Examination of sustained gait speed during extended walking in individuals with chronic stroke.
Altenburger, Peter A; Dierks, Tracy A; Miller, Kristine K; Combs, Stephanie A; Van Puymbroeck, Marieke; Schmid, Arlene A
2013-12-01
To determine if individuals with chronic stroke were able to sustain their peak gait speed during the 6-minute walk test (6MWT), and to explore this sustainability across community ambulation potential subgroups. Prospective cross-sectional study. University-based research laboratory, hospitals, and stroke support groups. A sample of individuals with chronic stroke (N=48) completed a series of questionnaires and physical outcome measures, including gait mat assessment, during a single visit. Not applicable; 1-time cross-sectional data collection. During the 6MWT, we measured peak gait speed and end gait speed to assess sustainability, along with beginning gait speed, total distance walked, and rating of perceived exertion. We also assessed maximum gait speed during the 10-meter walk test (10MWT). Finally, we examined these gait outcomes across the subgroups. During the 6MWT, peak gait speed declined from .89m/s (SD=.38) to an end speed of .82m/s (SD=.36), whereas perceived exertion increased from 7.7 (SD=2.6) to 11.8 (SD=3.6). This peak gait speed was slower than the 10MWT maximum speed of 1.06m/s (SD=.51), but faster than the 6MWT beginning speed of .81m/s (SD=.34). The unlimited community ambulator subgroup was the primary contributor to sustainability differences. Predicting community ambulation potential based on the discrete gait speed from the 10MWT and endurance based on the average from the 6MWT might be incomplete if gait speed sustainability is not also assessed. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Feder, M E
1986-03-01
To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.
Svendsen, Jon C.; Tirsgaard, Bjørn; Cordero, Gerardo A.; Steffensen, John F.
2015-01-01
Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; Ucrit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3) there is a trade-off between maximum sustained swimming speed (Usus) and minimum cost of transport (COTmin); and (4) variation in Usus correlates positively with optimum swimming speed (Uopt; i.e., the speed that minimizes energy expenditure per unit of distance traveled). Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg−1. Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between Ucrit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced Ucrit. We found no evidence of a trade-off between Usus and COTmin. In fact, data revealed significant negative correlations between Usus and COTmin, suggesting that individuals with high Usus also exhibit low COTmin. Finally, there were positive correlations between Usus and Uopt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming economy and optimum speed. PMID:25741285
Sepulveda, C; Dickson, K A
2000-10-01
Tunas (Scombridae) have been assumed to be among the fastest and most efficient swimmers because they elevate the temperature of the slow-twitch, aerobic locomotor muscle above the ambient water temperature (endothermy) and because of their streamlined body shape and use of the thunniform locomotor mode. The purpose of this study was to test the hypothesis that juvenile tunas swim both faster and more efficiently than their ectothermic relatives. The maximum sustainable swimming speed (U(max), the maximum speed attained while using a steady, continuous gait powered by the aerobic myotomal muscle) and the net cost of transport (COT(net)) were compared at 24 degrees C in similar-sized (116-255 mm fork length) juvenile scombrids, an endothermic tuna, the kawakawa (Euthynnus affinis) and the ectothermic chub mackerel (Scomber japonicus). U(max) and COT(net) were measured by forcing individual fish to swim in a temperature-controlled, variable-speed swimming tunnel respirometer. There were no significant interspecific differences in the relationship between U(max) and body mass or fork length or in the relationship between COT(net) and body mass or fork length. Muscle temperatures were elevated by 1.0-2.3 degrees C and 0.1-0.6 degrees C above water temperature in the kawakawa and chub mackerel, respectively. The juvenile kawakawa had significantly higher standard metabolic rates than the chub mackerel, because the total rate of oxygen consumption at a given swimming speed was higher in the kawakawa when the effects of fish size were accounted for. Thus, juvenile kawakawa are not capable of higher sustainable swimming speeds and are not more efficient swimmers than juvenile chub mackerel.
NASA Astrophysics Data System (ADS)
Baidourela, Aliya; Jing, Zhen; Zhayimu, Kahaer; Abulaiti, Adili; Ubuli, Hakezi
2018-04-01
Wind erosion and sandstorms occur in the neighborhood of exposed dust sources. Wind erosion and desertification increase the frequency of dust storms, deteriorate air quality, and damage the ecological environment and agricultural production. The Xinjiang region has a relatively fragile ecological environment. Therefore, the study of the characteristics of maximum wind speed and wind direction in this region is of great significance to disaster prevention and mitigation, the management of activated dunes, and the sustainable development of the region. Based on the latest data of 71 sites in Xinjiang, this study explores the temporal evolution and spatial distribution of maximum wind speed in Xinjiang from 1993 to 2013, and highlights the distribution of annual and monthly maximum wind speed and the characteristics of wind direction in Xinjiang. Between 1993 and 2013, Ulugchat County exhibited the highest number of days with the maximum wind speed (> 17 m/s), while Wutian exhibited the lowest number. In Xinjiang, 1999 showed the highest number of maximum wind speed days (257 days), while 2013 showed the lowest number (69 days). Spring and summer wind speeds were greater than those in autumn and winter. There were obvious differences in the direction of maximum wind speed in major cities and counties of Xinjiang. East of the Tianshan Mountains, maximum wind speeds are mainly directed southeast and northeast. North and south of the Tianshan Mountains, they are mainly directed northwest and northeast, while west of the Tianshan Mountains, they are mainly directed southeast and northwest.
Difficulty with Out-Loud and Silent Reading in Glaucoma
Ramulu, Pradeep Y.; Swenor, Bonnielin K.; Jefferys, Joan L.; Friedman, David S.; Rubin, Gary S.
2013-01-01
Purpose. We evaluated the impact of glaucoma on out-loud and silent reading. Methods. Glaucoma patients with bilateral visual field (VF) loss and normally-sighted controls had the following parameters measured: speed reading an International Reading Speed Text (IReST) passage out loud, maximum out-loud MNRead chart reading speed, sustained (30 minutes) silent reading speed, and change in reading speed during sustained silent reading. Results. Glaucoma subjects read slower than controls on the IReST (147 vs. 163 words per minute [wpm], P < 0.001), MNRead (172 vs. 186 wpm, P < 0.001), and sustained silent (179 vs. 218 wpm, P < 0.001) tests. In multivariable analyses adjusting for age, race, sex, education, employment, and cognition, IReST and MNRead reading speeds were 12 wpm (6%–7%) slower among glaucoma subjects compared to controls (P < 0.01 for both), while sustained silent reading speed was 16% slower (95% confidence interval [CI] = −24 to −6%, P = 0.002). Each 5 decibel (dB) decrement in better-eye VF mean deviation was associated with 6 wpm slower IReST reading (95% CI = −9 to −3%, P < 0.001), 5 wpm slower MNRead reading (95% CI = −7 to −2%, P < 0.001), and 9% slower sustained silent reading (95% CI = −13 to −6%, P < 0.001). A reading speed decline of 0.5 wpm/min or more over the sustained silent reading period was more common among glaucoma subjects than controls (odds ratio [OR] = 2.2, 95% CI = 1.0–4.9, P < 0.05). Conclusions. Reading speed is slower among glaucoma patients with bilateral VF loss, with the greatest impact present during sustained silent reading. Persons with glaucoma fatigue during silent reading, resulting in slower reading over time. PMID:23074207
2012-01-01
Background Previous studies demonstrated that stroke survivors have a limited capacity to increase their walking speeds beyond their self-selected maximum walking speed (SMWS). The purpose of this study was to determine the capacity of stroke survivors to reach faster speeds than their SMWS while walking on a treadmill belt or while being pushed by a robotic system (i.e. “push mode”). Methods Eighteen chronic stroke survivors with hemiplegia were involved in the study. We calculated their self-selected comfortable walking speed (SCWS) and SMWS overground using a 5-meter walk test (5-MWT). Then, they were exposed to walking at increased speeds, on a treadmill and while in “push mode” in an overground robotic device, the KineAssist, until they were tested at a speed that they could not sustain without losing balance. We recorded the time and number of steps during each trial and calculated gait speed, average cadence and average step length. Results Maximum walking speed in the “push mode” was 13% higher than the maximum walking speed on the treadmill and both were higher (“push mode”: 61%; treadmill: 40%) than the maximum walking speed overground. Subjects achieved these faster speeds by initially increasing both step length and cadence and, once individuals stopped increasing their step length, by only increasing cadence. Conclusions With post-stroke hemiplegia, individuals are able to walk at faster speeds than their SMWS overground, when provided with a safe environment that provides external forces that requires them to attempt dynamic stability maintenance at higher gait speeds. Therefore, this study suggests the possibility that, given the appropriate conditions, people post-stroke can be trained at higher speeds than previously attempted. PMID:23057500
ASSESSMENT OF MAXIMUM SUSTAINABLE SWIMMING PERFORMANCE IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)
Wilson; Egginton
1994-07-01
Levels of swimming activity in fishes have been divided into three categories on the basis of the time a given speed can be maintained before the onset of fatigue (Beamish, 1978): sustained (more than 200 min), prolonged (20 s to 200 min) and burst swimming (less than 20 s). The locomotory capacity of a given species reflects both its lifestyle and its body form, although definitions of performance may vary. It is generally accepted that only the aerobic ('red') muscle fibres should be active at truly sustainable swimming speeds, i.e. at speeds that can be maintained indefinitely without fatigue. However, the standard laboratory method of evaluating the maximum sustainable swimming speed (Ucrit; Brett, 1964) almost certainly entails the recruitment of at least some of the rapidly fatigable fast glycolytic ('white') fibres at sub-critical speeds and undoubtedly complicates the evaluation of maximal cardiovascular performance. It would therefore be useful to have an objective and reproducible measure of truly sustainable performance that, by definition, relies solely on aerobic muscle activity. Electromyography (EMG) has been used to examine the pattern of white muscle recruitment following thermal acclimation in striped bass, Morine saxatilis (Sisson and Sidell, 1987). We wished to incorporate this method into a study of the acclimatory responses to chronic changes in environmental temperature of the cardiovascular and locomotory systems in rainbow trout (Wilson and Egginton, 1992). The present communication presents results on the cardiovascular performance and blood chemistry, at rest and during maximal aerobic exercise, of rainbow trout acclimated to 11 °C, as a validation of the methodology currently in use with fish acclimated to seasonal temperature extremes (Taylor et al. 1992). Different acclimation temperatures are known to produce compensatory changes in the relative proportions of red and white muscle mass (Sidell and Moerland, 1989). The aim of these continuing investigations is to compare the anatomical, cardiovascular and locomotory limitations to aerobic exercise over the full temperature range of a eurythermal fish species.
Farrell, A P
2007-11-29
A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.
Supertyphoon Yuri, Western Pacific Ocean
1991-12-01
Supertyphoon Yuri began development approximately 1000 miles east of the Philippine Islands. At the time this photo was taken, Yuri was about 1000 nautical miles in diameter and had estimated maximum sustained wind speeds of 145 mph, gusting to 170 mph. This oblique view shows the well formed eye of Yuri and the raised segment of clouds at the cusp of the eye indicating very high wind speeds within the vortex.
Influence of temperature on muscle recruitment and muscle function in vivo.
Rome, L C
1990-08-01
Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.
Li, Xiuming; Zhang, Yaoguang; Li, Xiaojin; Zheng, Hua; Peng, Jianglan
2018-01-01
ABSTRACT The objectives of this study were to examine whether sustained exercise training at four water velocities, i.e. nearly still water (control), 1 body length (BL) s−1, 2 BL s−1 and 4 BL s−1, has effects on swimming performance and digestive metabolism in juvenile black carp (Mylopharyngodon piceus). The results demonstrated that fish subjected to sustained training at 2 and 4 BL s−1 showed significantly higher critical swimming speed (Ucrit) and maximum metabolic rate (MMR) over the control group. Fish subjected to sustained training at 1 and 2 BL s−1 showed a significantly (30 and 54%) prolonged duration, 14 and 17% higher postprandial ṀO2 increment (i.e. ṀO2peak), and 62 and 92% more energy expended on specific dynamic action (SDA), respectively, after consuming a similar meal over fish kept in nearly still water. These results suggest that (1) sustained exercise training at a higher speed (2 or 4 BL s−1) had a positive influence on the aerobic swimming performance of juvenile M. piceus, which may be associated with improved aerobic metabolism; and (2) sustained exercise training at a lower speed (1 or 2 BL s−1) resulted in elevated postprandial metabolic responses in juvenile M. piceus. PMID:29463516
Goodman, Andrew D; Bethoux, Francois; Brown, Theodore R; Schapiro, Randall T; Cohen, Ron; Marinucci, Lawrence N; Henney, Herbert R
2015-01-01
Background: In Phase 3 double-blind trials (MS-F203 and MS-F204), dalfampridine extended release tablets 10 mg twice daily (dalfampridine-ER; prolonged-release fampridine in Europe; fampridine modified or sustained release elsewhere) improved walking speed relative to placebo in patients with multiple sclerosis (MS). Objectives: Evaluation of long-term safety and efficacy of dalfampridine-ER in open-label extensions (MS-F203EXT, MS-F204EXT). Methods: Patients received dalfampridine-ER 10 mg twice daily; and had Timed 25-Foot Walk (T25FW) assessments at 2, 14 and 26 weeks, and then every 6 months. Subjects were categorized as dalfampridine-ER responders or non-responders, based on their treatment response in the double-blind parent trials that assessed T25FW. Results: We had 269 patients enter MS-F203EXT and 154 patients complete it; for a maximum exposure of 5 years. We had 214 patients enter MS-F204EXT and 146 complete it; for a maximum exposure of 3.3 years. No new safety signals emerged and dalfampridine-ER tolerability was consistent with the double-blind phase. Improvements in walking speed were lost after dalfampridine-ER was discontinued in the parent trial, but returned by the 2-week assessment after re-initiation of the drug. Throughout the extensions, mean improvement in walking speed declined, but remained improved, among the double-blind responders as compared with non-responders. Conclusions: The dalfamipridine-ER safety profile was consistent with the parent trials. Although walking speed decreased over time, dalfampridine-ER responders continued to show improved walking speed, which was sustained compared with non-responders. PMID:25583832
Rose, K. A.; Bates, K. T.; Nudds, R. L.; Codd, J. R.
2016-01-01
Sex differences in locomotor performance may precede the onset of sexual maturity and/or arise concomitantly with secondary sex characteristics. Here, we present the first study to quantify the terrestrial locomotor morphology, energetics and kinematics in a species, either side of sexual maturation. In domestic leghorn chickens (Gallus gallus domesticus) sexual maturation brings about permanent female gravidity and increased male hind limb muscle mass. We found that the sexes of a juvenile cohort of leghorns shared similar maximum sustainable speeds, while in a sexually mature cohort maximum sustainable speeds were greater by 67% (males) and 34% (females). Furthermore, relative to that in juveniles of the same sex, the absolute duration of leg swing was longer in mature males and shorter in mature females. Consequently, the proportion of a stride that each limb was in contact with the ground (duty factor) was higher in sexually mature females compared to males. Modulation of the duty factor with the development of secondary sex characteristics may act to minimize mechanical work in males; and minimise mechanical power and/or peak force in females. A greater incremental response of mass-specific metabolic power to speed in males compared to females was common to both age cohorts and, therefore, likely results from physiological sexual dimorphisms that precede sexual maturation. PMID:27068682
Influence of maneuverability on helicopter combat effectiveness
NASA Technical Reports Server (NTRS)
Falco, M.; Smith, R.
1982-01-01
A computational procedure employing a stochastic learning method in conjunction with dynamic simulation of helicopter flight and weapon system operation was used to derive helicopter maneuvering strategies. The derived strategies maximize either survival or kill probability and are in the form of a feedback control based upon threat visual or warning system cues. Maneuverability parameters implicit in the strategy development include maximum longitudinal acceleration and deceleration, maximum sustained and transient load factor turn rate at forward speed, and maximum pedal turn rate and lateral acceleration at hover. Results are presented in terms of probability of skill for all combat initial conditions for two threat categories.
Estimating Tropical Cyclone Surface Wind Field Parameters with the CYGNSS Constellation
NASA Astrophysics Data System (ADS)
Morris, M.; Ruf, C. S.
2016-12-01
A variety of parameters can be used to describe the wind field of a tropical cyclone (TC). Of particular interest to the TC forecasting and research community are the maximum sustained wind speed (VMAX), radius of maximum wind (RMW), 34-, 50-, and 64-kt wind radii, and integrated kinetic energy (IKE). The RMW is the distance separating the storm center and the VMAX position. IKE integrates the square of surface wind speed over the entire storm. These wind field parameters can be estimated from observations made by the Cyclone Global Navigation Satellite System (CYGNSS) constellation. The CYGNSS constellation consists of eight small satellites in a 35-degree inclination circular orbit. These satellites will be operating in standard science mode by the 2017 Atlantic TC season. CYGNSS will provide estimates of ocean surface wind speed under all precipitating conditions with high temporal and spatial sampling in the tropics. TC wind field data products can be derived from the level-2 CYGNSS wind speed product. CYGNSS-based TC wind field science data products are developed and tested in this paper. Performance of these products is validated using a mission simulator prelaunch.
WIND SPEED Monitoring in Northern Eurasia
NASA Astrophysics Data System (ADS)
Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.
2016-12-01
The wind regime of Russia varies a great deal due to the large size of the country's territory and variety of climate and terrain conditions. Changes in the regime of surface wind are of great practical importance. They can affect heat and water balance. Strong wind is one of the most hazardous meteorological event for various sectors of economy and for infrastructure. The main objective of this research is to monitoring wind speed change in Northern Eurasia At meteorological stations wind speed and wind direction are measured at the height of 10-12 meters over the land surface with the help of wind meters or wind wanes. Calculations were made on the basis of data for the period of 1980-2015. It allowed the massive scale disruption of homogeneity to be eliminated and sufficient period needed to obtain sustainable statistic characteristics to be retained. Data on average and maximum wind speed measured at 1457 stations of Russia were used. The analysis of changes in wind characteristics was made on the basis of point data and series of average characteristics obtained for 18 quasi-homogeneous climatic regions. Statistical characteristics (average and maximum values of wind speed, prevailing wind direction, values of the boundary of the 90%, 95% and 99%-confidence interval in the distribution of maximum wind speed) were obtained for all seasons and for the year as a whole. Values of boundaries of the 95% and 99%-confidence interval in the distribution of maximum wind speed were considered as indicators of extremeness of the wind regime. The trend of changes in average and maximum wind speed was assessed with a linear trend coefficient. A special attention was paid to wind changes in the Arctic where dramatic changes in surface air temperature and sea ice extent and density have been observed during the past decade. The analysis of the results allowed seasonal and regional features of changes in the wind regime on the territory of the northern part of Eurasia to be determined. The outcomes could help to provide specific recommendations to users of hydrometeorological information for making reasonable decisions to minimize losses caused by adverse wind-related weather conditions. The work was supported by the Ministry of Education and Science of the Russian Federation (grant 14.B25.31.0026).
Dickson, Kathryn A; Donley, Jeanine M; Sepulveda, Chugey; Bhoopat, Lisa
2002-04-01
The effects of a 6 degrees C difference in water temperature on maximum sustained swimming speed, swimming energetics and swimming kinematics were measured in the chub mackerel Scomber japonicus (Teleostei: Scombridae), a primarily coastal, pelagic predator that inhabits subtropical and temperate transition waters of the Atlantic, Pacific and Indian Oceans. New data for chub mackerel acclimated to 18 degrees C are compared with published data from our laboratory at 24 degrees C. Twelve individuals acclimated to each of two temperatures (15.6-26.3 cm fork length, FL, and 34-179 g at 18 degrees C; 14.0-24.7 cm FL and 26-156 g at 24 degrees C) swam at a range of speeds in a temperature-controlled Brett-type respirometer, at the respective acclimation temperature. At a given fish size, the maximum speed that S. japonicus was able to maintain for a 30-min period, while swimming steadily using slow, oxidative locomotor muscle (U(max,c)), was significantly greater at 24 than at 18 degrees C (52.5-97.5 cm s(-1) at 18 degrees C and 70-120 cm s(-1) at 24 degrees C). At a given speed and fish size, the rate of oxygen consumption (VO(2)) was significantly higher at 24 than at 18 degrees C because of a higher net cost of transport (1073-4617 J km(-1) kg(-1) at 18 degrees C and 2708-14895 J km(-1) kg(-1) at 24 degrees C). Standard metabolic rate, calculated by extrapolating the logO(2) versus swimming speed relationship to zero speed, did not vary significantly with temperature or fish mass (126.4+/-67.2 mg O(2) h(-1) kg(-1) at 18 degrees C and 143.2+/-80.3 mg O(2) h(-1) kg(-1) at 24 degrees C; means +/- S.D., N=12). Swimming kinematics was quantified from high-speed (120 Hz) video recordings analyzed with a computerized, two-dimensional motion-analysis system. At a given speed and fish size, there were no significant effects of temperature on tail-beat frequency, tail-beat amplitude or stride length, but propulsive wavelength increased significantly with temperature as a result of an increase in propulsive wave velocity. Thus, the main effects of temperature on chub mackerel swimming were increases in both U(max,c) and the net cost of swimming at 24 degrees C. Like other fishes, S. japonicus apparently must recruit more slow, oxidative muscle fibers to swim at a given sustainable speed at the lower temperature because of the reduced power output. Thus, the 24 degrees C mackerel reach a higher speed before they must recruit the fast, glycolytic fibers, thereby increasing U(max,c) at 24 degrees C. By quantifying in vivo the effects of temperature on the swimming performance of an ectothermic species that is closely related to the endothermic tunas, this study also provides evidence that maintaining the temperature of the slow, oxidative locomotor muscle at 6 degrees C or more above ambient water temperature in tunas should significantly increase sustainable swimming speeds, but also increase the energetic cost of swimming, unless cardiac output limits muscle performance.
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Determination of maximum test speed... Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test speed from a lug curve. This maximum test speed is used in §§ 94.105, 94.106, and § 94.109 (including the...
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Determination of maximum test speed... Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test speed from a lug curve. This maximum test speed is used in §§ 94.105, 94.106, and § 94.109 (including the...
Description and Validation of a Test to Evaluate Sustained Silent Reading
Ramulu, Pradeep Y.; Swenor, Bonnielin K.; Jefferys, Joan L.; Rubin, Gary S.
2013-01-01
Purpose. To construct and validate a test of sustained silent reading. Methods. Standardized 7300 and 7600 word passages were written to evaluate sustained silent reading. Two hundred forty subjects validated whether comprehension questions could discriminate subjects who did and did not read the passage. To evaluate test–retest properties, 49 subjects silently read the standardized passages on separate days. Sixty glaucoma suspect controls and 64 glaucoma subjects had their out loud reading evaluated with the MNRead card and an International Reading Speed Texts (IReST) passage, and their silent reading measured using the 7300 word passage. Sustained silent reading parameters included reading speed and reading speed slope over time. Results. Comprehension questions distinguished individuals who had and had not read passage materials. Bland-Altman analyses of intersession sustained reading speed and reading speed slope demonstrated 95% coefficients of repeatability of 57 words per minute (wpm) and 2.76 wpm/minute. Sustained silent reading speed was less correlated with MNRead (r = 0.59) or IReST passage (r = 0.68) reading speeds than the correlation of these two measures of out loud reading speed with each other (r = 0.72). Sustained silent reading speed was more likely to differ from IReST reading speed by more than 50% in rapid silent readers (odds ratio [OR] = 29, 95% confidence interval [CI] = 10–87), and comparisons of sustained and out loud reading speeds demonstrated proportional error in Bland-Altman analyses. Conclusions. Tests of out loud reading do not accurately reflect silent reading speed in individuals with normal vision or glaucoma. The described test offers a standardized way to evaluate the impact of eye disease and/or visual rehabilitation on sustained silent reading. PMID:23258146
Impact of the Ability to Divide Attention on Reading Performance in Glaucoma.
Swenor, Bonnielin K; Varadaraj, Varshini; Dave, Paulomi; West, Sheila K; Rubin, Gary S; Ramulu, Pradeep Y
2017-05-01
To determine if the ability to divide attention affects the relationship between glaucoma-related vision loss and reading speed. Better eye mean deviation (MD), contrast sensitivity (CS), and better-eye distance visual acuity (VA) were measured in 28 participants with glaucoma and 21 controls. Reading speeds were assessed using MNRead, IRest, and sustained silent reading tests (words per minute, wpm). The ability to divide attention was measured using the Brief Test of Attention (BTA; scored 0-10). Multivariable linear regression models were used to determine the relationship between visual factors and reading speeds. Effect modification by BTA score (low BTA: <7; high BTA: ≥7) was examined. Worse CS (per 0.1 log unit) was associated with slower maximum reading speed on MNRead test for participants with low BTA scores (β = -9 wpm; 95% confidence interval [CI]: -16, -2), but not for those with high BTA scores (β = -2 wpm; 95% CI: -6, +2). Similarly, for the IRest test, worse CS was associated with slower reading speeds (β = -12 wpm; 95% CI: -20, -4) among those with low, but not high BTA scores (β = -4 wpm; 95% CI: -10, +2). For the sustained silent reading test, glaucoma status (versus controls), worse visual field (VF) MD (per 5 dB), and worse CS were associated with 39%, 21%, and 19% slower reading speeds, respectively, for those with low BTA scores (P < 0.05), but these associations were not significant among those with high BTA scores (P > 0.1 for all). Decreased ability to divide attention, indicated by lower BTA scores, is associated with slower reading speeds in glaucoma with reduced CS and VF defects.
Impact of the Ability to Divide Attention on Reading Performance in Glaucoma
Swenor, Bonnielin K.; Varadaraj, Varshini; Dave, Paulomi; West, Sheila K.; Rubin, Gary S.; Ramulu, Pradeep Y.
2017-01-01
Purpose To determine if the ability to divide attention affects the relationship between glaucoma-related vision loss and reading speed. Methods Better eye mean deviation (MD), contrast sensitivity (CS), and better-eye distance visual acuity (VA) were measured in 28 participants with glaucoma and 21 controls. Reading speeds were assessed using MNRead, IRest, and sustained silent reading tests (words per minute, wpm). The ability to divide attention was measured using the Brief Test of Attention (BTA; scored 0–10). Multivariable linear regression models were used to determine the relationship between visual factors and reading speeds. Effect modification by BTA score (low BTA: <7; high BTA: ≥7) was examined. Results Worse CS (per 0.1 log unit) was associated with slower maximum reading speed on MNRead test for participants with low BTA scores (β = −9 wpm; 95% confidence interval [CI]: −16, −2), but not for those with high BTA scores (β = −2 wpm; 95% CI: −6, +2). Similarly, for the IRest test, worse CS was associated with slower reading speeds (β = −12 wpm; 95% CI: −20, −4) among those with low, but not high BTA scores (β = −4 wpm; 95% CI: −10, +2). For the sustained silent reading test, glaucoma status (versus controls), worse visual field (VF) MD (per 5 dB), and worse CS were associated with 39%, 21%, and 19% slower reading speeds, respectively, for those with low BTA scores (P < 0.05), but these associations were not significant among those with high BTA scores (P > 0.1 for all). Conclusions Decreased ability to divide attention, indicated by lower BTA scores, is associated with slower reading speeds in glaucoma with reduced CS and VF defects. PMID:28460047
Human locomotion on ice: the evolution of ice-skating energetics through history.
Formenti, Federico; Minetti, Alberto E
2007-05-01
More than 3000 years ago, peoples living in the cold North European regions started developing tools such as ice skates that allowed them to travel on frozen lakes. We show here which technical and technological changes determined the main steps in the evolution of ice-skating performance over its long history. An in-depth historical research helped identify the skates displaying significantly different features from previous models and that could consequently determine a better performance in terms of speed and energy demand. Five pairs of ice skates were tested, from the bone-skates, dated about 1800 BC, to modern ones. This paper provides evidence for the fact that the metabolic cost of locomotion on ice decreased dramatically through history, the metabolic cost of modern ice-skating being only 25% of that associated with the use of bone-skates. Moreover, for the same metabolic power, nowadays skaters can achieve speeds four times higher than their ancestors could. In the range of speeds considered, the cost of travelling on ice was speed independent for each skate model, as for running. This latter finding, combined with the accepted relationship between time of exhaustion and the sustainable fraction of metabolic power, gives the opportunity to estimate the maximum skating speed according to the distance travelled. Ice skates were probably the first human powered locomotion tools to take the maximum advantage from the biomechanical properties of the muscular system: even when travelling at relatively high speeds, the skating movement pattern required muscles to shorten slowly so that they could also develop a considerable amount of force.
14 CFR 25.1505 - Maximum operating limit speed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum operating limit speed. 25.1505... Operating Limitations § 25.1505 Maximum operating limit speed. The maximum operating limit speed (V MO/M MO airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not be...
14 CFR 25.1505 - Maximum operating limit speed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum operating limit speed. 25.1505... Operating Limitations § 25.1505 Maximum operating limit speed. The maximum operating limit speed (V MO/M MO airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not be...
NASA Astrophysics Data System (ADS)
Venäläinen, Ari; Laapas, Mikko; Pirinen, Pentti; Horttanainen, Matti; Hyvönen, Reijo; Lehtonen, Ilari; Junila, Päivi; Hou, Meiting; Peltola, Heli M.
2017-07-01
The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount) of wind damage for certain forest stand configurations.
NASA Astrophysics Data System (ADS)
Sun, Fengxin; Wang, Jufeng; Cheng, Rongjun; Ge, Hongxia
2018-02-01
The optimal driving speeds of the different vehicles may be different for the same headway. In the optimal velocity function of the optimal velocity (OV) model, the maximum speed vmax is an important parameter determining the optimal driving speed. A vehicle with higher maximum speed is more willing to drive faster than that with lower maximum speed in similar situation. By incorporating the anticipation driving behavior of relative velocity and mixed maximum speeds of different percentages into optimal velocity function, an extended heterogeneous car-following model is presented in this paper. The analytical linear stable condition for this extended heterogeneous traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulted from the cooperation between anticipation driving behavior and heterogeneous maximum speeds in the optimal velocity function. The analytical and numerical results all demonstrate that strengthening driver's anticipation effect can improve the stability of heterogeneous traffic flow, and increasing the lowest value in the mixed maximum speeds will result in more instability, but increasing the value or proportion of the part already having higher maximum speed will cause different stabilities at high or low traffic densities.
30 CFR 56.19061 - Maximum hoisting speeds.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum hoisting speeds. 56.19061 Section 56... Hoisting Procedures § 56.19061 Maximum hoisting speeds. The safe speed for hoisting persons shall be determined for each shaft, and this speed shall not be exceeded. Persons should not be hoisted at a speed...
30 CFR 56.19061 - Maximum hoisting speeds.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum hoisting speeds. 56.19061 Section 56... Hoisting Procedures § 56.19061 Maximum hoisting speeds. The safe speed for hoisting persons shall be determined for each shaft, and this speed shall not be exceeded. Persons should not be hoisted at a speed...
Ditching Investigation of a 1/12-Scale Model of the Douglas F4D-1 Airplane, TED No. NACA DE 384
NASA Technical Reports Server (NTRS)
Windham, John O.
1956-01-01
A ditching investigation was made of a l/l2-scale dynamically similar model of the Douglas F4D-1 airplane to study its behavior when ditched. The model was landed in calm water at the Langley tank no. 2 monorail. Various landing attitudes, speeds, and configurations were investigated. The behavior of the model was determined from visual observations, acceleration records, and motion-picture records of the ditchings. Data are presented in tables, sequence photographs, time-history acceleration curves, and attitude curves. From the results of the investigation, it was concluded that the airplane should be ditched at the lowest speed and highest attitude consistent with adequate control (near 22 deg) with landing gear retracted. In a calm-water ditching under these conditions the airplane will probably nose in slightly, then make a fairly smooth run. The fuselage bottom will sustain appreciable damage so that rapid flooding and short flotation time are likely. Maximum longitudinal deceleration will be about 4g and maximum normal acceleration will be about 6g in a landing run of about 420 feet, In a calm-water ditching under similar conditions with the landing gear extended, the airplane will probably dive. Maximum longitudinal decelerations will be about 5-1/2g and maximum normal accelerations will be about 3-1/2g in a landing run of about 170 feet.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-16
... Tests and Inspections for Compliance With Maximum Authorized Train Speeds and Other Speed Restrictions... safety advisory; Operational tests and inspections for compliance with maximum authorized train speeds and other speed restrictions. SUMMARY: FRA is issuing Safety Advisory 2013-08 to stress to railroads...
30 CFR 57.19061 - Maximum hoisting speeds.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum hoisting speeds. 57.19061 Section 57... Hoisting Hoisting Procedures § 57.19061 Maximum hoisting speeds. The safe speed for hoisting persons shall be determined for each shaft, and this speed shall not be exceeded. Persons shall not be hoisted at a...
30 CFR 57.19061 - Maximum hoisting speeds.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum hoisting speeds. 57.19061 Section 57... Hoisting Hoisting Procedures § 57.19061 Maximum hoisting speeds. The safe speed for hoisting persons shall be determined for each shaft, and this speed shall not be exceeded. Persons shall not be hoisted at a...
49 CFR Appendix A to Part 213 - Maximum Allowable Curving Speeds
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Maximum Allowable Curving Speeds A Appendix A to...—Maximum Allowable Curving Speeds Table 1—Three Inches Unbalance [Elevation of outer rail (inches)] Degree of curvature 0 1/2 1 11/2 2 21/2 3 31/2 4 41/2 5 51/2 6 (12) Maximum allowable operating speed (mph...
49 CFR Appendix A to Part 213 - Maximum Allowable Curving Speeds
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum Allowable Curving Speeds A Appendix A to...—Maximum Allowable Curving Speeds Table 1—Three Inches Unbalance [Elevation of outer rail (inches)] Degree of curvature 0 1/2 1 11/2 2 21/2 3 31/2 4 41/2 5 51/2 6 (12) Maximum allowable operating speed (mph...
Balance ability and cognitive impairment influence sustained walking in an assisted living facility.
Bowen, Mary Elizabeth; Crenshaw, Jeremy; Stanhope, Steven J
The purpose of this study was to determine the influence of cognitive impairment (CI), 1 gait quality, and balance ability on walking distance and speed in an assisted living facility. This was a longitudinal cohort study of institutionalized older adults (N = 26; 555 observations) followed for up to 8 months. Hierarchical linear modeling statistical techniques were used to examine the effects of gait quality and balance ability (using the Tinetti Gait and Balance Test) and cognitive status (using the Montreal Cognitive Assessment) on walking activity (distance, sustained distance, sustained speed). The latter were measured objectively and continuously by a real-time locating system (RTLS). A one-point increase in balance ability was associated with an 8% increase in sustained walking distance (p = 0.03) and a 4% increase in sustained gait speed (p = 0.00). Gait quality was associated with decreased sustained gait speed (p = 0.03). Residents with moderate (ERR = 2.34;p = 0.01) or severe CI (trend with an ERR = 1.62; p = 0.06) had longer sustained walking distances at slower speeds when compared to residents with no CI. After accounting for cognitive status, it was balance ability, not gait quality, that was a determinant of sustained walking distances and speeds. Therefore, balance interventions for older adults in assisted living may enable sustained walking activity. Given that CI was associated with more sustained walking, limiting sustained walking in the form of wandering behavior, especially for those with balance impairments, may prevent adverse events, including fall-related injury. Published by Elsevier B.V.
Geophysical Potential for Wind Energy over the Open Oceans
NASA Astrophysics Data System (ADS)
Possner, A.; Caldeira, K.
2017-12-01
Wind turbines continuously remove kinetic energy from the lower troposphere thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is therefore constrained by the rate of kinetic energy replenishment from the atmosphere above. In particular, this study focuses on the maximum sustained transport of kinetic energy through the troposphere to the lowest hundreds of meters above the surface. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 Wm-2 within large wind farms. However, in this study we demonstrate that considerably higher power generation rates may be sustainable over some open ocean areas in giant wind farms. We find that in the North Atlantic maximum extraction rates of up to 6.7 Wm-2 may be sustained by the atmosphere in the annual mean over giant wind farm areas approaching the size of Greenland. In contrast, only a third of this rate is sustained on land for areas of equivalent size. Our simulations indicate a fundamental difference in response of the troposphere and its vertical kinetic energy flux to giant near-surface wind farms. We find that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where large sustained rates of downward transport of kinetic energy and thus rates of kinetic energy extraction may be geophysically possible. While no commercial-scale deep-water wind turbines yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.
Wing morphology and flight development in the short-nosed fruit bat Cynopterus sphinx.
Elangovan, Vadamalai; Yuvana Satya Priya, Elangovan; Raghuram, Hanumanth; Marimuthu, Ganapathy
2007-01-01
Postnatal changes in wing morphology, flight development and aerodynamics were studied in captive free-flying short-nosed fruit bats, Cynopterus sphinx. Pups were reluctant to move until 25 days of age and started fluttering at the mean age of 40 days. The wingspan and wing area increased linearly until 45 days of age by which time the young bats exhibited clumsy flight with gentle turns. At birth, C. sphinx had less-developed handwings compared to armwings; however, the handwing developed faster than the armwing during the postnatal period. Young bats achieved sustained flight at 55 days of age. Wing loading decreased linearly until 35 days of age and thereafter increased to a maximum of 12.82 Nm(-2) at 125 days of age. The logistic equation fitted the postnatal changes in wingspan and wing area better than the Gompertz and von Bertalanffy equations. The predicted minimum power speed (V(mp)) and maximum range speed (V(mr)) decreased until the onset of flight and thereafter the V(mp) and V(mr) increased linearly and approached 96.2% and 96.4%, respectively, of the speed of postpartum females at the age of 125 days. The requirement of minimum flight power (P(mp)) and maximum range power (P(mr)) increased until 85 days of age and thereafter stabilised. The minimum theoretical radius of banked turn (r(min)) decreased until 35 days of age and thereafter increased linearly and attained 86.5% of the r(min) of postpartum females at the age of 125 days.
30 CFR 57.19076 - Maximum speeds for hoisting persons in buckets.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum speeds for hoisting persons in buckets... NONMETAL MINES Personnel Hoisting Hoisting Procedures § 57.19076 Maximum speeds for hoisting persons in buckets. When persons are hoisted in buckets, speeds shall not exceed 500 feet per minute and shall not...
30 CFR 56.19076 - Maximum speeds for hoisting persons in buckets.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum speeds for hoisting persons in buckets... MINES Personnel Hoisting Hoisting Procedures § 56.19076 Maximum speeds for hoisting persons in buckets. When persons are hoisted in buckets, speeds shall not exceed 500 feet per minute and shall not exceed...
30 CFR 56.19076 - Maximum speeds for hoisting persons in buckets.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum speeds for hoisting persons in buckets... MINES Personnel Hoisting Hoisting Procedures § 56.19076 Maximum speeds for hoisting persons in buckets. When persons are hoisted in buckets, speeds shall not exceed 500 feet per minute and shall not exceed...
30 CFR 57.19076 - Maximum speeds for hoisting persons in buckets.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum speeds for hoisting persons in buckets... NONMETAL MINES Personnel Hoisting Hoisting Procedures § 57.19076 Maximum speeds for hoisting persons in buckets. When persons are hoisted in buckets, speeds shall not exceed 500 feet per minute and shall not...
49 CFR 174.86 - Maximum allowable operating speed.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Maximum allowable operating speed. 174.86 Section... operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in § 173.247 of this subchapter, the maximum allowable operating speed may not exceed 24 km/hour (15 mph...
49 CFR 174.86 - Maximum allowable operating speed.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Maximum allowable operating speed. 174.86 Section... operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in § 173.247 of this subchapter, the maximum allowable operating speed may not exceed 24 km/hour (15 mph...
Laboratory Study of Topographic Effects on the Near-surface Tornado Flow Field
NASA Astrophysics Data System (ADS)
Razavi, Alireza; Sarkar, Partha P.
2018-03-01
To study topographic effects on the near-surface tornado flow field, the Iowa State University tornado simulator was used to simulate a translating tornado passing over three different two-dimensional topographies: a ridge, an escarpment and a valley. The effect of the translation speed on maximum horizontal wind speeds is observed for translation speeds of 0.15 and 0.50 m s^{-1} , with the lower value resulting in a larger maximum horizontal wind speed. The tornado translation over the three topographies with respect to flat terrain is assessed for changes in: (a) the maximum horizontal wind speeds in terms of the flow-amplification factor; (b) the maximum aerodynamic drag in terms of the tornado speed-up ratio; (c) the maximum duration of exposure at any location to high wind speeds of a specific range in terms of the exposure amplification factor. Results show that both the maximum wind amplification factor of 14%, as well as the maximum speed-up ratio of 14%, occur on the ridge. For all topographies, the increase in aerodynamic drag is observed to be maximized for low-rise buildings, which illustrates the importance of the vertical profiles of the horizontal wind speed near the ground. The maximum exposure amplification factors, estimated for the range of wind speeds corresponding to the EF2 (50-60 m s^{-1} ) and EF3 (61-75 m s^{-1}) scales, are 86 and 110% for the ridge, 4 and 60% for the escarpment and - 6 and 47% for the valley, respectively.
Lahera, Guillermo; Ruiz, Alicia; Brañas, Antía; Vicens, María; Orozco, Arantxa
Previous studies have linked processing speed with social cognition and functioning of patients with schizophrenia. A discriminant analysis is needed to determine the different components of this neuropsychological construct. This paper analyzes the impact of processing speed, reaction time and sustained attention on social functioning. 98 outpatients between 18 and 65 with DSM-5 diagnosis of schizophrenia, with a period of 3 months of clinical stability, were recruited. Sociodemographic and clinical data were collected, and the following variables were measured: processing speed (Trail Making Test [TMT], symbol coding [BACS], verbal fluency), simple and elective reaction time, sustained attention, recognition of facial emotions and global functioning. Processing speed (measured only through the BACS), sustained attention (CPT) and elective reaction time (but not simple) were associated with functioning. Recognizing facial emotions (FEIT) correlated significantly with scores on measures of processing speed (BACS, Animals, TMT), sustained attention (CPT) and reaction time. The linear regression model showed a significant relationship between functioning, emotion recognition (P=.015) and processing speed (P=.029). A deficit in processing speed and facial emotion recognition are associated with worse global functioning in patients with schizophrenia. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.
Maximum speed limits. Volume 2, The development of speed limits : a review of the literature
DOT National Transportation Integrated Search
1970-10-01
This report contains the literature review conducted as a part of the project "A Study for the Selection of Maximum Speed Limits." Five aspects of speed and speed control are discussed. These topics include: the history of speed limits; the relations...
High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs
NASA Astrophysics Data System (ADS)
Hu, Feng; Wen, Jian; Chen, Xiaofei
2018-03-01
We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.
Transfer of piano practice in fast performance of skilled finger movements.
Furuya, Shinichi; Nakamura, Ayumi; Nagata, Noriko
2013-11-01
Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements.
NASA Technical Reports Server (NTRS)
O'Kelly, Burke R.
1954-01-01
Free-flight tests in the transonic speed range utilizing rocketpropelled models have been made on three pairs of 0.11-scale North American F-100 airplane wings having an aspect ratio of 3.47, a taper ratio of 0.308, 45 degree sweepback at the quarter-chord line, and thickness ratios of 31 and 5 percent to investigate the possibility of flutte r. Data from tests of two other rocket-propelled models which accidentally fluttered during a drag investigation of the North American F-100 airplane are also presented. The first set of wings (5 percent thick) was tested on a model which was disturbed in pitch by a moving tail and reached a maximum Mach number of 0.85. The wings encountered mild oscillations near the first - bending frequency at high lift coefficients. The second set of wings 9 percent thick was tested up to a maximum Mach number of 0.95 at (2) angles of attack provided by small rocket motors installed in the nose of the model. No oscillations resembling flutter were encountered during the coasting flight between separation from the booster and sustainer firing (Mach numbers from 0.86 to 0.82) or during the sustainer firing at accelerations of about 8g up to the maximum Mach number of the test (0.95). The third set of wings was similar to the first set and was tested up to a maximum Mach number of 1.24. A mild flutter at frequencies near the first-bending frequency of the wings was encountered between a Mach number of 1.15 and a Mach number of 1.06 during both accelerating and coasting flight. The two drag models, which were 0.ll-scale models of the North American F-100 airplane configuration, reached a maximum Mach number of 1.77. The wings of these models had bending and torsional frequencies which were 40 and 89 percent, respectively, of the calculated scaled frequencies of the full-scale 7-percent-thick wing. Both models experienced flutter of the same type as that experienced-by the third set of wings.
Effect of wing loading, aspect ratio, and span loading of flight performances
NASA Technical Reports Server (NTRS)
Gothert, B
1940-01-01
An investigation is made of the possible improvements in maximum, cruising, and climbing speeds attainable through increase in the wing loading. The decrease in wing area was considered for the two cases of constant aspect ratio and constant span loading. For a definite flight condition, an investigation is made to determine what loss in flight performance must be sustained if, for given reasons, certain wing loadings are not to be exceeded. With the aid of these general investigations, the trend with respect to wing loading is indicated and the requirements to be imposed on the landing aids are discussed
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes how to determine the maximum engine power, displacement, and power density of an engine for the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes how to determine the maximum engine power, displacement, and power density of an engine for the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...
Transfer of piano practice in fast performance of skilled finger movements
2013-01-01
Background Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Results Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. Conclusions The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements. PMID:24175946
Analytic studies on satellite detection of severe, two-cell tornadoes
NASA Technical Reports Server (NTRS)
Carrier, G. F.; Dergarabedian, P.; Fendell, F. E.
1979-01-01
From funnel-cloud-length interpretation, the severe tornado is characterized by peak swirl speed relative to the axis of rotation of about 90 m/s. Thermohydrodynamic achievement of the pressure deficit from ambient necessary to sustain such swirls requires that a dry, compressionally heated, non-rotating downdraft of initially tropopause-level air lie within an annulus of rapidly swirling, originally low-level air ascending on a near-moist-adiabatic locus of thermodynamic states. The two-cell structure furnishes an observable parameter possibly accessible to a passively instrumented, geosynchronous meteorological satellite with mesoscale resolution, for early detection of a severe tornado. Accordingly, the low-level turnaround region, in which the surface inflow layer separates to become a free ascending layer and for which inviscid modeling suffices, is examined quantitatively. Preliminary results indicate that swirl overshoot, i.e., swirl speeds in the turnaround region in excess of the maximum achieved in the potential vortex, is modest.
Redox reaction triggered nanomotors based on soft-oxometalates with high and sustained motility
NASA Astrophysics Data System (ADS)
Mallick, Apabrita; Laskar, Abhrajit; Adhikari, R.; Roy, Soumyajit
2018-05-01
The recent interest in self-propulsion raises an immediate challenge in facile and single-step synthesis of active particles. Here, we address this challenge and synthesize soft oxometalate nanomotors that translate ballistically in water using the energy released in a redox reaction of hydrazine fuel with the soft-oxometalates. Our motors reach a maximum speed of ̴ 370 body lengths per second and remain motile over a period of approximately three days. We report measurements of the speed of a single motor as a function of the concentration of hydrazine. It is also possible to induce a transition from single-particle translation to collective motility with biomimetic bands simply by tuning the loading of the fuel. We rationalize the results from a physicochemical hydrodynamic theory. Our nanomotors may also be used for transport of catalytic materials in harsh chemical environments that would otherwise passivate the active catalyst.
Analytic studies of local-severe-storm observables by satellites
NASA Technical Reports Server (NTRS)
Dergarabedian, P.; Fendell, F.
1977-01-01
Attention is concentrated on the exceptionally violet whirlwind, often characterized by a fairly vertical axis of rotation. For a cylindrical polar coordinate system with axis coincident with the axis of rotation, the secondary flow involves the radial and axial velocity components. The thesis advanced is, first, that a violent whirlwind is characterized by swirl speeds relative to the axis of rotation on the order of 90 m/s, with 100 m/s being close to an upper bound. This estimate is based on interpretation of funnel-cloud shape (which also suggests properties of the radial profile of swirl, as well as the maximum magnitude); an error assessment of the funnel-cloud interpretation procedure is developed. Second, computation of ground-level pressure deficits achievable from typical tornado-spawning ambients by idealized thermohydrostatic processes suggests that a two-cell structure is required to sustain such large speeds.
DOT National Transportation Integrated Search
1970-10-01
This volume contains an explanation of a method for setting a speed limit which was developed as a part of the project conducted by the Institute for Research in Public Safety under Contract No. FH-11-7275, "A Study for the Selection of Maximum Speed...
Killane, Isabelle; Donoghue, Orna A; Savva, George M; Cronin, Hilary; Kenny, Rose Anne; Reilly, Richard B
2014-11-01
For single gait tasks, associations have been reported between gait speed and cognitive domains. However, few studies have evaluated if this association is altered in dual gait tasks given gait speed changes with complexity and nature of task. We evaluated relative contributions of specific elements of cognitive function (including sustained attention and processing speed) to dual task gait speed in a nationally representative population of community-dwelling adults over 50 years. Gait speed was obtained using the GaitRite walkway during three gait tasks: single, cognitive (alternate letters), and motor (carrying a filled glass). Linear regression models, adjusted for covariates, were constructed to predict the relative contributions of seven neuropsychological tests to gait speed differences and to investigate gait task effects. The mean age and gait speed of the population (n = 4,431, 55% women) was 62.4 years (SD = 8.2) and 135.85 cm/s (SD = 20.20, single task), respectively. Poorer processing speed, short-term memory, and sustained attention were major cognitive contributors to slower gait speed for all gait tasks. Both dual gait tasks were robust to covariate adjustment and had a significant additional executive function element not found for the single gait task. For community-dwelling older adults processing speed, short-term memory and sustained attention were independently associated with gait speed for all gait tasks. Dual gait tasks were found to highlight specific executive function elements. This result forms a baseline value for dual task gait speed. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOT National Transportation Integrated Search
1970-10-01
This report contains the implementation manual developed as a part of the project "Maximum Speed Limits." The manual consists of a programed educational unit and a field workguide concerning the setting of speed limits based on the 85th percentile sp...
49 CFR 213.57 - Curves; elevation and speed limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Curves; elevation and speed limitations. 213.57... speed limitations. (a) The maximum crosslevel on the outside rail of a curve may not be more than 8... applicable September 21, 1999.) (b)(1) The maximum allowable operating speed for each curve is determined by...
49 CFR 213.329 - Curves, elevation and speed limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Curves, elevation and speed limitations. 213.329... Higher § 213.329 Curves, elevation and speed limitations. (a) The maximum crosslevel on the outside rail... lower than the inside rail. (b) (1) The maximum allowable operating speed for each curve is determined...
49 CFR 213.57 - Curves; elevation and speed limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Curves; elevation and speed limitations. 213.57... speed limitations. (a) The maximum crosslevel on the outside rail of a curve may not be more than 8... applicable September 21, 1999.) (b)(1) The maximum allowable operating speed for each curve is determined by...
49 CFR 213.329 - Curves, elevation and speed limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Curves, elevation and speed limitations. 213.329... Higher § 213.329 Curves, elevation and speed limitations. (a) The maximum crosslevel on the outside rail... lower than the inside rail. (b) (1) The maximum allowable operating speed for each curve is determined...
33 CFR Schedule II to Subpart A of... - Table of Speeds 1
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Table of Speeds 1 II Schedule II... Schedule II to Subpart A of Part 401—Table of Speeds 1 From— To— Maximum speed over the bottom, knots Col.... All other canals 6 6. 1 Maximum speeds at which a vessel may travel in identified areas in both normal...
33 CFR Schedule II to Subpart A of... - Table of Speeds 1
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Table of Speeds 1 II Schedule II... Schedule II to Subpart A of Part 401—Table of Speeds 1 From— To— Maximum speed over the bottom, knots Col.... All other canals 6 6. 1 Maximum speeds at which a vessel may travel in identified areas in both normal...
Donating money is not the only way to sustain cooperation in public goods game
NASA Astrophysics Data System (ADS)
Chen, Tong; Wu, Zheng-Hong; Wang, Le
Most of the previous studies research cooperation mainly based on donating money in social public goods games. Owing to the lack of income, some people prefer to donate time instead of money to promote the activity, in our daily life. Motivated by this fact, we here investigate the influence of the encouragement of donating time on the evolution of cooperation based on village opera. In our study, we set up two models: one is money-only model (MOM). Donating money is the only choice in MOM. The other is money-time model (MTM). Besides donating money, donating time is an alternative in MTM. Through numerical simulations, we find that compared to MOM, MTM has a faster speed to reach cooperation equilibrium and cost advantage to sustain the same cooperation level, without the effects of income, reputation, satisfaction, emotion and maximum nonmonetary input. However, it should be noted that MTM is better than MOM in a moderate interval of general budget V. Our results provide stark evidence that the encouragement of donating time can promote and sustain cooperation better than only donating money.
European shags optimize their flight behavior according to wind conditions.
Kogure, Yukihisa; Sato, Katsufumi; Watanuki, Yutaka; Wanless, Sarah; Daunt, Francis
2016-02-01
Aerodynamics results in two characteristic speeds of flying birds: the minimum power speed and the maximum range speed. The minimum power speed requires the lowest rate of energy expenditure per unit time to stay airborne and the maximum range speed maximizes air distance traveled per unit of energy consumed. Therefore, if birds aim to minimize the cost of transport under a range of wind conditions, they are predicted to fly at the maximum range speed. Furthermore, take-off is predicted to be strongly affected by wind speed and direction. To investigate the effect of wind conditions on take-off and cruising flight behavior, we equipped 14 European shags Phalacrocorax aristotelis with a back-mounted GPS logger to measure position and hence ground speed, and a neck-mounted accelerometer to record wing beat frequency and strength. Local wind conditions were recorded during the deployment period. Shags always took off into the wind regardless of their intended destination and take-off duration was correlated negatively with wind speed. We combined ground speed and direction during the cruising phase with wind speed and direction to estimate air speed and direction. Whilst ground speed was highly variable, air speed was comparatively stable, although it increased significantly during strong head winds, because of stronger wing beats. The increased air speeds in head winds suggest that birds fly at the maximum range speed, not at the minimum power speed. Our study demonstrates that European shags actively adjust their flight behavior to utilize wind power to minimize the costs of take-off and cruising flight. © 2016. Published by The Company of Biologists Ltd.
14 CFR 23.33 - Propeller speed and pitch limits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p... approved overspeed, a means to limit the maximum engine and propeller speed to not more than the maximum... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch limits. 23.33...
14 CFR 23.33 - Propeller speed and pitch limits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p... approved overspeed, a means to limit the maximum engine and propeller speed to not more than the maximum... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch limits. 23.33...
14 CFR 23.33 - Propeller speed and pitch limits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p... approved overspeed, a means to limit the maximum engine and propeller speed to not more than the maximum... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch limits. 23.33...
The influence of maximum running speed on eye size: a test of Leuckart's Law in mammals.
Heard-Booth, Amber N; Kirk, E Christopher
2012-06-01
Vertebrate eye size is influenced by many factors, including body or head size, diet, and activity pattern. Locomotor speed has also been suggested to influence eye size in a relationship known as Leuckart's Law. Leuckart's Law proposes that animals capable of achieving fast locomotor speeds require large eyes to enhance visual acuity and avoid collisions with environmental obstacles. The selective influence of rapid flight has been invoked to explain the relatively large eyes of birds, but Leuckart's Law remains untested in nonavian vertebrates. This study investigates the relationship between eye size and maximum running speed in a diverse sample of mammals. Measures of axial eye diameter, maximum running speed, and body mass were collected from the published literature for 50 species from 10 mammalian orders. This analysis reveals that absolute eye size is significantly positively correlated with maximum running speed in mammals. Moreover, the relationship between eye size and running speed remains significant when the potentially confounding effects of body mass and phylogeny are statistically controlled. The results of this analysis are therefore consistent with the expectations of Leuckart's Law and demonstrate that faster-moving mammals have larger eyes than their slower-moving close relatives. Accordingly, we conclude that maximum running speed is one of several key selective factors that have influenced the evolution of eye size in mammals. Copyright © 2012 Wiley Periodicals, Inc.
Manganese contamination affects the motor performance of wild northern quolls (Dasyurus hallucatus).
Amir Abdul Nasir, Ami Fadhillah; Cameron, Skye F; Niehaus, Amanda C; Clemente, Christofer J; von Hippel, Frank A; Wilson, Robbie S
2018-05-21
Neuromotor deficits are an important sign of manganese (Mn) toxicity in humans and laboratory animals. However, the impacts of Mn exposure on the motor function of wild animals remains largely unknown. Here, we assessed the impact of chronic exposure to Mn from active mining operations on Groote Eylandt, Australia on the motor function of the semi-arboreal northern quoll (Dasyurus hallucatus), an endangered species. The three motor tests conducted-maximum sprint speed on a straight run, manoeuvrability around a corner, and motor control on a balance beam-showed that elevated Mn body burden did not diminish performance of these traits. However, quolls with higher Mn body burden approached a corner at a significantly narrower range of speeds, due to a significantly lower maximum approach speed. Slower speeds approaching a turn may reduce success at catching prey and avoiding predators. Given that maximum sprint speed on a straight run was not affected by Mn body burden, but maximum speed entering a corner was, slower speeds approaching a turn may reflect compensation for otherwise impaired performance in the turn. Copyright © 2018 Elsevier Ltd. All rights reserved.
Anaerobic Threshold: Its Concept and Role in Endurance Sport
Ghosh, Asok Kumar
2004-01-01
aerobic to anaerobic transition intensity is one of the most significant physiological variable in endurance sports. Scientists have explained the term in various ways, like, Lactate Threshold, Ventilatory Anaerobic Threshold, Onset of Blood Lactate Accumulation, Onset of Plasma Lactate Accumulation, Heart Rate Deflection Point and Maximum Lactate Steady State. But all of these have great role both in monitoring training schedule and in determining sports performance. Individuals endowed with the possibility to obtain a high oxygen uptake need to complement with rigorous training program in order to achieve maximal performance. If they engage in endurance events, they must also develop the ability to sustain a high fractional utilization of their maximal oxygen uptake (%VO2 max) and become physiologically efficient in performing their activity. Anaerobic threshold is highly correlated to the distance running performance as compared to maximum aerobic capacity or VO2 max, because sustaining a high fractional utilization of the VO2 max for a long time delays the metabolic acidosis. Training at or little above the anaerobic threshold intensity improves both the aerobic capacity and anaerobic threshold level. Anaerobic Threshold can also be determined from the speed-heart rate relationship in the field situation, without undergoing sophisticated laboratory techniques. However, controversies also exist among scientists regarding its role in high performance sports. PMID:22977357
Anaerobic threshold: its concept and role in endurance sport.
Ghosh, Asok Kumar
2004-01-01
aerobic to anaerobic transition intensity is one of the most significant physiological variable in endurance sports. Scientists have explained the term in various ways, like, Lactate Threshold, Ventilatory Anaerobic Threshold, Onset of Blood Lactate Accumulation, Onset of Plasma Lactate Accumulation, Heart Rate Deflection Point and Maximum Lactate Steady State. But all of these have great role both in monitoring training schedule and in determining sports performance. Individuals endowed with the possibility to obtain a high oxygen uptake need to complement with rigorous training program in order to achieve maximal performance. If they engage in endurance events, they must also develop the ability to sustain a high fractional utilization of their maximal oxygen uptake (%VO(2) max) and become physiologically efficient in performing their activity. Anaerobic threshold is highly correlated to the distance running performance as compared to maximum aerobic capacity or VO(2) max, because sustaining a high fractional utilization of the VO(2) max for a long time delays the metabolic acidosis. Training at or little above the anaerobic threshold intensity improves both the aerobic capacity and anaerobic threshold level. Anaerobic Threshold can also be determined from the speed-heart rate relationship in the field situation, without undergoing sophisticated laboratory techniques. However, controversies also exist among scientists regarding its role in high performance sports.
Gebennikov, Dmytro; Mittler, Silvia
2013-02-26
The effect of electrostatic interaction between carboxylate- and amino-functionalized polystyrene particles and a charged waveguide surface on the propulsion speed in optical tweezers is considered to be a function of the pH and ionic strength. It was shown that with the variation of the pH of the aqueous solution in which the particles were immersed, a systematic change in propulsion speed with a maximum speed could be achieved. The appearance of a maximum speed was ascribed to changes in the particle-waveguide separation as a result of the combination of two forces: Coulomb repulsion/attraction and induced dipole forces. The highest maximum speed at low ionic strength was around 12 μm/s. Changes in the ionic strength of the solution influenced the gradient of the dielectric constant near the involved surfaces and also led to a slightly reduced hydrodynamic radius of the particles. The combination of these effects subsequently increased the maximum speed to about 23 μm/s.
NASA Astrophysics Data System (ADS)
Ning, A.; Dykes, K.
2014-06-01
For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more energy and utilize lighter drivetrains because of their decreased maximum torque loads. However, the magnitude of the potential cost savings is unclear, and the potential trade-offs with rotor and tower sizing are not well understood. A multidisciplinary, system-level framework was developed to facilitate wind turbine and wind plant analysis and optimization. The rotors, nacelles, and towers of wind turbines are optimized for minimum cost of energy subject to a large number of structural, manufacturing, and transportation constraints. These optimization studies suggest that allowing for higher maximum tip speeds could result in a decrease in the cost of energy of up to 5% for land-based sites and 2% for offshore sites when using current technology. Almost all of the cost savings are attributed to the decrease in gearbox mass as a consequence of the reduced maximum rotor torque. Although there is some increased energy capture, it is very minimal (less than 0.5%). Extreme increases in tip speed are unnecessary; benefits for maximum tip speeds greater than 100-110 m/s are small to nonexistent.
14 CFR 25.335 - Design airspeeds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... must be conservative. (a) Design cruising speed, V C. For V C, the following apply: (1) The minimum value of V C must be sufficiently greater than V B to provide for inadvertent speed increases likely to... exceed the maximum speed in level flight at maximum continuous power for the corresponding altitude. (3...
Castro-Santos, T.
2005-01-01
Migrating fish traversing velocity barriers are often forced to swim at speeds greater than their maximum sustained speed (Ums). Failure to select an appropriate swim speed under these conditions can prevent fish from successfully negotiating otherwise passable barriers. I propose a new model of a distance-maximizing strategy for fishes traversing velocity barriers, derived from the relationships between swim speed and fatigue time in both prolonged and sprint modes. The model predicts that fish will maximize traversed distance by swimming at a constant groundspeed against a range of flow velocities, and this groundspeed is equal to the negative inverse of the slope of the swim speed-fatigue time relationship for each mode. At a predictable flow velocity, they should switch from the optimal groundspeed for prolonged mode to that for sprint mode. Data from six migratory fish species (anadromous clupeids: American shad Alosa sapidissima, alewife A. pseudoharengus and blueback herring A. aestivalis; amphidromous: striped bass Morone saxatilis; and potomodromous species: walleye (previously known as Stizostedion vitrium) and white sucker Catostomus commersonii) were used to explore the ability of fish to approximate the predicted distance-maximizing behaviors, as well as the consequences of deviating from the optima. Fish volitionally sprinted up an open-channel flume against fixed flow velocities of 1.5-4.5 m s-1, providing data on swim speeds and fatigue times, as well as their groundspeeds. Only anadromous clupeids selected the appropriate distance-maximizing groundspeed at both prolonged and sprint modes. The other three species maintained groundspeeds appropriate to the prolonged mode, even when they should have switched to the sprint optima. Because of this, these species failed to maximize distance of ascent. The observed behavioral variability has important implications both for distributional limits and fishway design.
Sustained Swimming Speeds of Dolphins.
Johannessen, C L; Harder, J A
1960-11-25
Observations of fout large groups of dolphins suggest that they are able to swim at a sustained speed of 14 to 18 knots. The blackfish are able to maintain speeds of about 22 knots, and one killer whale seemed able to swim somewhat faster. This implies that the apparent coefficient of surface friction remains approximately constant for dolphins from 6 to 22 ft long, as is the case for rigid bodies.
Design and optimization of a modal- independent linear ultrasonic motor.
Zhou, Shengli; Yao, Zhiyuan
2014-03-01
To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.
Multiple pulsed hypersonic liquid diesel fuel jetsdriven by projectile impact
NASA Astrophysics Data System (ADS)
Pianthong, K.; Takayama, K.; Milton, B. E.; Behnia, M.
2005-06-01
Further studies on high-speed liquid diesel fuel jets injected into ambient air conditions have been carried out. Projectile impact has been used as the driving mechanism. A vertical two-stage light gas gun was used as a launcher to provide the high-speed impact. This paper describes the experimental technique and visualization methods that provided a rapid series of jet images in the one shot. A high-speed video camera (106 fps) and shadowgraph optical system were used to obtain visualization. Very interesting and unique phenomena have been discovered and confirmed in this study. These are that multiple high frequency jet pulses are generated within the duration of a single shot impact. The associated multiple jet shock waves have been clearly captured. This characteristic consistently occurs with the smaller conical angle, straight cone nozzles but not with those with a very wide cone angle or curved nozzle profile. An instantaneous jet tip velocity of 2680 m/s (Mach number of 7.86) was the maximum obtained with the 40^circ nozzle. However, this jet tip velocity can only be sustained for a few microseconds as attenuation is very rapid.
Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala.
Wilson, Alan M; Hubel, Tatjana Y; Wilshin, Simon D; Lowe, John C; Lorenc, Maja; Dewhirst, Oliver P; Bartlam-Brooks, Hattie L A; Diack, Rebecca; Bennitt, Emily; Golabek, Krystyna A; Woledge, Roger C; McNutt, J Weldon; Curtin, Nancy A; West, Timothy G
2018-02-08
The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.
Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala
NASA Astrophysics Data System (ADS)
Wilson, Alan M.; Hubel, Tatjana Y.; Wilshin, Simon D.; Lowe, John C.; Lorenc, Maja; Dewhirst, Oliver P.; Bartlam-Brooks, Hattie L. A.; Diack, Rebecca; Bennitt, Emily; Golabek, Krystyna A.; Woledge, Roger C.; McNutt, J. Weldon; Curtin, Nancy A.; West, Timothy G.
2018-02-01
The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.
Svendsen, Morten B. S.; Domenici, Paolo; Marras, Stefano; Krause, Jens; Boswell, Kevin M.; Rodriguez-Pinto, Ivan; Wilson, Alexander D. M.; Kurvers, Ralf H. J. M.; Viblanc, Paul E.; Finger, Jean S.; Steffensen, John F.
2016-01-01
ABSTRACT Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s−1 but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s−1), followed by barracuda (6.2±1.0 m s−1), little tunny (5.6±0.2 m s−1) and dorado (4.0±0.9 m s−1); although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s−1, which corresponds to the speed at which cavitation is predicted to occur, with destructive consequences for fin tissues. PMID:27543056
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... maximum advertised speed, technology type and spectrum (if applicable) for each broadband provider... funding to collect the maximum advertised speed and technology type to which various classes of Community... businesses use the data to identify where broadband is available, the advertised speeds and other information...
Using fuzzy models in machining control system and assessment of sustainability
NASA Astrophysics Data System (ADS)
Grinek, A. V.; Boychuk, I. P.; Dantsevich, I. M.
2018-03-01
Description of the complex relationship of the optimum velocity with the temperature-strength state in the cutting zone for machining a fuzzy model is proposed. The fuzzy-logical conclusion allows determining the processing speed, which ensures effective, from the point of view of ensuring the quality of the surface layer, the temperature in the cutting zone and the maximum allowable cutting force. A scheme for stabilizing the temperature-strength state in the cutting zone using a nonlinear fuzzy PD–controller is proposed. The stability of the nonlinear system is estimated with the help of grapho–analytical realization of the method of harmonic balance and by modeling in MatLab.
49 CFR 174.86 - Maximum allowable operating speed.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.86 Maximum allowable operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in...
49 CFR 174.86 - Maximum allowable operating speed.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.86 Maximum allowable operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in...
49 CFR 174.86 - Maximum allowable operating speed.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.86 Maximum allowable operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in...
Seli, Paul; Cheyne, James Allan; Smilek, Daniel
2012-03-01
In two studies of a GO-NOGO task assessing sustained attention, we examined the effects of (1) altering speed-accuracy trade-offs through instructions (emphasizing both speed and accuracy or accuracy only) and (2) auditory alerts distributed throughout the task. Instructions emphasizing accuracy reduced errors and changed the distribution of GO trial RTs. Additionally, correlations between errors and increasing RTs produced a U-function; excessively fast and slow RTs accounted for much of the variance of errors. Contrary to previous reports, alerts increased errors and RT variability. The results suggest that (1) standard instructions for sustained attention tasks, emphasizing speed and accuracy equally, produce errors arising from attempts to conform to the misleading requirement for speed, which become conflated with attention-lapse produced errors and (2) auditory alerts have complex, and sometimes deleterious, effects on attention. We argue that instructions emphasizing accuracy provide a more precise assessment of attention lapses in sustained attention tasks. Copyright © 2011 Elsevier Inc. All rights reserved.
Izawa, Kazuhiro P; Watanabe, Satoshi; Hirano, Yasuyuki; Matsushima, Shinya; Suzuki, Tomohiro; Oka, Koichiro; Kida, Keisuke; Suzuki, Kengo; Osada, Naohiko; Omiya, Kazuto; Brubaker, Peter H; Shimizu, Hiroyuki; Akashi, Yoshihiro J
2015-03-01
Maximum gait speed and physical activity (PA) relate to mortality and morbidity, but little is known about gender-related differences in these factors in elderly hospitalized cardiac inpatients. This study aimed to determine differences in maximum gait speed and daily measured PA based on sex and the relationship between these measures in elderly cardiac inpatients.A consecutive 268 elderly Japanese cardiac inpatients (mean age, 73.3 years) were enrolled and divided by sex into female (n = 75, 28%) and male (n = 193, 72%) groups. Patient characteristics and maximum gait speed, average step count, and PA energy expenditure (PAEE) in kilocalorie per day for 2 days assessed by accelerometer were compared between groups.Gait speed correlated positively with in-hospital PA measured by average daily step count (r = 0.46, P < 0.001) and average daily PAEE (r = 0.47, P < 0.001) in all patients. After adjustment for left ventricular ejection fraction, step counts and PAEE were significantly lower in females than males (2651.35 ± 1889.92 vs 4037.33 ± 1866.81 steps, P < 0.001; 52.74 ± 51.98 vs 99.33 ± 51.40 kcal, P < 0.001), respectively.Maximum gait speed was slower and PA lower in elderly female versus male inpatients. Minimum gait speed and step count values in this study might be minimum target values for elderly male and female Japanese cardiac inpatients.
Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru
2018-06-01
This study aimed to investigate activation characteristics of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles during the acceleration and maximum-speed phases of sprinting. Lower-extremity kinematics and electromyographic (EMG) activities of the BFlh and ST muscles were examined during the acceleration sprint and maximum-speed sprint in 13 male sprinters during an overground sprinting. Differences in hamstring activation during each divided phases and in the hip and knee joint angles and torques at each time point of the sprinting gait cycle were determined between two sprints. During the early stance of the acceleration sprint, the hip extension torque was significantly greater than during the maximum-speed sprint, and the relative EMG activation of the BFlh muscle was significantly higher than that of the ST muscle. During the late stance and terminal mid-swing of maximum-speed sprint, the knee was more extended and a higher knee flexion moment was observed compared to the acceleration sprint, and the ST muscle showed higher activation than that of the BFlh. These results indicate that the functional demands of the medial and lateral hamstring muscles differ between two different sprint performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolan, David S.; Almgren, Ann S.; Bell, John B.
Axisymmetric numerical simulations continue to provide insight into how the structure, dynamics, and maximum wind speeds of tornadoes, and other convectively-maintained vortices, are influenced by the surrounding environment. This work is continued with a new numerical model of axisymmetric incompressible flow that incorporates adaptive mesh refinement. The model dynamically increases or decreases the resolution in regions of interest as determined by a specified refinement criterion. Here, the criterion used is based on the cell Reynolds number dx dv / nu, so that the flow is guaranteed to be laminar on the scale of the local grid spacing. The model ismore » used to investigate how the altitude and shape of the convective forcing, the size of the domain, and the effective Reynolds number (based on the choice of the eddy viscosity nu) influence the structure and dynamics of the vortex. Over a wide variety of domain and forcing geometries,the vortex Reynolds number Gamma / nu (the ratio of the far-field circulation to the eddy viscosity) is shown to be the most important parameter for determining vortex structure and behavior. Furthermore,it is found that the vertical scale of the convective forcing only affects the vortex inasmuch as this vertical scale contributes to the total strength of the convective forcing. The horizontal scale of the convective forcing, however, is found to be the fundamental length scale in the problem, in that it can determine both the circulation of the fluid that is drawn into the vortex core, and also influences the depth of the swirling boundary layer. Higher mean wind speeds are sustained as the eddy viscosity is decreased; however, it is observed that the highest wind speeds are found in the high-swirl, two-celled vortex regime rather than in the low-swirl, one-celled regime, which is in contrast with some previous results. The conclusions drawn from these results are applied to dimensional simulations with scales similar to the mesocyclone/thunderstorm environment. Tornado-like vortices are reproduced, using a constant eddy viscosity with such values as 40 m2s-1, which have maximum wind speeds, radii of maximum winds, and boundary layer depths which are quite similar to those recently observed with portable Doppler radar. Based on the results of both nondimensional and tornado-scale simulations, scaling laws are empirically derived for the internal length scales in tornado-like vortices, such as the depth of the boundary layer and the radius of maximum winds.« less
NASA Astrophysics Data System (ADS)
Nosaka, Masataka; Oike, Mamoru; Kikuchi, Masataka; Kamijo, Kenjiro; Tajiri, Masanori
1993-07-01
The tribo characteristics of self-lubricating 40-mm-bore ball bearings with a retainer of glass cloth-polytetrafluoroethylene (PTFE) laminate, which has elliptical pockets with a large pocket clearance, were tested under thrust loads at speeds up to 50,000 rpm, 2 million DN, in liquid hydrogen (LH2) and in liquid nitrogen (LN2). During testing, the bearing torque, outer-race temperature, and electric resistance between the inner and outer races were monitored to verify the formation and rupture of a PTFE transfer film. Testing showed that the bearings having the elliptical retainer pockets were superior to the conventional bearings with circular pockets. It was determined that, at the maximum inner race spinning velocity of about 5 m/s, a PTFE transfer film could sustain the maximum Hertz stress, up to about 2000 N/sq mm, in LH2, without severe film rupture resulting in bearing seizure. In LN2, the critical load capacity of PTFE transfer film with bearing seizure was about 2700 N/sq mm.
Measurement of glottal cycle characteristics between children and adults: Physiological Variations
Patel, Rita R.; Dubrovskiy, Denis; Döllinger, Michael
2014-01-01
Objective The aim of this study is to quantify phases of the vibratory cycle using measurements of glottal cycle quotients and glottal cycle derivatives, in typically developing pre-pubertal children and young adults with use of high speed digital imaging (HSDI). Method Vocal fold vibrations were recorded from 27 children (age range 5–9 years) and 35 adults (age range 21–45 years), with HSDI at 4000 frames per second for sustained phonation. Glottal area waveform (GAW) measures of Open Quotient (OQ), Closing Quotient (CQ), Speed Index (SI), Rate Quotient (RQ) and Asymmetry Quotient (AsyQ) were computed. Glottal cycle derivatives of Amplitude Quotient (AQ) and Maximum Area Declination Rate (MADR) were also computed. Group differences (adult females, adult males, and children) were statistically investigated for mean and standard deviation values of the glottal cycle quotients and glottal cycle derivatives. Results Children exhibited higher values of Speed Index, Asymmetry Quotient and lower MADR compared to adult males. Children exhibited the highest mean value and lowest variability in Amplitude Quotient compared to adult males and females. Adult males showed lower values of Speed Index, Asymmetry Quotient, Amplitude Quotient and higher values of MADR compared to adult females. Conclusion Glottal cycle vibratory motion in children is functionally different compared to adult males and females; suggesting the need for development of children specific norms for both normal and disordered voice qualities. PMID:24629646
Physical aspects of Hurricane Hugo in Puerto Rico
Scatena, F.N.; Larsen, Matthew C.
1991-01-01
On 18 September 1989 the western part ofHurricane Hugo crossed eastern Puerto Rico and the Luquillo Experimental Forest (LEF). Storm-facing slopes on the northeastern part of the island that were within 15 km of the eye and received greater than 200 mm of rain were most affected by the storm. In the LEF and nearby area, recurrence intervals associated with Hurricane Hugo were 50 yr for wind velocity, 10 to 31 yr for stream discharge, and 5 yr for rainfall intensity. To compare the magnitudes of the six hurricanes to pass over PuertoRico since 1899, 3 indices were developed using the standardized values of the product of: the maximum sustained wind speed at San Juan squared and storm duration; the square of the product of the maximum sustained wind velocity at San Juan and the ratio of the distance between the hurricane eye and San Juan to the distance between the eye and percentage of average annual rainfall delivered by the storm. Based on these indices, HurricaneHugo was of moderate intensity. However, because of the path of Hurricane Hugo, only one of these six storms (the 1932 storm) caused more damage to the LEF than Hurricane Hugo. Hurricanes of Hugo's magnitude are estimated to pass over the LEF once every 50-60 yr, on average.
48 CFR 252.217-7001 - Surge option.
Code of Federal Regulations, 2012 CFR
2012-10-01
... sustainable rate of delivery for items in this contract. This delivery schedule shall provide acceleration by month up to the maximum sustainable rate of delivery achievable within the Contractor's existing... than the maximum sustainable delivery rate under paragraph (b)(2) of this clause, nor will the exercise...
48 CFR 252.217-7001 - Surge option.
Code of Federal Regulations, 2013 CFR
2013-10-01
... sustainable rate of delivery for items in this contract. This delivery schedule shall provide acceleration by month up to the maximum sustainable rate of delivery achievable within the Contractor's existing... than the maximum sustainable delivery rate under paragraph (b)(2) of this clause, nor will the exercise...
48 CFR 252.217-7001 - Surge option.
Code of Federal Regulations, 2014 CFR
2014-10-01
... sustainable rate of delivery for items in this contract. This delivery schedule shall provide acceleration by month up to the maximum sustainable rate of delivery achievable within the Contractor's existing... than the maximum sustainable delivery rate under paragraph (b)(2) of this clause, nor will the exercise...
48 CFR 252.217-7001 - Surge option.
Code of Federal Regulations, 2011 CFR
2011-10-01
... sustainable rate of delivery for items in this contract. This delivery schedule shall provide acceleration by month up to the maximum sustainable rate of delivery achievable within the Contractor's existing... than the maximum sustainable delivery rate under paragraph (b)(2) of this clause, nor will the exercise...
Experimental Determination of Load Carrying Capacity of Point Contacts at Zero Entrainment Velocity
NASA Technical Reports Server (NTRS)
Shogrin, Bradley A.; Jones, William R., Jr.; Kingsbury, Edward P.; Prahl, Joseph M.
1999-01-01
A capacitance technique was used to monitor the film thickness separating two steel balls of a unique tribometer while subjecting the ball-ball contact to highly stressed, zero entrainment velocity (ZEV) conditions. All tests were performed under a N2 purge (R.H. < 1.0%) and utilized 52100 steel balls (R(sub a) = 0.02 mm). Tribometer operations and capacitance-to-film-thickness accuracy were verified by comparing the film thickness approximations to established theoretical predictions for test conditions involving pure rolling. Pure rolling experiments were performed under maximum contact stresses and entrainment velocities of 1.0 GPa and 1.0 m/s to 3.0 m/s, respectively. All data from these baseline tests conformed to theory. ZEV tests were initiated after calibration of the tribometer and verification of film thickness approximation accuracy. Maximum contact stresses up to 0.57 GPa were supported at zero entrainment velocity with sliding speeds from 6.0 to 10.0 m/s for sustained amounts of time up to 28.8 minutes. The protective lubricating film separating the specimens at ZEV had a thickness between 0.10 and 0.14 mm (4 to 6 min), which corresponds to an approximate L-value of 4. The film thickness did not have a strong dependence upon variations of load or speed. Decreasing the sliding speed from 10.0 m/s to 1 m/s revealed a rapid loss in load support between 3.0 and 1.0 m/s. The formation of an immobile film formed by lubricant entrapment is discussed as an explanation of the load carrying capacity at these zero entrainment velocity conditions, relevant to the ball-ball contact application in retainerless ball bearings.
Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes
Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.
2013-01-01
The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575
How fast do living organisms move: Maximum speeds from bacteria to elephants and whales
NASA Astrophysics Data System (ADS)
Meyer-Vernet, Nicole; Rospars, Jean-Pierre
2015-08-01
Despite their variety and complexity, living organisms obey simple scaling laws due to the universality of the laws of physics. In the present paper, we study the scaling between maximum speed and size, from bacteria to the largest mammals. While the preferred speed has been widely studied in the framework of Newtonian mechanics, the maximum speed has rarely attracted the interest of physicists, despite its remarkable scaling property; it is roughly proportional to length throughout nearly the whole range of running and swimming organisms. We propose a simple order-of-magnitude interpretation of this ubiquitous relationship, based on physical properties shared by life forms of very different body structure and varying by more than 20 orders of magnitude in body mass.
NASA Technical Reports Server (NTRS)
Batterson, Sidney A.
1959-01-01
An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.
Izawa, Kazuhiro P.; Watanabe, Satoshi; Hirano, Yasuyuki; Matsushima, Shinya; Suzuki, Tomohiro; Oka, Koichiro; Kida, Keisuke; Suzuki, Kengo; Osada, Naohiko; Omiya, Kazuto; Brubaker, Peter H.; Shimizu, Hiroyuki; Akashi, Yoshihiro J.
2015-01-01
Abstract Maximum gait speed and physical activity (PA) relate to mortality and morbidity, but little is known about gender-related differences in these factors in elderly hospitalized cardiac inpatients. This study aimed to determine differences in maximum gait speed and daily measured PA based on sex and the relationship between these measures in elderly cardiac inpatients. A consecutive 268 elderly Japanese cardiac inpatients (mean age, 73.3 years) were enrolled and divided by sex into female (n = 75, 28%) and male (n = 193, 72%) groups. Patient characteristics and maximum gait speed, average step count, and PA energy expenditure (PAEE) in kilocalorie per day for 2 days assessed by accelerometer were compared between groups. Gait speed correlated positively with in-hospital PA measured by average daily step count (r = 0.46, P < 0.001) and average daily PAEE (r = 0.47, P < 0.001) in all patients. After adjustment for left ventricular ejection fraction, step counts and PAEE were significantly lower in females than males (2651.35 ± 1889.92 vs 4037.33 ± 1866.81 steps, P < 0.001; 52.74 ± 51.98 vs 99.33 ± 51.40 kcal, P < 0.001), respectively. Maximum gait speed was slower and PA lower in elderly female versus male inpatients. Minimum gait speed and step count values in this study might be minimum target values for elderly male and female Japanese cardiac inpatients. PMID:25789953
NASA Astrophysics Data System (ADS)
Jiang, Changlong; Ma, Cheng; He, Ning; Zhang, Xugang; Wang, Chongyang; Jia, Huibo
2002-12-01
In many real-time fields the sustained high-speed data recording system is required. This paper proposes a high-speed and sustained data recording system based on the complex-RAID 3+0. The system consists of Array Controller Module (ACM), String Controller Module (SCM) and Main Controller Module (MCM). ACM implemented by an FPGA chip is used to split the high-speed incoming data stream into several lower-speed streams and generate one parity code stream synchronously. It also can inversely recover the original data stream while reading. SCMs record lower-speed streams from the ACM into the SCSI disk drivers. In the SCM, the dual-page buffer technology is adopted to implement speed-matching function and satisfy the need of sustainable recording. MCM monitors the whole system, controls ACM and SCMs to realize the data stripping, reconstruction, and recovery functions. The method of how to determine the system scale is presented. At the end, two new ways Floating Parity Group (FPG) and full 2D-Parity Group (full 2D-PG) are proposed to improve the system reliability and compared with the Traditional Parity Group (TPG). This recording system can be used conveniently in many areas of data recording, storing, playback and remote backup with its high-reliability.
Maximum Range of a Projectile Thrown from Constant-Speed Circular Motion
ERIC Educational Resources Information Center
Poljak, Nikola
2016-01-01
The problem of determining the angle ? at which a point mass launched from ground level with a given speed v[subscript 0] will reach a maximum distance is a standard exercise in mechanics. There are many possible ways of solving this problem, leading to the well-known answer of ? = p/4, producing a maximum range of D[subscript max] = v[superscript…
Strength Training for Skeletal Muscle Endurance after Stroke
Ivey, Frederick M.; Prior, Steven J.; Hafer-Macko, Charlene E.; Katzel, Leslie I.; Macko, Richard F.; Ryan, Alice S.
2018-01-01
Background and Purpose Initial studies support the use of strength training (ST) as a safe and effective intervention after stroke. Our previous work shows that relatively aggressive, higher intensity ST translates into large effect sizes for paretic and non-paretic leg muscle volume, myostatin expression, and maximum strength post-stroke. An unanswered question pertains to how our unique ST model for stroke impacts skeletal muscle endurance (SME). Thus, we now report on ST-induced adaptation in the ability to sustain isotonic muscle contraction. Methods Following screening and baseline testing, hemiparetic stroke participants were randomized to either ST or an attention-matched stretch control group (SC). Those in the ST group trained each leg individually to muscle failure (20 repetition sets, 3× per week for 3 months) on each of three pneumatic resistance machines (leg press, leg extension, and leg curl). Our primary outcome measure was SME, quantified as the number of submaximal weight leg press repetitions possible at a specified cadence. The secondary measures included one-repetition maximum strength, 6-minute walk distance (6MWD), 10-meter walk speeds, and peak aerobic capacity (VO2 peak). Results ST participants (N = 14) had significantly greater SME gains compared with SC participants (N = 16) in both the paretic (178% versus 12%, P < .01) and non-paretic legs (161% versus 12%, P < .01). These gains were accompanied by group differences for 6MWD (P < .05) and VO2 peak (P < .05). Conclusion Our ST regimen had a large impact on the capacity to sustain submaximal muscle contraction, a metric that may carry more practical significance for stroke than the often reported measures of maximum strength. PMID:27865696
Wiegand, Iris; Töllner, Thomas; Habekost, Thomas; Dyrholm, Mads; Müller, Hermann J; Finke, Kathrin
2014-08-01
An individual's visual attentional capacity is characterized by 2 central processing resources, visual perceptual processing speed and visual short-term memory (vSTM) storage capacity. Based on Bundesen's theory of visual attention (TVA), independent estimates of these parameters can be obtained from mathematical modeling of performance in a whole report task. The framework's neural interpretation (NTVA) further suggests distinct brain mechanisms underlying these 2 functions. Using an interindividual difference approach, the present study was designed to establish the respective ERP correlates of both parameters. Participants with higher compared to participants with lower processing speed were found to show significantly reduced visual N1 responses, indicative of higher efficiency in early visual processing. By contrast, for participants with higher relative to lower vSTM storage capacity, contralateral delay activity over visual areas was enhanced while overall nonlateralized delay activity was reduced, indicating that holding (the maximum number of) items in vSTM relies on topographically specific sustained activation within the visual system. Taken together, our findings show that the 2 main aspects of visual attentional capacity are reflected in separable neurophysiological markers, validating a central assumption of NTVA. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
SU-E-T-444: Gravity Effect On Maximum Leaf Speed in Dynamic IMRT Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olasolo, J; Pellejero, S; Gracia, M
Purpose: A leaf sequencing algorithm has been recently developed in our department. Our purpose is to utilize this algorithm to reduce treatment time by studying the feasibility of using several maximum leaf speeds depending on gantry angle and leaf thickness (0.5 or 1 cm at isocenter). To do so, the gravity effect on MLC performance has been examined by means of analysing the dynalog files. Methods: Leaf position errors has been ascertained according to gantry angle and leaf speed in MLC Millenium120 (Varian). In order to do this, the following test has been designed: all leaves move in synchrony, withmore » same speed and 1 cm gap between opposite leaves. This test is implemented for 18 different speeds: 0.25-0.5-0.75-1-1.25-1.5-1.75-2-2.1-2.2-2.3-2.4-2.5-2.6-2.7-2.8-2.9-3.0 cm/s and 8 gantry angles: 0-45-90-135-180-225-270-315. Collimator angle is 2 degrees in all cases since it is the most usual one in IMRT treatments in our department. Dynamic tolerance is 2 mm. Dynalogs files of 10 repetitions of the test are analysed with a Mathlab in-house developed software and RMS error and 95th percentiles are calculated. Varian recommends 2.5 cm/s as the maximum leaf speed for its segmentation algorithm. In our case, we accept this speed in the most restrictive situation: gantry angle 270 and 1 cm leaf thickness. Maximum speeds for the rest of the cases are calculated by keeping the difference between 95th percentile and dynamic tolerance. In this way, beam hold-off probability does not increase. Results: Maximum speeds every 45 degrees of gantry rotation have been calculated for both leaf thickness. These results are 2.9-2.9-2.9-2.9-2.7-2.6-2.6-2.7 cm/s for 0.5 cm leaf thickness and 2.7-2.7-2.7-2.7-2.6-2.5-2.5-2.6 cm/s for 1 cm leaf thickness. Conclusion: Gravity effect on MLC positioning has been studied. Maximum leaf speed according to leaf thickness and gantry angle have been calculated which reduces treatment time.« less
Maximum step length: relationships to age and knee and hip extensor capacities.
Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B
2007-07-01
Maximum Step Length may be used to identify older adults at increased risk for falls. Since leg muscle weakness is a risk factor for falls, we tested the hypotheses that maximum knee and hip extension speed, strength, and power capacities would significantly correlate with Maximum Step Length and also that the "step out and back" Maximum Step Length [Medell, J.L., Alexander, N.B., 2000. A clinical measure of maximal and rapid stepping in older women. J. Gerontol. A Biol. Sci. Med. Sci. 55, M429-M433.] would also correlate with the Maximum Step Length of its two sub-tasks: stepping "out only" and stepping "back only". These sub-tasks will be referred to as versions of Maximum Step Length. Unimpaired younger (N=11, age=24[3]years) and older (N=10, age=73[5]years) women performed the above three versions of Maximum Step Length. Knee and hip extension speed, strength, and power capacities were determined on a separate day and regressed on Maximum Step Length and age group. Version and practice effects were quantified and subjective impressions of test difficulty recorded. Hypotheses were tested using linear regressions, analysis of variance, and Fisher's exact test. Maximum Step Length explained 6-22% additional variance in knee and hip extension speed, strength, and power capacities after controlling for age group. Within- and between-block and test-retest correlation values were high (>0.9) for all test versions. Shorter Maximum Step Lengths are associated with reduced knee and hip extension speed, strength, and power capacities after controlling for age. A single out-and-back step of maximal length is a feasible, rapid screening measure that may provide insight into underlying functional impairment, regardless of age.
Multiroller Traction Drive Speed Reducer. Evaluation for Automotive Gas Turbine Engine
1982-06-01
Speed is deLermined by a magnetic pickup on a toothed wheel . Gas turbine engine instrumunelLtiouu i -designed 1f0r measurement of specific fuel...buffer seal and the fluid--film bearing measured a maximum total runout of 0.038 mm (0.0015 in.) at low speed. At higher speeds, above 8000 rpm, the...maximum was 0.025 mm (0.001 in.) except near 10 000 rpm, where the oscilloscope indicated an excursion of 0.045 mm (0.0018 in.). This runout was within
Rose, Kayleigh A.; Nudds, Robert L.; Butler, Patrick J.; Codd, Jonathan R.
2015-01-01
ABSTRACT In leghorn chickens (Gallus gallus domesticus) of standard breed (large) and bantam (small) varieties, artificial selection has led to females being permanently gravid and sexual selection has led to male-biased size dimorphism. Using respirometry, videography and morphological measurements, sex and variety differences in metabolic cost of locomotion, gait utilisation and maximum sustainable speed (Umax) were investigated during treadmill locomotion. Males were capable of greater Umax than females and used a grounded running gait at high speeds, which was only observed in a few bantam females and no standard breed females. Body mass accounted for variation in the incremental increase in metabolic power with speed between the varieties, but not the sexes. For the first time in an avian species, a greater mass-specific incremental cost of locomotion, and minimum measured cost of transport (CoTmin) were found in males than in females. Furthermore, in both varieties, the female CoTmin was lower than predicted from interspecific allometry. Even when compared at equivalent speeds (using Froude number), CoT decreased more rapidly in females than in males. These trends were common to both varieties despite a more upright limb in females than in males in the standard breed, and a lack of dimorphism in posture in the bantam variety. Females may possess compensatory adaptations for metabolic efficiency during gravidity (e.g. in muscle specialization/posture/kinematics). Furthermore, the elevated power at faster speeds in males may be linked to their muscle properties being suited to inter-male aggressive combat. PMID:26405047
Maximum Range of a Projectile Thrown from Constant-Speed Circular Motion
NASA Astrophysics Data System (ADS)
Poljak, Nikola
2016-11-01
The problem of determining the angle θ at which a point mass launched from ground level with a given speed v0 will reach a maximum distance is a standard exercise in mechanics. There are many possible ways of solving this problem, leading to the well-known answer of θ = π/4, producing a maximum range of D max = v0 2 / g , with g being the free-fall acceleration. Conceptually and calculationally more difficult problems have been suggested to improve student proficiency in projectile motion, with the most famous example being the Tarzan swing problem. The problem of determining the maximum distance of a point mass thrown from constant-speed circular motion is presented and analyzed in detail in this text. The calculational results confirm several conceptually derived conclusions regarding the initial throw position and provide some details on the angles and the way of throwing (underhand or overhand) that produce the maximum throw distance.
Speed Profiles for Deceleration Guidance During Rollout and Turnoff (ROTO)
NASA Technical Reports Server (NTRS)
Barker, L. Keith; Hankins, Walter W., III; Hueschen, Richard M.
1999-01-01
Two NASA goals are to enhance airport safety and to improve capacity in all weather conditions. This paper contributes to these goals by examining speed guidance profiles to aid a pilot in decelerating along the runway to an exit. A speed profile essentially tells the pilot what the airplane's speed should be as a function of where the airplane is on the runway. While it is important to get off the runway as soon as possible (when striving to minimize runway occupancy time), the deceleration along a speed profile should be constrained by passenger comfort. Several speed profiles are examined with respect to their maximum decelerations and times to reach exit speed. One profile varies speed linearly with distance; another has constant deceleration; and two related nonlinear profiles delay maximum deceleration (braking) to reduce time spent on the runway.
Possible ecosystem impacts of applying maximum sustainable yield policy in food chain models.
Ghosh, Bapan; Kar, T K
2013-07-21
This paper describes the possible impacts of maximum sustainable yield (MSY) and maximum sustainable total yield (MSTY) policy in ecosystems. In general it is observed that exploitation at MSY (of single species) or MSTY (of multispecies) level may cause the extinction of several species. In particular, for traditional prey-predator system, fishing under combined harvesting effort at MSTY (if it exists) level may be a sustainable policy, but if MSTY does not exist then it is due to the extinction of the predator species only. In generalist prey-predator system, harvesting of any one of the species at MSY level is always a sustainable policy, but harvesting of both the species at MSTY level may or may not be a sustainable policy. In addition, we have also investigated the MSY and MSTY policy in a traditional tri-trophic and four trophic food chain models. Copyright © 2013 Elsevier Ltd. All rights reserved.
Novel Method for Analyzing Locomotor Ability after Spinal Cord Injury in Rats: Technical Note
Shinozaki, Munehisa; Yasuda, Akimasa; Nori, Satoshi; Saito, Nobuhito; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya
2013-01-01
In the research for the treatment of spinal cord injury (SCI), the evaluation of motor function in model rats must be as objective, noninvasive, and ethical as possible. The maximum speed and acceleration of a mouse measured using a SCANET system were previously reported to vary significantly according to severity of SCI. In the present study, the motor performance of SCI model rats was examined with SCANET and assessed for Basso-Beattie-Bresnahan (BBB) score to determine the usefulness of the SCANET system in evaluating functional recovery after SCI. Maximum speed and acceleration within the measurement period correlated significantly with BBB scores. Furthermore, among several phased kinematic factors used in BBB scores, the capability of “plantar stepping” was associated with a drastic increase in maximum speed and acceleration after SCI. Therefore, evaluation of maximum speed and acceleration using a SCANET system is a useful method for rat models of SCI and can complement open field scoring scales. PMID:24097095
2008 13th Expeditionary Warfare Conference
2008-10-23
Ships 6 Joint High Speed Vessel (JHSV) • Program Capability – High speed lift ship capable of transporting cargo and personnel across intra... high - speed aluminum trimaran hullform that enables the ship to reach sustainable speeds of over 40 knots and range in excess of 3,500 nautical miles...advancing concepts for a very high speed , manned submersible,
Aerodynamic characteristics of a propeller-powered high-lift semispan wing
NASA Technical Reports Server (NTRS)
Gentry, Garl L., Jr.; Takallu, M. A.; Applin, Zachary T.
1994-01-01
A small-scale semispan high-lift wing-flap system equipped under the wing with a turboprop engine assembly was tested in the LaRC 14- by 22-Foot Subsonic Tunnel. Experimental data were obtained for various propeller rotational speeds, nacelle locations, and nacelle inclinations. To isolate the effects of the high lift system, data were obtained with and without the flaps and leading-edge device. The effects of the propeller slipstream on the overall longitudinal aerodynamic characteristics of the wing-propeller assembly were examined. Test results indicated that the lift coefficient of the wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Decreasing the nacelle inclination (increased pitch down) enhanced the lift performance of the system much more than varying the vertical or horizontal location of the nacelle. Furthermore, decreasing the nacelle inclination led to higher lift curve slope values, which indicated that the powered wing could sustain higher angles of attack near maximum lift performance. Any lift augmentation was accompanied by a drag penalty due to the increased wing lift.
Gliding flight in a jackdaw: a wind tunnel study.
Rosén, M; Hedenström, A
2001-03-01
We examined the gliding flight performance of a jackdaw Corvus monedula in a wind tunnel. The jackdaw was able to glide steadily at speeds between 6 and 11 m s(-1). The bird changed its wingspan and wing area over this speed range, and we measured the so-called glide super-polar, which is the envelope of fixed-wing glide polars over a range of forward speeds and sinking speeds. The glide super-polar was an inverted U-shape with a minimum sinking speed (V(ms)) at 7.4 m s(-1) and a speed for best glide (V(bg)) at 8.3 m s(-)). At the minimum sinking speed, the associated vertical sinking speed was 0.62 m s(-1). The relationship between the ratio of lift to drag (L:D) and airspeed showed an inverted U-shape with a maximum of 12.6 at 8.5 m s(-1). Wingspan decreased linearly with speed over the whole speed range investigated. The tail was spread extensively at low and moderate speeds; at speeds between 6 and 9 m s(-1), the tail area decreased linearly with speed, and at speeds above 9 m s(-1) the tail was fully furled. Reynolds number calculated with the mean chord as the reference length ranged from 38 000 to 76 000 over the speed range 6-11 m s(-1). Comparisons of the jackdaw flight performance were made with existing theory of gliding flight. We also re-analysed data on span ratios with respect to speed in two other bird species previously studied in wind tunnels. These data indicate that an equation for calculating the span ratio, which minimises the sum of induced and profile drag, does not predict the actual span ratios observed in these birds. We derive an alternative equation on the basis of the observed span ratios for calculating wingspan and wing area with respect to forward speed in gliding birds from information about body mass, maximum wingspan, maximum wing area and maximum coefficient of lift. These alternative equations can be used in combination with any model of gliding flight where wing area and wingspan are considered to calculate sinking rate with respect to forward speed.
Criteria for setting speed limits in urban and suburban areas in Florida
DOT National Transportation Integrated Search
2003-03-01
Current methods of setting speed limits include maximum statutory limits by road class and geometric characteristics and speed zoning practice for the roads where the legislated limit does not reflect local differences. Speed limits in speed zones ar...
A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Shamsoddin, Sina; Porté-Agel, Fernando
2017-04-01
In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs) exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs). Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES). To do this, we use a previously-validated LES framework in which an actuator line model (ALM) is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as Nc/R, where N is the number of blades, c is the chord length and R is the rotor radius) and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI) at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height) increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the upper wake edge compared to the ones at the lower edge), only slight lateral asymmetries were observed at the optimum tip-speed ratio for which the simulations were performed.
14 CFR 23.1563 - Airspeed placards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under § 23.149... control and the airspeed indicator has features such as low speed awareness that provide ample warning...
14 CFR 23.1563 - Airspeed placards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under § 23.149... control and the airspeed indicator has features such as low speed awareness that provide ample warning...
Limitations of oxygen uptake and leg muscle activity during ascending evacuation in stairways.
Halder, Amitava; Kuklane, Kalev; Gao, Chuansi; Miller, Michael; Delin, Mattias; Norén, Johan; Fridolf, Karl
2018-01-01
Stair ascending performance is critical during evacuation from buildings and underground infrastructures. Healthy subjects performed self-paced ascent in three settings: 13 floor building, 31 floor building, 33 m stationary subway escalator. To investigate leg muscle and cardiorespiratory capacities and how they constrain performance, oxygen uptake (VO 2 ), heart rate (HR) and ascending speed were measured in all three; electromyography (EMG) in the first two. The VO 2 and HR ranged from 89 to 96% of the maximum capacity reported in the literature. The average highest VO 2 and HR ranged from 39 to 41 mL·kg -1 ·min -1 and 162 to 174 b·min -1 , respectively. The subjects were able to sustain their initial preferred maximum pace for a short duration, while the average step rate was 92-95 steps·min -1 . In average, VO 2 reached relatively stable values at ≈37 mL·kg -1 ·min -1 . EMG amplitudes decreased significantly and frequencies were unchanged. Speed reductions indicate that climbing capacity declined in the process of fatigue development. In the two buildings, the reduction of muscle power allowed the subjects to extend their tolerance and complete ascents in the 48 m and 109 m high stairways in 2.9 and 7.8 min, respectively. Muscle activity interpretation squares were developed and proved advantageous to observe fatigue and recovery over time. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, A; Ironwood CRC, Phoenix, AZ; Rajaguru, P
2014-06-15
Purpose: To establish a set of tests based on the iCOM software that can be used to commission and perform periodic QA of VMAT delivery on the Elekta Synergy-S, commonly known as the Beam Modulator (BM). Methods: iCOM is used to create and deliver customized treatment fields to characterize the system in terms of 1) MLC positioning accuracy under static and dynamic delivery with full gantry rotation, 2) MLC positioning with known errors, 3) Maximum dose rate, 4) Maximum MLC speed, 5) Maximum gantry speed, 6) Synchronization: gantry speed versus dose rate, and 7) Synchronization: MLC speed versus dose rate.more » The resulting images were captured on the iView GT and exported in DICOM format to Dosimetry Check™ system for visual and quantitative analysis. For the initial commissioning phase, the system tests described should be supplemented with extensive patient QAs covering all clinically relevant treatment sites. Results: The system performance test suite showed that on our Synergy-S, MLC positioning was accurate under both static and dynamic deliveries. Intentional errors of 1 mm were also easily identified on both static and dynamic picket fence tests. Maximum dose rate was verified with stop watch to be consistently between 475-480 MU/min. Maximum gantry speed and MLC speed were 5.5 degree/s and 2.5 cm/s respectively. After accounting for beam flatness, both synchronization tests, gantry versus dose rate and MLC speed versus dose rate, were successful as the fields were uniform across the strips and there were no obvious cold/hot spots. Conclusion: VMAT commissioning and quality assurance should include machine characterization tests in addition to patient QAs. Elekta iCOM is a valuable tool for the design of customized VMAT field with specific MU, MLC leaf positions, dose rate, and indirect control of MLC and gantry speed at each of its control points.« less
The trans-Himalayan flights of bar-headed geese (Anser indicus)
Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Frappell, P.B.; Milsom, W.K.; Tseveenmyadag, N.; Newman, S.H.; Scott, G.R.; Sathiyaselvam, P.; Takekawa, John Y.; Wikelski, M.; Bishop, C.M.
2011-01-01
Birds that fly over mountain barriers must be capable of meeting the increased energetic cost of climbing in low-density air, even though less oxygen may be available to support their metabolism. This challenge is magnified by the reduction in maximum sustained climbing rates in large birds. Bar-headed geese (Anser indicus) make one of the highest and most iconic transmountain migrations in the world. We show that those populations of geese that winter at sea level in India are capable of passing over the Himalayas in 1 d, typically climbing between 4,000 and 6,000min 7-8 h. Surprisingly, these birds do not rely on the assistance of upslope tailwinds that usually occur during the day and can support minimum climb rates of 0.8-2.2 km??h-1, even in the relative stillness of the night. They appear to strategically avoid higher speed winds during the afternoon, thus maximizing safety and control during flight. It would seem, therefore, that bar-headed geese are capable of sustained climbing flight over the passes of the Himalaya under their own aerobic power.
NASA Astrophysics Data System (ADS)
Hertzberg, Jean
2005-11-01
Cough generated infectious aerosols are of interest while developing strategies for the mitigation of disease risks ranging from the common cold to SARS. In this work, the velocity field of human cough was measured using particle image velocimetry (PIV). The project subjects (total 29) coughed into an enclosure seeded with stage fog for most measurements. Cough flow speed profiles, average widths of the cough jet, waveform, and maximum cough speeds were measured. Maximum cough speeds ranged from 1.5 m/s to 28.8 m/s. No correlation was found for maximum cough flow speeds to height or gender. The slow growth of the width of the cough flow suggests that a cough may penetrate farther into a room than a steady jet of similar volume. The velocity profile was found to scale with the square root of downstream distance.
A pulser-sustainer carbon monoxide electric-discharge supersonic laser
NASA Technical Reports Server (NTRS)
Monson, D. J.; Srinivasan, G.
1977-01-01
Operation of a CW CO electric-discharge supersonic laser with a pulser-sustainer discharge is described. High-power operation as well as independent control over electron energy and density are demonstrated. Maximum input power achieved to date is 100 kW. The maximum output power is 6 kW or 10% of the sustainer positive-column power. Much improved performance appears possible.
14 CFR 23.1563 - Airspeed placards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under § 23.149(b). [Amdt. 23-7, 34 FR 13097... lighted area such as the landing gear control and the airspeed indicator has features such as low speed...
NASA Technical Reports Server (NTRS)
Eslinger, David L.; Iverson, Richard L.
1986-01-01
Coastal zone color scanner (CZCS) chlorophyll concentration increases in the Mid-Atlantic Bight were associated with high wind speeds in continental shelf waters during March and May 1979. Maximum spring CZCS chlorophyll concentrations occurred during April when the water column was not thermally stratified and were spatially and temporally associated with reductions in wind speed both in onshelf and in offshelf regions. Increased chlorophyll concentrations in offshelf waters were associated with high wind speeds during May when a deep chlorophyll maximum was present. Chlorophyll patchiness was observed on length scales typical of those controlled by biological processes during the April low-wind period but not during March or May when wind speeds were greater. The spring CZCS chlorophyll maximum in the southern portion of the Mid-Atlantic Bight occurred in response to a reduction in mixed layer depth caused by decreased wind speeds and not by increased water column stratification.
40 CFR 1066.235 - Speed verification procedure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... before testing, and after major maintenance. (c) Procedure. Use one of the following procedures to verify... dynamometer control circuits. Determine the speed error as follows: (i) Set the dynamometer to speed-control mode. Set the dynamometer speed to a value between 4.2 m/s and the maximum speed expected during...
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...
14 CFR 91.117 - Aircraft speed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed...
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...
14 CFR 23.1507 - Operating maneuvering speed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Operating maneuvering speed. 23.1507... Limitations and Information § 23.1507 Operating maneuvering speed. The maximum operating maneuvering speed, VO, must be established as an operating limitation. VO is a selected speed that is not greater than VS√n...
14 CFR 23.1507 - Operating maneuvering speed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Operating maneuvering speed. 23.1507... Limitations and Information § 23.1507 Operating maneuvering speed. The maximum operating maneuvering speed, VO, must be established as an operating limitation. VO is a selected speed that is not greater than VS√n...
14 CFR 91.117 - Aircraft speed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed...
Light-weight robot using piezoelectric motor, sensor and actuator
NASA Astrophysics Data System (ADS)
Wu, Zhen; Bao, Xiao-Qi; Varadan, Vijay K.; Varadan, Vasundara V.
1992-12-01
A prototype single-link, single-axis 'piezorobot' assembled in the laboratory is presented. It basically consists of a flexible arm with the piezoelectric sensors and actuators attached and a servo-controlled piezoelectric motor as the driver. The piezomotor has a diameter of 40 mm, a maximum speed of 520 rpm, and a maximum torque of 0.07 nm, and weighs about 0.07 kg. The 254-mm-long steel arm weighs about 0.0212 kg, including 0.0022 kg of piezoceramic pieces. This piezorobot is controlled by an IBM PC and can move to a programmed destination along a programmed path with quick start and stop responses and a very short settling time. The device's design is shown to be feasible; it has conceptually demonstrated its effectiveness for reducing the self-weight, using flexible linkage while controlling the vibration interferences, and reducing the settling time of a robotic arm. uly/August 1994 1994 7 Springer-Verlag 1994 BF02400853 10.1007/BF02400853 1 Sustainable development and deep ecology: An analysis of competing traditions Forum 477 488 2006 4 5 Springer-Verlag New York Inc 1994 267
Glanville, E J; Seebacher, F
2006-12-01
Thermoregulating animals are thought to have evolved a preferred body temperature at which thermally sensitive performance is optimised. Even during thermoregulation, however, many animals experience pronounced variability in body temperature, and may regulate to different body temperatures depending on environmental conditions. Here we test the hypothesis that there is a trade-off between regulating to lower body temperatures in cooler conditions and locomotory and metabolic performance. Animals (estuarine crocodiles, Crocodylus porosus) acclimated to cold (N=8) conditions had significantly lower maximum and mean daily body temperatures after 33 days than warm-acclimated animals (N=9), despite performing characteristic thermoregulatory behaviours. Concomitant with behavioural changes, maximum sustained swimming speed (U(crit)) shifted to the respective mean body temperatures during acclimation (cold=20 degrees C, warm=29 degrees C), but there was no difference in the maxima between acclimation groups. Mitochondrial oxygen consumption changed significantly during acclimation, and maximum respiratory control ratios coincided with mean body temperatures in liver, muscle and heart tissues. There were significant changes in the activities of regulatory metabolic enzymes (lactate dehydrogenase, citrate synthase, cytochrome c oxidase) and these were tissue specific. The extraordinary shift in behaviour and locomotory and metabolic performance shows that within individuals, behaviour and physiology covary to maximise performance in different environments.
High-Speed Sealift Technology. Volume 1
1998-09-01
performance of high - speed commercial and military sealift ships , in advance of detailed design studies, in order to help define realistic future mission...Therefore, the viability of new High - Speed Sealift (HSS) ships (oceangoing cargo vessels capable of at least 40 kt that are able to onload and offload... propulsion power for dynamically supported concepts) VK = average ship speed for a voyage (i.e., sustained or service speed )
Arreyndip, Nkongho Ayuketang; Joseph, Ebobenow; David, Afungchui
2016-11-01
For the future installation of a wind farm in Cameroon, the wind energy potentials of three of Cameroon's coastal cities (Kribi, Douala and Limbe) are assessed using NASA average monthly wind data for 31 years (1983-2013) and compared through Weibull statistics. The Weibull parameters are estimated by the method of maximum likelihood, the mean power densities, the maximum energy carrying wind speeds and the most probable wind speeds are also calculated and compared over these three cities. Finally, the cumulative wind speed distributions over the wet and dry seasons are also analyzed. The results show that the shape and scale parameters for Kribi, Douala and Limbe are 2.9 and 2.8, 3.9 and 1.8 and 3.08 and 2.58, respectively. The mean power densities through Weibull analysis for Kribi, Douala and Limbe are 33.7 W/m2, 8.0 W/m2 and 25.42 W/m2, respectively. Kribi's most probable wind speed and maximum energy carrying wind speed was found to be 2.42 m/s and 3.35 m/s, 2.27 m/s and 3.03 m/s for Limbe and 1.67 m/s and 2.0 m/s for Douala, respectively. Analysis of the wind speed and hence power distribution over the wet and dry seasons shows that in the wet season, August is the windiest month for Douala and Limbe while September is the windiest month for Kribi while in the dry season, March is the windiest month for Douala and Limbe while February is the windiest month for Kribi. In terms of mean power density, most probable wind speed and wind speed carrying maximum energy, Kribi shows to be the best site for the installation of a wind farm. Generally, the wind speeds at all three locations seem quite low, average wind speeds of all the three studied locations fall below 4.0m/s which is far below the cut-in wind speed of many modern wind turbines. However we recommend the use of low cut-in speed wind turbines like the Savonius for stand alone low energy needs.
Calculation of wind speeds required to damage or destroy buildings
NASA Astrophysics Data System (ADS)
Liu, Henry
Determination of wind speeds required to damage or destroy a building is important not only for the improvement of building design and construction but also for the estimation of wind speeds in tornadoes and other damaging storms. For instance, since 1973 the U.S. National Weather Service has been using the well-known Fujita scale (F scale) to estimate the maximum wind speeds of tornadoes [Fujita, 1981]. The F scale classifies tornadoes into 13 numbers, F-0 through F-12. The wind speed (maximum gust speed) associated with each F number is given in Table 1. Note that F-6 through F-12 are for wind speeds between 319 mi/hr (mph) and the sonic velocity (approximately 760 mph; 1 mph = 1.6 km/kr). However, since no tornadoes have been classified to exceed F-5, the F-6 through F-12 categories have no practical meaning [Fujita, 1981].
Examining Impulse-Variability in Kicking.
Chappell, Andrew; Molina, Sergio L; McKibben, Jonathon; Stodden, David F
2016-07-01
This study examined variability in kicking speed and spatial accuracy to test the impulse-variability theory prediction of an inverted-U function and the speed-accuracy trade-off. Twenty-eight 18- to 25-year-old adults kicked a playground ball at various percentages (50-100%) of their maximum speed at a wall target. Speed variability and spatial error were analyzed using repeated-measures ANOVA with built-in polynomial contrasts. Results indicated a significant inverse linear trajectory for speed variability (p < .001, η2= .345) where 50% and 60% maximum speed had significantly higher variability than the 100% condition. A significant quadratic fit was found for spatial error scores of mean radial error (p < .0001, η2 = .474) and subject-centroid radial error (p < .0001, η2 = .453). Findings suggest variability and accuracy of multijoint, ballistic skill performance may not follow the general principles of impulse-variability theory or the speed-accuracy trade-off.
Determination of the wind power systems load to achieve operation in the maximum energy area
NASA Astrophysics Data System (ADS)
Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.
2018-01-01
This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.
Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros
2014-01-01
The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity. PMID:25031685
Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros
2014-03-27
The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity.
DOT National Transportation Integrated Search
2005-11-01
Speed differentials between large trucks and automobiles on rural interstate highways are due to : both state regulated speed limits and commercial trucking company policies that restrict maximum truck : speeds. The initial portion of this effort inv...
Evaluating the impacts of proposed speed limit increases in Michigan : research spotlight.
DOT National Transportation Integrated Search
2014-07-01
Recent proposed speed limit legislation led MDOT to evaluate the : states current speed limit policies and potential alternatives. Currently, : Michigan freeways have a maximum speed limit of 70 mph for passenger : vehicles and 60 mph for trucks a...
Grip and limb force limits to turning performance in competition horses
Tan, Huiling; Wilson, Alan M.
2011-01-01
Manoeuverability is a key requirement for successful terrestrial locomotion, especially on variable terrain, and is a deciding factor in predator–prey interaction. Compared with straight-line running, bend running requires additional leg force to generate centripetal acceleration. In humans, this results in a reduction in maximum speed during bend running and a published model assuming maximum limb force as a constraint accurately predicts how much a sprinter must slow down on a bend given his maximum straight-line speed. In contrast, greyhounds do not slow down or change stride parameters during bend running, which suggests that their limbs can apply the additional force for this manoeuvre. We collected horizontal speed and angular velocity of heading of horses while they turned in different scenarios during competitive polo and horse racing. The data were used to evaluate the limits of turning performance. During high-speed turns of large radius horizontal speed was lower on the bend, as would be predicted from a model assuming a limb force limit to running speed. During small radius turns the angular velocity of heading decreased with increasing speed in a manner consistent with the coefficient of friction of the hoof–surface interaction setting the limit to centripetal force to avoid slipping. PMID:21147799
Grip and limb force limits to turning performance in competition horses.
Tan, Huiling; Wilson, Alan M
2011-07-22
Manoeuverability is a key requirement for successful terrestrial locomotion, especially on variable terrain, and is a deciding factor in predator-prey interaction. Compared with straight-line running, bend running requires additional leg force to generate centripetal acceleration. In humans, this results in a reduction in maximum speed during bend running and a published model assuming maximum limb force as a constraint accurately predicts how much a sprinter must slow down on a bend given his maximum straight-line speed. In contrast, greyhounds do not slow down or change stride parameters during bend running, which suggests that their limbs can apply the additional force for this manoeuvre. We collected horizontal speed and angular velocity of heading of horses while they turned in different scenarios during competitive polo and horse racing. The data were used to evaluate the limits of turning performance. During high-speed turns of large radius horizontal speed was lower on the bend, as would be predicted from a model assuming a limb force limit to running speed. During small radius turns the angular velocity of heading decreased with increasing speed in a manner consistent with the coefficient of friction of the hoof-surface interaction setting the limit to centripetal force to avoid slipping.
Rockwell-Rocketdyne flywheel test results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, R.S. Jr.; Babelay, E.F. Jr.; Sutton, B.J.
1981-01-01
Results are presented of the spin test evaluation of the Rockwell-Rocketdyne RPE-10 design flywheel at the Oak Ridge Flywheel Evaluation Laboratory. Details of the static evaluation, including measures of weight, inertia, natural frequencies, and radiography, are also presented. The flywheel was subjected to seven spin cycles with a maximum of 383 rps, 105% of design speed. At that speed, the energy stored was 1.94 kWhr at 36.1 Whr/kg. The maximum speed was limited by the inability of the test facility to accommodate the increasing eccentric shift of both hub disks with increasing speed. No material degradation was observed during themore » testing.« less
Rockwell-Rocketdyne flywheel test results
NASA Astrophysics Data System (ADS)
Steele, R. S., Jr.; Babelay, E. F., Jr.; Sutton, B. J.
1981-01-01
Results are presented of the spin test evaluation of the Rockwell-Rocketdyne RPE-10 design flywheel at the Oak Ridge Flywheel Evaluation Laboratory. Details of the static evaluation, including measures of weight, inertia, natural frequencies, and radiography, are also presented. The flywheel was subjected to seven spin cycles with a maximum of 383 rps, 105% of design speed. At that speed, the energy stored was 1.94 kWhr at 36.1 Whr/kg. The maximum speed was limited by the inability of the test facility to accommodate the increasing eccentric shift of both hub disks with increasing speed. No material degradation was observed during the testing.
Effect of speed and press fit on fatigue life of roller-bearing inner-race contact
NASA Technical Reports Server (NTRS)
Coe, H. H.; Zaretsky, E. V.
1985-01-01
An analysis was performed to determine the effects of inner ring speed and press fit on the rolling element fatigue life of a roller bearing inner race contact. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner ring speed, load, and geometry and were applied to a conventional ring life analysis. The race contact fatigue life was reduced by more than 90 percent for some conditions when speed and press fit were considered. The depth of the maximum shear stress remained virtually unchanged.
Performance of J33 turbojet engine with shaft-power extraction III : turbine performance
NASA Technical Reports Server (NTRS)
Huppert, M C; Nettles, J C
1949-01-01
The performance of the turbine component of a J33 turbojet engine was determined over a range of turbine speeds from 8000 to 11,500 rpm.Turbine-inlet temperature was varied from the minimum required to drive the compressor to a maximum of approximately 2000 degrees R at each of several intermediate turbine speeds. Data are presented that show the horsepower developed by the turbine per pound of gas flow. The relation between turbine-inlet stagnation pressure, turbine-outlet stagnation pressure, and turbine-outlet static pressure was established. The turbine-weight-flow parameter varied from 39.2 to 43.6. The maximum turbine efficiency measured was 0.86 at a pressure ratio of 3.5 and a ratio of blade speed to theoretical nozzle velocity of 0.39. A generalized performance map of the turbine-horsepower parameter plotted against the turbine-speed parameter indicated that the best turbine efficiency is obtained when the turbine power is 10 percent greater than the compressor horsepower. The variation of efficiency with the ratio of blade speed to nozzle velocity indicated that the turbine operates at a speed above that for maximum efficiency when the engine is operated normally with the 19-inch-diameter jet nozzle.
2007-05-18
number and intensity are highest in sunspot maximum. CME’s are considered the sources of the most intense geomagnetic storms (Gonzalez et al., 2002... storm . High speed solar wind The geomagnetic activity during the declining phase of the solar cycle can be even higher that at sunspot maximum. In...characteristic “calm before the storm ” – the decrease a couple of days before the maximum disturbance – in the case of high speed streams (Borovsky and
46 CFR 130.140 - Steering on OSVs of 100 or more gross tons.
Code of Federal Regulations, 2012 CFR
2012-10-01
... hydraulic-helm steering-system in paragraph (b) of this section. (b) Each hydraulic-helm steering-system... the vessel at every service speed without being damaged at maximum astern speed. (2) A hydraulic system with a maximum allowable working pressure of not more than 12,411 kPa (1,800 psi), dedicated to...
46 CFR 130.140 - Steering on OSVs of 100 or more gross tons.
Code of Federal Regulations, 2013 CFR
2013-10-01
... hydraulic-helm steering-system in paragraph (b) of this section. (b) Each hydraulic-helm steering-system... the vessel at every service speed without being damaged at maximum astern speed. (2) A hydraulic system with a maximum allowable working pressure of not more than 12,411 kPa (1,800 psi), dedicated to...
46 CFR 130.140 - Steering on OSVs of 100 or more gross tons.
Code of Federal Regulations, 2011 CFR
2011-10-01
... hydraulic-helm steering-system in paragraph (b) of this section. (b) Each hydraulic-helm steering-system... the vessel at every service speed without being damaged at maximum astern speed. (2) A hydraulic system with a maximum allowable working pressure of not more than 12,411 kPa (1,800 psi), dedicated to...
Hudson, Penny E; Corr, Sandra A; Wilson, Alan M
2012-07-15
The cheetah and racing greyhound are of a similar size and gross morphology and yet the cheetah is able to achieve a far higher top speed. We compared the kinematics and kinetics of galloping in the cheetah and greyhound to investigate how the cheetah can attain such remarkable maximum speeds. This also presented an opportunity to investigate some of the potential limits to maximum running speed in quadrupeds, which remain poorly understood. By combining force plate and high speed video data of galloping cheetahs and greyhounds, we show how the cheetah uses a lower stride frequency/longer stride length than the greyhound at any given speed. In some trials, the cheetahs used swing times as low as those of the greyhounds (0.2 s) so the cheetah has scope to use higher stride frequencies (up to 4.0 Hz), which may contribute to it having a higher top speed that the greyhound. Weight distribution between the animal's limbs varied with increasing speed. At high speed, the hindlimbs support the majority of the animal's body weight, with the cheetah supporting 70% of its body weight on its hindlimbs at 18 m s(-1); however, the greyhound hindlimbs support just 62% of its body weight. Supporting a greater proportion of body weight on a particular limb is likely to reduce the risk of slipping during propulsive efforts. Our results demonstrate several features of galloping and highlight differences between the cheetah and greyhound that may account for the cheetah's faster maximum speeds.
NASA CYGNSS Ocean Wind Observations in the 2017 Atlantic Hurricane Season
NASA Astrophysics Data System (ADS)
Ruf, C. S.; Balasubramaniam, R.; Mayers, D.; McKague, D. S.
2017-12-01
The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit to measure ocean surface wind speed in the inner core of tropical cyclones with better than 12 hour refresh rates. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification, made possible by the large number of satellites. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Results of measurements made during the 2017 Atlantic hurricane season, including frequent overpasses of Hurricanes Harvey, Irma and Maria, will be presented.
New super-computing facility in RIKEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohta, Shigemi
1994-12-31
A new superconductor, Fujitsu VPP500/28, was installed in the Institute of Physical and Chemical Research (RIKEN) at the end of March, 1994. It consists of 28 processing elements (PE`s) connected by a high-speed crossbar switch. The switch is a combination of GaAs and ECL circuitry with peak band width of 800 Mbyte per second. Each PE consists of a GaAs/ECL vector processor with 1.6 Gflops peak speed and 256 Mbyte SRAM local memory. In addition, there are 8 GByte DRAM space, two 100 Gbyte RAID disks and a 10 TByte archive based on SONY File Bank system. The author ranmore » three major benchmarks on this machine: modified LINPACK, lattice QCD and FFT. In the modified LINPACK benchmark, a sustained speed of about 28 Gflops is achieved, by removing the restriction on the size of the matrices. In the lattice QCD benchmark, a sustained speed of about 30 Gflops is achieved for inverting staggered fermion propagation matrix on a 32{sup 4} lattice. In the FFT benchmark, real data of 32, 128, 512, and 2048 MByte are Fourier-transformed. The sustained speed for each is respectively 21, 21, 20, and 19 Gflops. The numbers are obtained after only a few weeks of coding efforts and can be improved further.« less
Safety and operational impacts of differential speed limits on two-lane rural highways in Montana.
DOT National Transportation Integrated Search
2016-07-01
Speed limit policies can be broadly classified into two categories. Uniform speed limit policies establish the same maximum limit for all vehicles, while differential speed limit policies set a lower limit for heavy trucks in comparison to cars and l...
Computational Models Predict Larger Muscle Tissue Strains at Faster Sprinting Speeds
Fiorentino, Niccolo M; Rehorn, Michael R; Chumanov, Elizabeth S; Thelen, Darryl G; Blemker, Silvia S
2014-01-01
Introduction: Proximal biceps femoris musculotendon strain injury has been well established as a common injury among athletes participating in sports that require sprinting near or at maximum speed; however, little is known about the mechanisms that make this muscle tissue more susceptible to injury at faster speeds. Purpose: Quantify localized tissue strain during sprinting at a range of speeds. Methods: Biceps femoris long head (BFlh) musculotendon dimensions of 14 athletes were measured on magnetic resonance (MR) images and used to generate a finite element computational model. The model was first validated through comparison with previous dynamic MR experiments. After validation, muscle activation and muscle-tendon unit length change were derived from forward dynamic simulations of sprinting at 70%, 85% and 100% maximum speed and used as input to the computational model simulations. Simulations ran from mid-swing to foot contact. Results: The model predictions of local muscle tissue strain magnitude compared favorably with in vivo tissue strain measurements determined from dynamic MR experiments of the BFlh. For simulations of sprinting, local fiber strain was non-uniform at all speeds, with the highest muscle tissue strain where injury is often observed (proximal myotendinous junction). At faster sprinting speeds, increases were observed in fiber strain non-uniformity and peak local fiber strain (0.56, 0.67 and 0.72, for sprinting at 70%, 85% and 100% maximum speed). A histogram of local fiber strains showed that more of the BFlh reached larger local fiber strains at faster speeds. Conclusions: At faster sprinting speeds, peak local fiber strain, fiber strain non-uniformity and the amount of muscle undergoing larger strains are predicted to increase, likely contributing to the BFlh muscle’s higher injury susceptibility at faster speeds. PMID:24145724
A Lyapunov based approach to energy maximization in renewable energy technologies
NASA Astrophysics Data System (ADS)
Iyasere, Erhun
This dissertation describes the design and implementation of Lyapunov-based control strategies for the maximization of the power captured by renewable energy harnessing technologies such as (i) a variable speed, variable pitch wind turbine, (ii) a variable speed wind turbine coupled to a doubly fed induction generator, and (iii) a solar power generating system charging a constant voltage battery. First, a torque control strategy is presented to maximize wind energy captured in variable speed, variable pitch wind turbines at low to medium wind speeds. The proposed strategy applies control torque to the wind turbine pitch and rotor subsystems to simultaneously control the blade pitch and tip speed ratio, via the rotor angular speed, to an optimum point at which the capture efficiency is maximum. The control method allows for aerodynamic rotor power maximization without exact knowledge of the wind turbine model. A series of numerical results show that the wind turbine can be controlled to achieve maximum energy capture. Next, a control strategy is proposed to maximize the wind energy captured in a variable speed wind turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip speed ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximal for a particular blade pitch angle and wind speed by using the generator rotor voltage as a control input. This control method allows for aerodynamic rotor power maximization without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be controlled to achieve near maximum energy capture. Finally, a power system consisting of a photovoltaic (PV) array panel, dc-to-dc switching converter, charging a battery is considered wherein the environmental conditions are time-varying. A backstepping PWM controller is developed to maximize the power of the solar generating system. The controller tracks a desired array voltage, designed online using an incremental conductance extremum-seeking algorithm, by varying the duty cycle of the switching converter. The stability of the control algorithm is demonstrated by means of Lyapunov analysis. Representative numerical results demonstrate that the grid power system can be controlled to track the maximum power point of the photovoltaic array panel in varying atmospheric conditions. Additionally, the performance of the proposed strategy is compared to the typical maximum power point tracking (MPPT) method of perturb and observe (P&O), where the converter dynamics are ignored, and is shown to yield better results.
Hardening characteristics of CO2 laser welds in advanced high strength steel
NASA Astrophysics Data System (ADS)
Han, Tae-Kyo; Park, Bong-Gyu; Kang, Chung-Yun
2012-06-01
When the CO2 laser welder with 6 kW output was used to weld 4 TRIP steels, 2 DP steels and a precipitation-hardened steel, which have the tensile strength in the range of 600-1000 MPa, the effect of welding speed on hardening characteristics was investigated. In the weld of TRIP steels and DP steels, the maximum hardness was shown in the fusion zone and the HAZ near the bond line, and the hardness was decreased from the HAZ to the base metal. Only in the PH600 steel, the maximum hardness was shown in the fusion zone and the hardness was decreased from bond line to the base metal. The maximum hardness value was not changed due to the variation of the welding speed within a given range of the welding speed. When the correlation with maximum hardness value using 6 known carbon equivalents was examined, those of CEL (=C+Si/50+Mn/25+P/2+Cr/25) and PL (=C+Mn/22+14B) were 0.96 and 0.95 respectively, and CEL was better because it could reflect the contribution of Si and Cr added to AHSS. The maximum hardness value could be calculated by the equation "Hmax=701CEL+281". The phase transformation analysis indicated that only martensitic transformation was expected in the given range of the welding conditions. Therefore, the maximum hardness of the weld was the same as that of water cooled steel and not changed with the variation of the welding speed
14 CFR 27.1505 - Never-exceed speed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Never-exceed speed. 27.1505 Section 27.1505... Never-exceed speed. (a) The never-exceed speed, VNE, must be established so that it is— (1) Not less than 40 knots (CAS); and (2) Not more than the lesser of— (i) 0.9 times the maximum forward speeds...
14 CFR 27.1505 - Never-exceed speed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Never-exceed speed. 27.1505 Section 27.1505... Never-exceed speed. (a) The never-exceed speed, VNE, must be established so that it is— (1) Not less than 40 knots (CAS); and (2) Not more than the lesser of— (i) 0.9 times the maximum forward speeds...
Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.
Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less
DOT National Transportation Integrated Search
2016-07-01
Speed limit policies can be broadly classified into two categories. Uniform speed limit policies establish the same maximum limit for all vehicles, while differential speed limit policies set a lower limit for heavy trucks in comparison to cars and l...
14 CFR 23.73 - Reference landing approach speed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reference landing approach speed. 23.73... Reference landing approach speed. (a) For normal, utility, and acrobatic category reciprocating engine-powered airplanes of 6,000 pounds or less maximum weight, the reference landing approach speed, VREF, must...
14 CFR 23.73 - Reference landing approach speed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reference landing approach speed. 23.73... Reference landing approach speed. (a) For normal, utility, and acrobatic category reciprocating engine-powered airplanes of 6,000 pounds or less maximum weight, the reference landing approach speed, VREF, must...
20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines
Code of Federal Regulations, 2012 CFR
2012-04-01
... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...
20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines
Code of Federal Regulations, 2013 CFR
2013-04-01
... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...
20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines
Code of Federal Regulations, 2014 CFR
2014-04-01
... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...
20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines
Code of Federal Regulations, 2011 CFR
2011-04-01
... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...
20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines
Code of Federal Regulations, 2010 CFR
2010-04-01
... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...
33 CFR 169.5 - How are terms used in this part defined?
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 169.15). Gross tons means vessel tonnage measured in accordance with the method utilized by the flag... water and is capable of a maximum speed equal to or exceeding V=3.7×displ .1667, where “V” is the maximum speed and “displ” is the vessel displacement corresponding to the design waterline in cubic meters...
33 CFR 169.5 - How are terms used in this part defined?
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 169.15). Gross tons means vessel tonnage measured in accordance with the method utilized by the flag... water and is capable of a maximum speed equal to or exceeding V=3.7×displ .1667, where “V” is the maximum speed and “displ” is the vessel displacement corresponding to the design waterline in cubic meters...
33 CFR 169.5 - How are terms used in this part defined?
Code of Federal Regulations, 2013 CFR
2013-07-01
... § 169.15). Gross tons means vessel tonnage measured in accordance with the method utilized by the flag... water and is capable of a maximum speed equal to or exceeding V=3.7×displ .1667, where “V” is the maximum speed and “displ” is the vessel displacement corresponding to the design waterline in cubic meters...
33 CFR 169.5 - How are terms used in this part defined?
Code of Federal Regulations, 2014 CFR
2014-07-01
... § 169.15). Gross tons means vessel tonnage measured in accordance with the method utilized by the flag... water and is capable of a maximum speed equal to or exceeding V=3.7×displ .1667, where “V” is the maximum speed and “displ” is the vessel displacement corresponding to the design waterline in cubic meters...
40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.
Code of Federal Regulations, 2011 CFR
2011-07-01
... The percent torque is relative to the maximum torque at the commanded test speed. 3 Upon Administrator... ±50 rpm and the specified torque must be held to within plus or minus two percent of the maximum torque at the test speed. (d) One filter shall be used for sampling PM over the 13-mode test procedure...
40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... The percent torque is relative to the maximum torque at the commanded test speed. 3 Upon Administrator... ±50 rpm and the specified torque must be held to within plus or minus two percent of the maximum torque at the test speed. (d) One filter shall be used for sampling PM over the 13-mode test procedure...
40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... The percent torque is relative to the maximum torque at the commanded test speed. 3 Upon Administrator... ±50 rpm and the specified torque must be held to within plus or minus two percent of the maximum torque at the test speed. (d) One filter shall be used for sampling PM over the 13-mode test procedure...
Maximum sustainable yield and species extinction in a prey-predator system: some new results.
Ghosh, Bapan; Kar, T K
2013-06-01
Though the maximum sustainable yield (MSY) approach has been legally adopted for the management of world fisheries, it does not provide any guarantee against from species extinction in multispecies communities. In the present article, we describe the appropriateness of the MSY policy in a Holling-Tanner prey-predator system with different types of functional responses. It is observed that for both type I and type II functional responses, harvesting of either prey or predator species at the MSY level is a sustainable fishing policy. In the case of combined harvesting, both the species coexist at the maximum sustainable total yield (MSTY) level if the biotic potential of the prey species is greater than a threshold value. Further, increase of the biotic potential beyond the threshold value affects the persistence of the system.
Quality evaluation of millet-soy blended extrudates formulated through linear programming.
Balasubramanian, S; Singh, K K; Patil, R T; Onkar, Kolhe K
2012-08-01
Whole pearl millet, finger millet and decorticated soy bean blended (millet soy) extrudates formulations were designed using a linear programming (LP) model to minimize the total cost of the finished product. LP formulated composite flour was extruded through twin screw food extruder at different feed rate (6.5-13.5 kg/h), screw speed (200-350 rpm, constant feed moisture (14% wb), barrel temperature (120 °C) and cutter speed (15 rpm). The physical, functional, textural and pasting characteristics of extrudates were examined and their responses were studied. Expansion index (2.31) and sectional expansion index (5.39) was found to be was found maximum for feed rate and screw speed combination 9.5 kg/h and 250 rpm. However, density (0.25 × 10(-3) g/mm(3)) was maximum for 9.5 kg/h and 300 rpm combination. Maximum color change (10.32) was found for 9.5 kg/h feed rate and 200 rpm screw speed. The lower hardness was obtained for the samples extruded at lowest feed rate (6.5 kg/h) for all screw speed and feed rate at 9.5 kg/h for 300-350 rpm screw speed. Peak viscosity decreases with all screw speed of 9.5 kg/h feed rate.
Humanity's unsustainable environmental footprint.
Hoekstra, Arjen Y; Wiedmann, Thomas O
2014-06-06
Within the context of Earth's limited natural resources and assimilation capacity, the current environmental footprint of humankind is not sustainable. Assessing land, water, energy, material, and other footprints along supply chains is paramount in understanding the sustainability, efficiency, and equity of resource use from the perspective of producers, consumers, and government. We review current footprints and relate those to maximum sustainable levels, highlighting the need for future work on combining footprints, assessing trade-offs between them, improving computational techniques, estimating maximum sustainable footprint levels, and benchmarking efficiency of resource use. Ultimately, major transformative changes in the global economy are necessary to reduce humanity's environmental footprint to sustainable levels. Copyright © 2014, American Association for the Advancement of Science.
Physical understanding of the tropical cyclone wind-pressure relationship.
Chavas, Daniel R; Reed, Kevin A; Knaff, John A
2017-11-08
The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.
NASA Astrophysics Data System (ADS)
Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei
Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.
Relationship between strength qualities and short track speed skating performance in young athletes.
Felser, S; Behrens, M; Fischer, S; Heise, S; Bäumler, M; Salomon, R; Bruhn, S
2016-02-01
This study analyzed the relationships between isometric as well as concentric maximum voluntary contraction (MVC) strength of the leg muscles and the times as well as speeds over different distances in 17 young short track speed skaters. Isometric as well as concentric single-joint MVC strength and multi-joint MVC strength in a stable (without skates) and unstable (with skates) condition were tested. Furthermore, time during maximum skating performances on ice was measured. Results indicate that maximum torques during eversion and dorsal flexion have a significant influence on skating speed. Concentric MVC strength of the knee extensors was higher correlated with times as well as speeds over the different distances than isometric MVC strength. Multi-joint MVC testing revealed that the force loss between measurements without and with skates amounts to 25%, while biceps femoris and soleus showed decreased muscle activity and peroneus longus, tibialis anterior, as well as rectus femoris exhibited increased muscle activity. The results of this study depict evidence that the skating times and speeds are primarily influenced by concentric MVC strength of the leg extensors. To be able to transfer the strength onto ice in an optimal way, it is necessary to stabilize the knee and ankle joints. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Measurements and performance prediction of an adaptive wing micro air vehicle
NASA Astrophysics Data System (ADS)
Shkarayev, Sergey V.; Jouse, Wayne C.; Null, William R.; Wagner, Matthew G.
2003-08-01
The mission space requirements imposed on the design of micro air vehicles (MAVs) typically consist of several distinct flight segments that generally conflict: the transit phases of flight require high speeds, while the loiter/surveillance phase requires lower flight velocities. Maximum efficiency must be sought in order to prolong battery life and aircraft endurance. The adaptive wing MAV developed at the University of Arizona features a thin, deformable flying wing with an efficient rudder-elevator control system. The wing camber is varied to accommodate different flight speeds while maintaining a constant total lift at a relatively low angle of attack. A new airfoil was developed from the Selig 5010 that features a small negative pitching moment for pitch stability. Wind tunnel tests were performed and stall angles and best lift-to-drag ratios were analyzed from the data. The wind tunnel data was used in a performance analysis in order to determine the flight speeds and throttle settings for maximum endurance at each camber, as well as the MAV's theoretical minimum and maximum flight speeds. The effectiveness of camber change on flight speed and endurance was examined with promising results; flight speed could be reduced by 25% by increasing the camber from 3 to 9% without any increase in power consumption.
A Review of Vehicles Speed on School Safety Zone Areas in Pekanbaru City
NASA Astrophysics Data System (ADS)
Dwi Putri, Lusi; Soehardi, Fitridawati; Saleh, Alfian
2017-12-01
School Safety Zone is a location or region on particular roads that are time-based speed zone to set the speed of the vehicle in the school environment. The maximum speed limit permits entering a School Safety Zone, especially in Pekanbaru City is 25 km / h and an outline of the speed limit permit vehicles that pass through the School Safety Zone in Indonesia is generally 20-30 km / h. However, the vehicles speeds that pass School Safety Zone are higher than permit speeds.To ensure the level of vehicle offense across the territory of the School Safety Zone so it is necessary a primary data which is taken randomly based on field survey for 3 days at schools that has that facility ie SDN 3 Jalan Kesehatan Pekanbaru City, SDN 68 Jalan Balam Ujung Kota Pekanbaru and SDN 143 Jalan Taskurun Kota Pekanbaru. Furthermore, the data were taken in good condition that is at 6:30 to 7:30 am and at 12:00 to 13:00 pm. In addition, the data obtained is mileage and travel time of the vehicle. Both of these data can generate good speed value that passes through the area of School Safety Zone. Based on the research findings, the vehicle speed passing through the area of School Safety Zone is incompatible with speed permit at 35 km / h with a maximum average percentage of the rate of offense in the area of the school zone is 91.7%. This indicates that the vehicle passes School Safety Zone not following the rules of the maximum limit area and can be potentially harmful to elementary school students.
Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Meng, Qiaoling; Chen, Wenming
2018-04-20
The microprocessor-controlled prosthetic knees have been introduced to transfemoral amputees due to advances in biomedical engineering. A body of scientific literature has shown that the microprocessor-controlled prosthetic knees improve the gait and functional abilities of persons with transfemoral amputation. The aim of this study was to propose a new microprocessor-controlled prosthetic knee (MPK) and compare it with non-microprocessor-controlled prosthetic knees (NMPKs) under different walking speeds. The microprocessor-controlled prosthetic knee (i-KNEE) with hydraulic damper was developed. The comfortable self-selected walking speeds of 12 subjects with i-KNEE and NMPK were obtained. The maximum swing flexion knee angle and gait symmetry were compared in i-KNEE and NMPK condition. The comfortable self-selected walking speeds of some subjects were higher with i-KNEE while some were not. There was no significant difference in comfortable self-selected walking speed between the i-KNEE and the NMPK condition (P= 0.138). The peak prosthetic knee flexion during swing in the i-KNEE condition was between sixty and seventy degree under any walking speed. In the NMPK condition, the maximum swing flexion knee angle changed significantly. And it increased with walking speed. There is no significant difference in knee kinematic symmetry when the subjects wear the i-KNEE or NMPK. The results of this study indicated that the new microprocessor-controlled prosthetic knee was suitable for transfemoral amputees. The maximum swing flexion knee angle under different walking speeds showed different properties in the NMPK and i-KNEE condition. The i-KNEE was more adaptive to speed changes. There was little difference of comfortable self-selected walking speed between i-KNEE and NMPK condition.
14 CFR 29.1505 - Never-exceed speed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Never-exceed speed. 29.1505 Section 29.1505....1505 Never-exceed speed. (a) The never-exceed speed, V NE, must be established so that it is— (1) Not less than 40 knots (CAS); and (2) Not more than the lesser of— (i) 0.9 times the maximum forward speeds...
14 CFR 29.1505 - Never-exceed speed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Never-exceed speed. 29.1505 Section 29.1505....1505 Never-exceed speed. (a) The never-exceed speed, V NE, must be established so that it is— (1) Not less than 40 knots (CAS); and (2) Not more than the lesser of— (i) 0.9 times the maximum forward speeds...
Joshi, Saurabh; Gogate, Parag R; Moreira, Paulo F; Giudici, Reinaldo
2017-11-01
In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3wt% and molar ratio of oil to methanol of 1:10 at 50°C with 12,000rpm as the speed of rotation in 30min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30min) and from WCO as 88% (30min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2-3h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts. Copyright © 2017 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Speed limits. 401.28 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.28 Speed limits. (a) The maximum speed over the bottom for a vessel of more than 12 m in overall length shall be regulated so as not to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Speed limits. 401.28 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.28 Speed limits. (a) The maximum speed over the bottom for a vessel of more than 12 m in overall length shall be regulated so as not to...
Optimization of fuel-cell tram operation based on two dimension dynamic programming
NASA Astrophysics Data System (ADS)
Zhang, Wenbin; Lu, Xuecheng; Zhao, Jingsong; Li, Jianqiu
2018-02-01
This paper proposes an optimal control strategy based on the two-dimension dynamic programming (2DDP) algorithm targeting at minimizing operation energy consumption for a fuel-cell tram. The energy consumption model with the tram dynamics is firstly deduced. Optimal control problem are analyzed and the 2DDP strategy is applied to solve the problem. The optimal tram speed profiles are obtained for each interstation which consist of three stages: accelerate to the set speed with the maximum traction power, dynamically adjust to maintain a uniform speed and decelerate to zero speed with the maximum braking power at a suitable timing. The optimal control curves of all the interstations are connected with the parking time to form the optimal control method of the whole line. The optimized speed profiles are also simplified for drivers to follow.
Low-Speed Vehicle Definition A low-speed vehicle is defined as a four wheeled vehicle that has a maximum speed greater than 20 miles per hour (mph) but not more than 25 mph and has a gross vehicle weight
Investigation of a high speed data handling system for use with multispectral aircraft scanners
NASA Technical Reports Server (NTRS)
Kelly, W. L.; Meredith, B. D.
1978-01-01
A buffer memory data handling technique for use with multispectral aircraft scanners is presented which allows digital data generated at high data rates to be recorded on magnetic tape. A digital memory is used to temporarily store the data for subsequent recording at slower rates during the passive time of the scan line, thereby increasing the maximum data rate recording capability over real-time recording. Three possible implementations are described and the maximum data rate capability is defined in terms of the speed capability of the key hardware components. The maximum data rates can be used to define the maximum ground resolution achievable by a multispectral aircraft scanner using conventional data handling techniques.
Effect of Running Speed and Leg Prostheses on Mediolateral Foot Placement and Its Variability
Arellano, Christopher J.; McDermott, William J.; Kram, Rodger; Grabowski, Alena M.
2015-01-01
This study examined the effects of speed and leg prostheses on mediolateral (ML) foot placement and its variability in sprinters with and without transtibial amputations. We hypothesized that ML foot placement variability would: 1. increase with running speed up to maximum speed and 2. be symmetrical between the legs of non-amputee sprinters but asymmetrically greater for the affected leg of sprinters with a unilateral transtibial amputation. We measured the midline of the body (kinematic data) and center of pressure (kinetic data) in the ML direction while 12 non-amputee sprinters and 7 Paralympic sprinters with transtibial amputations (6 unilateral, 1 bilateral) ran across a range of speeds up to maximum speed on a high-speed force measuring treadmill. We quantified ML foot placement relative to the body’s midline and its variability. We interpret our results with respect to a hypothesized relation between ML foot placement variability and lateral balance. We infer that greater ML foot placement variability indicates greater challenges with maintaining lateral balance. In non-amputee sprinters, ML foot placement variability for each leg increased substantially and symmetrically across speed. In sprinters with a unilateral amputation, ML foot placement variability for the affected and unaffected leg also increased substantially, but was asymmetric across speeds. In general, ML foot placement variability for sprinters with a unilateral amputation was within the range observed in non-amputee sprinters. For the sprinter with bilateral amputations, both affected legs exhibited the greatest increase in ML foot placement variability with speed. Overall, we find that maintaining lateral balance becomes increasingly challenging at faster speeds up to maximum speed but was equally challenging for sprinters with and without a unilateral transtibial amputation. Finally, when compared to all other sprinters in our subject pool, maintaining lateral balance appears to be the most challenging for the Paralympic sprinter with bilateral transtibial amputations. PMID:25590634
Sea Basing and Alternatives for Deploying and Sustaining Ground Combat Forces
2007-07-01
speed roll-on/roll-off ship (top) and an intratheater high - speed vessel (bottom) are shown alongside a notional mobile landing platform (center...F), might be needed to fully support sea-based ground forces. Those other ships could include tankers and high - speed ships for spe- cial cargo . The...maritime prepositioning squadron; T-HSS = high - speed ship ; TBD = to be determined. Vehicles Cargo Aircraft (Thousands of (Thousands
2016-03-18
vantages and few disadvantages. Th e most distinct advantage is that the aircraft can maintain a relatively safe altitude and speed , rendering it less...July–August 2015 Army Sustainment46 The enhanced speed bag sys-tem (ESBS) is a cutting-edge piece of equipment. Its pur- pose is to facilitate...reasonable speed (20 knots). The ESBS enables Sol- diers to conduct quick and accurate resupply operations while avoiding enemy small-arms fire and
The evaluation of speed skating helmet performance through peak linear and rotational accelerations.
Karton, Clara; Rousseau, Philippe; Vassilyadi, Michael; Hoshizaki, Thomas Blaine
2014-01-01
Like many sports involving high speeds and body contact, head injuries are a concern for short track speed skating athletes and coaches. While the mandatory use of helmets has managed to nearly eliminate catastrophic head injuries such as skull fractures and cerebral haemorrhages, they may not be as effective at reducing the risk of a concussion. The purpose of this study was to evaluate the performance characteristics of speed skating helmets with respect to managing peak linear and peak rotational acceleration, and to compare their performance against other types of helmets commonly worn within the speed skating sport. Commercially available speed skating, bicycle and ice hockey helmets were evaluated using a three-impact condition test protocol at an impact velocity of 4 m/s. Two speed skating helmet models yielded mean peak linear accelerations at a low-estimated probability range for sustaining a concussion for all three impact conditions. Conversely, the resulting mean peak rotational acceleration values were all found close to the high end of a probability range for sustaining a concussion. A similar tendency was observed for the bicycle and ice hockey helmets under the same impact conditions. Speed skating helmets may not be as effective at managing rotational acceleration and therefore may not successfully protect the user against risks associated with concussion injuries.
Motor vehicle driver death and high state maximum speed limits: 1991-1993.
Yamane, Grover K; Bradshaw, Benjamin S
2008-09-01
To measure the association between motor vehicle crash (MVC) driver death and high state maximum speed limits. This study used a case-control design and assessed driver deaths from three major types of MVCs: non-collision; collision with motor vehicles in transit; and collision with stationary objects. The study period was 1991-1993. For each type of crash, case subject populations of fatally injured drivers were obtained from the U.S. Department of Transportation Fatality Analysis Reporting System. Four control subject populations, each associated with a different cause of death, were obtained from a U.S. national death certificate database (the causes of death were unintentional poisoning, non-Hodgkin lymphoma, drowning, and diabetes mellitus). Subjects were considered exposed if the state in which they crashed (for cases) or died (for controls) had a maximum speed limit greater than 55 mph. Each of the three case subject populations was compared against each of the four control subject populations. Odds ratios (ORs) were adjusted for age and gender. For non-collision driver death, ORs ranged from 3.06 to 6.56, depending on the year and control group; all the ORs were significant. For collision with motor vehicles in transit driver death, ORs ranged from 1.12 to 2.22; all the ORs were significant. For collision with stationary objects driver death, ORs ranged from 0.87 to 1.83. There was a moderately strong and significant association between non-collision driver death and high state maximum speed limits. For collision with motor vehicles in transit driver death, the association was somewhat milder but still consistent. For collision with stationary objects driver death, the presence of an association was unclear. During 1991-1993, the effects of high state maximum speed limits may have been different for different types of MVCs.
Measurement and relevance of maximum metabolic rate in fishes.
Norin, T; Clark, T D
2016-01-01
Maximum (aerobic) metabolic rate (MMR) is defined here as the maximum rate of oxygen consumption (M˙O2max ) that a fish can achieve at a given temperature under any ecologically relevant circumstance. Different techniques exist for eliciting MMR of fishes, of which swim-flume respirometry (critical swimming speed tests and burst-swimming protocols) and exhaustive chases are the most common. Available data suggest that the most suitable method for eliciting MMR varies with species and ecotype, and depends on the propensity of the fish to sustain swimming for extended durations as well as its capacity to simultaneously exercise and digest food. MMR varies substantially (>10 fold) between species with different lifestyles (i.e. interspecific variation), and to a lesser extent (
Impacts of low speed vehicles on transportation infrastructure and safety
DOT National Transportation Integrated Search
2010-12-01
There are increasing numbers of low-speed electric vehicles (LSVs) on public roadways. These vehicles are designed to be used within protected environments and on roadways with a maximum posted speed of 25 mph. Currently these vehicles are not subjec...
Low-level nocturnal wind maximum over the Central Amazon Basin
NASA Technical Reports Server (NTRS)
Greco, Steven; Ulanski, Stanley; Garstang, Michael; Houston, Samuel
1992-01-01
A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Meteorological data indicate the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3-7 m/s between 300 and 1000 m increase to 10-15 m/s shortly after sunset. The wind-speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. Low-level winds are thought to be pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.
Intelligent Hybrid Vehicle Power Control - Part 1: Machine Learning of Optimal Vehicle Power
2012-06-30
time window ),[ tWt DT : vave, vmax, vmin, ac, vst and vend, where the first four parameters are, respectively, the average speed, maximum speed...minimum speed and average acceleration, during the time period ),[ tWt DT , vst is the vehicle speed at )( DTWt , and vend is the vehicle
Does respiratory muscle training increase physical performance?
Sperlich, Billy; Fricke, Hannes; de Marées, Markus; Linville, John W; Mester, Joachim
2009-09-01
Special force units and military personnel undergo demanding physical exercise and might benefit from high-intensity respiratory muscle training (RMT) by increasing their endurance performance. This study examined the effects of a 6-week high-intensity RMT on running performance and oxygen uptake (VO2max) in a group of German Special Force Squad members. 17 participants were randomly assigned to a training or control group. Baseline and post-testing included a ramp test, as well as an incremental test on a treadmill, performed to physical exhaustion. VO2, respiratory exchange ratio, and heart rate were measured breath by breath. Furthermore, maximum running speed (V(max)), 4 mmol x 1(-1) lactate threshold (V4) and perception of respiratory effort were determined. During pulmonary testing, sustained maximum inspiratory and expiratory pressure (PI(max) and PE(max)) were obtained. RMT was performed daily at approximately 90% PI(max) for 6 weeks with 2 x 30 breath cycles using an Ultrabreathe lung trainer. No statistical differences were detected between the groups for any parameter after RMT. High-intensity RMT did not show any benefits on VO2max and endurance performance and are unlikely to be of benefit to military or paramilitary training programs for an increase in endurance performance.
40 CFR 1065.610 - Duty cycle generation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... maximum power at which 50% of maximum power occurs. Denote this value as n lo. Take n lo to be warm idle... representative engine speed, whichever is lower. Use n hi and n lo to calculate reference values for A, B, or C speeds as follows: ER15SE11.030 Example: n lo = 1005 r/min n hi = 2385 r/min f nrefA = 0.25 · (2385...
40 CFR 1065.610 - Duty cycle generation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... maximum power at which 50% of maximum power occurs. Denote this value as n lo. Take n lo to be warm idle... representative engine speed, whichever is lower. Use n hi and n lo to calculate reference values for A, B, or C speeds as follows: ER15SE11.030 Example: n lo = 1005 r/min n hi = 2385 r/min f nrefA = 0.25 · (2385...
The turbulence structure of katabatic flows below and above wind-speed maximum
NASA Astrophysics Data System (ADS)
Grachev, Andrey; Leo, Laura; Di Sabatino, Silvana; Fernando, Harindra; Pardyjak, Eric; Fairall, Christopher
2015-04-01
Measurements of atmospheric small-scale turbulence made over the complex-terrain at the US Army Dugway Proving Grounds in Utah during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the turbulence structure of katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels (up to seven) on four towers deployed along East lower slope (2-4 degrees) of Granite Mountain. The multi-level, multi-tower observations obtained during a 30-day long MATERHORN-Fall field campaign in September-October 2102 allow studying temporal and spatial structure of nocturnal slope flows in detail. In this study, we focus on the various statistics (fluxes, variances, spectra, cospectra, etc.) of the small-scale turbulence of katabatic winds. Observed vertical profiles of velocity, turbulent fluxes, and other quantities show steep gradients near the surface but in the layer above the slope jet these variables vary with height more slowly than near the surface. It is found that vertical momentum flux and horizontal heat (buoyancy) flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed downward (upward) whereas the horizontal heat flux is downslope (upslope) below (above) the wind maximum. Our study, therefore, suggests that a position of the jet speed maximum can be derived from linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) and determination of a height where a flux becomes zero. It is shown that the standard deviations of all wind speed components (and therefore the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind speed maximum. We report several cases when the destructive effect of vertical heat (buoyancy) flux is completely cancelled by the generation of turbulence due to the horizontal heat (buoyancy) flux. Turbulence in the layer above the wind-speed maximum is decoupled from the surface and it is consistent with the classical local z-less predictions for stably stratified boundary layer.
Evaluating the impacts of speed limit policy alternatives.
DOT National Transportation Integrated Search
2014-07-01
As of June 2014, Michigan is one of eight states with a differential speed limit in place on its rural : freeways, which sets a maximum speed of 70 mph for passenger vehicles and 60 mph for trucks and : buses. In select urban environments, these spee...
Impact of the 65 mph speed limit on Virginia's rural interstate highways, 1989-1992.
DOT National Transportation Integrated Search
1994-01-01
In April of 1987, Congress passed the Surface Transportation and Uniform Relocation Assistance Act (STURAA), which permitted states to raise their maximum speed limit on rural interstate highways to 65 mph. Virginia's 65 mph speed limit went into eff...
The impact of the 65 MPH speed limit on Virginia's rural interstate highways through 1990.
DOT National Transportation Integrated Search
1992-01-01
In April of 1987, Congress passed the Surface Transportation and Uniform Relocation Assistance Act (STURAA), which permitted states to raise their maximum speed limit on rural interstate highways (rural interstates) to 65 mph. Virginia's 65 mph speed...
Molina, Sergio L; Stodden, David F
2018-04-01
This study examined variability in throwing speed and spatial error to test the prediction of an inverted-U function (i.e., impulse-variability [IV] theory) and the speed-accuracy trade-off. Forty-five 9- to 11-year-old children were instructed to throw at a specified percentage of maximum speed (45%, 65%, 85%, and 100%) and hit the wall target. Results indicated no statistically significant differences in variable error across the target conditions (p = .72), failing to support the inverted-U hypothesis. Spatial accuracy results indicated no statistically significant differences with mean radial error (p = .18), centroid radial error (p = .13), and bivariate variable error (p = .08) also failing to support the speed-accuracy trade-off in overarm throwing. As neither throwing performance variability nor accuracy changed across percentages of maximum speed in this sample of children as well as in a previous adult sample, current policy and practices of practitioners may need to be reevaluated.
NASA Technical Reports Server (NTRS)
Dugger, Gordon L
1952-01-01
Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.
NASA Technical Reports Server (NTRS)
Galvas, M. R.
1972-01-01
Centrifugal compressor performance was examined analytically to determine optimum geometry for various applications as characterized by specific speed. Seven specific losses were calculated for various combinations of inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, blade exit backsweep, and inlet-tip absolute tangential velocity for solid body prewhirl. The losses considered were inlet guide vane loss, blade loading loss, skin friction loss, recirculation loss, disk friction loss, vaneless diffuser loss, and vaned diffuser loss. Maximum total efficiencies ranged from 0.497 to 0.868 for a specific speed range of 0.257 to 1.346. Curves of rotor exit absolute flow angle, inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, head coefficient and blade exit backsweep are presented over a range of specific speeds for various inducer tip speeds to permit rapid selection of optimum compressor size and shape for a variety of applications.
Variable-speed Generators with Flux Weakening
NASA Technical Reports Server (NTRS)
Fardoun, A. A.; Fuchs, E. F.; Carlin, P. W.
1993-01-01
A cost-competitive, permanent-magnet 20 kW generator is designed such that the following criteria are satisfied: an (over) load capability of at least 30 kW over the entire speed range of 60-120 rpm, generator weight of about 550 lbs with a maximum radial stator flux density of 0.82 T at low speed, unity power factor operation, acceptably small synchronous reactances and operation without a gear box. To justify this final design four different generator designs are investigated: the first two designs are studied to obtain a speed range from 20 to 200 rpm employing rotor field weakening, and the latter two are investigated to obtain a maximum speed range of 40 to 160 rpm based on field weakening via the stator excitation. The generator reactances and induced voltages are computed using finite element/difference solutions. Generator losses and efficiencies are presented for all four designs at rated temperature of Tr=120C.
NASA Astrophysics Data System (ADS)
Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag
2018-06-01
Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.
NASA Astrophysics Data System (ADS)
Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag
2018-04-01
Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.
Rezende, Enrico L; Kelly, Scott A; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore
2006-01-01
Selective breeding for over 35 generations has led to four replicate (S) lines of laboratory house mice (Mus domesticus) that run voluntarily on wheels about 170% more than four random-bred control (C) lines. We tested whether S lines have evolved higher running performance by increasing running economy (i.e., decreasing energy spent per unit of distance) as a correlated response to selection, using a recently developed method that allows for nearly continuous measurements of oxygen consumption (VO2) and running speed in freely behaving animals. We estimated slope (incremental cost of transport [COT]) and intercept for regressions of power (the dependent variable, VO2/min) on speed for 49 males and 47 females, as well as their maximum VO2 and speeds during wheel running, under conditions mimicking those that these lines face during the selection protocol. For comparison, we also measured COT and maximum aerobic capacity (VO2max) during forced exercise on a motorized treadmill. As in previous studies, the increased wheel running of S lines was mainly attributable to increased average speed, with males also showing a tendency for increased time spent running. On a whole-animal basis, combined analysis of males and females indicated that COT during voluntary wheel running was significantly lower in the S lines (one-tailed P=0.015). However, mice from S lines are significantly smaller and attain higher maximum speeds on the wheels; with either body mass or maximum speed (or both) entered as a covariate, the statistical significance of the difference in COT is lost (one-tailed P> or =0.2). Thus, both body size and behavior are key components of the reduction in COT. Several statistically significant sex differences were observed, including lower COT and higher resting metabolic rate in females. In addition, maximum voluntary running speeds were negatively correlated with COT in females but not in males. Moreover, males (but not females) from the S lines exhibited significantly higher treadmill VO2max as compared to those from C lines. The sex-specific responses to selection may in part be consequences of sex differences in body mass and running style. Our results highlight how differences in size and running speed can account for lower COT in S lines and suggest that lower COT may have coadapted in response to selection for higher running distances in these lines.
NASA Astrophysics Data System (ADS)
Ruf, C. S.; Balasubramaniam, R.; Gleason, S.; McKague, D. S.; O'Brien, A.
2017-12-01
The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification and of the diurnal cycle of winds, made possible by the large number of satellites. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is currently in the early phase of science operations. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Assimilation of CYGNSS L2 wind speed data into the HWRF hurricane weather prediction model has also been developed. An overview and the current status of the mission will be presented, together with highlights of early on-orbit performance and scientific results.
The most important physiological constants among the Volga region long-livers
NASA Astrophysics Data System (ADS)
Malinova, L. I.; Shuvalov, S. S.; Denisova, T. P.
2012-03-01
In our research we brought out the age difference in the group of long-livers and the continuous character of the biochemical basal metabolism indexes changing. The results allowed us to carry out the polynominal high-powered approximation to study the dynamics of laboratory indexes. We revealed the progressive reduction of the cholesterol, triglycerides, glucose and creatinine levels starting from 90 years of age, and this reduction showed the non-linear character with interchange of local minimums and maximums. During the speed characteristics analysis we revealed the cooccurrence of the speed maximums of all the examined biochemical indexes, except the speed of changing the concentration of cholesterol, which maximum took the lead over the other indexes by four years. The phase-plane portrait analysis of the regulatory systems on the plane "time - speed" showed the unfulfilled attempt of system stabilization by all the searched parameters nearby the special spot - "stable focus". The standard deviation values analysis of the researched parameters showed their progressive reduction in the long-livers. That fact can be considered as the regulatory systems physiological "backlash" reduction among the centenarians.
NASA Technical Reports Server (NTRS)
Moore, C S; Collins, J H
1932-01-01
Results of motoring tests are presented showing the effect of passage diameter on chamber and cylinder compression pressures, maximum pressure differences, and f.m.e.p. over a speed range from 300 to 1,750 r.p.m. Results of engine performance tests are presented which show the effect of passage diameter on m.e.p., explosion pressures, specific fuel consumption, and rates of pressure rise for a range of engine speeds from 500 to 1,500 r.p.m. The cylinder compression pressure, the maximum pressure difference, and the f.m.e.p. decreased rapidly as the passage diameter increased to 29/64 inch, whereas further increase in passage diameter effected only a slight change. The most suitable passage diameter for good engine performance and operating characteristics was 29/64 inch. Passage diameter became less critical with a decrease in engine speed. Therefore, the design should be based on maximum operating speed. Optimum performance and satisfactory combustion control could not be obtained by means of any single diameter of the connecting passage.
Motor fatigue measurement by distance-induced slow down of walking speed in multiple sclerosis.
Phan-Ba, Rémy; Calay, Philippe; Grodent, Patrick; Delrue, Gael; Lommers, Emilie; Delvaux, Valérie; Moonen, Gustave; Belachew, Shibeshih
2012-01-01
Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS). We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Our objectives were to compare 4 walking paradigms: the timed 25-foot walk (T25FW), a corrected version of the T25FW with dynamic start (T25FW(+)), the timed 100-meter walk (T100MW) and the timed 500-meter walk (T500MW). Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW(+) provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI) was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance ≤ 4000 m. The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course.
Relaxation Method for Navier-Stokes Equation
NASA Astrophysics Data System (ADS)
de Oliveira, P. M. C.
2012-04-01
The motivation for this work was a simple experiment [P. M. C. de Oliveira, S. Moss de Oliveira, F. A. Pereira and J. C. Sartorelli, preprint (2010), arXiv:1005.4086], where a little polystyrene ball is released falling in air. The interesting observation is a speed breaking. After an initial nearly linear time-dependence, the ball speed reaches a maximum value. After this, the speed finally decreases until its final, limit value. The provided explanation is related to the so-called von Kármán street of vortices successively formed behind the falling ball. After completely formed, the whole street extends for some hundred diameters. However, before a certain transient time needed to reach this steady-state, the street is shorter and the drag force is relatively reduced. Thus, at the beginning of the fall, a small and light ball may reach a speed superior to the sustainable steady-state value. Besides the real experiment, the numerical simulation of a related theoretical problem is also performed. A cylinder (instead of a 3D ball, thus reducing the effective dimension to 2) is positioned at rest inside a wind tunnel initially switched off. Suddenly, at t = 0 it is switched on with a constant and uniform wind velocity ěc{V} far from the cylinder and perpendicular to it. This is the first boundary condition. The second is the cylinder surface, where the wind velocity is null. In between these two boundaries, the velocity field is determined by solving the Navier-Stokes equation, as a function of time. For that, the initial condition is taken as the known Stokes laminar limit V → 0, since initially the tunnel is switched off. The numerical method adopted in this task is the object of the current text.
Maximum safe speed estimation using planar quintic Bezier curve with C2 continuity
NASA Astrophysics Data System (ADS)
Ibrahim, Mohamad Fakharuddin; Misro, Md Yushalify; Ramli, Ahmad; Ali, Jamaludin Md
2017-08-01
This paper describes an alternative way in estimating design speed or the maximum speed allowed for a vehicle to drive safely on a road using curvature information from Bezier curve fitting on a map. We had tested on some route in Tun Sardon Road, Balik Pulau, Penang, Malaysia. We had proposed to use piecewise planar quintic Bezier curve while satisfying the curvature continuity between joined curves in the process of mapping the road. By finding the derivatives of quintic Bezier curve, the value of curvature was calculated and design speed was derived. In this paper, a higher order of Bezier Curve had been used. A higher degree of curve will give more freedom for users to control the shape of the curve compared to curve in lower degree.
Hedrick, Tyson L; Tobalske, Bret W; Biewener, Andrew A
2002-05-01
Birds and bats are known to employ two different gaits in flapping flight, a vortex-ring gait in slow flight and a continuous-vortex gait in fast flight. We studied the use of these gaits over a wide range of speeds (1-17 ms(-1)) and transitions between gaits in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria) trained to fly in a recently built, variable-speed wind tunnel. Gait use was investigated via a combination of three-dimensional kinematics and quasi-steady aerodynamic modeling of bound circulation on the distal and proximal portions of the wing. Estimates of lift from our circulation model were sufficient to support body weight at all but the slowest speeds (1 and 3 ms(-1)). From comparisons of aerodynamic impulse derived from our circulation analysis with the impulse estimated from whole-body acceleration, it appeared that our quasi-steady aerodynamic analysis was most accurate at intermediate speeds (5-11 ms(-1)). Despite differences in wing shape and wing loading, both species shifted from a vortex-ring to a continuous-vortex gait at 7 ms(-1). We found that the shift from a vortex-ring to a continuous-vortex gait (i) was associated with a phase delay in the peak angle of attack of the proximal wing section from downstroke into upstroke and (ii) depended on sufficient forward velocity to provide airflow over the wing during the upstroke similar to that during the downstroke. Our kinematic estimates indicated significant variation in the magnitude of circulation over the course the wingbeat cycle when either species used a continuous-vortex gait. This variation was great enough to suggest that both species shifted to a ladder-wake gait as they approached the maximum flight speed (cockatiels 15 ms(-1), doves 17 ms(-1)) that they would sustain in the wind tunnel. This shift in flight gait appeared to reflect the need to minimize drag and produce forward thrust in order to fly at high speed. The ladder-wake gait was also employed in forward and vertical acceleration at medium and fast flight speeds.
Ciriello, Vincent M; Maikala, Rammohan V; Dempsey, Patrick G; O'Brien, Niall V
2010-01-01
Using psychophysics, the maximum acceptable forces for pushing have been previously developed using a magnetic particle brake (MPB) treadmill at the Liberty Mutual Research Institute for Safety. The objective of this study was to investigate the reproducibility of maximum acceptable initial and sustained forces while performing a pushing task at a frequency of 1min(-1) both on a MPB treadmill and on a high-inertia pushcart. This is important because our pushing guidelines are used extensively as a ergonomic redesign strategy and we would like the information to be as applicable as possible to cart pushing. On two separate days, nineteen female industrial workers performed a 40-min MPB treadmill pushing task and a 2-hr pushcart task, in the context of a larger experiment. During pushing, the subjects were asked to select a workload they could sustain for 8h without "straining themselves or without becoming unusually tired, weakened, overheated or out of breath." The results demonstrated that maximum acceptable initial and sustained forces of pushing determined on the high inertia pushcart were 0.8% and 2.5% lower than the MPB treadmill. The results also show that the maximum acceptable sustained force of the MPB treadmill task was 0.5% higher than the maximum acceptable sustained force of Snook and Ciriello (1991). Overall, the findings confirm that the existing pushing data developed by the Liberty Mutual Research Institute for Safety still provides an accurate estimate of maximal acceptable forces for the selected combination of distance and frequency of push for female industrial workers.
49 CFR 213.9 - Classes of track: operating speed limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Classes of track: operating speed limits. 213.9... speed limits. (a) Except as provided in paragraph (b) of this section and §§ 213.57(b), 213.59(a), 213.113(a), and 213.137(b) and (c), the following maximum allowable operating speeds apply— [In miles per...
49 CFR 213.9 - Classes of track: operating speed limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Classes of track: operating speed limits. 213.9... speed limits. (a) Except as provided in paragraph (b) of this section and §§ 213.57(b), 213.59(a), 213.113(a), and 213.137(b) and (c), the following maximum allowable operating speeds apply— [In miles per...
NASA Astrophysics Data System (ADS)
Mirbaha, Babak; Saffarzadeh, Mahmoud; AmirHossein Beheshty, Seyed; Aniran, MirMoosa; Yazdani, Mirbahador; Shirini, Bahram
2017-10-01
Analysis of vehicle speed with different weather condition and traffic characteristics is very effective in traffic planning. Since the weather condition and traffic characteristics vary every day, the prediction of average speed can be useful in traffic management plans. In this study, traffic and weather data for a two-lane highway located in Northwest of Iran were selected for analysis. After merging traffic and weather data, the linear regression model was calibrated for speed prediction using STATA12.1 Statistical and Data Analysis software. Variables like vehicle flow, percentage of heavy vehicles, vehicle flow in opposing lane, percentage of heavy vehicles in opposing lane, rainfall (mm), snowfall and maximum daily wind speed more than 13m/s were found to be significant variables in the model. Results showed that variables of vehicle flow and heavy vehicle percent acquired the positive coefficient that shows, by increasing these variables the average vehicle speed in every weather condition will also increase. Vehicle flow in opposing lane, percentage of heavy vehicle in opposing lane, rainfall amount (mm), snowfall and maximum daily wind speed more than 13m/s acquired the negative coefficient that shows by increasing these variables, the average vehicle speed will decrease.
40 CFR 1065.610 - Duty cycle generation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... maximum power at which 50% of maximum power occurs. Denote this value as n lo. Take n lo to be warm idle... representative engine speed, whichever is lower. Use n hi and n lo to calculate reference values for A, B, or C speeds as follows: f nrefA = 0.25 · (n hi − n lo) + n lo Eq. 1065.610-4 f nrefB = 0.50 · (n hi − nnlo...
An Observational and Analytical Study of Marginal Ice Zone Atmospheric Jets
2016-12-01
layer or in the capping temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m...geostrophic wind due to horizontal temperature changes in the atmospheric boundary layer and capping inversion . The jets were detected using...temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m elevation; one of these jets had a
Super Typhoon Utor Impacts the Philippines
2017-12-08
With maximum sustained wind speeds of 140 mph, Super Typhoon Utor made landfall in the Philippines on August 11, 2013 around 18:00z. The storm crossed over the island of Luzon and into the South China Sea. The Joint Typhoon Warning Center predicts Utor will head for the Chinese mainland and make landfall again around 12:00z on the 14th about 200 miles southwest of Hong Kong. This colorized infrared image from the Suomi NPP satellite shows the storm on August 11th at 4:30z. NASA/NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Representing target motion: the role of the right hemisphere in the forward displacement bias.
McGeorge, Peter; Beschin, Nicoletta; Della Sala, Sergio
2006-11-01
Patients with left spatial neglect, patients with right hemisphere damage but no neglect, and a control group were asked to judge the final position of a series of moving targets. Both patient groups showed attentional deficits. All 3 groups demonstrated a forward displacement bias, overestimating the final target position along the object trajectory. However, in both patient groups the size of this forward displacement bias decreased as the distance the target traveled before vanishing increased. For horizontally moving targets, at the maximum distance only the control group showed significant forward displacement. For all 3 groups, the direction in which the target traveled had no influence, but the size of the forward displacement increased as target speed increased. Several attentional explanations of these results are considered, including the differential allocation of spatial attention between central and peripheral locations, differences between exogenous and endogenous attention, and deficits in sustained attention.
Low-speed static and dynamic force tests of a generic supersonic cruise fighter configuration
NASA Technical Reports Server (NTRS)
Hahne, David E.
1989-01-01
Static and dynamic force tests of a generic fighter configuration designed for sustained supersonic flight were conducted in the Langley 30- by 60-foot tunnel. The baseline configuration had a 65 deg arrow wing, twin wing mounted vertical tails and a canard. Results showed that control was available up to C sub L,max (maximum lift coefficient) from aerodynamic controls about all axes but control in the pitch and yaw axes decreased rapidly in the post-stall angle-of-attack region. The baseline configuration showed stable lateral-directional characteristics at low angles of attack but directional stability occurred near alpha = 25 deg as the wing shielded the vertical tails. The configuration showed positive effective dihedral throughout the test angle-of-attack range. Forced oscillation tests indicated that the baseline configuration had stable damping characteristics about the lateral-directional axes.
Sustainability and Environmental Economics: Some Critical Foci
I present five seminal concepts of environmental economic thought and discuss their applicability to the idea of sustainability. These five, Maximum Sustainable Yield and Steady-state, The Environmental Kuznet’s curve, Substitutability, Discount rate and Intergenerational equity...
Analysis of Tropical Cyclone Tracks in the North Indian Ocean
NASA Astrophysics Data System (ADS)
Patwardhan, A.; Paliwal, M.; Mohapatra, M.
2011-12-01
Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.
40 CFR 1065.510 - Engine mapping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... expected maximum power. Continue the warm-up until the engine coolant, block, or head absolute temperature... torque of zero on the engine's primary output shaft, and allow the engine to govern the speed. Measure... values. (ii) For engines without a low-speed governor, operate the engine at warm idle speed and zero...
40 CFR 1065.510 - Engine mapping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... expected maximum power. Continue the warm-up until the engine coolant, block, or head absolute temperature... torque of zero on the engine's primary output shaft, and allow the engine to govern the speed. Measure... values. (ii) For engines without a low-speed governor, operate the engine at warm idle speed and zero...
40 CFR 1065.510 - Engine mapping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... expected maximum power. Continue the warm-up until the engine coolant, block, or head absolute temperature... torque of zero on the engine's primary output shaft, and allow the engine to govern the speed. Measure... values. (ii) For engines without a low-speed governor, operate the engine at warm idle speed and zero...
40 CFR Appendix B to Subpart E of... - Tables
Code of Federal Regulations, 2010 CFR
2010-07-01
... Variable-Speed Engines Test segment Mode number Engine speed 1 Observed torque 2 (percent of max. observed...'s specifications. Idle speed is specified by the manufacturer. 2 Torque (non-idle): Throttle fully open for 100 percent points. Other non-idle points: ± 2 percent of engine maximum value. Torque (idle...
A CBO Study. Sea Basing and Alternatives for Deploying and Sustaining Ground Combat Forces
2007-07-01
ships in the planned MPF(F) will not be large enough to receive aircraft capable of delivering cargo over intercontinental ranges. A high - speed ... speed roll-on/roll-off ship (top) and an intratheater high - speed vessel (bottom) are shown alongside a notional mobile landing platform (center) with...might be needed to fully support sea-based ground forces. Those other ships could include tankers and high - speed ships for spe- cial
Okeniyi, Joshua Olusegun; Ohunakin, Olayinka Soledayo; Okeniyi, Elizabeth Toyin
2015-01-01
Electricity generation in rural communities is an acute problem militating against socioeconomic well-being of the populace in these communities in developing countries, including Nigeria. In this paper, assessments of wind-energy potential in selected sites from three major geopolitical zones of Nigeria were investigated. For this, daily wind-speed data from Katsina in northern, Warri in southwestern and Calabar in southeastern Nigeria were analysed using the Gumbel and the Weibull probability distributions for assessing wind-energy potential as a renewable/sustainable solution for the country's rural-electrification problems. Results showed that the wind-speed models identified Katsina with higher wind-speed class than both Warri and Calabar that were otherwise identified as low wind-speed sites. However, econometrics of electricity power simulation at different hub heights of low wind-speed turbine systems showed that the cost of electric-power generation in the three study sites was converging to affordable cost per kWh of electric energy from the wind resource at each site. These power simulations identified cost/kWh of electricity generation at Kaduna as €0.0507, at Warri as €0.0774, and at Calabar as €0.0819. These bare positive implications on renewable/sustainable rural electrification in the study sites even as requisite options for promoting utilization of this viable wind-resource energy in the remote communities in the environs of the study sites were suggested. PMID:25879063
Okeniyi, Joshua Olusegun; Ohunakin, Olayinka Soledayo; Okeniyi, Elizabeth Toyin
2015-01-01
Electricity generation in rural communities is an acute problem militating against socioeconomic well-being of the populace in these communities in developing countries, including Nigeria. In this paper, assessments of wind-energy potential in selected sites from three major geopolitical zones of Nigeria were investigated. For this, daily wind-speed data from Katsina in northern, Warri in southwestern and Calabar in southeastern Nigeria were analysed using the Gumbel and the Weibull probability distributions for assessing wind-energy potential as a renewable/sustainable solution for the country's rural-electrification problems. Results showed that the wind-speed models identified Katsina with higher wind-speed class than both Warri and Calabar that were otherwise identified as low wind-speed sites. However, econometrics of electricity power simulation at different hub heights of low wind-speed turbine systems showed that the cost of electric-power generation in the three study sites was converging to affordable cost per kWh of electric energy from the wind resource at each site. These power simulations identified cost/kWh of electricity generation at Kaduna as €0.0507, at Warri as €0.0774, and at Calabar as €0.0819. These bare positive implications on renewable/sustainable rural electrification in the study sites even as requisite options for promoting utilization of this viable wind-resource energy in the remote communities in the environs of the study sites were suggested.
Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, K.; Resor, B.; Platt, A.
This study investigates the effect of tip-velocity constraints on system levelized cost of energy (LCOE). The results indicate that a change in maximum tip speed from 80 to 100~m/s could produce a 32% decrease in gearbox weight (a 33% reduction in cost) which would result in an overall reduction of 1%-9% in system LCOE depending on the design approach. Three 100~m/s design cases were considered including a low tip-speed ratio/high-solidity rotor design, a high tip-speed ratio/ low-solidity rotor design, and finally a flexible blade design in which a high tip-speed ratio was used along with removing the tip deflection constraintmore » on the rotor design. In all three cases, the significant reduction in gearbox weight caused by the higher tip-speed and lower overall gear ratio was counterbalanced by increased weights for the rotor and/or other drivetrain components and the tower. As a result, the increased costs of either the rotor or drivetrain components offset the overall reduction in turbine costs from down-sizing the gearbox. Other system costs were not significantly affected, whereas energy production was slightly reduced in the 100~m/s case low tip-speed ratio case and increased in the high tip-speed ratio case. This resulted in system cost of energy reductions moving from the 80~m/s design to the 100~m/s designs of 1.2% for the low tip-speed ratio, 4.6% for the high tip-speed ratio, and 9.5% for the final flexible case (the latter result is optimistic because the impact of deflection of the flexible blade on power production was not modeled). Overall, the results demonstrate that there is a trade-off in system design between the maximum tip velocity and the overall wind plant cost of energy, and there are many trade-offs within the overall system in designing a turbine for a high maximum tip velocity.« less
Effect of different pushing speeds on bench press.
Padulo, J; Mignogna, P; Mignardi, S; Tonni, F; D'Ottavio, S
2012-05-01
The purpose of this study was to investigate the effect on muscular strength after a 3-week training with the bench-press at a fixed pushing of 80-100% maximal speed (FPS) and self-selected pushing speed (SPS). 20 resistance-trained subjects were divided at random in 2 groups differing only regarding the pushing speed: in the FPS group (n=10) it was equal to 80-100% of the maximal speed while in the SPS group (n=10) the pushing speed was self-selected. Both groups were trained twice a week for 3 weeks with a load equal to 85% of 1RM and monitored with the encoder. Before and after the training we measured pushing speed and maximum load. Significant differences between and within the 2 groups were pointed out using a 2-way ANOVA for repeated measures. After 3 weeks a significant improvement was shown especially in the FPS group: the maximum load improved by 10.20% and the maximal speed by 2.22%, while in the SPS group the effect was <1%. This study shows that a high velocity training is required to increase the muscle strength further in subjects with a long training experience and this is possible by measuring the individual performance speed for each load. © Georg Thieme Verlag KG Stuttgart · New York.
Development and evaluation of a SUAS perching system
NASA Astrophysics Data System (ADS)
Reynolds, Ryan
Perching has been proposed as a possible landing technique for Small Unmanned Aircraft Systems (SUAS). The current research study develops an onboard open loop perching system for a fixed-wing SUAS and examines the impact of initial flight speed and sensor placement on the perching dynamics. A catapult launcher and modified COTS aircraft were used for the experiments, while an ultrasonic sensor on the aircraft was used to detect the perching target. Thirty tests were conducted varying the initial launch speed and ultrasonic sensor placement to see if they affected the time the aircraft reaches its maximum pitch angle, since the maximum pitch angle is the optimum perching point for the aircraft. High-speed video was analyzed to obtain flight data, along with data from an onboard inertial measuring unit. The data were analyzed using a model 1, two-way ANOVA to determine if launch speed and sensor placement affect the optimum perching point where the aircraft reaches its maximum pitch angle during the maneuver. The results show the launch speed does affect the time at which the maximum pitch angle occurs, but sensor placement does not. This means a closed loop system will need to adjust its perching distance based on its initial velocity. The sensor placement not having any noticeable effect means the ultrasonic sensor can be placed on the nose or the wing of the aircraft as needed for the design. There was also no noticeable interaction between the two variables. Aerodynamic parameters such as lift, drag, and moment coefficients were derived from the dynamic equations of motion for use in numerical simulations and dynamic perching models.
NASA Technical Reports Server (NTRS)
West, F E
1945-01-01
Lift characteristics and pressure distribution for a NACA 230 wing were investigated for an angle of attack range of from -10 to +24 degrees and Mach range of from 0.2 to 0.7. Maximum lift coefficient increased up to a Mach number of 0.3, decreased rapidly to a Mach number of 0.55, and then decreased moderately. At high speeds, maximum lift coefficient was reached at from 10 to 12 degrees beyond the stalling angle. In high-speed stalls, resultant load underwent a moderate shift outward.
NASA Technical Reports Server (NTRS)
Ludi, LeRoy H.
1961-01-01
Flight tests have been conducted with a single-rotor helicopter to determine the effects of partial-power descents with forward speed, high-speed level turns, pull-outs from autorotation, and high-forward-speed high-rotor-speed autorotation on the flapwise bending and torsional moments of the rotor blade. One blade of the helicopter was equipped at 14 percent and 40 percent of the blade radius with strain gages calibrated to measure moments rather than stresses. The results indicate that the maximum moments encountered in partial-power descents with forward speed tend to be generally reduced from the maximum moments encountered during partid-power descents at zero forward speed. High-speed level turns and pull-outs from auto-rotation caused retreating-blade stall which produced torsional moments (values up to 2,400 inch-pounds). at the 14-percent-radius station that were as large as those encountered during the previous investigations of retreating-blade stall (values up t o 2,500 inch-pounds). High-forward- speed high-rotor-speed autorotation produced flapwise bending moments (values up to 7,200 inch-pounds) at the 40-percent-radius station which were as large as the flapwise bending moments (values up to 7,800 inch-pounds) a t the 14-percent-radius station encountered during partial - power vertical descents. The results of the present investigation (tip-speed ratios up to 0.325 and an unaccelerated level-flight mean lift coefficient of about 0.6), in combination with the related results of at zero forward speed produce the largest rotor-blade vibratory moments. However, inasmuch as these large moments occur only during 1 percent of the cycles and 88 percent of the cycles are at moment values less than 70 percent of these maximum values in partial-power descents, other conditions, such as high-speed flight where the large moments are combined with large percentages of time spent,must not be neglected in any rotor-blade service-life assessment.
Hayward, Christopher S; Salamonsen, Robert; Keogh, Anne M; Woodard, John; Ayre, Peter; Prichard, Roslyn; Kotlyar, Eugene; Macdonald, Peter S; Jansz, Paul; Spratt, Phillip
2015-09-01
Left ventricular assist devices are crucial in rehabilitation of patients with end-stage heart failure. Whether cardiopulmonary function is enhanced with higher pump output is unknown. 10 patients (aged 39±16 years, mean±SD) underwent monitored adjustment of pump speed to determine minimum safe low speed and maximum safe high speed at rest. Patients were then randomized to these speed settings and underwent three 6-minute walk tests (6MWT) and symptom-limited cardiopulmonary stress tests (CPX) on separate days. Pump speed settings (low, normal and high) resulted in significantly different resting pump flows of 4.43±0.6, 5.03±0.94, and 5.72±1.2 l/min (P<.001). There was a significant enhancement of pump flows (greater at higher speed settings) with exercise (P<0.05). Increased pump speed was associated with a trend to increased 6MWT distance (P=.10); and CPX exercise time (p=.27). Maximum workload achieved and peak oxygen consumption were significantly different comparing low to high pump speed settings only (P<.05). N-terminal-pro-B-type natriuretic peptide release was significantly reduced at higher pump speed with exercise (P<.01). We have found that alteration of pump speed setting resulted in significant variation in estimated pump flow. The high-speed setting was associated with lower natriuretic hormone release consistent with lower myocardial wall stress. This did not, however, improve exercise tolerance.
OCCURRENCE OF HIGH-SPEED SOLAR WIND STREAMS OVER THE GRAND MODERN MAXIMUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mursula, K.; Holappa, L.; Lukianova, R., E-mail: kalevi.mursula@oulu.fi
2015-03-01
In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculatemore » the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.« less
Analysis of wind-resistant and stability for cable tower in cable-stayed bridge with four towers
NASA Astrophysics Data System (ADS)
Meng, Yangjun; Li, Can
2017-06-01
Wind speed time history simulation methods have been introduced first, especially the harmonic synthesis method introduced in detail. Second, taking Chishi bridge for example, choosing the particular sections, and combined with the design wind speed, three-component coefficient simulate analysis between -4°and 4°has been carry out with the Fluent software. The results show that drag coefficient reaches maximum when the attack Angle is 1°. According to measured wind speed samples,time history curves of wind speed at bridge deck and tower roof have been obtained,and wind-resistant time history analysis for No.5 tower has been carry out. Their results show that the dynamic coefficients are different with different calculation standard, especially transverse bending moment, pulsating crosswind load does not show a dynamic amplification effect.Under pulsating wind loads at bridge deck or tower roof, the maximum displacement at the top of the tower and the maximum stress at the bottom of the tower are within the allowable range. The transverse stiffness of tower is greater than that of the longitudinal stiffness, therefore wind-resistant analysis should give priority to the longitudinal direction. Dynamic coefficients are different with different standard, the maximum dynamic coefficient should be used for the pseudo-static analysis.Finally, the static stability of tower is analyzed with different load combinations, and the galloping stabilities of cable tower is proved.
Parametric study of the Orbiter rollout using an approximate solution
NASA Technical Reports Server (NTRS)
Garland, B. J.
1979-01-01
An approximate solution to the motion of the Orbiter during rollout is used to perform a parametric study of the rollout distance required by the Orbiter. The study considers the maximum expected dispersions in the landing speed and the touchdown point. These dispersions are assumed to be correlated so that a fast landing occurs before the nominal touchdown point. The maximum rollout distance is required by the maximum landing speed with a 10 knot tailwind and the center of mass at the forward limit of its longitudinal travel. The maximum weight that can be stopped within 15,000 feet on a hot day at Kennedy Space Center is 248,800 pounds. The energy absorbed by the brakes would exceed the limit for reuse of the brakes.
A New Supercapacitor and Li-ion Battery Hybrid System for Electric Vehicle in ADVISOR
NASA Astrophysics Data System (ADS)
Peng, Xiao; Shuhai, Quan; Changjun, Xie
2017-02-01
The supercapacitor (SC) and Li-ion battery(BT) hybrid energy storage system(HESS) electric vehicle(EV) is gaining universal attention. The topology is of importance for the SC/BT HESS. A new SC/BT topology HESS with a rule-based energy management strategy for EV was proposed. The BT pack is connected directly to the DC link via a controlled switch. The SC pack is connected to the DC link via a controlled switch. A uni-directional DC/DC converter is connected between the SC pack and the BT pack. The braking regeneration energy is all harvested by the SC pack. The output power of BT pack is limited. The different SC/BT configurations with varied BT maximum Ah capacity factor and SC maximum capacity factor are simulated in ADVISOR. Simulation results show that BT maximum Ah capacity factor has little impact on vehicle acceleration performance and maximum speed. SC maximum capacity factor has significant impact on vehicle acceleration performance and maximum speed. The fuel economy isn’t affected.
2012-09-01
when travelling at sprint speed. To help overcome the shortcomings of the LCS in conducting HA/DR operations, the Irregular Warfare (IW) mission...high sprint speed, which allows the LCS to reach the disaster region faster than any other ships, especially if the IW mission package is adopted. The...high sprint speed in excess of 40 knots and a high sustained speed to enable it to run along a 30+ knots CSG or 20+ knots ESG. The high sprint
Roadrunner Supercomputer Breaks the Petaflop Barrier
Los Alamos National Lab - Brian Albright, Charlie McMillan, Lin Yin
2017-12-09
At 3:30 a.m. on May 26, 2008, Memorial Day, the "Roadrunner" supercomputer exceeded a sustained speed of 1 petaflop/s, or 1 million billion calculations per second. The sustained performance makes Roadrunner more than twice as fast as the current number 1
14 CFR 23.145 - Longitudinal control.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Maneuverability § 23.145 Longitudinal control. (a) With the airplane as nearly as possible in trim at 1.3 VS1, it must be possible, at speeds below the trim speed, to pitch the nose downward so that the rate of increase in airspeed allows prompt acceleration to the trim speed with— (1) Maximum continuous power on...
14 CFR 23.175 - Demonstration of static longitudinal stability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... must be shown as follows: (a) Climb. The stick force curve must have a stable slope at speeds between 85 and 115 percent of the trim speed, with— (1) Flaps retracted; (2) Landing gear retracted; (3) Maximum continuous power; and (4) The airplane trimmed at the speed used in determining the climb...
14 CFR 23.175 - Demonstration of static longitudinal stability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... must be shown as follows: (a) Climb. The stick force curve must have a stable slope at speeds between 85 and 115 percent of the trim speed, with— (1) Flaps retracted; (2) Landing gear retracted; (3) Maximum continuous power; and (4) The airplane trimmed at the speed used in determining the climb...
NASA Astrophysics Data System (ADS)
Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin
2018-05-01
An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.
Velocity Requirements for Abort From the Boost Trajectory of a Manned Lunar Mission
NASA Technical Reports Server (NTRS)
Slye, Robert E.
1961-01-01
An investigation is made of the abort velocity requirements associated with failure of a propulsion system for a manned lunar mission. Two cases are considered: abort at less than satellite speed, which results in maximum decelerations in the following entry, and abort at greater than satellite speed with immediate return to earth. The velocity requirements associated with the latter problem are found to be substantial (several thousand feet per second) and are found to be even more severe if boost trajectories which lead to burnout at high altitudes or large flight-path angles are used. The velocity requirements associated with abort at less than satellite speed are found to be less severe than those for abort at greater than satellite speed except for nonlifting vehicles. It is found that abort rockets sufficient for abort at greater than satellite speed can be used to reduce maximum decelerations in entries following an abort at lower speeds. This reduction is accomplished by use of the abort rockets to decrease entry angle immediately prior to entry into the atmosphere.
NASA Astrophysics Data System (ADS)
Béguin, A.; Nicolet, C.; Hell, J.; Moreira, C.
2017-04-01
The paper explores the improvement in ancillary services that variable speed technologies can provide for the case of an existing pumped storage power plant of 2x210 MVA which conversion from fixed speed to variable speed is investigated with a focus on the power step performances of the units. First two motor-generator variable speed technologies are introduced, namely the Doubly Fed Induction Machine (DFIM) and the Full Scale Frequency Converter (FSFC). Then a detailed numerical simulation model of the investigated power plant used to simulate power steps response and comprising the waterways, the pump-turbine unit, the motor-generator, the grid connection and the control systems is presented. Hydroelectric system time domain simulations are performed in order to determine the shortest response time achievable, taking into account the constraints from the maximum penstock pressure and from the rotational speed limits. It is shown that the maximum instantaneous power step response up and down depends on the hydro-mechanical characteristics of the pump-turbine unit and of the motor-generator speed limits. As a results, for the investigated test case, the FSFC solution offer the best power step response performances.
Stability control for high speed tracked unmanned vehicles
NASA Astrophysics Data System (ADS)
Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice
2005-05-01
The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).
Performance analysis of air-water quantum key distribution with an irregular sea surface
NASA Astrophysics Data System (ADS)
Xu, Hua-bin; Zhou, Yuan-yuan; Zhou, Xue-jun; Wang, Lian
2018-05-01
In the air-water quantum key distribution (QKD), the irregular sea surface has some influence on the photon polarization state. The wind is considered as the main factor causing the irregularity, so the model of irregular sea surface based on the wind speed is adopted. The relationships of the quantum bit error rate with the wind speed and the initial incident angle are simulated. Therefore, the maximum secure transmission depth of QKD is confirmed, and the limitation of the wind speed and the initial incident angle is determined. The simulation results show that when the wind speed and the initial incident angle increase, the performance of QKD will fall down. Under the intercept-resend attack condition, the maximum safe transmission depth of QKD is up to 105 m. To realize safe communications in the safe diving depth of submarines (100 m), the initial incident angle is requested to be not exceeding 26°, and with the initial incident angle increased, the limitation of wind speed is decreased.
Wiley, David N; Moller, Just C; Pace, Richard M; Carlson, Carole
2008-04-01
The use of voluntary approaches to achieve conservation goals is becoming increasingly popular. Nevertheless, few researchers have quantitatively evaluated their efficacy. In 1998 industry, government agencies, and nongovernmental organizations established a voluntary conservation program for whale watching in the northeast region of the United States, with the intent to avoid collisions with and harassment of endangered whales by commercial and recreational whale-watching vessels. One important aspect of the program was the establishment of 3 speed zones within specific distances of whales. We wanted to determine the level of compliance with this aspect of the program to gauge its efficacy and gain insights into the effectiveness of voluntary measures as a conservation tool. Inconspicuous observers accompanied 46 commercial whale-watching trips from 12 companies in 2003 (n= 35) and 2004 (n= 11). During each trip, vessel position and speed were collected at 5-second intervals with a GPS receiver. Binoculars with internal laser rangefinders and digital compasses were used to record range and bearing to sighted whales. We mapped whale locations with ArcGIS. We created speed-zone buffers around sighted whales and overlaid them with vessel-track and speed data to evaluate compliance. Speeds in excess of those recommended by the program were considered noncompliant. We judged the magnitude of noncompliance by comparing a vessel's maximum speed within a zone to its maximum recorded trip speed. The level of noncompliance was high (mean 0.78; company range 0.74-0.88), some companies were more compliant than others (p= 0.02), noncompliance was significantly higher in zones farther from whales (p < 0.001), and operators approached the maximum speed capabilities of their vessel in all zones. The voluntary conservation program did not achieve the goal of substantially limiting vessel speed near whales. Our results support the need for conservation programs to have quantifiable metrics and frequent evaluation to ensure efficacy.
Sustaining Change: The Answers Are Blowing in the Wind.
ERIC Educational Resources Information Center
Moffett, Cerylle A.
2000-01-01
Sustaining reform requires district leaders to develop a supportive infrastructure, nurture professional communities, reduce turnover, and use facilitators to build capacity. Bringing educators up to speed means providing abundant staff development, balancing pressure with support, providing adult learning time, and reducing fragmentation and…
Baseline tests of the battronic Minivan electric delivery van
NASA Technical Reports Server (NTRS)
Dustin, M. O.; Soltis, R. F.; Bozek, J. M.; Maslowski, E. A.
1977-01-01
An electric passenger vehicle was tested to develop data characterizing the state of the art of electric and hybrid vehicles. The test measured vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability and limit, road energy consumption, road power, indicated energy consumption, braking capability and battery charge efficiency. The data obtained are to serve as a baseline to compare improvements in electric and hybrid vehicle technologies and to assist in establishing performance standards.
Baseline tests of the EPC Hummingbird electric passenger vehicle
NASA Technical Reports Server (NTRS)
Slavik, R. J.; Maslowski, E. A.; Sargent, N. B.; Birchenough, A. G.
1977-01-01
The rear-mounted internal combustion engine in a four-passenger Volkswagen Thing was replaced with an electric motor made by modifying an aircraft generator and powered by 12 heavy-duty, lead-acid battery modules. Vehicle performance tests were conducted to measure vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics. Test results are presented in tables and charts.
Ad-Hoc Sensor Networks for Maritime Interdiction Operations and Regional Security
2012-09-01
as resistant to rough sea conditions as the SHARC, since its maximum operation limit is sea state 3. Its maximum speed approaches three knots and...which renders it corrosion resistant and lightweight. Its length is 3.2 meters with a rotor diameter at 3.3 meters. It flies at speeds of 50 knots...NMIOTC main building and to a moored training ship (see Figure 50), (2) GSM/GPRS was networked with swimmers , (3) security patrol and target vessels
Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser
NASA Astrophysics Data System (ADS)
Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao
2018-03-01
The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.
Maximum relative speeds of living organisms: Why do bacteria perform as fast as ostriches?
NASA Astrophysics Data System (ADS)
Meyer-Vernet, Nicole; Rospars, Jean-Pierre
2016-12-01
Self-locomotion is central to animal behaviour and survival. It is generally analysed by focusing on preferred speeds and gaits under particular biological and physical constraints. In the present paper we focus instead on the maximum speed and we study its order-of-magnitude scaling with body size, from bacteria to the largest terrestrial and aquatic organisms. Using data for about 460 species of various taxonomic groups, we find a maximum relative speed of the order of magnitude of ten body lengths per second over a 1020-fold mass range of running and swimming animals. This result implies a locomotor time scale of the order of one tenth of second, virtually independent on body size, anatomy and locomotion style, whose ubiquity requires an explanation building on basic properties of motile organisms. From first-principle estimates, we relate this generic time scale to other basic biological properties, using in particular the recent generalisation of the muscle specific tension to molecular motors. Finally, we go a step further by relating this time scale to still more basic quantities, as environmental conditions at Earth in addition to fundamental physical and chemical constants.
NASA Astrophysics Data System (ADS)
Vlase, A.; Blăjină, O.; Iacob, M.; Darie, V.
2015-11-01
Two addressed issues in the research regarding the cutting machinability, establishing of the optimum cutting processing conditions and the optimum cutting regime, do not yet have sufficient data for solving. For this reason, in the paper it is proposed the optimization of the tool life and the cutting speed at the drilling of a certain stainless steel in terms of the maximum productivity. For this purpose, a nonlinear programming mathematical model to maximize the productivity at the drilling of the steel is developed in the paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the numerical mathematical model. Using this proposed model allows increasing the accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The results presented in this paper can be used in the production activity, in order to increase the productivity of the stainless steels machining. Also new research directions for the specialists in this interested field may come off from this paper.
14 CFR 23.1563 - Airspeed placards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under § 23.149...
14 CFR 23.1563 - Airspeed placards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under § 23.149...
33 CFR 401.29 - Maximum draft.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Maximum draft. 401.29 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.29 Maximum draft. (a) Notwithstanding any provision herein, the loading of cargo, draft and speed of a vessel in transit shall be...
33 CFR 401.29 - Maximum draft.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Maximum draft. 401.29 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.29 Maximum draft. (a) Notwithstanding any provision herein, the loading of cargo, draft and speed of a vessel in transit shall be...
Impact of Monsoon to Aquatic Productivity and Fish Landing at Pesawaran Regency Waters
NASA Astrophysics Data System (ADS)
Kunarso; Zainuri, Muhammad; Ario, Raden; Munandar, Bayu; Prayogi, Harmon
2018-02-01
Monsoon variability influences the productivity processes in the ocean and has different responses in each waters. Furthermore, variability of marine productivity affects to the fisheries resources fluctuation. This research has conducted using descriptive method to investigate the consequences of monsoon variability to aquatic productivity, sea surface temperature (SST), fish catches, and fish season periods at Pesawaran Regency waters, Lampung. Variability of aquatic productivity was determined based on chlorophyll-a indicator from MODIS satellite images. Monsoon variability was governed based on wind parameters and fish catches from fish landing data of Pesawaran fish market. The result showed that monsoon variability had affected to aquatic productivity, SST, and fish catches at Pesawaran Regency waters. Maximum wind speed and lowest SST occurred twice in a year, December to March and August to October, which the peaks were on January (2.55 m/s of wind speed and 29.66°C of SST) and September (2.44 m/s of wind speed and 29.06°C of SST). Also, Maximum aquatic productivity happened on January to March and July to September, which it was arisen simultaneously with maximum wind speed and the peaks was 0.74 mg/m3 and 0.78 mg/m3, on February and August respectively. The data showed that fish catches decreased along with strong wind speed and low SST. However, when weak wind speed and high SST occurred, fish catches increased. The correlation between Catch per Unit Effort (CPUE) with SST, wind speed, and chlorophyll-a was at value 0.76, -0.67, and -0.70, respectively. The high rate fish catches in Pesawaran emerged on March-May and September-December.
NASA Astrophysics Data System (ADS)
Ogilvie, K. W.; Coplan, M. A.; Roberts, D. A.; Ipavich, F.
2007-08-01
We calculate the cross-spacecraft maximum lagged-cross-correlation coefficients for 2-hour intervals of solar wind speed and density measurements made by the plasma instruments on the Solar and Heliospheric Observatory (SOHO) and Wind spacecraft over the period from 1996, the minimum of solar cycle 23, through the end of 2005. During this period, SOHO was located at L1, about 200 R E upstream from the Earth, while Wind spent most of the time in the interplanetary medium at distances of more than 100 R E from the Earth. Yearly histograms of the maximum, time-lagged correlation coefficients for both the speed and density are bimodal in shape, suggesting the existence of two distinct solar wind regimes. The larger correlation coefficients we suggest are due to structured solar wind, including discontinuities and shocks, while the smaller are likely due to Alfvénic turbulence. While further work will be required to firmly establish the physical nature of the two populations, the results of the analysis are consistent with a solar wind that consists of turbulence from quiet regions of the Sun interspersed with highly filamentary structures largely convected from regions in the inner solar corona. The bimodal appearance of the distributions is less evident in the solar wind speed than in the density correlations, consistent with the observation that the filamentary structures are convected with nearly constant speed by the time they reach 1 AU. We also find that at solar minimum the fits for the density correlations have smaller high-correlation components than at solar maximum. We interpret this as due to the presence of more relatively uniform Alfvénic regions at solar minimum than at solar maximum.
The Physics of Colonel Kittinger's Longest Lonely Leap
ERIC Educational Resources Information Center
Robinson, A. W.; Patrick, C. G.
2008-01-01
We present a case study of the physical principles necessary to model the high altitude parachute jump made by Colonel Joseph Kittinger, USAF, in 1960, in order to determine the maximum speed attained and to calculate whether this speed was sufficient to exceed the speed of sound at that altitude. There is considerable discrepancy in the value of…
Flight speed of tethered Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae) alates
Thomas G. Shelton; X. Ping Hu; Arthur G. Appel; Terence L. Wagner
2006-01-01
Alates of the Eastern subterranean termite, Reticulitermes flavipes (Kollar) were collected over two flight seasons (2002 and 2004) and flown on flight mulls. Data were collected to test if alate mass, colony origin, or gender influenced flight speed. Flight speed ranged from 3.14 to 69.12 cm s-1 and the maximum distance flown...
Jumping of water striders on water
NASA Astrophysics Data System (ADS)
Yang, Eunjin; Son, Jaehak; Jablonski, Piotr; Kim, Ho-Young
2012-11-01
Small insects such as water striders, springtails, fishing spiders freely move on water by adopting various modes of locomotion, such as rowing, galloping, jumping and meniscus-climbing. As the physics of jumping have not yet been fully understood among those ways of semi-aquatic propulsion, here we present the results of a combined experimental and theoretical investigation of the dynamics of water striders leaping off water. We first image and analyze the trajectories of the legs and body of jumping water striders of three different species with a high-speed camera. We then theoretically compute the forces acting on the body by considering the capillary interaction between the flexible legs and deforming water meniscus. Our theory enables us to predict the maximum take-off speed for given leg lengths. The experimental measurements suggest that the water striders drive their legs near the optimal speed to gain the maximum take-off speed.
NASA Astrophysics Data System (ADS)
Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji
This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.
Spatial distribution of threshold wind speeds for dust outbreaks in northeast Asia
NASA Astrophysics Data System (ADS)
Kimura, Reiji; Shinoda, Masato
2010-01-01
Asian windblown dust events cause human and animal health effects and agricultural damage in dust source areas such as China and Mongolia and cause "yellow sand" events in Japan and Korea. It is desirable to develop an early warning system to help prevent such damage. We used our observations at a Mongolian station together with data from previous studies to model the spatial distribution of threshold wind speeds for dust events in northeast Asia (35°-45°N and 100°-115°E). Using a map of Normalized Difference Vegetation Index (NDVI), we estimated spatial distributions of vegetation cover, roughness length, threshold friction velocity, and threshold wind speed. We also recognized a relationship between NDVI in the dust season and maximum NDVI in the previous year. Thus, it may be possible to predict the threshold wind speed in the next dust season using the maximum NDVI in the previous year.
Theoretical considerations on maximum running speeds for large and small animals.
Fuentes, Mauricio A
2016-02-07
Mechanical equations for fast running speeds are presented and analyzed. One of the equations and its associated model predict that animals tend to experience larger mechanical stresses in their limbs (muscles, tendons and bones) as a result of larger stride lengths, suggesting a structural restriction entailing the existence of an absolute maximum possible stride length. The consequence for big animals is that an increasingly larger body mass implies decreasing maximal speeds, given that the stride frequency generally decreases for increasingly larger animals. Another restriction, acting on small animals, is discussed only in preliminary terms, but it seems safe to assume from previous studies that for a given range of body masses of small animals, those which are bigger are faster. The difference between speed scaling trends for large and small animals implies the existence of a range of intermediate body masses corresponding to the fastest animals. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.
1976-01-01
Emissions of total oxides of nitrogen, nitric oxide, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16.0 to 23.5 km. For each flight condition exhaust measurements were made for four or five power levels, from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen emissions decreased with increasing altitude and increased with increasing flight speed. Oxides of nitrogen emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Waggoner, E. G.
1990-01-01
Computational predictions of the effects of wing contour modifications on maximum lift and transonic performance were made and verified against low speed and transonic wind tunnel data. This effort was part of a program to improve the maneuvering capability of the EA-6B electronics countermeasures aircraft, which evolved from the A-6 attack aircraft. The predictions were based on results from three computer codes which all include viscous effects: MCARF, a 2-D subsonic panel code; TAWFIVE, a transonic full potential code; and WBPPW, a transonic small disturbance potential flow code. The modifications were previously designed with the aid of these and other codes. The wing modifications consists of contour changes to the leading edge slats and trailing edge flaps and were designed for increased maximum lift with minimum effect on transonic performance. The prediction of the effects of the modifications are presented, with emphasis on verification through comparisons with wind tunnel data from the National Transonic Facility. Attention is focused on increments in low speed maximum lift and increments in transonic lift, pitching moment, and drag resulting from the contour modifications.
Design study of steel V-Belt CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Swain, J. C.; Klausing, T. A.; Wilcox, J. P.
1980-01-01
A continuously variable transmission (CVT) design layout was completed. The intended application was for coupling the flywheel to the driveline of a flywheel battery hybrid electric vehicle. The requirements were that the CVT accommodate flywheel speeds from 14,000 to 28,000 rpm and driveline speeds of 850 to 5000 rpm without slipping. Below 850 rpm a slipping clutch was used between the CVT and the driveline. The CVT was required to accommodate 330 ft-lb maximum torque and 100 hp maximum transient. The weighted average power was 22 hp, the maximum allowable full range shift time was 2 seconds and the required lift was 2600 hours. The resulting design utilized two steel V-belts in series to accommodate the required wide speed ratio. The size of the CVT, including the slipping clutch, was 20.6 inches long, 9.8 inches high and 13.8 inches wide. The estimated weight was 155 lb. An overall potential efficiency of 95 percent was projected for the average power condition.
Airflow energy harvesting with high wind velocities for industrial applications
NASA Astrophysics Data System (ADS)
Chew, Z. J.; Tuddenham, S. B.; Zhu, M.
2016-11-01
An airflow energy harvester capable of harvesting energy from vortices at high speed is presented in this paper. The airflow energy harvester is implemented using a modified helical Savonius turbine and an electromagnetic generator. A power management module with maximum power point finding capability is used to manage the harvested energy and convert the low voltage magnitude from the generator to a usable level for wireless sensors. The airflow energy harvester is characterized using vortex generated by air hitting a plate in a wind tunnel. By using an aircraft environment with wind speed of 17 m/s as case study, the output power of the airflow energy harvester is measured to be 126 mW. The overall efficiency of the power management module is 45.76 to 61.2%, with maximum power point tracking efficiency of 94.21 to 99.72% for wind speed of 10 to 18 m/s, and has a quiescent current of 790 nA for the maximum power point tracking circuit.
Child and Adult Pedestrian Impact: The Influence of Vehicle Type on Injury Severity
Henary, Basem Y.; Crandall, Jeff; Bhalla, Kavi; Mock, Charles N.; Roudsari, Bahman S.
2003-01-01
In the United States, the vehicle fleet is shifting from predominantly passenger cars (automobiles) to SUVs, light trucks, and vans (LTV). This study investigates how pedestrian severe injury and mortality are associated with vehicle type and pedestrian age. The Pedestrian Crash Data Study (PCDS) database for years 1994–1998 was used for a cross-sectional study design. Outcome measures were Injury Severity Score, Maximum Abbreviated Injury Score, Abbreviated Injury Scale, Pedestrian Mortality, Functional Capacity Index and Life Years Lost to Injury. Compared to children, adult pedestrians were more likely to sustain severe injury (OR = 2.81; 95% CI: 1.56–5.06) or mortality (OR = 2.91; 95% CI: 1.10–7.74) when examining all vehicle types. However, after adjusting for vehicle type and impact speed, this association was not statistically significant at p < 0.05. Compared to passenger cars, pedestrians struck by LTV were more likely to have severe injuries (OR = 1.31; 95% CI: 0.88–1.94) or mortality (OR = 1.40; 95% CI: 0.84–2.34) for all pedestrians. Adjusting for pedestrian age, this association was more obvious and significant at lower impact speeds (≤ 30 km/h); odds ratios of severe injury and mortality were 3.34 (p< 0.01) and 1.87 (p= 0.07), respectively. Adults hit by LTV had the highest risk of injury and mortality. These findings indicate that pedestrian age, vehicle engineering design and impact speed are highly contributing to risks of pedestrian injury and mortality. PMID:12941221
Development and Validation of High Performance Unshrouded Centrifugal Impeller
NASA Technical Reports Server (NTRS)
Chen, Wei-Chung; Williams, M.; Paris, John K.; Prueger, G. H.; Williams, Robert; Turner, James E. (Technical Monitor)
2001-01-01
The feasibility of using a two-stage unshrouded impeller turbopump to replace the current three-stage reusable launch vehicle engine shrouded impeller hydrogen pump has been evaluated from the standpoint of turbopump weight reduction and overall payload improvement. These advantages are a by-product of the higher tip speeds that an unshrouded impeller can sustain. The issues associated with the effect of unshrouded impeller tip clearance on pump efficiency and head have been evaluated with one-dimensional tools and full three-dimensional rotordynamic fluid reaction forces and coefficients have been established through time dependent computational fluid dynamics (CFD) simulation of the whole 360 degree impeller with different rotor eccentricities and whirling ratios. Unlike the shrouded impeller, the unshrouded impeller forces are evaluated as the sum of the pressure forces on the blade and the pressure forces on the hub using the CFD results. The turbopump axial thrust control has been optimized by adjusting the first stage impeller backend wear ring seal diameter and diverting the second stage backend balance piston flow to the proper location. The structural integrity associated with the high tip speed has been checked by analyzing a 3D-Finite Element Model at maximum design conditions (6% higher than the design speed). This impeller was fabricated and tested in the NASA Marshall Space Flight Center water-test rig. The experimental data will be compared with the analytical predictions and presented in another paper. The experimental data provides validation data for the numerical design and analysis methodology. The validated numerical methodology can be used to help design different unshrouded impeller configurations.
The Effects of Engine Speed and Mixture Temperature on the Knocking Characteristics of Several Fuels
NASA Technical Reports Server (NTRS)
Lee, Dana W
1940-01-01
Six 100-octane and two 87-octane aviation engine fuels were tested in a modified C.F.R. variable-compression engine at 1,500, 2,000 and 2,500 rpm. The mixture temperature was raised from 50 to 300 F in approximately 50 degree steps and, at each temperature, the compression ratio was adjusted to give incipient knock as shown by a cathode ray indicator. The results are presented in tabular form. The results are analyzed on the assumption that the conditions which determine whether a given fuel will knock are the maximum values of density and temperature reached by the burning gases. A maximum permissible density factor, proportional to the maximum density of the burning gases just prior to incipient knock, and the temperature of the burning gases at that time were computed for each of the test conditions. Values of the density factors were plotted against the corresponding end-gas temperatures for the three engine speeds and also against engine speed for several and end-gas temperatures. The maximum permissible density factor varied only slightly with engine speed but decreased rapidly with an increase in the end-gas temperature. The effect of changing the mixture temperature was different for fuels of different types. The results emphasize the desirability of determining the anti knock values of fuels over a wide range of engine and intake-air conditions rather that at a single set of conditions.
Comparison of three-dimensional parameters of Halo CMEs using three cone models
NASA Astrophysics Data System (ADS)
Na, H.; Moon, Y.; Jang, S.; Lee, K.
2012-12-01
Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms and their three dimensional structures are important for space weather. In this study, we compare three cone models: an elliptical cone model, an ice-cream cone model, and an asymmetric cone model. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle (γ) between sky plane and cone axis. We compare these parameters obtained from three models using 62 well-observed HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root mean square error (RMS error) between maximum measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another (R > 0.84). The correlation coefficients between angular widths are ranges from 0.04 to 0.53 and those between γ values are from -0.15 to 0.47, which are much smaller than expected. The reason may be due to different assumptions and methods. The RMS errors between the maximum measured projection speeds and the maximum estimated projection speeds of the elliptical cone model, the ice-cream cone model, and the asymmetric cone model are 213 km/s, 254 km/s, and 267 km/s, respectively. And we obtain the correlation coefficients between the location from the models and the flare location (R > 0.75). Finally, we discuss strengths and weaknesses of these models in terms of space weather application.
VMAT testing for an Elekta accelerator
Sweeney, Larry E.; Marshall, Edward I.; Mahendra, Saikanth
2012-01-01
Volumetric‐modulated arc therapy (VMAT) has been shown to be able to deliver plans equivalent to intensity‐modulated radiation therapy (IMRT) in a fraction of the treatment time. This improvement is important for patient immobilization/ localization compliance due to comfort and treatment duration, as well as patient throughput. Previous authors have suggested commissioning methods for this modality. Here, we extend the methods reported for the Varian RapidArc system (which tested individual system components) to the Elekta linear accelerator, using custom files built using the Elekta iComCAT software. We also extend the method reported for VMAT commissioning of the Elekta accelerator by verifying maximum values of parameters (gantry speed, multileaf collimator (MLC) speed, and backup jaw speed), investigating: 1) beam profiles as a function of dose rate during an arc, 2) over/under dosing due to MLC reversals, and 3) over/under dosing at changing dose rate junctions. Equations for construction of the iComCAT files are given. Results indicate that the beam profile for lower dose rates varies less than 3% from that of the maximum dose rate, with no difference during an arc. The gantry, MLC, and backup jaw maximum speed are internally consistent. The monitor unit chamber is stable over the MUs and gantry movement conditions expected. MLC movement and position during VMAT delivery are within IMRT tolerances. Dose rate, gantry speed, and MLC speed are accurately controlled. Over/under dosing at junctions of MLC reversals or dose rate changes are within clinical acceptability. PACS numbers: 87.55.de, 87.55.Qr, 87.56.bd PMID:22402389
NASA Astrophysics Data System (ADS)
Reddy, S. R.
2010-12-01
We investigated the possible relationship between the large- scale heat fluxes and intensity change associated with the landfall of Hurricane Katrina. After reaching the category 5 intensity on August 28th , 2005 over the central Gulf of Mexico, Katrina weekend to category 3 before making landfall (August 29th , 2005) on the Louisiana coast with the maximum sustained winds of over 110 knots. We also examined the vertical motions associated with the intensity change of the hurricane. The data on Convective Available Potential Energy (CAPE), sea level pressure and wind speed were obtained from the Atmospheric Soundings, and NOAA National Hurricane Center (NHC), respectively for the period August 24 to September 3, 2005. We developed an empirical model and a C++ program to calculate surface potential temperatures and heat fluxes using the above data. We also computed vertical motions using CAPE values. The study showed that the large-scale heat fluxes reached maximum (7960W/m2) with the central pressure 905mb. The Convective Available Potential Energy and the vertical motions peaked 3-5 days before landfall. The large atmospheric vertical motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes.
Measuring the speed of light with baryon acoustic oscillations.
Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth
2015-03-13
In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.
Indexed semi-Markov process for wind speed modeling.
NASA Astrophysics Data System (ADS)
Petroni, F.; D'Amico, G.; Prattico, F.
2012-04-01
The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.
a maximum speed of 35 miles per hour (mph) and that must comply with the safety standards in Title have a posted speed limit of 45 mph or less except to cross at an intersection. A county, municipality
40 CFR Appendix A to Subpart E of... - Tables
Code of Federal Regulations, 2010 CFR
2010-07-01
... torque output N · m Power output kW Air inlet temperature °C Air humidity mg/kg Coolant temperature... rated speed Engine torque as a percentage of maximum torque at rated speed Mode weighting factor 1 100...
Limitations to maximum running speed on flat curves.
Chang, Young-Hui; Kram, Rodger
2007-03-01
Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance.
2016-09-01
Characteristics of Silver Carp (Hypophthalmichthys molitrix) Using Video Analyses and Principles of Projectile Physics by Glenn R. Parsons, Ehlana Stell...2002) estimated maximum swim speeds of videotaped, captive, and free-ranging dolphins, Delphinidae, by timed sequential analyses of video frames... videos to estimate the swim speeds and leap characteristics of carp as they exit the waters’ surface. We used both direct estimates of swim speeds as
System Identification and Steering Control Characteristic of Rice Combine Harvester Model
NASA Astrophysics Data System (ADS)
Sutisna, S. P.; Setiawan, R. P. A.; Subrata, I. D. M.; Mandang, T.
2018-05-01
This study is a preliminary research of rice combine harvester trajectory. A vehicle model of rice combine used crawler with differential steering. Turning process of differential steering used speed difference of right and left tracks This study aims to learn of rice combine harvester steering control. In real condition, the hydraulic break on each track produced the speed difference. The model used two DC motors with maximum speed 100 rpm for each tracks. A rotary encoder with resolution 600 pulse/rotation was connected to each DC motors shaft to monitor the speed of tracks and connected to the input shaft of a gearbox with ratio 1:46. The motor speed control for each track used pulse width modulation to produce the speed difference. A gyroscope sensor with resolution 0.01° was used to determine the model orientation angle. Like the real rice combine, the tracks can not rotate to the opposite direction at the same time so it makes the model can not perform the pivot turn. The turn radius of the model was 28 cm and the forward maximum speed was 17.8 cm/s. The model trajectory control used PID odometry controller. Parameters input were the speed of each track and the orientation of the vehicle. The straight line test showed the controller can control the rice combine model trajectory with the average error 0.67 cm.
Survey of Quantitative Research Metrics to Assess Pilot Performance in Upset Recovery
NASA Technical Reports Server (NTRS)
Le Vie, Lisa R.
2016-01-01
Accidents attributable to in-flight loss of control are the primary cause for fatal commercial jet accidents worldwide. The National Aeronautics and Space Administration (NASA) conducted a literature review to determine and identify the quantitative standards for assessing upset recovery performance. This review contains current recovery procedures for both military and commercial aviation and includes the metrics researchers use to assess aircraft recovery performance. Metrics include time to first input, recognition time and recovery time and whether that input was correct or incorrect. Other metrics included are: the state of the autopilot and autothrottle, control wheel/sidestick movement resulting in pitch and roll, and inputs to the throttle and rudder. In addition, airplane state measures, such as roll reversals, altitude loss/gain, maximum vertical speed, maximum/minimum air speed, maximum bank angle and maximum g loading are reviewed as well.
Strength deficits of the shoulder complex during isokinetic testing in people with chronic stroke
Nascimento, Lucas R.; Teixeira-Salmela, Luci F.; Polese, Janaine C.; Ada, Louise; Faria, Christina D. C. M.; Laurentino, Glória E. C.
2014-01-01
OBJECTIVES: To examine the strength deficits of the shoulder complex after stroke and to characterize the pattern of weakness according to type of movement and type of isokinetic parameter. METHOD: Twelve chronic stroke survivors and 12 age-matched healthy controls had their shoulder strength measured using a Biodex isokinetic dynamometer. Concentric measures of peak torque and work during shoulder movements were obtained in random order at speeds of 60°/s for both groups and sides. Type of movement was defined as scapulothoracic (protraction and retraction), glenohumeral (shoulder internal and external rotation) or combined (shoulder flexion and extension). Type of isokinetic parameter was defined as maximum (peak torque) or sustained (work). Strength deficits were calculated using the control group as reference. RESULTS: The average strength deficit for the paretic upper limb was 52% for peak torque and 56% for work. Decreases observed in the non-paretic shoulder were 21% and 22%, respectively. Strength deficit of the scapulothoracic muscles was similar to the glenohumeral muscles, with a mean difference of 6% (95% CI -5 to 17). Ability to sustain torque throughout a given range of motion was decreased as much as the peak torque, with a mean difference of 4% (95% CI -2 to 10). CONCLUSIONS: The findings suggest that people after stroke might benefit from strengthening exercises directed at the paretic scapulothoracic muscles in addition to exercises of arm elevation. Clinicians should also prescribe different exercises to improve the ability to generate force and the ability to sustain the torque during a specific range of motion. PMID:25003280
NASA Astrophysics Data System (ADS)
Murugan, Balamagendiravarman; Thirunavukarasu, Gopinath; Kundu, Sukumar; Kailas, Satish V.; Chatterjee, Subrata
2018-05-01
In the present investigation, friction stir welding of commercially pure aluminum and 304 stainless steel was carried out at varying tool rotational speeds from 200 to 1000 rpm in steps of 200 rpm using 60 mm/min traverse speed at 2 (degree) tool tilt angle. Microstructural characterization of the interfacial zone was carried out using optical microscope and scanning electron microscope. Energy-dispersive spectroscopy indicated the presence of FeAl3 intermetallic phase. Thickness of the intermetallic layer increased with the increase in tool rotational speed. X-ray diffraction studies indicated the formation of intermetallic phases like FeAl2, Fe4Al13, Fe2Al5, and FeAl3. A maximum tensile strength of 90% that of aluminum along with 4.5% elongation was achieved with the welded sample at tool rotational speed of 400 rpm. The stir zone showed higher hardness as compared to base metals, heat affected zone, and thermo-mechanically affected zone due to the presence of intermetallics. The maximum hardness value at the stir zone was achieved at 1000 rpm tool rotational speed.
Accelerations and Passenger Harness Loads Measured in Full-Scale Light-Airplane Crashes
NASA Technical Reports Server (NTRS)
Eiband, A. Martin; Simpkinson, Scott H.; Black, Dugald O.
1953-01-01
Full-scale light-airplane crashes simulating stall-spin accidents were conducted to determine the decelerations to which occupants are exposed and the resulting harness forces encountered in this type of accident. Crashes at impact speeds from 42 to 60 miles per hour were studied. The airplanes used were of the familiar steel-tube, fabric-covered, tandem, two-seat type. In crashes up to an impact speed of 60 miles per hour, crumpling of the forward fuselage structure prevented the maximum deceleration at the rear-seat location from exceeding 26 to 33g. This maximum g value appeared independent of the impact speed. Restraining forces in the seatbelt - shoulder-harness combination reached 5800 pounds. The rear-seat occupant can survive crashes of the type studied at impact speeds up to 60 miles per hour, if body movement is restrained by an adequate seatbelt-shoulder-harness combination so as to prevent injurious contact with obstacles normally present in the cabin. Inwardly collapsing cabin structure, however, is a potential hazard in the higher-speed crashes.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Performance data on the General Electric 5BT 2366C10 series wound dc motor and EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data is provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing shows the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 86% and 87%, regardless of temperature or mode of operation. When the chopper is utilized, maximum motor efficiency occurs when the chopper duty cycle approaches 100%.
Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air
NASA Astrophysics Data System (ADS)
Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro
2014-12-01
Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.
High speed superconducting flywheel system for energy storage
NASA Astrophysics Data System (ADS)
Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.
1994-12-01
A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.
Building an open-source robotic stereotaxic instrument.
Coffey, Kevin R; Barker, David J; Ma, Sisi; West, Mark O
2013-10-29
This protocol includes the designs and software necessary to upgrade an existing stereotaxic instrument to a robotic (CNC) stereotaxic instrument for around $1,000 (excluding a drill), using industry standard stepper motors and CNC controlling software. Each axis has variable speed control and may be operated simultaneously or independently. The robot's flexibility and open coding system (g-code) make it capable of performing custom tasks that are not supported by commercial systems. Its applications include, but are not limited to, drilling holes, sharp edge craniotomies, skull thinning, and lowering electrodes or cannula. In order to expedite the writing of g-coding for simple surgeries, we have developed custom scripts that allow individuals to design a surgery with no knowledge of programming. However, for users to get the most out of the motorized stereotax, it would be beneficial to be knowledgeable in mathematical programming and G-Coding (simple programming for CNC machining). The recommended drill speed is greater than 40,000 rpm. The stepper motor resolution is 1.8°/Step, geared to 0.346°/Step. A standard stereotax has a resolution of 2.88 μm/step. The maximum recommended cutting speed is 500 μm/sec. The maximum recommended jogging speed is 3,500 μm/sec. The maximum recommended drill bit size is HP 2.
Adaptive Gain-based Stable Power Smoothing of a DFIG
Muljadi, Eduard; Lee, Hyewon; Hwang, Min; ...
2017-11-01
In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Adaptive Gain-based Stable Power Smoothing of a DFIG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Lee, Hyewon; Hwang, Min
In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Demonstration of variable speed permanent magnet generator at small, low-head hydro site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown Kinloch, David
Small hydro developers face a limited set of bad choices when choosing a generator for a small low-head hydro site. Direct drive synchronous generators are expensive and technically complex to install. Simpler induction generators are higher speed, requiring a speed increaser, which results in inefficiencies and maintenance problems. In addition, both induction and synchronous generators turn at a fixed speed, causing the turbine to run off its peak efficiency curve whenever the available head is different than the designed optimum head.The solution to these problems is the variable speed Permanent Magnet Generators (PMG). At the Weisenberger Mill in Midway, KY,more » a variable speed Permanent Magnet Generator has been installed and demonstrated. This new PMG system replaced an existing induction generator that had a HTD belt drive speed increaser system. Data was taken from the old generator before it was removed and compared to data collected after the PMG system was installed. The new variable speed PMG system is calculated to produce over 96% more energy than the old induction generator system during an average year. This significant increase was primarily due to the PMG generator operating at the correct speed at the maximum head, and the ability for the PMG generator to reduce its speed to lower optimum speeds as the stream flow increased and the net head decreased.This demonstration showed the importance of being able to adjust the speed of fixed blade turbines. All fixed blade turbines with varying net heads could achieve higher efficiencies if the speed can be matched to the optimum speed as the head changes. In addition, this demonstration showed that there are many potential efficiencies that could be realized with variable speed technology at hydro sites where mismatched turbine and generator speeds result in lower power output, even at maximum head. Funding for this project came from the US Dept. of Energy, through Award Number DE-EE0005429.« less
Sustainable aggregates production : green applications for aggregate by-products.
DOT National Transportation Integrated Search
2015-06-01
Increased emphasis in the construction industry on sustainability and recycling requires production of : aggregate gradations with lower dust (cleaner aggregates) and smaller maximum sizeshence, increased : amount of quarry by-products (QBs). QBs ...
Time optimal paths for high speed maneuvering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
2009-01-01
Additionally, high-speed air bearings have been demonstrated in micromotors (55 000 rpm) and micro-turbomachinery (2 million rpm) [7, 8]. While...without thrust balances [11]. For applications requiring continuous rotation ( micromotors and micropumps) this hydrostatic balancing force can be...conditions for stable actuation of the micromotor leading to maximum speeds. In addition to increased speed, this device demonstrates a substantial
Idle speed and fuel vapor recovery control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orzel, D.V.
1993-06-01
A method for controlling idling speed of an engine via bypass throttle connected in parallel to a primary engine throttle and for controlling purge flow through a vapor recovery system into an air/fuel intake of the engine is described, comprising the steps of: positioning the bypass throttle to decrease any difference between a desired engine idle speed and actual engine idle speed; and decreasing the purge flow when said bypass throttle position is less than a preselected fraction of a maximum bypass throttle position.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... policy for information reported on fuel ethanol production capacity, (both nameplate and maximum... fuel ethanol production capacity, (both nameplate and maximum sustainable capacity) on Form EIA-819 as... treat all information reported on fuel ethanol production capacity, (both nameplate and maximum...
Comparing performance on the MNREAD iPad application with the MNREAD acuity chart.
Calabrèse, Aurélie; To, Long; He, Yingchen; Berkholtz, Elizabeth; Rafian, Paymon; Legge, Gordon E
2018-01-01
Our purpose was to compare reading performance measured with the MNREAD Acuity Chart and an iPad application (app) version of the same test for both normally sighted and low-vision participants. Our methods included 165 participants with normal vision and 43 participants with low vision tested on the standard printed MNREAD and on the iPad app version of the test. Maximum Reading Speed, Critical Print Size, Reading Acuity, and Reading Accessibility Index were compared using linear mixed-effects models to identify any potential differences in test performance between the printed chart and the iPad app. Our results showed the following: For normal vision, chart and iPad yield similar estimates of Critical Print Size and Reading Acuity. The iPad provides significantly slower estimates of Maximum Reading Speed than the chart, with a greater difference for faster readers. The difference was on average 3% at 100 words per minute (wpm), 6% at 150 wpm, 9% at 200 wpm, and 12% at 250 wpm. For low vision, Maximum Reading Speed, Reading Accessibility Index, and Critical Print Size are equivalent on the iPad and chart. Only the Reading Acuity is significantly smaller (I. E., better) when measured on the digital version of the test, but by only 0.03 logMAR (p = 0.013). Our conclusions were that, overall, MNREAD parameters measured with the printed chart and the iPad app are very similar. The difference found in Maximum Reading Speed for the normally sighted participants can be explained by differences in the method for timing the reading trials.
Comparing performance on the MNREAD iPad application with the MNREAD acuity chart
Calabrèse, Aurélie; To, Long; He, Yingchen; Berkholtz, Elizabeth; Rafian, Paymon; Legge, Gordon E.
2018-01-01
Our purpose was to compare reading performance measured with the MNREAD Acuity Chart and an iPad application (app) version of the same test for both normally sighted and low-vision participants. Our methods included 165 participants with normal vision and 43 participants with low vision tested on the standard printed MNREAD and on the iPad app version of the test. Maximum Reading Speed, Critical Print Size, Reading Acuity, and Reading Accessibility Index were compared using linear mixed-effects models to identify any potential differences in test performance between the printed chart and the iPad app. Our results showed the following: For normal vision, chart and iPad yield similar estimates of Critical Print Size and Reading Acuity. The iPad provides significantly slower estimates of Maximum Reading Speed than the chart, with a greater difference for faster readers. The difference was on average 3% at 100 words per minute (wpm), 6% at 150 wpm, 9% at 200 wpm, and 12% at 250 wpm. For low vision, Maximum Reading Speed, Reading Accessibility Index, and Critical Print Size are equivalent on the iPad and chart. Only the Reading Acuity is significantly smaller (I. E., better) when measured on the digital version of the test, but by only 0.03 logMAR (p = 0.013). Our conclusions were that, overall, MNREAD parameters measured with the printed chart and the iPad app are very similar. The difference found in Maximum Reading Speed for the normally sighted participants can be explained by differences in the method for timing the reading trials. PMID:29351351
Modeling the effect of varying swim speeds on fish passage through velocity barriers
Castro-Santos, T.
2006-01-01
The distance fish can swim through zones of high-velocity flow is an important factor limiting the distribution and conservation of riverine and diadromous fishes. Often, these barriers are characterized by nonuniform flow conditions, and it is likely that fish will swim at varying speeds to traverse them. Existing models used to predict passage success, however, typically include the unrealistic assumption that fish swim at a constant speed regardless of the speed of flow. This paper demonstrates how the maximum distance of ascent through velocity barriers can be estimated from the swim speed-fatigue time relationship, allowing for variation in both swim speed and water velocity.
Viterbi equalization for long-distance, high-speed underwater laser communication
NASA Astrophysics Data System (ADS)
Hu, Siqi; Mi, Le; Zhou, Tianhua; Chen, Weibiao
2017-07-01
In long-distance, high-speed underwater laser communication, because of the strong absorption and scattering processes, the laser pulse is stretched with the increase in communication distance and the decrease in water clarity. The maximum communication bandwidth is limited by laser-pulse stretching. Improving the communication rate increases the intersymbol interference (ISI). To reduce the effect of ISI, the Viterbi equalization (VE) algorithm is used to estimate the maximum-likelihood receiving sequence. The Monte Carlo method is used to simulate the stretching of the received laser pulse and the maximum communication rate at a wavelength of 532 nm in Jerlov IB and Jerlov II water channels with communication distances of 80, 100, and 130 m, respectively. The high-data rate communication performance for the VE and hard-decision algorithms is compared. The simulation results show that the VE algorithm can be used to reduce the ISI by selecting the minimum error path. The trade-off between the high-data rate communication performance and minor bit-error rate performance loss makes VE a promising option for applications in long-distance, high-speed underwater laser communication systems.
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.; Hoegy, W. R.; Chen, T. C.
1993-01-01
Using a comprehensive ionospheric data set comprised of all available ion composition and plasma temperature measurements from satellites, the vertical distributions of ion composition and plasma temperatures are defined from middle latitudes up into the polar cap for summer conditions for altitudes below about 1200 km. These data are sufficient to allow a numerical estimation of the latitudinal variation of the light ion outflows from within the plasmasphere to the polar wind regions. The altitude at which significant light ion outflow begins is found to be lower during solar minimum conditions than during solar maximum. The H(+) outward speeds are of the order of 1 km/s near 1100 km during solar maximum but attain several km/s speeds for solar minimum. He(+) shows a similar altitude development of flow but attains polar cap speeds much less than 1 km/s at altitudes below 1100 km, particularly under solar maximum conditions. Outward flows are also found in the topside F-region for noontime magnetic flux tubes within the plasmasphere.
The impact of the 65 mph speed limit on Virginia's rural interstate highways through 1989.
DOT National Transportation Integrated Search
1990-01-01
In April 1987, Congress passed the Surface Transportation and Uniform Relocation Assistance Act (STURAA) which permitted states to raise their maximum speed limit on rural interstate highways (rural interstates) to 65 mph. Since then, 40 states, incl...
A Robust Strategy for Total Ionizing Dose Testing of Field Programmable Gate Arrays
NASA Technical Reports Server (NTRS)
Wilcox, Edward; Berg, Melanie; Friendlich, Mark; Lakeman, Joseph; KIm, Hak; Pellish, Jonathan; LaBel, Kenneth
2012-01-01
We present a novel method of FPGA TID testing that measures propagation delay between flip-flops operating at maximum speed. Measurement is performed on-chip at-speed and provides a key design metric when building system-critical synchronous designs.
Maximum-Likelihood Estimation With a Contracting-Grid Search Algorithm
Hesterman, Jacob Y.; Caucci, Luca; Kupinski, Matthew A.; Barrett, Harrison H.; Furenlid, Lars R.
2010-01-01
A fast search algorithm capable of operating in multi-dimensional spaces is introduced. As a sample application, we demonstrate its utility in the 2D and 3D maximum-likelihood position-estimation problem that arises in the processing of PMT signals to derive interaction locations in compact gamma cameras. We demonstrate that the algorithm can be parallelized in pipelines, and thereby efficiently implemented in specialized hardware, such as field-programmable gate arrays (FPGAs). A 2D implementation of the algorithm is achieved in Cell/BE processors, resulting in processing speeds above one million events per second, which is a 20× increase in speed over a conventional desktop machine. Graphics processing units (GPUs) are used for a 3D application of the algorithm, resulting in processing speeds of nearly 250,000 events per second which is a 250× increase in speed over a conventional desktop machine. These implementations indicate the viability of the algorithm for use in real-time imaging applications. PMID:20824155
NASA Astrophysics Data System (ADS)
Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu
2018-06-01
A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.
Plasma bullet current measurements in a free-stream helium capillary jet
NASA Astrophysics Data System (ADS)
Oh, Jun-Seok; Walsh, James L.; Bradley, James W.
2012-06-01
A commercial current monitor has been used to measure the current associated with plasma bullets created in both the positive and negative half cycles of the sinusoidal driving voltage sustaining a plasma jet. The maximum values of the positive bullet current are typically ˜750 µA and persist for 10 µs, while the peaks in the negative current of several hundred μA are broad, persisting for about 40 µs. From the time delay of the current peaks with increasing distance from the jet nozzle, an average bullet propagation speed has been measured; the positive and negative bullets travel at 17.5 km s-1 and 3.9 km s-1 respectively. The net space charge associated with the bullet(s) has also been calculated; the positive and negative bullets contain a similar net charge of the order of 10-9 C measured at all monitor positions, with estimated charged particle densities nb of ˜1010-1011 cm-3 in the bullet.
EFFECTS OF OVERPRESSURES IN GROUP SHELTERS ON ANIMALS AND DUMMIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, J.E.; White, C.S.; Chiffelle, T.L.
1953-09-01
S>Relative biological hazards of blast were studied in two types of communal air-raid shelters during Shots 1 and 8. Dogs, restrained within the shelters during detonation, were studied pathologically and clinically for blast injuries. Two anthropometric dummies were test objects for displacement studies utilizing high-speed photography. Physical data included pressure vs time and air-drag determinations. During Shot 1, animals sustained marked blast damages (hemorrhages in lungs and abdominal organs), three dogs were ataxic. and the dummies were rather violently displaced. In Shot 8, however, no significant injuries were found in the animals, and the dummies were minimally displaced. Analysis ofmore » the physical data indicated that blast injuries and violent displacements may occur at much lower static overpressures than previously assumed from conventional explosion data. Furthermore, biological damage appeared to be related to the rate of rise of the overpressure and air drag, as well as the maximum overpressure values. (auth)« less
Examining impulse-variability in overarm throwing.
Urbin, M A; Stodden, David; Boros, Rhonda; Shannon, David
2012-01-01
The purpose of this study was to examine variability in overarm throwing velocity and spatial output error at various percentages of maximum to test the prediction of an inverted-U function as predicted by impulse-variability theory and a speed-accuracy trade-off as predicted by Fitts' Law Thirty subjects (16 skilled, 14 unskilled) were instructed to throw a tennis ball at seven percentages of their maximum velocity (40-100%) in random order (9 trials per condition) at a target 30 feet away. Throwing velocity was measured with a radar gun and interpreted as an index of overall systemic power output. Within-subject throwing velocity variability was examined using within-subjects repeated-measures ANOVAs (7 repeated conditions) with built-in polynomial contrasts. Spatial error was analyzed using mixed model regression. Results indicated a quadratic fit with variability in throwing velocity increasing from 40% up to 60%, where it peaked, and then decreasing at each subsequent interval to maximum (p < .001, η2 = .555). There was no linear relationship between speed and accuracy. Overall, these data support the notion of an inverted-U function in overarm throwing velocity variability as both skilled and unskilled subjects approach maximum effort. However, these data do not support the notion of a speed-accuracy trade-off. The consistent demonstration of an inverted-U function associated with systemic power output variability indicates an enhanced capability to regulate aspects of force production and relative timing between segments as individuals approach maximum effort, even in a complex ballistic skill.
2017-01-01
We introduce several new resilience metrics for quantifying the resilience of critical material supply chains to disruptions and validate these metrics using the 2010 rare earth element (REE) crisis as a case study. Our method is a novel application of Event Sequence Analysis, supplemented with interviews of actors across the entire supply chain. We discuss resilience mechanisms in quantitative terms–time lags, response speeds, and maximum magnitudes–and in light of cultural differences between Japanese and European corporate practice. This quantification is crucial if resilience is ever to be taken into account in criticality assessments and a step toward determining supply and demand elasticities in the REE supply chain. We find that the REE system showed resilience mainly through substitution and increased non-Chinese primary production, with a distinct role for stockpiling. Overall, annual substitution rates reached 10% of total demand. Non-Chinese primary production ramped up at a speed of 4% of total market volume per year. The compound effect of these mechanisms was that recovery from the 2010 disruption took two years. The supply disruption did not nudge a system toward an appreciable degree of recycling. This finding has important implications for the circular economy concept, indicating that quite a long period of sustained material constraints will be necessary for a production-consumption system to naturally evolve toward a circular configuration. PMID:28257181
Underwater Acoustic Tracer System
2009-03-13
for controlling and utilizing supercavitating projectile dynamics to produce a distinctive radiated noise signal. (2) Description of the Prior Art...metallic objects which travel relatively closely to a magnetic pickup. For larger, high speed, underwater projectiles, supercavitating underwater vehicles...have been proposed for use. The conditions for supercavitation are known in the art. Supercavitation allows for higher speeds to be sustainable
The Effect of Dioptric Blur on Reading Performance
Chung, Susana T.L.; Jarvis, Samuel H.; Cheung, Sing-Hang
2013-01-01
Little is known about the systematic impact of blur on reading performance. The purpose of this study was to quantify the effect of dioptric blur on reading performance in a group of normally sighted young adults. We measured monocular reading performance and visual acuity for 19 observers with normal vision, for five levels of optical blur (no blur, 0.5, 1, 2 and 3D). Dioptric blur was induced using convex trial lenses placed in front of the testing eye, with the pupil dilated and in the presence of a 3 mm artificial pupil. Reading performance was assessed using eight versions of the MNREAD Acuity Chart. For each level of dioptric blur, observers read aloud sentences on one of these charts, from large to small print. Reading time for each sentence and the number of errors made were recorded and converted to reading speed in words per minute. Visual acuity was measured using 4-orientation Landolt C stimuli. For all levels of dioptric blur, reading speed increased with print size up to a certain print size and then remained constant at the maximum reading speed. By fitting nonlinear mixed-effects models, we found that the maximum reading speed was minimally affected by blur up to 2D, but was ~23% slower for 3D of blur. When the amount of blur increased from 0 (no-blur) to 3D, the threshold print size (print size corresponded to 80% of the maximum reading speed) increased from 0.01 to 0.88 logMAR, reading acuity worsened from −0.16 to 0.58 logMAR, and visual acuity worsened from −0.19 to 0.64 logMAR. The similar rates of change with blur for threshold print size, reading acuity and visual acuity implicates that visual acuity is a good predictor of threshold print size and reading acuity. Like visual acuity, reading performance is susceptible to the degrading effect of optical blur. For increasing amount of blur, larger print sizes are required to attain the maximum reading speed. PMID:17442363
Binning, Sandra A.; Ros, Albert F. H.; Nusbaumer, David; Roche, Dominique G.
2015-01-01
The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology. PMID:25807560
Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba
2017-11-01
The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the aforementioned parameters. This optimization yielded a set of data that can considerably improve orthopedic osteosynthesis outcomes.
Proton velocity ring-driven instabilities and their dependence on the ring speed: Linear theory
NASA Astrophysics Data System (ADS)
Min, Kyungguk; Liu, Kaijun; Gary, S. Peter
2017-08-01
Linear dispersion theory is used to study the Alfvén-cyclotron, mirror and ion Bernstein instabilities driven by a tenuous (1%) warm proton ring velocity distribution with a ring speed, vr, varying between 2vA and 10vA, where vA is the Alfvén speed. Relatively cool background protons and electrons are assumed. The modeled ring velocity distributions are unstable to both the Alfvén-cyclotron and ion Bernstein instabilities whose maximum growth rates are roughly a linear function of the ring speed. The mirror mode, which has real frequency ωr=0, becomes the fastest growing mode for sufficiently large vr/vA. The mirror and Bernstein instabilities have maximum growth at propagation oblique to the background magnetic field and become more field-aligned with an increasing ring speed. Considering its largest growth rate, the mirror mode, in addition to the Alfvén-cyclotron mode, can cause pitch angle diffusion of the ring protons when the ring speed becomes sufficiently large. Moreover, because the parallel phase speed, v∥ph, becomes sufficiently small relative to vr, the low-frequency Bernstein waves can also aid the pitch angle scattering of the ring protons for large vr. Potential implications of including these two instabilities at oblique propagation on heliospheric pickup ion dynamics are discussed.
Ramírez-Campillo, Rodrigo; Castillo, Angélica; de la Fuente, Carlos I; Campos-Jara, Christian; Andrade, David C; Álvarez, Cristian; Martínez, Cristian; Castro-Sepúlveda, Mauricio; Pereira, Ana; Marques, Mário C; Izquierdo, Mikel
2014-10-01
To examine the effects of 12 weeks of high-speed resistance training (RT) versus low-speed RT on muscle strength [one repetition of maximum leg-press (1RMLP) and bench-press (1RMBP), plus dominant (HGd) and non-dominant maximum isometric handgrip], power [counter-movement jump (CMJ), ball throwing (BT) and 10-m walking sprint (S10)], functional performance [8-foot up-and-go test (UG) and sit-to-stand test (STS)], and perceived quality of life in older women. 45 older women were divided into a high-speed RT group [EG, n=15, age=66.3±3.7y], a low-speed RT group [SG, n=15, age=68.7±6.4y] and a control group [CG, n=15, age=66.7±4.9y]. The SG and EG were submitted to a similar 12-week RT program [3 sets of 8 reps at 40-75% of the one-repetition maximum (1
Differential Pressures on a Pitot-venturi and a Pitot-static Nozzle over 360 Degrees Pitch and Yaw
NASA Technical Reports Server (NTRS)
Bear, R M
1928-01-01
Measurements of the differential pressures on two navy air-speed nozzles, consisting of a Zahm type Pitot-Venturi tube and a SQ-16 two-pronged Pitot-static tube, in a tunnel air stream of fixed speed at various angles of pitch and yaw between 0 degrees and plus or minus 180 degrees. This shows for a range over -20 degrees to +20 degrees pitch and yaw, indicated air speeds varying very slightly over 2 per cent for the Zahm type and a maximum of about 5 per cent for the SQ-16 type from the calibrated speed at 0 degree. For both types of air-speed nozzle the indicated air speed increases slightly as the tubes are pitched or yawed several degrees from their normal 0 degrees altitude, attains a maximum around plus or minus 15 degrees to 25 degrees, declines rapidly therefrom as plus or minus 40 degrees is passed, to zero in the vicinity of plus or minus 70 degrees to 100 degrees, and thence fluctuates irregular from thereabouts to plus or minus 180 degrees. The complete variation in indicated air speed for the two tubes over 360 degree pitch and yaw is graphically portrayed in figures 9 and 10. For the same air speed and 0 degree pitch and yaw the differential pressure of the Zahm type Pitot-Venturi nozzle is about seven times that of the SQ-16 type two-prolonged Pitot-static nozzle.
Aerodynamics of gliding flight in common swifts.
Henningsson, P; Hedenström, A
2011-02-01
Gliding flight performance and wake topology of a common swift (Apus apus L.) were examined in a wind tunnel at speeds between 7 and 11 m s(-1). The tunnel was tilted to simulate descending flight at different sink speeds. The swift varied its wingspan, wing area and tail span over the speed range. Wingspan decreased linearly with speed, whereas tail span decreased in a nonlinear manner. For each airspeed, the minimum glide angle was found. The corresponding sink speeds showed a curvilinear relationship with airspeed, with a minimum sink speed at 8.1 m s(-1) and a speed of best glide at 9.4 m s(-1). Lift-to-drag ratio was calculated for each airspeed and tilt angle combinations and the maximum for each speed showed a curvilinear relationship with airspeed, with a maximum of 12.5 at an airspeed of 9.5 m s(-1). Wake was sampled in the transverse plane using stereo digital particle image velocimetry (DPIV). The main structures of the wake were a pair of trailing wingtip vortices and a pair of trailing tail vortices. Circulation of these was measured and a model was constructed that showed good weight support. Parasite drag was estimated from the wake defect measured in the wake behind the body. Parasite drag coefficient ranged from 0.30 to 0.22 over the range of airspeeds. Induced drag was calculated and used to estimate profile drag coefficient, which was found to be in the same range as that previously measured on a Harris' hawk.
Bernard, Jean-Baptiste; Arunkumar, Amit; Chung, Susana T L
2012-08-01
In a previous study, Chung, Legge, and Cheung (2004) showed that training using repeated presentation of trigrams (sequences of three random letters) resulted in an increase in the size of the visual span (number of letters recognized in a glance) and reading speed in the normal periphery. In this study, we asked whether we could optimize the benefit of trigram training on reading speed by using trigrams more specific to the reading task (i.e., trigrams frequently used in the English language) and presenting them according to their frequencies of occurrence in normal English usage and observers' performance. Averaged across seven observers, our training paradigm (4 days of training) increased the size of the visual span by 6.44 bits, with an accompanied 63.6% increase in the maximum reading speed, compared with the values before training. However, these benefits were not statistically different from those of Chung, Legge, and Cheung (2004) using a random-trigram training paradigm. Our findings confirm the possibility of increasing the size of the visual span and reading speed in the normal periphery with perceptual learning, and suggest that the benefits of training on letter recognition and maximum reading speed may not be linked to the types of letter strings presented during training. Copyright © 2012 Elsevier Ltd. All rights reserved.
Baseline tests of the power-train electric delivery van
NASA Technical Reports Server (NTRS)
Lumannick, S.; Dustin, M. O.; Bozek, J. M.
1977-01-01
Vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics were determined for a modified utility van powered by sixteen 6-volt batteries connected in series. A chopper controller actuated by a foot accelerator pedal changes the voltage applied to the 22-kilowatt (30-hp) series-wound drive motor. In addition to the conventional hydraulic braking system, the vehicle has hydraulic regenerative braking. Cycle tests and acceleration tests were conducted with and without hydraulic regeneration.
Printability Optimization For Fine Pitch Solder Bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Sang-Hyun; Lee, Chang-Woo; Yoo, Sehoon
2011-01-17
Effect of metal mask and pad design on solder printability was evaluated by DOE in this study. The process parameters were stencil thickness, squeegee angle, squeegee speed, mask separating speed, and pad angle of PCB. The main process parameters for printability were stencil thickness and squeegee angle. The response surface showed that maximum printability of 1005 chip was achieved at the stencil thickness of 0.12 mm while the maximum printability of 0603 and 0402 chip was obtained at the stencil thickness of 0.05 mm. The bonding strength of the MLCC chips was also directly related with the printability.
1951-12-06
Date: Dec 6, 1951 NACA Photographer North American YF-93 with submerged divergent-wall engine-air inlet. Maximum high-speed capability of Mach 1.03 was obtained with afterbrner on. Tests were conducted to compare high-speed performance of the YF-93 NACA-139 airplane with different inlet configurations. (Mar 1953)
Wave propagation model of heat conduction and group speed
NASA Astrophysics Data System (ADS)
Zhang, Long; Zhang, Xiaomin; Peng, Song
2018-03-01
In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.
Predictors of Sustained Implementation of School-Wide Positive Behavioral Interventions and Supports
ERIC Educational Resources Information Center
McIntosh, Kent; Mercer, Sterett H.; Nese, Rhonda N. T.; Strickland-Cohen, M. Kathleen; Hoselton, Robert
2016-01-01
In this analysis of extant data from 3,011 schools implementing school-wide positive behavioral interventions and supports (SWPBIS) across multiple years, we assessed the predictive power of various school characteristics and speed of initial implementation on sustained fidelity of implementation of SWPBIS at 1, 3, and 5 years. In addition, we…
Targeting at the Speed of Light
2007-02-23
Christensen states: “it is the combination of new disruptive technologies which could have significant impact on nations such as the United States.”6...technology? According to Harvard Professor, Clayton Christensen, there are two technologies: sustaining technologies and disruptive technologies . Sustaining...problems dealing with disruptive technologies . Disruptive technologies are generally "cheaper, simpler, smaller, and, frequently, more convenient
Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers.
Dewangan, Hitesh Kumar; Pandey, Tarun; Maurya, Lakshmi; Singh, Sanjay
2018-05-01
The present work is focused on the development and evaluation of single dose sustained-release Hepatitis B surface antigen (HBsAg) loaded nanovaccine for Hepatitis B. The conventional treatment suffers from repeated administration and hence requires a booster dose. Therefore, polymeric nanovaccine of HBsAg was developed by double emulsion solvent evaporation technique, utilizing central composite design for formulation optimization. The effects of independent variables (like polymer amount, stabilizer concentration, aqueous/organic phase ratio and homogenizer speed) were also studied on critical quality attributes like particle size and entrapment efficiency. Nanovaccine was characterized in terms of physicochemical parameters, release, internalization and in vivo immunological evaluation in BALB/c mice after administration by different routes such as oral, sub-cutaneous, nasal and intramuscular. The designed nanovaccine demonstrated nanometric size with smooth surface, negative zeta potential, maximum entrapment, sustained release and better internalization in macrophage and MRC-5 cell line. The immune-stimulating activity of nanovaccine administered by different routes was evaluated by measuring anti-HBsAg titre like specific immunoglobulin IgG and IgA response and cytokine level (interleukin-2, interferon-Y) measurement. The results indicated that the nanovaccine administered by intramuscular route produced better humoral as well as cellular responses and potential carriers for antigen delivery at single dose administration via intramuscular route. Copyright © 2018 Elsevier B.V. All rights reserved.
A general scaling law reveals why the largest animals are not the fastest.
Hirt, Myriam R; Jetz, Walter; Rall, Björn C; Brose, Ulrich
2017-08-01
Speed is the fundamental constraint on animal movement, yet there is no general consensus on the determinants of maximum speed itself. Here, we provide a general scaling model of maximum speed with body mass, which holds across locomotion modes, ecosystem types and taxonomic groups. In contrast to traditional power-law scaling, we predict a hump-shaped relationship resulting from a finite acceleration time for animals, which explains why the largest animals are not the fastest. This model is strongly supported by extensive empirical data (474 species, with body masses ranging from 30 μg to 100 tonnes) from terrestrial as well as aquatic ecosystems. Our approach unravels a fundamental constraint on the upper limit of animal movement, thus enabling a better understanding of realized movement patterns in nature and their multifold ecological consequences.
Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants.
Kaspari, Michael; Clay, Natalie A; Lucas, Jane; Revzen, Shai; Kay, Adam; Yanoviak, Stephen P
2016-04-01
We studied the Thermal Performance Curves (TPCs) of 87 species of rainforest ants and found support for both the Thermal Adaptation and Phosphorus-Tolerance hypotheses. TPCs relate a fitness proxy (here, worker speed) to environmental temperature. Thermal Adaptation posits that thermal generalists (ants with flatter, broader TPCs) are favored in the hotter, more variable tropical canopy compared to the cooler, less variable litter below. As predicted, species nesting in the forest canopy 1) had running speeds less sensitive to temperature; 2) ran over a greater range of temperatures; and 3) ran at lower maximum speeds. Tradeoffs between tolerance and maximum performance are often invoked for constraining the evolution of thermal generalists. There was no evidence that ant species traded off thermal tolerance for maximum speed, however. Phosphorus-Tolerance is a second mechanism for generating ectotherms able to tolerate thermal extremes. It posits that ants active at high temperatures invest in P-rich machinery to buffer their metabolism against thermal extremes. Phosphorus content in ant tissue varied three-fold, and as predicted, temperature sensitivity was lower and thermal range was higher in P-rich species. Combined, we show how the vertical distribution of hot and variable vs. cooler and stable microclimates in a single forest contribute to a diversity of TPCs and suggest that a widely varying P stoichiometry among these ants may drive some of these differences.
Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat
O'Neel, S.; Pfeffer, W.T.; Krimmel, R.; Meier, M.
2005-01-01
Changes in driving and resistive stresses play an essential role in governing the buoyancy forces that are important controls on the speed and irreversibility of tidewater glacier retreats. We describe changes in geometry, velocity, and strain rate and present a top-down force balance analysis performed over the lower reach of Columbia Glacier. Our analysis uses new measurements and estimates of basal topography and photogrammetric surface velocity measurements made between 1977 and 2001, while assuming depth-independent strain. Sensitivity tests show that the method is robust and insensitive to small changes in the calculation parameters. Spatial distributions of ice speed show little correspondence with driving stress. Instead, spatial patterns of ice speed exhibit a nonlinear correspondence with basal drag. Primary resistance to flow comes from basal drag, but lateral drag becomes increasingly more important throughout the retreat, which may account for observed increases in speed. Maximum basal drag is always located in a prominent constriction located ~12 km upstream from the preretreat terminus. Once the terminus retreated into deep water off the terminal moraine marking the modern maximum extent, the upstream location of this maximum basal drag helped to promote thinning and decrease effective pressure in the lower region by limiting replenishing ice flow from upstream. An increase in both ice velocity and calving resulted, initiating what appears to be an irreversible retreat. Copyright 2005 by the American Geophysical Union.
Constraints on a plume in the mid-mantle beneath the Iceland region from seismic array data
Pritchard, M.J.; Foulger, G.R.; Julian, B.R.; Fyen, J.
2000-01-01
Teleseismic P waves passing through low-wave-speed bodies in the mantle are refracted, causing anomalies in their propagation directions that can be measured by seismometer arrays. Waves from earthquakes in the eastern Pacific and western North America arriving at the NORSAR array in Norway and at seismic stations in Scotland pass beneath the Iceland region at depths of ~ 1000-2000 km. Waves arriving at NORSAR have anomalous arrival azimuths consistent with a low-wave-speed body at a depth of ~ 1500 km beneath the Iceland-Faeroe ridge with a maximum diameter of ~ 250 km and a maximum wave-speed contrast of ~ 1.5 per cent. This agrees well with whole-mantle tomography results, which image a low-wave-speed body at this location with a diameter of ~ 500 km and a wave-speed anomaly of ~ 0.5 per cent, bearing in mind that whole-mantle tomography, because of its limited resolution, broadens and weakens small anomalies. The observations cannot resolve the location of the body, and the anomaly could be caused in whole or in part by larger bodies farther away, for example by a body imaged beneath Greenland by whole-mantle tomography.
DOT National Transportation Integrated Search
2001-11-01
A feasibility study of dilemma zone problems, performed by collecting and analyzing traffic flow data at a high-speed signalized intersection, showed that the maximum green extension or cutback needed to get a vehicle out of the dilemma zone is gener...
14 CFR 33.84 - Engine overtorque test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed at...
14 CFR 33.84 - Engine overtorque test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed at...
14 CFR 33.84 - Engine overtorque test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed at...
DOT National Transportation Integrated Search
2001-11-01
A feasibility study of dilemma zone problems, performed by collecting and analyzing traffic flow data at a high-speed signalized intersection, showed that the maximum green extension or cutback needed to get a vehicle out of the dilemma zone is gener...
40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones
Code of Federal Regulations, 2011 CFR
2011-07-01
... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...
40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones
Code of Federal Regulations, 2010 CFR
2010-07-01
... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...
40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones
Code of Federal Regulations, 2014 CFR
2014-07-01
... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...
40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones
Code of Federal Regulations, 2013 CFR
2013-07-01
... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...
40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones
Code of Federal Regulations, 2012 CFR
2012-07-01
... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...
NASA Astrophysics Data System (ADS)
Gruber, Karin; Serafin, Stefano; Grubišić, Vanda; Dorninger, Manfred; Zauner, Rudolf; Fink, Martin
2014-05-01
A crucial step in planning new wind farms is the estimation of the amount of wind energy that can be harvested in possible target sites. Wind resource assessment traditionally entails deployment of masts equipped for wind speed measurements at several heights for a reasonably long period of time. Simplified linear models of atmospheric flow are then used for a spatial extrapolation of point measurements to a wide area. While linear models have been successfully applied in the wind resource assessment in plains and offshore, their reliability in complex terrain is generally poor. This represents a major limitation to wind resource assessment in Austria, where high-altitude locations are being considered for new plant sites, given the higher frequency of sustained winds at such sites. The limitations of linear models stem from two key assumptions in their formulation, the neutral stratification and attached boundary-layer flow, both of which often break down in complex terrain. Consequently, an accurate modeling of near-surface flow over mountains requires the adoption of a NWP model with high horizontal and vertical resolution. This study explores the wind potential of a site in Styria in the North-Eastern Alps. The WRF model is used for simulations with a maximum horizontal resolution of 800 m. Three nested computational domains are defined, with the innermost one encompassing a stretch of the relatively broad Enns Valley, flanked by the main crest of the Alps in the south and the Nördliche Kalkalpen of similar height in the north. In addition to the simulation results, we use data from fourteen 10-m wind measurement sites (of which 7 are located within valleys and 5 near mountain tops) and from 2 masts with anemometers at several heights (at hillside locations) in an area of 1600 km2 around the target site. The potential for wind energy production is assessed using the mean wind speed and turbulence intensity at hub height. The capacity factor is also evaluated, considering the frequency of wind speed between cut-in and cut-out speed and of winds with a low vertical velocity component only. Wind turbines do not turn on at wind speeds below cut-in speed. Wind turbines are taken off from the generator in the case of wind speeds higher than cut-out speed and inclination angles of the wind vector greater than 8o. All of these parameters were computed at each model grid point in the innermost domain in order to map their spatial variability. The results show that in complex terrain the annual mean wind speed at hub height is not sufficient to predict the capacity factor of a turbine; vertical wind speed and the frequency of horizontal wind speed out of the range of cut-in and cut-out speed contribute substantially to a reduction of the energy harvest and locally high turbulence may considerably raise the building costs.
Maximum wind energy extraction strategies using power electronic converters
NASA Astrophysics Data System (ADS)
Wang, Quincy Qing
2003-10-01
This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)
2010-08-19
highlight the benefits of regenerative braking . Parameters within the drive cycle may include vehicle speed, elevation/grade changes, road surface...assist to downsize the engine due to infinite maximum speed requirements • Drive cycle less suited to regenerative braking improvement compared to...will be cycle dependent. A high speed drive cycle may for example drive a focus on aerodynamic improvements, while high frequency of braking will
Vesterlund, Gitte Kingo; Keller, Amélie Cléo; Heitmann, Berit Lilienthal
2018-04-01
Obesity as well as job strain is increasing, and job strain might contribute to weight gain. The objective of the current study was to examine associations between longitudinal alterations in the components of job strain and subsequent weight gain. The study was designed as a prospective cohort study with three questionnaire surveys enabling measurement of job-strain alterations over 6 years and subsequent measurements of weight gain after further 10 years of follow-up. ANCOVA and trend analyses were conducted. Job demands were measured as job busyness and speed, and control as amount of influence. Employed nurses in Denmark. We included a sub-sample of 6188 female nurses from the Danish Nurse Cohort, which consisted of the nurses who participated in surveys in 1993, 1999 and 2009. A linear trend in weight gain was seen in nurses who were often busy in 1999 between those who were rarely v. sometimes v. often busy in 1993 (P=0·03), with the largest weight gain in individuals with sustained high busyness in both years. Loss of influence between 1993 and 1999 was associated with larger subsequent weight gain than sustained high influence (P=0·003) or sustained low influence (P=0·02). For speed, no associations were found. Busyness, speed and influence differed in their relationship to subsequent weight gain. A decrease in job influence and a sustained burden of busyness were most strongly related to subsequent weight gain. Focus on job strain reduction and healthy diet is essential for public health.
Sustained attention failures are primarily due to sustained cognitive load not task monotony.
Head, James; Helton, William S
2014-11-01
We conducted two studies using a modified sustained attention to response task (SART) to investigate the developmental process of SART performance and the role of cognitive load on performance when the speed-accuracy trade-off is controlled experimentally. In study 1, 23 participants completed the modified SART (target stimuli location was not predictable) and a subjective thought content questionnaire 4 times over the span of 4 weeks. As predicted, the influence of speed-accuracy trade-off was significantly mitigated on the modified SART by having target stimuli occur in unpredictable locations. In study 2, 21 of the 23 participants completed an abridged version of the modified SART with a verbal free-recall memory task. Participants performed significantly worse when completing the verbal memory task and SART concurrently. Overall, the results support a resource theory perspective with concern to errors being a result of limited mental resources and not simply mindlessness per se. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Mitchell, David L.
1996-06-01
Based on boundary layer theory and a comparison of empirical power laws relating the Reynolds and Best numbers, it was apparent that the primary variables governing a hydrometeor's terminal velocity were its mass, its area projected to the flow, and its maximum dimension. The dependence of terminal velocities on surface roughness appeared secondary, with surface roughness apparently changing significantly only during phase changes (i.e., ice to liquid). In the theoretical analysis, a new, comprehensive expression for the drag force, which is valid for both inertial and viscous-dominated flow, was derived.A hydrometeor's mass and projected area were simply and accurately represented in terms of its maximum dimension by using dimensional power laws. Hydrometeor terminal velocities were calculated by using mass- and area-dimensional power laws to parameterize the Best number, X. Using a theoretical relationship general for all particle types, the Reynolds number, Re, was then calculated from the Best number. Terminal velocities were calculated from Re.Alternatively, four Re-X power-law expressions were extracted from the theoretical Re-X relationship. These expressions collectively describe the terminal velocities of all ice particle types. These were parameterized using mass- and area-dimensional power laws, yielding four theoretically based power-law expressions predicting fall speeds in terms of ice particle maximum dimension. When parameterized for a given ice particle type, the theoretical fall speed power law can be compared directly with empirical fall speed-dimensional power laws in the literature for the appropriate Re range. This provides a means of comparing theory with observations.Terminal velocities predicted by this method were compared with fall speeds given by empirical fall speed expressions for the same ice particle type, which were curve fits to measured fall speeds. Such comparisons were done for nine types of ice particles. Fall speeds predicted by this method differed from those based on measurements by no more than 20%.The features that distinguish this method of determining fall speeds from others are that it does not represent particles as spheroids, it is general for any ice particle shape and size, it is conceptually and mathematically simple, it appears accurate, and it provides for physical insight. This method also allows fall speeds to be determined from aircraft measurements of ice particle mass and projected area, rather than directly measuring fall speeds. This approach may be useful for ice crystals characterizing cirrus clouds, for which direct fall speed measurements are difficult.
Loturco, Irineu; Artioli, Guilherme Giannini; Kobal, Ronaldo; Gil, Saulo; Franchini, Emerson
2014-07-01
This study investigated the relationship between punching acceleration and selected strength and power variables in 19 professional karate athletes from the Brazilian National Team (9 men and 10 women; age, 23 ± 3 years; height, 1.71 ± 0.09 m; and body mass [BM], 67.34 ± 13.44 kg). Punching acceleration was assessed under 4 different conditions in a randomized order: (a) fixed distance aiming to attain maximum speed (FS), (b) fixed distance aiming to attain maximum impact (FI), (c) self-selected distance aiming to attain maximum speed, and (d) self-selected distance aiming to attain maximum impact. The selected strength and power variables were as follows: maximal dynamic strength in bench press and squat-machine, squat and countermovement jump height, mean propulsive power in bench throw and jump squat, and mean propulsive velocity in jump squat with 40% of BM. Upper- and lower-body power and maximal dynamic strength variables were positively correlated to punch acceleration in all conditions. Multiple regression analysis also revealed predictive variables: relative mean propulsive power in squat jump (W·kg-1), and maximal dynamic strength 1 repetition maximum in both bench press and squat-machine exercises. An impact-oriented instruction and a self-selected distance to start the movement seem to be crucial to reach the highest acceleration during punching execution. This investigation, while demonstrating strong correlations between punching acceleration and strength-power variables, also provides important information for coaches, especially for designing better training strategies to improve punching speed.
Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C
2014-11-01
The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p < 0.001). Multiple regression analysis revealed that the maximum impulse and SR in the tethered condition explained 84% of the free swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.
NASA Technical Reports Server (NTRS)
Howard, Samuel
2012-01-01
A variable-speed power turbine concept is analyzed for rotordynamic feasibility in a Large Civil Tilt-Rotor (LCTR) class engine. Implementation of a variable-speed power turbine in a rotorcraft engine would enable high efficiency propulsion at the high forward velocities anticipated of large tilt-rotor vehicles. Therefore, rotordynamics is a critical issue for this engine concept. A preliminary feasibility study is presented herein to address this concern and identify if variable-speed is possible in a conceptual engine sized for the LCTR. The analysis considers critical speed placement in the operating speed envelope, stability analysis up to the maximum anticipated operating speed, and potential unbalance response amplitudes to determine that a variable-speed power turbine is likely to be challenging, but not impossible to achieve in a tilt-rotor propulsion engine.
NASA Astrophysics Data System (ADS)
Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.
The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.
NASA Technical Reports Server (NTRS)
Tanner, J. A.; Stubbs, S. M.
1977-01-01
An experimental investigation was conducted at the Langley aircraft landing loads and traction facility to study the braking and cornering response of a slip ratio controlled aircraft antiskid braking system with ground speed reference derived from an unbraked nose wheel. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a DC-9 series 10 airplane. During maximum braking, the average ratio of the drag force friction coefficient developed by the antiskid system to the maximum drag force friction coefficient available was higher on the dry surface than on damp and flooded surfaces, and was reduced with lighter vertical loads, higher yaw angles, and when new tire treads were replaced by worn treads. Similarly, the average ratio of side force friction coefficient developed by the tire under antiskid control to the maximum side force friction coefficient available to a freely rolling yawed tire decreased with increasing yaw angle, generally increased with ground speed, and decreased when tires with new treads were replaced by those with worn treads.
Development of spiral-groove self-acting face seals
NASA Technical Reports Server (NTRS)
Obrien, M.
1977-01-01
An experimental evaluation and a 100-hour endurance test were performed on a spiral groove geometry, self-acting face seal. The seal was tested and operated successfully at maximum conditions of 243.8 m/s surface speed, 199.9 N/sq cm air pressure, and 645.4K (702 F) air temperature. The maximum speed condition of 243.8 m/s was obtained at a shaft speed of 72,500 rpm. Seal wear, gas leakage, and sealing element temperature were monitored during the test. Condition of the seal at the completion of the test was documented and found acceptable for further use. The spiral groove wear rate measured during the endurance test indicates a minimum potential seal life of over 2700 hours. Seal air leakage measured during the test program is within the range considered acceptable for consideration for use in a small gas turbine engine.
Effects of Different Polarization Strategies on Laser Cutting with Direct Diode Lasers
NASA Astrophysics Data System (ADS)
Rodrigues, G. Costa; Duflou, J. R.
As Direct Diode Lasers are introduced as an emerging technology for laser cutting of metal sheets, new challenges arise. The relatively low beam quality remains a limitation to the maximum cutting speed. One way to balance this may be a strategic use of laser polarization in order to influence laser material interaction in the cutting kerf. In this paper the effects of cross-, linear-, radial- and azimuthal- laser beam polarization arrangements are studied with both Fusion and Flame cutting at an output power of approximately 750W. Different combinations of materials and thicknesses were cut and the maximum cutting speed and edge quality analyzed. It is found that at similar cutting edge quality, improvements in cutting speed can go up to 40% with an inert gas, such as Nitrogen, and up to 20% with a reactive gas, such as Oxygen, in agreement with analytical models for absorption previously developed by the authors.
NASA Technical Reports Server (NTRS)
Yager, T. J.; Dreher, R. C.
1976-01-01
A limited test program was conducted to extend and supplement the braking and cornering data on a 30 x 11.5-14.5, type VIII, aircraft tire to refine the tire/runway friction model for use in the development of an aircraft ground performance simulation. Tire traction data were obtained on dry, wet and flooded runway surfaces at ground speeds ranging from 5 to 100 knots and at yaw angles extending up to 12 deg. These friction coefficients are presented as a function of slip characteristics, namely, the maximum and skidding drag coefficients and the maximum cornering coefficients are presented as a function of both ground speed and yaw angle to extend existing data on that tire size. Tire braking and cornering capabilities were shown to be affected by vehicle ground speed, wheel yaw attitude and the extent of surface wetness.
Removal of Methylene Blue and Orange-G from Waste Water Using Magnetic Biochar
NASA Astrophysics Data System (ADS)
Mubarak, N. M.; Fo, Y. T.; Al-Salim, Hikmat Said; Sahu, J. N.; Abdullah, E. C.; Nizamuddin, S.; Jayakumar, N. S.; Ganesan, P.
2015-04-01
The study on the removal of methylene blue (MB) and orange-G dyes using magnetic biochar derived from the empty fruit bunch (EFB) was carried out. Process parameters such as pH, adsorbent dosage, agitation speed and contact time were optimized using Design-Expert Software v.6.0.8. The statistical analysis reveals that the optimum conditions for the maximum adsorption of MB are at pH 2 and pH 10, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. While for orange-G, at pH 2, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. The maximum adsorption capacity of 31.25 mg/g and 32.36 mg/g for MB and orange-G respectively. The adsorption kinetic for both dyes obeyed pseudo-second order.
High-Speed Videography Overview
NASA Astrophysics Data System (ADS)
Miller, C. E.
1989-02-01
The field of high-speed videography (HSV) has continued to mature in recent years, due to the introduction of a mixture of new technology and extensions of existing technology. Recent low frame-rate innovations have the potential to dramatically expand the areas of information gathering and motion analysis at all frame-rates. Progress at the 0 - rate is bringing the battle of film versus video to the field of still photography. The pressure to push intermediate frame rates higher continues, although the maximum achievable frame rate has remained stable for several years. Higher maximum recording rates appear technologically practical, but economic factors impose severe limitations to development. The application of diverse photographic techniques to video-based systems is under-exploited. The basics of HSV apply to other fields, such as machine vision and robotics. Present motion analysis systems continue to function mainly as an instant replay replacement for high-speed movie film cameras. The interrelationship among lighting, shuttering and spatial resolution is examined.
NASA Technical Reports Server (NTRS)
Galvas, M. R.
1972-01-01
A computer program for predicting design point specific speed - efficiency characteristics of centrifugal compressors is presented with instructions for its use. The method permits rapid selection of compressor geometry that yields maximum total efficiency for a particular application. A numerical example is included to demonstrate the selection procedure.
40 CFR 1066.235 - Speed verification procedure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reference mark on the deck plate in line with the arrow. Install a stroboscope or photo tachometer on the deck plate and direct the flash toward the tape on the roll. The stroboscope or photo tachometer must... value between 15 kph and the maximum speed expected during testing. Tune the stroboscope or photo...
14 CFR 27.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges...; (ii) The landing gear extended; and (iii) The helicopter in-ground effect at a height consistent with... must be at least— (i) For reciprocating engine powered helicopters, 4,000 feet at maximum weight with a...
14 CFR 27.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2013 CFR
2013-01-01
... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges...; (ii) The landing gear extended; and (iii) The helicopter in-ground effect at a height consistent with... must be at least— (i) For reciprocating engine powered helicopters, 4,000 feet at maximum weight with a...
14 CFR 27.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges...; (ii) The landing gear extended; and (iii) The helicopter in-ground effect at a height consistent with... must be at least— (i) For reciprocating engine powered helicopters, 4,000 feet at maximum weight with a...
14 CFR 23.1545 - Airspeed indicator.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) The following markings must be made: (1) For the never-exceed speed V NE, a radial red line. (2) For the caution range, a yellow arc extending from the red line specified in paragraph (b)(1) of this... gear and wing flaps retracted, and the upper limit at the maximum structural cruising speed V NO...
NASA Technical Reports Server (NTRS)
Oppenheimer, Frank L.; Lazar, James
1951-01-01
A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.
Wind-tunnel test results of airfoil modifications for the EA-6B
NASA Technical Reports Server (NTRS)
Sewall, W. G.; Mcghee, R. J.; Ferris, J. C.
1987-01-01
Wind-tunnel tests have been conducted (to determine the effects on airfoil performance for several airfoil modifications) for the EA-6B Wing Improvement Program. The modifications consist of contour changes to the leading-edge slat and trailing-edge flap to provide a higher low-speed maximum lift with no high-speed cruise-drag penalty. Airfoil sections from the 28- and 76-percent span stations were selected as baseline shapes with the major testing devoted to the inboard airfoil section (28-percent span station). The airfoil modifications increased the low-speed maximum lift coefficient between 20 and 35 percent over test conditions of 3 to 14 million chord Reynolds number and 0.14 to 0.34 Mach number. At the high-speed test conditions of 0.4 to 0.80 Mach number and 10 million chord Reynolds number, the modified airfoils had either matched or had lower drag coefficients for all normal-force coefficients above 0.2 as compared to the baseline airfoil. At normal-force coefficients less than 0.2, the baseline (original) airfoil had lower drag coefficients than any of the modified airfoils.
DC-10 winglet flight evaluation
NASA Technical Reports Server (NTRS)
Taylor, A. B.
1983-01-01
Results of a flight evaluation of winglets on a DC-10 Series 10 aircraft are presented. For sensitive areas of comparison, effects of winglets were determined back-to-back with and without winglets. Basic and reduced-span winglet configurations were tested. After initial encounter with low-speed buffet, a number of acceptable configurations were developed. For maximum drag reduction at both cruise and low speeds, lower winglets were required, having leading edge devices on upper and lower winglets for the latter regime. The cruise benefits were enhanced by adding outboard aileron droop to the reduced-span winglet aircraft. Winglets had no significant impact on stall speeds, high-speed buffet boundary, and stability and control. Flutter test results agreed with predictions and ground vibration data. Flight loads measurement, provided in a concurrent program, also agreed with predictions. It was estimated that a production version of the aircraft, using the reduced-span winglet and aileron droop, would yield a 3-percent reduction in fuel burned with capacity payload. This range was 2% greater than with winglets. A 5% reduction in takeoff distance at maximum takeoff weight would also result.
Stable plume rise in a shear layer.
Overcamp, Thomas J
2007-03-01
Solutions are given for plume rise assuming a power-law wind speed profile in a stably stratified layer for point and finite sources with initial vertical momentum and buoyancy. For a constant wind speed, these solutions simplify to the conventional plume rise equations in a stable atmosphere. In a shear layer, the point of maximum rise occurs further downwind and is slightly lower compared with the plume rise with a constant wind speed equal to the wind speed at the top of the stack. If the predictions with shear are compared with predictions for an equivalent average wind speed over the depth of the plume, the plume rise with shear is higher than plume rise with an equivalent average wind speed.
49 CFR 236.701 - Application, brake; full service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure is developed. As applied to an automatic or electro-pneumatic brake with speed governor control, an application other than emergency which develops the maximum brake cylinder pressure, as determined by the design of...
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2012 CFR
2012-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2013 CFR
2013-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2010 CFR
2010-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2014 CFR
2014-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2011 CFR
2011-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...
NASA Technical Reports Server (NTRS)
Schum, Harold J.; Whitney, Warren J.
1949-01-01
A Mark 25 torpedo power plant modified to operate as a single-stage turbine was investigated to determine the performance with two nozzle designs and a standard first-stage rotor having 0.40-inch blades with a 17O met-air angle. Both nozzles had smaller port cross-sectional areas than those nozzles of similar design, which were previously investigated. The performance of the two nozzles was compared on the basis of blade, rotor, and brake efficiencies as a function of blade-jet speed ratio for pressure ratios of 8, 15 (design), and 20. At pressure ratios of 15 and 20, the blade efficiency obtained with the nozzle having circular passages (K) was higher than that obtained with the nozzle having rectangular passages (J). At a pressure ratio of 8, the efficiencies obtained with the two nozzles were comparable for blade-jet speed ratios of less than 0.260. For blade-jet speed ratios exceeding this value, nozzle K yielded slightly higher efficiencies. The maximum blade efficiency of 0.569 was obtained with nozzle K at a pressure ratio of 8 and a blade-jet speed ratio of 0.295. At design speed and pressure ratio, nozzle K yielded a maximum blade efficiency of 0.534, an increase of 0.031 over that obtained with nozzle J. When the blade efficiencies of the two nozzles were compared with those of four other nozzles previously investigated, the maximum difference for the six nozzles with this rotor was 0.050. From, this comparison, no specific effect of nozzles size or shape on over-all performance was discernible.
Fitzgerald, Paul J
2014-07-01
It is of high clinical interest to better understand the timecourse through which psychiatric drugs produce their beneficial effects. While a rough estimate of the time lag between initiating monoaminergic antidepressant therapy and the onset of therapeutic effect in depressed subjects is two weeks, much less is known about when these drugs reach maximum effect. This paper briefly examines studies that directly address this question through long-term antidepressant administration to humans, while also putting forth a simple theoretical approach for estimating the time required for monoaminergic antidepressants to reach maximum therapeutic effect in humans. The theory invokes a comparison between speed of antidepressant drug response in humans and in rodents, focusing on the apparently greater speed in rodents. The principal argument is one of proportions, comparing earliest effects of these drugs in rodents and humans, versus their time to reach maximum effect in these organisms. If the proportionality hypothesis is even coarsely accurate, then applying these values or to some degree their ranges to the hypothesis, may suggest that monoaminergic antidepressants require a number of years to reach maximum effect in humans, at least in some individuals.
Vanhooydonck, B; James, R S; Tallis, J; Aerts, P; Tadic, Z; Tolley, K A; Measey, G J; Herrel, A
2014-02-22
Trade-offs arise when two functional traits impose conflicting demands on the same design trait. Consequently, excellence in one comes at the cost of performance in the other. One of the most widely studied performance trade-offs is the one between sprint speed and endurance. Although biochemical, physiological and (bio)mechanical correlates of either locomotor trait conflict with each other, results at the whole-organism level are mixed. Here, we test whether burst (speed, acceleration) and sustained locomotion (stamina) trade off at both the isolated muscle and whole-organism level among 17 species of lacertid lizards. In addition, we test for a mechanical link between the organismal and muscular (power output, fatigue resistance) performance traits. We find weak evidence for a trade-off between burst and sustained locomotion at the whole-organism level; however, there is a significant trade-off between muscle power output and fatigue resistance in the isolated muscle level. Variation in whole-animal sprint speed can be convincingly explained by variation in muscular power output. The variation in locomotor stamina at the whole-organism level does not relate to the variation in muscle fatigue resistance, suggesting that whole-organism stamina depends not only on muscle contractile performance but probably also on the performance of the circulatory and respiratory systems.
Vanhooydonck, B.; James, R. S.; Tallis, J.; Aerts, P.; Tadic, Z.; Tolley, K. A.; Measey, G. J.; Herrel, A.
2014-01-01
Trade-offs arise when two functional traits impose conflicting demands on the same design trait. Consequently, excellence in one comes at the cost of performance in the other. One of the most widely studied performance trade-offs is the one between sprint speed and endurance. Although biochemical, physiological and (bio)mechanical correlates of either locomotor trait conflict with each other, results at the whole-organism level are mixed. Here, we test whether burst (speed, acceleration) and sustained locomotion (stamina) trade off at both the isolated muscle and whole-organism level among 17 species of lacertid lizards. In addition, we test for a mechanical link between the organismal and muscular (power output, fatigue resistance) performance traits. We find weak evidence for a trade-off between burst and sustained locomotion at the whole-organism level; however, there is a significant trade-off between muscle power output and fatigue resistance in the isolated muscle level. Variation in whole-animal sprint speed can be convincingly explained by variation in muscular power output. The variation in locomotor stamina at the whole-organism level does not relate to the variation in muscle fatigue resistance, suggesting that whole-organism stamina depends not only on muscle contractile performance but probably also on the performance of the circulatory and respiratory systems. PMID:24403334
A Broad Continuum of Aeolian Impact Ripple Sizes on Mars is Allowed by Low Dynamic Wind Pressures
NASA Astrophysics Data System (ADS)
Sullivan, R. J., Jr.; Kok, J. F.; Yizhaq, H.
2017-12-01
Aeolian impact ripples are generated by impacts of wind-blown sand grains, and are common in environments with loose sand on Earth and Mars. Previous work has shown that, within a fully developed saltation cloud, impact ripple height grows upward into the boundary layer until limited by the effects of increasing wind dynamic pressure at the crest (e.g., lengthening of splash trajectories, or direct entrainment of grains by the wind). On Earth, this process limits ripples of well-sorted 250 µm dune sands to heights of millimeters, and strong winds can impose sufficient lateral dynamic pressure to flatten and erase these ripples. Rover observations show much larger ripple-like bedforms on Mars, raising questions about their formative mechanism. Here, we hypothesize that two factors allow impact ripples to grow much higher on Mars than on Earth: (1) previous work predicts a much larger difference between impact threshold and fluid threshold wind speeds on Mars than on Earth; and (2) recent analysis has revealed how low saltation flux can be initiated and sustained well below fluid threshold on Mars, allowing impact ripples to migrate entirely under prevailing conditions of relatively low wind speeds in the thin martian atmosphere. Under these circumstances, martian ripples would need to grow much larger than on Earth before reaching their maximum height limited by wind dynamic pressure effects. Because the initial size of impact ripples is similar on Mars and Earth, this should generate a much broader continuum of impact ripple sizes on Mars. Compared with Earth, far more time should be needed on Mars for impact ripples to achieve their maximum possible size. Consequently, in cases where wind azimuths are mixed but one azimuth is more dominant than others, martian impact ripples of all sizes can exist together in the same setting, with the largest examples reflecting the most common/formative wind azimuths. In cases where wind azimuth is not dominated by a single azimuth over others, ripple height should vary with orientation and the maximum possible height might never have the chance to be achieved. Our hypothesis could explain the wide range of observed ripple sizes on Mars having wavelengths from cm to several m, and suggests that the largest martian ripples are in fact large impact ripples.
Sustainable biochar to mitigate global climate change
Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen
2010-01-01
Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722
NASA Technical Reports Server (NTRS)
Sanders, J. C.; Mendelson, Alexander
1945-01-01
Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.
NASA Technical Reports Server (NTRS)
Parker, R. J.; Nahm, A. H.; Loewenthal, S. H.
1982-01-01
Rolling-element fatigue tests were run in standard and high-speed rolling-contact rigs at bar speeds from 5000 to 50,000 rpm to determine the effects of speed and lubricant film parameter on rolling-element fatigue life. AISI 52100 test bars were tested at a maximum Hertz stress of 4.83 GPa (700,000 psi) with three traction fluids and an automatic transmission fluid. Rolling-element fatigue life increased with speed, with the greatest increases occurring from 10,000 to 50,000 rpm. The life data tended to follow published life-versus-lubricant-film-parameter data up to a film parameter of approximately 3.
Development of aerodynamic foil journal bearings for a high speed cryogenic turboexpander
NASA Astrophysics Data System (ADS)
Xiong, L.-Y.; Wu, G.; Hou, Y.; Liu, L.-Q.; Ling, M.-F.; Chen, C.-Z.
The research presented in this paper is aimed at the development of aerodynamic foil journal bearings applying to a small high speed cryogenic turboexpander. A small high speed cryogenic turboexpander is designed. Attention has been paid to the study of the effect of foil stiffness on the vibration performance of bearings. From rotation tests, it is clear that, with the proper choice of foil stiffness, the foil bearing presented here can possess sufficiently high stability. The maximum rotational speed obtained is greater than 230 000 rpm. Therefore, owing to its simplicity and high performance, this type of foil journal bearing can hopefully be applied to a small high speed cryogenic turboexpander.
Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting
NASA Astrophysics Data System (ADS)
Howey, D. A.; Bansal, A.; Holmes, A. S.
2011-08-01
A miniature shrouded wind turbine aimed at energy harvesting for power delivery to wireless sensors in pipes and ducts is presented. The device has a rotor diameter of 2 cm, with an outer diameter of 3.2 cm, and generates electrical power by means of an axial-flux permanent magnet machine built into the shroud. Fabrication was accomplished using a combination of traditional machining, rapid prototyping, and flexible printed circuit board technology for the generator stator, with jewel bearings providing low friction and start up speed. Prototype devices can operate at air speeds down to 3 m s-1, and deliver between 80 µW and 2.5 mW of electrical power at air speeds in the range 3-7 m s-1. Experimental turbine performance curves, obtained by wind tunnel testing and corrected for bearing losses using data obtained in separate vacuum run-down tests, are compared with the predictions of an elementary blade element momentum (BEM) model. The two show reasonable agreement at low tip speed ratios. However, in experiments where a maximum could be observed, the maximum power coefficient (~9%) is marginally lower than predicted from the BEM model and occurs at a lower than predicted tip speed ratio of around 0.6.
Antarctic meteor observations using the Davis MST and meteor radars
NASA Astrophysics Data System (ADS)
Holdsworth, David A.; Murphy, Damian J.; Reid, Iain M.; Morris, Ray J.
2008-07-01
This paper presents the meteor observations obtained using two radars installed at Davis (68.6°S, 78.0°E), Antarctica. The Davis MST radar was installed primarily for observation of polar mesosphere summer echoes, with additional transmit and receive antennas installed to allow all-sky interferometric meteor radar observations. The Davis meteor radar performs dedicated all-sky interferometric meteor radar observations. The annual count rate variation for both radars peaks in mid-summer and minimizes in early Spring. The height distribution shows significant annual variation, with minimum (maximum) peak heights and maximum (minimum) height widths in early Spring (mid-summer). Although the meteor radar count rate and height distribution variations are consistent with a similar frequency meteor radar operating at Andenes (69.3°N), the peak heights show a much larger variation than at Andenes, while the count rate maximum-to-minimum ratios show a much smaller variation. Investigation of the effects of the temporal sampling parameters suggests that these differences are consistent with the different temporal sampling strategies used by the Davis and Andenes meteor radars. The new radiant mapping procedure of [Jones, J., Jones, W., Meteor radiant activity mapping using single-station radar observations, Mon. Not. R. Astron. Soc., 367(3), 1050-1056, doi: 10.1111/j.1365-2966.2006.10025.x, 2006] is investigated. The technique is used to detect the Southern delta-Aquarid meteor shower, and a previously unknown weak shower. Meteoroid speeds obtained using the Fresnel transform are presented. The diurnal, annual, and height variation of meteoroid speeds are presented, with the results found to be consistent with those obtained using specular meteor radars. Meteoroid speed estimates for echoes identified as Southern delta-Aquarid and Sextantid meteor candidates show good agreement with the theoretical pre-atmospheric speeds of these showers (41 km s -1 and 32 km s -1, respectively). The meteoroid speeds estimated for these showers show decreasing speed with decreasing height, consistent with the effects of meteoroid deceleration. Finally, we illustrate how the new radiant mapping and meteoroid speed techniques can be combined for unambiguous meteor shower detection, and use these techniques to detect a previously unknown weak shower.
On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes
NASA Technical Reports Server (NTRS)
Zheng, Yihua
2011-01-01
Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.
Radially leaned outlet guide vanes for fan source noise reduction
NASA Technical Reports Server (NTRS)
Kazin, S. B.
1973-01-01
Two quiet engine program half scale fans one with a subsonic and the other with a supersonic fan tip speed at takeoff were run with 30 degree leaned and radial outlet guide vanes. Acoustic data at takeoff fan speed on the subsonic tip speed fan showed decreases in 200-foot sideline noise of from 1 to 2 PNdb. The supersonic tip speed fan a takeoff fan speed, however, showed noise increases of up 3 PNdb and a decrease in fan efficiency. At approach fan speed, the subsonic tip speed fan showed a noise decrease of 2.3 PNdb at the 200-foot sideline maximum angle and an increase in efficiency. The supersonic tip speed fan showed noise increase of 3.5 PNdb and no change in efficiency. The decrease in fan efficiency and the nature of the noise increase largely high frequency broadband noise lead to the speculation that an aerodynamic problem occurred.
Modeling Food Delivery Dynamics For Juvenile Salmonids Under Variable Flow Regimes
NASA Astrophysics Data System (ADS)
Harrison, L.; Utz, R.; Anderson, K.; Nisbet, R.
2010-12-01
Traditional approaches for assessing instream flow needs for salmonids have typically focused on the importance of physical habitat in determining fish habitat selection. This somewhat simplistic approach does not account for differences in food delivery rates to salmonids that arise due to spatial variability in river morphology, hydraulics and temporal variations in the flow regime. Explicitly linking how changes in the flow regime influences food delivery dynamics is an important step in advancing process-based bioenergetic models that seek to predict growth rates of salmonids across various life-stages. Here we investigate how food delivery rates for juvenile salmonids vary both spatially and with flow magnitude in a meandering reach of the Merced River, CA. We utilize a two-dimensional (2D) hydrodynamic model and discrete particle tracking algorithm to simulate invertebrate drift transport rates at baseflow and a near-bankfull discharge. Modeling results indicate that at baseflow, the maximum drift density occurs in the channel thalweg, while drift densities decrease towards the channel margins due to the process of organisms settling out of the drift. During high-flow events, typical of spring dam-releases, the invertebrate drift transport pathway follows a similar trajectory along the high velocity core and the drift concentrations are greatest in the channel centerline, though the zone of invertebrate transport occupies a greater fraction of the channel width. Based on invertebrate supply rates alone, feeding juvenile salmonids would be expected to be distributed down the channel centerline where the maximum predicted food delivery rates are located in this reach. However, flow velocities in these channel sections are beyond maximum sustainable swimming speeds for most juvenile salmonids. Our preliminary findings suggest that a lack of low velocity refuge may prevent juvenile salmonids from deriving energy from the areas with maximum drift density in this reach. Future efforts will focus on integration of food delivery and bioenergetic models to account for conflicting demands of maximizing food intake while minimizing the energetic costs of swimming.
Solar Influence on Tropical Cyclone in Western North Pacific Ocean
NASA Astrophysics Data System (ADS)
Kim, Jung-Hee; Kim, Ki-Beom; Chang, Heon-Young
2017-12-01
Solar activity is known to be linked to changes in the Earth’s weather and climate. Nonetheless, for other types of extreme weather, such as tropical cyclones (TCs), the available evidence is less conclusive. In this study the modulation of TC genesis over the western North Pacific by the solar activity is investigated, in comparison with a large-scale environmental parameter, i.e., El-Niño-Southern Oscillation (ENSO). For this purpose, we have obtained the best track data for TCs in the western North Pacific from 1977 to 2016, spanning from the solar cycle 21 to the solar cycle 24. We have confirmed that in the El-Niño periods TCs tend to form in the southeast, reach its maximum strength in the southeast, and end its life as TSs in the northeast, compared with the La-Niña periods. TCs occurring in the El-Niño periods are found to last longer compared with the La-Niña periods. Furthermore, TCs occurring in the El-Niño periods have a lower central pressure at their maximum strength than those occurring in the La-Niña periods. We have found that TCs occurring in the solar maximum periods resemble those in the El-Niño periods in their properties. We have also found that TCs occurring in the solar descending periods somehow resemble those in the El-Niño periods in their properties. To make sure that it is not due to the ENSO effect, we have excluded TCs both in the El-Niño periods and in the La-Niña periods from the data set and repeated the analysis. In addition to this test, we have also reiterated our analysis twice with TCs whose maximum sustained winds speed exceeds 17 m/s, instead of 33 m/s, as well as TCs designated as a typhoon, which ends up with the same conclusions.
Hilborn, Ray; Stewart, Ian J; Branch, Trevor A; Jensen, Olaf P
2012-04-01
Although it is recognized that marine wild-capture fisheries are an important source of food for much of the world, the cost of sustainable capture fisheries to species diversity is uncertain, and it is often questioned whether industrial fisheries can be managed sustainably. We evaluated the trade-off among sustainable food production, profitability, and conservation objectives in the groundfish bottom-trawl fishery off the U.S. West Coast, where depletion (i.e., reduction in abundance) of six rockfish species (Sebastes) is of particular concern. Trade-offs are inherent in this multispecies fishery because there is limited capacity to target species individually. From population models and catch of 34 stocks of bottom fish, we calculated the relation between harvest rate, long-term yield (i.e., total weight of fish caught), profit, and depletion of each species. In our models, annual ecosystem-wide yield from all 34 stocks was maximized with an overall 5.4% harvest rate, but profit was maximized at a 2.8% harvest rate. When we reduced harvest rates to the level (2.2% harvest rate) at which no stocks collapsed (<10% of unfished levels), biomass harvested was 76% of the maximum sustainable yield and profit 89% of maximum. A harvest rate under which no stocks fell below the biomass that produced maximum sustainable yield (1% harvest rate), resulted in 45% of potential yield and 67% of potential profit. Major reductions in catch in the late 1990s led to increase in the biomass of the most depleted stocks, but this rebuilding resulted in the loss of >30% of total sustainable yield, whereas yield lost from stock depletion was 3% of total sustainable yield. There are clear conservation benefits to lower harvest rates, but avoiding overfishing of all stocks in a multispecies fishery carries a substantial cost in terms of lost yield and profit. ©2011 Society for Conservation Biology.
Lumped Parameter experiments for Single Mode Fiber Laser Cutting of Thin Stainless Steel Plate
NASA Astrophysics Data System (ADS)
Lai, Shengying; Jia, Ye; Han, Bing; Wang, Jun; Liu, Zongkai; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian
2017-06-01
The present work reports the parameters on laser cutting stainless steel including workpiece thickness, cutting speed, defocus length and assisting gas pressure. The cutting kerf width, dross attachment and cut edge squareness deviation are examined to provide information on cutting quality. The results show that with the increasing thickness, the cutting speed decrease rate is about 27%. The optimal ranges of cutting speed, defocus length and gas pressure are obtained with maximum quality. The first section in your paper
NASA Astrophysics Data System (ADS)
Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio
Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.
Flashback flame arrester devices for fuel cargo tank vapor vents
NASA Technical Reports Server (NTRS)
Bjorklund, R. A.; Kushida, R. O.
1981-01-01
The flame quenching capability of four types of flame arresting devices suitable for installation on fuel cargo tank vents of marine transport vessels is evaluated. A single 30 mesh screen, a dual 20 mesh screen, a spiral wound crimped metal ribbon, and a packed bed of ballast rings were tested. Flame speed and flame penetration of the test arresters were determined. Eight fuels representative of bulk cargoes were tested. The test arresters quenched a minimum of three flashback flames from all eight fuels, with one exception: high speed ethylene flames penetrated the dual 20 mesh screen on three tests. The arresters withstood the sustained flame from a propane/air mixture for 30 minutes. None of the arresters withstood the sustained flame from an ethylene/air mixture for more than 7 minutes.
Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System
NASA Astrophysics Data System (ADS)
Meng, X. Z.; Feng, H. B.
2017-10-01
This paper combined the advantages of each maximum power point tracking (MPPT) algorithm, put forward a kind of algorithm with higher speed and higher precision, based on this algorithm designed a maximum power point tracking controller with ARM. The controller, communication technology and PC software formed a control system. Results of the simulation and experiment showed that the process of maximum power tracking was effective, and the system was stable.
Design of a Slowed-Rotor Compound Helicopter for Future Joint Service Missions
2010-01-01
achieves a 208kt top speed at engine MCP and 11,000ft/ISA while having 216hp/ton installed power, based on engine MRP and MTOW. Figure 33...Intermediate rated power ISA International Standard Atmosphere MCP Maximum continuous power MRP Maximum rated power MTOW Maximum Takeoff Weight NDARC...NASA Design and Analysis of Rotorcraft SFC Specific fuel consumption SRC Slowed-Rotor Compound Symbols σ Rotor solidity (geometric) CD Drag
Sources of Geomagnetic Activity during Nearly Three Solar Cycles (1972-2000)
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.; Cliver, E. W.; White, Nicholas E. (Technical Monitor)
2002-01-01
We examine the contributions of the principal solar wind components (corotating highspeed streams, slow solar wind, and transient structures, i.e., interplanetary coronal mass ejections (CMEs), shocks, and postshock flows) to averages of the aa geomagnetic index and the interplanetary magnetic field (IMF) strength in 1972-2000 during nearly three solar cycles. A prime motivation is to understand the influence of solar cycle variations in solar wind structure on long-term (e.g., approximately annual) averages of these parameters. We show that high-speed streams account for approximately two-thirds of long-term aa averages at solar minimum, while at solar maximum, structures associated with transients make the largest contribution (approx. 50%), though contributions from streams and slow solar wind continue to be present. Similarly, high-speed streams are the principal contributor (approx. 55%) to solar minimum averages of the IMF, while transient-related structures are the leading contributor (approx. 40%) at solar maximum. These differences between solar maximum and minimum reflect the changing structure of the near-ecliptic solar wind during the solar cycle. For minimum periods, the Earth is embedded in high-speed streams approx. 55% of the time versus approx. 35% for slow solar wind and approx. 10% for CME-associated structures, while at solar maximum, typical percentages are as follows: high-speed streams approx. 35%, slow solar wind approx. 30%, and CME-associated approx. 35%. These compositions show little cycle-to-cycle variation, at least for the interval considered in this paper. Despite the change in the occurrences of different types of solar wind over the solar cycle (and less significant changes from cycle to cycle), overall, variations in the averages of the aa index and IMF closely follow those in corotating streams. Considering solar cycle averages, we show that high-speed streams account for approx. 44%, approx. 48%, and approx. 40% of the solar wind composition, aa, and the IMF strength, respectively, with corresponding figures of approx. 22%, approx. 32%, and approx. 25% for CME-related structures, and approx. 33%, approx. 19%, and approx. 33% for slow solar wind.
Miki, Hidenobu; Sugano, Nobuhiko; Hagio, Keisuke; Nishii, Takashi; Kawakami, Hideo; Kakimoto, Akihiro; Nakamura, Nobuo; Yoshikawa, Hideki
2004-04-01
In 17 patients with unilateral hip disease who underwent total hip arthroplasty (THA), the gait was analyzed preoperatively and 1, 3, 6, and 12 months after unilateral THA using a Vicon system to assess the recovery of walking speed and symmetrical movement of the hip, knee, ankle, and pelvis. The walking speed of these patients reached that of normal Japanese persons by 12 months after surgery. Walking speed was correlated with the range of hip motion on the operated side at 1 month postoperatively, and was correlated with the hip joint extension moment of force on both sides from 3 to 6 months after surgery. Before THA, asymmetry was observed in the range of the hip motion, maximum hip flexion, maximum hip extension, maximum knee flexion, as well as in pelvic obliquity, pelvic tilt, and pelvic rotation. There were no differences of the stride length or step length between both sides throughout the observation period. The preoperative range of hip flexion on the operated side during a gait cycle (21.3+/-7.9 degrees ) was significantly smaller than on the non-operated side (46.7+/-7.1 degrees ), and the difference between sides was still significant at 12 months after surgery (35.1+/-6.2 degrees on the operated side and 43.6+/-5.7 degrees on the non-operated side). The majority (74%) of the difference in hip motion range during this period was due to the difference in maximum extension of the hip. The increase in the range of pelvic tilt and the range of motion of the opposite hip showed an inverse correlation with the range of motion of the operated hip, suggesting a compensatory preoperative role. However, this correlation became insignificant after 6 months postoperatively. Asymmetry of the range of hip motion persisted at 12 months after THA in patients with unilateral coxoarthropathy during free level walking, while the operation normalized the spatial asymmetry of other joints and the walking speed prior to the recovery of hip motion.
Behavior and potential threats to survival of migrating lamprey ammocoetes and macrophthalmia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Mary L.; Jackson, Aaron D.; Lucas, Martyn C.
2015-03-01
Upon metamorphosis, anadromous juvenile lamprey (macrophthalmia) exhibit distinct migration behaviors that take them from larval rearing habitats in streams to the open ocean. While poorly studied, lamprey larvae (ammocoetes) also engage in downstream movement to some degree. Like migrating salmon smolts, lamprey macrophthalmia undergo behavioral changes associated with a highly synchronized metamorphosis. Unlike salmon smolts, the timing of juvenile migration in lamprey is protracted and poorly documented. Lamprey macrophthalmia and ammocoetes are not strong swimmers, attaining maximum individual speeds of less than 1 m s-1, and sustained speeds of less than 0.5 m s-1. They are chiefly nocturnal and distributemore » throughout the water column, but appear to concentrate near the bottom in the thalweg of deep rivers. At dams and irrigation diversions, macrophthalmia can become impinged on screens or entrained in irrigation canals, suffer increased predation, and experience physical injury that may result in direct or delayed mortality. The very structures designed to protect migrating juvenile salmonids can be harmful to juvenile lamprey. Yet at turbine intakes and spillways, lampreys, which have no swim bladder, can withstand changes in pressure and shear stress large enough to injure or kill most teleosts. Lamprey populations are in decline in many parts of the world, with some species designated as species of concern for conservation that merit legally mandated protections. Hence, provisions for safe passage of juvenile lamprey are being considered at dams and water diversions in North America and Europe.« less
Schuler, Matthew S.; Cooper, Brandon S.; Storm, Jonathan J.; Sears, Michael W.; Angilletta, Michael J.
2011-01-01
Most organisms experience environments that vary continuously over time, yet researchers generally study phenotypic responses to abrupt and sustained changes in environmental conditions. Gradual environmental changes, whether predictable or stochastic, might affect organisms differently than do abrupt changes. To explore this possibility, we exposed terrestrial isopods (Porcellio scaber) collected from a highly seasonal environment to four thermal treatments: (1) a constant 20°C; (2) a constant 10°C; (3) a steady decline from 20° to 10°C; and (4) a stochastic decline from 20° to 10°C that mimicked natural conditions during autumn. After 45 days, we measured thermal sensitivities of running speed and thermal tolerances (critical thermal maximum and chill-coma recovery time). Contrary to our expectation, thermal treatments did not affect the thermal sensitivity of locomotion; isopods from all treatments ran fastest at 33° to 34°C and achieved more than 80% of their maximal speed over a range of 10° to 11°C. Isopods exposed to a stochastic decline in temperature tolerated cold the best, and isopods exposed to a constant temperature of 20°C tolerated cold the worst. No significant variation in heat tolerance was observed among groups. Therefore, thermal sensitivity and heat tolerance failed to acclimate to any type of thermal change, whereas cold tolerance acclimated more during stochastic change than it did during abrupt change. PMID:21698113
Analysis of high-speed growth of silicon sheet in inclined-meniscus configuration
NASA Technical Reports Server (NTRS)
Thomas, P. D.; Brown, R. A.
1985-01-01
The study of high speed growth of silicon sheet in inclined-meniscus configurations is discussed. It was concluded that the maximum growth rates in vertical and inclined growth are set by thermal-capillary limits. Also, the melt/crystal interface was determined to be flat. And, vertical growth is qualitatively modelled by one dimensional heat transfer.
49 CFR 571.126 - Standard No. 126; Electronic stability control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... driver on the previous ignition cycle that is designed for low-speed, off-road driving, or (b) the... is designed for operation at higher speeds on snow-, sand-, or dirt-packed roads and that has the... dealer, fully fueled, with a 73 kg (160 lb) driver. Standard outriggers shall be designed with a maximum...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-23
... inserting a copy of this AD into the AFM. ``MAXIMUM AIR BRAKES OPERATION/EXTENDED SPEED 360 KIAS/0.79 Mi NOTE During emergency, air brakes may be used at speeds above 0.79 M i. '' Note 1: When a statement... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft...
Power of a Finite Speed Carnot Engine
ERIC Educational Resources Information Center
Agrawal, D. C.; Menon, V. J.
2009-01-01
A model of an endoreversible Carnot engine is considered where the piston moves with a constant speed "u." Expressions for the cycle time [tau] for the four branches, as well as output power, P[subscript W], are derived and the optimized root for maximum power is obtained in closed form. Our results are discussed in terms of the isothermal…
The relationship between movement speed and duration during soccer matches.
Roecker, Kai; Mahler, Hubert; Heyde, Christian; Röll, Mareike; Gollhofer, Albert
2017-01-01
The relationship between the time duration of movement (t(dur)) and related maximum possible power output has been studied and modeled under many conditions. Inspired by the so-called power profiles known for discontinuous endurance sports like cycling, and the critical power concept of Monod and Scherrer, the aim of this study was to evaluate the numerical characteristics of the function between maximum horizontal movement velocity (HSpeed) and t(dur) in soccer. To evaluate this relationship, GPS data from 38 healthy soccer players and 82 game participations (≥30 min active playtime) were used to select maximum HSpeed for 21 distinct t(dur) values (between 0.3 s and 2,700 s) based on moving medians with an incremental t(dur) window-size. As a result, the relationship between HSpeed and Log(t(dur)) appeared reproducibly as a sigmoidal decay function, and could be fitted to a five-parameter equation with upper and lower asymptotes, and an inflection point, power and decrease rate. Thus, the first three parameters described individual characteristics if evaluated using mixed-model analysis. This study shows for the first time the general numerical relationship between t(dur) and HSpeed in soccer games. In contrast to former descriptions that have evaluated speed against power, HSpeed against t(dur) always yields a sigmoidal shape with a new upper asymptote. The evaluated curve fit potentially describes the maximum moving speed of individual players during the game, and allows for concise interpretations of the functional state of team sports athletes.
The relationship between movement speed and duration during soccer matches
Mahler, Hubert; Heyde, Christian; Röll, Mareike; Gollhofer, Albert
2017-01-01
The relationship between the time duration of movement (t(dur)) and related maximum possible power output has been studied and modeled under many conditions. Inspired by the so-called power profiles known for discontinuous endurance sports like cycling, and the critical power concept of Monod and Scherrer, the aim of this study was to evaluate the numerical characteristics of the function between maximum horizontal movement velocity (HSpeed) and t(dur) in soccer. To evaluate this relationship, GPS data from 38 healthy soccer players and 82 game participations (≥30 min active playtime) were used to select maximum HSpeed for 21 distinct t(dur) values (between 0.3 s and 2,700 s) based on moving medians with an incremental t(dur) window-size. As a result, the relationship between HSpeed and Log(t(dur)) appeared reproducibly as a sigmoidal decay function, and could be fitted to a five-parameter equation with upper and lower asymptotes, and an inflection point, power and decrease rate. Thus, the first three parameters described individual characteristics if evaluated using mixed-model analysis. This study shows for the first time the general numerical relationship between t(dur) and HSpeed in soccer games. In contrast to former descriptions that have evaluated speed against power, HSpeed against t(dur) always yields a sigmoidal shape with a new upper asymptote. The evaluated curve fit potentially describes the maximum moving speed of individual players during the game, and allows for concise interpretations of the functional state of team sports athletes. PMID:28742832
Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods
NASA Astrophysics Data System (ADS)
Lin, Chia-Hsien; Chou, Dean-Yi
2018-06-01
The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.
The Association between Motor Skill Competence and Physical Fitness in Young Adults
ERIC Educational Resources Information Center
Stodden, David; Langendorfer, Stephen; Roberton, Mary Ann
2009-01-01
We examined the relationship between competence in three fundamental motor skills (throwing, kicking, and jumping) and six measures of health-related physical fitness in young adults (ages 18-25). We assessed motor skill competence using product scores of maximum kicking and throwing speed and maximum jumping distance. A factor analysis indicated…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.
This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed unicycle. The time optimal paths consist of sequences of arcs of circles and straight lines. The maximum principle introduced concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. 10 refs., 6 figs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... swept volume from the design specifications for the cylinders using enough significant figures to allow...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... swept volume from the design specifications for the cylinders using enough significant figures to allow...
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... swept volume from the design specifications for the cylinders using enough significant figures to allow...
Duration of sustained phonation in kindergarten children.
Harden, J R; Looney, N A
1984-03-01
Maximum sustained phonations of the vowels [a], [u] and [i] were obtained from 160 kindergarten children with a mean age of approximately 6.2 years. Subjects were grouped by sex and by the presence or absence of a voice disorder. Stop watch measurements of each subject's maximum phonations were compared with graphic level recorder measurements of those phonations . The results indicated that (1) the factor of sex had no significant effect on maximum phonation times; (2) the factor of voice group (non-voice-disordered/voice-disordered) did result in a significant effect (P less than 0.01) with the voice-disordered group achieving shorter phonations than the non-voice-disordered group; (3) the phonation times obtained from the two measurement procedures correlate significantly (P less than 0.05). Results also suggest that the vowel effect on maximum phonation time was significant (P less than 0.05) for both groups. The vowel [i] was phonated significantly longer than either [a] or [u] for males and females in both groups.
Changes in wind speed and extremes in Beijing during 1960-2008 based on homogenized observations
NASA Astrophysics Data System (ADS)
Li, Zhen; Yan, Zhongwei; Tu, Kai; Liu, Weidong; Wang, Yingchun
2011-03-01
Daily observations of wind speed at 12 stations in the Greater Beijing Area during 1960-2008 were homogenized using the Multiple Analysis of Series for Homogenization method. The linear trends in the regional mean annual and seasonal (winter, spring, summer and autumn) wind speed series were -0.26, -0.39, -0.30, -0.12 and -0.22 m s-1 (10 yr)-1, respectively. Winter showed the greatest magnitude in declining wind speed, followed by spring, autumn and summer. The annual and seasonal frequencies of wind speed extremes (days) also decreased, more prominently for winter than for the other seasons. The declining trends in wind speed and extremes were formed mainly by some rapid declines during the 1970s and 1980s. The maximum declining trend in wind speed occurred at Chaoyang (CY), a station within the central business district (CBD) of Beijing with the highest level of urbanization. The declining trends were in general smaller in magnitude away from the city center, except for the winter case in which the maximum declining trend shifted northeastward to rural Miyun (MY). The influence of urbanization on the annual wind speed was estimated to be about -0.05 m s-1 (10 yr)-1 during 1960-2008, accounting for around one fifth of the regional mean declining trend. The annual and seasonal geostrophic wind speeds around Beijing, based on daily mean sea level pressure (MSLP) from the ERA-40 reanalysis dataset, also exhibited decreasing trends, coincident with the results from site observations. A comparative analysis of the MSLP fields between 1966-1975 and 1992-2001 suggested that the influences of both the winter and summer monsoons on Beijing were weaker in the more recent of the two decades. It is suggested that the bulk of wind in Beijing is influenced considerably by urbanization, while changes in strong winds or wind speed extremes are prone to large-scale climate change in the region.
Initial Results of Instrument-Flying Trials Conducted In A Single-Rotor Helicopter
NASA Technical Reports Server (NTRS)
Crim, Almer D; Reeder, John P; Whitten, James B
1953-01-01
Instrument-flying trials have been conducted in a single-rotor helicopter, the maneuver stability of which could be changed from satisfactory to unsatisfactory. The results indicated that existing longitudinal flying-qualities requirements based on contact flight were adequate for instrument flight at speeds above that for minimum power. However, lateral-directional problems were encountered at low speeds and during precision maneuvers. The adequacy, for helicopter use, of standard airplane instruments was also investigated, and the conclusion was reached that special instruments would be desirable under all conditions, and necessary for sustained low-speed instrument flight.
Effect on interference fits on roller bearing fatigue life
NASA Technical Reports Server (NTRS)
Coe, H. H.; Zaretsky, E. V.
1986-01-01
An analysis was performed to determine the effects of inner-ring speed and press fits on roller bearing fatigue life. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner-ring speed and load, and were applied to a conventional roller bearing life analysis. The effect of mean stress was determined using Goodman diagram approach. Hoop stresses caused by press fits and centrifugal force can reduce bearing life by as much as 90 percent. Use of a Goodman diagram predicts life reductions of 20 to 30 percent. The depth of the maximum shear stress remains virtually unchanged.
Effect of interference fits on roller bearing fatigue life
NASA Technical Reports Server (NTRS)
Coe, Harold H.; Zaretsky, Erwin V.
1987-01-01
An analysis was performed to determine the effects of inner-ring speed and press fits on roller bearing fatigue life. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner-ring speed and load, and were applied to a conventional roller bearing life analysis. The effect of mean stress was determined using Goodman diagram approach. Hoop stresses caused by press fits and centrifugal force can reduce bearing life by as much as 90 percent. Use of a Goodman diagram predicts life reduction of 20 to 30 percent. The depth of the maximum shear stress remains virtually unchanged.
Improving Large-Scale Testing Capability by Modifying the 40- by 80-ft Wind Tunnel
NASA Technical Reports Server (NTRS)
Mort, Kenneth W.; Soderman, Paul T.; Eckert, William T.
1979-01-01
Interagency studies conducted during the last several years have indicated the need to Improve full-scale testing capabilities. The studies showed that the most effective trade between test capability and facility cost was provided by re-powering the existing Ames Research Center 40- by 80-ft Wind Tunnel to Increase the maximum speed from about 100 m/s (200 knots) lo about 150 m/s (300 knots) and by adding a new 24- by 37-m (80- by 120-ft) test section powered for about a 50-m/s (100-knot) maximum speed. This paper reviews the design of the facility, a few or its capabilities, and some of its unique features.
NASA Technical Reports Server (NTRS)
Hartmann, Melvin J.; Graham, Robert C.
1949-01-01
An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ-55-FF-1 turbo Jet engine. The test unit consisted of a row of inlet guide vanes and a supersonic rotor; the stator vanes after the rotor were omitted. The maximum pressure ratio produced in the single stage was 2.28 at an equivalent tip speed or 1814 feet per second with an adiabatic efficiency of approximately 0.61, equivalent weight flow of 13.4 pounds per second. The maximum efficiency of 0.79 was obtained at an equivalent tip speed of 801 feet per second.
Bearing fatigue investigation 3
NASA Technical Reports Server (NTRS)
Nahm, A. H.; Bamberger, E. N.; Signer, H. R.
1982-01-01
The operating characteristics of large diameter rolling-element bearings in the ultra high speed regimes expected in advanced turbine engines for high performance aircraft were investigated. A high temperature lubricant, DuPont Krytox 143 AC, was evaluated at bearing speeds to 3 million DN. Compared to the results of earlier, similar tests using a MIL-L-23699 (Type II) lubricant, bearings lubricated with the high density Krytox fluid showed significantly higher power requirements. Additionally, short bearing lives were observed when this fluid was used with AISI M50 bearings in an air atmosphere. The primary mode of failure was corrosion initiated surface distress (fatigue) on the raceways. The potential of a case-carburized bearing to sustain a combination of high-tangential and hertzian stresses without experiencing race fracture was also investigated. Limited full scale bearing tests of a 120 mm bore ball bearing at a speed of 25,000 rpm (3 million DN) indicated that a carburized material could sustain spalling fatigue without subsequent propagation to fracture. Planned life tests of the carburized material had to be aborted, however, because of apparent processing-induced material defects.
Bioeconomic Sustainability of Cellulosic Biofuel Production on Marginal Lands
ERIC Educational Resources Information Center
Gutierrez, Andrew Paul; Ponti, Luigi
2009-01-01
The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML biomass…
Wali, Behram; Khattak, Asad J; Xu, Jingjing
2018-01-01
The main objective of this study is to simultaneously investigate the degree of injury severity sustained by drivers involved in head-on collisions with respect to fault status designation. This is complicated to answer due to many issues, one of which is the potential presence of correlation between injury outcomes of drivers involved in the same head-on collision. To address this concern, we present seemingly unrelated bivariate ordered response models by analyzing the joint injury severity probability distribution of at-fault and not-at-fault drivers. Moreover, the assumption of bivariate normality of residuals and the linear form of stochastic dependence implied by such models may be unduly restrictive. To test this, Archimedean copula structures and normal mixture marginals are integrated into the joint estimation framework, which can characterize complex forms of stochastic dependencies and non-normality in residual terms. The models are estimated using 2013 Virginia police reported two-vehicle head-on collision data, where exactly one driver is at-fault. The results suggest that both at-fault and not-at-fault drivers sustained serious/fatal injuries in 8% of crashes, whereas, in 4% of the cases, the not-at-fault driver sustained a serious/fatal injury with no injury to the at-fault driver at all. Furthermore, if the at-fault driver is fatigued, apparently asleep, or has been drinking the not-at-fault driver is more likely to sustain a severe/fatal injury, controlling for other factors and potential correlations between the injury outcomes. While not-at-fault vehicle speed affects injury severity of at-fault driver, the effect is smaller than the effect of at-fault vehicle speed on at-fault injury outcome. Contrarily, and importantly, the effect of at-fault vehicle speed on injury severity of not-at-fault driver is almost equal to the effect of not-at-fault vehicle speed on injury outcome of not-at-fault driver. Compared to traditional ordered probability models, the study provides evidence that copula based bivariate models can provide more reliable estimates and richer insights. Practical implications of the results are discussed. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Korytov, M. S.; Shcherbakov, V. S.; Titenko, V. V.
2018-01-01
Limitation of the swing of the bridge crane cargo rope is a matter of urgency, as it can significantly improve the efficiency and safety of the work performed. In order to completely dampen the pendulum swing after the break-up of a bridge or a bridge-crane freight cart to maximum speed, it is necessary, in the normal repulsion control of the electric motor, to split the process of dispersion into a minimum of three gaps. For a dynamic system of swinging of a bridge crane on a flexible cable hanger in a separate vertical plane, an analytical solution was obtained to determine the temporal dependence of the cargo rope angle relative to the gravitational vertical when the cargo suspension point moves with constant acceleration. The resulting analytical dependence of the cargo rope angle and its first derivative can break the process of dispersing the cargo suspension point into three stages of dispersal and braking with various accelerations and enter maximum speed of movement of the cargo suspension point. In doing so, the condition of eliminating the swings of the cargo rope relative to the gravitational vertical is fulfilled. Provides examples of the maximum speed output constraints-to-time when removing the rope swing.
Performance Investigations of a Large Centrifugal Compressor from an Experimental Turbojet Engine
NASA Technical Reports Server (NTRS)
Ginsburg, Ambrose; Creagh, John W. R.; Ritter, William K.
1948-01-01
An investigation was conducted on a large centrifugal compressor from an experimental turbojet engine to determine the performance of the compressor and to obtain fundamental information on the aerodynamic problems associated with large centrifugal-type compressors. The results of the research conducted on the compressor indicated that the compressor would not meet the desired engine-design air-flow requirements (78 lb/sec) because of an air-flow restriction in the vaned collector (diffuser). Revision of the vaned collector resulted in an increased air-flow capacity over the speed range and showed improved matching of the impeller and diffuser components. At maximum flow, the original compressor utilized approximately 90 percent of the available geometric throat area at the vaned-collector inlet and the revised compressor utilized approximately 94 percent, regardless of impeller speed. The ratio of the maximum weight flows of the revised and original compressors were less than the ratio of effective critical throat areas of the two compressors because of the large pressure losses in the impeller near the impeller inelt and the difference increased with an increase in impeller speed. In order to further increase the pressure ratio and maximum weight flow of the compressor, the impeller must be modified to eliminate the pressure losses therein.
Ji, Keju; Zhang, Jun; Chen, Jia; Meng, Guiyun; Ding, Yafei; Dai, Zhendong
2016-04-20
The collection of water from fog is a simple and sustainable means of obtaining freshwater for human and animal consumption. Herein, we address the use of metal foam in fog collection and present a novel fog-collecting device fabricated from copper foam. This device, which can also be used in other liquid-gas separation applications, is a 3D extension of biologically inspired 1D and 2D materials. The network structure of the 3D material effectively increased the contact area and interaction time of the skeleton structure and fog compared to those of traditional 2D fog-collecting materials. The main aspects investigated in this study were the influences of the inertial centrifugal force generated by rotating the metal-foam samples and the use of samples with different surface wettabilities on the fog-collecting performance. Superhydrophilic and superhydrophobic samples were found to have higher collection efficiencies at low and high rotational speeds, respectively, and a maximum efficiency of 86% was achieved for superhydrophobic copper foam (20 pores per inch) rotated at 1500 rpm.
PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance
NASA Astrophysics Data System (ADS)
Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd
2018-03-01
Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.
Gait characteristics over the course of a race in recreational marathon competitors.
Bertram, John E A; Prebeau-Menezes, Leif; Szarko, Matthew J
2013-03-01
We analyzed gait and function of the supporting limb in participants of a marathon race at three stages: prerace, midrace (18 km), and near the end of the race (36 km). We confirmed that the most successful runners were able to maintain running speed for the duration of the race with little change in speed or gait. Speed slowed progressively during the race for those with slower race times, but stride frequency-stride length relationships remained normal for the speed they ran. These findings differ from most lab-based studies of fatigue, in which runners are forced to match a constant preset treadmill speed. Small changes in maximum ground force were seen in both slow- and fast-running participants as race end approached.
A study and comparison of the effects of low speed change vehicle collisions on the human body.
Hoyes, Philip; Henderson, Brian
2013-03-01
In motor vehicle collisions there is a well-established relationship between the level of damage sustained by the vehicle, its change in speed during the collision period, the movement of occupants and the potential for their injury. Greater damage, with respect to structure, means a greater potential for injury. In terms of rear-end impacts, speed change thresholds for injury have been suggested in previous literature. This research uses human test subjects and three full-scale vehicle, rear-end collisions to investigate the correlation between speed change and occupant movement and uses it to test the suggestion of a second threshold where the accelerations are similar to an everyday activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-07-01
... climate control system with the heat on and set to primarily defrost the front window. Turn air.... (i) Prior to the first acceleration, 20 seconds after the start of the UDDS, set the climate control... climate control system): (A) Temperature. Set controls to maximum heat. (B) Fan speed. Set the fan speed...
76 FR 78 - Federal Motor Vehicle Safety Standard; Engine Control Module Speed Limiter Device
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... be equipped with an electronic control module (ECM) that is capable of limiting the maximum speed of the vehicle. 2. The ECM shall be set at no more than 68 mph by the manufacturer. 3. The ECM should be... ECM to be adjusted to let the vehicle exceed 68 mph. 4. Immediately upon the rule taking effect...
Laser machining of southern pine
C. W. McMillin; J. E. Harry
1971-01-01
When cutting with an air-jet-assisted carbon-dioxide laser of 240 watts output power, maximum feed speed at the point of full penetration of the beam decreased with increasing workpiece thickness in both wet and dry samples; the trend was curvilinear. Feed speeds averaged 99.1 and 14.6 inches per minute for samples 0.25 and 1.00 inch thick, respectively. Somewhat...
Welding of Al6061and Al6082-Cu composite by friction stir processing
NASA Astrophysics Data System (ADS)
Iyer, R. B.; Dhabale, R. B.; Jatti, V. S.
2016-09-01
Present study aims at investigating the influence of process parameters on the microstructure and mechanical properties such as tensile strength and hardness of the dissimilar metal without and with copper powder. Before conducting the copper powder experiments, optimum process parameters were obtained by conducting experiments without copper powder. Taguchi's experimental L9 orthogonal design layout was used to carry out the experiments without copper powder. Threaded pin tool geometry was used for conducting the experiments. Based on the experimental results and Taguchi's analysis it was found that maximum tensile strength of 66.06 MPa was obtained at 1400 rpm spindle speed and weld speed of 20 mm/min. Maximum micro hardness (92 HV) was obtained at 1400 rpm spindle speed and weld speed of 16 mm/min. At these optimal setting of process parameters aluminium alloys were welded with the copper powder. Experimental results demonstrated that the tensile strength (96.54 MPa) and micro hardness (105 HV) of FSW was notably affected by the addition of copper powder when compared with FSW joint without copper powder. Tensile failure specimen was analysed using Scanning Electron Microscopy in order to study the failure mechanism.
Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji
2016-02-22
In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.
Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense
Sholtis, Katherine M.; Shelton, Ryan M.; Hedrick, Tyson L.
2015-01-01
Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics). These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses) rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder. PMID:26039101
Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense.
Sholtis, Katherine M; Shelton, Ryan M; Hedrick, Tyson L
2015-01-01
Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics). These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses) rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder.
Impact of marine reserve on maximum sustainable yield in a traditional prey-predator system
NASA Astrophysics Data System (ADS)
Paul, Prosenjit; Kar, T. K.; Ghorai, Abhijit
2018-01-01
Multispecies fisheries management requires managers to consider the impact of fishing activities on several species as fishing impacts both targeted and non-targeted species directly or indirectly in several ways. The intended goal of traditional fisheries management is to achieve maximum sustainable yield (MSY) from the targeted species, which on many occasions affect the targeted species as well as the entire ecosystem. Marine reserves are often acclaimed as the marine ecosystem management tool. Few attempts have been made to generalize the ecological effects of marine reserve on MSY policy. We examine here how MSY and population level in a prey-predator system are affected by the low, medium and high reserve size under different possible scenarios. Our simulation works shows that low reserve area, the value of MSY for prey exploitation is maximum when both prey and predator species have fast movement rate. For medium reserve size, our analysis revealed that the maximum value of MSY for prey exploitation is obtained when prey population has fast movement rate and predator population has slow movement rate. For high reserve area, the maximum value of MSY for prey's exploitation is very low compared to the maximum value of MSY for prey's exploitation in case of low and medium reserve. On the other hand, for low and medium reserve area, MSY for predator exploitation is maximum when both the species have fast movement rate.
46 CFR 130.140 - Steering on OSVs of 100 or more gross tons.
Code of Federal Regulations, 2014 CFR
2014-10-01
... maximum astern speed. (2) A hydraulic system with a maximum allowable working pressure of not more than 12... of this chapter; or (2) Requirements for a hydraulic-helm steering-system in paragraph (b) of this section. (b) Each hydraulic-helm steering-system must have the following: (1) A main steering gear of...
49 CFR 325.59 - Measurement procedure; stationary test.
Code of Federal Regulations, 2011 CFR
2011-10-01
... made of the sound level generated by a stationary motor vehicle as follows: (a) Park the motor vehicle... open throttle. Return the engine's speed to idle. (e) Observe the maximum reading on the sound level... this section until the first two maximum sound level readings that are within 2 dB(A) of each other are...
The effect of motorcycle helmet fit on estimating head impact kinematics from residual liner crush.
Bonin, Stephanie J; Gardiner, John C; Onar-Thomas, Arzu; Asfour, Shihab S; Siegmund, Gunter P
2017-09-01
Proper helmet fit is important for optimizing head protection during an impact, yet many motorcyclists wear helmets that do not properly fit their heads. The goals of this study are i) to quantify how a mismatch in headform size and motorcycle helmet size affects headform peak acceleration and head injury criteria (HIC), and ii) to determine if peak acceleration, HIC, and impact speed can be estimated from the foam liner's maximum residual crush depth or residual crush volume. Shorty-style helmets (4 sizes of a single model) were tested on instrumented headforms (4 sizes) during linear impacts between 2.0 and 10.5m/s to the forehead region. Helmets were CT scanned to quantify residual crush depth and volume. Separate linear regression models were used to quantify how the response variables (peak acceleration (g), HIC, and impact speed (m/s)) were related to the predictor variables (maximum crush depth (mm), crush volume (cm 3 ), and the difference in circumference between the helmet and headform (cm)). Overall, we found that increasingly oversized helmets reduced peak headform acceleration and HIC for a given impact speed for maximum residual crush depths less than 7.9mm and residual crush volume less than 40cm 3 . Below these levels of residual crush, we found that peak headform acceleration, HIC, and impact speed can be estimated from a helmet's residual crush. Above these crush thresholds, large variations in headform kinematics are present, possibly related to densification of the foam liner during the impact. Copyright © 2017 Elsevier Ltd. All rights reserved.
High-speed MCP anodes for high time resolution low-energy charged particle spectrometers
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi; Yokota, Shoichiro; Asamura, Kazushi; Krieger, Amanda
2017-02-01
The time resolution of low-energy charged particle measurements is becoming higher and higher. In order to realize high time resolution measurements, a 1-D circular delay line anode has been developed as a high-speed microchannel plate (MCP) anode. The maximum count rate of the 1-D circular delay line anode is around 1 × 107/s/360°, which is much higher than the widely used resistive anode, whose maximum count rate is around 1 × 106/s/360°. In order to achieve much higher speeds, an MCP anode with application-specific integrated circuit (ASIC) has been developed. We have decided to adopt an anode configuration in which a discrete anode is formed on a ceramic substrate, and a bare ASIC chip is installed on the back of the ceramic. It has been found that the anode can detect at a high count rate of 2 × 108/s/360°. Developments in both delay line and discrete anodes, as well as readout electronics, will be reviewed.
Voltage oriented control of self-excited induction generator for wind energy system with MPPT
NASA Astrophysics Data System (ADS)
Amieur, Toufik; Taibi, Djamel; Amieur, Oualid
2018-05-01
This paper presents the study and simulation of the self-excited induction generator in the wind power production in isolated sites. With this intention, a model of the wind turbine was established. Extremum-seeking control algorithm method by using Maximum Power Point Tracking (MPPT) is proposed control solution aims at driving the average position of the operating point near to optimality. The reference of turbine rotor speed is adjusted such that the turbine operates around maximum power for the current wind speed value. After a brief review of the concepts of converting wind energy into electrical energy. The proposed modeling tools were developed to study the performance of standalone induction generators connected to capacitor bank. The purpose of this technique is to maintain a constant voltage at the output of the rectifier whatever the loads and speeds. The system studied in this work is developed and tested in MATLAB/Simulink environment. Simulation results validate the performance and effectiveness of the proposed control methods.
NASA Astrophysics Data System (ADS)
Lou, Shuai; Lee, Seul Bi; Nam, Dae-Geun; Choi, Yoon Suk
2017-11-01
A filler metal wire, Alloy 625, was cladded on a plate of a low carbon streel, SS400, by gas tungsten arc welding, and the morphology of the weld bead and resulting dilution ratio were investigated under different welding parameter values (the input current, weld speed and wire feed speed). The wire feed speed was found to be most influential in controlling the dilution ratio of the weld bead, and seemed to limit the influence of other welding parameters. Two extreme welding conditions (with the minimum and maximum dilution ratios) were identified, and the corresponding microstructures, hardness and tensile properties near the bond line were compared between the two cases. The weld bead with the minimum dilution ratio showed superior hardness and tensile properties, while the formation lath martensite (due to relatively fast cooling) affected mechanical properties in the heat affected zone of the base metal with the maximum dilution ratio.
Investigation of acceleration characteristics of a single-spool turbojet engine
NASA Technical Reports Server (NTRS)
Oppenheimer, Frank L; Pack, George J
1953-01-01
Operation of a single-spool turbojet engine with constant exhaust-nozzle area was investigated at one flight condition. Data were obtained by subjecting the engine to approximate-step changes in fuel flow, and the information necessary to show the relations of acceleration to the sensed engine variables was obtained. These data show that maximum acceleration occurred prior to stall and surge. In the low end of the engine-speed range the margin was appreciable; in the high-speed end the margin was smaller but had not been completely defined by these data. Data involving acceleration as a function of speed, fuel flow, turbine-discharge temperature, compressor-discharge pressure, and thrust have been presented and an effort has been made to show how a basic control system could be improved by addition of an override in which the acceleration characteristic is used not only to prevent the engine from entering the surge region but also to obtain acceleration along the maximum acceleration line during throttle bursts.
NASA Technical Reports Server (NTRS)
1948-01-01
An altitude-test-chamber investigation was conducted to determine the operational characteristics and altitude blow-out limits of a Solar afterburner in a 24C engine. At rated engine speed and maximum permissible turbine-discharge temperature, the altitude limit as determined by combustion blow-out occurred as a band of unstable operation of about 8000 feet altitude in width with maximum altitude limits from 32,000 feet at a Mach number of 0.3 to about 42,000 feet at a Mach number of 1.0. The maximum fuel-air ratio of the afterburner, as limited by maximum permissible turbine-discharge gas temperatures at rated engine speed, varied between 0.0295 and 0.0380 over a range of flight Mach numbers from 0.25 to 1.0 and at altitudes of 20,000 and 30,000 feet. Over this range of operating conditions, the fuel-air ratio at which lean blow-out occurred was from 10 to 19 percent below these maximum fuel-air ratios. Combustion was very smooth and uniform during operation; however, ignition of the burner was very difficult throughout the investigation. A failure of the flame holder after 12 hours and 15 minutes of afterburner operation resulted in termination of the investigation.
Viscoelasticity of human oral mucosa: implications for masticatory biomechanics.
Sawada, A; Wakabayashi, N; Ona, M; Suzuki, T
2011-05-01
The dynamic behavior of oral soft tissues supporting removable prostheses is not well understood. We hypothesized that the stress and strain of the mucosa exhibited time-dependent behavior under masticatory loadings. Displacement of the mucosa on the maxillary residual ridge was measured in vivo by means of a magnetic actuator/sensor under vertical loading in partially edentulous individuals. Subject-specific finite element models of homogeneous bone and mucosa were constructed based on computed tomography images. A mean initial elastic modulus of 8.0 × 10(-5) GPa and relaxation time of 494 sec were obtained from the curve adaptation of the finite element output to the in vivo time-displacement relationship. Delayed increase of the maximum compressive strain on the surface of the mucosa was observed under sustained load, while the maximum strain inside the mucosa was relatively low and uninfluenced by the duration of the load. The compressive stress showed a slight decrease with sustained load, due to stress relaxation of the mucosa. On simulation of cyclic load, the increment of the maximum strain and the evidence of residual strain were revealed after each loading. The results support our hypothesis, and suggest that sustained and repetitive loads accumulate as surface strain on the mucosa.
Wind extremes in the North Sea basin under climate change: an ensemble study of 12 CMIP5 GCMs
NASA Astrophysics Data System (ADS)
de Winter, R.; Ruessink, G.; Sterl, A.
2012-12-01
Coastal safety may be influenced by climate change, as changes in extreme surge levels and wave extremes may increase the vulnerability of dunes and other coastal defenses. In the North Sea, an area already prone to severe flooding, these high surge levels and waves are generated by severe wind speeds during storm events. As a result of the geometry of the North Sea, not only the maximum wind speed is relevant, but also wind direction. Analyzing changes in a changing climate implies that several uncertainties need to be taken into account. First, there is the uncertainty in climate experiments, which represents the possible development of the emission of greenhouse gases. Second, there is uncertainty between the climate models that are used to analyze the effect of different climate experiments. The third uncertainty is the natural variability of the climate. When this system variability is large, small trends will be difficult to detect. The natural variability results in statistical uncertainty, especially for events with high return values. We addressed the first two types of uncertainties for extreme wind conditions in the North Sea using 12 CMIP5 GCMs. To evaluate the differences between the climate experiments, two climate experiments (rcp4.5 and rcp8.5) from 2050-2100 are compared with historical runs, running from 1950-2000. Rcp4.5 is considered to be a middle climate experiment and rcp8.5 represents high-end climate scenarios. The projections of the 12 GCMs for a given scenario illustrate model uncertainty. We focus on the North Sea basin, because changes in wind conditions could have a large impact on safety of the densely populated North Sea coast, an area that has already a high exposure to flooding. Our results show that, consistent with ERA-Interim results, the annual maximum wind speed in the historical run demonstrates large interannual variability. For the North Sea, the annual maximum wind speed is not projected to change in either rcp4.5 or rcp8.5. In fact, the differences in the 12 GCMs are larger than the difference between the three experiments. Furthermore, our results show that, the variation in direction of annual maximum wind speed is large and this precludes a firm statement on climate-change induced changes in these directions. Nonetheless, most models indicate a decrease in annual maximum wind speed from south-eastern directions and an increase from south-western and western directions. This might be caused by a poleward shift of the storm track. The amount of wind from north-west and north-north-west, wind directions that are responsible for the development of extreme storm surges in the southern part of the North Sea, are not projected to change. However, North Sea coasts that have the longest fetch for western direction, e.g. the German Bight, may encounter more often high storm surge levels and extreme waves when the annual maximum wind will indeed be more often from western direction.
Kim, Moonkeun; Lee, Sang-Kyun; Ham, Yong-Hyun; Yang, Yil Suk; Kwon, Jong-Kee; Kwon, Kwang-Ho
2012-08-01
We designed and fabricated a bimorph cantilever array for sustainable power with an integrated Cu proof mass to obtain additional power and current. We fabricated a cantilever system using single-crystal piezoelectric material and compared the calculations for single and arrayed cantilevers to those obtained experimentally. The vibration energy harvester had resonant frequencies of 60.4 and 63.2 Hz for short and open circuits, respectively. The damping ratio and quality factor of the cantilever device were 0.012 and 41.66, respectively. The resonant frequency at maximum average power was 60.8 Hz. The current and highest average power of the harvester array were found to be 0.728 mA and 1.61 mW, respectively. The sustainable maximum power was obtained after slightly shifting the short-circuit frequency. In order to improve the current and power using an array of cantilevers, we also performed energy conversion experiments.
Tropical Storm Yagi in the North Pacific Ocean
2017-12-08
In early June, Tropical storm Yagi developed from Tropical Depression 03W in the Western North Pacific Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image on June 10 at 1:55 UTC (9:55 P.M.) as the storm was spinning near 25.0 north and 135.2 east, or about 396 miles (637 km) west of Iwo Jima, Japan. At that time, the storm had maximum sustained winds 51.7 mph (83.3 km/h). The image shows a tightly-wrapped circulation, a clouded eye and storm bands reached furthest out in the northeast quadrant. The tropical depression first formed on June 6 east of the Philippines, and intensified on the weekend of June 8-9, when it was given the name of Yagi. Also known as Dante, the storm reached the maximum wind speeds on June 10 and 11, after which it began to weaken as it moved into cooler waters. On June 14, Yagi’s remnants passed about 200 miles south of Tokyo, and brought soaking rains to the coastline of Japan’s Honshu Island. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Super Turbocharging the Direct Injection Diesel engine
NASA Astrophysics Data System (ADS)
Boretti, Albert
2018-03-01
The steady operation of a turbocharged diesel direct injection (TDI) engine featuring a variable speed ratio mechanism linking the turbocharger shaft to the crankshaft is modelled in the present study. Key parameters of the variable speed ratio mechanism are range of speed ratios, efficiency and inertia, in addition to the ability to control relative speed and flow of power. The device receives energy from, or delivers energy to, the crankshaft or the turbocharger. In addition to the pistons of the internal combustion engine (ICE), also the turbocharger thus contributes to the total mechanical power output of the engine. The energy supply from the crankshaft is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, the maximum torque is drastically improved, radically expanding the load range. Additionally, moving closer to the points of operation of a balanced turbocharger, it is also possible to improve both the efficiency η, defined as the ratio of the piston crankshaft power to the fuel flow power, and the total efficiency η*, defined as the ratio of piston crankshaft power augmented of the power from the turbocharger shaft to the fuel flow power, even if of a minimal extent. The energy supply to the crankshaft is possible mostly at high speeds and high loads, where otherwise the turbine could have been waste gated, and during decelerations. The use of the energy at the turbine otherwise waste gated translates in improvements of the total fuel conversion efficiency η* more than the efficiency η. Much smaller improvements are obtained for the maximum torque, yet again moving closer to the points of operation of a balanced turbocharger. Adopting a much larger turbocharger (target displacement x speed 30% larger than a conventional turbocharger), better torque outputs and fuel conversion efficiencies η* and η are possible at every speed vs. the engine with a smaller, balanced turbocharger. This result motivates further studies of the mechanism that may considerably benefit traditional powertrains based on diesel engines.
An Evaluation of QuikSCAT data over Tropical Cyclones as Determined in an Operational Environment
NASA Astrophysics Data System (ADS)
Hawkins, J. D.; Edson, R. T.
2001-12-01
QuikSCAT data over all global tropical cyclones were examined during the past 3 1/2 years in conjunction with the development of a user¡_s guide to the forecasters at the Joint Typhoon Warning Center, Pearl Harbor, Hawaii. The active microwave scatterometer has greatly enhanced the forecaster's ability to evaluate surface winds over the data poor regions of the tropical oceans. The QuikSCAT scatterometer¡_s unique ability to provide both wind speed and direction on a nearly bi-daily basis has greatly increased the forecaster¡_s near real-time knowledge of tropical cyclone genesis, intensification potential, outer wind structure, and a ¡rminimum estimate¡_ for a tropical cyclone¡_s maximum sustained winds. Scatterometer data were compared with data available to the forecasters in a near real-time environment including ship, land and buoy reports. In addition, comparisons were also made with aircraft measurements (for Atlantic and East Pacific systems), numerical weather model wind fields, and various remote sensing techniques. Wind speeds were found to be extremely useful, especially for the radius of gale force winds. However, in rain-contaminated areas, light winds were often greatly overestimated while in heavy winds, wind speeds were often quite reasonable if not slightly underestimated. The largest issues are still focused on the correct wind direction selection. In these cases, rain-flagged wind vector cells greatly affected the results from the direction ambiguity selection procedure. The ambiguity selection algorithm often had difficulties resolving a circulation center when large areas of the tropical cyclone¡_s center were flagged. Often a block of winds would occur perpendicular to the swath irregardless of the circulation¡_s position. These winds caused considerable confusion for the operational forecasters. However, it was determined that in many cases, an accurate center position could still be obtained by using methods to incorporate the more accurate wind speeds and the outer wind field vectors that were not as seriously affected. Quantitative results and comparisons will be shown in this presentation. In addition, guides to the operational forecasters to determine system centers inspite of the ambiguity selection problems will also be discussed.
NASA Astrophysics Data System (ADS)
Vukicevic, T.; Uhlhorn, E.; Reasor, P.; Klotz, B.
2012-12-01
A significant potential for improving numerical model forecast skill of tropical cyclone (TC) intensity by assimilation of airborne inner core observations in high resolution models has been demonstrated in recent studies. Although encouraging , the results so far have not provided clear guidance on the critical information added by the inner core data assimilation with respect to the intensity forecast skill. Better understanding of the relationship between the intensity forecast and the value added by the assimilation is required to further the progress, including the assimilation of satellite observations. One of the major difficulties in evaluating such a relationship is the forecast verification metric of TC intensity: the maximum one-minute sustained wind speed at 10 m above surface. The difficulty results from two issues : 1) the metric refers to a practically unobservable quantity since it is an extreme value in a highly turbulent, and spatially-extensive wind field and 2) model- and observation-based estimates of this measure are not compatible in terms of spatial and temporal scales, even in high-resolution models. Although the need for predicting the extreme value of near surface wind is well justified, and the observation-based estimates that are used in practice are well thought of, a revised metric for the intensity is proposed for the purpose of numerical forecast evaluation and the impacts on the forecast. The metric should enable a robust observation- and model-resolvable and phenomenologically-based evaluation of the impacts. It is shown that the maximum intensity could be represented in terms of decomposition into deterministic and stochastic components of the wind field. Using the vortex-centric cylindrical reference frame, the deterministic component is defined as the sum of amplitudes of azimuthal wave numbers 0 and 1 at the radius of maximum wind, whereas the stochastic component is represented by a non-Gaussian PDF. This decomposition is exact and fully independent of individual TC properties. The decomposition of the maximum wind intensity was first evaluated using several sources of data including Step Frequency Microwave Radiometer surface wind speeds from NOAA and Air Force reconnaissance flights,NOAA P-3 Tail Doppler Radar measurements, and best track maximum intensity estimates as well as the simulations from Hurricane WRF Ensemble Data Assimilation System (HEDAS) experiments for 83 real data cases. The results confirmed validity of the method: the stochastic component of the maximum exibited a non-Gaussian PDF with small mean amplitude and variance that was comparable to the known best track error estimates. The results of the decomposition were then used to evaluate the impact of the improved initial conditions on the forecast. It was shown that the errors in the deterministic component of the intensity had the dominant effect on the forecast skill for the studied cases. This result suggests that the data assimilation of the inner core observations could focus primarily on improving the analysis of wave number 0 and 1 initial structure and on the mechanisms responsible for forcing the evolution of this low-wavenumber structure. For the latter analysis, the assimilation of airborne and satellite remote sensing observations could play significant role.
Rating of Dynamic Coefficient for Simple Beam Bridge Design on High-Speed Railways
NASA Astrophysics Data System (ADS)
Diachenko, Leonid; Benin, Andrey; Smirnov, Vladimir; Diachenko, Anastasia
2018-06-01
The aim of the work is to improve the methodology for the dynamic computation of simple beam spans during the impact of high-speed trains. Mathematical simulation utilizing numerical and analytical methods of structural mechanics is used in the research. The article analyses parameters of the effect of high-speed trains on simple beam spanning bridge structures and suggests a technique of determining of the dynamic index to the live load. Reliability of the proposed methodology is confirmed by results of numerical simulation of high-speed train passage over spans with different speeds. The proposed algorithm of dynamic computation is based on a connection between maximum acceleration of the span in the resonance mode of vibrations and the main factors of stress-strain state. The methodology allows determining maximum and also minimum values of the main efforts in the construction that makes possible to perform endurance tests. It is noted that dynamic additions for the components of the stress-strain state (bending moments, transverse force and vertical deflections) are different. This condition determines the necessity for differentiated approach to evaluation of dynamic coefficients performing design verification of I and II groups of limiting state. The practical importance: the methodology of determining the dynamic coefficients allows making dynamic calculation and determining the main efforts in split beam spans without numerical simulation and direct dynamic analysis that significantly reduces the labour costs for design.
NASA Astrophysics Data System (ADS)
Menzel, Andreas M.
2015-11-01
Diffusion of colloidal particles in a complex environment such as polymer networks or biological cells is a topic of high complexity with significant biological and medical relevance. In such situations, the interaction between the surroundings and the particle motion has to be taken into account. We analyze a simplified diffusion model that includes some aspects of a complex environment in the framework of a nonlinear friction process: at low particle speeds, friction grows linearly with the particle velocity as for regular viscous friction; it grows more than linearly at higher particle speeds; finally, at a maximum of the possible particle speed, the friction diverges. In addition to bare diffusion, we study the influence of a constant drift force acting on the diffusing particle. While the corresponding stationary velocity distributions can be derived analytically, the displacement statistics generally must be determined numerically. However, as a benefit of our model, analytical progress can be made in one case of a special maximum particle speed. The effect of a drift force in this case is analytically determined by perturbation theory. It will be interesting in the future to compare our results to real experimental systems. One realization could be magnetic colloidal particles diffusing through a shear-thickening environment such as starch suspensions, possibly exposed to an external magnetic field gradient.
Code of Federal Regulations, 2011 CFR
2011-07-01
... plastic ladder shall sustain at least 3.3 times the maximum intended load. The ability of a ladder to... that each extra-heavy-duty type 1A metal or plastic ladders shall sustain at least 3.3 times the... parapet is cut to permit passage through the parapet; if the parapet is continuous, the access level shall...
Crop residue is key for sustaining maximum food production and for conservation of our biosphere
USDA-ARS?s Scientific Manuscript database
Crop residue is key in our efforts to move towards agricultural sustainability. This paper provides a quick overview of some selected references and looks at some of the newest advances related to cover crops. Several authors have described in detail the benefits derived from improving soil quality ...
Optimization of tannase production by Aureobasidium pullulans DBS66.
Banerjee, Debdulal; Pati, Bikas R
2007-06-01
Tannase production by Aureobasidium pullulans DBS66 was optimized. The organism produced maximum tannase in the presence of 1% tannic acid after 36 h. Maximum gallic acid accumulation was observed within 36 h and tannic acid in the fermented broth was completely degraded after 42 h of growth. Glucose had a stimulatory effect on tannase synthesis at 0.1% (w/v) concentration. The organism showed maximum tannase production with (NH4)2HPO4 as nitrogen source. Shaking speed of 120 rpm and 50-ml broth volume have been found to be suitable for maximum tannase production.
Life Times of Simulated Traffic Jams
NASA Astrophysics Data System (ADS)
Nagel, Kai
We study a model for freeway traffic which includes strong noise taking into account the fluctuations of individual driving behavior. The model shows emergent traffic jams with a self-similar appearance near the throughput maximum of the traffic. The lifetime distribution of these jams shows a short scaling regime, which gets considerably longer if one reduces the fluctuations when driving at maximum speed but leaves the fluctuations for slowing down or accelerating unchanged. The outflow from a traffic jam self-organizes into this state of maximum throughput.
Završnik, Jernej; Pišot, Rado; Šimunič, Boštjan; Kokol, Peter; Blažun Vošner, Helena
2017-02-01
Objective To investigate associations between running speeds and contraction times in 8- to 13-year-old children. Method This longitudinal study analyzed tensiomyographic measurements of vastus lateralis and biceps femoris muscles' contraction times and maximum running speeds in 107 children (53 boys, 54 girls). Data were evaluated using multiple correspondence analysis. Results A gender difference existed between the vastus lateralis contraction times and running speeds. The running speed was less dependent on vastus lateralis contraction times in boys than in girls. Analysis of biceps femoris contraction times and running speeds revealed that running speeds of boys were much more structurally associated with contraction times than those of girls, for whom the association seemed chaotic. Conclusion Joint category plots showed that contraction times of biceps femoris were associated much more closely with running speed than those of the vastus lateralis muscle. These results provide insight into a new dimension of children's development.
Faster Movement Speed Results in Greater Tendon Strain during the Loaded Squat Exercise
Earp, Jacob E.; Newton, Robert U.; Cormie, Prue; Blazevich, Anthony J.
2016-01-01
Introduction: Tendon dynamics influence movement performance and provide the stimulus for long-term tendon adaptation. As tendon strain increases with load magnitude and decreases with loading rate, changes in movement speed during exercise should influence tendon strain. Methods: Ten resistance-trained men [squat one repetition maximum (1RM) to body mass ratio: 1.65 ± 0.12] performed parallel-depth back squat lifts with 60% of 1RM load at three different speeds: slow fixed-tempo (TS: 2-s eccentric, 1-s pause, 2-s concentric), volitional-speed without a pause (VS) and maximum-speed jump (JS). In each condition joint kinetics, quadriceps tendon length (LT), patellar tendon force (FT), and rate of force development (RFDT) were estimated using integrated ultrasonography, motion-capture, and force platform recordings. Results: Peak LT, FT, and RFDT were greater in JS than TS (p < 0.05), however no differences were observed between VS and TS. Thus, moving at faster speeds resulted in both greater tendon stress and strain despite an increased RFDT, as would be predicted of an elastic, but not a viscous, structure. Temporal comparisons showed that LT was greater in TS than JS during the early eccentric phase (10–14% movement duration) where peak RFDT occurred, demonstrating that the tendon's viscous properties predominated during initial eccentric loading. However, during the concentric phase (61–70 and 76–83% movement duration) differing FT and similar RFDT between conditions allowed for the tendon's elastic properties to predominate such that peak tendon strain was greater in JS than TS. Conclusions: Based on our current understanding, there may be an additional mechanical stimulus for tendon adaptation when performing large range-of-motion isoinertial exercises at faster movement speeds. PMID:27630574
Claireaux, Guy; Couturier, Christine; Groison, Anne-Laure
2006-09-01
This study is an attempt to gain an integrated understanding of the interactions between temperature, locomotion activity and metabolism in the European sea bass (Dicentrarchus labrax). To our knowledge this study is among the few that have investigated the influence of the seasonal changes in water temperature on swimming performance in fish. Using a Brett-type swim-tunnel respirometer the relationship between oxygen consumption and swimming speed was determined in fish acclimatised to 7, 11, 14, 18, 22, 26 and 30 degrees C. The corresponding maximum swimming speed (U(max)), optimal swimming speed (U(opt)), active (AMR) and standard (SMR) metabolic rates as well as aerobic metabolic scope (MS) were calculated. Using simple mathematical functions, these parameters were modelled as a function of water temperature and swimming speed. Both SMR and AMR were positively related to water temperature up to 24 degrees C. Above 24 degrees C SMR and AMR levelled off and MS tended to decrease. We found a tight relationship between AMR and U(max) and observed that raising the temperature increased AMR and increased swimming ability. However, although fish swam faster at high temperature, the net cost of transport (COT(net)) at a given speed was not influence by the elevation of the water temperature. Although U(opt) doubled between 7 degrees C and 30 degrees C (from 0.3 to 0.6 m s(-1)), metabolic rate at U(opt) represented a relatively constant fraction of the animal active metabolic rate (40-45%). A proposed model integrates the effects of water temperature on the interaction between metabolism and swimming performance. In particular the controlling effect of temperature on AMR is shown to be the key factor limiting maximal swimming speed of sea bass.
Nonlinear dead water resistance at subcritical speed
NASA Astrophysics Data System (ADS)
Grue, John
2015-08-01
The dead water resistance F 1 = /1 2 C d w ρ S U 2 (ρ fluid density, U ship speed, S wetted body surface, Cdw resistance coefficient) on a ship moving at subcritical speed along the upper layer of a two-layer fluid is calculated by a strongly nonlinear method assuming potential flow in each layer. The ship dimensions correspond to those of the Polar ship Fram. The ship draught, b0, is varied in the range 0.25h0-0.9h0 (h0 the upper layer depth). The calculations show that Cdw/(b0/h0)2 depends on the Froude number only, in the range close to critical speed, Fr = U/c0 ˜ 0.875-1.125 (c0 the linear internal long wave speed), irrespective of the ship draught. The function Cdw/(b0/h0)2 attains a maximum at subcritical Froude number depending on the draught. Maximum Cdw/(b0/h0)2 becomes 0.15 for Fr = 0.76, b0/h0 = 0.9, and 0.16 for Fr = 0.74, b0/h0 = 1, where the latter extrapolated value of the dead water resistance coefficient is about 60 times higher than the frictional drag coefficient and relevant for the historical dead water observations. The nonlinear Cdw significantly exceeds linear theory (Fr < 0.85). The ship generated waves have a wave height comparable to the upper layer depth. Calculations of three-dimensional wave patterns at critical speed compare well to available laboratory experiments. Upstream solitary waves are generated in a wave tank of finite width, when the layer depths differ, causing an oscillation of the force. In a wide ocean, a very wide wave system develops at critical speed. The force approaches a constant value for increasing time.
Velocity dependence of heavy-ion stopping below the maximum
NASA Astrophysics Data System (ADS)
Sigmund, P.; Schinner, A.
2015-01-01
In the slowing-down of heavy ions in materials, the standard description by Lindhard and Scharff assumes the electronic stopping cross section to be proportional to the projectile speed v up to close to a stopping maximum, which is related to the Thomas-Fermi speed vTF . It is well known that strict proportionality with v is rarely observed, but little is known about the systematics of observed deviations. In this study we try to identify factors that determine positive or negative curvature of stopping cross sections on the basis of experimental data and of binary stopping theory. We estimate the influence of shell structure of the target and of the equilibrium charge of the ion and comment the role of dynamic screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
On measurement of the isotropy of the maximum attainable speed
NASA Astrophysics Data System (ADS)
Wojtsekhowski, Bogdan
2015-04-01
A proposal for a precision experiment to investigate possible anisotropy of the maximum attainable speed (MAS) will be presented. It is based on an electron/positron beam with a large Lorentz factor and a 180-degree magnetic arc. The ratio of the momenta at the two ends of the magnetic arc will be used to form an observable which is sensitive to the MAS variation and immune to most of the instabilities of the apparatus. The search will use the sidereal periodicity of a potential signal. The uncertainty of momenta measurement could be greatly reduced by means of the electron and positron beams simultaneously rotating in the same magnetic system. The projected sensitivity of the measurement and the implications will be discussed.
Combustion in a High-Speed Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M
1933-01-01
An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconom ic impacts. The full report is contained in 27 volumes.« less
The effect of one night's sleep deprivation on adolescent neurobehavioral performance.
Louca, Mia; Short, Michelle A
2014-11-01
To investigate the effects of one night's sleep deprivation on neurobehavioral functioning in adolescents. Participants completed a neurobehavioral test battery measuring sustained attention, reaction speed, cognitive processing speed, sleepiness, and fatigue every 2 h during wakefulness. Baseline performance (defined as those test bouts between 09:00 and 19:00 on days 2 and 3, following two 10-h sleep opportunities) were compared to performance at the same clock time the day following total sleep deprivation. The sleep laboratory at the Centre for Sleep Research. Twelve healthy adolescents (6 male), aged 14-18 years (mean = 16.17, standard deviation = 0.83). Sustained attention, reaction speed, cognitive processing speed, and subjective sleepiness were all significantly worse following one night without sleep than following 10-h sleep opportunities (all main effects of day, P < 0.05). Sleep deprivation led to increased variability on objective performance measures. There were between-subjects differences in response to sleep loss that were task-specific, suggesting that adolescents may not only vary in terms of the degree to which they are affected by sleep loss but also the domains in which they are affected. These findings suggest that one night of total sleep deprivation has significant deleterious effects upon neurobehavioral performance and subjective sleepiness. These factors impair daytime functioning in adolescents, leaving them at greater risk of poor academic and social functioning and accidents and injuries.
Possible improvements in gasoline engines
NASA Technical Reports Server (NTRS)
Ziembinski, S
1923-01-01
High-compression engines are investigated with the three main objects being elimination of vibration, increase of maximum efficiency, and conservation of this efficiency at the highest possible speeds.