface magma volumes, and could feed into eruption forecasting. Studies of seismic reflection data have observed that the amplitude of a forced fold above an igneous sill is usually smaller than the thickness of the sill itself. This observation implies that fold amplitude alone provides only a lower bound for magma volume, and an understanding of the mechanism(s) behind the fold amplitude/sill thickness discrepancy is also required to obtain a true estimate of magma volume. Mechanisms suggested to explain the discrepancy include problems with seismic imaging and varying strain behaviour of the host rock. Here we examine the extent to which host-rock compaction can explain the fold amplitude/sill thickness discrepancy. This mechanism operates in cases where a sill is injected into the upper few kilometres of sedimentary rock that contain significant porosity. Accumulation of sediment after sill intrusion reduces the amplitude of the forced fold by compaction, but the sill itself undergoes little compaction since its starting porosity is almost zero. We compiled a database of good-quality 2D and 3D seismic observations where sill thickness has been measured independently of forced fold geometry. We then backstripped the post-intrusion sedimentary section to reconstruct the amplitude of the forced fold at the time of intrusion. We used the standard compaction model in which porosity decays exponentially below the sediment surface. In all examples we studied, post-sill-emplacement compaction can explain all of the fold amplitude/sill thickness discrepancy, subject to uncertainty in compaction model parameters. This result leads directly to an improved method of predicting magma volume from fold amplitude, including how uncertainty in compaction parameters maps onto uncertainty in magma volume. Our work implies that host-rock deformation at the time of magma intrusion is less important than post-intrusion pure-shear compaction in response to ongoing sediment accumulation. This inference could be tested in cases where an independent direct measurement of the porosity-depth profile overlying the sill is available to better constrain compaction model parameters.
Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars.
Grotzinger, J P; Gupta, S; Malin, M C; Rubin, D M; Schieber, J; Siebach, K; Sumner, D Y; Stack, K M; Vasavada, A R; Arvidson, R E; Calef, F; Edgar, L; Fischer, W F; Grant, J A; Griffes, J; Kah, L C; Lamb, M P; Lewis, K W; Mangold, N; Minitti, M E; Palucis, M; Rice, M; Williams, R M E; Yingst, R A; Blake, D; Blaney, D; Conrad, P; Crisp, J; Dietrich, W E; Dromart, G; Edgett, K S; Ewing, R C; Gellert, R; Hurowitz, J A; Kocurek, G; Mahaffy, P; McBride, M J; McLennan, S M; Mischna, M; Ming, D; Milliken, R; Newsom, H; Oehler, D; Parker, T J; Vaniman, D; Wiens, R C; Wilson, S A
2015-10-09
The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp). Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Salcher, Bernhard; Lomax, Johanna; Frank, Christa; Preusser, Frank; Scholger, Robert; Ottner, Franz; Wagreich, Michael
2016-04-01
Dated multi-proxy records of terrestrial sequences in the Quaternary of the circum-Alpine realm are sparse. This is especially true for those exceeding the time span of the last glacial maximum as extensive glaciers eroded substantial parts of potential records. Outside formerly glaciated regions, preservation space is low in the absence of tectonic subsidence. Foreland terraces forming as a consequence of mountain range uplift may partly account for this gap but are typically dominated by coarse-grained fluvial sediments commonly reflecting only short pulses during cold stage periods. Here we analyze a terrestrial record in the Vienna Basin in order to derive regional climatic and environmental changes of the last c. 250 ka. The Vienna Basin forms as a classical pull-apart feature showing a length of almost 200 km and a width of c. 55 km. Quaternary subsidence is focused along the active Vienna Basin Transfer Fault leading to the formation of a series of narrow strike-slip (sub-) basins and grabens with the Mitterndorf sub-basin being the largest (c. 270 km²) and deepest (c.175 m). The southern part of the basin is confined by the alpine mountain front and fed by two alluvial fans highlighting up to several tens of meters thick coarse grained, massive sediments intercalated by up to few meters thick fine clastic sediments. We investigated the fan's sequence development through core and outcrop sampling applying luminescence dating, magnetostratigraphy, soil and lithofacies classification as well as malacological analysis. The latter comprise the determination and distribution of species and individuals as well as coenological analysis. Data suggest a distinct sequence development with coarse-grained massive sediments abundantly deposited during cold periods (MIS 2 and 6) and fine, overbank sediments and soils, dominantly forming during warmer, Interstadial or Interglacial periods (MIS 5 and 7). Overbanks and soils are generally rich in terrestrial mollusk assemblages giving us the opportunity to reconstruct changes to the paleoenvironment, well compensating for the typically lack of pollen in such environments. For example high species diversity in land-snail assemblages associated with a large quantity of xeric individuals in overbank fines point to narrow riparian habitats along distinct streams. They are limited by dry grasslands were soil forming processes dominate. This is in accordance with the lithofacies data suggesting changes to the river style and transport mode but is also in accordance with the Holocene record. Compared to modern data, land-snails assemblages suggest that the mean annual precipitation was generally lower during most of the covered time period. Similar is true for the estimated mean annual temperature: Only during the late MIS7, malacological data suggests temperatures which may have been slightly higher than today. To our knowledge, the provided chronologies of the land-snail successions do also reflect the first absolute age constraints from assemblages clearly older than the LGM.
Scholz, C.A.; Hutchinson, D.R.
2000-01-01
Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700 km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian–American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9 km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by tying the delta sequences to the site of the Baikal Drilling Project 1993 Drill Hole. Although the drill hole is only 100 m deep, and the base of the cores is only ∼670 ka in age, ages were extrapolated to deeper stratigraphic intervals using the Reflection-Seismic-Radiocarbon method of Cohen et al. (1993). The deep prograding delta sequences now observed in the MCS data probably formed in response to major fluctuations in sediment supply, rather than in response to shifts in lake level. This stratigraphic framework and age model suggest that the deep delta packages developed at intervals of approximately 400 ka and may have formed as a consequence of climate changes affiliated with the northern hemisphere glaciations. The stratigraphic analysis also suggests that the Selenga Basin and Syncline developed as a distinct depocentre only during the past ∼2–3 Ma.
Terminal zone glacial sediment transfer at a temperate overdeepened glacier system
NASA Astrophysics Data System (ADS)
Swift, D. A.; Cook, S. J.; Graham, D. J.; Midgley, N. G.; Fallick, A. E.; Storrar, R.; Toubes Rodrigo, M.; Evans, D. J. A.
2018-01-01
Continuity of sediment transfer through glacial systems is essential to maintain subglacial bedrock erosion, yet transfer at temperate glaciers with overdeepened beds, where subglacial fluvial sediment transport should be greatly limited by adverse slopes, remains poorly understood. Complex multiple transfer processes in temperate overdeepened systems has been indicated by the presence of large frontal moraine systems, supraglacial debris of mixed transport origin, thick basal ice sequences, and englacial thrusts and eskers. At Svínafellsjökull, thrusts comprising decimetre-thick debris-rich bands of stratified facies ice of basal origin, with a coarser size distribution and higher clast content than that observed in basal ice layers, contribute substantially to the transfer of subglacial material in the terminal zone. Entrainment and transfer of material occurs by simple shear along the upper surface of bands and by strain-induced deformation of stratified and firnified glacier ice below. Thrust material includes rounded and well-rounded clasts that are also striated, indicating that fluvial bedload is deposited as subglacial channels approach the overdeepening and then entrained along thrusts. Substantial transfer also occurs within basal ice, with facies type and debris content dependent on the hydrological connectedness of the adverse slope. A process model of transfer at glaciers with terminal overdeepenings is proposed, in which the geometry of the overdeepening influences spatial patterns of ice deformation, hydrology, and basal ice formation. We conclude that the significance of thrusting in maintaining sediment transfer continuity has likely been overlooked by glacier sediment budgets and glacial landscape evolution studies.
Brazilian continental cretaceous
NASA Astrophysics Data System (ADS)
Petri, Setembrino; Campanha, Vilma A.
1981-04-01
Cretaceous deposits in Brazil are very well developed, chiefly in continental facies and in thick sequences. Sedimentation occurred essentially in rift-valleys inland and along the coast. Three different sequences can be distinguished: (1) a lower clastic non-marine section, (2) a middle evaporitic section, (3) an upper marine section with non-marine regressive lithosomes. Continental deposits have been laid down chiefly between the latest Jurassic and Albian. The lower lithostratigraphic unit is represented by red shales with occasional evaporites and fresh-water limestones, dated by ostracods. A series of thick sandstone lithosomes accumulated in the inland rift-valleys. In the coastal basins these sequences are often incompletely preserved. Uplift in the beginning of the Aptian produced a widespread unconformity. In many of the inland rift-valleys sedimentation ceased at that time. A later transgression penetrated far into northeastern Brazil, but shortly after continental sedimentation continued, with the deposition of fluvial sandstones which once covered large areas of the country and which have been preserved in many places. The continental Cretaceous sediments have been laid down in fluvial and lacustrine environments, under warm climatic conditions which were dry from time to time. The fossil record is fairly rich, including besides plants and invertebrates, also reptiles and fishes. As faulting tectonism was rather strong, chiefly during the beginning of the Cretaceous, intercalations of igneous rocks are frequent in some places. Irregular uplift and erosion caused sediments belonging to the remainder of this period to be preserved only in tectonic basins scattered across the country.
NASA Astrophysics Data System (ADS)
Mazumder, S.; Tep, Blecy; Pangtey, K. K. S.; Das, K. K.; Mitra, D. S.
2017-08-01
The Gondwanaland assembly rifted dominantly during Late Carboniferous-Early Permian forming several intracratonic rift basins. These rifts were subsequently filled with a thick sequence of continental clastic sediments with minor marine intercalations in early phase. In western part of India, these sediments are recorded in enclaves of Bikaner-Nagaur and Jaisalmer basins in Rajasthan. Facies correlatives of these sediments are observed in a number of basins that were earlier thought to be associated with the western part of India. The present work is a GIS based approach to reconnect those basins to their position during rifting and reconstruct the tectono-sedimentary environment at that time range. The study indicates a rift system spanning from Arabian plate in the north and extending to southern part of Africa that passes through Indus basin, western part of India and Madagascar, and existed from Late Carboniferous to Early Jurassic. Extensions related to the opening of Neo-Tethys led to the formation of a number of cross trends in the rift systems that acted as barriers to marine transgressions from the north as well as disrupted the earlier continuous longitudinal drainage systems. The axis of this rift system is envisaged to pass through present day offshore Kutch and Saurashtra and implies a thick deposit of Late Carboniferous to Early Jurassic sediments in these areas. Based on analogy with other basins associated with this rift system, these sediments may be targeted for hydrocarbon exploration.
Geology and tectonic development of the continental margin north of Alaska
Grantz, A.; Eittreim, S.; Dinter, D.A.
1979-01-01
The continental margin north of Alaska, as interpreted from seismic reflection profiles, is of the Atlantic type and consists of three sectors of contrasting structure and stratigraphy. The Chukchi sector, on the west, is characterized by the deep late Mesozoic and Tertiary North Chukchi basin and the Chukchi Continental Borderland. The Barrow sector of central northern Alaska is characterized by the Barrow arch and a moderately thick continental terrace build of Albian to Tertiary clastic sediment. The terrace sedimentary prism is underlain by lower Paleozoic metasedimentary rocks. The Barter Island sector of northeastern Alaska and Yukon Territory is inferred to contain a very thick prism of Jurassic, Cretaceous and Tertiary marine and nonmarine clastic sediment. Its structure is dominated by a local deep Tertiary depocenter and two regional structural arches. We postulate that the distinguishing characteristics of the three sectors are inherited from the configuration of the rift that separated arctic Alaska from the Canadian Arctic Archipelago relative to old pre-rift highlands, which were clastic sediment sources. Where the rift lay relatively close to northern Alaska, in the Chukchi and Barter Island sectors, and locally separated Alaska from the old source terranes, thick late Mesozoic and Tertiary sedimentary prisms extend farther south beneath the continental shelf than in the intervening Barrow sector. The boundary between the Chukchi and Barrow sectors is relatively well defined by geophysical data, but the boundary between the Barrow and Barter Island sectors can only be inferred from the distribution and thickness of Jurassic and Cretaceous sedimentary rocks. These boundaries may be extensions of oceanic fracture zones related to the rifting that is postulated to have opened the Canada Basin, probably beginning during the Early Jurassic. ?? 1979.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staub, J.R.; Richards, B.K.
1993-07-01
Coals from the No. 5 Block coal beds (Westphalian D) of the central Appalachian basin are noted for their blocky, dull character and their low ash and low sulfur content. The beds are multiple benched, with rock partings separating benches. Individual benches have limited lateral extent and, where thick, are dominated by bright, high-ash coal at the base and dull, low-ash coal in the upper parts. The duller coals contain more exinite-group and inertinite-group macerals than the brighter coals. These coal beds are encased in sandstone units dominated by fining-upward sequences. The overall depositional setting is an alluvial-plain environment withmore » northwest-flowing channels spaced approximately 20 km apart. The channels were flanked by clastic swamps about 7 km wide. Low-ash peat accumulated in areas of the flood plain most distant from the channels. These peat-accumulating swamps were about 8 km across. In a few instances low-frequency flood events introduced fine siliciclastic sediment into the peat swamps, depositing a thin layer of sediment on top of the peat. This sediment layer is thicker where the underlying coal is the thickest. These thick coal areas are topographically lower than surrounding coal areas. This relationship between coal thickness, parting thickness, and topography indicates that these peat swamps were planar at the time of deposition. Individual coal benches contain abundant preserved cellular tissue (telocollinite, semifusinite, and fusinite) at most locations, suggesting that robust vegetation was widespread in the swamps and that the morphology was planar. The high concentrations of exinite-group an inertinite-group macerals in the upper parts of benches resulted from selective decomposition and oxidation of the peat in subaerial and aquatic planar-swamp environments.« less
NASA Astrophysics Data System (ADS)
Chen, Wei; de Swart, Huib E.
2018-03-01
This study investigates the longitudinal variation of lateral entrapment of suspended sediment, as is observed in some tidal estuaries. In particular, field data from the Yangtze Estuary are analysed, which reveal that in one cross-section, two maxima of suspended sediment concentration (SSC) occur close to the south and north sides, while in a cross-section 2 km down-estuary, only one SSC maximum on the south side is present. This pattern is found during both spring tide and neap tide, which are characterised by different intensities of turbulence. To understand longitudinal variation in lateral trapping of sediment, results of a new three-dimensional exploratory model are analysed. The hydrodynamic part contains residual flow due to fresh water input, density gradients and Coriolis force and due to channel curvature-induced leakage. Moreover, the model includes a spatially varying eddy viscosity that accounts for variation of intensity of turbulence over the spring-neap cycle. By imposing morphodynamic equilibrium, the two-dimensional distribution of sediment in the domain is obtained analytically by a novel procedure. Results reveal that the occurrence of the SSC maxima near the south side of both cross-sections is due to sediment entrapment by lateral density gradients, while the second SSC maximum near the north side of the first cross-section is by sediment transport due to curvature-induced leakage. Coriolis deflection of longitudinal flow also contributes the trapping of sediment near the north side. This mechanism is important in the upper estuary, where the flow due to lateral density gradients is weak.
Paulson, A.J.; Norton, D.
2008-01-01
Concentrations of mercury (Hg) were measured in six dated cores from four lakes in western Whatcom County, Washington, USA, that were at various bearings from a chlor-alkali plant, two municipal waste incinerators and a municipal sewage sludge incinerator. The importance of atmospheric emissions of Hg from these local municipal and industrial sources was evaluating by comparing the temporal trends in sedimentation of the lake cores with the emission history of each Hg species and by examining the geographical distribution of Hg sedimentation in relation to the region's primary wind pattern. Local municipal and industrial sources of atmospheric Hg were not responsible for the majority of the Hg in the upper layer of sediments of Whatcom County lakes because of (1) the significant enrichment of Hg in lake sediments prior to emissions of local industrial and municipal sources in 1964, (2) smaller increases in Hg concentrations occurred after 1964, (3) the similarity of maximum enrichments found in Whatcom County lakes to those in rural lakes around the world, (4) the inconsistency of the temporal trends in Hg sedimentation with the local emission history, and (5) the inconsistency of the geographic trends in Hg sedimentation with estimated deposition. Maximum enrichment ratios of Hg in lake sediments between 2 and 3 that are similar to rural areas in Alaska, Minnesota, and New England suggest that global sources of Hg were primarily responsible for increases of Hg in Whatcom County lakes beginning about 1900. ?? 2007 GovernmentEmployee: U.S. Government, Department of Interior, U.S. Geological Survey.
Zopfi, J; Kjaer, T; Nielsen, L P; Jørgensen, B B
2001-12-01
Microsensors, including a recently developed NO3(-) biosensor, were applied to measure O(2) and NO3(-) profiles in marine sediments from the upwelling area off central Chile and to investigate the influence of Thioploca spp. on the sedimentary nitrogen metabolism. The studies were performed in undisturbed sediment cores incubated in a small laboratory flume to simulate the environmental conditions of low O(2), high NO3(-), and bottom water current. On addition of NO3(-) and NO2(-), Thioploca spp. exhibited positive chemotaxis and stretched out of the sediment into the flume water. In a core densely populated with Thioploca, the penetration depth of NO3(-) was only 0.5 mm and a sharp maximum of NO3(-) uptake was observed 0.5 mm above the sediment surface. In sediments with only few Thioploca spp., NO3(-) was detectable down to a depth of 2 mm and the maximum consumption rates were observed within the sediment. No chemotaxis toward nitrous oxide (N2O) was observed, which is consistent with the observation that Thioploca does not denitrify but reduces intracellular NO3(-) to NH(4)(+). Measurements of the intracellular NO3(-) and S(0) pools in Thioploca filaments from various depths in the sediment gave insights into possible differences in the migration behavior between the different species. Living filaments containing significant amounts of intracellular NO3(-) were found to a depth of at least 13 cm, providing final proof for the vertical shuttling of Thioploca spp. and nitrate transport into the sediment.
Sensitivity of estuarine turbidity maximum to settling velocity, tidal mixing, and sediment supply
Warner, J.C.; Sherwood, C.R.; Geyer, W.R.; ,
2007-01-01
Estuarine turbidity maximum, numerical modeling, settling velocity, stratification The spatial and temporal distribution of suspended material in an Estuarine Turbidity Maxima (ETM) is primarily controlled by particle settling velocity, tidal mixing, shear-stress thresholds for resuspension, and sediment supply. We vary these parameters in numerical experiments of an idealized two-dimensional (x-z) estuary to demonstrate their affects on the development and retention of particles in an ETM. Parameters varied are the settling velocity (0.01, 0.1, and 0.5 mm/s), tidal amplitude (0.4 m 12 hour tide and 0.3 to 0.6 m 14 day spring neap cycle), and sediment availability (spatial supply limited or unlimited; and temporal supply as a riverine pulse during spring vs. neap tide). Results identify that particles with a low settling velocity are advected out of the estuary and particles with a high settling velocity provide little material transport to an ETM. Particles with an intermediate settling velocity develop an ETM with the greatest amount of material retained. For an unlimited supply of sediment the ETM and limit of salt intrusion co-vary during the spring neap cycle. The ETM migrates landward of the salt intrusion during spring tides and seaward during neap tides. For limited sediment supply the ETM does not respond as an erodible pool of sediment that advects landward and seaward with the salt front. The ETM is maintained seaward of the salt intrusion and controlled by the locus of sediment convergence in the bed. For temporal variability of sediment supplied from a riverine pulse, the ETM traps more sediment if the pulse encounters the salt intrusion at neap tides than during spring tides. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Prasad, Moyye Devi; Nagarajan, D.
2018-05-01
An axisymmetric dome of 70 mm in diameter and 35 mm in depth was formed using the ISF process using varying proportions (25, 50 and 75%) of spiral (S) and helical (H) tool path combinations as a single tool path strategy, on a 2 mm thickness commercially pure aluminium sheets. A maximum forming depth of ˜30 mm was observed on all the components, irrespective of the different tool path combinations employed. None of the components were fractured for the different tool path combinations used. The springback was also same and uniform for all the tool path combinations employed, except for the 75S25H which showed slightly larger springback. The wall thickness reduced drastically up to a certain forming depth and increased with the increase in forming depth for all the tool path combinations. The maximum thinning occurred near the maximum wall angle region for all the components. The wall thickness improved significantly (around 10-15%) near the maximum wall angle region for the 25S75H combination than that of the complete spiral and other tool path strategies. It is speculated that this improvement in wall thickness may be mainly due to the combined contribution of the simple shear and uniaxial dilatation deformation modes of the helical tool path strategy in the 25S75H combination. This increase in wall thickness will greatly help in reducing the plastic instability and postpone the early failure of the component.
Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Takahashi, Hidekazu; Uo, Motohiro
2018-01-01
This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS) and with either (i) 1.6 mm thick AP (AP-APS) or (ii) 1.6 mm thick GF (GF-APS) covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa) and flexural modulus (7.53 GPa) than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa). Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased. PMID:29854774
Wada, Takahiro; Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Ueno, Toshiaki; Takahashi, Hidekazu; Uo, Motohiro
2018-01-01
This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS) and with either (i) 1.6 mm thick AP (AP-APS) or (ii) 1.6 mm thick GF (GF-APS) covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa) and flexural modulus (7.53 GPa) than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa). Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased.