Sample records for maximum sustained surface

  1. Viscoelasticity of human oral mucosa: implications for masticatory biomechanics.

    PubMed

    Sawada, A; Wakabayashi, N; Ona, M; Suzuki, T

    2011-05-01

    The dynamic behavior of oral soft tissues supporting removable prostheses is not well understood. We hypothesized that the stress and strain of the mucosa exhibited time-dependent behavior under masticatory loadings. Displacement of the mucosa on the maxillary residual ridge was measured in vivo by means of a magnetic actuator/sensor under vertical loading in partially edentulous individuals. Subject-specific finite element models of homogeneous bone and mucosa were constructed based on computed tomography images. A mean initial elastic modulus of 8.0 × 10(-5) GPa and relaxation time of 494 sec were obtained from the curve adaptation of the finite element output to the in vivo time-displacement relationship. Delayed increase of the maximum compressive strain on the surface of the mucosa was observed under sustained load, while the maximum strain inside the mucosa was relatively low and uninfluenced by the duration of the load. The compressive stress showed a slight decrease with sustained load, due to stress relaxation of the mucosa. On simulation of cyclic load, the increment of the maximum strain and the evidence of residual strain were revealed after each loading. The results support our hypothesis, and suggest that sustained and repetitive loads accumulate as surface strain on the mucosa.

  2. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).

    PubMed

    Strik, David P B T B; Terlouw, Hilde; Hamelers, Hubertus V M; Buisman, Cees J N

    2008-12-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.

  3. Geophysical Potential for Wind Energy over the Open Oceans

    NASA Astrophysics Data System (ADS)

    Possner, A.; Caldeira, K.

    2017-12-01

    Wind turbines continuously remove kinetic energy from the lower troposphere thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is therefore constrained by the rate of kinetic energy replenishment from the atmosphere above. In particular, this study focuses on the maximum sustained transport of kinetic energy through the troposphere to the lowest hundreds of meters above the surface. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 Wm-2 within large wind farms. However, in this study we demonstrate that considerably higher power generation rates may be sustainable over some open ocean areas in giant wind farms. We find that in the North Atlantic maximum extraction rates of up to 6.7 Wm-2 may be sustained by the atmosphere in the annual mean over giant wind farm areas approaching the size of Greenland. In contrast, only a third of this rate is sustained on land for areas of equivalent size. Our simulations indicate a fundamental difference in response of the troposphere and its vertical kinetic energy flux to giant near-surface wind farms. We find that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where large sustained rates of downward transport of kinetic energy and thus rates of kinetic energy extraction may be geophysically possible. While no commercial-scale deep-water wind turbines yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.

  4. Wettability Patterning for Enhanced Dropwise Condensation

    NASA Astrophysics Data System (ADS)

    Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2014-11-01

    Dropwise condensation (DwC), in order to be sustainable, requires removal of the condensate droplets. This removal is frequently facilitated by gravity. The rate of DwC heat transfer depends strongly on the maximum departing droplet diameter. Based on wettability patterning, we present a facile technique designed to control the maximum droplet size in DwC within vapor/air atmospheres, and demonstrate how this approach can be used to enhance the corresponding heat transfer rate. We examine various hydrophilic-superhydrophilic patterns, which, respectively sustain DwC and filmwise (FwC) condensation on the substrate. The fabrication method does notemploy any hydrophobizing agent. By juxtaposing parallel lines of hydrophilic (CA ~ 78°) and superhydrophilic (CA ~ 0°) regions on the condensing surface, we create alternating domains of DwC and FwC. The average droplet size on the DwC domain is reduced by ~ 60% compared to the theoretical maximum, which corresponds to the line width. We compare heat transfer rate between unpatternend DwC surfaces and patterned DwC surfaces. Even after sacrificing 40% of condensing area, we achieve up to 20% improvement in condensate collection rate using an interdigitated superhydrophilic pattern, inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern, particularly under higher vapor loadings in an air/vapor ambient atmosphere. NSF STTR Grant 1331817 via NBD Nano.

  5. Small explosive volcanic plume dynamics: insights from feature tracking velocimetry at Santiaguito lava dome

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Andrews, B. J.

    2016-12-01

    Volcanic explosions eject turbulent, transient jets of hot volcanic gas and particles into the atmosphere. Though the jet of hot material is initially negatively buoyant, the jet can become buoyant through entrainment and subsequent thermal expansion of entrained air that allows the eruptive plume to rise several kilometers. Although basic plume structure is qualitatively well known, the velocity field and dynamic structure of volcanic plumes are not well quantified. An accurate and quantitative description of volcanic plumes is essential for hazard assessments, such as if the eruption will form a buoyant plume that will affect aviation or produce dangerous pyroclastic density currents. Santa Maria volcano, in Guatemala, provides the rare opportunity to safely capture video of Santiaguito lava dome explosions and small eruptive plumes. In January 2016, two small explosions (< 2 km) that lasted several minutes and with little cloud obstruction were recorded for image analysis. The volcanic plume structure is analyzed through sequential image frames from the video where specific features are tracked using a feature tracking velocimetry (FTV) algorithm. The FTV algorithm quantifies the 2D apparent velocity fields along the surface of the plume throughout the duration of the explosion. Image analysis of small volcanic explosions allows us to examine the maximum apparent velocities at two heights above the dome surface, 0-25 meters, where the explosions first appear, and 100-125 meters. Explosions begin with maximum apparent velocities of <15 m/s. We find at heights near the dome surface and 10 seconds after explosion initiation, the maximum apparent velocities transition to sustained velocities of 5-15 m/s. At heights 100-125 meters above the dome surface, the apparent velocities transition to sustained velocities of 5-15 m/s after 25 seconds. Throughout the explosion, transient velocity maximums can exceed 40 m/s at both heights. Here, we provide novel quantification and description of turbulent surface velocity fields of explosive volcanic eruptions at active lava domes.

  6. Multiple interpretations of a pair of images of a surface

    NASA Astrophysics Data System (ADS)

    Longuet-Higgins, H. C.

    1988-07-01

    It is known that, if two optical images of a visually textured surface, projected from finitely separated viewpoints, allow more than one three-dimensional interpretation, then the surface must be part of a quadric passing through the two viewpoints. It is here shown that this quadric is either a plane or a ruled surface of a type first considered by Maybank (1985) in a study of ambiguous optic flow fields. In the latter case, three is the maximum number of distinct interpretations that the two images can sustain.

  7. KSC-04PD-1804

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. KSC videographer Glenn Benson adjusts a high definition camera being used to photograph the south wall of the Vehicle Assembly Building that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.

  8. KSC-04PD-1808

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. KSC videographer Glenn Benson and photographer Kenny Allen photograph damage incurred on the south wall of the Vehicle Assembly Building (VAB) that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.

  9. KSC-04pd1807

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - KSC videographer Glenn Benson adjusts a high definition camera being used to photograph the south wall of the Vehicle Assembly Building (VAB) that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.

  10. KSC-04PD-1805

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. KSC videographer Glenn Benson adjusts a high definition camera being used to photograph the south wall of the Vehicle Assembly Building that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.

  11. KSC-04pd1805

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - KSC videographer Glenn Benson adjusts a high definition camera being used to photograph the south wall of the Vehicle Assembly Building that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.

  12. KSC-04PD-1806

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. KSC videographer Glenn Benson adjusts a high definition camera being used to photograph the south wall of the Vehicle Assembly Building that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.

  13. KSC-04pd1806

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - KSC videographer Glenn Benson adjusts a high definition camera being used to photograph the south wall of the Vehicle Assembly Building that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.

  14. KSC-04pd1808

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - KSC videographer Glenn Benson and photographer Kenny Allen photograph damage incurred on the south wall of the Vehicle Assembly Building (VAB) that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.

  15. KSC-04PD-1807

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. KSC videographer Glenn Benson adjusts a high definition camera being used to photograph the south wall of the Vehicle Assembly Building (VAB) that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.

  16. KSC-04pd1804

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - KSC videographer Glenn Benson adjusts a high definition camera being used to photograph the south wall of the Vehicle Assembly Building that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.

  17. Enhancing dropwise condensation through bioinspired wettability patterning.

    PubMed

    Ghosh, Aritra; Beaini, Sara; Zhang, Bong June; Ganguly, Ranjan; Megaridis, Constantine M

    2014-11-04

    Dropwise condensation (DWC) heat transfer depends strongly on the maximum diameter (Dmax) of condensate droplets departing from the condenser surface. This study presents a facile technique implemented to gain control of Dmax in DWC within vapor/air atmospheres. We demonstrate how this approach can enhance the corresponding heat transfer rate by harnessing the capillary forces in the removal of the condensate from the surface. We examine various hydrophilic-superhydrophilic patterns, which, respectively, sustain and combine DWC and filmwise condensation on the substrate. The material system uses laser-patterned masking and chemical etching to achieve the desired wettability contrast and does not employ any hydrophobizing agent. By applying alternating straight parallel strips of hydrophilic (contact angle ∼78°) mirror-finish aluminum and superhydrophilic regions (etched aluminum) on the condensing surface, we show that the average maximum droplet size on the less-wettable domains is nearly 42% of the width of the corresponding strips. An overall improvement in the condensate collection rate, up to 19% (as compared to the control case of DWC on mirror-finish aluminum) was achieved by using an interdigitated superhydrophilic track pattern (on the mirror-finish hydrophilic surface) inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern design, particularly under higher humidity conditions in the presence of noncondensable gases (NCG), a condition that is more challenging for maintaining sustained DWC.

  18. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.

    PubMed

    Feder, M E

    1986-03-01

    To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.

  19. KSC-04pd1799

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - Repair crews clean up debris left behind after Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. Hurricane damage sustained at KSC included the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.

  20. KSC-04PD-1800

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Repair crews clean up debris left behind after Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. KSC sustained damage to the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.

  1. KSC-04PD-1798

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. A repair crew replaces a light fixture damaged by Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. Hurricane damage sustained at KSC included the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.

  2. KSC-04pd1801

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - A repair crew replaces a light fixture damaged by Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. KSC sustained damage to the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.

  3. KSC-04pd1800

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - Repair crews clean up debris left behind after Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. KSC sustained damage to the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.

  4. KSC-04pd1798

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - A repair crew replaces a light fixture damaged by Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. Hurricane damage sustained at KSC included the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.

  5. KSC-04pd1802

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - Repair crews clean up debris at the railroad yard left behind after Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. KSC sustained damage to the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.

  6. From Dust Devil to Sustainable Swirling Wind Energy

    NASA Astrophysics Data System (ADS)

    Zhang, Mingxu; Luo, Xilian; Li, Tianyu; Zhang, Liyuan; Meng, Xiangzhao; Kase, Kiwamu; Wada, Satoshi; Yu, Chuck Wah; Gu, Zhaolin

    2015-02-01

    Dust devils are common but meteorologically unique phenomena on Earth and on Mars. The phenomenon produces a vertical vortex motion in the atmosphere boundary layer and often occurs in hot desert regions, especially in the afternoons from late spring to early summer. Dust devils usually contain abundant wind energy, for example, a maximum swirling wind velocity of up to 25 m/s, with a 15 m/s maximum vertical velocity and 5 m/s maximum near-surface horizontal velocity can be formed. The occurrences of dust devils cannot be used for energy generation because these are generally random and short-lived. Here, a concept of sustained dust-devil-like whirlwind is proposed for the energy generation. A prototype of a circular shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the circular shed. The pre-rotation vanes can provide the air inflow with angular momentum. The results of numerical simulations and experiment illustrate a promising potential of the circular shed for generating swirling wind energy via the collection of low-temperature solar energy.

  7. Evaluation of Selected Model Constraints and Variables on Simulated Sustainable Yield from the Mississippi River Valley Alluvial Aquifer System in Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2008-01-01

    An existing conjunctive use optimization model of the Mississippi River Valley alluvial aquifer was used to evaluate the effect of selected constraints and model variables on ground-water sustainable yield. Modifications to the optimization model were made to evaluate the effects of varying (1) the upper limit of ground-water withdrawal rates, (2) the streamflow constraint associated with the White River, and (3) the specified stage of the White River. Upper limits of ground-water withdrawal rates were reduced to 75, 50, and 25 percent of the 1997 ground-water withdrawal rates. As the upper limit is reduced, the spatial distribution of sustainable pumping increases, although the total sustainable pumping from the entire model area decreases. In addition, the number of binding constraint points decreases. In a separate analysis, the streamflow constraint associated with the White River was optimized, resulting in an estimate of the maximum sustainable streamflow at DeValls Bluff, Arkansas, the site of potential surface-water withdrawals from the White River for the Grand Prairie Area Demonstration Project. The maximum sustainable streamflow, however, is less than the amount of streamflow allocated in the spring during the paddlefish spawning period. Finally, decreasing the specified stage of the White River was done to evaluate a hypothetical river stage that might result if the White River were to breach the Melinda Head Cut Structure, one of several manmade diversions that prevents the White River from permanently joining the Arkansas River. A reduction in the stage of the White River causes reductions in the sustainable yield of ground water.

  8. The inductive, steady-state sustainment of stable spheromaks

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Jarboe, T. R.; Morgan, K. D.; Sutherland, D. A.; Hansen, C. J.; Everson, C. J.; Penna, J. M.; Nelson, B. A.

    2016-10-01

    Inductive helicity injection current drive with imposed perturbations has led to the breakthrough of spheromak sustainment while maintaining stability. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Additionally, record current gain of 3.9 has been achieved with evidence of pressure confinement. The Helicity Injected Torus - Steady Inductive (HIT-SI) experiment studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method which is ideal for low aspect ratio, toroidal geometries and is compatible with closed flux surfaces. Analysis of surface magnetic probes indicates large n = 0 and 1 toroidal Fourier mode amplitudes and little energy in higher modes. Biorthogonal decomposition shows that almost all of the n = 1 energy is imposed by the injectors, rather than plasma-generated. Ion Doppler spectroscopy (IDS) measurements show coherent, imposed plasma motion of +/-2.5 cm in the region inside r 10 cm (a = 23 cm) and the size of the separate spheromak is consistent with that predicted by Imposed-dynamo Current Drive (IDCD). Coherent motion indicates that the spheromak is stable and a lack of plasma-generated n = 1 energy indicates that the maximum q is maintained below 1 for stability during sustainment.

  9. 48 CFR 252.217-7001 - Surge option.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sustainable rate of delivery for items in this contract. This delivery schedule shall provide acceleration by month up to the maximum sustainable rate of delivery achievable within the Contractor's existing... than the maximum sustainable delivery rate under paragraph (b)(2) of this clause, nor will the exercise...

  10. 48 CFR 252.217-7001 - Surge option.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sustainable rate of delivery for items in this contract. This delivery schedule shall provide acceleration by month up to the maximum sustainable rate of delivery achievable within the Contractor's existing... than the maximum sustainable delivery rate under paragraph (b)(2) of this clause, nor will the exercise...

  11. 48 CFR 252.217-7001 - Surge option.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sustainable rate of delivery for items in this contract. This delivery schedule shall provide acceleration by month up to the maximum sustainable rate of delivery achievable within the Contractor's existing... than the maximum sustainable delivery rate under paragraph (b)(2) of this clause, nor will the exercise...

  12. 48 CFR 252.217-7001 - Surge option.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... sustainable rate of delivery for items in this contract. This delivery schedule shall provide acceleration by month up to the maximum sustainable rate of delivery achievable within the Contractor's existing... than the maximum sustainable delivery rate under paragraph (b)(2) of this clause, nor will the exercise...

  13. Possible ecosystem impacts of applying maximum sustainable yield policy in food chain models.

    PubMed

    Ghosh, Bapan; Kar, T K

    2013-07-21

    This paper describes the possible impacts of maximum sustainable yield (MSY) and maximum sustainable total yield (MSTY) policy in ecosystems. In general it is observed that exploitation at MSY (of single species) or MSTY (of multispecies) level may cause the extinction of several species. In particular, for traditional prey-predator system, fishing under combined harvesting effort at MSTY (if it exists) level may be a sustainable policy, but if MSTY does not exist then it is due to the extinction of the predator species only. In generalist prey-predator system, harvesting of any one of the species at MSY level is always a sustainable policy, but harvesting of both the species at MSTY level may or may not be a sustainable policy. In addition, we have also investigated the MSY and MSTY policy in a traditional tri-trophic and four trophic food chain models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. KSC-04PD-1803

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Fire and Rescue team members clean up the vehicles after Hurricane Frances, which passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  15. KSC-04pd1803

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - Fire and Rescue team members clean up the vehicles after Hurricane Frances, which passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  16. Performance of a Dynamic Initialization Scheme in the Coupled Ocean-Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC)

    DTIC Science & Technology

    2011-10-01

    hypotenuse of the black right triangle indicates the approximate location of the ocean surface. 654 W E A T H E R A N D F O R E C A S T I N G VOLUME 26...become a category 4 hurricane with maximum sustained winds of 115 kt at 0600 UTC 19 August. After passing approxi- mately 125 n mi west of Bermuda , Bill

  17. A pulser-sustainer carbon monoxide electric-discharge supersonic laser

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Srinivasan, G.

    1977-01-01

    Operation of a CW CO electric-discharge supersonic laser with a pulser-sustainer discharge is described. High-power operation as well as independent control over electron energy and density are demonstrated. Maximum input power achieved to date is 100 kW. The maximum output power is 6 kW or 10% of the sustainer positive-column power. Much improved performance appears possible.

  18. Hurricane Hortense: impact on surface water in Puerto Rico

    USGS Publications Warehouse

    Torres-Sierra, Heriberto

    1997-01-01

    Late Monday night, September 9, and into the early morning hours of Tuesday, September 10, 1996, Hurricane Hortense passed over the southwestern part of Puerto Rico (inset). Hurricane Hortense made landfall as a Category One Hurricane (74 to 95 miles per hour) on the Saffir-Simpson Scale, with maximum sustained winds of nearly 80 miles per hour. The eye of Hurricane Hortense moved over the towns of Guayanilla, Yauco, Guánica, Lajas, San Germán, Cabo Rojo, Hormigueros, and Mayagüez (fig. 1).

  19. 20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...

  20. 20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...

  1. 20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...

  2. 20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...

  3. 20 CFR Appendix 2 to Part 220 - Medical-Vocational Guidelines

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... medically determinable impairment(s). 203.00Maximum sustained work capability limited to medium work as a... his or her maximum sustained work capability for sedentary, light, medium, heavy, or very heavy work... at the various functional levels (sedentary, light, medium, heavy, and very heavy) as supported by...

  4. Estimating Tropical Cyclone Surface Wind Field Parameters with the CYGNSS Constellation

    NASA Astrophysics Data System (ADS)

    Morris, M.; Ruf, C. S.

    2016-12-01

    A variety of parameters can be used to describe the wind field of a tropical cyclone (TC). Of particular interest to the TC forecasting and research community are the maximum sustained wind speed (VMAX), radius of maximum wind (RMW), 34-, 50-, and 64-kt wind radii, and integrated kinetic energy (IKE). The RMW is the distance separating the storm center and the VMAX position. IKE integrates the square of surface wind speed over the entire storm. These wind field parameters can be estimated from observations made by the Cyclone Global Navigation Satellite System (CYGNSS) constellation. The CYGNSS constellation consists of eight small satellites in a 35-degree inclination circular orbit. These satellites will be operating in standard science mode by the 2017 Atlantic TC season. CYGNSS will provide estimates of ocean surface wind speed under all precipitating conditions with high temporal and spatial sampling in the tropics. TC wind field data products can be derived from the level-2 CYGNSS wind speed product. CYGNSS-based TC wind field science data products are developed and tested in this paper. Performance of these products is validated using a mission simulator prelaunch.

  5. Maximum sustainable yield and species extinction in a prey-predator system: some new results.

    PubMed

    Ghosh, Bapan; Kar, T K

    2013-06-01

    Though the maximum sustainable yield (MSY) approach has been legally adopted for the management of world fisheries, it does not provide any guarantee against from species extinction in multispecies communities. In the present article, we describe the appropriateness of the MSY policy in a Holling-Tanner prey-predator system with different types of functional responses. It is observed that for both type I and type II functional responses, harvesting of either prey or predator species at the MSY level is a sustainable fishing policy. In the case of combined harvesting, both the species coexist at the maximum sustainable total yield (MSTY) level if the biotic potential of the prey species is greater than a threshold value. Further, increase of the biotic potential beyond the threshold value affects the persistence of the system.

  6. Conjunctive-use optimization model of the Mississippi River Valley alluvial aquifer of northeastern Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.; Clark, Brian R.; Reed, Thomas B.

    2003-01-01

    The Mississippi River Valley alluvial aquifer is a water-bearing assemblage of gravels and sands that underlies about 32,000 square miles of Missouri, Kentucky, Tennessee, Mississippi, Louisiana, and Arkansas. Because of the heavy demands placed on the aquifer, several large cones of depression over 100 feet deep have formed in the potentiometric surface, resulting in lower well yields and degraded water quality in some areas. A ground-water flow model of the alluvial aquifer was previously developed for an area covering 14,104 square miles, extending northeast from the Arkansas River into the northeast corner of Arkansas and parts of southeastern Missouri. The flow model showed that continued ground-water withdrawals at rates commensurate with those of 1997 could not be sustained indefinitely without causing water levels to decline below half the original saturated thickness of the aquifer. To develop estimates of withdrawal rates that could be sustained in compliance with the constraints of critical ground-water area designation, conjunctive-use optimization modeling was applied to the flow model of the alluvial aquifer in northeastern Arkansas. Ground-water withdrawal rates form the basis for estimates of sustainable yield from the alluvial aquifer and from rivers specified within the alluvial aquifer model. A management problem was formulated as one of maximizing the sustainable yield from all ground-water and surface-water withdrawal cells within limits imposed by plausible withdrawal rates, and within specified constraints involving hydraulic head and streamflow. Steady-state flow conditions were selected because the maximized withdrawals are intended to represent sustainable yield of the system (a rate that can be maintained indefinitely). Within the optimization model, 11 rivers are specified. Surface-water diversion rates that occurred in 2000 were subtracted from specified overland flow at the appropriate river cells. Included in these diversions were the planned diversions of 63,339,248 ft3/d for the Bayou Meto project area and 55,078,367 ft3/d for the Grand Prairie project area, which factor in an additional 30 and 40 percent transmission loss, respectively. Streamflow constraints were specified at all 1,165 river cells based on average 7-day minimum flows for 10 years. Sustainable yield for all rivers ranged from 0 (Current, Little Red, and Bayou Meto Rivers) to almost 5 billion cubic feet per day for the Arkansas River. Total sustainable yield from all rivers combined was 12.8 billion cubic feet per day, which represents a substantial source for supplementing ground water to meet the total water demand. Sustainable-yield estimates are affected by the allowable upper limit on withdrawals from wells specified in the optimization model. Ground-water withdrawal rates were allowed to vary as much as 200 percent of the withdrawal rate in 1997. As the overall upper limit on withdrawals is increased, the sustainable yield generally increases. Tests with the optimization model show that without limits on pumping, wells adjacent to sources of water would have optimized withdrawal rates that were orders of magnitude larger than rates corresponding to those of 1997. The sustainable yield from ground water for the entire study area while setting the maximum upper limit as the amount withdrawn in 1997 is 360 million cubic feet per day, which is only about 57 percent of the amount withdrawn in 1997 (635.6 million cubic feet per day). Optimal sustainable yields from within the Bayou Meto irrigation project area and within the Grand Prairie irrigation project area are 18.1 and 9.1 million cubic feet per day, respectively, assuming a maximum allowable withdrawal rate equal to 1997 rates. These values of sustainable yield represent 35 and 30 percent respectively of the amount pumped from these project areas in 1997. Unmet demand (defined as the difference between the optimized withdrawal rate or sustainable yield, a

  7. Humanity's unsustainable environmental footprint.

    PubMed

    Hoekstra, Arjen Y; Wiedmann, Thomas O

    2014-06-06

    Within the context of Earth's limited natural resources and assimilation capacity, the current environmental footprint of humankind is not sustainable. Assessing land, water, energy, material, and other footprints along supply chains is paramount in understanding the sustainability, efficiency, and equity of resource use from the perspective of producers, consumers, and government. We review current footprints and relate those to maximum sustainable levels, highlighting the need for future work on combining footprints, assessing trade-offs between them, improving computational techniques, estimating maximum sustainable footprint levels, and benchmarking efficiency of resource use. Ultimately, major transformative changes in the global economy are necessary to reduce humanity's environmental footprint to sustainable levels. Copyright © 2014, American Association for the Advancement of Science.

  8. Kinetics and Chemistry of Ionization Wave Discharges Propagating Over Dielectric Surfaces

    NASA Astrophysics Data System (ADS)

    Petrishchev, Vitaly

    Experimental studies of near-surface ionization wave electric discharges generated by high peak voltage (20-30 kV), nanosecond duration pulses (full width at half-maximum 50-100 ns) of positive and negative polarity and propagating over dielectric surfaces have been performed. A novel way to sustain diffuse, reproducible, ns pulse surface plasmas at a liquid-vapor interface is demonstrated at buffer gas pressures ranging from 10 to 200 Torr. Generation of surface ionization waves well reproduced shot-to-shot and sustaining diffuse near-surface plasmas is one of the principal advantages of the use of ns pulse discharge waveforms. This makes possible characterization of these plasmas in repetitively pulsed experiments. Numerous applications of these plasmas include low-temperature plasma assisted combustion, plasma fuel reforming, plasma flow control, plasma materials processing, agriculture, biology, and medicine. The objectives of the present work are (i) to demonstrate that surface ionization wave discharge plasmas sustained at a liquid-vapor interface can be used as an experimental platform for studies of near-surface plasma chemical reaction kinetics, at the conditions when the interface acts as a high-yield source of radical species, and (ii) to obtain quantitative insight into dynamics, kinetics and chemistry of surface ionization wave discharges and provide experimental data for validation of kinetic models, to assess their predictive capability. Generation of the initial radical pool may trigger a number of plasma chemical processes leading to formation of a variety of stable product species, depending on the initial composition of the liquid and the buffer gas flow. One of the products formed and detected during surface plasma / liquid water interaction is hydroxyl radical, which is closely relevant to applications of plasmas for biology and medicine. The present work includes detailed studies of surface ionization wave discharges sustained in different buffer gases over solid and liquid dielectric surfaces, such as quartz, distilled water, saline solution, and alcohols, over a wide range of pressures. Specific experiments include: measurements of ionization wave speed; plasma emission imaging using a ns gate camera; detection of surface discharge plasma chemistry products using Fourier transform infrared absorption spectroscopy; surface charge dynamics on short (ns) and long (hundreds of mus) time scales; time-resolved electron density and electron temperature measurements in a ns pulse surface discharge in helium by Thomson scattering; spatially-resolved absolute OH and H atom concentration measurements in ns pulse discharges over distilled water by single-photon and two-photon Laser Induced Fluorescence; and schlieren imaging of perturbations generated by a ns pulse dielectric barrier discharge in a surface plasma actuator in quiescent atmospheric pressure air.

  9. Plasma response to sustainment with imposed-dynamo current drive in HIT-SI and HIT-SI3

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Penna, J. M.; Everson, C. J.; Nelson, B. A.

    2017-07-01

    The helicity injected torus—steady inductive (HIT-SI) program studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method. Stable, high-beta spheromaks have been sustained using steady, inductive current drive. Externally induced loop voltage and magnetic flux are oscillated together so that helicity and power injection are always positive, sustaining the edge plasma current indefinitely. Imposed-dynamo current drive (IDCD) theory further shows that the entire plasma current is sustained. The method is ideal for low aspect ratio, toroidal geometries with closed flux surfaces. Experimental studies of spheromak plasmas sustained with IDCD have shown stable magnetic profiles with evidence of pressure confinement. New measurements show coherent motion of a stable spheromak in response to the imposed perturbations. On the original device two helicity injectors were mounted on either side of the spheromak and the injected mode spectrum was predominantly n  =  1. Coherent, rigid motion indicates that the spheromak is stable and a lack of plasma-generated n  =  1 energy indicates that the maximum q is maintained below 1 during sustainment. Results from the HIT-SI3 device are also presented. Three inductive helicity injectors are mounted on one side of the spheromak flux conserver. Varying the relative injector phasing changes the injected mode spectrum which includes n  =  2, 3, and higher modes.

  10. Psychophysically determined forces of dynamic pushing for female industrial workers: Comparison of two apparatuses.

    PubMed

    Ciriello, Vincent M; Maikala, Rammohan V; Dempsey, Patrick G; O'Brien, Niall V

    2010-01-01

    Using psychophysics, the maximum acceptable forces for pushing have been previously developed using a magnetic particle brake (MPB) treadmill at the Liberty Mutual Research Institute for Safety. The objective of this study was to investigate the reproducibility of maximum acceptable initial and sustained forces while performing a pushing task at a frequency of 1min(-1) both on a MPB treadmill and on a high-inertia pushcart. This is important because our pushing guidelines are used extensively as a ergonomic redesign strategy and we would like the information to be as applicable as possible to cart pushing. On two separate days, nineteen female industrial workers performed a 40-min MPB treadmill pushing task and a 2-hr pushcart task, in the context of a larger experiment. During pushing, the subjects were asked to select a workload they could sustain for 8h without "straining themselves or without becoming unusually tired, weakened, overheated or out of breath." The results demonstrated that maximum acceptable initial and sustained forces of pushing determined on the high inertia pushcart were 0.8% and 2.5% lower than the MPB treadmill. The results also show that the maximum acceptable sustained force of the MPB treadmill task was 0.5% higher than the maximum acceptable sustained force of Snook and Ciriello (1991). Overall, the findings confirm that the existing pushing data developed by the Liberty Mutual Research Institute for Safety still provides an accurate estimate of maximal acceptable forces for the selected combination of distance and frequency of push for female industrial workers.

  11. Effect of surface tension on global modes of confined wake flows

    NASA Astrophysics Data System (ADS)

    Tammisola, Outi; Lundell, Fredrik; Söderberg, L. Daniel

    2011-01-01

    Many wake flows are susceptible to self-sustained oscillations, such as the well-known von Kármán vortex street behind a cylinder that makes a rope beat against a flagpole at a distinct frequency on a windy day. One appropriate method to study these global instabilities numerically is to look at the growth rates of the linear temporal global modes. If all growth rates for all modes are negative for a certain flow field then a self-sustained oscillation should not occur. On the other hand, if one growth rate for one mode is slightly positive, the oscillation will approximately obtain the frequency and shape of this global mode. In our study, we first introduce surface tension between two fluids to the wake-flow problem. Then we investigate its effects on the global linear instability of a spatially developing wake with two co-flowing immiscible fluids. The inlet profile consists of two uniform layers, which makes the problem easily parametrizable. The fluids are assumed to have the same density and viscosity, with the result that the interface position becomes dynamically important solely through the action of surface tension. Two wakes with different parameter values and surface tension are studied in detail. The results show that surface tension has a strong influence on the oscillation frequency, growth rate, and shape of the global mode(s). Finally, we make an attempt to confirm and explain the surface-tension effect based on a local stability analysis of the same flow field in the streamwise position of maximum reverse flow.

  12. Sustainability and Environmental Economics: Some Critical Foci

    EPA Science Inventory

    I present five seminal concepts of environmental economic thought and discuss their applicability to the idea of sustainability. These five, Maximum Sustainable Yield and Steady-state, The Environmental Kuznet’s curve, Substitutability, Discount rate and Intergenerational equity...

  13. Occlusal splint versus modified nociceptive trigeminal inhibition splint in bruxism therapy: a randomized, controlled trial using surface electromyography.

    PubMed

    Dalewski, B; Chruściel-Nogalska, M; Frączak, B

    2015-12-01

    An occlusal splint and a modified nociceptive trigeminal inhibition splint (AMPS, anterior deprogrammer, Kois deprogrammer, Lucia jig, etc.) are commonly and quite frequently used in the treatment of masticatory muscle disorders, although their sustainable and long-lasting effect on these muscles' function is still not very well known. Results of scant surface electromyography studies in patients with temporomandibular disorders have been contradictory. The aim of this study was to evaluate both devices in bruxism therapy; EMG activity levels during postural activity and maximum voluntary contraction of the superficial temporal and masseter muscles were compared before and after 30 days of treatment. Surface electromyography of the examined muscles was performed in two groups of bruxers (15 patients each). Patients in the first group used occlusal splints, while those in the second used modified nociceptive trigeminal inhibition splints. The trial was randomized, controlled and semi-blind. Neither device affected the asymmetry index or postural activity/maximum voluntary contraction ratio after 1 month of treatment. Neither the occlusal nor the nociceptive trigeminal inhibition splint showed any significant influence on the examined muscles. Different scientific methods should be considered in clinical applications that require either direct influence on the muscles' bioelectrical activity or a quantitative measurement of the treatment quality. © 2015 Australian Dental Association.

  14. Skin temperature increase mediated by wearable, long duration, low-intensity therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Langer, Matthew D.; Huang, Wenyi; Ghanem, Angi; Guo, Yuan; Lewis, George K.

    2017-03-01

    One of the safety concerns with the delivery of therapeutic ultrasound is overheating of the transducer-skin interface due to poor or improper coupling. The objective of this research was to define a model that could be used to calculate the heating in the skin as a result of a novel, wearable long-duration ultrasound device. This model was used to determine that the maximum heating in the skin remained below the minimum threshold necessary to cause thermal injury over multiple hours of use. In addition to this model data, a human clinical study used wire thermocouples on the skin surface to measure heating characteristics during treatment with the sustained ultrasound system. Parametric analysis of the model determined that the maximum temperature increase is at the surface of the skin ranged from 40-41.8° C when perfusion was taken into account. The clinical data agreed well with the model predictions. The average steady state temperature observed across all 44 subjects was 40°C. The maximum temperature observed was less than 44° C, which is clinically safe for over 5 hours of human skin contact. The resultant clinical temperature data paired well with the model data suggesting the model can be used for future transducer and ultrasound system design simulation. As a result, the device was validated for thermal safety for typical users and use conditions.

  15. Analysis of AC and DC Lighting Systems with 150-Watt Peak Solar Panel in Denpasar Based on NASA Data

    NASA Astrophysics Data System (ADS)

    Narottama, A. A. N. M.; Amerta Yasa, K.; Suwardana, I. W.; Sapteka, A. A. N. G.; Priambodo, P. S.

    2018-01-01

    Solar energy on the Earth’s surface has different magnitudes on every longitude and latitude. National Aeronautics and Space Administration (NASA) provides surface meteorology and solar energy database which can be accessed openly online. This database delivers information about Monthly Averaged Insolation Incident On A Horizontal Surface, Monthly Averaged Insolation Incident On A Horizontal Surface At Indicated GMT Times and also data about Equivalent Number Of No-Sun Or Black Days for any latitude and longitude. Therefore, we investigate the lighting systems with 150-Watt peak solar panel in Denpasar City, the capital province of Bali. Based on NASA data, we analyse the received wattage by a unit of 150-Watt peak solar panel in Denpasar City and the sustainability of 150-Watt peak solar panel to supply energy for 432-Watt hour/day AC and 360-Watt hour/day DC lighting systems using 1.2 kWh battery. The result shows that the maximum received wattage by a unit of 150-Watt peak solar panel is 0.76 kW/day in October. We concluded that the 1.2 kWh installed battery has higher capacity than the battery capacity needed in March, the month with highest no-sun days, for both AC and DC lighting systems. We calculate that the installed battery can be used to store the sustainable energy from sun needed by AC and DC lighting system for about 2.78 days and 3.51 days, consecutively.

  16. Atomic diffusion in laser surface modified AISI H13 steel

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-07-01

    This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.

  17. Centralized versus distributed reservoirs: an investigation of their implications on environmental flows and sustainable water resources management

    NASA Astrophysics Data System (ADS)

    Eriyagama, Nishadi; Smakhtin, Vladimir; Udamulla, Lakshika

    2018-06-01

    Storage of surface water is widely regarded as a form of insurance against rainfall variability. However, creation of surface storage often endanger the functions of natural ecosystems, and, in turn, ecosystem services that benefit humans. The issues of optimal size, placement and the number of reservoirs in a river basin - which maximizes sustainable benefits from storage - remain subjects for debate. This study examines the above issues through the analysis of a range of reservoir configurations in the Malwatu Oya river basin in the dry zone of Sri Lanka. The study produced multiple surface storage development pathways for the basin under different scenarios of environmental flow (EF) releases and reservoir network configurations. The EF scenarios ranged from zero to very healthy releases. It is shown that if the middle ground between the two extreme EF scenarios is considered, the theoretical maximum safe yield from surface storage is about 65-70 % of the mean annual runoff (MAR) of the basin. It is also identified that although distribution of reservoirs in the river network reduces the cumulative yield from the basin, this cumulative yield is maximized if the ratio among the storage capacities placed in each sub drainage basin is equivalent to the ratio among their MAR. The study suggests a framework to identify drainage regions having higher surface storage potential, to plan for the right distribution of storage capacity within a river basin, as well as to plan for EF allocations.

  18. Individually Dispersed Gold Nanoshell-Bearing Cellulose Nanocrystals with Tailorable Plasmon Resonance.

    PubMed

    Semenikhin, Nikolay S; Kadasala, Naveen Reddy; Moon, Robert J; Perry, Joseph W; Sandhage, Kenneth H

    2018-04-17

    Cellulose nanocrystals (CNCs) can be attractive templates for the generation of functional inorganic/organic nanoparticles, given their fine sizes, aspect ratios, and sustainable worldwide availability in abundant quantities. Here, we present for the first time a scalable, surfactant-free, tailorable wet chemical process for converting commercially available CNCs into individual aspected gold nanoshell-bearing particles with tunable surface plasmon resonance bands. Using a rational cellulose functionalization approach, stable suspensions of positively charged CNCs have been generated. Continuous, conductive, nanocrystalline gold coatings were then applied to the individual, electrostatically stabilized CNCs via decoration with 1-3 nm diameter gold particles followed by electroless gold deposition. Optical analyses indicated that these core-shell nanoparticles exhibited two surface plasmon absorbance bands, with one located in the visible range (near 550 nm) and the other at near infrared (NIR) wavelengths. The NIR band possessed a peak maximum wavelength that could be tuned over a wide range (1000-1300 nm) by adjusting the gold coating thickness. The bandwidth and wavelength of the peak maximum of the NIR band were also sensitive to the particle size distribution and could be further refined by fractionation using viscosity gradient centrifugation.

  19. Fractal based complexity measure and variation in force during sustained isometric muscle contraction: effect of aging.

    PubMed

    Arjunan, Sridhar P; Kumar, Dinesh K; Bastos, Teodiano

    2012-01-01

    This study has investigated the effect of age on the fractal based complexity measure of muscle activity and variance in the force of isometric muscle contraction. Surface electromyogram (sEMG) and force of muscle contraction were recorded from 40 healthy subjects categorized into: Group 1: Young - age range 20-30; 10 Males and 10 Females, Group 2: Old - age range 55-70; 10 Males and 10 Females during isometric exercise at Maximum Voluntary contraction (MVC). The results show that there is a reduction in the complexity of surface electromyogram (sEMG) associated with aging. The results demonstrate that there is an increase in the coefficient of variance (CoV) of the force of muscle contraction and a decrease in complexity of sEMG for the Old age group when compared with the Young age group.

  20. Seasonal reversal of temperature-moisture response of net carbon exchange of biocrusted soils in a cool desert ecosystem.

    NASA Astrophysics Data System (ADS)

    Tucker, C.; Reed, S.; Howell, A.

    2017-12-01

    Carbon cycling associated with biological soil crusts, which occur in interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the `mantle of fertility'), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report data collected in a cool desert ecosystem over one year using a multi-sensor approach to simultaneously measuring temperature and moisture of the biocrust surface layer (0-2 mm), and the deeper soil profile (5-20 cm), concurrent with automated measurement of surface soil CO2 effluxes. Our results illuminate robust relationships between microclimate and field CO2 pulses that have previously been difficult to detect and explain. The temperature of the biocrust surface layer was highly variable, ranging from minimum of -9 °C in winter to maximum of 77 °C in summer with a maximum diurnal range of 61 °C. Temperature cycles were muted deeper in the soil profile. During summer, biocrust and soils were usually hot and dry and CO2 fluxes were tightly coupled to pulse wetting events experienced at the biocrust surface, which consistently resulted in net CO2 efflux (i.e., respiration). In contrast, during the winter, biocrust and soils were usually cold and moist, and there was sustained net CO2 uptake via photosynthesis by biocrust organisms, although during cold dry periods CO2 fluxes were minimal. During the milder spring and fall seasons, short wetting events drove CO2 loss, while sustained wetting events resulted in net CO2 uptake. Thus, the upper and lower bounds of net CO2 exchange at a point in time were functions of the seasonal temperature regime, while the actual flux within those bounds was determined by the magnitude and duration of biocrust and soil wetting events. These patterns reflect both the low temperature sensitivity and slow initiation in response to wetting of photosynthesis compared to respiration by biocrust organisms. Our study highlights the importance of cool and cold periods for C uptake in biocrusted soils of the Colorado Plateau.

  1. Groundwater and surface-water interaction and effects of pumping in a complex glacial-sediment aquifer, phase 2, east-central Massachusetts

    USGS Publications Warehouse

    Eggleston, Jack R.; Zarriello, Phillip J.; Carlson, Carl S.

    2015-12-31

    Model simulations indicate that under average base-flow conditions, the Birch Road wells have a small effect on flow in the Sudbury River during most months, even at the maximum pumping rate of 4.9 ft3/s (3.17 Mgal/d). Maximum percent streamflow depletion in the Sudbury River caused by simulated pumping takes place during simulated drought conditions, when streamflow decreased by as much as 21 percent under maximum continuous pumping. Simulations also indicate that groundwater withdrawals at the Birch Road site could be managed so that adverse streamflow impacts are substantially ameliorated. Under the most ecologically conservative simulated drought conditions, simulated streamflow depletion was reduced from 21 percent to 3 percent by pumping at the maximum rate for 6 months rather than for 12 months. Simulations that return 10 percent of the Birch Road well withdrawals to Pod Meadow Pond indicate a modest reduction in the Sudbury River streamflow depletion and provide a larger percentage increase to streamflow just downstream of the pond. The groundwater model also indicates that well locations can have a large effect on the sustainable pumping rate and so should be chosen carefully. The model provides a tool for evaluating alternative pumping rates and schedules not included in this analysis.

  2. Sustainable aggregates production : green applications for aggregate by-products.

    DOT National Transportation Integrated Search

    2015-06-01

    Increased emphasis in the construction industry on sustainability and recycling requires production of : aggregate gradations with lower dust (cleaner aggregates) and smaller maximum sizeshence, increased : amount of quarry by-products (QBs). QBs ...

  3. 77 FR 12823 - Solicitation of Comments on a Proposed Change to the Disclosure Limitation Policy for Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... policy for information reported on fuel ethanol production capacity, (both nameplate and maximum... fuel ethanol production capacity, (both nameplate and maximum sustainable capacity) on Form EIA-819 as... treat all information reported on fuel ethanol production capacity, (both nameplate and maximum...

  4. Deciphering the Boron Proxy Records of the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Hoenisch, B.; Haynes, L.; Harper, D. T.; Penman, D. E.; Holland, K.; Rosenthal, Y.; Zachos, J. C.

    2016-12-01

    Rapid surface ocean acidification at the PETM has been documented by pronounced decreases in the boron isotope and B/Ca proxies measured in surface dwelling planktic foraminifera (Babila et al., 2016; Penman et al., 2014). However, translating these geochemical signatures to past seawater carbonate chemistry is challenging due to the different-from-modern elemental and isotopic composition of seawater, in addition to the lack of constraints on vital effects in foraminifer species that are now extinct. While the pH decrease can be reasonably quantified from boron isotopes, the application of modern laboratory calibrations to translate the B/Ca signal yields unfeasible estimates, thus raising questions about how well we understand fundamental proxy systematics. Here we present a possible solution to this conundrum from laboratory culture experiments performed under simulated Paleocene seawater conditions, with lower [B] and [Mg], higher [Ca] and across a range of dissolved inorganic carbon and pH. These experiments suggest that raising DIC in addition to acidification amplifies the B/Ca decrease recorded in planktic foraminifera shells, thus providing an opportunity to deconvolve the B/Ca record into pH and DIC signals. Using the boron proxy records in ODP 1209 from Shatsky Rise in the Pacific Ocean as a case study, we will perform a series of sensitivity studies to better constrain the carbon perturbation at the PETM, and the long-term evolution of surface ocean chemistry from the Paleocene into the Eocene. Our results will be compared to LOSCAR model estimates of different carbon input scenarios at the PETM. Babila, T.L., Rosenthal, Y., Wright, J.D. and Miller, K.G. (2016) A continental shelf perspective of ocean acidification and temperature evolution during the Paleocene-Eocene Thermal Maximum. Geology 44, 275-278. Penman, D.E., Hönisch, B., Zeebe, R.E., Thomas, E. and Zachos, J.C. (2014) Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29, 2014PA002621.

  5. Characterization of Viral Load, Viability and Persistence of Influenza A Virus in Air and on Surfaces of Swine Production Facilities.

    PubMed

    Neira, Victor; Rabinowitz, Peter; Rendahl, Aaron; Paccha, Blanca; Gibbs, Shawn G; Torremorell, Montserrat

    2016-01-01

    Indirect transmission of influenza A virus (IAV) in swine is poorly understood and information is lacking on levels of environmental exposure encountered by swine and people during outbreaks of IAV in swine barns. We characterized viral load, viability and persistence of IAV in air and on surfaces during outbreaks in swine barns. IAV was detected in pigs, air and surfaces from five confirmed outbreaks with 48% (47/98) of oral fluid, 38% (32/84) of pen railing and 43% (35/82) of indoor air samples testing positive by IAV RT-PCR. IAV was isolated from air and oral fluids yielding a mixture of subtypes (H1N1, H1N2 and H3N2). Detection of IAV RNA from air was sustained during the outbreaks with maximum levels estimated between 7 and 11 days from reported onset. Our results indicate that during outbreaks of IAV in swine, aerosols and surfaces in barns contain significant levels of IAV potentially representing an exposure hazard to both swine and people.

  6. Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.

    2010-01-01

    The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.

  7. Evaporative cooling over the Tibetan Plateau induced by vegetation growth.

    PubMed

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z X; Li, Yue; Myneni, Ranga B; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-07-28

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.

  8. Evaporative cooling over the Tibetan Plateau induced by vegetation growth

    PubMed Central

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z. X.; Li, Yue; Myneni, Ranga B.; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-01-01

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316

  9. Effect of age and gender on the surface electromyogram during various levels of isometric contraction.

    PubMed

    Arjunan, Sridhar; Kumar, Dinesh; Kalra, Chandan; Burne, John; Bastos, Teodiano

    2011-01-01

    This study reports the effects of age and gender on the surface electromyogram while performing isometric contraction. Experiments were conducted with two age groups--Young (Age: 20-29) and Old (Age: 60-69) where they performed sustained isometric contractions at various force levels (50%, 75%, 100% of maximum voluntary contraction). Traditional features such as root mean square (RMS) and median frequency (MDF) were computed from the recorded sEMG. The result indicates that the MDF of sEMG was not significantly affected by age, but was impacted by gender in both age groups. Also there was a significant change in the RMS of sEMG with age and gender at all levels of contraction. The results also indicate a large inter-subject variation. This study will provide an understanding of the underlying physiological effects of muscle contraction and muscle fatigue in different cohorts.

  10. Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change

    PubMed

    Suter; Wildman

    1999-10-01

    Fishing spiders, Dolomedes triton (Araneae, Pisauridae), propel themselves across the water surface using two gaits: they row with four legs at sustained velocities below 0.2 m s(-)(1) and they gallop with six legs at sustained velocities above 0.3 m s(-)(1). Because, during rowing, most of the horizontal thrust is provided by the drag of the leg and its associated dimple as both move across the water surface, the integrity of the dimple is crucial. We used a balance, incorporating a biaxial clinometer as the transducer, to measure the horizontal thrust forces on a leg segment subjected to water moving past it in non-turbulent flow. Changes in the horizontal forces reflected changes in the status of the dimple and showed that a stable dimple could exist only under conditions that combined low flow velocity, shallow leg-segment depth and a long perimeter of the interface between the leg segment and the water. Once the dimple disintegrated, leaving the leg segment submerged, less drag was generated. Therefore, the disintegration of the dimple imposes a limit on the efficacy of rowing with four legs. The limited degrees of freedom in the leg joints (the patellar joints move freely in the vertical plane but allow only limited flexion in other planes) impose a further constraint on rowing by restricting the maximum leg-tip velocity (to approximately 33 % of that attained by the same legs during galloping). This confines leg-tip velocities to a range at which maintenance of the dimple is particularly important. The weight of the spider also imposes constraints on the efficacy of rowing: because the drag encountered by the leg-cum-dimple is proportional to the depth of the dimple and because dimple depth is proportional to the supported weight, only spiders with a mass exceeding 0.48 g can have access to the full range of hydrodynamically possible dimple depths during rowing. Finally, the maximum velocity attainable during rowing is constrained by the substantial drag experienced by the spider during the glide interval between power strokes, drag that is negligible for a galloping spider because, for most of each inter-stroke interval, the spider is airborne. We conclude that both hydrodynamic and anatomical constraints confine rowing spiders to sustained velocities lower than 0.3 m s(-)(1), and that galloping allows spiders to move considerably faster because galloping is free of these constraints.

  11. Some Studies in Large-Scale Surface Fluxes and Vertical Motions Associated with Land falling Hurricane Katrina over the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.

    2010-12-01

    We investigated the possible relationship between the large- scale heat fluxes and intensity change associated with the landfall of Hurricane Katrina. After reaching the category 5 intensity on August 28th , 2005 over the central Gulf of Mexico, Katrina weekend to category 3 before making landfall (August 29th , 2005) on the Louisiana coast with the maximum sustained winds of over 110 knots. We also examined the vertical motions associated with the intensity change of the hurricane. The data on Convective Available Potential Energy (CAPE), sea level pressure and wind speed were obtained from the Atmospheric Soundings, and NOAA National Hurricane Center (NHC), respectively for the period August 24 to September 3, 2005. We developed an empirical model and a C++ program to calculate surface potential temperatures and heat fluxes using the above data. We also computed vertical motions using CAPE values. The study showed that the large-scale heat fluxes reached maximum (7960W/m2) with the central pressure 905mb. The Convective Available Potential Energy and the vertical motions peaked 3-5 days before landfall. The large atmospheric vertical motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes.

  12. Water Vapor Transfer and Near-Surface Salinity Contrasts in the North Atlantic Ocean.

    PubMed

    Reagan, James; Seidov, Dan; Boyer, Tim

    2018-06-11

    Maintaining North Atlantic (NA) intra-basin near-surface salinity (NSS) contrast between the high NSS (>37.0) in the subtropical NA (STNA) and low NSS (<35.0) in the subpolar NA (SPNA) has been shown to be important in sustaining the strength of the Atlantic Meridional Overturning Circulation. Evaporation (E) exceeding precipitation (P) in the STNA is primarily responsible for the high NSS there, whereas P dominating E in the SPNA contributes to its low NSS. With a basic understanding of NA intra-basin moisture transport, a correlation analysis was conducted between E-P/NSS over the NA subpolar gyre (SPG) and E-P across the rest of the NA over the 1985-2012 time period. Significant anti-correlations exist between E-P/NSS over the NA SPG and E-P over the central/northern STNA. This suggests that during times of high E over the central/northern STNA there is high (low) precipitation (NSS) over the SPG demonstrating a relationship likely exists between E over the STNA and NSS over the SPG. The maximum anti-correlated area is poleward of the maximum E-P location in the STNA, which is examined. These results provide a first step to ultimately utilizing NSS in the NA as a proxy for estimating changes in the hydrological cycle.

  13. Using fuzzy models in machining control system and assessment of sustainability

    NASA Astrophysics Data System (ADS)

    Grinek, A. V.; Boychuk, I. P.; Dantsevich, I. M.

    2018-03-01

    Description of the complex relationship of the optimum velocity with the temperature-strength state in the cutting zone for machining a fuzzy model is proposed. The fuzzy-logical conclusion allows determining the processing speed, which ensures effective, from the point of view of ensuring the quality of the surface layer, the temperature in the cutting zone and the maximum allowable cutting force. A scheme for stabilizing the temperature-strength state in the cutting zone using a nonlinear fuzzy PD–controller is proposed. The stability of the nonlinear system is estimated with the help of grapho–analytical realization of the method of harmonic balance and by modeling in MatLab.

  14. A comparison of the structural strength between fiberglass and jute fiber in the Acehnese Traditional Boat Jalo Kayoh using finite element method

    NASA Astrophysics Data System (ADS)

    Akram; Hasanuddin, Iskandar; Nazaruddin; Syahril Anwar, M.; Zulfan; Ahmad, Norhafizan

    2018-05-01

    The Acehnese traditional boat, known as Jalo Kayoh, is a mean of transportation used by Acehnese fishermen. The main constituent of the boat is wood. However, due to the decline of high-quality wood supply and as a preventative measure of illegal logging, fiberglass and jute fiber are used instead of wood. This study compares the strength of the two materials using finite element method. The Jalo Kayoh model plan stands at 4m in length, 0.6 m in width, and 0.4 m in height. A 2500 N static load is applied to the surface, using a C3D10 quadratic tetrahedron 0.02 mesh. The result of the simulation to the fiberglass is a maximum displacement of 7.123 x 10-5m, while the jute fiber has a maximum displacement of 2.255 x 10-4 m. The maximum stress stands at 1.612 x 106 Pa for the fiberglass and 1.523 x 106 Pa for the jute fiber. The maximum strain occurs at 1.654 x 10-5 for the fiberglass and 4.581 x 10-5 for the jute fiber. To conclude, fiber glass has more stress 1.05 % and less strain 2.76 % than jute fiber and both the materials can sustain the load given.

  15. Optimization of sustained release aceclofenac microspheres using response surface methodology.

    PubMed

    Deshmukh, Rameshwar K; Naik, Jitendra B

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14±0.015% to 85.34±0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12h. The optimized microspheres formulation showed E.E. of 84.87±0.005 with small error value (1.39). The low magnitudes of error and the significant value of R(2) in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enabling Highly Effective Boiling from Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.

    2018-04-01

    A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

  17. Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis.

    PubMed

    Zhang, Shouwei; Gao, Huihui; Li, Jiaxing; Huang, Yongshun; Alsaedi, Ahmed; Hayat, Tasawar; Xu, Xijin; Wang, Xiangke

    2017-01-05

    Metal silicates have attracted extensive interests due to their unique structure and promising properties in adsorption and catalysis. However, their applications were hampered by the complex and expensive synthesis. In this paper, three-dimensional (3D) hierarchical flower-like metal silicate, including magnesium silicate, zinc silicate, nickel silicate and cobalt silicate, were for the first time prepared by using rice husks as a sustainable silicon source. The flower-like morphology, interconnected ultrathin nanosheets structure and high specific surface area endowed them with versatile applications. Magnesium silicate was used as an adsorbent with the maximum adsorption capacities of 557.9, 381.3, and 482.8mg/g for Pb 2+ , tetracycline (TC), and UO 2 2+ , respectively. Ni nanoparticles/silica (Ni NPs/SiO 2 ) exhibited high catalytic activity and good stability for 4-nitrophenol (4-NP) reduction within only ∼160s, which can be attributed to the ultra-small particle size (∼6.8nm), good dispersion and high loading capacity of Ni NPs. Considering the abundance and renewability of rice husks, metal silicate with complex architecture can be easily produced at a large scale and become a sustainable and reliable resource for multifunctional applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. WIND SPEED Monitoring in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2016-12-01

    The wind regime of Russia varies a great deal due to the large size of the country's territory and variety of climate and terrain conditions. Changes in the regime of surface wind are of great practical importance. They can affect heat and water balance. Strong wind is one of the most hazardous meteorological event for various sectors of economy and for infrastructure. The main objective of this research is to monitoring wind speed change in Northern Eurasia At meteorological stations wind speed and wind direction are measured at the height of 10-12 meters over the land surface with the help of wind meters or wind wanes. Calculations were made on the basis of data for the period of 1980-2015. It allowed the massive scale disruption of homogeneity to be eliminated and sufficient period needed to obtain sustainable statistic characteristics to be retained. Data on average and maximum wind speed measured at 1457 stations of Russia were used. The analysis of changes in wind characteristics was made on the basis of point data and series of average characteristics obtained for 18 quasi-homogeneous climatic regions. Statistical characteristics (average and maximum values of wind speed, prevailing wind direction, values of the boundary of the 90%, 95% and 99%-confidence interval in the distribution of maximum wind speed) were obtained for all seasons and for the year as a whole. Values of boundaries of the 95% and 99%-confidence interval in the distribution of maximum wind speed were considered as indicators of extremeness of the wind regime. The trend of changes in average and maximum wind speed was assessed with a linear trend coefficient. A special attention was paid to wind changes in the Arctic where dramatic changes in surface air temperature and sea ice extent and density have been observed during the past decade. The analysis of the results allowed seasonal and regional features of changes in the wind regime on the territory of the northern part of Eurasia to be determined. The outcomes could help to provide specific recommendations to users of hydrometeorological information for making reasonable decisions to minimize losses caused by adverse wind-related weather conditions. The work was supported by the Ministry of Education and Science of the Russian Federation (grant 14.B25.31.0026).

  19. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    NASA Astrophysics Data System (ADS)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled with terrain variables produced better result, with the higher overall accuracy and kappa coefficient than first experiment. The results indicate that the Maximum Entropy method is an applicable, and to classify tree species using satellite imagery data coupled with terrain information can improve the classification of tree species in the study area.

  20. Sustainable biochar to mitigate global climate change

    PubMed Central

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen

    2010-01-01

    Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722

  1. Prediction of surface distress using neural networks

    NASA Astrophysics Data System (ADS)

    Hamdi, Hadiwardoyo, Sigit P.; Correia, A. Gomes; Pereira, Paulo; Cortez, Paulo

    2017-06-01

    Road infrastructures contribute to a healthy economy throughout a sustainable distribution of goods and services. A road network requires appropriately programmed maintenance treatments in order to keep roads assets in good condition, providing maximum safety for road users under a cost-effective approach. Surface Distress is the key element to identify road condition and may be generated by many different factors. In this paper, a new approach is aimed to predict Surface Distress Index (SDI) values following a data-driven approach. Later this model will be accordingly applied by using data obtained from the Integrated Road Management System (IRMS) database. Artificial Neural Networks (ANNs) are used to predict SDI index using input variables related to the surface of distress, i.e., crack area and width, pothole, rutting, patching and depression. The achieved results show that ANN is able to predict SDI with high correlation factor (R2 = 0.996%). Moreover, a sensitivity analysis was applied to the ANN model, revealing the influence of the most relevant input parameters for SDI prediction, namely rutting (59.8%), crack width (29.9%) and crack area (5.0%), patching (3.0%), pothole (1.7%) and depression (0.3%).

  2. Defining trade-offs among conservation, profitability, and food security in the California current bottom-trawl fishery.

    PubMed

    Hilborn, Ray; Stewart, Ian J; Branch, Trevor A; Jensen, Olaf P

    2012-04-01

    Although it is recognized that marine wild-capture fisheries are an important source of food for much of the world, the cost of sustainable capture fisheries to species diversity is uncertain, and it is often questioned whether industrial fisheries can be managed sustainably. We evaluated the trade-off among sustainable food production, profitability, and conservation objectives in the groundfish bottom-trawl fishery off the U.S. West Coast, where depletion (i.e., reduction in abundance) of six rockfish species (Sebastes) is of particular concern. Trade-offs are inherent in this multispecies fishery because there is limited capacity to target species individually. From population models and catch of 34 stocks of bottom fish, we calculated the relation between harvest rate, long-term yield (i.e., total weight of fish caught), profit, and depletion of each species. In our models, annual ecosystem-wide yield from all 34 stocks was maximized with an overall 5.4% harvest rate, but profit was maximized at a 2.8% harvest rate. When we reduced harvest rates to the level (2.2% harvest rate) at which no stocks collapsed (<10% of unfished levels), biomass harvested was 76% of the maximum sustainable yield and profit 89% of maximum. A harvest rate under which no stocks fell below the biomass that produced maximum sustainable yield (1% harvest rate), resulted in 45% of potential yield and 67% of potential profit. Major reductions in catch in the late 1990s led to increase in the biomass of the most depleted stocks, but this rebuilding resulted in the loss of >30% of total sustainable yield, whereas yield lost from stock depletion was 3% of total sustainable yield. There are clear conservation benefits to lower harvest rates, but avoiding overfishing of all stocks in a multispecies fishery carries a substantial cost in terms of lost yield and profit. ©2011 Society for Conservation Biology.

  3. Assessing chronic and climate-induced water risk through spatially distributed cumulative deficit measures: A new picture of water sustainability in India

    NASA Astrophysics Data System (ADS)

    Devineni, Naresh; Perveen, Shama; Lall, Upmanu

    2013-04-01

    India is a poster child for groundwater depletion and chronic water stress. Often, water sustainability is measured through an estimate of the difference between the average supply and demand in a region. However, water supply and demand are highly variable in time and space. Hence, measures of scarcity need to reflect temporal imbalances even for a fixed location. We introduce spatially distributed indices of water stress that integrate over time variations in water supply and demand. The indices reflect the maximum cumulative deficit in a regional water balance within year and across years. This can be interpreted as the amount that needs to be drawn from external storage (either aquifers or surface reservoirs or interarea transfers) to meet the current demand pattern given a variable climate and renewable water supply. A simulation over a long period of record (historical or projected) provides the ability to quantify risk. We present an application at a district level in India considering more than a 100 year data set of rainfall as the renewable supply, and the recent water use pattern for each district. Consumption data are available through surveys at the district level, and consequently, we use this rather than river basins as the unit of analysis. The rainfall endogenous to each district is used as a potentially renewable water supply to reflect the supply-demand imbalances directly at the district level, independent of potential transfers due to upstream-induced runoff or canals. The index is useful for indicating whether small or large surface storage will suffice, or whether the extent of groundwater storage or external transfers, or changes in demand are needed to achieve a sustainable solution. Implications of the analysis for India and for other applications are discussed.

  4. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers.

    PubMed

    Dewangan, Hitesh Kumar; Pandey, Tarun; Maurya, Lakshmi; Singh, Sanjay

    2018-05-01

    The present work is focused on the development and evaluation of single dose sustained-release Hepatitis B surface antigen (HBsAg) loaded nanovaccine for Hepatitis B. The conventional treatment suffers from repeated administration and hence requires a booster dose. Therefore, polymeric nanovaccine of HBsAg was developed by double emulsion solvent evaporation technique, utilizing central composite design for formulation optimization. The effects of independent variables (like polymer amount, stabilizer concentration, aqueous/organic phase ratio and homogenizer speed) were also studied on critical quality attributes like particle size and entrapment efficiency. Nanovaccine was characterized in terms of physicochemical parameters, release, internalization and in vivo immunological evaluation in BALB/c mice after administration by different routes such as oral, sub-cutaneous, nasal and intramuscular. The designed nanovaccine demonstrated nanometric size with smooth surface, negative zeta potential, maximum entrapment, sustained release and better internalization in macrophage and MRC-5 cell line. The immune-stimulating activity of nanovaccine administered by different routes was evaluated by measuring anti-HBsAg titre like specific immunoglobulin IgG and IgA response and cytokine level (interleukin-2, interferon-Y) measurement. The results indicated that the nanovaccine administered by intramuscular route produced better humoral as well as cellular responses and potential carriers for antigen delivery at single dose administration via intramuscular route. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Duration of sustained phonation in kindergarten children.

    PubMed

    Harden, J R; Looney, N A

    1984-03-01

    Maximum sustained phonations of the vowels [a], [u] and [i] were obtained from 160 kindergarten children with a mean age of approximately 6.2 years. Subjects were grouped by sex and by the presence or absence of a voice disorder. Stop watch measurements of each subject's maximum phonations were compared with graphic level recorder measurements of those phonations . The results indicated that (1) the factor of sex had no significant effect on maximum phonation times; (2) the factor of voice group (non-voice-disordered/voice-disordered) did result in a significant effect (P less than 0.01) with the voice-disordered group achieving shorter phonations than the non-voice-disordered group; (3) the phonation times obtained from the two measurement procedures correlate significantly (P less than 0.05). Results also suggest that the vowel effect on maximum phonation time was significant (P less than 0.05) for both groups. The vowel [i] was phonated significantly longer than either [a] or [u] for males and females in both groups.

  6. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells.

    PubMed

    Chen, Qin; Pu, Wenhong; Hou, Huijie; Hu, Jingping; Liu, Bingchuan; Li, Jianfeng; Cheng, Kai; Huang, Long; Yuan, Xiqing; Yang, Changzhu; Yang, Jiakuan

    2018-02-01

    Microbial fuel cells (MFCs) are promising biotechnologies tool to harvest electricity by decomposing organic matter in waste water, and the anode material is a critical factor in determining the performance of MFCs. In this study, chestnut shell is proposed as a novel anode material with mesoporous and microporous structure prepared via a simple carbonization procedure followed by an activation process. The chemical activation process successfully modified the macroporous structure, created more mesoporous and microporous structure and decreased the O-content and pyridinic/pyrrolic N groups on the biomass anode, which were beneficial for improving charge transfer efficiency between the anode surface and microbial biofilm. The MFC with activated biomass anode achieved a maximum power density (23.6 W m -3 ) 2.3 times higher than carbon cloth anode (10.4 W m -3 ). This study introduces a promising and feasible strategy for the fabrication of high performance anodes for MFCs derived from cost-effective, sustainable natural materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Electromyographic Analysis of Single-Leg, Closed Chain Exercises: Implications for Rehabilitation After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Beutler, Anthony I.; Cooper, Leslie W.; Kirkendall, Don T.; Garrett, William E.

    2002-01-01

    Objective: Many knee rehabilitation studies have examined open and closed kinetic chain exercises. However, most studies focus on 2-legged, closed chain exercise. The purpose of our study was to characterize 1-legged, closed chain exercise in young, healthy subjects. Subjects: Eighteen normal subjects (11 men, 7 women; age, 24.6 ± 1.6 years) performed unsupported, 1-legged squats and step-ups to approximately tibial height. Measurements: Knee angle data and surface electromyographic activity from the thigh muscles were recorded. Results: The maximum angle of knee flexion was 111 ± 23° for squats and 101 ± 16° for step-ups. The peak quadriceps activation was 201 ± 66% maximum voluntary isometric contraction, occurring at an angle of 96 ± 16° for squats. Peak quadriceps activation was 207 ± 50% maximum voluntary isometric contraction and occurred at 83 ± 12° for step-ups. Conclusions: The high and sustained levels of quadriceps activation indicate that 1-legged squats and step-ups would be effective in muscle rehabilitation. As functional, closed chain activities, they may also be protective of anterior cruciate ligament grafts. Because these exercises involve no weights or training equipment, they may prove more cost effective than traditional modes of rehabilitation. PMID:12937438

  8. KSC-04pd1783

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - In the RLV hangar at KSC, Terri McCall cleans up equipment removed from the hurricane-ravaged Thermal Protection System Facility (TPSF). The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  9. KSC-04pd1780

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - In the RLV hangar at KSC, United Space Alliance worker Steve Mitchell unpacks equipment that was removed from the hurricane-ravaged Thermal Protection System Facility (TPSF). The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  10. Bioeconomic Sustainability of Cellulosic Biofuel Production on Marginal Lands

    ERIC Educational Resources Information Center

    Gutierrez, Andrew Paul; Ponti, Luigi

    2009-01-01

    The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML biomass…

  11. Seed germination ecology of feather lovegrass [Eragrostis tenella (L.) Beauv. Ex Roemer & J.A. Schultes].

    PubMed

    Chauhan, Bhagirath S

    2013-01-01

    Feather lovegrass [Eragrostis tenella (L.) Beauv. Ex Roemer & J.A. Schultes] is a C4 grass weed that has the ability to grow in both lowland and upland conditions. Experiments were conducted in the laboratory and screenhouse to evaluate the effect of environmental factors on germination, emergence, and growth of this weed species. Germination in the light/dark regime was higher at alternating day/night temperatures of 30/20 °C (98%) than at 35/25 °C (83%) or 25/15 °C (62%). Germination was completely inhibited by darkness. The osmotic potential and sodium chloride concentrations required for 50% inhibition of maximum germination were -0.7 MPa and 76 mM, respectively. The highest seedling emergence (69%) was observed from the seeds sown on the soil surface and no seedlings emerged from seeds buried at depths of 0.5 cm or more. The use of residue as mulches significantly reduced the emergence and biomass of feather lovegrass seedlings. A residue amount of 0.5 t ha(-1) was needed to suppress 50% of the maximum seedlings. Because germination was strongly stimulated by light and seedling emergence was the highest for the seeds sown on the soil surface, feather lovegrass is likely to become a problematic weed in zero-till systems. The knowledge gained from this study could help in developing effective and sustainable weed management strategies.

  12. High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Wen, Jian; Chen, Xiaofei

    2018-03-01

    We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.

  13. Impact of marine reserve on maximum sustainable yield in a traditional prey-predator system

    NASA Astrophysics Data System (ADS)

    Paul, Prosenjit; Kar, T. K.; Ghorai, Abhijit

    2018-01-01

    Multispecies fisheries management requires managers to consider the impact of fishing activities on several species as fishing impacts both targeted and non-targeted species directly or indirectly in several ways. The intended goal of traditional fisheries management is to achieve maximum sustainable yield (MSY) from the targeted species, which on many occasions affect the targeted species as well as the entire ecosystem. Marine reserves are often acclaimed as the marine ecosystem management tool. Few attempts have been made to generalize the ecological effects of marine reserve on MSY policy. We examine here how MSY and population level in a prey-predator system are affected by the low, medium and high reserve size under different possible scenarios. Our simulation works shows that low reserve area, the value of MSY for prey exploitation is maximum when both prey and predator species have fast movement rate. For medium reserve size, our analysis revealed that the maximum value of MSY for prey exploitation is obtained when prey population has fast movement rate and predator population has slow movement rate. For high reserve area, the maximum value of MSY for prey's exploitation is very low compared to the maximum value of MSY for prey's exploitation in case of low and medium reserve. On the other hand, for low and medium reserve area, MSY for predator exploitation is maximum when both the species have fast movement rate.

  14. NASA Satellite Captures Tropical Cyclones Tomas and Ului

    NASA Image and Video Library

    2010-03-17

    NASA Image acquired March 14 - 15, 2010 Two fierce tropical cyclones raged over the South Pacific Ocean in mid-March 2010, the U.S. Navy’s Joint Typhoon Warning Center (JTWC) reported. Over the Solomon Islands, Tropical Cyclone Ului had maximum sustained winds of 130 knots (240 kilometers per hour, 150 miles per hour) and gusts up to 160 knots (300 km/hr, 180 mph). Over Fiji, Tropical Cyclone Tomas had maximum sustained winds of 115 knots (215 km/hr, 132 mph) and gusts up to 140 knots (260 km/hr, 160 mph). The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and Aqua satellites captured both storms in multiple passes over the South Pacific on March 15, 2010, local time. The majority of the image is from the morning of March 15 (late March 14, UTC time) as seen by MODIS on the Terra satellite, with the right portion of the image having been acquired earliest. The wedge-shaped area right of center is from Aqua MODIS, and it was taken in the early afternoon of March 15 (local time). Although it packs less powerful winds, according to the JTWC, Tomas stretches across a larger area. It was moving over the northern Fiji islands when Terra MODIS captured the right portion of the image. According to early reports, Tomas forced more than 5,000 people from their homes while the islands sustained damage to crops and buildings. The JTWC reported that Tomas had traveled slowly toward the south and was passing over an area of high sea surface temperatures. (Warm seas provide energy for cyclones.) This storm was expected to intensify before transitioning to an extratropical storm. Ului is more compact and more powerful. A few hours before this image was taken, the storm had been an extremely dangerous Category 5 cyclone with sustained winds of 140 knots (260 km/hr, 160 mph). Ului degraded slightly before dealing the southern Solomon Islands a glancing blow. Initial news reports say that homes were damaged on the islands, but no one was injured. Like Tomas, Ului had been moving westward over an area of high sea surface temperatures. This storm was expected to continue moving westward before turning south and eventually weakening. The high-resolution image provided above is at 500 meters per pixel. The MODIS Rapid Response System provides this image at additional resolutions. NASA image by Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center. Caption by Michon Scott and Holli Riebeek. Instrument: Terra - MODIS To learn more about this image go here: earthobservatory.nasa.gov/IOTD/view.php?id=43154..

  15. Arctic Cut-Off High Drives the Poleward Shift of a New Greenland Melting Record

    NASA Technical Reports Server (NTRS)

    Tedesco, M.; Mote, T.; Fettweis, X.; Hanna, E.; Jeyaratnam, J.; Booth, J. F.; Datta, R.; Briggs, K.

    2016-01-01

    Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centered over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700+/-50 m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948-2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting melting in the south, where new melting records were set over the past decade. Subject terms: Earth sciences Atmospheric science Climate science

  16. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.

    PubMed

    Kim, Moonkeun; Lee, Sang-Kyun; Ham, Yong-Hyun; Yang, Yil Suk; Kwon, Jong-Kee; Kwon, Kwang-Ho

    2012-08-01

    We designed and fabricated a bimorph cantilever array for sustainable power with an integrated Cu proof mass to obtain additional power and current. We fabricated a cantilever system using single-crystal piezoelectric material and compared the calculations for single and arrayed cantilevers to those obtained experimentally. The vibration energy harvester had resonant frequencies of 60.4 and 63.2 Hz for short and open circuits, respectively. The damping ratio and quality factor of the cantilever device were 0.012 and 41.66, respectively. The resonant frequency at maximum average power was 60.8 Hz. The current and highest average power of the harvester array were found to be 0.728 mA and 1.61 mW, respectively. The sustainable maximum power was obtained after slightly shifting the short-circuit frequency. In order to improve the current and power using an array of cantilevers, we also performed energy conversion experiments.

  17. 29 CFR 1926.1053 - Ladders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plastic ladder shall sustain at least 3.3 times the maximum intended load. The ability of a ladder to... that each extra-heavy-duty type 1A metal or plastic ladders shall sustain at least 3.3 times the... parapet is cut to permit passage through the parapet; if the parapet is continuous, the access level shall...

  18. Crop residue is key for sustaining maximum food production and for conservation of our biosphere

    USDA-ARS?s Scientific Manuscript database

    Crop residue is key in our efforts to move towards agricultural sustainability. This paper provides a quick overview of some selected references and looks at some of the newest advances related to cover crops. Several authors have described in detail the benefits derived from improving soil quality ...

  19. Overview of the HIT-SI3 spheromak experiment

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Everson, C. J.; Penna, J. M.; Nelson, B. A.

    2017-10-01

    The HIT-SI and HIT-SI3 spheromak experiments (a = 23 cm) study efficient, steady-state current drive for magnetic confinement plasmas using a novel method which is ideal for low aspect ratio, toroidal geometries. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Analysis of surface magnetic fields in HIT-SI indicates large n = 0 and 1 mode amplitudes and little energy in higher modes. Within measurement uncertainties all the n = 1 energy is imposed by the injectors, rather than being plasma-generated. The fluctuating field imposed by the injectors is sufficient to sustain the toroidal current through dynamo action whereas the plasma-generated field is not (Hossack et al., Phys. Plasmas, 2017). Ion Doppler spectroscopy shows coherent, imposed plasma motion inside r 10 cm in HIT-SI and a smaller volume of coherent motion in HIT-SI3. Coherent motion indicates the spheromak is stable and a lack of plasma-generated n = 1 energy indicates the maximum q is maintained below 1 for stability during sustainment. In HIT-SI3, the imposed mode structure is varied to test the plasma response (Hossack et al., Nucl. Fusion, 2017). Imposing n = 2, n = 3, or large, rotating n = 1 perturbations is correlated with transient plasma-generated activity. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-96ER54361.

  20. Effect of superficial harrowing on surface properties of sand with rubber and waxed-sand with fibre riding arena surfaces: a preliminary study.

    PubMed

    Tranquille, C A; Walker, V A; Hernlund, E; Egenvall, A; Roepstorff, L; Peterson, M L; Murray, R C

    2015-01-01

    A recent epidemiological study identified various aspects of arena surfaces and arena surface maintenance that were related to risk of injury in horses and that arena maintenance is important in reducing injury risk. However, there has been little research into how properties of arena surfaces change with harrowing. This study aimed to compare the properties of different arena surface types pre- and post-harrowing. The Orono Biomechanical Surface Tester fitted with accelerometers and a single- and a three-axis load cell was used to test 11 arenas with two different surfaces types, sand with rubber (SR) and waxed-sand with fibre (WSF). Three drop tests were carried out at 10 standardised locations on each arena. Mixed models were created to assess the effect of surface type, pre- or post-harrowing, and drop number on the properties of the surface, including maximum horizontal deceleration, maximum vertical deceleration, maximum vertical load and maximum horizontal load. Post-harrowing, none of the parameters were altered significantly on SR. On WSF, maximum vertical deceleration and maximum vertical load significantly decreased post-harrowing. The differences in the effects of superficial harrowing on SR and WSF could be attributed to the different compositions and sizes of the surface material. The results suggest that different maintenance techniques may be more suitable for different surface types and that the effects of superficial harrowing are short-lived due to the rapid re-compaction of the surface with repeated drops on WSF. Further work is required to determine the effects of other maintenance techniques, and on other surface types. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modular Simulation of HEI Fragments and Blast Pressure.

    DTIC Science & Technology

    1992-03-01

    TEU04D MODULAR SIMULATION OF Accesion For HEI FRAGMENTS AND BLAST PRESSURE NTIS CRAMI DTIC TAB 1] THESIS U.a:’ ouIced Jusification Gordon Galloway C... sustained by a component due to disturbances cre- ated in the medium surrounding the component when no fragment im- pacts are possible. In general, a...component will sustain a maximum kill if located within a minimum range from the burst point [RB(MAX)], and will sustain no damage if it is located beyond a

  2. KSC-04PD-1785

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the RLV hangar at KSC, Steve Harrington talks to workers about the equipment removed from the hurricane-ravaged Thermal Protection System Facility (TPSF) now being stored in the hangar. The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  3. KSC-04PD-1782

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the RLV hangar at KSC, United Space Alliance workers Frank Rhodes and Lynn Rosenbauer look at wrapped material removed from the hurricane-ravaged Thermal Protection System Facility (TPSF). The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  4. KSC-04PD-1777

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. United Space Alliance workers Dallas Lewis (left) and Damon Petty carry out equipment from the Thermal Protection System Facility (TPSF). The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. Undamaged equipment is being moved to the RLV hangar at KSC. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  5. KSC-04pd1788

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - In the RLV hangar at KSC, Kevin Harrington, manager of Softgoods Production, talks to workers about the equipment removed from the hurricane-ravaged Thermal Protection System Facility (TPSF) now being stored in the hangar. The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  6. KSC-04pd1792

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - In the RLV hangar at KSC, United Space Alliance workers set up shelves for equipment removed from the hurricane-ravaged Thermal Protection System Facility (TPSF) and now being stored in the hangar. The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  7. KSC-04pd1786

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - In the RLV hangar at KSC, Steve Harrington talks to workers about the equipment removed from the hurricane-ravaged Thermal Protection System Facility (TPSF) now being stored in the hangar. The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  8. KSC-04pd1785

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - In the RLV hangar at KSC, Steve Harrington talks to workers about the equipment removed from the hurricane-ravaged Thermal Protection System Facility (TPSF) now being stored in the hangar. The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  9. KSC-04pd1779

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - United Space Alliance worker Janet Mills stores equipment removed from the hurricane-ravaged Thermal Protection System Facility (TPSF) in the RLV hangar at KSC. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. Undamaged equipment has been moved to the hangar. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  10. KSC-04pd1782

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - In the RLV hangar at KSC, United Space Alliance workers Frank Rhodes and Lynn Rosenbauer look at wrapped material removed from the hurricane-ravaged Thermal Protection System Facility (TPSF). The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  11. KSC-04pd1777

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - United Space Alliance workers Dallas Lewis (left) and Damon Petty carry out equipment from the Thermal Protection System Facility (TPSF). The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. Undamaged equipment is being moved to the RLV hangar at KSC. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  12. KSC-04pd1784

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - In the RLV hangar at KSC, United Space Alliance workers Matt Carter (left) and Mike Sherman set up racks to hold equipment removed from the hurricane-ravaged Thermal Protection System Facility (TPSF). The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  13. KSC-04pd1781

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - In the RLV hangar at KSC, United Space Alliance workers Beth Smith (left) and Theresa Haygood unwrap equipment removed from the hurricane-ravaged Thermal Protection System Facility (TPSF). The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  14. Arctic Amplification and the Northward shift of a new Greenland melting record

    NASA Astrophysics Data System (ADS)

    Tedesco, Marco; Mote, Thomas; Fettweis, Xavier; Hanna, Edward; Booth, James; Jeyaratnam, Jeyavinoth; Datta, Rajashree; Briggs, Kate

    2016-04-01

    Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Using reanalysis data and the outputs of a regional climate model, here we show that the persistence of an exceptional atmospheric ridge, centred over the Arctic Ocean was responsible for a northward shift of surface melting records over Greenland, and for increased accumulation in the south during the summer of 2015. Concurrently, new records of mean monthly zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5700±50 m isohypse over the Arctic were also set. An unprecedented (1948 - 2015) and sustained jet stream easterly flow promoted enhanced runoff, increased surface temperatures and decreased albedo in northern Greenland, while inhibiting melting in the south. The exceptional 2015 summer Arctic atmospheric conditions are consistent with the anticipated effects of Arctic Amplification, including slower zonal winds and increased jet stream wave amplitude. Properly addressing the impact of Arctic Amplification on surface runoff of the Greenland ice sheet is crucial for rigorously quantifying its contribution to current and future sea level rise, and the relative impact of freshwater discharge on the surrounding ocean.

  15. NASA CYGNSS Ocean Wind Observations in the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Balasubramaniam, R.; Mayers, D.; McKague, D. S.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit to measure ocean surface wind speed in the inner core of tropical cyclones with better than 12 hour refresh rates. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification, made possible by the large number of satellites. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Results of measurements made during the 2017 Atlantic hurricane season, including frequent overpasses of Hurricanes Harvey, Irma and Maria, will be presented.

  16. Sustainability assessment of turbofan engine with mixed exhaust through exergetic approach

    NASA Astrophysics Data System (ADS)

    Saadon, S.; Redzuan, M. S. Mohd

    2017-12-01

    In this study, the theory, methods and example application are described for a CF6 high-bypass turbofan engine with mixed exhaust flow based on exergo-sustainable point of view. To determine exergetic sustainability index, the turbofan engine has to undergo detailed exergy analysis. The sustainability indicators reviewed here are the overall exergy efficiency of the system, waste exergy ratio, exergy destruction factor, environmental effect factor and the exergetic sustainability index. The results obtained for these parameters are 26.9%, 73.1%, 38.6%, 2.72 and 0.37, respectively, for the maximum take-off condition of the engine. These results would be useful to better understand the connection between the propulsion system parameters and their impact to the environment in order to make it more sustainable for future development.

  17. The consequences of balanced harvesting of fish communities

    PubMed Central

    Jacobsen, Nis S.; Gislason, Henrik; Andersen, Ken H.

    2014-01-01

    Balanced harvesting, where species or individuals are exploited in accordance with their productivity, has been proposed as a way to minimize the effects of fishing on marine fish communities and ecosystems. This calls for a thorough examination of the consequences balanced harvesting has on fish community structure and yield. We use a size- and trait-based model that resolves individual interactions through competition and predation to compare balanced harvesting with traditional selective harvesting, which protects juvenile fish from fishing. Four different exploitation patterns, generated by combining selective or unselective harvesting with balanced or unbalanced fishing, are compared. We find that unselective balanced fishing, where individuals are exploited in proportion to their productivity, produces a slightly larger total maximum sustainable yield than the other exploitation patterns and, for a given yield, the least change in the relative biomass composition of the fish community. Because fishing reduces competition, predation and cannibalism within the community, the total maximum sustainable yield is achieved at high exploitation rates. The yield from unselective balanced fishing is dominated by small individuals, whereas selective fishing produces a much higher proportion of large individuals in the yield. Although unselective balanced fishing is predicted to produce the highest total maximum sustainable yield and the lowest impact on trophic structure, it is effectively a fishery predominantly targeting small forage fish. PMID:24307676

  18. Surface waters of Elk Creek basin in southwestern Oklahoma

    USGS Publications Warehouse

    Westfall, A.O.

    1963-01-01

    The purpose of this study is to (1) determine the average discharge during a period that is representative of average streamflow conditions, (2) determine the range of discharge, and (3) determine the storage required to supplement natural flows during drought periods. Elk Creek drains 587 square miles of the North Fork Red River basin. The climate is subhumid, and precipitation averages about 23 inches per year. The average discharge at the gaging station near Hobart is 50 cfs (cubic feet per second) or 36,200 acre-feet per year during a 19-year base period, water years 1938-56. The yearly average discharge ranged from 4.6 cfs in 1940 to 146 cfs in 1957. Maximum runoff generally occurs during May and June. The maximum monthly runoff was 64,520 acre-feet in May 1957. The maximum yearly runoff was 105,500 acre-feet in 1957. There is no sustained base flow in the basin. Severe droughts occurred in 1938-40 and 1952-56. The most extended drought occurred from June 1951 to March 1957, during which time there was a prolonged period of no flow of 182 days in 1954-55. A usable storage of 28,000 acre-feet would have been required to provide a regulated discharge of 1,500 acre-feet per month throughout these drought periods. (available as photostat copy only)

  19. 78 FR 19002 - Marine Mammal Protection Act; Draft Revised Stock Assessment Reports for Two Stocks of West...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... optimum sustainable population level (OSP). OSP is defined under the MMPA as '' * * * the number of animals which will result in the maximum productivity of the population or the species, keeping in mind... include: 1. A description of the stock and its geographic range; 2. A minimum population estimate, maximum...

  20. Building Strategic Capabilities for Sustained Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Landgraf, M.; Hufenbach, B.; Houdou, B.

    2016-11-01

    We discuss a lunar exploration architecture that addresses the strategic objective of providing access to the lunar surface. This access enables the most exciting part of the lunar exploration: building a sustained infrastructure on the lunar surface.

  1. Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart.

    PubMed

    Quinn, T Alexander; Kohl, Peter

    2016-12-01

    Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  2. Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart

    PubMed Central

    Quinn, T. Alexander; Kohl, Peter

    2016-01-01

    Aims Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. Methods and results Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. Conclusion In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation. PMID:28011835

  3. The Extent of Active Processing of a Long-Duration Stimulus Modulates the Scalp-Recorded Sustained Potential

    ERIC Educational Resources Information Center

    Campbell, Kenneth; Herzig, Alyssa; Jashmidi, Parastoo

    2009-01-01

    A long-duration stimulus will elicit a negative sustained potential (SP) that is maximum in amplitude over fronto-central areas of the scalp. This study examines how the duration of active attentional processing of the stimulus might also elicit a nonsensory contingent negative variation (CNV) that overlaps and summates to the SP. Subjects were…

  4. A medium-term, stochastic forecast model to support sustainable, mixed fisheries management in the Mediterranean Sea.

    PubMed

    Rätz, H-J; Charef, A; Abella, A J; Colloca, F; Ligas, A; Mannini, A; Lloret, J

    2013-10-01

    A medium-term (10 year) stochastic forecast model is developed and presented for mixed fisheries that can provide estimations of age-specific parameters for a maximum of 10 stocks and 10 fisheries. Designed to support fishery managers dealing with complex, multi-annual management plans, the model can be used to quantitatively test the consequences of various stock-specific and fishery-specific decisions, using non-equilibrium stock dynamics. Such decisions include fishing restrictions and other strategies aimed at achieving sustainable mixed fisheries consistent with the concept of maximum sustainable yield (MSY). In order to test the model, recently gathered data on seven stocks and four fisheries operating in the Ligurian and North Tyrrhenian Seas are used to generate quantitative, 10 year predictions of biomass and catch trends under four different management scenarios. The results show that using the fishing mortality at MSY as the biological reference point for the management of all stocks would be a strong incentive to reduce the technical interactions among concurrent fishing strategies. This would optimize the stock-specific exploitation and be consistent with sustainability criteria. © 2013 The Fisheries Society of the British Isles.

  5. Limits to sustained energy intake. XIII. Recent progress and future perspectives.

    PubMed

    Speakman, John R; Król, Elżbieta

    2011-01-15

    Several theories have been proposed to explain limits on the maximum rate at which animals can ingest and expend energy. These limits are likely to be intrinsic to the animal, and potentially include the capacity of the alimentary tract to assimilate energy--the 'central limitation' hypothesis. Experimental evidence from lactating mice exposed to different ambient temperatures allows us to reject this and similar ideas. Two alternative ideas have been proposed. The 'peripheral limitation' hypothesis suggests that the maximal sustained energy intake reflects the summed demands of individual tissues, which have their own intrinsic limitations on capacity. In contrast, the 'heat dissipation limit' (HDL) theory suggests that animals are constrained by the maximal capacity to dissipate body heat. Abundant evidence in domesticated livestock supports the HDL theory, but data from smaller mammals are less conclusive. Here, we develop a novel framework showing how the HDL and peripheral limitations are likely to be important in all animals, but to different extents. The HDL theory makes a number of predictions--in particular that there is no fixed limit on sustained energy expenditure as a multiple of basal metabolic rate, but rather that the maximum sustained scope is positively correlated with the capacity to dissipate heat.

  6. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  7. Aquifer-yield continuum as a guide and typology for science-based groundwater management

    NASA Astrophysics Data System (ADS)

    Pierce, Suzanne A.; Sharp, John M.; Guillaume, Joseph H. A.; Mace, Robert E.; Eaton, David J.

    2013-03-01

    Groundwater availability is at the core of hydrogeology as a discipline and, simultaneously, the concept is the source of ambiguity for management and policy. Aquifer yield has undergone multiple definitions resulting in a range of scientific methods to calculate and model availability reflecting the complexity of combined scientific, management, policy, and stakeholder processes. The concept of an aquifer-yield continuum provides an approach to classify groundwater yields along a spectrum, from non-use through permissive sustained, sustainable, maximum sustained, safe, permissive mining to maximum mining yields, that builds on existing literature. Additionally, the aquifer-yield continuum provides a systems view of groundwater availability to integrate physical and social aspects in assessing management options across aquifer settings. Operational yield describes the candidate solutions for operational or technical implementation of policy, often relating to a consensus yield that incorporates human dimensions through participatory or adaptive governance processes. The concepts of operational and consensus yield address both the social and the technical nature of science-based groundwater management and governance.

  8. Alternative Zoning Scenarios for Regional Sustainable Land Use Controls in China: A Knowledge-Based Multiobjective Optimisation Model

    PubMed Central

    Xia, Yin; Liu, Dianfeng; Liu, Yaolin; He, Jianhua; Hong, Xiaofeng

    2014-01-01

    Alternative land use zoning scenarios provide guidance for sustainable land use controls. This study focused on an ecologically vulnerable catchment on the Loess Plateau in China, proposed a novel land use zoning model, and generated alternative zoning solutions to satisfy the various requirements of land use stakeholders and managers. This model combined multiple zoning objectives, i.e., maximum zoning suitability, maximum planning compatibility and maximum spatial compactness, with land use constraints by using goal programming technique, and employed a modified simulated annealing algorithm to search for the optimal zoning solutions. The land use zoning knowledge was incorporated into the initialisation operator and neighbourhood selection strategy of the simulated annealing algorithm to improve its efficiency. The case study indicates that the model is both effective and robust. Five optimal zoning scenarios of the study area were helpful for satisfying the requirements of land use controls in loess hilly regions, e.g., land use intensification, agricultural protection and environmental conservation. PMID:25170679

  9. Properties of tonic episodes of masseter muscle activity during waking hours and sleep in subjects with and without history of orofacial pain.

    PubMed

    Mude, Acing Habibie; Kawakami, Shigehisa; Kato, Seiya; Minagi, Shogo

    2018-04-01

    To provide a scientific data related to the tonic activity of masseter muscle in subjects with and without history of orofacial pain during their normal daily life. Thirty-three subjects were divided into two groups, a pain history group (PHG) and a non-pain history group (non-PHG), based on their responses to the Research Diagnostic Criteria for Temporomandibular Disorders questionnaire. After excluding four subjects with incomplete recordings, full-day masseter muscle surface EMGs of 29 subjects (10 men, 19 women; mean age 24.1 years) were analyzed. Tonic episode (TE) was defined as continuous EMG activity with a duration at least 2s with intensities above twice the baseline noise level. TEs were classified into 6 strength categories (<7.5%, 7.5-10%, 10-15%, 15-25%, 25-40% and >40% of the maximum voluntary clenching (MVC)). The mean duration of activity observed in the non-PHG+2 SD was adopted as a cutoff for identifying sustained TE. During waking hours, the incidence of sustained TEs was significantly higher in the PHG than in the non-PHG (p<0.05). The incidence and total duration of sustained TEs were significantly higher in the PHG than in the non-PHG at intensities of 7.5-10% MVC, 10-15% MVC, and 15-25% MVC (p<0.05). No significant difference was observed during sleep. Within the limitations of this study, it would be concluded that sustained TEs may have a correlation with orofacial pain and the intensity range of 7.5-25% MVC would be an important range for future clenching studies. Copyright © 2017. Published by Elsevier Ltd.

  10. Synthesis and characterization of pharmaceutical surfactant templated mesoporous silica: Its application to controlled delivery of duloxetine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Ganesh; Pushparaj, Hemalatha; Peng, Mei Mei

    2014-03-01

    Graphical abstract: - Highlights: • Usefulness of dual pharmaceutical surfactants in silica synthesis was evaluated. • Effects of concentration of secondary template (Tween-40) were studied. • Effects of fixed solvothermal condition on mesostructure formation were studied. • Duloxetine drug loading capability was studied. • Sustained release of duloxetine was evaluated. - Abstract: A new group of mesoporous silica nanoparticles (MSNs) were synthesized using combination pharmaceutical surfactants, Triton X-100 and Tween-40 as template and loaded with duloxetine hydrochloride (DX), for improving the sustained release of DX and patterns with high drug loading. Agglomerated spherical silica MSNs were synthesized by sol–gel andmore » solvothermal methods. The calcined and drug loaded MSNs were characterized using X-ray diffraction (XRD), Braunner–Emmett–Teller (BET), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), diffuse reflectance ultraviolet–visible (DRS-UV–vis) spectroscopy. MSNs with high surface area and pore volume were selected and studied for their DX loading and release. The selected MSNs can accommodate a maximum of 34% DX within it. About 90% was released at 200 h and hence, the synthesized MSNs were capable of engulfing DX and sustain its release. Further form the Ritger and Peppas, Higuchi model for mechanism drug release from all the MSN matrices follows anomalous transport or Non-Fickian diffusion with the ‘r’ and ‘n’ value 0.9 and 0.45 < n < 1, respectively. So, from this study it could be concluded that the MSNs synthesized using pharmaceutical templates were better choice of reservoir for the controlled delivery of drug which requires sustained release.« less

  11. Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI's Dry Sea Mix as a novel growth medium.

    PubMed

    Dhangdhariya, Jaykishan H; Dubey, Sonam; Trivedi, Hiral B; Pancha, Imran; Bhatt, Jwalant K; Dave, Bharti P; Mishra, Sandhya

    2015-05-01

    Oceans have significant potential to empower mankind and thus marine organisms are believed to be an enormous source for useful biomolecules. Polyhydroxyalkanoates (PHAs) are biological macromolecules that can be applied in nearly all fields. In the present study, Bacillus megaterium strain JK4h has been exploited for maximum PHB production using novel Dry Sea Mix (DSM) via Central Composite Design (CCD) of Response Surface Methodology (RSM) approach. The isolate was found to be producing 56.77% Cell Dry Weight (CDW) of PHAs within 24h, with optimized combinations of peptone, yeast extract and glucose. The PHB yield had been increased 2.61 fold compared to un-optimized experiments. The obtained PHA/PHB had been chemically characterized through Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicate the successful optimization for maximum production of biological macromolecule and it was found to be highly pure polyhydroxybutyrate (PHB). Thus, DSM can be served as a novel and cost effective medium for PHA production offering the use of marine resources as a "green" sustainable alternative. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Estimation of organic carbon loss potential in north of Iran

    NASA Astrophysics Data System (ADS)

    Shahriari, A.; Khormali, F.; Kehl, M.; Welp, G.; Scholz, Ch.

    2009-04-01

    The development of sustainable agricultural systems requires techniques that accurately monitor changes in the amount, nature and breakdown rate of soil organic matter and can compare the rate of breakdown of different plant or animal residues under different management systems. In this research, the study area includes the southern alluvial and piedmont plains of Gorgan River extended from east to west direction in Golestan province, Iran. Samples from 10 soil series and were collected from cultivation depth (0-30 cm). Permanganate-oxidizable carbon (POC) an index of soil labile carbon, was used to show soil potential loss of organic carbon. In this index shows the maximum loss of OC in a given soil. Maximum loss of OC for each soil series was estimated through POC and bulk density (BD). The potential loss of OC were estimated between 1253263 and 2410813 g/ha Carbon. Stable organic constituents in the soil include humic substances and other organic macromolecules that are intrinsically resistant against microbial attack, or that are physically protected by adsorption on mineral surfaces or entrapment within clay and mineral aggregates. However, the (Clay + Silt)/OC ratio had a negative significant (p < 0.001) correlation with POC content, confirming the preserving effect of fine particle.

  13. Influence of Transient Atmospheric Circulation on the Surface Heating of the Pacific Warm Pool

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chou, Shu-Hsien; Chan, Pui-King

    2003-01-01

    Analyses of data on clouds, winds, and surface heat fluxes show that the transient behavior of basin-wide large-scale circulation has a significant influence on the warm pool sea surface temperature (SST). Trade winds converge to regions of the highest SST in the equatorial western Pacific. These regions have the largest cloud cover and smallest wind speed. Both surface solar heating and evaporative cooling are weak. The reduced evaporative cooling due to weakened winds exceeds the reduced solar heating due to enhanced cloudiness. The result is a maximum surface heating in the strong convective and high SST regions. Data also show that the maximum surface heating in strong convective regions is interrupted by transient atmospheric and oceanic circulation. Due to the seasonal variation of the insolation at the top of the atmosphere, trade winds and clouds also experience seasonal variations. Regions of high SST and low-level convergence follow the Sun, where the surface heating is a maximum. As the Sun moves away from a convective region, the strong trade winds set in, and the evaporative cooling enhances, resulting in a net cooling of the surface. During an El Nino, the maximum SST and convective region shifts eastward from the maritime continent to the equatorial central Pacific. Following the eastward shift of the maximum SST, the region of maximum cloudiness and surface heating also shift eastward. As the atmospheric and oceanic circulation returns to normal situations, the trade winds increase and the surface heating decreases. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds is one of the major factors that modulate the SST distribution of the Pacific warm pool.

  14. Formulation and Evaluation of Morin-Loaded Solid Lipid Nanoparticles.

    PubMed

    Ikeuchi-Takahashi, Yuri; Ishihara, Chizuko; Onishi, Hiraku

    2016-09-01

    In this study, solid lipid nanoparticle (SLN) suspensions were prepared using a base of hard fat with or without ethylcellulose (EC) and polyvinyl alcohols (PVA) and polysorbate (Tween) 60 surfactants. Commercially available PVAs vary in their degree of saponification and polymerization, and the appropriate PVAs to form SLNs from hard fat with or without EC were investigated. A relatively low-saponification-degree PVA was required to reproducibly form SLN suspensions without EC and relatively high-saponification-degree PVAs were suitable for SLNs with EC. The release of morin from SLNs with EC was more sustained than that from SLNs without EC. The maximum plasma concentration (Cmax) of SLNs with and without EC were almost the same, and both were higher than that of a morin suspension. The area under the curve for 0 to 360 min (AUC0-360) of SLNs with EC was increased compared with those of a morin suspension and SLNs without EC. The median diameter of SLNs with EC and a very low-saponification-degree PVA was decreased compared to other formulation, and morin release was more sustained for this formulation. SLNs with EC and a very low-saponification-degree PVA showed higher Cmax and AUC0-360 than SLNs with EC lacking a very low-saponification-degree PVA. The optimized SLNs with EC and a very low-saponification-degree PVA improved bioavailability via increased accessibility to the enterocyte surface by decreased particle size and increased permeation of SLN encapsulated morin through the intestinal membrane by sustained release properties.

  15. Influence of sustained submaximal clenching fatigue test on electromyographic activity and maximum voluntary bite forces in healthy subjects and patients with temporomandibular disorders.

    PubMed

    Xu, L; Fan, S; Cai, B; Fang, Z; Jiang, X

    2017-05-01

    This study aimed to investigate whether the fatigue induced by sustained motor task in the jaw elevator muscles differed between healthy subjects and patients with temporomandibular disorder (TMD). Fifteen patients with TMD and thirteen age- and sex-matched healthy controls performed a fatigue test consisting of sustained clenching contractions at 30% maximal voluntary clenching intensity until test failure (the criterion for terminating the fatigue test was when the biting force decreased by 10% or more from the target force consecutively for >3 s). The pre- and post-maximal bite forces (MBFs) were measured. Surface electromyographic signals were recorded from the superficial masseter muscles and anterior temporal muscles bilaterally, and the median frequency at the beginning, middle and end of the fatigue test was calculated. The duration of the fatigue test was also quantified. Both pre- and post-MBFs were lower in patients with TMD than in controls (P < 0·01). No significant difference was found in the percentage change in MBF between groups. The duration of the fatigue test in TMD patients was significantly shorter than that of the controls (P < 0·05). Our results suggest that, compared to healthy subjects, patients with TMD become more easily fatigued, but the electromyographic activation process during the fatigue test is similar between healthy subjects and patients with TMD. However, the mechanisms involved in this process remain unclear, and further research is warranted. © 2017 John Wiley & Sons Ltd.

  16. Food Self-Sufficiency across scales: How local can we go?

    NASA Astrophysics Data System (ADS)

    Pradhan, Prajal; Lüdeke, Matthias K. B.; Reusser, Dominik E.; Kropp, Jürgen P.

    2013-04-01

    "Think global, act local" is a phrase often used in sustainability debates. Here, we explore the potential of regions to go for local supply in context of sustainable food consumption considering both the present state and the plausible future scenarios. We analyze data on the gridded crop calories production, the gridded livestock calories production, the gridded feed calories use and the gridded food calories consumption in 5' resolution. We derived these gridded data from various sources: Global Agro-ecological Zone (GAEZ v3.0), Gridded Livestock of the World (GLW), FAOSTAT, and Global Rural-Urban Mapping Project (GRUMP). For scenarios analysis, we considered changes in population, dietary patterns and possibility of obtaining the maximum potential yield. We investigate the food self-sufficiency multiple spatial scales. We start from the 5' resolution (i.e. around 10 km x 10 km in the equator) and look at 8 levels of aggregation ranging from the plausible lowest administrative level to the continental level. Results for the different spatial scales show that about 1.9 billion people live in the area of 5' resolution where enough calories can be produced to sustain their food consumption and the feed used. On the country level, about 4.4 billion population can be sustained without international food trade. For about 1 billion population from Asia and Africa, there is a need for cross-continental food trade. However, if we were able to achieve the maximum potential crop yield, about 2.6 billion population can be sustained within their living area of 5' resolution. Furthermore, Africa and Asia could be food self-sufficient by achieving their maximum potential crop yield and only round 630 million populations would be dependent on the international food trade. However, the food self-sufficiency status might differ under consideration of the future change in population, dietary patterns and climatic conditions. We provide an initial approach for investigating the regional and the local potential to address food security across multiple spatial scales. We identify the areas where one can depend more on local/regional products as a transition path towards sustainable consumption and production.

  17. Centrifugation-Assisted Fog-Collecting Abilities of Metal-Foam Structures with Different Surface Wettabilities.

    PubMed

    Ji, Keju; Zhang, Jun; Chen, Jia; Meng, Guiyun; Ding, Yafei; Dai, Zhendong

    2016-04-20

    The collection of water from fog is a simple and sustainable means of obtaining freshwater for human and animal consumption. Herein, we address the use of metal foam in fog collection and present a novel fog-collecting device fabricated from copper foam. This device, which can also be used in other liquid-gas separation applications, is a 3D extension of biologically inspired 1D and 2D materials. The network structure of the 3D material effectively increased the contact area and interaction time of the skeleton structure and fog compared to those of traditional 2D fog-collecting materials. The main aspects investigated in this study were the influences of the inertial centrifugal force generated by rotating the metal-foam samples and the use of samples with different surface wettabilities on the fog-collecting performance. Superhydrophilic and superhydrophobic samples were found to have higher collection efficiencies at low and high rotational speeds, respectively, and a maximum efficiency of 86% was achieved for superhydrophobic copper foam (20 pores per inch) rotated at 1500 rpm.

  18. Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation.

    PubMed

    Holder, Shima L; Lee, Ching-Hwa; Popuri, Srinivasa R; Zhuang, Meng-Xin

    2016-09-20

    The effects of plasticization and cross-linking on the performance of chitosan as promising proton exchange membranes (PEMs) for bioelectricity generation in microbial fuel cells (MFCs) were investigated. The physico-chemical properties of chitosan (CS), sorbitol-chitosan (S-CS), phosphorylated-chitosan (CS-P) and phosphorylated-sorbitol-chitosan (S-CS-P) membranes were investigated by FESEM-EDS, FTIR-ATR, XRD, TGA, tensile strength and sorption studies. The performance of the fabricated PEMs was assessed by power density and cation exchange capacity (CEC). Maximum power densities achieved were 130.03, 20.76, 94.59 and 7.42mW/m(2) for CS-P, S-CS-P, S-CS and CS membranes respectively. Phosphorylation of the CS membranes increased CEC and tensile strength, attributed to an increase in bonded amide and phosphate ionic surface groups. Further, 49.07% COD removal from municipal wastewater was achieved with CS-P membranes. Thus, through chemical modifications, the physico-chemical and mechanical properties of natural abundant biopolymer chitosan can be enhanced for its use as an environmentally sustainable PEM in MFC technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. KSC-04PD-1794

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. United Space Alliance worker Kathy Evans works on equipment in the temporary tile shop set up in the RLV hangar at KSC. The hurricane-ravaged Thermal Protection System Facility (TPSF), which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. Undamaged equipment was removed from the TPSF and stored in the hangar. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  20. Does warmer China land attract more super typhoons?

    PubMed Central

    Xu, Xiangde; Peng, Shiqiu; Yang, Xiangjing; Xu, Hongxiong; Tong, Daniel Q.; Wang, Dongxiao; Guo, Yudi; Chan, Johnny C. L.; Chen, Lianshou; Yu, Wei; Li, Yineng; Lai, Zhijuan; Zhang, Shengjun

    2013-01-01

    Accurate prediction of where and when typhoons (or named hurricanes which form over the North Atlantic Ocean) will make landfall is critical to protecting human lives and properties. Although the traditional method of typhoon track prediction based on the steering flow theory has been proven to be an effective way in most situations, it slipped up in some cases. Our analysis of the long-term Chinese typhoon records reveals that typhoons, especially super typhoons (those with maximum sustained surface winds of greater than 51 ms−1), have a trend to make landfalls toward warmer land in China over the past 50 years (1960–2009). Numerical sensitivity experiments using an advanced atmospheric model further confirm this finding. Our finding suggests an alternative approach to predict the landfall tracks of the most devastating typhoons in the southeastern China. PMID:23519311

  1. KSC-04PD-1776

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. United Space Alliance workers Dallas Lewis (left) and Damon Petty clean up hurricane debris inside the Thermal Protection System Facility (TPSF). Much of the roof was torn off by Hurricane Frances as it passed over Central Florida during the Labor Day weekend. Undamaged equipment has been moved to the RLV hangar at KSC. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  2. KSC-04pd1793

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - United Space Alliance worker Janet Mills works on equipment in the temporary tile shop set up in the RLV hangar at KSC. The hurricane-ravaged Thermal Protection System Facility (TPSF), which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. Undamaged equipment was removed from the TPSF and stored in the hangar. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  3. KSC-04pd1789

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - A temporary tile shop has been set up in the RLV hangar at KSC after equipment was removed from the hurricane-ravaged Thermal Protection System Facility (TPSF). Here United Space Alliance worker Bab Jarosz works with the 30-needle sewing machines. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  4. KSC-04pd1794

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - United Space Alliance worker Kathy Evans works on equipment in the temporary tile shop set up in the RLV hangar at KSC. The hurricane-ravaged Thermal Protection System Facility (TPSF), which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. Undamaged equipment was removed from the TPSF and stored in the hangar. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  5. KSC-04pd1776

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - United Space Alliance workers Dallas Lewis (left) and Damon Petty clean up hurricane debris inside the Thermal Protection System Facility (TPSF). Much of the roof was torn off by Hurricane Frances as it passed over Central Florida during the Labor Day weekend. Undamaged equipment has been moved to the RLV hangar at KSC. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  6. The Pressurized Logistics Module: Providing Consumables and Resupply Logistics to the Lunar Surface for a Long-duration Manned Mission

    NASA Technical Reports Server (NTRS)

    Carpenter, Amanda; Knight, Amanda

    2008-01-01

    In response to President Bush s 2004 Vision for Space Exploration initiative, NASA established an agency-wide Lunar Architecture Team (LAT) to develop the high-level requirements, assumptions, ground-rules and objectives for a manned mission to the moon. During Phase II of the evaluation, the Habitation Focus Element Group was directed to conceptually develop and design a Pressurized Logistics Module (PLM). The PLM task was delivered with one major requirement: to derive a system with minimal mass and cost, and a maximum, functional, internal volumetric area in order to provide the maximum amount of consumables, supportability and logistic re-supply for a crew of four to the Lunar surface with an overall integrated maximum weight of 5200kg. The PLM was derived from the Habitation Group s "mini-Hab" option. This concept required that the PLM have an aluminum-clad graphite epoxy external truss, utilized for increased mobility and stability, which would encompass a 2.7 meter diameter pressurized aluminum-lithium cylinder. Several trade studies and analyses were performed to determine the final length and orientation of the module, the number of systems required to maintain the PLM, and the number of hatches/mating mechanisms which would successfully and efficiently meet the requirements. Of the five specific configurations assessed, the PLM was determined to have a 3 meter by 3 meter by 5 meter external truss with a 2.7 meter diameter and 5 meter long horizontal, pressurized cylinder with one hatch/mating mechanism on one end cone. Two major assumptions aided in the formulation of the technical baseline: 1) the PLM should be sustainable for up to 18 months on the Lunar Lander without connection to its final destination, the Lunar Outpost, and 2) it must be self-sufficient to withstand a maximum eight hour transit from the Lander to the Outpost. Per these assumptions, eight major systems constitute the PLM: structures, passive mating, protection, power, thermal, avionics, life support and outfitting. Including a conservative 20% growth, the overall estimated tare weight for the PLM was determined to be 2181kg. The tare weight of the design allowed the available internal volume of the cylinder with a 0.20 meter high floor to transport the maximum of either 176 single Crew Transfer Bags (CTBs) or 3019kg.

  7. Light extraction block with curved surface

    DOEpatents

    Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.

    2016-03-22

    Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.

  8. Inventory of File gfs.t06z.smartguam06.tm00.grib2

    Science.gov Websites

    (0=sea, 1=land) [Proportion] 009 surface APCP 3-6 hour acc Total Precipitation [kg/m^2] 010 surface ] 020 surface TMAX 3-6 hour acc Maximum Temperature [K] 021 surface TMIN 3-6 hour acc Minimum Temperature [K] 022 surface MAXRH 3-6 hour acc Maximum Relative Humidity [%] 023 surface MINRH 3-6 hour acc

  9. Fishing and bottom water temperature as drivers of change in maximum shell length in Atlantic surfclams (Spisula solidissima)

    NASA Astrophysics Data System (ADS)

    Munroe, D. M.; Narváez, D. A.; Hennen, D.; Jacobson, L.; Mann, R.; Hofmann, E. E.; Powell, E. N.; Klinck, J. M.

    2016-03-01

    Maximum shell length of Atlantic surfclams (Spisula solidissima) on the Middle Atlantic Bight (MAB) continental shelf, obtained from federal fishery survey data from 1982-present, has decreased by 15-20 mm. Two potential causes of this decreasing trend, fishery removal of large animals and stress due to warming bottom temperatures, were investigated using an individual-based model for post-settlement surfclams and a fifty-year hindcast of bottom water temperatures on the MAB. Simulations showed that fishing and/or warming bottom water temperature can cause decreases in maximum surfclam shell length (body size) equivalent to those observed in the fished stock. Independently, either localized fishing rates of 20% or sustained bottom temperatures that are 2 °C warmer than average conditions generate the observed decrease in maximum shell length. However, these independent conditions represent extremes and are not sustained in the MAB. The combined effects of fishing and warmer temperatures can generate simulated length decreases that are similar to observed decreases. Interannual variability in bottom water temperatures can also generate fluctuations in simulated shell length of up to 20 mm over a period of 10-15 years. If the change in maximum size is not genotypic, simulations also suggest that shell size composition of surfclam populations can recover if conditions change; however, that recovery could take a decade to become evident.

  10. Breaking ground: Pedological, geological, and ecological implications of soil bioturbation

    NASA Astrophysics Data System (ADS)

    Wilkinson, Marshall T.; Richards, Paul J.; Humphreys, Geoff S.

    Soil and its biota are fundamental components of the "Critical Zone": Earth's living skin that most directly sustains life. Within that zone, geologically-rapid soil and saprolite displacement by biota, particularly invertebrate meso- and macrofauna, affects a large proportion of Earth's soils. This was first recognised by late-19th century observers, on both sides of the Atlantic Ocean, who regarded bioturbation as fundamental to soil formation. Throughout much of the 20th century, however, the agronomical focus of soil scientists and the dominant paradigm of landscape evolution relegated bioturbation. As a result, many aspects of bioturbation are still not widely appreciated. Only in the last few decades has a re-evaluation commenced, in a range of disciplines. Primary effects of bioturbation, which we quantify herein, include soil production from saprolite, the formation of surface mounds, soil burial, and downslope transport. Rates of bioturbation can be as rapid as sustained maximum rates of tectonic uplift. In concert with surface geomorphic processes, bioturbation alters fundamental properties of soil, including particle-size distribution, porosity, the content of carbon and other nutrients, and creep flux rate. The precise influence of biotic mixing is regulated by its depth function. Earth's incredibly diverse soil biota also perform a number of functions, at a range of spatial and temporal scales, that extend beyond soil to landscape evolution, ecosystem engineering, niche construction, and carbon cycling. Understanding these linkages—which have operated since the evolution of trees in the Devonian Period—is of growing importance as we seek a fuller picture of Earth's history to predict and manage its future.

  11. Sustained Observations of Air-Sea Fluxes and Air-Sea Interaction at the Stratus Ocean Reference Station

    NASA Astrophysics Data System (ADS)

    Weller, Robert

    2014-05-01

    Since October 2000, a well-instrumented surface mooring has been maintained some 1,500 km west of the coast of northern Chile, roughly in the location of the climatological maximum in marine stratus clouds. Statistically significant increases in wind stress and decreases in annual net air-sea heat flux and in latent heat flux have been observed. If the increased oceanic heat loss continues, the region will within the next decade change from one of net annual heat gain by the ocean to one of neat annual heat loss. Already, annual evaporation of about 1.5 m of sea water a year acts to make the warm, salty surface layer more dense. Of interest is examining whether or not increased oceanic heat loss has the potential to change the structure of the upper ocean and potentially remove the shallow warm, salty mixed layer that now buffers the atmosphere from the interior ocean. Insights into how that warm, shallow layer is formed and maintained come from looking at oceanic response to the atmosphere at diurnal tie scales. Restratification each spring and summer is found to depend upon the occurrence of events in which the trade winds decay, allowing diurnal warming in the near-surface ocean to occur, and when the winds return resulting in a net upward step in sea surface temperature. This process is proving hard to accurately model.

  12. Creation of a magnetic barrier at a noble q close to physical midpoint between two resonant surfaces in the ASDEX UG tokamak

    NASA Astrophysics Data System (ADS)

    Vazquez, Justin; Ali, Halima; Punjabi, Alkesh

    2009-11-01

    Ciraolo, Vittot and Chandre method of building invariant manifolds inside chaos in Hamiltonian systems [Ali H. and Punjabi A, Plasma Phys. Control. Fusion, 49, 1565--1582 (2007)] is used in the ASDEX UG tokamak. In this method, a second order perturbation is added to the perturbed Hamiltonian [op cit]. It creates an invariant torus inside the chaos, and reduces the plasma transport. The perturbation that is added to the equilibrium Hamiltonian is at least an order of magnitude smaller than the perturbation that causes chaos. This additional term has a finite, limited number of Fourier modes. Resonant magnetic perturbations (m,n) = (3,2)+(4,3) are added to the field line Hamiltonian for the ASDEX UG. An area-preserving map for the field line trajectories in the ASDEX UG is used. The common amplitude δ of these modes that gives complete chaos between the resonant surfaces ψ43 and ψ32 is determined. A magnetic barrier is built at a surface with noble q that is very nearly equals to the q at the physical midpoint between the two resonant surfaces. The maximum amplitude of magnetic perturbation for which this barrier can be sustained is determined. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.

  13. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    EPA Science Inventory

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...

  14. Limits to CO2-Neutrality of Burning Wood. (Review)

    NASA Astrophysics Data System (ADS)

    Abolins, J.; Gravitis, J.

    2016-08-01

    Consumption of wood as a source of energy is discussed with respect to efficiency and restraints to ensure sustainability of the environment on the grounds of a simple analytical model describing dynamics of biomass accumulation in forest stands - a particular case of the well-known empirical Richards' equation. Amounts of wood harvested under conditions of maximum productivity of forest land are presented in units normalised with respect to the maximum of the mean annual increment and used to determine the limits of CO2-neutrality. The ecological "footprint" defined by the area of growing stands necessary to absorb the excess amount of CO2 annually released from burning biomass is shown to be equal to the land area of a plantation providing sustainable supply of fire-wood.

  15. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    PubMed

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  16. Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea.

    PubMed

    Attama, A A; Reichl, S; Müller-Goymann, C C

    2009-08-01

    The aim of the study was to formulate and evaluate surface-modified solid lipid nanoparticles sustained delivery system of timolol hydrogen maleate, a prototype ocular drug using a human cornea construct. Surface-modified solid lipid nanoparticles containing timolol with and without phospholipid were formulated by melt emulsification with high-pressure homogenization and characterized by particle size, wide-angle X-ray diffraction, encapsulation efficiency, and in vitro drug release. Drug transport studies through cornea bioengineered from human donor cornea cells were carried out using a modified Franz diffusion cell and drug concentration analyzed by high-performance liquid chromatography. Results show that surface-modified solid lipid nanoparticles possessed very small particles (42.9 +/- 0.3 nm, 47.2 +/- 0.3 nm, 42.7 +/- 0.7 nm, and 37.7 +/- 0.3 nm, respectively for SM-SLN 1, SM-SLN 2, SM-SLN 3, and SM-SLN 4) with low polydispersity indices, increased encapsulation efficiency (> 44%), and sustained in vitro release compared with unmodified lipid nanoparticles whose particles were greater than 160 nm. Permeation of timolol hydrogen maleate from the surface-modified lipid nanoparticles across the cornea construct was sustained compared with timolol hydrogen maleate solution in distilled water. Surface-modified solid lipid nanoparticles could provide an efficient way of improving ocular bioavailability of timolol hydrogen maleate.

  17. Motor unit recruitment and bursts of activity in the surface electromyogram during a sustained contraction.

    PubMed

    Riley, Zachary A; Terry, Mary E; Mendez-Villanueva, Alberto; Litsey, Jane C; Enoka, Roger M

    2008-06-01

    Bursts of activity in the surface electromyogram (EMG) during a sustained contraction have been interpreted as corresponding to the transient recruitment of motor units, but this association has never been confirmed. The current study compared the timing of trains of action potentials discharged by single motor units during a sustained contraction with the bursts of activity detected in the surface EMG signal. The 20 motor units from 6 subjects [recruitment threshold, 35.3 +/- 11.3% maximal voluntary contraction (MVC) force] that were detected with fine wire electrodes discharged 2-9 trains of action potentials (7.2 +/- 5.6 s in duration) when recruited during a contraction that was sustained at a force below its recruitment threshold (target force, 25.4 +/- 10.6% MVC force). High-pass filtering the bipolar surface EMG signal improved its correlation with the single motor unit signal. An algorithm applied to the surface EMG was able to detect 75% of the trains of motor unit action potentials. The results indicate that bursts of activity in the surface EMG during a constant-force contraction correspond to the transient recruitment of higher-threshold motor units in healthy individuals, and these results could assist in the diagnosis and design of treatment in individuals who demonstrate deficits in motor unit activation.

  18. Natural recharge to sustainable yield from the barind aquifer: a tool in preparing effective management plan of groundwater resources.

    PubMed

    Monirul Islam, Md; Kanungoe, P

    2005-01-01

    This paper presents the results of water balance study and aquifer simulation modeling for preliminary estimation of the recharge rate and sustainable yield for the semi arid Barind Tract region of Bangladesh. The outcomes of the study are likely to be useful for planning purposes. It is found from detailed water balance study for the area that natural recharge rates in the Barind Tract vary widely year to year. It may have resulted from the method used for the calculation. If the considered time interval had been smaller than the monthly rainfall, the results could have been different. Aquifer Simulation Modeling (ASM) for the Barind aquifer is used to estimate long-term sustainable yield of the groundwater considering limiting drawdown from the standpoint of economic pumping cost. In managing a groundwater basin efficiently and effectively, evaluation of the maximum annual groundwater yield of the basin that can be withdrawn and used without producing any undesirable effect is one of the most important issues. In investigating such recharge rate, introduction of certain terms such as sustainable yield and safe yield has been accompanied. Development of this area involves proper utilization of this vast land, which is possible only through ensured irrigation for agriculture. The Government of Bangladesh has a plan to develop irrigation facilities by optimum utilization of available ground and surface water. It is believed that the groundwater table is lowering rapidly and the whole region is in an acute state of deforestation. Indiscriminate groundwater development may accelerate deforestation trend. In this context estimation of actual natural recharge rate to the aquifer and determination of sustainable yield will assist in proper management and planning of environmentally viable abstraction schemes. It is revealed from the study that the sustainable yield of ground water (204 mm/y) is somewhat higher than the long-term annual average recharge (152.7 mm) to the groundwater reservoir. The reason behind this is that the rivers within and around the Barind Tract might have played the role of influent rivers.

  19. Release behavior of tanshinone IIA sustained-release pellets based on crack formation theory.

    PubMed

    Liu, Pan; Li, Jin; Liu, Jianping; Yang, Jikun; Fan, Yongqing

    2012-08-01

    The objective of this study was to investigate the drug release mechanism and in vivo performance of Tanshinone IIA sustained-release pellets, coated with blends of polyvinyl acetate (PVAc) and poly(vinyl alcohol)-poly(ethylene glycol) (PVA-PEG) graft copolymer. A formulation screening study showed that pellets coated with PVAc-PVA-PEG at a ratio of 70:30 (w/w) succeeded in achieving a 24 h sustained release, irrespective of the coating weight (from 2% to 10%). Both the microscopic observation and mathematical model gave further insight into the underlying release mechanism, indicating that diffusion through water-filled cracks was dominant for the control of drug release. In vivo test showed that the maximum plasma concentration of sustained-release pellets was decreased from 82.13 ± 17.05 to 40.50 ± 11.72 ng mL as that of quick-release pellets. The time of maximum concentration, half time, and mean residence time were all prolonged from 3.80 ± 0.40 to 8.02 ± 0.81 h, 4.28 ± 1.21 to 8.18 ± 2.06 h, and 8.60 ± 1.59 to 17.50 ± 2.78 h, compared with uncoated preparations. A good in vitro-in vivo correlation was characterized by a high coefficient of determination (r = 0.9772). In conclusion, pellets coated with PVAc-PVA-PEG could achieve a satisfactory sustained-release behavior based on crack formation theory. Copyright © 2012 Wiley Periodicals, Inc.

  20. Conjunctive-use optimization model and sustainable-yield estimation for the Sparta aquifer of southeastern Arkansas and north-central Louisiana

    USGS Publications Warehouse

    McKee, Paul W.; Clark, Brian R.; Czarnecki, John B.

    2004-01-01

    Conjunctive-use optimization modeling was done to assist water managers and planners by estimating the maximum amount of ground water that hypothetically could be withdrawn from wells within the Sparta aquifer indefinitely without violating hydraulic-head or stream-discharge constraints. The Sparta aquifer is largely a confined aquifer of regional importance that comprises a sequence of unconsolidated sand units that are contained within the Sparta Sand. In 2000, more than 35.4 million cubic feet per day (Mft3/d) of water were withdrawn from the aquifer by more than 900 wells, primarily for industry, municipal supply, and crop irrigation in Arkansas. Continued, heavy withdrawals from the aquifer have caused several large cones of depression, lowering hydraulic heads below the top of the Sparta Sand in parts of Union and Columbia Counties and several areas in north-central Louisiana. Problems related to overdraft in the Sparta aquifer can result in increased drilling and pumping costs, reduced well yields, and degraded water quality in areas of large drawdown. A finite-difference ground-water flow model was developed for the Sparta aquifer using MODFLOW, primarily in eastern and southeastern Arkansas and north-central Louisiana. Observed aquifer conditions in 1997 supported by numerical simulations of ground-water flow show that continued pumping at withdrawal rates representative of 1990 - 1997 rates cannot be sustained indefinitely without causing hydraulic heads to drop substantially below the top of the Sparta Sand in southern Arkansas and north-central Louisiana. Areas of ground-water levels below the top of the Sparta Sand have been designated as Critical Ground-Water Areas by the State of Arkansas. A steady-state conjunctive-use optimization model was developed to simulate optimized surface-water and ground-water withdrawals while maintaining hydraulic-head and streamflow constraints, thus determining the 'sustainable yield' for the aquifer. Initial attempts to estimate sustainable yield using simulated 1997 hydraulic heads as initial heads in Scenario 1 and 100 percent of the baseline 1990-1997 withdrawal rate as the lower specified limit in Scenario 2 led to infeasible results. Sustainable yield was estimated successfully for scenario 3 with three variations on the upper limit of withdrawal rates. Additionally, ground-water withdrawals in Union County were fixed at 35.6 percent of the baseline 1990-1997 withdrawal rate in Scenario 3. These fixed withdrawals are recognized by the Arkansas Soil and Water Conservation Commission to be sustainable as determined in a previous study. The optimized solutions maintained hydraulic heads at or above the top of the Sparta Sand (except in the outcrop areas where unconfined conditions occur) and streamflow within the outcrop areas was maintained at or above minimum levels. Scenario 3 used limits of 100, 150, and 200 percent of baseline 1990-1997 withdrawal rates for the upper specified limit on 1,119 withdrawal decision variables (managed wells) resulting in estimated sustainable yields ranging from 11.6 to 13.2 Mft3/d in Arkansas and 0.3 to 0.5 Mft3/d in Louisiana. Assuming the total 2 Conjunctive-Use Optimization Model and Sustainable-Yield Estimation for the Sparta Aquifer of Southeastern Arkansas and North-Central Louisiana water demand is equal to the baseline 1990-1997 withdrawal rates, the sustainable yields estimated from the three scenarios only provide 52 to 59 percent of the total ground-water demand for Arkansas; the remainder is defined as unmet demand that could be obtained from large, sustainable surface-water withdrawals.

  1. Vegetation placement for summer built surface temperature moderation in an urban microclimate.

    PubMed

    Millward, Andrew A; Torchia, Melissa; Laursen, Andrew E; Rothman, Lorne D

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  2. Vegetation Placement for Summer Built Surface Temperature Moderation in an Urban Microclimate

    NASA Astrophysics Data System (ADS)

    Millward, Andrew A.; Torchia, Melissa; Laursen, Andrew E.; Rothman, Lorne D.

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  3. Evaluation of Process Performance for Sustainable Hard Machining

    NASA Astrophysics Data System (ADS)

    Rotella, Giovanna; Umbrello, Domenico; , Oscar W. Dillon, Jr.; Jawahir, I. S.

    This paper aims to evaluate the sustainability performance of machining operation of through-hardening steel, AISI 52100, taking into account the impact of the material removal process in its various aspects. Experiments were performed for dry and cryogenic cutting conditions using chamfered cubic boron nitride (CBN) tool inserts at varying cutting conditions (cutting speed and feed rate). Cutting forces, mechanical power, tool wear, white layer thickness, surface roughness and residual stresses were investigated in order to evaluate the effects of extreme in-process cooling on the machined surface. The results indicate that cryogenic cooling has the potential to be used for surface integrity enhancement for improved product life and more sustainable functional performance.

  4. Examination of sustained gait speed during extended walking in individuals with chronic stroke.

    PubMed

    Altenburger, Peter A; Dierks, Tracy A; Miller, Kristine K; Combs, Stephanie A; Van Puymbroeck, Marieke; Schmid, Arlene A

    2013-12-01

    To determine if individuals with chronic stroke were able to sustain their peak gait speed during the 6-minute walk test (6MWT), and to explore this sustainability across community ambulation potential subgroups. Prospective cross-sectional study. University-based research laboratory, hospitals, and stroke support groups. A sample of individuals with chronic stroke (N=48) completed a series of questionnaires and physical outcome measures, including gait mat assessment, during a single visit. Not applicable; 1-time cross-sectional data collection. During the 6MWT, we measured peak gait speed and end gait speed to assess sustainability, along with beginning gait speed, total distance walked, and rating of perceived exertion. We also assessed maximum gait speed during the 10-meter walk test (10MWT). Finally, we examined these gait outcomes across the subgroups. During the 6MWT, peak gait speed declined from .89m/s (SD=.38) to an end speed of .82m/s (SD=.36), whereas perceived exertion increased from 7.7 (SD=2.6) to 11.8 (SD=3.6). This peak gait speed was slower than the 10MWT maximum speed of 1.06m/s (SD=.51), but faster than the 6MWT beginning speed of .81m/s (SD=.34). The unlimited community ambulator subgroup was the primary contributor to sustainability differences. Predicting community ambulation potential based on the discrete gait speed from the 10MWT and endurance based on the average from the 6MWT might be incomplete if gait speed sustainability is not also assessed. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Development and application of a community sustainability visualization tool through integration of US EPA’s Sustainable and Health Community Research Program tasks

    EPA Science Inventory

    Maintaining a harmonious balance between economic, social, and environmental well-being is paramount to community sustainability. Communities need a practical/usable suite of measures to assess their current position on a "surface" of sustainability created from the interaction ...

  6. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  7. 49 CFR 1.82 - The Federal Aviation Administration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., with due consideration of safety, capacity, efficiency, environmental compatibility and sustainability... connections to surface transportation, and other efforts to increase the environmental sustainability of the... improve airport safety, efficiency, and sustainability; (13) Exercising the final authority for carrying...

  8. 49 CFR 1.82 - The Federal Aviation Administration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., with due consideration of safety, capacity, efficiency, environmental compatibility and sustainability... connections to surface transportation, and other efforts to increase the environmental sustainability of the... improve airport safety, efficiency, and sustainability; (13) Exercising the final authority for carrying...

  9. 49 CFR 1.82 - The Federal Aviation Administration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., with due consideration of safety, capacity, efficiency, environmental compatibility and sustainability... connections to surface transportation, and other efforts to increase the environmental sustainability of the... improve airport safety, efficiency, and sustainability; (13) Exercising the final authority for carrying...

  10. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics

    PubMed Central

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2012-01-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:23960836

  11. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics.

    PubMed

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2013-04-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  12. 76 FR 69720 - Don Pedro Hydro, LLC; Moccasin Pumped Storage, LLC; Notice of Competing Preliminary Permit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... storage capacity of 25,000 acre-feet and a surface area of 241 acres at maximum normal water surface... penstocks; (4) a powerhouse with four 250 MW pump/turbines having an installed capacity of approximately... capacity of 25,000 acre-feet and a surface area of 240 acres at maximum normal water surface elevation of 1...

  13. KSC-04PD-1778

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Columbia debris hangar at KSC, a United Space Alliance worker lines up air heaters salvaged from the hurricane-ravaged Thermal Protection System Facility (TPSF) in order to dry them out. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. Undamaged equipment has been moved to the RLV hangar at KSC. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  14. Analytic studies on satellite detection of severe, two-cell tornadoes

    NASA Technical Reports Server (NTRS)

    Carrier, G. F.; Dergarabedian, P.; Fendell, F. E.

    1979-01-01

    From funnel-cloud-length interpretation, the severe tornado is characterized by peak swirl speed relative to the axis of rotation of about 90 m/s. Thermohydrodynamic achievement of the pressure deficit from ambient necessary to sustain such swirls requires that a dry, compressionally heated, non-rotating downdraft of initially tropopause-level air lie within an annulus of rapidly swirling, originally low-level air ascending on a near-moist-adiabatic locus of thermodynamic states. The two-cell structure furnishes an observable parameter possibly accessible to a passively instrumented, geosynchronous meteorological satellite with mesoscale resolution, for early detection of a severe tornado. Accordingly, the low-level turnaround region, in which the surface inflow layer separates to become a free ascending layer and for which inviscid modeling suffices, is examined quantitatively. Preliminary results indicate that swirl overshoot, i.e., swirl speeds in the turnaround region in excess of the maximum achieved in the potential vortex, is modest.

  15. Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria.

    PubMed

    Sakurai, Hidehiro; Masukawa, Hajime

    2007-01-01

    This review article explores the potential of using mariculture-raised cyanobacteria as solar energy converters of hydrogen (H(2)). The exploitation of the sea surface for large-scale renewable energy production and the reasons for selecting the economical, nitrogenase-based systems of cyanobacteria for H(2) production, are described in terms of societal benefits. Reports of cyanobacterial photobiological H(2) production are summarized with respect to specific activity, efficiency of solar energy conversion, and maximum H(2) concentration attainable. The need for further improvements in biological parameters such as low-light saturation properties, sustainability of H(2) production, and so forth, and the means to overcome these difficulties through the identification of promising wild-type strains followed by optimization of the selected strains using genetic engineering are also discussed. Finally, a possible mechanism for the development of economical large-scale mariculture operations in conjunction with international cooperation and social acceptance is outlined.

  16. KSC-04pd1778

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - In the Columbia debris hangar at KSC, a United Space Alliance worker lines up air heaters salvaged from the hurricane-ravaged Thermal Protection System Facility (TPSF) in order to dry them out. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. Undamaged equipment has been moved to the RLV hangar at KSC. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  17. KSC-04pd1791

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - United Space Alliance worker Bab Jarosz works with the 30-needle sewing machines from the Thermal Protection System Facility (TPSF). A temporary tile shop has been set up in the RLV hangar at KSC after equipment was removed from the hurricane-ravaged facility. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  18. KSC-04pd1790

    NASA Image and Video Library

    2004-09-14

    KENNEDY SPACE CENTER, FLA. - United Space Alliance worker Bab Jarosz works with the 30-needle sewing machines from the Thermal Protection System Facility (TPSF). A temporary tile shop has been set up in the RLV hangar at KSC after equipment was removed from the hurricane-ravaged facility. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.

  19. 7 CFR 1416.302 - Eligible crops and producers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of damage caused by maximum sustained winds of the hurricane. The levels of damage that will..., including related cleanup and rehabilitation costs, must provide to CCC a certified statement on a CCC...

  20. 7 CFR 1416.302 - Eligible crops and producers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of damage caused by maximum sustained winds of the hurricane. The levels of damage that will..., including related cleanup and rehabilitation costs, must provide to CCC a certified statement on a CCC...

  1. 7 CFR 1416.302 - Eligible crops and producers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of damage caused by maximum sustained winds of the hurricane. The levels of damage that will..., including related cleanup and rehabilitation costs, must provide to CCC a certified statement on a CCC...

  2. 7 CFR 1416.302 - Eligible crops and producers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of damage caused by maximum sustained winds of the hurricane. The levels of damage that will..., including related cleanup and rehabilitation costs, must provide to CCC a certified statement on a CCC...

  3. The 2014-2015 Warming Anomaly in the Southern California Current System: Glider Observations

    NASA Astrophysics Data System (ADS)

    Zaba, K. D.; Rudnick, D. L.

    2016-02-01

    During 2014-2015, basin-wide patterns of oceanic and atmospheric anomalies affected surface waters throughout the North Pacific Ocean. We present regional physical and biological effects of the warming, as observed by our autonomous underwater gliders in the southern California Current System (SCCS). Established in 2006, the California Glider Network provides sustained subsurface observations for monitoring the coastal effects of large-scale climate variability. Along repeat sections that extend to 350-500 km in offshore distance and 500 m in depth, Spray gliders have continuously occupied CalCOFI lines 66.7, 80, and 90 for nearly nine years. Following a sawtooth trajectory, the gliders complete each dive in approximately 3 hours and over 3 km. Measured variables include pressure, temperature, salinity, chlorophyll fluorescence, and velocity. For each of the three lines, a comprehensive climatology has been constructed from the multiyear timeseries. The ongoing surface-intensified warming anomaly, which began locally in early 2014 and persists through present, is unprecedented in the glider climatology. Reaching up to 5°C, positive temperature anomalies have been generally confined to the upper 50 m and persistent for over 20 months. The timing of the warming was in phase along each glider line but out of phase with equatorial SST anomalies, suggesting a decoupling of tropical and mid-latitude dynamics. Concurrent physical oceanographic anomalies included a depressed thermocline and high stratification. An induced biological response was apparent in the deepening of the subsurface chlorophyll fluorescence maximum. Ancillary atmospheric data from the NCEP North American Mesoscale (NAM) model indicate that a combination of surface forcing anomalies, namely high downward heat flux and weak wind stress magnitude, caused the unusual warm, downwelling conditions. With a strong El Niño event in the forecast for winter 2015-2016, our sustained glider network will continue to measure the evolution of the shallow warm pool in the SCCS and its potential interaction with ENSO-related anomalies.

  4. Response of the surface tropical Atlantic Ocean to wind forcing

    NASA Astrophysics Data System (ADS)

    Castellanos, Paola; Pelegrí, Josep L.; Campos, Edmo J. D.; Rosell-Fieschi, Miquel; Gasser, Marc

    2015-05-01

    We use 10 years of satellite data (sea level pressure, surface winds and absolute dynamic topography [ADT]) together with Argo-inferred monthly-mean values of near-surface velocity and water transport, to examine how the tropical system of near-surface zonal currents responds to wind forcing. The data is analyzed using complex Hilbert empirical orthogonal functions, confirming that most of the variance has annual periodicity, with maximum amplitudes in the region spanned by the seasonal displacement of the Inter-Tropical Convergence Zone (ITCZ). The ADT mirrors the shape of the upper isopycnals, hence becoming a good indicator of the amount of water stored in the upper ocean. Within about 3° from the Equator, where the Coriolis force is small, there is year-long meridional Ekman-transport divergence that would lead to the eastward transport of the Equatorial Undercurrent and its northern and southern branches. Beyond 3° of latitude, and at least as far as 20°, the convergence of the Ekman transport generally causes a poleward positive ADT gradient, which sustains the westward South Equatorial Current (SEC). The sole exception occurs in summer, between 8°N and 12°N, when an Ekman-transport divergence develops and depletes de amount of surface water, resulting in an ADT ridge-valley system which reverses the ADT gradient and drives the eastward North Equatorial Countercurrent (NECC) at latitudes 4-9°N; in late fall, divergence ceases and the NECC drains the ADT ridge, so the ADT gradient again becomes positive and the SEC reappears. The seasonal evolution of a tilted ITCZ controls the surface water fluxes: the wind-induced transports set the surface divergence-convergence, which then drive the ADT and, through the ADT gradients, create the geostrophic jets that close the water balance.

  5. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae

    PubMed Central

    Park, Hanwool

    2016-01-01

    Abstract Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break‐even point and may not be sustainable at a large‐scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non‐conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. PMID:27782372

  6. Behavior of Solar Cycles 23 and 24 Revealed by Microwave Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Yashiro, S.; Maekelae, P.; Michalek, G.; Shibasaki, K.; Hathaway, D. H.

    2012-01-01

    Using magnetic and microwave butterfly diagrams, we compare the behavior of solar polar regions to show that (1) the polar magnetic field and the microwave brightness temperature during solar minimum substantially diminished during the cycle 23/24 minimum compared to the 22/23 minimum. (2) The polar microwave brightness temperature (Tb) seems to be a good proxy for the underlying magnetic field strength (B). The analysis indicates a relationship, B = 0.0067Tb - 70, where B is in G and Tb in K. (3) Both the brightness temperature and the magnetic field strength show north-south asymmetry most of the time except for a short period during the maximum phase. (4) The rush-to-the-pole phenomenon observed in the prominence eruption (PE) activity seems to be complete in the northern hemisphere as of 2012 March. (5) The decline of the microwave brightness temperature in the north polar region to the quiet-Sun levels and the sustained PE activity poleward of 60degN suggest that solar maximum conditions have arrived at the northern hemisphere. The southern hemisphere continues to exhibit conditions corresponding to the rise phase of solar cycle 24. Key words: Sun: chromosphere Sun: coronal mass ejections (CMEs) Sun: filaments, prominences Sun: photosphere Sun: radio radiation Sun: surface magnetism

  7. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.

    PubMed

    Park, Hanwool; Lee, Choul-Gyun

    2016-11-01

    Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break-even point and may not be sustainable at a large-scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non-conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A surface fuel classification for estimating fire effects

    Treesearch

    Duncan C. Lutes; Robert E. Keane; John F. Caratti

    2009-01-01

    We present a classification of duff, litter, fine woody debris, and logs that can be used to stratify a project area into sites with fuel loading that yield significantly different emissions and maximum soil surface temperature. Total particulate matter smaller than 2.5?m in diameter and maximum soil surface temperature were simulated using the First...

  9. Results of Sustained Observations from SABSOON

    NASA Astrophysics Data System (ADS)

    Seim, H.; Nelson, J.

    2001-12-01

    A variety of meteorological and oceanographic data being collected on the continental shelf off Georgia by the South Atlantic Bight Synoptic Offshore Observational Network (SABSOON) permit an examination of episodic and seasonal phenomena operative on the shelf. Data are collected at offshore platforms and transmitted to shore in near-real time and made available on the project website. Examples of data collected since 1999 are presented that illustrate some of processes being addressed using the network. Maximum winds occur during remarkably energetic downbursts observed in spring and summer, associated with the passage of squalls over the coastal ocean. Peak wind speed at 50 m height exceed 40 ms and air temperature drops by 4 oC or more in less than 6 minutes, often accompanied by large changes in humidity and heavy rainfall, suggesting down draft of air from aloft. These events may play an important role in the offshore transport of continentally-derived material. Continuous ADCP measurements are being used to examine the seasonality of cross-shelf exchange and its relationship to the cross-shelf density gradient. The low-frequency cross-shelf circulation changes sign when the cross-shelf density gradient changes sign. Vertical stratification is surprisingly episodic, and maximum stratification has occurred in the winter and spring associated with appearance of long-salinity surface lens and may be associated with baroclinic instabilities. Strong stratification has also been observed in summer during Gulf Stream-derived intrusions onto the shelf, during which time the upper and lower layers become largely decoupled. Continuous optical measurements of above-water and in-water irradiance (PAR) show the mid-shelf surface sediments are often in the euphotic zone. Chlorophyll fluorescence (stimulated) shows strong light-dependent diurnal variability in near-surface waters and evidence of resuspension of benthic diatoms during storm events, particularly in the early fall. >http://www.skio.peachnet.edu/projects/sabsoon.html

  10. Static and Dynamic Measurement of Ocular Surface Temperature in Dry Eyes

    PubMed Central

    Sanjay, Srinivasan; Morgan, Philip B.

    2016-01-01

    Purpose. To study ocular surface temperature (OST) in dry eyes by static and dynamic measures. Methods. OST was recorded on 62 dry eyes and 63 age- and sex-matched controls. Static measures were study of absolute OST at t = 0, 5, and 10 s after eye opening. Dynamic measures were study of mean change and net change in OST over 10 s of sustained eye opening. Ten OST indices studied were temperatures of the geometric center of the cornea (GCC), extreme temporal (T1) and nasal conjunctiva (T4), midtemporal (CT) and nasal conjunctiva (CN), temporal (LT) and nasal (LN) limbus, and mean (MOST), maximum (Max T), and minimum (Min T) temperatures of the region of interest. Results. For static measures, dry eyes recorded significantly lower GCC, MOST, Min T, Max T, T4, CT, LT, LN, and CN. For dynamic measures, dry eyes had significantly steeper regression line of mean change (corresponding to greater net change) for Max T 5 s onward and T4 at 3 s onward. Conclusions. Both static and dynamic measures of the OST were valuable and can be used as clinical tool to assess dry eye. PMID:27433352

  11. Improved coking resistance of direct ethanol solid oxide fuel cells with a Ni-Sx anode

    NASA Astrophysics Data System (ADS)

    Yan, Ning; Luo, Jing-Li; Chuang, Karl T.

    2014-03-01

    In this study, the coking resistance of anode supported direct ethanol solid oxide fuel cell with a Ni-Sx anode was investigated comparatively with the conventional cell using pure Ni catalyst. The surface catalytic properties of Ni were manipulated via depositing a layer of S atoms. It was confirmed that on the surface of Ni, a combination of S monolayer and elemental S was formed without producing Ni3S2 phase. The developed Ni-Sx cell exhibited a significantly improved coke resistivity in ethanol feed while maintaining an adequately high performance. The S species on Ni enabled the suppression of the coke formation as well as the alleviation of the metal dusting effect of the anode structure. After operating in ethanol fuel for identical period of time at 850 °C, a maximum power density of 400 mW cm-2 was sustained whereas the conventional cell performance decreased to less than 40 mW cm-2 from the original 704 mW cm-2. In an optimized stability test, the Ni-Sx cell operated at 750 °C for more than 22 h until the fuel drained without any degradation.

  12. Transition from Ignition to Flame Growth under External Radiation in Three Dimensions (TIGER-3D)

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Nakamura, Yuji; Olson, Sandra L.; Mell, William

    2004-01-01

    This study focuses on localized ignition by external radiant flux and subsequent flame growth over thin polymeric materials (plastic and paper) in microgravity. Two transition stages were observed. The first transition stage covers the period from the onset of ignition to the formation of stabilized flame near the ignited area. This is followed by the second transition of the flame growth stage from the initial stabilized flame to sustained fire growth away from the ignited area. For the first stage, ignition experiments of thin PMMA sheets were conducted using a CO2 laser as an external source in the 10 s drop tower. The results of front side surface ignition and of backside surface ignition were observed. The effects of imposed flow velocity, sample thickness, and ambient oxygen concentration on ignition are obtained. Numerical study was conducted to investigate to understand and predict ignition behavior observed in the experiments. For the second stage, numerical study is being conducted to describe the effects of gravity on heat release rate of a PMMA sheet. The gravity level was varied from zero to normal gravity. The preliminary results show that the maximum heat release occurs at around 0.02 g.

  13. Transition from Ignition to Flame Growth under External Radiation in 3D

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Nakamura, Yuji; Mell, William E.; Olson, Sandra L.

    2004-01-01

    This study focuses on localized ignition by external radiant flux and subsequent flame growth over thin polymeric materials (plastic and paper) in microgravity. Two transition stages were observed. The first transition stage covers the period from the onset of ignition to the formation of stabilized flame near the ignited area. This is followed by the second transition of the flame growth stage from the initial stabilized flame to sustained fire growth away from the ignited area. For the first stage, ignition experiments of thin PMMA sheets were conducted using a CO2 laser as an external source in the 10 s drop tower. The results of front side surface ignition and of backside surface ignition were observed. The effects of imposed flow velocity, sample thickness, and ambient oxygen concentration on ignition are obtained. Numerical study was conducted to investigate to understand and predict ignition behavior observed in the experiments. For the second stage, numerical study is being conducted to describe the effects of gravity on heat release rate of a PMMA sheet. The gravity level was varied from zero to normal gravity. The preliminary results show that the maximum heat release occurs at around 0.02 g.

  14. Preparation and characterization of sustained-release rotigotine film-forming gel.

    PubMed

    Li, Xiang; Zhang, Renyu; Liang, Rongcai; Liu, Wei; Wang, Chenhui; Su, Zhengxing; Sun, Fengying; Li, Youxin

    2014-01-02

    The aim of this study was to develop a film-forming gel formulation of rotigotine with hydroxypropyl cellulose (HPC) and Carbomer 934. To optimize this formulation, we applied the Response Surface Analysis technique and evaluated the gel's pharmacokinetic properties. The factors chosen for factorial design were the concentration of rotigotine, the proportion of HPC and Carbomer 934, and the concentration of ST-Elastomer 10. Each factor was varied over three levels: low, medium and high. The gel formulation was evaluated and optimized according to its accumulated permeation rate (Flux) through Franz-type diffusion. A pharmacokinetic study of rotigotine gel was performed with rabbits. The Flux of the optimized formulation reached the maximum (199.17 μg/cm(2)), which was 3% rotigotine and 7% ST-Elastomer 10 with optimal composition of HPC: Carbomer 934 (5:1). The bioavailability of the optimized formulation compared with intravenous administration was approximately 20%. A film-forming gel of rotigotine was successfully developed using the response surface analysis technique. The results of this study may be helpful in finding an optimum formulation for transdermal delivery of a drug. The product may improve patients' compliance and provide better efficacy. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Enhanced performance of ZnO microballoon arrays for a triboelectric nanogenerator.

    PubMed

    Deng, Weili; Zhang, Binbin; Jin, Long; Chen, Yueqi; Chu, Wenjun; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing

    2017-03-01

    In recent years, triboelectric nanogenerators (TENGs), harvesting energy from the environment as a sustainable power source, have attracted great attention. Currently, many reports focus on the effect of surface modification on the electrical output performance of the TENG. In this work, we have fabricated vertically grown ZnO microballoon (ZnOMB) arrays on top of pyramid-featured PDMS patterned film, contacted with PTFE film to construct the TENG. The electrical output performances of the designed TENG are presented under external forces with different frequencies. The corresponding output open-circuit voltage with ZnOMBs could reach about 57 V the current density about 59 mA m -2 at 100 Hz, which was about 2.3 times higher than without any ZnO. The global maximum of the instantaneous peak power could reach 1.1 W m -2 when the external load resistance was about 2 MΩ. Furthermore, the electrical output of the fabricated device could light 30 commercial LED bulbs without any rectifier circuits or energy-storage elements. This clearly suggests that this kind of surface modification can dramatically enhance the output performance of the TENG. Moreover, the design of TENG demonstrated here can be applied to various energy harvesting applications.

  16. Enhanced performance of ZnO microballoon arrays for a triboelectric nanogenerator

    NASA Astrophysics Data System (ADS)

    Deng, Weili; Zhang, Binbin; Jin, Long; Chen, Yueqi; Chu, Wenjun; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing

    2017-03-01

    In recent years, triboelectric nanogenerators (TENGs), harvesting energy from the environment as a sustainable power source, have attracted great attention. Currently, many reports focus on the effect of surface modification on the electrical output performance of the TENG. In this work, we have fabricated vertically grown ZnO microballoon (ZnOMB) arrays on top of pyramid-featured PDMS patterned film, contacted with PTFE film to construct the TENG. The electrical output performances of the designed TENG are presented under external forces with different frequencies. The corresponding output open-circuit voltage with ZnOMBs could reach about 57 V the current density about 59 mA m-2 at 100 Hz, which was about 2.3 times higher than without any ZnO. The global maximum of the instantaneous peak power could reach 1.1 W m-2 when the external load resistance was about 2 MΩ. Furthermore, the electrical output of the fabricated device could light 30 commercial LED bulbs without any rectifier circuits or energy-storage elements. This clearly suggests that this kind of surface modification can dramatically enhance the output performance of the TENG. Moreover, the design of TENG demonstrated here can be applied to various energy harvesting applications.

  17. NASA CYGNSS Mission Overview

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Balasubramaniam, R.; Gleason, S.; McKague, D. S.; O'Brien, A.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification and of the diurnal cycle of winds, made possible by the large number of satellites. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is currently in the early phase of science operations. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Assimilation of CYGNSS L2 wind speed data into the HWRF hurricane weather prediction model has also been developed. An overview and the current status of the mission will be presented, together with highlights of early on-orbit performance and scientific results.

  18. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation

    NASA Astrophysics Data System (ADS)

    Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; Wainwright, H. M.; Graham, D.; Torn, M. S.

    2017-12-01

    Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. In this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snow and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.

  19. Water resources of the Blackstone River basin, Massachusetts

    USGS Publications Warehouse

    Izbicki, John A.

    2000-01-01

    By 2020, demand for water in the Blackstone River Basin is expected to be 52 million gallons per day, one-third greater than the demand of 39 million gallons per day in 1980. Most of this increase is expected to be supplied by increased withdrawals of ground water from stratified-drift aquifers in the eastern and northern parts of the basin. Increased withdrawals from stratified-drift aquifers along the Blackstone River and in the western part of the basin also are expected.The eastern and northern parts of the Blackstone River Basin contain numerous small, discontinuous aquifers which, as a group, comprise the largest ground-water resource of the study area. Fifteen aquifers, ranging in areal extent from 0.57 to 4.3 square miles, were identified. These aquifers have maximum saturated thicknesses ranging from less than 10 feet to 105 feet and maximum transmissivities ranging from less than 1,000 to more than 20,000 feet squared per day. Yields of nine study aquifers were estimated by use of digital ground-water-flow models. Yields depend on the hydraulic properties of the aquifer and the amount of streamflow available for depletion by wells. If streamflow is maintained at 98-percent duration, long-term yields from the aquifers that would be expected to be equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, and long-term yields equaled or exceeded 95 percent of the time range from 0.06 to 1.0 million gallons per day. If streamflow is maintained at 99.5-percent duration, long-term yields equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, long-term yields equaled or exceeded 95 percent of the time range from 0.04 to 1.4 million gallons per day, and longterm yields equaled or exceeded 98 percent of the time range from 0.02 to 0.39 million gallons per day. Maintaining streamflow at 98-percent duration is a more restrictive criterion than maintaining streamflow at 99.5-percent duration. The upper Lake Quinsigamond, upper West River, and Stone Brook aquifers are capable of sustaining withdrawals of at least 1 million gallons per day more than their rates in the mid-1980s. The upper Mill River and Auburn aquifers are not capable of sustaining additional withdrawals of 0.25 million gallons per day. Ground-water quality in the Auburn aquifer has been degraded by activities and contaminants associated with urbanization.A nearly continuous deposit of stratified drift almost 30 miles long and from 400 feet to more than 1 mile wide occupies lowland areas along the southeastern part of the Blackstone River. These deposits were divided into four aquifers ranging in areal extent from 1.8 to 3.5 square miles. These aquifers have maximum saturated thicknesses ranging from 54 to 170 feet and maximum transmissivities ranging from less than 1,500 to more than 20,000 feet squared per day. The Blackstone River receives substantial amounts of treated municipal wastewater. Infiltration of poor-quality surface water has significantly increased the specific conductance and the concentrations of all major ions, ammonia, iron, and manganese in the water pumped from at least two wells near the river. These wells derive about 41 and 48 percent of their yield from infiltrated surface water. At both sites, aquifer heterogeneity controlled the movement of infiltrated water to the wells. At one of these sites, where the flow of infiltrated water was tracked (by use of a digital model) in three dimensions, infiltrated water moved to the well through gravel layers that did not constitute the entire thickness of the aquifer. Changes in stream discharge that resulted in changes in surface-water quality also affected the quality of ground water at that site. The western part of the Blackstone River Basin contains the smallest aquifers evaluated in the study area. Six aquifers, ranging in areal extent from 0.05 to 1.3 square miles, were identified. The hydraulic properties of most of these aquifers have not been determined, but available data indicate that maximum saturated thicknesses range from 28 to 71 feet and maximum transmissivities range from 2,300 to 15,000 feet squared per day.

  20. Fresnel cup reflector directs maximum energy from light source

    NASA Technical Reports Server (NTRS)

    Laue, E. G.; Youngberg, C. L.

    1964-01-01

    To minimize shielding and overheating, a composite Fresnel cup reflector design directs the maximum energy from a light source. It consists of a uniformly ellipsoidal end surface and an extension comprising a series of confocal ellipsoidal and concentric spherical surfaces.

  1. Adhesive behavior of micro/nano-textured surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben

    2015-02-01

    A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.

  2. Estimated harvesting on jellyfish in Sarawak

    NASA Astrophysics Data System (ADS)

    Bujang, Noriham; Hassan, Aimi Nuraida Ali

    2017-04-01

    There are three species of jellyfish recorded in Sarawak which are the Lobonema smithii (white jellyfish), Rhopilema esculenta (red jellyfish) and Mastigias papua. This study focused on two particular species which are L.smithii and R.esculenta. This study was done to estimate the highest carrying capacity and the population growth rate of both species by using logistic growth model. The maximum sustainable yield for the harvesting of this species was also determined. The unknown parameters in the logistic model were estimated using center finite different method. As for the results, it was found that the carrying capacity for L.smithii and R.esculenta were 4594.9246456819 tons and 5855.9894242086 tons respectively. Whereas, the population growth rate for both L.smithii and R.esculenta were estimated at 2.1800463754 and 1.144864086 respectively. Hence, the estimated maximum sustainable yield for harvesting for L.smithii and R.esculenta were 2504.2872047638 tons and 1676.0779949431 tons per year.

  3. Equilibrium evolution in oscillating-field current-drive experiments

    NASA Astrophysics Data System (ADS)

    McCollam, K. J.; Anderson, J. K.; Blair, A. P.; Craig, D.; Den Hartog, D. J.; Ebrahimi, F.; O'Connell, R.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Stone, D. R.; Brower, D. L.; Deng, B. H.; Ding, W. X.

    2010-08-01

    Oscillating-field current drive (OFCD) is a proposed method of steady-state toroidal plasma sustainment in which ac poloidal and toroidal loop voltages are applied to produce a dc plasma current. OFCD is added to standard, inductively sustained reversed-field pinch plasmas in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. Equilibrium profiles and fluctuations during a single cycle are measured and analyzed for different relative phases between the two OFCD voltages and for OFCD off. For OFCD phases leading to the most added plasma current, the measured energy confinement is slightly better than that for OFCD off. By contrast, the phase of the maximum OFCD helicity-injection rate also has the maximum decay rate, which is ascribed to transport losses during discrete magnetic-fluctuation events induced by OFCD. Resistive-magnetohydrodynamic simulations of the experiments reproduce the observed phase dependence of the added current.

  4. Method and device for landing aircraft dependent on runway occupancy time

    NASA Technical Reports Server (NTRS)

    Ghalebsaz Jeddi, Babak (Inventor)

    2012-01-01

    A technique for landing aircraft using an aircraft landing accident avoidance device is disclosed. The technique includes determining at least two probability distribution functions; determining a safe lower limit on a separation between a lead aircraft and a trail aircraft on a glide slope to the runway; determining a maximum sustainable safe attempt-to-land rate on the runway based on the safe lower limit and the probability distribution functions; directing the trail aircraft to enter the glide slope with a target separation from the lead aircraft corresponding to the maximum sustainable safe attempt-to-land rate; while the trail aircraft is in the glide slope, determining an actual separation between the lead aircraft and the trail aircraft; and directing the trail aircraft to execute a go-around maneuver if the actual separation approaches the safe lower limit. Probability distribution functions include runway occupancy time, and landing time interval and/or inter-arrival distance.

  5. A new method for evaluating impacts of data assimilation with respect to tropical cyclone intensity forecast problem

    NASA Astrophysics Data System (ADS)

    Vukicevic, T.; Uhlhorn, E.; Reasor, P.; Klotz, B.

    2012-12-01

    A significant potential for improving numerical model forecast skill of tropical cyclone (TC) intensity by assimilation of airborne inner core observations in high resolution models has been demonstrated in recent studies. Although encouraging , the results so far have not provided clear guidance on the critical information added by the inner core data assimilation with respect to the intensity forecast skill. Better understanding of the relationship between the intensity forecast and the value added by the assimilation is required to further the progress, including the assimilation of satellite observations. One of the major difficulties in evaluating such a relationship is the forecast verification metric of TC intensity: the maximum one-minute sustained wind speed at 10 m above surface. The difficulty results from two issues : 1) the metric refers to a practically unobservable quantity since it is an extreme value in a highly turbulent, and spatially-extensive wind field and 2) model- and observation-based estimates of this measure are not compatible in terms of spatial and temporal scales, even in high-resolution models. Although the need for predicting the extreme value of near surface wind is well justified, and the observation-based estimates that are used in practice are well thought of, a revised metric for the intensity is proposed for the purpose of numerical forecast evaluation and the impacts on the forecast. The metric should enable a robust observation- and model-resolvable and phenomenologically-based evaluation of the impacts. It is shown that the maximum intensity could be represented in terms of decomposition into deterministic and stochastic components of the wind field. Using the vortex-centric cylindrical reference frame, the deterministic component is defined as the sum of amplitudes of azimuthal wave numbers 0 and 1 at the radius of maximum wind, whereas the stochastic component is represented by a non-Gaussian PDF. This decomposition is exact and fully independent of individual TC properties. The decomposition of the maximum wind intensity was first evaluated using several sources of data including Step Frequency Microwave Radiometer surface wind speeds from NOAA and Air Force reconnaissance flights,NOAA P-3 Tail Doppler Radar measurements, and best track maximum intensity estimates as well as the simulations from Hurricane WRF Ensemble Data Assimilation System (HEDAS) experiments for 83 real data cases. The results confirmed validity of the method: the stochastic component of the maximum exibited a non-Gaussian PDF with small mean amplitude and variance that was comparable to the known best track error estimates. The results of the decomposition were then used to evaluate the impact of the improved initial conditions on the forecast. It was shown that the errors in the deterministic component of the intensity had the dominant effect on the forecast skill for the studied cases. This result suggests that the data assimilation of the inner core observations could focus primarily on improving the analysis of wave number 0 and 1 initial structure and on the mechanisms responsible for forcing the evolution of this low-wavenumber structure. For the latter analysis, the assimilation of airborne and satellite remote sensing observations could play significant role.

  6. Geophysical reconnaissance of Lemmon Valley, Washoe County, Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.; Maurer, Douglas K.

    1981-01-01

    Rapid growth in the Lemmon Valley area, Nevada, during recent years has put increasing importance on knowledge of stored ground water for the valley. Data that would fill voids left by previous studies are depth to bedrock and depth to good-quality water beneath the two playas in the valley. Depths to bedrock calculated from a gravity survey in Lemmon Valley indicate that the western part of Lemmon Valley is considerably deeper than the eastern part. Maximum depth in the western part is about 2 ,600 feet below land surface. This depression approximately underlies the Silver Lake playa. A smaller, shallower depression with a maximum depth of about 1,500 feet below land surface exists about 2.5 miles north of the playa. The eastern area is considerably shallower. The maximum calculated depth to bedrock is about 1,000 feet below land surface, but the depth throughout most the eastern area is only about 400 feet below land surface. An electrical resistivity survey in Lemmon Valley consisting of 10 Schlumberger soundings was conducted around the playas. The maximum depth of poor-quality water (characterized by a resistivity less than 20 ohm-meters) differed considerably from place to place. Maximum depths of poor-quality water beneath the playa east of Stead varied from about 120 feet to almost 570 feet below land surface. At the Silver Lake playa, the maximum depths varied from about 40 feet in the west to 490 feet in the east. (USGS)

  7. Leading for Sustainability: Is Surface Understanding Enough?

    ERIC Educational Resources Information Center

    Pepper, Coral; Wildy, Helen

    2008-01-01

    Purpose: This paper aims to report an investigation of how education for sustainability is conceptualised, incorporated across the curriculum and led in three Western Australian Government secondary schools. It also reports on processes to enable education for sustainability to become embedded into these schools. Design/methodology/approach: Data…

  8. Computer Program Applications to Tactical Missile Conceptual Design.

    DTIC Science & Technology

    1981-06-01

    initialized at a potential maximum of 1.25 inches/second (Ref. 21 and is allowed to decrease to arrive at a compati- ble burn area and web thickness...the same restrictions. The burn rate starts at 0.45 inches/sec- ond (Ref. 21 and is decreased to provide an acceptable web thickness and burn area. The...0.45 inches/sec- ond to provide a proper web thickness. "THE.SUSTAINER MOTOR HAS AN END BURNING GRAIN." The required burn area for the sustainer was

  9. Influence of maneuverability on helicopter combat effectiveness

    NASA Technical Reports Server (NTRS)

    Falco, M.; Smith, R.

    1982-01-01

    A computational procedure employing a stochastic learning method in conjunction with dynamic simulation of helicopter flight and weapon system operation was used to derive helicopter maneuvering strategies. The derived strategies maximize either survival or kill probability and are in the form of a feedback control based upon threat visual or warning system cues. Maneuverability parameters implicit in the strategy development include maximum longitudinal acceleration and deceleration, maximum sustained and transient load factor turn rate at forward speed, and maximum pedal turn rate and lateral acceleration at hover. Results are presented in terms of probability of skill for all combat initial conditions for two threat categories.

  10. Hot Press as a Sustainable Direct Recycling Technique of Aluminium: Mechanical Properties and Surface Integrity

    PubMed Central

    Lajis, Mohd Amri; Ahmad, Azlan

    2017-01-01

    Meltless recycling technique has been utilized to overcome the lack of primary resources, focusing on reducing the usage of energy and materials. Hot press was proposed as a novel direct recycling technique which results in astoundingly low energy usage in contrast with conventional recycling. The aim of this study is to prove the technical feasibility of this approach by characterizing the recycled samples. For this purpose, AA6061 aluminium chips were recycled by utilizing hot press process under various operating temperature (Ts = 430, 480, and 530 °C) and holding times (ts = 60, 90, and 120 min). The maximum mechanical properties of recycled chip are Ultimate tensile strength (UTS) = 266.78 MPa, Elongation to failure (ETF) = 16.129%, while, for surface integrity of the chips, the calculated microhardness is 81.744 HV, exhibited at Ts = 530 °C and ts = 120 min. It is comparable to theoretical AA6061 T4-temper where maximum UTS and microhardness is increased up to 9.27% and 20.48%, respectively. As the desired mechanical properties of forgings can only be obtained by means of a final heat treatment, T5-temper, aging after forging process was employed. Heat treated recycled billet AA6061 (T5-temper) are considered comparable with as-received AA6061 T6, where the value of microhardness (98.649 HV) at 175 °C and 120 min of aging condition was revealed to be greater than 3.18%. Although it is quite early to put a base mainly on the observations in experimental settings, the potential for significant improvement offered by the direct recycling methods for production aluminium scrap can be clearly demonstrated. This overtures perspectives for industrial development of solid state recycling processes as environmentally benign alternatives of current melting based practices. PMID:28771207

  11. An Integrated Hydrologic Model and Remote Sensing Synthesis Approach to Study Groundwater Extraction During a Historic Drought in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Thatch, L. M.; Maxwell, R. M.; Gilbert, J. M.

    2017-12-01

    Over the past century, groundwater levels in California's San Joaquin Valley have dropped more than 30 meters in some areas due to excessive groundwater extraction to irrigate agricultural lands and feed a growing population. Between 2012 and 2016 California experienced the worst drought in its recorded history, further exacerbating this groundwater depletion. Due to lack of groundwater regulation, exact quantities of extracted groundwater in California are unknown and hard to quantify. We use a synthesis of integrated hydrologic model simulations and remote sensing products to quantify the impact of drought and groundwater pumping on the Central Valley water tables. The Parflow-CLM model was used to evaluate groundwater depletion in the San Joaquin River basin under multiple groundwater extraction scenarios simulated from pre-drought through recent drought years. Extraction scenarios included pre-development conditions, with no groundwater pumping; historical conditions based on decreasing groundwater level measurements; and estimated groundwater extraction rates calculated from the deficit between the predicted crop water demand, based on county land use surveys, and available surface water supplies. Results were compared to NASA's Gravity Recover and Climate Experiment (GRACE) data products to constrain water table decline from groundwater extraction during severe drought. This approach untangles various factors leading to groundwater depletion within the San Joaquin Valley both during drought and years of normal recharge to help evaluate which areas are most susceptible to groundwater overdraft, as well as further evaluating the spatially and temporally variable sustainable yield. Recent efforts to improve water management and ensure reliable water supplies are highlighted by California's Sustainable Groundwater Management Act (SGMA) which mandates Groundwater Sustainability Agencies to determine the maximum quantity of groundwater that can be withdrawn through the course of a year without undesirable effects. We provide a path forward for how this concept may inform sustainable groundwater use under climate variations and land use changes.

  12. Towards an integrated forecasting system for fisheries on habitat-bound stocks

    NASA Astrophysics Data System (ADS)

    Christensen, A.; Butenschön, M.; Gürkan, Z.; Allen, I. J.

    2013-03-01

    First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2-6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.

  13. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport

    PubMed Central

    Svendsen, Jon C.; Tirsgaard, Bjørn; Cordero, Gerardo A.; Steffensen, John F.

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; Ucrit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3) there is a trade-off between maximum sustained swimming speed (Usus) and minimum cost of transport (COTmin); and (4) variation in Usus correlates positively with optimum swimming speed (Uopt; i.e., the speed that minimizes energy expenditure per unit of distance traveled). Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg−1. Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between Ucrit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced Ucrit. We found no evidence of a trade-off between Usus and COTmin. In fact, data revealed significant negative correlations between Usus and COTmin, suggesting that individuals with high Usus also exhibit low COTmin. Finally, there were positive correlations between Usus and Uopt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming economy and optimum speed. PMID:25741285

  14. Degradation of turbulent skin-friction drag reduction with superhydrophobic, liquid-infused and riblet surfaces with increasing Reynolds number

    NASA Astrophysics Data System (ADS)

    Akhavan, Rayhaneh; Rastegari, Amirreza

    2017-11-01

    It is shown that the magnitude of Drag Reduction (DR) with Super-Hydrophobic (SH), liquid-infused, or riblet surfaces can be parameterized in terms of the shift, ΔB , in the intercept of a log-law representation of the mean velocity profile and the friction coefficient of the base flow. Available DNS data shows ΔB to be Reynolds number independent and only a function of the geometrical parameters of the surface micro-texture in viscous wall units. This allows the DR results from DNS to be extrapolated to higher Reynolds numbers. It is shown that for a given geometry and size of the wall micro-texture in viscous wall units, the magnitude of DR degrades by factors of 2 - 3 as the friction Reynolds number of the base flow increases from Reτ0 200 of DNS to Reτ0 105 -106 of practical applications. Extrapolation of DNS results in turbulent channel flow at Reτ0 222 and 442 with SH longitudinal microgrooves of width 15 <=g+0 <= 60 and shear-free-fractions of 0.875 - 0.985 shows that the maximum DRs which can be sustained with SH longitudinal micro-grooves of size g+0 <= 20 - 30 in practical applications is limited to DRs of 25 - 35 % at Reτ0 105 and 20 - 25 % at Reτ0 106 .

  15. Research on Sustainable Development Level Evaluation of Resource-based Cities Based on Shapely Entropy and Chouqet Integral

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Qu, Weilu; Qiu, Weiting

    2018-03-01

    In order to evaluate sustainable development level of resource-based cities, an evaluation method with Shapely entropy and Choquet integral is proposed. First of all, a systematic index system is constructed, the importance of each attribute is calculated based on the maximum Shapely entropy principle, and then the Choquet integral is introduced to calculate the comprehensive evaluation value of each city from the bottom up, finally apply this method to 10 typical resource-based cities in China. The empirical results show that the evaluation method is scientific and reasonable, which provides theoretical support for the sustainable development path and reform direction of resource-based cities.

  16. THE MAXIMIUM POWER PRINCIPLE: AN EMPIRICAL INVESTIGATION

    EPA Science Inventory

    The maximum power principle is a potential guide to understanding the patterns and processes of ecosystem development and sustainability. The principle predicts the selective persistence of ecosystem designs that capture a previously untapped energy source. This hypothesis was in...

  17. 7 CFR 1416.402 - Eligible fruit and vegetable producers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... marketing from the farm or would have shared had the crop been produced. Payments will be made on a per-acre... caused by maximum sustained winds of the applicable hurricanes. The levels of damage that will determine...

  18. 7 CFR 1416.402 - Eligible fruit and vegetable producers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... marketing from the farm or would have shared had the crop been produced. Payments will be made on a per-acre... caused by maximum sustained winds of the applicable hurricanes. The levels of damage that will determine...

  19. 7 CFR 1416.402 - Eligible fruit and vegetable producers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... marketing from the farm or would have shared had the crop been produced. Payments will be made on a per-acre... caused by maximum sustained winds of the applicable hurricanes. The levels of damage that will determine...

  20. 7 CFR 1416.402 - Eligible fruit and vegetable producers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... marketing from the farm or would have shared had the crop been produced. Payments will be made on a per-acre... caused by maximum sustained winds of the applicable hurricanes. The levels of damage that will determine...

  1. 7 CFR 1416.402 - Eligible fruit and vegetable producers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... marketing from the farm or would have shared had the crop been produced. Payments will be made on a per-acre... caused by maximum sustained winds of the applicable hurricanes. The levels of damage that will determine...

  2. SUSTAINED HYPERLIPEMIA INDUCED IN RABBITS BY MEANS OF INTRAVENOUSLY INJECTED SURFACE-ACTIVE AGENTS

    PubMed Central

    Kellner, Aaron; Correll, James W.; Ladd, Anthony T.

    1951-01-01

    The intravenous injection of the surface-active agents Tween 80 and Triton A20 into rabbits fed a normal diet resulted in marked and sustained elevations of the cholesterol, phospholipid, and total lipid content of their blood. The increase in phospholipid in general paralleled that of the blood cholesterol. The implications of the findings are briefly discussed. PMID:14824409

  3. Surface faulting. A preliminary view

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    This description of surface faulting near Spitak, Armenia, is based on a field inspection made December 22-26, 1988. The surface rupture west of Spitak, displacement of the ground surface, pre-earthquake surface expressions of the fault, and photolineaments in landsat images are described and surface faulting is compared to aftershocks. It is concluded that the 2 meters of maximum surface displacement fits well within the range of reliably measured maximum surface offsets for historic reverse and oblique-reverse faulting events throughout the world. By contrast, the presently known length of surface rupture near Spitak, between 8 and 13 km, is shorter than any other reverse or oblique-reverse event of magnitude greater than 6.0. This may be a reason to suppose that additional surface rupture might remain unmapped.

  4. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    NASA Astrophysics Data System (ADS)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new combined coding method.

  5. Adjustments in motor unit properties during fatiguing contractions after training.

    PubMed

    Vila-Chã, Carolina; Falla, Deborah; Correia, Miguel Velhote; Farina, Dario

    2012-04-01

    The objective of the study was to investigate the effect of strength and endurance training on muscle fiber membrane properties and discharge rates of low-threshold motor units of the vasti muscles during fatiguing contractions. Twenty-five sedentary healthy men (age (mean ± SD) = 26.3 ± 3.9 yr) were randomly assigned to one of three groups: strength training, endurance training, or a control group. Conventional endurance and strength training was performed 3 d·wk⁻¹, during a period of 6 wk. Motor unit conduction velocity and EMG amplitude of the vastus medialis obliquus and lateralis muscles and biceps femoris were measured during sustained isometric knee extensions at 10% and 30% of the maximum voluntary contraction before and immediately after training. After 6 wk of training, the reduction in motor unit conduction velocity during the sustained contractions at 30% of the maximum voluntary force occurred at slower rates compared with baseline (P < 0.05). However, the rate of decrease was lower after endurance training compared with strength training (P < 0.01). For all groups, motor unit discharge rates declined during the sustained contraction (P < 0.001), and their trend was not altered by training. In addition, the biceps femoris-vasti coactivation ratio declined after the endurance training. Short-term strength and endurance training induces alterations of the electrophysiological membrane properties of the muscle fiber. In particular, endurance training lowers the rate of decline of motor unit conduction velocity during sustained contractions more than strength training.

  6. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.

    PubMed

    Davids, Jeffrey C; Mehl, Steffen W

    2015-01-01

    Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%. © 2014, National Ground Water Association.

  7. Carbon nanotube embedded PVDF membranes: Effect of solvent composition on the structural morphology for membrane distillation

    NASA Astrophysics Data System (ADS)

    Mapunda, Edgar C.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-08-01

    Rapid population increase, growth in industrial and agricultural sectors and global climate change have added significant pressure on conventional freshwater resources. Tapping freshwater from non-conventional water sources such as desalination and wastewater recycling is considered as sustainable alternative to the fundamental challenges of water scarcity. However, affordable and sustainable technologies need to be applied for the communities to benefit from the treatment of non-conventional water source. Membrane distillation is a potential desalination technology which can be used sustainably for this purpose. In this work multi-walled carbon nanotube embedded polyvinylidene fluoride membranes for application in membrane distillation desalination were prepared via non-solvent induced phase separation method. The casting solution was prepared using mixed solvents (N, N-dimethylacetamide and triethyl phosphate) at varying ratios to study the effect of solvent composition on membrane morphological structures. Membrane morphological features were studied using a number of techniques including scanning electron microscope, atomic force microscope, SAXSpace tensile strength analysis, membrane thickness, porosity and contact angle measurements. It was revealed that membrane hydrophobicity, thickness, tensile strength and surface roughness were increasing as the composition of N, N-dimethylacetamide in the solvent was increasing with maximum values obtained between 40 and 60% N, N-dimethylacetamide. Internal morphological structures were changing from cellular structures to short finger-like and sponge-like pores and finally to large macro void type of pores when the amount of N, N-dimethylacetamide in the solvent was changed from low to high respectively. Multi-walled carbon nanotube embedded polyvinylidene fluoride membranes of desired morphological structures and physical properties can be synthesized by regulating the composition of solvents used to prepare the casting solution.

  8. T wave alternans threshold late after repair of tetralogy of Fallot

    NASA Technical Reports Server (NTRS)

    Cheung, Michael M H.; Weintraub, Robert G.; Cohen, Richard J.; Karl, Tom R.; Wilkinson, James L.; Davis, Andrew M.

    2002-01-01

    INTRODUCTION: Sustained microvolt-level T wave alternans (TWA) is a marker of increased risk for malignant ventricular arrhythmia. There is a significant risk of arrhythmia and sudden death after repair of congenital heart disease. The aim of this study was to determine the prevalence and characteristics of TWA after repair of tetralogy of Fallot (TOF). METHODS AND RESULTS: TWA was evaluated during bicycle exercise in 49 subjects who had consecutively undergone transatrial-transpulmonary repair. Median values for age, age at repair, and follow-up duration were 14.9 years (11.5-20.8), 1.6 years (0.2-4.9), and 11.6 years (9.4-17.2), respectively. All patients were in New York Heart Association functional class I and were asymptomatic. Median QRS duration was 120 msec (80-150). Sustained TWA was detected in 7 (23%) of 31 subjects with adequate tests. In these 7 subjects, median onset heart rate (HR) was 120 (98-155). Median HR threshold as a percentage of predicted maximum HR (220 - age) was 58% (48-77). Sustained TWA prevalence was not significantly different compared with normal subjects (7/31 vs 9/83; P = 0.1). Onset HR in the TOF group was significantly lower [mean (SD) of 122 (20) vs 139 (12), P < 0.05]. In the TOF group with sustained TWA, the TWA occurred in 4 of 7 at <60% predicted maximum HR versus 1 of 9 normal subjects (P < 0.05); 3 of 7 had onset HR <120 versus 0 of 9 normal subjects (P < 0.03). There was no significant difference in age, gender, transannular patch use, restrictive right ventricular physiology, QRS duration, QTc, QT/QRS dispersion, or nonsustained ventricular tachycardia in subjects with or those without sustained TWA. CONCLUSION: The onset HR for sustained TWA is significantly lower after repair of TOF. Further study is required to determine whether this represents an increased risk for arrhythmia in this patient group.

  9. SUSTAIN - A BMP PROCESS AND PLACEMENT TOOL FOR URBAN WATERSHEDS

    EPA Science Inventory

    Watershed and stormwater managers need modeling tools to evaluate how best to address environmental quality restoration and protection needs in urban and developing areas. Significant investments are needed to protect and restore water quality, address total maximum daily loads (...

  10. Multiple Watershed Scales Approach for Placement of BMPs in SUSTAIN

    EPA Science Inventory

    Watershed and stormwater managers need modeling tools to evaluate how best to address environmental quality restoration and protection needs in urban and developing areas. Significant investments are needed to protect and restore water quality, address total maximum daily loads ...

  11. SUSTAIN - A BMP PROCESS AND PLACEMENT TOOL FOR URBAN WATERSHEDS

    EPA Science Inventory

    Watershed and stormwater managers need modeling tools to evaluate how best to address environmental quality restoration and protection needs in urban and developing areas. Significant investments are needed to protect and restore water quality, address total maximum daily loads ...

  12. Windthrow a hazard in Virginia pine strip cuttings

    Treesearch

    Richard H. Fenton

    1955-01-01

    The eye of Hurricane Hazel passed to the west of the Beltsville Experimental Forest in Maryland on the afternoon of October 15, 1954. Sustained wind velocities of 66 mph (from the SE), with maximum gusts of 98 mph, were recorded nearby.

  13. Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia

    USGS Publications Warehouse

    Rogers, K.; Saintilan, N.; Cahoon, D.

    2005-01-01

    Following the dieback of an interior portion of a mangrove forest at Homebush Bay, Australia, surface elevation tables and feldspar marker horizons were installed in the impacted, intermediate and control forest to measure vertical accretion, elevation change, and shallow subsidence. The objectives of the study were to determine current vertical accretion and elevation change rates as a guide to understanding mangrove dieback, ascertain the factors controlling surface elevation change, and investigate the sustainability of the mangrove forest under estimated sea-level rise conditions. The study demonstrates that the influences on surface dynamics are more complex than soil accretion and soil autocompaction alone. During strong vegetative regrowth in the impacted forest, surface elevation increase exceeded vertical accretion apparently as a result of belowground biomass production. In addition, surface elevation in all forest zones was correlated with total monthly rainfall during a severe El Ni?o event, highlighting the importance of rainfall to groundwater recharge and surface elevation. Surface elevation increase for all zones exceeded the 85-year sea level trend for Sydney Harbour. Since mean sea-level also decreased during the El Ni?o event, the decrease in surface elevation did not translate to an increase in inundation frequency or influence the sustainability of the mangrove forest. These findings indicate that subsurface soil processes such as organic matter accumulation and groundwater flux can significantly influence mangrove surface elevation, and contribute to the long-term sustainability of mangrove systems under a scenario of rising sea levels.

  14. Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Microwave 89Ghz imageFigure 2: Visible/near infrared sensor

    Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday.

    These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama.

    This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 2) reveals where the heaviest precipitation in Ivan is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through. The image shows that the largest area of intense convection/precipitation is in the NE quadrant, centered near New Orleans. There is a smaller but still quite intense area in the SE quadrant trailing the center of the storm that might impact the Alabama coast.

    Image Journal [figure removed for brevity, see original site] September 7, Tuesday, 1:30 am. - infrared, 12micron The infrared signal does not penetrate through clouds, so the purple color reveals the cool cloud tops of the hurricane. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Ivan becomes better organized as it approaches the Windward Islands. The center of the storm is 170 miles (275 km) southeast of Barbados and moving west at 21 mph (33 km/hr). Maximum sustained winds near 105 mph which extend outward at this force for 70 miles (110 km).

    [figure removed for brevity, see original site] September 7, Tuesday, 1:30 am. - microwave, 89GHz

    [figure removed for brevity, see original site] September 8, Wednesday, 1:30 am. - infrared, 12micron The infrared signal does not penetrate through clouds, so the purple color reveals the cool cloud tops of the hurricane. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Ivan becomes better organized as it approaches the Windward Islands. The center of the storm is 170 miles (275 km) southeast of Barbados and moving west at 21 mph (33 km/hr). Maximum sustained winds near 105 mph which extend outward at this force for 70 miles (110 km).

    [figure removed for brevity, see original site] September 8, Wednesday, 1:30 am. - microwave, 89GHz

    [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - infrared, 12micron Ivan closes in on Jamaica. With only 85 miles between the storm and the island, Ivan's winds at category 4 are sustained at 145 mph (230 km/hr). Hurricane-strength winds extend up to 60 miles from the center of Ivan, and tropical-storm force winds are up to 175 miles from the center. Ivan is now better organized and has a well-defined eye. After Ivan leaves Jamaica, it is expected to hit western Cuba, probably making landfall later Sunday as a CAT 4 hurricane.

    [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - microwave, 89GHz

    [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - visible/near-infrared

    [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - infrared, 12micron Ivan's winds at category 5 strength are sustained at 160 mph (260 km/hr) and extend out to 105 miles from the center. Tropical-storm force winds are up to 205 miles from the center. The infrared image shows that the eye has grown quite large - perhaps 40 km (25 miles) across - which is sometimes an indication of weakening but may not be in this case. The surface pressure at the time of this image was estimated by the National Hurricane Center at 915 mb and falling - consistent with a very intense and strengthening hurricane.

    [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - microwave, 89GHz The microwave image shows that Ivan has again developed two distinct convective centers, separated by about 250 km. That pattern developed on September 5 and persisted for 4 days. It disappeared while the storm was passing over Jamaica, but it has now re-formed.

    [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - visible/near-infrared

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  15. Wetting state and maximum spreading factor of microdroplets impacting on superhydrophobic textured surfaces with anisotropic arrays of pillars

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Hee; Huh, Hyung Kyu; Lee, Sang Joon

    2013-07-01

    The dynamic behaviors of microdroplets that impact on textured surfaces with various patterns of microscale pillars are experimentally investigated in this study. A piezoelectric inkjet is used to generate the microdroplets that have a diameter of less than 46 μm and a controlled Weber number. The impact and spreading dynamics of an individual droplet are captured by using a high-speed imaging system. The anisotropic and directional wettability and the wetting states on the textured surfaces with anisotropically arranged pillars are revealed for the first time in this study. The impalement transition from the Cassie-Baxter state to the partially impaled state is evaluated by balancing the wetting pressure P wet and the capillary pressure P C even on the anisotropic textured surfaces. The maximum spreading factor is measured and compared with the theoretical prediction to elucidate the wettability of the textured surfaces. For a given Weber number, the maximum spreading factor decreases as the texture area fraction of the textured surface decreases. In addition, the maximum spreading factors along the direction of longer inter-pillar spacing always have smaller values than those along the direction of shorter inter-pillar spacing when a droplet impacts on the anisotropic arrays of pillars.

  16. Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: in vitro and in vivo studies.

    PubMed

    Han, C; Qi, C M; Zhao, B K; Cao, J; Xie, S Y; Wang, S L; Zhou, W Z

    2009-04-01

    Tilmicosin-loaded solid lipid nanoparticles (SLN) were prepared with hydrogenated castor oil (HCO) by o/w emulsion-solvent evaporation technique. The nanoparticle diameters, surface charges, drug loadings and encapsulation efficiencies of different formulations were 90 approximately 230 nm, -6.5 approximately -12.5 mV, 40.3 approximately 59.2% and 5.7 approximately 11.7% (w/w), respectively. In vitro release studies of the tilmicosin-loaded nanoparticles showed a sustained release and the released tilmicosin had the same antibacterial activity as that of the free drug. Pharmacokinetics study after subcutaneous administration to Balb/c mice demonstrated that a single dose of tilmicosin-loaded nanoparticles resulted in sustained serum drug levels (>0.1 microg/mL) for 8 days, as compared with only 5 h for the same amount of tilmicosin phosphate solution. The time to maximum concentration (Tmax), half-life of absorption (T(1/2) ab) and half-life of elimination (T(1/2) el) of tilmicosin-loaded nanoparticles were much longer than those of tilmicosin phosphate solution. Tissue section showed that drug-loaded nanoparticles caused no inflammation at the injection site. Cytotoxicity study in cell culture and acute toxicity test in mice demonstrated that the nanoparticles had little or no toxicity. The results of this exploratory study suggest that the HCO-SLN could be a useful system for the delivery of tilmicosin by subcutaneous administration.

  17. High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device

    NASA Astrophysics Data System (ADS)

    Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung

    2018-04-01

    Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.

  18. Application of Bioelectrochemical Process (BES) for Electricity Generation and Sustainable Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Jung Rae

    Bioelectrochemical system such as microbial fuel cells (MFCs) and microbial electrolysis cell are an emerging technology which converts biodegradable organic matter to electrical energy or hydrogen using a biofilm on the electrode as the biocatalyst. It has recently been shown that waste-to-energy technology based on MFC can treat organic contaminant in domestic or industrial wastewater and simultaneously produce electricity. The maximum power density increased up to 1kW/m3 based on reactor volume. Bioelectrochemical systems may reduce the energy consumption for wastewater treatment by replacing energy intensive aeration of present treatment systems, while generate electrical energy from waste. In addition, the biomass production in MFCs has been reported to be 10-50% of conventional wastewater treatment, leading to reduce environmental impact and disposal costs. Various electrochemically active bacteria metabolize biodegradable organic compounds then discharge electrons to an extracellular electron acceptor for bacterial respiration. These bacteria also transfer electrons to electrodes by direct electron transfer, electron mediators or shuttles, and electrically conductive nanowires. Investigation of bacterial electron transport mechanisms may improve understanding of the biomaterial involved and metabolic pathways as well as improving power from MFCs. Biofuel cell systems require interdisciplinary research ranging from electrochemistry, microbiology, material science and surface chemistry to engineering such as reactor design, operation and modelling. Collaboration within each study and integration of systems might increase the performance and feasibility of BES process for sustainable energy.

  19. Formation and transport of deethylatrazine and deisopropylatrazine in surface water

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.; Mills, M.S.; Zimmerman, L.R.; Perry, C.A.; Goolsby, D.A.

    1994-01-01

    Field disappearance studies and a regional study of nine rivers in the Midwest Corn Belt show that deethylatrazine (DEA; 2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (DIA; 2-amino-4-chloro-6-ethylaminos-triazine) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 ??g/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations, giving a "second flush?? of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4 ?? 0.1 when atrazine is the major triazine present to 0.6 ?? 0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  20. Aquaculture in artificially developed wetlands in urban areas: an application of the bivariate relationship between soil and surface water in landscape ecology.

    PubMed

    Paul, Abhijit

    2011-01-01

    Wetlands show a strong bivariate relationship between soil and surface water. Artificially developed wetlands help to build landscape ecology and make built environments sustainable. The bheries, wetlands of eastern Calcutta (India), utilize the city sewage to develop urban aquaculture that supports the local fish industries and opens a new frontier in sustainable environmental planning research.

  1. Engineering nanoscale surface features to sustain microparticle rolling in flow.

    PubMed

    Kalasin, Surachate; Santore, Maria M

    2015-05-26

    Nanoscopic features of channel walls are often engineered to facilitate microfluidic transport, for instance when surface charge enables electro-osmosis or when grooves drive mixing. The dynamic or rolling adhesion of flowing microparticles on a channel wall holds potential to accomplish particle sorting or to selectively transfer reactive species or signals between the wall and flowing particles. Inspired by cell rolling under the direction of adhesion molecules called selectins, we present an engineered platform in which the rolling of flowing microparticles is sustained through the incorporation of entirely synthetic, discrete, nanoscale, attractive features into the nonadhesive (electrostatically repulsive) surface of a flow channel. Focusing on one example or type of nanoscale feature and probing the impact of broad systematic variations in surface feature loading and processing parameters, this study demonstrates how relatively flat, weakly adhesive nanoscale features, positioned with average spacings on the order of tens of nanometers, can produce sustained microparticle rolling. We further demonstrate how the rolling velocity and travel distance depend on flow and surface design. We identify classes of related surfaces that fail to support rolling and present a state space that identifies combinations of surface and processing variables corresponding to transitions between rolling, free particle motion, and arrest. Finally we identify combinations of parameters (surface length scales, particle size, flow rates) where particles can be manipulated with size-selectivity.

  2. Assessing the validity of surface electromyography for recording muscle activation patterns from serratus anterior.

    PubMed

    Hackett, Lucien; Reed, Darren; Halaki, Mark; Ginn, Karen A

    2014-04-01

    No direct evidence exists to support the validity of using surface electrodes to record muscle activity from serratus anterior, an important and commonly investigated shoulder muscle. The aims of this study were to determine the validity of examining muscle activation patterns in serratus anterior using surface electromyography and to determine whether intramuscular electromyography is representative of serratus anterior muscle activity. Seven asymptomatic subjects performed dynamic and isometric shoulder flexion, extension, abduction, adduction and dynamic bench press plus tests. Surface electrodes were placed over serratus anterior and around intramuscular electrodes in serratus anterior. Load was ramped during isometric tests from 0% to 100% maximum load and dynamic tests were performed at 70% maximum load. EMG signals were normalised using five standard maximum voluntary contraction tests. Surface electrodes significantly underestimated serratus anterior muscle activity compared with the intramuscular electrodes during dynamic flexion, dynamic abduction, isometric flexion, isometric abduction and bench press plus tests. All other test conditions showed no significant differences including the flexion normalisation test where maximum activation was recorded from both electrode types. Low correlation between signals was recorded using surface and intramuscular electrodes during concentric phases of dynamic abduction and flexion. It is not valid to use surface electromyography to assess muscle activation levels in serratus anterior during isometric exercises where the electrodes are not placed at the angle of testing and dynamic exercises. Intramuscular electrodes are as representative of the serratus anterior muscle activity as surface electrodes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. 3D thermal model of laser surface glazing for H13 tool steel

    NASA Astrophysics Data System (ADS)

    Kabir, I. R.; Yin, D.; Naher, S.

    2017-10-01

    In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.

  4. Impact of Land Surface Initialization Approach on Subseasonal Forecast Skill: a Regional Analysis in the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Hirsch, Annette L.; Kala, Jatin; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Haverd, Vanessa; Mocko, David

    2014-01-01

    The authors use a sophisticated coupled land-atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%-20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.

  5. Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan.

    PubMed

    Lin, Ching-Ho

    2008-04-01

    The ozone that initially presents in the previous day's afternoon mixing layer can remain in the nighttime atmosphere and then be carried over to the next morning. Finally, this ozone can be brought to the ground by downward mixing as mixing depth increases during the daytime, thereby increasing surface ozone concentrations. Variation of ozone concentration during each of these periods is investigated in this work. First, ozone concentrations existing in the daily early morning atmosphere at the altitude range of the daily maximum mixing depth (residual ozone concentrations) were measured using tethered ozonesondes on 52 experimental days during 2004-2005 in southern Taiwan. Daily downward-mixing ozone concentrations were calculated by a box model coupling the measured daily residual ozone concentrations and daily mixing depth variations. The ozone concentrations upwind in the previous day's afternoon mixing layer were estimated by the combination of back air trajectory analysis and known previous day's surface ozone distributions. Additionally, the relationship between daily downward-mixing ozone concentration and daily photochemically produced ozone concentration was examined. The latter was calculated by removing the former from daily surface maximum ozone concentration. The measured daily residual ozone concentrations distributed at 12-74 parts per billion (ppb) with an average of 42 +/- 17 ppb are well correlated with the previous upwind ozone concentration (R2 = 0.54-0.65). Approximately 60% of the previous upwind ozone was estimated to be carried over to the next morning and became the observed residual ozone. The daily downward-mixing ozone contributes 48 +/- 18% of the daily surface maximum ozone concentration, indicating that the downward-mixing ozone is as important as daily photochemically produced ozone to daily surface maximum ozone accumulation. The daily downward-mixing ozone is poorly correlated with the daily photochemically produced ozone and contributes significantly to the daily variation of surface maximum ozone concentrations (R2 = 0.19). However, the contribution of downward-mixing ozone to daily ozone variation is not included in most existing statistical models developed for predicting daily ozone variation. Finally, daily surface maximum ozone concentration is positively correlated with daily afternoon mixing depth, attributable to the downward-mixing ozone.

  6. Overview of water resources in and near Indian lands in northeastern Kansas and southeastern Nebraska

    USGS Publications Warehouse

    Trombley, T.J.; Wolf, R.J.; Jordan, P.R.; Brewer, L.D.

    1996-01-01

    An overview of water resources is provided for a 4,005-square-mile area of northeastern Kansas and southeastern Nebraska that includes the treatylands for the Iowa Tribe of Kansas and Nebraska, the Kickapoo Tribe of Kansas, the Prairie Band of Potawatomi, and the Sac and Fox Tribe ofMissouri. The only plentiful supplies of surface water are available from the Missouri and Kansas Rivers. The smallest mean streamflows for 4 consecutive months occur in November through February for most streams in the area. The smallest flows for 7 consecutive days in a year occur most often in August, September, or October. The typical seasonal distribution of streamflows indicates a pattern favorable for the same-year use of small surface-water impoundments for low-flow augmentation; large flows that could be impounded typically occur in the month shortly before augmentation is most needed. However, droughts of 2 or more consecutive years are common and would largely negate the advantage of using small impoundments except for very small water-supply needs. Alluvial deposits along the Kansas and Missouri Rivers provide the largest well yields in the study area, but these deposits are limited in areal extent. The Kansas River alluvium reaches a maximum saturated thickness of about 70 feet, and the Missouri River alluvium reaches a maximum thickness of 120 feet. Well yields in the Kansas River generally range from 300 to 1,000 gallons per minute (gal/min) but may be as large as 2,500 gal/min. Well yields in the Missouri River alluvium generally range from 150 to 2,500 gal/min but may be as large as 3,000 gal/min. Although generally capable only of small sustained yields to wells, minor aquifers are important because they are available throughout most of the study area. Within the thick, mostly fine-grained glacial deposits, isolated sand and gravel layers may yield adequate supplies for stock- watering or domestic use. Sodium concentrations exceed the U.S. Environmental Protection Agency's (USEPA) Secondary Maximum Contaminant Level of 20 milligrams per liter most often in the middle Kansas and Delaware Basins. Total iron andmanganese concentrations in water generally exceed the USEPA Secondary Maximum Contaminant Levels of 50 micrograms per liter for iron and 300micrograms per liter for manganese. Atrazine concentrations in surface water, primarily from post-application runoff, commonly exceed the USEPA Maximum Contaminant Level of 3.0 micrograms per liter during the months of May, June, and July. Most of the erosion and about one- half of the total sediment yield in parts of the study area may result from sheet and rill erosion and gullying on cultivated cropland. A total of 3.13 million gallons per day (Mgal/d) of water was used in 1990 in the Big Nemaha River Basin, 74 percent of which was derived from ground water. In the Wolf River Basin, 1.29 Mgal/d were used, 71 percent derived from ground water. The Middle Kansas River Basin had the highest water use, 83.01 Mgal/d, 67 percent of which was from surface water. A total of 4.37 Mgal/d was used in the Delaware River Basin, 55 percent from ground water.

  7. Aerodynamic Surface Stress Intermittency and Conditionally Averaged Turbulence Statistics

    NASA Astrophysics Data System (ADS)

    Anderson, W.

    2015-12-01

    Aeolian erosion of dry, flat, semi-arid landscapes is induced (and sustained) by kinetic energy fluxes in the aloft atmospheric surface layer. During saltation -- the mechanism responsible for surface fluxes of dust and sediment -- briefly suspended sediment grains undergo a ballistic trajectory before impacting and `splashing' smaller-diameter (dust) particles vertically. Conceptual models typically indicate that sediment flux, q (via saltation or drift), scales with imposed aerodynamic (basal) stress raised to some exponent, n, where n > 1. Since basal stress (in fully rough, inertia-dominated flows) scales with the incoming velocity squared, u^2, it follows that q ~ u^2n (where u is some relevant component of the above flow field, u(x,t)). Thus, even small (turbulent) deviations of u from its time-averaged value may play an enormously important role in aeolian activity on flat, dry landscapes. The importance of this argument is further augmented given that turbulence in the atmospheric surface layer exhibits maximum Reynolds stresses in the fluid immediately above the landscape. In order to illustrate the importance of surface stress intermittency, we have used conditional averaging predicated on aerodynamic surface stress during large-eddy simulation of atmospheric boundary layer flow over a flat landscape with momentum roughness length appropriate for the Llano Estacado in west Texas (a flat agricultural region that is notorious for dust transport). By using data from a field campaign to measure diurnal variability of aeolian activity and prevailing winds on the Llano Estacado, we have retrieved the threshold friction velocity (which can be used to compute threshold surface stress under the geostrophic balance with the Monin-Obukhov similarity theory). This averaging procedure provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We will characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field.

  8. Construction, Geologic, and Hydrologic Data from Five Exploratory Wells on Rota, Commonwealth of the Northern Mariana Islands, 1999

    USGS Publications Warehouse

    Carruth, Rob

    2005-01-01

    Rota is the southernmost of the 14 small islands that make up the Commonwealth of the Northern Mariana Islands. Reduced springflow at Matan Hanom and As Onan springs occurred during a drought associated with the 1997-98 El Nino. Water from the two developed springs constituted the only municipal water source for the island at that time. In April 1998, reduced water supplies forced the Commonwealth Utilities Corporation to restrict water service in the principal villages of Songsong and Sinapalu for the duration of the dry season. In 1999, Five exploratory wells, EX-1 through EX-5 (CUC wells SP-MW1, SP-1, -2, -3, and SP-MW2), were drilled in the Sinapalu region of Rota to (1) assess the availability of fresh ground-water resources in an area where no other well information were available, and (2) to provide a new water source to help mitigate the impacts of drought associated with recurring El Nino weather events. The wells penetrated mainly light colored (dirty white to brownish), fragmental limestones containing abundant coral remains. Sustained-rate, recovery, and step-drawdown aquifer tests were attempted at each of the five exploratory wells to estimate aquifer properties in the vicinity of the wells and to assess the potential for new water sources. At wells EX-1 (CUC well SPMW1) and EX-5 (CUC well SP-MW2), attempts to conduct sustained-rate aquifer tests resulted in excessive drawdown to the pump intakes in the vicinity of the wells. At well EX-2 (CUC well SP-1), the maximum drawdown measured in the pumped well was 3.93 ft during 8 days of sustained pumping at an average rate of 187 gal/min. At well EX-3 (CUC well SP-2), the maximum drawdown measured in the pumped well was 2.31 ft during 8 days of sustained pumping at an average rate of 108 gal/min, and at well EX-4 (CUC well SP-3), the maximum drawdown measured in the pumped well was 3.27 ft during 8 days of sustained pumping at an average rate of 139 gal/min. Specific conductance at the end of 8 days of pumping was 403, 358, and 445 ?S/cm at well EX-2, EX-3, and EX-4 (CUC wells SP-1, -2, and -3), respectively.

  9. SUSTAIN - A USEPA BMP PROCESS AND PLACEMENT TOOL FOR URBAN WATERSHEDS

    EPA Science Inventory

    Watershed and stormwater managers need modeling tools to evaluate how best to address environmental quality restoration and protection needs in urban and developing areas. Significant investments are needed to protect and restore water quality, address total maximum daily loads (...

  10. Multiple Watershed Scales Approach for Placement of Best Managemnet Practices in SUSTAIN

    EPA Science Inventory

    Watershed and stormwater managers need modeling tools to evaluate how best to address environmental quality restoration and protection needs in urban and developing areas. Significant investments are needed to protect and restore water quality, address total maximum daily loads ...

  11. Design and Implementation of Green Construction Scheme for a High-rise Residential Building Project

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Huang, You Zhen

    2018-06-01

    This paper mainly studies the green construction scheme of a high-rise residential building project. From "four sections one environmental protection", saving material, water saving, energy saving, economical use of land and environmental protection conduct analysis and research. Adopting scientific, advanced, reasonable and economical construction technology measures, implementing green construction method. Promoting energy-saving technologies in buildings, ensuring the sustainable use of resources, Maximum savings of resources and energy, increase energy efficiency, to reduce pollution, reducing the adverse environmental impact of construction activities, ensure construction safety, build sustainable buildings.

  12. Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718.

    PubMed

    Hua, Yang; Liu, Zhanqiang

    2018-05-24

    Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.

  13. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys : 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.

    Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. For this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snowmore » and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R 2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.« less

  14. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys : 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation

    DOE PAGES

    Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; ...

    2017-11-17

    Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. For this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snowmore » and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R 2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.« less

  15. Maximum sustainable speeds and cost of swimming in juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus).

    PubMed

    Sepulveda, C; Dickson, K A

    2000-10-01

    Tunas (Scombridae) have been assumed to be among the fastest and most efficient swimmers because they elevate the temperature of the slow-twitch, aerobic locomotor muscle above the ambient water temperature (endothermy) and because of their streamlined body shape and use of the thunniform locomotor mode. The purpose of this study was to test the hypothesis that juvenile tunas swim both faster and more efficiently than their ectothermic relatives. The maximum sustainable swimming speed (U(max), the maximum speed attained while using a steady, continuous gait powered by the aerobic myotomal muscle) and the net cost of transport (COT(net)) were compared at 24 degrees C in similar-sized (116-255 mm fork length) juvenile scombrids, an endothermic tuna, the kawakawa (Euthynnus affinis) and the ectothermic chub mackerel (Scomber japonicus). U(max) and COT(net) were measured by forcing individual fish to swim in a temperature-controlled, variable-speed swimming tunnel respirometer. There were no significant interspecific differences in the relationship between U(max) and body mass or fork length or in the relationship between COT(net) and body mass or fork length. Muscle temperatures were elevated by 1.0-2.3 degrees C and 0.1-0.6 degrees C above water temperature in the kawakawa and chub mackerel, respectively. The juvenile kawakawa had significantly higher standard metabolic rates than the chub mackerel, because the total rate of oxygen consumption at a given swimming speed was higher in the kawakawa when the effects of fish size were accounted for. Thus, juvenile kawakawa are not capable of higher sustainable swimming speeds and are not more efficient swimmers than juvenile chub mackerel.

  16. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells.

    PubMed

    Wong, Terence K S; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K

    2016-04-07

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu₂O), cupric oxide (CuO) and copper (III) oxide (Cu₄O₃) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu₂O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of Al x Ga 1- x O onto thermal Cu₂O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu₂O nanopowder. CuO/Cu₂O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu₄O₃/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10 -2 %.

  17. Using an extreme bony prominence anatomical model to examine the influence of bed sheet materials and bed making methods on the distribution of pressure on the support surface.

    PubMed

    Iuchi, Terumi; Nakajima, Yukari; Fukuda, Moriyoshi; Matsuo, Junko; Okamoto, Hiroyuki; Sanada, Hiromi; Sugama, Junko

    2014-05-01

    Bed sheets generate high surface tension across the support surface and increase pressure to the body through a process known as the hammock effect. Using an anatomical model and a loading device characterized by extreme bony prominences, the present study compared pressure distributions on support surfaces across different bed making methods and bed sheet materials to determine the factors that influence pressure distribution. The model was placed on a pressure mapping system (CONFORMat; NITTA Corp., Osaka, Japan), and interface pressure was measured. Bed sheet elasticity and friction between the support surface and the bed sheets were also measured. For maximum interface pressure, the relative values of the following methods were higher than those of the control method, which did not use any bed sheets: cotton sheets with hospital corners (1.28, p = 0.02), polyester with no corners (1.29, p = 0.01), cotton with no corners (1.31, p = 0.003), and fitted polyester sheets (1.35, p = 0.002). Stepwise multiple regression analysis indicated that maximum interface pressure was negatively correlated with bed sheet elasticity (R(2) = 0.74). A statistically significant negative correlation was observed between maximum interface pressure and immersion depth, which was measured using the loading device (r = -0.40 and p = 0.04). We found that several combinations of bed making methods and bed sheet materials induced maximum interface pressures greater than those observed for the control method. Bed sheet materials influenced maximum interface pressure, and bed sheet elasticity was particularly important in reducing maximum interface pressure. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  18. Self-sustained criterion with photoionization for positive dc corona plasmas between coaxial cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yuesheng, E-mail: yueshengzheng@fzu.edu.cn; Zhang, Bo, E-mail: shizbcn@tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn

    The positive dc corona plasmas between coaxial cylinders in air under the application of a self-sustained criterion with photoionization are investigated in this paper. A photon absorption function suitable for cylindrical electrode, which can characterize the total photons within the ionization region, is proposed on the basis of the classic corona onset criteria. Based on the general fluid model with the self-sustained criterion, the role of photoionization in the ionization region is clarified. It is found that the surface electric field keeps constant under a relatively low corona current, while it is slightly weakened with the increase of the coronamore » current. Similar tendencies can be found under different conductor radii and relative air densities. The small change of the surface electric field will become more significant for the electron density distribution as well as the ionization activity under a high corona current, compared with the results under the assumption of a constant surface field. The assumption that the surface electric field remains constant should be corrected with the increase of the corona current when the energetic electrons with a distance from the conductor surface are concerned.« less

  19. Distributed feedback acoustic surface wave oscillator

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1974-01-01

    Using a simple model, the feasibility of applying the distributed feedback concept to the generation of acoustic surface waves is evaluated. It is shown that surface corrugation of the piezoelectric boundary in a semiconductor-piezoelectric surface acoustic wave amplifier could lead to self-sustained oscillations.

  20. Recycled tire crumb rubber anodes for sustainable power production in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Heming; Davidson, Matthew; Zuo, Yi; Ren, Zhiyong

    One of the greatest challenges facing microbial fuel cells (MFCs) in large scale applications is the high cost of electrode material. We demonstrate here that recycled tire crumb rubber coated with graphite paint can be used instead of fine carbon materials as the MFC anode. The tire particles showed satisfactory conductivity after 2-4 layers of coating. The specific surface area of the coated rubber was over an order of magnitude greater than similar sized graphite granules. Power production in single chamber tire-anode air-cathode MFCs reached a maximum power density of 421 mW m -2, with a coulombic efficiency (CE) of 25.1%. The control graphite granule MFC achieved higher power density (528 mW m -2) but lower CE (15.6%). The light weight of tire particle could reduce clogging and maintenance cost but posts challenges in conductive connection. The use of recycled material as the MFC anodes brings a new perspective to MFC design and application and carries significant economic and environmental benefit potentials.

  1. Changes in muscle fiber conduction velocity indicate recruitment of distinct motor unit populations.

    PubMed

    Houtman, C J; Stegeman, D F; Van Dijk, J P; Zwarts, M J

    2003-09-01

    To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.

  2. "Solvent-free" ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process.

    PubMed

    Adam, Fanny; Abert-Vian, Maryline; Peltier, Gilles; Chemat, Farid

    2012-06-01

    In order to comply with criteria of green chemistry concepts and sustainability, a new procedure has been performed for solvent-free ultrasound-assisted extraction (UAE) to extract lipids from fresh Nannochloropsis oculata biomass. Through response surface methodology (RSM) parameters affecting the oil recovery were optimized. Optimum conditions for oil extraction were estimated as follows: (i) 1000 W ultrasonic power, (ii) 30 min extraction time and (iii) biomass dry weight content at 5%. Yields were calculated by the total fatty acids methyl esters amounts analyzed by GC-FID-MS. The maximum oil recovery was around 0.21%. This value was compared with the one obtained with the conventional extraction method (Bligh and Dyer). Furthermore, effect of temperature on the yield was also investigated. The overall results show an innovative and effective extraction method adapted for microalgae oil recovery, without using solvent and with an enable scaling up. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The perceptions of professional soccer players on the risk of injury from competition and training on natural grass and 3rd generation artificial turf

    PubMed Central

    2014-01-01

    Background The purpose of this study was to describe professional soccer players’ perceptions towards injuries, physical recovery and the effect of surface related factors on injury resulting from soccer participation on 3rd generation artificial turf (FT) compared to natural grass (NG). Methods Information was collected through a questionnaire that was completed by 99 professional soccer players from 6 teams competing in Major League Soccer (MLS) during the 2011 season. Results The majority (93% and 95%) of the players reported that playing surface type and quality influenced the risk of sustaining an injury. Players believed that playing and training on FT increased the risk of sustaining a non-contact injury as opposed to a contact injury. The players identified three surface related risk factors on FT, which they related to injuries and greater recovery times: 1) Greater surface stiffness 2) Greater surface friction 3) Larger metabolic cost to playing on artificial grounds. Overall, 94% of the players chose FT as the surface most likely to increase the risk of sustaining an injury. Conclusions Players believe that the risk of injury differs according to surface type, and that FT is associated with an increased risk of non-contact injury. Future studies should be designed prospectively to systematically track the perceptions of groups of professional players training and competing on FT and NG. PMID:24581229

  4. Hurricane Irene

    Atmospheric Science Data Center

    2013-04-19

    ... scale, with maximum sustained winds of 115 mph (185 kph), and a minimum central pressure of 951 hPa, according to NOAA's National ... an angle of 46 degrees. The storm is visible to the north of Cuba, which is located in the lower left of the image. Irene's eye is covered ...

  5. Switchgrass composition and yield response to alternative soil amendments under intensified heat and drought conditions

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) and guinea grass (Panicum maximum Jacq.) have been proposed as sustainable alternatives to fossil fuels in temperate and tropical environments, respectively; although still requiring non-renewable inputs, notably, fertilizer-nitrogen (N). Furthermore, climate change...

  6. Ku to V-band 4-bit MEMS phase shifter bank using high isolation SP4T switches and DMTL structures

    NASA Astrophysics Data System (ADS)

    Dey, Sukomal; Koul, Shiban K.; Poddar, Ajay K.; Rohde, Ulrich L.

    2017-10-01

    This work presents a micro-electro-mechanical system (MEMS) based on a wide-band 4-bit phase shifter using two back-to-back single-pole-four-throw (SP4T) switches and four different distributed MEMS transmission line (DMTL) structures that are implemented on 635 µm alumina substrate using surface micromachining process. An SP4T switch is designed with a series-shunt configuration and it demonstrates an average return loss of  >17 dB, an insertion loss of  <1.97 dB and maximum isolation of  >28 dB up to 60 GHz. A maximum area of the SP4T switch is ~0.76 mm2. Single-pole-single-throw and SP4T switches are capable of handling 1 W of radio frequency (RF) power up to  >100 million cycles at 25° C; they can even sustained up to  >70 million cycles with 1 W at 85 °C. The proposed wide-band phase shifter works at 17 GHz (Ku-band), 25 GHz (K-band), 35 GHz (Ka-band) and 60 GHz (V-band) frequencies. Finally,a 4-bit phase shifter demonstrates an average insertion loss of  <6 dB, return loss of  >10 dB and maximum phase error of ~3.8° at 60 GHz frequency over 500 MHz bandwidth. Total area of the fabricated device is ~11 mm2. In addition, the proposed device works well up to  >107 cycles with 1 W of RF power. To the best of the author’s knowledge, this is the best reported wide-band MEMS 4-bit phase shifter in the literature that works with a constant resolution.

  7. Cloth media filtration and membrane microfiltration: serial operation.

    PubMed

    Tooker, Nicholas Brewster; Darby, Jeannie L

    2007-02-01

    A combined system comprised of a cloth media filter and a membrane microfilter operated in series was used to treat secondary effluent. The study objective was to investigate the effect of premembrane filtration on the maximum sustainable membrane flux, transmembrane pressure, and effluent quality. The maximum sustainable time-averaged flux under predefined operating conditions (i.e., 15-minute process cycle, 24-hour chemical cleaning cycle, and 30-day intensive cleaning cycle) was 127 L/m(2)x h. Typical flux rates for secondary effluent ranged from 40 to 55 L/m(2) x h. Effluent water quality from the combined system was high and independent of membrane flux and influent quality. Average membrane effluent water quality values were 0.04 NTU for turbidity and 1.4 mg/L for 5-day biochemical oxygen demand. Neither total nor fecal coliforms were detected. Based on the results presented herein, prefiltration would provide an annualized cost savings of approximately 12% over microfiltration alone for a 3.8 x 10(3) m(3)/d treatment facility.

  8. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits; maximum... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check circuits; maximum voltage. The maximum voltage used for ground check circuits under § 77.803 shall not...

  9. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fail safe ground check circuits; maximum... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check circuits; maximum voltage. The maximum voltage used for ground check circuits under § 77.803 shall not...

  10. Applying the Inverse Maximum Ratio- Λ to 3-Dimensional Surfaces

    NASA Astrophysics Data System (ADS)

    Chandran, Avinash; Brown, Derek; DiPietro, Loretta; Danoff, Jerome

    2016-06-01

    The question of contour uniformity on a three-dimensional surface arises in various fields of study. Although many questions related to surface uniformity exist, there is a lack of standard methodology to quantify uniformity of a three-dimensional surface. Therefore, a sound mathematical approach to this question could prove to be useful in various areas of study. The purpose of this paper is to expand the previously validated mathematical concept of the inverse maximum ratio over a three-dimensional surface and assess its robustness. We will describe the mathematical approach used to accomplish this and use several simulated examples to validate the metric.

  11. Remote estimation of the surface characteristics and energy balance over an urban-rural area and the effects of surface heat flux on plume spread and concentration. M.S. Thesis; [St. Louis, Missouri, the Land Between the Lakes, Kentucky and Clarksville, Tennessee

    NASA Technical Reports Server (NTRS)

    Dicristofaro, D. C. (Principal Investigator)

    1980-01-01

    A one dimensional boundary layer model was used in conjunction with satellite derived infrared surface temperatures to deduce values of moisture availability, thermal inertia, heat and evaporative fluxes. The Penn State satellite image display system, a sophisticated image display facility, was used to remotely sense these various parameters for three cases: St. Louis, Missouri; the Land Between the Lakes, Kentucky; and Clarksville, Tennessee. The urban centers displayed the maximum daytime surface temperatures which correspond to the minimum values of moisture availability. The urban center of St. Louis and the bodies of water displayed the maximum nighttime surface temperatures which correspond to the maximum thermal inertia values. It is shown that moisture availability and thermal inertia are very much responsible for the formation of important temperature variations over the urban rural complex.

  12. Bite force measurements with hard and soft bite surfaces.

    PubMed

    Serra, C M; Manns, A E

    2013-08-01

    Bite force has been measured by different methods and over a wide variety of designs. In several instruments, the fact that bite surface has been manufactured with stiff materials might interfere in obtaining reliable data, by a more prompt activation of inhibitory reflex mechanisms. The purpose of this study was to compare the maximum voluntary bite force measured by a digital occlusal force gauge (GM10 Nagano Keiki, Japan) between different opponent teeth, employing semi-hard or soft bite surfaces. A sample of 34 young adults with complete natural dentition was studied. The original semi-hard bite surface was exchanged by a soft one, made of leather and rubber. Maximum voluntary bite force recordings were made for each tooth group and for both bite surfaces. Statistical analyses (Student's t-test) revealed significant differences, with higher scores while using the soft surface across sexes and tooth groups (P < 0·05). Differential activation of periodontal mechanoreceptors of a specific tooth group is mainly conditioned by the hardness of the bite surface; a soft surface induces greater activation of elevator musculature, while a hard one induces inhibition more promptly. Thus, soft bite surfaces are recommended for higher reliability in maximum voluntary bite force recordings. © 2013 John Wiley & Sons Ltd.

  13. Eco-label conveys reliable information on fish stock health to seafood consumers.

    PubMed

    Gutiérrez, Nicolás L; Valencia, Sarah R; Branch, Trevor A; Agnew, David J; Baum, Julia K; Bianchi, Patricia L; Cornejo-Donoso, Jorge; Costello, Christopher; Defeo, Omar; Essington, Timothy E; Hilborn, Ray; Hoggarth, Daniel D; Larsen, Ashley E; Ninnes, Chris; Sainsbury, Keith; Selden, Rebecca L; Sistla, Seeta; Smith, Anthony D M; Stern-Pirlot, Amanda; Teck, Sarah J; Thorson, James T; Williams, Nicholas E

    2012-01-01

    Concerns over fishing impacts on marine populations and ecosystems have intensified the need to improve ocean management. One increasingly popular market-based instrument for ecological stewardship is the use of certification and eco-labeling programs to highlight sustainable fisheries with low environmental impacts. The Marine Stewardship Council (MSC) is the most prominent of these programs. Despite widespread discussions about the rigor of the MSC standards, no comprehensive analysis of the performance of MSC-certified fish stocks has yet been conducted. We compared status and abundance trends of 45 certified stocks with those of 179 uncertified stocks, finding that 74% of certified fisheries were above biomass levels that would produce maximum sustainable yield, compared with only 44% of uncertified fisheries. On average, the biomass of certified stocks increased by 46% over the past 10 years, whereas uncertified fisheries increased by just 9%. As part of the MSC process, fisheries initially go through a confidential pre-assessment process. When certified fisheries are compared with those that decline to pursue full certification after pre-assessment, certified stocks had much lower mean exploitation rates (67% of the rate producing maximum sustainable yield vs. 92% for those declining to pursue certification), allowing for more sustainable harvesting and in many cases biomass rebuilding. From a consumer's point of view this means that MSC-certified seafood is 3-5 times less likely to be subject to harmful fishing than uncertified seafood. Thus, MSC-certification accurately identifies healthy fish stocks and conveys reliable information on stock status to seafood consumers.

  14. Eco-Label Conveys Reliable Information on Fish Stock Health to Seafood Consumers

    PubMed Central

    Gutiérrez, Nicolás L.; Valencia, Sarah R.; Branch, Trevor A.; Agnew, David J.; Baum, Julia K.; Bianchi, Patricia L.; Cornejo-Donoso, Jorge; Costello, Christopher; Defeo, Omar; Essington, Timothy E.; Hilborn, Ray; Hoggarth, Daniel D.; Larsen, Ashley E.; Ninnes, Chris; Sainsbury, Keith; Selden, Rebecca L.; Sistla, Seeta; Smith, Anthony D. M.; Stern-Pirlot, Amanda; Teck, Sarah J.; Thorson, James T.; Williams, Nicholas E.

    2012-01-01

    Concerns over fishing impacts on marine populations and ecosystems have intensified the need to improve ocean management. One increasingly popular market-based instrument for ecological stewardship is the use of certification and eco-labeling programs to highlight sustainable fisheries with low environmental impacts. The Marine Stewardship Council (MSC) is the most prominent of these programs. Despite widespread discussions about the rigor of the MSC standards, no comprehensive analysis of the performance of MSC-certified fish stocks has yet been conducted. We compared status and abundance trends of 45 certified stocks with those of 179 uncertified stocks, finding that 74% of certified fisheries were above biomass levels that would produce maximum sustainable yield, compared with only 44% of uncertified fisheries. On average, the biomass of certified stocks increased by 46% over the past 10 years, whereas uncertified fisheries increased by just 9%. As part of the MSC process, fisheries initially go through a confidential pre-assessment process. When certified fisheries are compared with those that decline to pursue full certification after pre-assessment, certified stocks had much lower mean exploitation rates (67% of the rate producing maximum sustainable yield vs. 92% for those declining to pursue certification), allowing for more sustainable harvesting and in many cases biomass rebuilding. From a consumer’s point of view this means that MSC-certified seafood is 3–5 times less likely to be subject to harmful fishing than uncertified seafood. Thus, MSC-certification accurately identifies healthy fish stocks and conveys reliable information on stock status to seafood consumers. PMID:22928029

  15. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse

    2010-01-01

    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  16. Glacial and volcanic evolution on Nevado Coropuna (Tropical Andes) based on cosmogenic 36Cl surface exposure dating

    NASA Astrophysics Data System (ADS)

    Úbeda, J.; Palacios, D.; Vázquez-Selém, L.

    2012-04-01

    We have reconstructed the evolution of the paleo-glaciers of the volcanic complex Nevado Coropuna (15°S, 72°W; 6377 m asl) through the interpretation and dating of geomorphological evidences. Surface exposure dating (SED) based on the accumulation of 36Cl on the surface of moraine boulders, polished bedrock and lava flows allowed: 1) to confirm that the presence of ice masses in the region dates back to >80ka; 2) to produce chronologies of glacial and volcanic phases for the last ~21 ka; and 3) to obtain evidences of the reactivation of volcanic activity after the Last Glacial Maximum. Bromley et al. (2009) presented 3He SED ages of 21 ka for moraine boulders on the Mapa Mayo valley, to the North of Nevado Coropuna. Our 36Cl SED SED for moraine boulders from the valleys on the NE sector of the volcanic complex suggest a maximum initial advance between 20 and 16 ka, followed by another expansion of similar extent at 12-11 ka. On the Southern slope of Nevado Coropuna, the 36Cl ages show a maximum initial advance that reaches to the level of the Altiplano at 14 ka, and a re-advance at ~10-9 ka BP. Other data show minor re-advances at 9 ka on the Northern slope and at 6 ka to the South of the volcanic complex. These minor positive pulses interrupted a fast deglaciation process during the Holocene as shown by two series of 36Cl SED from polished rock surfaces on successively higher altitudes along the valleys of rivers Blanco and Cospanja, to the SW and SE. Despite the global warming occuring since 20 ka, deduced from the record of sea surface paleo-temperature of the Galapago Islands (Lea et al, 2006), the evolution of the fresh-water plankton from Lake Titicaca (Fritz et al, 2007) is consistent with sustained glacial conditions until 10-9 ka as suggested by the present work. Exposure ages of three lava flows indicate a reactivation of the magmatic system as the paleo-glaciers abandonned the slopes. The eruptive activity migrated from the West, where we found a lava flow of 6 ka, to the East, where we dated two units similar to the previous one at 2 and <1ka. Bromley, G.R. et al., 2009. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quaternary Science Reviews, 1-13. Bromley, R.M. et al., 2011. Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. Journal of Quaternary Science, 26 (1): 37-43. Fritz, S.C. et al., 2007. Lake Titicaca 370KYr LT01-2B Sediment Database. Lake Titicaca 370KYr LT01-2B Sediment Data. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 92-008. NOAA/NGDC Paleoclimatology Program. Boulder (EEUU). Lea, D.W. et al., 2006. Galápagos TR163-22 Foraminiferal ^18O and Mg/Ca Data and SST Reconstruction. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2006-090. NOAA/NCDC Paleoclimatology Program, Boulder (EEUU). Research funded by CGL2009-7343 project, Government of Spain.

  17. Development and validation of cryogenic foam insulation for LH2 subsonic transports

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Colt, J. Z.; Helenbrook, R. G.

    1981-01-01

    Fourteen foam insulation specimens were tested. Some were plain foam while others contained flame retardants, chopped fiberglass reinforcement and/or vapor barriers. The thermal performance of the insulation was determined by measuring the rate at which LH2 boiled from an aluminum tank insulated with the test material. The test specimens were approximately 50 mm (2 in.) thick. They were structurally scaled so that the test cycle would duplicate the maximum thermal stresses predicted for the thicker insulation of an aircraft liquid hydrogen fuel tank during a typical subsonic flight. The simulated flight cycle of approximately 10 minutes duration heated the other insulation surface to 316 K (110 F) and cooled it to 226 K (20 F) while the inner insulation surface remained at liquid hydrogen temperature of 20 K (-423 F). Two urethane foam insulations exceeded the initial life goal of 2400 simulated flight cycles and sustained 4400 cycles with only minor damage. The addition of fiberglass reinforcement of flame retardant materials to an insulation degraded thermal performance and/or the life of the foam material. Installation of vapor barriers enhanced the structural integrity of the material but did not improve thermal performance. All of the foams tested were available materials; none were developed specifically for LH2 service.

  18. Rupture of vertical soap films

    NASA Astrophysics Data System (ADS)

    Rio, Emmanuelle

    2014-11-01

    Soap films are ephemeral and fragile objects. They tend to thin under gravity, which gives rise to the fascinating variations of colors at their interfaces but leads systematically to rupture. Even a child can create, manipulate and admire soap films and bubbles. Nevertheless, the reason why it suddenly bursts remains a mystery although the soap chosen to stabilize the film as well as the humidity of the air seem very important. One difficulty to study the rupture of vertical soap films is to control the initial solution. To avoid this problem we choose to study the rupture during the generation of the film at a controlled velocity. We have built an experiment, in which we measure the maximum length of the film together with its lifetime. The generation of the film is due to the presence of a gradient of surface concentration of surfactants at the liquid/air interface. This leads to a Marangoni force directed toward the top of the film. The film is expected to burst only when its weight is not balanced anymore by this force. We will show that this leads to the surprising result that the thicker films have shorter lifetimes than the thinner ones. It is thus the ability of the interface to sustain a surface concentration gradient of surfactants which controls its stability.

  19. The electro-structural behaviour of yarn-like carbon nanotube fibres immersed in organic liquids

    NASA Astrophysics Data System (ADS)

    Terrones, Jeronimo; Windle, Alan H.; Elliott, James A.

    2014-10-01

    Yarn-like carbon nanotube (CNT) fibres are a hierarchically-structured material with a variety of promising applications such as high performance composites, sensors and actuators, smart textiles, and energy storage and transmission. However, in order to fully realize these possibilities, a more detailed understanding of their interactions with the environment is required. In this work, we describe a simplified representation of the hierarchical structure of the fibres from which several mathematical models are constructed to explain electro-structural interactions of fibres with organic liquids. A balance between the elastic and surface energies of the CNT bundle network in different media allows the determination of the maximum lengths that open junctions can sustain before collapsing to minimize the surface energy. This characteristic length correlates well with the increase of fibre resistance upon immersion in organic liquids. We also study the effect of charge accumulation in open interbundle junctions and derive expressions to describe experimental data on the non-ohmic electrical behaviour of fibres immersed in polar liquids. Our analyses suggest that the non-ohmic behaviour is caused by progressively shorter junctions collapsing as the voltage is increased. Since our models are not based on any property unique to carbon nanotubes, they should also be useful to describe other hierarchical structures.

  20. Thermal Energy for Lunar In Situ Resource Utilization: Technical Challenges and Technology Opportunities

    NASA Technical Reports Server (NTRS)

    Gordon, Pierce E. C.; Colozza, Anthony J.; Hepp, Aloysius F.; Heller, Richard S.; Gustafson, Robert; Stern, Ted; Nakamura, Takashi

    2011-01-01

    Oxygen production from lunar raw materials is critical for sustaining a manned lunar base but is very power intensive. Solar concentrators are a well-developed technology for harnessing the Sun s energy to heat regolith to high temperatures (over 1375 K). The high temperature and potential material incompatibilities present numerous technical challenges. This study compares and contrasts different solar concentrator designs that have been developed, such as Cassegrains, offset parabolas, compound parabolic concentrators, and secondary concentrators. Differences between concentrators made from lenses and mirrors, and between rigid and flexible concentrators are also discussed. Possible substrate elements for a rigid mirror concentrator are selected and then compared, using the following (target) criteria: (low) coefficient of thermal expansion, (high) modulus of elasticity, and (low) density. Several potential lunar locations for solar concentrators are compared; environmental and processing-related challenges related to dust and optical surfaces are addressed. This brief technology survey examines various sources of thermal energy that can be utilized for materials processing on the lunar surface. These include heat from nuclear or electric sources and solar concentrators. Options for collecting and transporting thermal energy to processing reactors for each source are examined. Overall system requirements for each thermal source are compared and system limitations, such as maximum achievable temperature are discussed.

  1. Box-Behnken design approach towards optimization of activated carbon synthesized by co-pyrolysis of waste polyester textiles and MgCl2

    NASA Astrophysics Data System (ADS)

    Yuan, Zhihang; Xu, Zhihua; Zhang, Daofang; Chen, Weifang; Zhang, Tianqi; Huang, Yuanxing; Gu, Lin; Deng, Haixuan; Tian, Danqi

    2018-01-01

    Pyrolysis activation of waste polyester textiles (WPT) was regarded as a sustainable technique to synthesize multi-pore activated carbons. MgO-template method of using MgCl2 as the template precursor was employed, which possessed the advantages of ideal pore-forming effect and efficient preparation process. The response surface methodology coupled with Box-Behnken design (BBD) was conducted to study the interaction between different variables and optimized preparation conditions of waste polyester textiles based activated carbons. Derived from BBD design results, carbonization temperature was the most significant individual factor. And the maximum specific surface area of 1364 m2/g, which presented a good agreement with the predicted response values(1315 m2/g), was obtained at mixing ratio in MgCl2/WPT, carbonization temperature and time of 5:1, 900 °C and 90 min, respectively. Furthermore, the physicochemical properties of the sample prepared under optimal conditions were carried on utilizing nitrogen adsorption/desorption isotherms, EA, XRD, SEM and FTIR. In addition, the pore-forming mechanism was mainly attributed to the tendency of carbon layer coating on MgO to form pore walls after elimination of MgO and the strong dehydration effect of MgCl2 on WPT.

  2. Application of solar disinfection for treatment of contaminated public water supply in a developing country: field observations.

    PubMed

    Mustafa, Atif; Scholz, Miklas; Khan, Sadia; Ghaffar, Abdul

    2013-03-01

    A sustainable and low-cost point-of-use household drinking water solar disinfection (SODIS) technology was successfully applied to treat microbiologically contaminated water. Field experiments were conducted to determine the efficiency of SODIS and evaluate the potential benefits and limitations of SODIS under local climatic conditions in Karachi, Pakistan. In order to enhance the efficiency of SODIS, the application of physical interventions were also investigated. Twenty per cent of the total samples met drinking water guidelines under strong sunlight weather conditions, showing that SODIS is effective for complete disinfection under specific conditions. Physical interventions, including black-backed and reflecting rear surfaces in the batch reactors, enhanced SODIS performance. Microbial regrowth was also investigated and found to be more controlled in reactors with reflective and black-backed surfaces. The transfer of plasticizer di(2-ethylhexyl)phthalate (DEHP) released from the bottle material polyethylene terephthalate (PET) under SODIS conditions was also investigated. The maximum DEHP concentration in SODIS-treated water was 0.38 μg/L less than the value of 0.71 μg/L reported in a previous study and well below the WHO drinking-quality guideline value. Thus SODIS-treated water can successfully be used by the people living in squatter settlements of mega-cities, such as Karachi, with some limitations.

  3. In vitro study on the osteogenesis enhancement effect of BMP-2 incorporated biomimetic apatite coating on titanium surfaces.

    PubMed

    Zhu, Xiaojing; Zhang, Hui; Zhang, Xinchun; Ning, Chengyun; Wang, Yan

    2017-09-26

    To fabricate a sustained-release delivery system of bone morphogenetic protein (BMP-2) on titanium surface, explore the effect of BMP-2 concentration on the loading/release behavior of BMP-2 and evaluate the cell compatibility of the system in vitro, pure titanium specimens were immersed into supersaturated calcium phosphate solutions (SCP) containing 4 different concentrations of BMP-2: 0, 50, 100, 200 and 400 ng/mL. Biomimetic calcium phosphate coating was formed on titanium surface and BMP-2 was incorporated into the coating through co-deposition. The release profile of BMP-2 suggested that BMP-2 were delivered sustainably up to 20 days. CCK-8 and ALP assay showed that 200 group and 400 ng/mL BMP-2 group have significant effect on promoting MC3T3-E1 cell proliferation and differentiation. The BMP-2 incorporated into the hybrid coating released in a sustained manner and significantly promoted the proliferation and differentiation of MC3T3-E1 on the titanium surface.

  4. Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.

    1992-01-01

    The Langley heavy-ion/nucleon transport code, HZETRN, and the high-energy nucleon transport code, BRYNTRN, are used to predict the propagation of galactic cosmic rays (GCR's) and solar flare protons through the carbon dioxide atmosphere of Mars. Particle fluences and the resulting doses are estimated on the surface of Mars for GCR's during solar maximum conditions and the Aug., Sep., and Oct. 1989 solar proton events. These results extend previously calculated surface estimates for GCR's at solar minimum conditions and the Feb. 1956, Nov. 1960, and Aug. 1972 solar proton events. Surface doses are estimated with both a low-density and a high-density carbon dioxide model of the atmosphere for altitudes of 0, 4, 8, and 12 km above the surface. A solar modulation function is incorporated to estimate the GCR dose variation between solar minimum and maximum conditions over the 11-year solar cycle. By using current Mars mission scenarios, doses to the skin, eye, and blood-forming organs are predicted for short- and long-duration stay times on the Martian surface throughout the solar cycle.

  5. Surface dose measurements for highly oblique electron beams.

    PubMed

    Ostwald, P M; Kron, T

    1996-08-01

    Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.

  6. Sustainable environmental nanotechnology using nanoparticle surface modification.

    EPA Science Inventory

    Reactive nanomaterials used for environmental remediation require surface modification to make them mobile in the subsurface. Nanomaterials released into the environment inadvertently without an engineered surface coating will acquire one (e.g. adsorption of natural organic matt...

  7. Rewetting of hot vertical rod during jet impingement surface cooling

    NASA Astrophysics Data System (ADS)

    Agrawal, Chitranjan; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun

    2016-06-01

    A stainless steel (SS-316) vertical rod of 12 mm diameter at 800 ± 10 °C initial temperature was cooled by normal impinging round water jet. The surface rewetting phenomenon was investigated for a range of jet diameter 2.5-4.8 mm and jet Reynolds number 5000-24,000 using a straight tube type nozzle. The investigation were made from the stagnation point to maximum 40 mm downstream locations, simultaneously for both upside and downside directions. The cooling performance of the vertical rod was evaluated on the basis of rewetting parameters i.e. rewetting temperature, wetting delay, rewetting velocity and the maximum surface heat flux. Two separate Correlations have been proposed for the dimensionless rewetting velocity in terms of rewetting number and the maximum surface heat flux that predicts the experimental data within an error band of ±20 and ±15 % respectively.

  8. Extreme Maximum Land Surface Temperatures.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  9. Hurricane Hector in the Eastern Pacific

    NASA Image and Video Library

    2006-08-17

    Infrared, microwave, and visible/near-infrared images of Hurricane Hector in the eastern Pacific were created with data from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on August 17, 2006. The infrared AIRS image shows the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds. Where there are no clouds the AIRS instrument reads the infrared signal from the surface of the Earth, revealing warmer temperatures (red). At the time the data were taken from which these images were made, Hector is a well organized storm, with the strongest convection in the SE quadrant. The increasing vertical wind shear in the NW quadrant is appearing to have an effect. Maximum sustained winds are at 85 kt, gusts to 105 kt. Estimated minimum central pressure is 975 mbar. The microwave image is created from microwave radiation emitted by Earth's atmosphere and received by the instrument. It shows where the heaviest rainfall is taking place (in blue) in the storm. Blue areas outside of the storm where there are either some clouds or no clouds, indicate where the sea surface shines through. The "visible" image is created from data acquired by the visible light/near-infrared sensor on the AIRS instrument. http://photojournal.jpl.nasa.gov/catalog/PIA00507

  10. 50 CFR 403.02 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Maximum net productivity is the greatest net annual increment in population numbers or biomass resulting... term species includes any population stock. (b) Optimum Sustainable Population or OSP means a population size which falls within a range from the population level of a given species or stock which is the...

  11. 50 CFR 403.02 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Maximum net productivity is the greatest net annual increment in population numbers or biomass resulting... term species includes any population stock. (b) Optimum Sustainable Population or OSP means a population size which falls within a range from the population level of a given species or stock which is the...

  12. 50 CFR 403.02 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Maximum net productivity is the greatest net annual increment in population numbers or biomass resulting... term species includes any population stock. (b) Optimum Sustainable Population or OSP means a population size which falls within a range from the population level of a given species or stock which is the...

  13. 50 CFR 403.02 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Maximum net productivity is the greatest net annual increment in population numbers or biomass resulting... term species includes any population stock. (b) Optimum Sustainable Population or OSP means a population size which falls within a range from the population level of a given species or stock which is the...

  14. Defining Mental Health in Later Life.

    ERIC Educational Resources Information Center

    Qualls, Sara Honn

    2002-01-01

    Traditional models for defining mental health have used statistical definitions and symptom-based definitions. In a lifespan psychological approach, mental health in later life is defined as acceptance of the aging self as an active being who creates meaning, maintains maximum autonomy, and sustains positive relationships. (Contains 12…

  15. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Science and Space Commerce

    NASA Astrophysics Data System (ADS)

    Zuniga, A. F.; Turner, M. F.; Rasky, D. J.

    2017-10-01

    A new concept study was initiated to examine and analyze architecture concepts for an economical and sustainable lunar infrastructure system that can extend the life, functionality, and distance traveled of surface mobility missions.

  16. Qualitative modelling for the Caeté Mangrove Estuary (North Brazil): a preliminary approach to an integrated eco-social analysis

    NASA Astrophysics Data System (ADS)

    Ortiz, Marco; Wolff, Matthias

    2004-10-01

    The sustainability of different integrated management regimes for the mangrove ecosystem of the Caeté Estuary (North Brazil) were assessed using a holistic theoretical framework. As a way to demonstrate that the behaviour and trajectory of complex whole systems are not epiphenomenal to the properties of the small parts, a set of conceptual models from more reductionistic to more holistic were enunciated. These models integrate the scientific information published until present for this mangrove ecosystem. The sustainability of different management scenarios (forestry and fishery) was assessed. Since the exploitation of mangrove trees is not allowed according Brazilian laws, the forestry was only included for simulation purposes. The model simulations revealed that sustainability predictions of reductionistic models should not be extrapolated into holistic approaches. Forestry and fishery activities seem to be sustainable only if they are self-damped. The exploitation of the two mangrove species Rhizophora mangle and Avicenia germinans does not appear to be sustainable, thus a rotation harvest is recommended. A similar conclusion holds for the exploitation of invertebrate species. Our results suggest that more studies should be focused on the estimation of maximum sustainable yield based on a multispecies approach. Any reference to holistic sustainability based on reductionistic approaches may distort our understanding of the natural complex ecosystems.

  17. Sustainability considerations for health research and analytic data infrastructures.

    PubMed

    Wilcox, Adam; Randhawa, Gurvaneet; Embi, Peter; Cao, Hui; Kuperman, Gilad J

    2014-01-01

    The United States has made recent large investments in creating data infrastructures to support the important goals of patient-centered outcomes research (PCOR) and comparative effectiveness research (CER), with still more investment planned. These initial investments, while critical to the creation of the infrastructures, are not expected to sustain them much beyond the initial development. To provide the maximum benefit, the infrastructures need to be sustained through innovative financing models while providing value to PCOR and CER researchers. Based on our experience with creating flexible sustainability strategies (i.e., strategies that are adaptive to the different characteristics and opportunities of a resource or infrastructure), we define specific factors that are important considerations in developing a sustainability strategy. These factors include assets, expansion, complexity, and stakeholders. Each factor is described, with examples of how it is applied. These factors are dimensions of variation in different resources, to which a sustainability strategy should adapt. We also identify specific important considerations for maintaining an infrastructure, so that the long-term intended benefits can be realized. These observations are presented as lessons learned, to be applied to other sustainability efforts. We define the lessons learned, relating them to the defined sustainability factors as interactions between factors. Using perspectives and experiences from a diverse group of experts, we define broad characteristics of sustainability strategies and important observations, which can vary for different projects. Other descriptions of adaptive, flexible, and successful models of collaboration between stakeholders and data infrastructures can expand this framework by identifying other factors for sustainability, and give more concrete directions on how sustainability can be best achieved.

  18. Sustainable yield of a karst aquifer system: a case study of Jinan springs in northern China

    NASA Astrophysics Data System (ADS)

    Kang, Fengxin; Jin, Menggui; Qin, Pinrui

    2011-06-01

    Based on the long-term monitoring data of rainfall, groundwater levels, groundwater abstraction, spring flow rates and groundwater quality, an assessment has been undertaken of the sustainable yield of a karst aquifer system in Shandong Province, northern China, to maintain perennial outflow of the karst springs while meeting water demands. One of the fundamental indicators for sustainable yield of groundwater is identified as maximum allowable water-level drawdown. A regional three-dimensional finite-difference numerical model has been developed to optimize the schemes associated with well fields and their locations and sustainable yields, in the Jinan spring catchment and its adjacent karst groundwater catchments, with the aim of maintaining the water level higher than the allowable lowest water level of 27.5 m above sea level. Furthermore, measures necessary to move towards sustainable use of the karst groundwater are outlined, drawing on contingency plans of water-source replacement and artificial recharge, dual water supply (based in water quality), use of the spring waters themselves, and groundwater quality protection.

  19. Current-induced spin polarization on a Pt surface: A new approach using spin-polarized positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawasuso, A.; Fukaya, Y.; Maekawa, M.; Zhang, H.; Seki, T.; Yoshino, T.; Saitoh, E.; Takanashi, K.

    2013-09-01

    Transversely spin-polarized positrons were injected near Pt and Au surfaces under an applied electric current. The three-photon annihilation of spin-triplet positronium, which was emitted from the surfaces into vacuum, was observed. When the positron spin polarization was perpendicular to the current direction, the maximum asymmetry of the three-photon annihilation intensity was observed upon current reversal for the Pt surfaces, whereas it was significantly reduced for the Au surface. The experimental results suggest that electrons near the Pt surfaces were in-plane and transversely spin-polarized with respect to the direction of the electric current. The maximum electron spin polarization was estimated to be more than 0.01 (1%).

  20. Wind tunnel test of a tailless aircraft with a belly-flap control surface used in combination with wing flaps

    NASA Astrophysics Data System (ADS)

    Dougherty, Daniel A.

    A wind tunnel tat of a tailless aircraft configuration that has been quipped with a belly-flap control surface, was conducted with the goal of improving the trimmed maximum-lift coefficient. Tailless aircraft have aerodynamic and structural efficiencies that are superior to those of a traditionally configured wing/body/tail aircraft. However, tailless aircraft have a low maximum-lift coefficient such that; when sized for equivalent takeoff performance, the tailless aircraft suffers a large reduction in aerodynamic and structural efficiencies. A Belly-Flap control surface used in combination with wing trailing edge flaps was tested in a wind tunnel with the goal of achieving a longitudinally trimmed solution at a higher maximum lift coefficient. It was determined that, though the Belly-Flap increases the trimmed lift of the tailless configuration at low angles of attack, the maximum lift coefficient is slightly reduced in relation to the controls neutral configuration.

  1. Defining interactions of in-stream hydrokinetic devices in the Tanana River, Alaska

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Toniolo, H.; Seitz, A. C.; Schmid, J.; Duvoy, P.

    2012-12-01

    The acceptance, performance, and sustainability of operating in-stream hydrokinetic power generating devices in rivers depends on the impact of the river environment on hydrokinetic infrastructure as well as its impact on the river environment. The Alaska Hydrokinetic Energy Research Center (AHERC) conducts hydrokinetic "impact" and technology studies needed to support a sustainable hydrokinetic industry in Alaska. These include completed and ongoing baseline studies of river hydrodynamic conditions (river stage, discharge, current velocity, power, and turbulence; suspended and bed load sediment transport), ice, fish populations and behavior, surface and subsurface debris flows, and riverbed conditions. Technology and methods studies to minimize the effect of debris flows on deployed turbine system are in-progress to determine their effectiveness at reducing the probability of debris impact, diverting debris and their affect on available river power for conversion to electricity. An anchor point has been placed in the main flow just upstream of Main (Figure 1) to support projects and in preparation for future projects that are being planned to examine hydrokinetic turbine performance including power conversion efficiency, turbine drag and anchor chain loads, wake generation and effects on fish. Baseline fish studies indicate that hydrokinetic devices at the test site will have the most potential interactions with Pacific salmon smolts during their down-migration to the ocean in May and June. At the AHERC test site, the maximum turbulent kinetic energy (TKE) occurs just down stream from the major river bends (e.g., 000 and near the railroad bridge [upper center of the figure]) and over a deep hole at 440 (Figure 1), Minimum TKE occurs between main and 800. River current velocity measurements and simulations of river flow from 000 downstream past the railroad bridge indicate that the most stable current in the river reach is between Main and 800. The stable current and low TKE between Main and 800 indicate that this section of river may be the best site for deploying hydrokinetic devices. Woody debris exists as individual pieces or as large tangled masses on the surface, as full depth vertically oriented debris moving down river and as submerged debris posing a potential hazard to surface or subsurface deployed hydrokinetic devices. Submerged debris consists of logs, root balls, and small (mulch-like) debris. A surface debris diversion device has been tested and shown to be effective at diverting isolated debris and may reduce hazards for surface mounted devices.Figure 1. AHERC Tanana River test site at Nenana, AK.

  2. Monitoring and improving roadway surface conditions for safe driving environment and sustainable infrastructure.

    DOT National Transportation Integrated Search

    2012-06-01

    Toward the goal of reducing collisions while maintaining the integrity and sustainability of roadways, separate projects in both France and : California in recent years have been developed to achieve the following objectives: Evaluating the effec...

  3. Sustainable nano-catalysis

    EPA Science Inventory

    A novel nano-catalyst system which bridges the homogenous and heterogeneous system is described that is cheaper, easily accessible (sustainable) and requires no need of catalyst filtration during the work-up. Because of its nano-size, i.e. high surface area, the contact between r...

  4. Characteristics and model of sludge adhesion during thermal drying.

    PubMed

    Li, Huan; Zou, Shuxin; Li, Yangyang; Jin, Yiying

    2013-01-01

    During sludge thermal drying, the sludge adhered on the heated surface of drying equipments may affect drying efficiency. Sludge thermal drying experiments were conducted to investigate the effect of different drying conditions on sludge adhesion. The mass of sludge adhered on the heated surface (dryer wall) reached the maximum when sludge water content was about 60%. A high drying temperature would result in more sludge adhered on the heated surface in the temperature range of 80-160 degrees C. The convection heating and rougher surface would also lead to more sludge adhered on the heated surface. The relation between the maximum mass of adherent sludge and drying temperatures could be described by an exponential equation.

  5. System for Repairing Cracks in Structures

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W. (Inventor); Newman, John A. (Inventor); Piascik, Robert S. (Inventor); Glaessgen, Edward H. (Inventor)

    2014-01-01

    A first material with a known maximum temperature of operation is coated with a second material on at least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.

  6. Sustainable steric stabilization of colloidal titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This manuscript revealed the state of the art for the real development of stable colloidal mono-dispersed particles with controlled surface properties.

  7. 20 CFR Appendix 2 to Subpart P of... - Medical-Vocational Guidelines

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Subpart P of Part 404 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND... impairment(s). 203.00Maximum sustained work capability limited to medium work as a result of severe medically... work capability for sedentary, light, medium, heavy, or very heavy work) in evaluating the individual's...

  8. 20 CFR Appendix 2 to Subpart P of... - Medical-Vocational Guidelines

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Subpart P of Part 404 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND... impairment(s). 203.00Maximum sustained work capability limited to medium work as a result of severe medically... work capability for sedentary, light, medium, heavy, or very heavy work) in evaluating the individual's...

  9. 20 CFR Appendix 2 to Subpart P of... - Medical-Vocational Guidelines

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Subpart P of Part 404 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND... impairment(s). 203.00Maximum sustained work capability limited to medium work as a result of severe medically... work capability for sedentary, light, medium, heavy, or very heavy work) in evaluating the individual's...

  10. 20 CFR Appendix 2 to Subpart P of... - Medical-Vocational Guidelines

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Subpart P of Part 404 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND... impairment(s). 203.00Maximum sustained work capability limited to medium work as a result of severe medically... work capability for sedentary, light, medium, heavy, or very heavy work) in evaluating the individual's...

  11. 20 CFR Appendix 2 to Subpart P of... - Medical-Vocational Guidelines

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Subpart P of Part 404 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND... impairment(s). 203.00Maximum sustained work capability limited to medium work as a result of severe medically... work capability for sedentary, light, medium, heavy, or very heavy work) in evaluating the individual's...

  12. 76 FR 56742 - Mid-Atlantic Fishery Management Council; Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ...), preventing overfishing, maximum sustainable yield, and achieving rebuilding targets, and reports on stock... single species and ecosystem based fishery management. Therefore, the purpose of this workshop is to... Australia; 9:30 a.m.--Status report from each SSC on approaches being taken to implement ABCs and providing...

  13. 76 FR 30265 - Fisheries of the Northeastern United States; Monkfish; Amendment 5

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ....nefmc.org . Written comments regarding the burden-hour estimates or other aspects of the collection-of... are not overfished. Furthermore, the current estimated fishing mortality rate for each stock is below... establishes control rules to specify maximum sustainable yield (MSY), optimum yield (OY), overfishing level...

  14. Sustainability Considerations for Health Research and Analytic Data Infrastructures

    PubMed Central

    Wilcox, Adam; Randhawa, Gurvaneet; Embi, Peter; Cao, Hui; Kuperman, Gilad J.

    2014-01-01

    Introduction: The United States has made recent large investments in creating data infrastructures to support the important goals of patient-centered outcomes research (PCOR) and comparative effectiveness research (CER), with still more investment planned. These initial investments, while critical to the creation of the infrastructures, are not expected to sustain them much beyond the initial development. To provide the maximum benefit, the infrastructures need to be sustained through innovative financing models while providing value to PCOR and CER researchers. Sustainability Factors: Based on our experience with creating flexible sustainability strategies (i.e., strategies that are adaptive to the different characteristics and opportunities of a resource or infrastructure), we define specific factors that are important considerations in developing a sustainability strategy. These factors include assets, expansion, complexity, and stakeholders. Each factor is described, with examples of how it is applied. These factors are dimensions of variation in different resources, to which a sustainability strategy should adapt. Summary Observations: We also identify specific important considerations for maintaining an infrastructure, so that the long-term intended benefits can be realized. These observations are presented as lessons learned, to be applied to other sustainability efforts. We define the lessons learned, relating them to the defined sustainability factors as interactions between factors. Conclusion and Next Steps: Using perspectives and experiences from a diverse group of experts, we define broad characteristics of sustainability strategies and important observations, which can vary for different projects. Other descriptions of adaptive, flexible, and successful models of collaboration between stakeholders and data infrastructures can expand this framework by identifying other factors for sustainability, and give more concrete directions on how sustainability can be best achieved. PMID:25848610

  15. Studying Maximum Plantar Stress per Insole Design Using Foot CT-Scan Images of Hyperelastic Soft Tissues

    PubMed Central

    Sarikhani, Ali; Motalebizadeh, Abbas; Kamali Doost Azad, Babak

    2016-01-01

    The insole shape and the resulting plantar stress distribution have a pivotal impact on overall health. In this paper, by Finite Element Method, maximum stress value and stress distribution of plantar were studied for different insoles designs, which are the flat surface and the custom-molded (conformal) surface. Moreover, insole thickness, heel's height, and different materials were used to minimize the maximum stress and achieve the most uniform stress distribution. The foot shape and its details used in this paper were imported from online CT-Scan images. Results show that the custom-molded insole reduced maximum stress 40% more than the flat surface insole. Upon increase of thickness in both insole types, stress distribution becomes more uniform and maximum stress value decreases up to 10%; however, increase of thickness becomes ineffective above a threshold of 1 cm. By increasing heel height (degree of insole), maximum stress moves from heel to toes and becomes more uniform. Therefore, this scenario is very helpful for control of stress in 0.2° to 0.4° degrees for custom-molded insole and over 1° for flat insole. By changing the material of the insole, the value of maximum stress remains nearly constant. The custom-molded (conformal) insole which has 0.5 to 1 cm thickness and 0.2° to 0.4° degrees is found to be the most compatible form for foot. PMID:27843284

  16. ASSESSMENT OF MAXIMUM SUSTAINABLE SWIMMING PERFORMANCE IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    PubMed

    Wilson; Egginton

    1994-07-01

    Levels of swimming activity in fishes have been divided into three categories on the basis of the time a given speed can be maintained before the onset of fatigue (Beamish, 1978): sustained (more than 200 min), prolonged (20 s to 200 min) and burst swimming (less than 20 s). The locomotory capacity of a given species reflects both its lifestyle and its body form, although definitions of performance may vary. It is generally accepted that only the aerobic ('red') muscle fibres should be active at truly sustainable swimming speeds, i.e. at speeds that can be maintained indefinitely without fatigue. However, the standard laboratory method of evaluating the maximum sustainable swimming speed (Ucrit; Brett, 1964) almost certainly entails the recruitment of at least some of the rapidly fatigable fast glycolytic ('white') fibres at sub-critical speeds and undoubtedly complicates the evaluation of maximal cardiovascular performance. It would therefore be useful to have an objective and reproducible measure of truly sustainable performance that, by definition, relies solely on aerobic muscle activity. Electromyography (EMG) has been used to examine the pattern of white muscle recruitment following thermal acclimation in striped bass, Morine saxatilis (Sisson and Sidell, 1987). We wished to incorporate this method into a study of the acclimatory responses to chronic changes in environmental temperature of the cardiovascular and locomotory systems in rainbow trout (Wilson and Egginton, 1992). The present communication presents results on the cardiovascular performance and blood chemistry, at rest and during maximal aerobic exercise, of rainbow trout acclimated to 11 °C, as a validation of the methodology currently in use with fish acclimated to seasonal temperature extremes (Taylor et al. 1992). Different acclimation temperatures are known to produce compensatory changes in the relative proportions of red and white muscle mass (Sidell and Moerland, 1989). The aim of these continuing investigations is to compare the anatomical, cardiovascular and locomotory limitations to aerobic exercise over the full temperature range of a eurythermal fish species.

  17. Electrophysiological correlates of grapheme-phoneme conversion.

    PubMed

    Huang, Koongliang; Itoh, Kosuke; Suwazono, Shugo; Nakada, Tsutomu

    2004-08-19

    The cortical processes underlying grapheme-phoneme conversion were investigated by event-related potentials (ERPs). The task consisted of silent reading or vowel-matching of three Japanese hiragana characters, each representing a consonant-vowel syllable. At earlier latencies, typical components of the visual ERP, namely, P1 (110 ms), N1 (170 ms) and P2 (300 ms), were elicited in the temporo-occipital area for both tasks as well as control task (observing the orthographic shapes of three Korean characters). Following these earlier components, two sustained negativities were identified. The earlier sustained negativity, referred here to as SN1, was found in both the silent-reading and vowel-matching task but not in the control task. The scalp distribution of SN1 was over the left occipito-temporal area, with maximum amplitude over O1. The amplitude of SN1 was larger in the vowel-matching task compared to the silent-reading task, consistent with previous reports that ERP amplitude correlates with task difficulty. SN2, the later sustained negativity, was only observed in the vowel-matching task. The scalp distribution of SN2 was over the midsagittal centro-parietal area with maximum amplitude over Cz. Elicitation of SN2 in the vowel-matching task suggested that the vowel-matching task requires a wider range of neural activities exceeding the established conventional area of language processing.

  18. Optimization of novel pentablock copolymer based composite formulation for sustained delivery of peptide/protein in the treatment of ocular diseases

    PubMed Central

    Patel, Sulabh P.; Vaishya, Ravi; Patel, Ashaben; Agrahari, Vibhuti; Pal, Dhananjay; Mitra, Ashim K.

    2016-01-01

    This manuscript is focused on the development of pentablock (PB) copolymer based sustained release formulation for the treatment of posterior segment ocular diseases. We have successfully synthesized biodegradable and biocompatible PB copolymers for the preparation of nanoparticles (NPs) and thermosensitive gel. Achieving high drug loading with hydrophilic biotherapeutics (peptides /proteins) is a challenging task. Moreover, small intravitreal injection volume (≤100 μL) requires high loading to develop a long term (6 months) sustained release formulation. We have successfully investigated various formulation parameters to achieve maximum peptide/protein (octreotide, insulin, lysozyme, IgG-Fab, IgG, and catalase) loading in PB NPs. Improvement in drug loading can facilitate delivery of larger doses of therapeutic proteins via limited injection volume. A composite formulation comprised of NPs in gel system exhibited sustained release (without burst effect) of peptides and proteins, may serve as a platform technology for the treatment of posterior segment ocular diseases. PMID:26964498

  19. Sustainable Strategies for the Dynamic Equilibrium of the Urban Stream, Cheonggyecheon

    NASA Astrophysics Data System (ADS)

    Seo, D.; Kwon, Y.

    2018-04-01

    Cheonggyecheon, which had been transformed into a 14-lane urban highway and a large underground sewer system, was finally converted back to an urban stream again. Its transformation has been praised as a successful example of urban downtown regeneration and beautification. It is, however, obvious that there have not been prudent ecological considerations since the project’s principal goals were to provide public recreational use and achieve maximum flood control capacity via the use of embankments. For a healthier and sustainable stream environment, Cheonggyecheon should be ecologically re-restored again, based on a dynamic equilibrium model. It must primarily establish a corridor of vegetation, an aquatic transitional zone, and install constructed wetlands nearby which support the water source. The upper streams of Cheonggyecheon should be further restored and supply natural waters. Furthermore, there ultimately needs to be de-channelization for hydrological sustainability. This would vary from merely increasing the sinuosity to thoroughly reconstruct a naturalized stream. Complete dynamic equilibrium of Cheonggyecheon can be accomplished through more fundamental sustainable strategies.

  20. Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal

    NASA Astrophysics Data System (ADS)

    Nemtsev, Ivan V.; Tambasov, Igor A.; Ivanenko, Alexander A.; Zyryanov, Victor Ya.

    2018-02-01

    PMMA opal crystal was prepared by a simple hybrid method, which includes sedimentation, meniscus formation and evaporation. We investigated three surfaces of this crystal by angle-resolved reflective light spectroscopy and SEM study. The angle-resolved reflective measurements were carried out in the 400-1100 nm range. We have determined the high-quality ordered surface of the crystal region. Narrow particle size distribution of the surface has been revealed. The average particle diameter obtained with SEM was nearly 361 nm. The most interesting result was that reflectivity of the surface turned out up to 98% at normal light incidence. Using a fit of dependences of the maximum reflectivity wavelength from an angle based on the Bragg-Snell law, the wavelength of maximum 0° reflectivity, the particle diameter and the fill factor have been determined. For the best surface maximum reflectivity wavelength of a 0° angle was estimated to be 869 nm. The particle diameter and fill factor were calculated as 372 nm and 0.8715, respectively. The diameter obtained by fitting is in excellent agreement with the particle diameter obtained with SEM. The reflectivity maximum is assumed to increase significantly when increasing the fill factor. We believe that using our simple approach to manufacture PMMA opal crystals will significantly increase the fabrication of high-quality photonic crystal templates and thin films.

  1. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station-based daily maximum near-surface air temperature

    NASA Astrophysics Data System (ADS)

    Lian, Xu; Zeng, Zhenzhong; Yao, Yitong; Peng, Shushi; Wang, Kaicun; Piao, Shilong

    2017-02-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature (Tair). Using satellite observations and in situ station-based data sets, we conducted a global-scale assessment of the spatial and seasonal variations in the difference between daily maximum LST and daily maximum Tair (δT, LST - Tair) during 2003-2014. Spatially, LST is generally higher than Tair over arid and sparsely vegetated regions in the middle-low latitudes, but LST is lower than Tair in tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, δT is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the midlatitudes and boreal regions. The seasonality in the midlatitudes is a result of the asynchronous responses of LST and Tair to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. Our study identified substantial spatial heterogeneity and seasonality in δT, as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface air temperature changes using remote sensing, particularly in remote regions.

  2. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  3. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  4. Dynamic surface tension measurements of ionic surfactants using maximum bubble pressure tensiometry

    NASA Astrophysics Data System (ADS)

    Ortiz, Camilla U.; Moreno, Norman; Sharma, Vivek

    Dynamic surface tension refers to the time dependent variation in surface tension, and is intimately linked with the rate of mass transfer of a surfactant from liquid sub-phase to the interface. The diffusion- or adsorption-limited kinetics of mass transfer to interfaces is said to impact the so-called foamability and the Gibbs-Marangoni elasticity of surfaces. Dynamic surface tension measurements carried out with conventional methods like pendant drop analysis, Wilhelmy plate, etc. are limited in their temporal resolution (>50 ms). In this study, we describe design and application of maximum bubble pressure tensiometry for the measurement of dynamic surface tension effects at extremely short (1-50 ms) timescales. Using experiments and theory, we discuss the overall adsorption kinetics of charged surfactants, paying special attention to the influence of added salt on dynamic surface tension.

  5. Evaluation of the Effects of Er,Cr:YSGG Laser, Ultrasonic Scaler and Curette on Root Surface Profile Using Surface Analyser and Scanning Electron Microscope: An In Vitro Study.

    PubMed

    Arora, Shipra; Lamba, Arundeep Kaur; Faraz, Farrukh; Tandon, Shruti; Ahad, Abdul

    2016-01-01

    Introduction: The periodontal therapy is primarily targeted at removal of dental plaque and plaque retentive factors. Although the thorough removal of adherent plaque, calculus and infected root cementum is desirable, it is not always achieved by conventional modalities. To accomplish more efficient results several alternative devices have been used. Lasers are one of the most promising modalities for nonsurgical periodontal treatment as they can achieve excellent tissue ablation with strong bactericidal and detoxification effects. Methods: Thirty freshly extracted premolars were selected and decoronated. The mesial surface of each root was divided vertically into four approximately equal parts. These were distributed into four group based on the root surface treatment. Part A (n = 30) was taken as control and no instrumentation was performed. Part B (n = 30) was irradiated by Erbium, Chromium doped Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser. Part C (n = 30) was treated by piezoelectric ultrasonic scaler. Part D (n = 30) was treated by Gracey curette. The surface roughness was quantitatively analyzed by profilometer using roughness average (Ra) value, while presence of smear layer, cracks, craters and melting of surface were analyzed using scanning electron microscope (SEM). The means across the groups were statistically compared with control using Dunnett test. Results: Among the test groups, Er,Cr:YSGG laser group showed maximum surface roughness (mean Ra value of 4.14 μm) as compared to ultrasonic scaler (1.727 μm) and curette group (1.22 μm). However, surface with smear layer were found to be maximum (50%) in curette treated samples and minimum (20%) in laser treated ones. Maximum cracks (83.34%) were produced by ultrasonic scaler, and minimum (43.33%) by curettes. Crater formation was maximum (50%) in laser treated samples and minimum (3.33%) in curette treated ones. 63.33% samples treated by laser demonstrated melting of root surface, followed by ultrasonic scaler and curettes. Conclusion: Er,Cr:YSGG laser produced maximum microstructural changes on root surface that can influence the attachment of soft periodontal tissues as well as plaque and calculus deposition. In vivo studies are needed to validate these results and to evaluate their clinical effects.

  6. Hot and Cold

    NASA Image and Video Library

    2015-03-16

    This view shows Mercury's north polar region, colored by the maximum biannual surface temperature, which ranges from >400 K (red) to 50 K (purple). As expected for the Solar System's innermost planet, areas of Mercury's surface that are sunlit reach high temperatures, and hence most of this image is colored red! In contrast, some craters near Mercury's poles have regions that remain permanently in shadow, and in these regions even the maximum temperatures can be extremely low. Evidence from MESSENGER and Earth-based observations indicate that water ice deposits are present in these cold craters. The craters nearest Mercury' poles have surface temperatures less than 100 K (-173°C, -280°F), and water ice is stable on the surface, such as in Prokofiev. However, many craters near but somewhat farther from Mercury's poles have cold, permanently shadowed interiors, but the maximum temperature is too high for water ice to persist at the surface. In these craters, water ice is present but is buried beneath a thin, low-reflectance volatile layer likely consisting of organic-rich material, such as in Berlioz crater. http://photojournal.jpl.nasa.gov/catalog/PIA19247

  7. Potentiometric surface in the Central Oklahoma (Garber-Wellington) aquifer, Oklahoma, 2009

    USGS Publications Warehouse

    Mashburn, Shana L.; Magers, Jessica

    2011-01-01

    A study of the hydrogeology of the Central Oklahoma aquifer was started in 2008 to provide the Oklahoma Water Resources Board (OWRB) hydrogeologic data and a groundwater flow model that can be used as a tool to help manage the aquifer. The 1973 Oklahoma water law requires the OWRB to do hydrologic investigations of Oklahoma's aquifers (termed 'groundwater basins') and to determine amounts of water that may be withdrawn by permitted water users. 'Maximum annual yield' is a term used by OWRB to describe the total amount of water that can be withdrawn from a specific aquifer in any year while allowing a minimum 20-year life of the basin (Oklahoma Water Resources Board, 2010). Currently (2010), the maximum annual yield has not been determined for the Central Oklahoma aquifer. Until the maximum annual yield determination is made, water users are issued a temporary permit by the OWRB for 2 acre-feet/acre per year. The objective of the study, in cooperation with the Oklahoma Water Resources Board, was to study the hydrogeology of the Central Oklahoma aquifer to provide information that will enable the OWRB to determine the maximum annual yield of the aquifer based on different proposed management plans. Groundwater flow models are typically used by the OWRB as a tool to help determine the maximum annual yield. This report presents the potentiometric surface of the Central Oklahoma aquifer based on water-level data collected in 2009 as part of the current (2010) hydrologic study. The U.S. Geological Survey (USGS) Hydrologic Investigations Atlas HA-724 by Christenson and others (1992) presents the 1986-87 potentiometric-surface map. This 1986-87 potentiometric-surface map was made as part of the USGS National Water-Quality Assessment pilot project for the Central Oklahoma aquifer that examined the geochemical and hydrogeological processes operating in the aquifer. An attempt was made to obtain water-level measurements for the 2009 potentiometric-surface map from the wells used for the 1986-87 potentiometric-surface map. Well symbols with circles on the 2009 potentiometric-surface map (fig. 1) indicate wells that were used for the 1986-87 potentiometric-surface map.

  8. Development and application of an empirical probability distribution for the prediction error of re-entry body maximum dynamic pressure

    NASA Technical Reports Server (NTRS)

    Lanzi, R. James; Vincent, Brett T.

    1993-01-01

    The relationship between actual and predicted re-entry maximum dynamic pressure is characterized using a probability density function and a cumulative distribution function derived from sounding rocket flight data. This paper explores the properties of this distribution and demonstrates applications of this data with observed sounding rocket re-entry body damage characteristics to assess probabilities of sustaining various levels of heating damage. The results from this paper effectively bridge the gap existing in sounding rocket reentry analysis between the known damage level/flight environment relationships and the predicted flight environment.

  9. Observations of internal waves in the Gulf of California by SEASAT SAR

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Holt, B.

    1983-01-01

    Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.

  10. Observations of internal waves in the Gulf of California by SEASAT SAR

    NASA Astrophysics Data System (ADS)

    Fu, L. L.; Holt, B.

    1983-07-01

    Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.

  11. Airfoil System for Cruising Flight

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Liu, Tianshu (Inventor)

    2014-01-01

    An airfoil system includes an airfoil body and at least one flexible strip. The airfoil body has a top surface and a bottom surface, a chord length, a span, and a maximum thickness. Each flexible strip is attached along at least one edge thereof to either the top or bottom surface of the airfoil body. The flexible strip has a spanwise length that is a function of the airfoil body's span, a chordwise width that is a function of the airfoil body's chord length, and a thickness that is a function of the airfoil body's maximum thickness.

  12. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis.

    PubMed

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W

    2010-12-21

    This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.

  13. Effectiveness and Safety of Transdermal Buprenorphine Versus Sustained-release Tramadol in Patients With Moderate to Severe Musculoskeletal Pain: An 8-Week, Randomized, Double-Blind, Double-Dummy, Multicenter, Active-controlled, Noninferiority Study.

    PubMed

    Leng, Xiaomei; Li, Zhanguo; Lv, Houshan; Zheng, Yi; Liu, Yi; Dai, Kerong; Yao, Chen; Yan, Xiaoyan; Zeng, Xiaofeng

    2015-07-01

    The aim of this noninferiority study was to investigate clinical effectiveness and safety of buprenorphine transdermal system (BTDS) in patients with moderate to severe musculoskeletal pain inadequately controlled with nonsteroidal anti-inflammatory drugs, compared with sustained-release tramadol tablets. Eligible patients were randomized (1:1) to receive low-dose 7-day BTDS (5, 10, and 20 μg/h, maximum dosage of 20 μg/h) or sustained-release tramadol tablets (100 mg, maximum dosage of 400 mg/d) over an 8-week double-blind treatment period (3-week titration, 5-week maintenance). The primary endpoint was the difference in the visual analogue scale (VAS) pain scores from baseline to treatment completion. Noninferiority was assumed if the treatment difference on the VAS scale was within ±1.5 cm, this threshold indicating a clinically meaningful result. ClinicalTrials.gov identifier: NCT01476774. Two hundred eighty patients were randomized to BTDS (n=141) or to tramadol (n=139). Both treatments were associated with a significant reduction in pain by the end of the treatment. The least squares mean difference of the change from baseline in VAS scores between the BTDS and tramadol groups were 0.45 (95% confidence interval, -0.02 to 0.91), which was within the ±1.5 cm predefined threshold, indicating that the effectiveness of BTDS was not inferior to the effectiveness of sustained-release tramadol tablets. The incidence of adverse events was comparable between the 2 treatment groups. Our results suggest that BTDS is a good therapeutic option for patients experiencing chronic musculoskeletal pain of moderate to severe intensity that is insufficiently controlled by nonsteroidal anti-inflammatory drugs.

  14. Discharge characteristics of biceps brachii motor units at recruitment when older adults sustained an isometric contraction.

    PubMed

    Pascoe, Michael A; Holmes, Matthew R; Enoka, Roger M

    2011-02-01

    The purpose of this study was to compare the discharge characteristics of motor units recruited during an isometric contraction that was sustained with the elbow flexor muscles by older adults at target forces that were less than the recruitment threshold force of each isolated motor unit. The discharge times of 27 single motor units were recorded from the biceps brachii in 11 old adults (78.8 ± 5.9 yr). The target force was set at either a relatively small (6.6 ± 3.7% maximum) or large (11.4 ± 4.5% maximum) difference below the recruitment threshold force and the contraction was sustained until the motor unit was recruited and discharged action potentials for about 60 s. The time to recruitment was longer for the large target-force difference (P = 0.001). At recruitment, the motor units discharged repetitively for both target-force differences, which contrasts with data from young adults when motor units discharged intermittently at recruitment for the large difference between recruitment threshold force and target force. The coefficient of variation (CV) for the first five interspike intervals (ISIs) increased from the small (18.7 ± 7.9) to large difference (35.0 ± 10.2%, P = 0.008) for the young adults, but did not differ for the two target force differences for the old adults (26.3 ± 14.7 to 24.0 ± 13.1%, P = 0.610). When analyzed across the discharge duration, the average CV for the ISI decreased similarly for the two target-force differences (P = 0.618) in old adults. These findings contrast with those of young adults and indicate that the integration of synaptic input during sustained contractions differs between young and old adults.

  15. Collisional radiative model of an argon atmospheric capillary surface-wave discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2004-12-01

    The characteristics of a microwave surface-wave sustained plasma operated at atmospheric pressure in an open-ended dielectric tube are investigated theoretically as a first step in the development of a self-consistent model for these discharges. The plasma column is sustained in flowing argon. A surface-wave discharge that fills the whole radial cross section of the discharge tube is considered. With experimental electron temperature profiles [Garcia et al., Spectrochim. Acta, Part B 55, 1733 (2000)] the numerical model is used to test the validity of the different approximations and to study the influence of the different kinetic processes and power loss mechanismsmore » on the discharge.« less

  16. Magnetic Nano-Materials: Truly Sustainable Green Chemistry Nano Catalysis

    EPA Science Inventory

    We envisioned a novel nano-catalyst system, which can bridge the homogenous and heterogeneous system, and simultaneously be cheaper, easily accessible (sustainable) and possibly does not require elaborate work-up. Because of its nano-size, i.e. high surface area, the contact betw...

  17. 46 CFR 151.10-20 - Hull construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... rests upon a pinnacle at the water surface. The maximum hull and tank bending moment and tank saddle... limits of paragraphs (b)(2) (i), (ii), or (iii) of this section. The maximum tank bending moment and... maximum hull and tank bending moments and tank saddle reactions. (ii) All independent tank barges...

  18. 46 CFR 151.10-20 - Hull construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... rests upon a pinnacle at the water surface. The maximum hull and tank bending moment and tank saddle... limits of paragraphs (b)(2) (i), (ii), or (iii) of this section. The maximum tank bending moment and... maximum hull and tank bending moments and tank saddle reactions. (ii) All independent tank barges...

  19. Assessing the influence of sustainable trail design and maintenance on soil loss

    USGS Publications Warehouse

    Marion, Jeff; Wimpey, Jeremy

    2017-01-01

    Natural-surfaced trail systems are an important infrastructure component providing a means for accessing remote protected natural area destinations. The condition and usability of trails is a critical concern of land managers charged with providing recreational access while preserving natural conditions, and to visitors seeking high quality recreational opportunities and experiences. While an adequate number of trail management publications provide prescriptive guidance for designing, constructing, and maintaining natural-surfaced trails, surprisingly little research has been directed at providing a scientific basis for this guidance. Results from a review of the literature and three scientific studies are presented to model and clarify the influence of factors that substantially influence trail soil loss and that can be manipulated by trail professionals to sustain high traffic while minimizing soil loss over time. Key factors include trail grade, slope alignment angle, tread drainage features, and the amount of rock in tread substrates. A new Trail Sustainability Rating is developed and offered as a tool for evaluating or improving the sustainability of existing or new trails.

  20. In Vivo Measurement of Surface Pressures and Retraction Distances Applied on Abdominal Organs During Surgery.

    PubMed

    Shah, Dignesh; Alderson, Andrew; Corden, James; Satyadas, Thomas; Augustine, Titus

    2018-02-01

    This study undertook the in vivo measurement of surface pressures applied by the fingers of the surgeon during typical representative retraction movements of key human abdominal organs during both open and hand-assisted laparoscopic surgery. Surface pressures were measured using a flexible thin-film pressure sensor for 35 typical liver retractions to access the gall bladder, 36 bowel retractions, 9 kidney retractions, 8 stomach retractions, and 5 spleen retractions across 12 patients undergoing open and laparoscopic abdominal surgery. The maximum and root mean square surface pressures were calculated for each organ retraction. The maximum surface pressures applied to these key abdominal organs are in the range 1 to 41 kPa, and the average maximum surface pressure for all organs and procedures was 14 ± 3 kPa. Surface pressure relaxation during the retraction hold period was observed. Generally, the surface pressures are higher, and the rate of surface pressure relaxation is lower, in the more confined hand-assisted laparoscopic procedures than in open surgery. Combined video footage and pressure sensor data for retraction of the liver in open surgery enabled correlation of organ retraction distance with surface pressure application. The data provide a platform to design strategies for the prevention of retraction injuries. They also form a basis for the design of next-generation organ retraction and space creation surgical devices with embedded sensors that can further quantify intraoperative retraction forces to reduce injury or trauma to organs and surrounding tissues.

  1. Analysis of Surface Roughness at Overlapping Laser Shock Peening

    NASA Astrophysics Data System (ADS)

    Dai, F. Z.; Zhang, Z. D.; Zhou, J. Z.; Lu, J. Z.; Zhang, Y. K.

    2016-02-01

    The overlapping effects on surface roughness are studied when samples are treated by laser shock peening (LSP). Surface roughness of overlapped circular laser spot is calculated by ISO 25178 height parameters. The usually used overlapping styles namely isosceles-right-triangle-style (AAP) and equilateral-triangle-style (AAA) are carefully investigated when the overlapping degree in x-axis (ηx) is below 50%. Surface roughness of isosceles-right-triangle-style attains its minimum value at ηx of 29.3%, and attains its maximum value at ηx of 43.6%. Surface roughness of equilateral-triangle-style attains its minimum value at ηx of 42.3%, and attains its maximum value at ηx of 32%. Experimental results are well consistent with theoretical analysis.

  2. Near-surface coherent structures explored by large eddy simulation of entire tropical cyclones.

    PubMed

    Ito, Junshi; Oizumi, Tsutao; Niino, Hiroshi

    2017-06-19

    Taking advantage of the huge computational power of a massive parallel supercomputer (K-supercomputer), this study conducts large eddy simulations of entire tropical cyclones by employing a numerical weather prediction model, and explores near-surface coherent structures. The maximum of the near-surface wind changes little from that simulated based on coarse-resolution runs. Three kinds of coherent structures appeared inside the boundary layer. The first is a Type-A roll, which is caused by an inflection-point instability of the radial flow and prevails outside the radius of maximum wind. The second is a Type-B roll that also appears to be caused by an inflection-point instability but of both radial and tangential winds. Its roll axis is almost orthogonal to the Type-A roll. The third is a Type-C roll, which occurs inside the radius of maximum wind and only near the surface. It transports horizontal momentum in an up-gradient sense and causes the largest gusts.

  3. Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model

    NASA Astrophysics Data System (ADS)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2016-12-01

    The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.

  4. Intra-rater reliability of electromyographic recordings and subjective evaluation of neck muscle fatigue among helicopter pilots.

    PubMed

    Thuresson, Marcus; Ang, Björn; Linder, Jan; Harms-Ringdahl, Karin

    2005-06-01

    The aim was to evaluate the reliability of a method of measuring neck muscle fatigue among helicopter pilots. Surface EMG from three areas in the neck region, bilaterally, was recorded among 10 male helicopter pilots while they were performing isometric contractions in flexion and extension for 45 s, sustaining a force representing 75% of maximum strength in a seated position. Perceived fatigue was rated using the Borg CR-10 scale. The test was repeated twice the first day and then two additional times with one-week intervals. Variables analyzed were the slope of the median frequency change, the normalized slope, and the ratings after 15, 30 and 45 s; and also the initial median frequency (IMDF). The intra-class correlation (ICC) and the measurement error (S(w)), intra- and inter-day were calculated statistically. The best reliability for the slope was found for the 45 s intra-day analysis taking all measurements into account (ICC 0.65-0.83). The reliability after 30 s was poorer but still acceptable (ICC 0.52-0.71). For the subjective ratings, the highest reliability was found after 30 s inter-day (ICC 0.86-0.88). IMDF showed generally high reliability for the intra-day analyses (ICC 0.63-0.80). The method is reliable for use in further research. Since performing a contraction of 75% of maximum was quite strenuous, we recommend that the protocol be shortened to 30 s.

  5. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    PubMed Central

    Wong, Terence K. S.; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K.

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%. PMID:28773398

  6. A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in vitro/vivo evaluation

    PubMed Central

    Chen, Jingde; Jiang, Hong; Wu, Yin; Li, Yandong; Gao, Yong

    2015-01-01

    In this study, oxaliplatin (OX) liposomes surface-modified with glycyrrhetinic acid (GA) were developed by the film-dispersion method. Their morphology, physical and chemical properties, and in vitro release performance were investigated. The transmission electron microscope (TEM) image showed that most liposomes were spherical particles with similar size and uniform dispersion. Both OX-liposomes and GA-OX-liposomes had an average size of 90 nm. They were negatively charged, with zeta potentials of −20.6 and −21.3 mV, respectively, and the entrapment efficiency values of both were higher than 94%. In vitro data showed that the application of liposomes could prolong the OX release. The relatively high correlation coefficient values obtained from analyzing the amount of drug released versus the square root of time depicted that release followed the Weibull model. No significant changes were observed after the addition of GA to the liposomes. In vivo, the relatively long time to reach the maximum plasma concentration of OX-liposomes suggested a sustained-release profile of liposomes, which was consistent with the results of the in vitro release study. The increased area under the curve and maximum plasma concentration of OX-liposomes and GA-OX-liposomes demonstrated an increased absorption. The drug concentration in tissues indicated that the GA-modified liposomes delivered OX mainly to liver after intravenous administration. In addition, no severe signs, such as appearance of epithelial necrosis or sloughing of epithelial cells, were detected in histology studies. PMID:25945038

  7. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  8. 50 CFR 403.04 - Determinations and hearings under section 109(c) of the MMPA.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS... management program the state must provide for a process, consistent with section 109(c) of the Act, to determine the optimum sustainable population of the species and the maximum number of animals that may be...

  9. 50 CFR 403.04 - Determinations and hearings under section 109(c) of the MMPA.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS... management program the state must provide for a process, consistent with section 109(c) of the Act, to determine the optimum sustainable population of the species and the maximum number of animals that may be...

  10. 50 CFR 403.04 - Determinations and hearings under section 109(c) of the MMPA.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS... management program the state must provide for a process, consistent with section 109(c) of the Act, to determine the optimum sustainable population of the species and the maximum number of animals that may be...

  11. 50 CFR 403.04 - Determinations and hearings under section 109(c) of the MMPA.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS... management program the state must provide for a process, consistent with section 109(c) of the Act, to determine the optimum sustainable population of the species and the maximum number of animals that may be...

  12. 10 CFR 503.6 - Cost calculations for new powerplants and installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... fuel and the cost of using imported oil is greater than zero. (3) There are two comparative cost...) Assume the energy produced by the powerplant equals seventy (70) percent of design capacity times 8760... being compared, the design capacities or the maximum sustained energy per unit of time that could be...

  13. Influence of Emotion on the Control of Low-Level Force Production

    ERIC Educational Resources Information Center

    Naugle, Kelly M.; Coombes, Stephen A.; Cauraugh, James H.; Janelle, Christopher M.

    2012-01-01

    The accuracy and variability of a sustained low-level force contraction (2% of maximum voluntary contraction) was measured while participants viewed unpleasant, pleasant, and neutral images during a feedback occluded force control task. Exposure to pleasant and unpleasant images led to a relative increase in force production but did not alter the…

  14. Ten Steps to a Learning Organization.

    ERIC Educational Resources Information Center

    Kline, Peter; Saunders, Bernard

    This guide provides a 10-step process for building a learning organization. It shows any organization how to develop and sustain an environment favorable to learning at every level, to reawaken and stimulate the power of learning in all members of the organization, and to harness the new learning that was generated to produce the maximum benefit…

  15. Geography Education in Asia: Samples from Different Countries and Turkey

    ERIC Educational Resources Information Center

    Incekara, Suleyman

    2010-01-01

    With the maximum use of the technology such as geographic information science (GIS), remote sensing (RS), and global positioning systems (GPSs) in geography courses, along with its integrative perspective on the social and life sciences and an emphasis on student-centered education, problem solving, and sustainable and environmental education,…

  16. 33 CFR 209.230 - Use of reservoir areas for recreation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Use of reservoir areas for... ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.230 Use of reservoir areas for recreation... administers plans to obtain the maximum sustained public benefit from the use of reservoir areas under its...

  17. 33 CFR 209.230 - Use of reservoir areas for recreation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Use of reservoir areas for... ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.230 Use of reservoir areas for recreation... administers plans to obtain the maximum sustained public benefit from the use of reservoir areas under its...

  18. Rated Temperature Of Silver/Zinc Batteries Is Increased

    NASA Technical Reports Server (NTRS)

    Hill, Derek P.

    1992-01-01

    Report shows silver-zinc batteries of specific commercial type (28 V, 20 A*h, Eagle-Picher Battery MAR 4546-5) operated safely at higher temperature than previously thought possible. Batteries operated to 239 degrees F (115 degrees C) without going into sustained thermal runaway. Operated 49 degrees F (27 degrees C) above previous maximum.

  19. Sustainable Design of EPA's Campus in Research Triangle Park, NC—Environmental Performance Specifications in Construction Contracts—Section 01445 Testing for Indoor Air Quality, Baseline IAQ, and Materials

    EPA Pesticide Factsheets

    More information on testing for maximum indoor pollutant concentrations for acceptance of the facility, as well as requirements for Independent Materials Testing of specific materials anticipated to have major impact on indoor air quality.

  20. Self-sustained Flow-acoustic Interactions in Airfoil Transitional Boundary Layers

    DTIC Science & Technology

    2015-07-09

    AFRL-AFOSR-VA-TR-2015-0235 Self-sustained flow-acoustic interactions in airfoil transitional boundary layers Vladimir Golubev EMBRY-RIDDLE...From - To)      01-04-2012 to 31-03-2015 4.  TITLE AND SUBTITLE Self-sustained flow-acoustic interactions in airfoil transitional boundary layers 5a...complementary experimental and numerical studies of flow-acoustic resonant interactions in transitional airfoils and their impact on airfoil surface

  1. Engine sizing and integration requirements for hypersonic airbreathing missile applications

    NASA Astrophysics Data System (ADS)

    Waltrup, P. J.; Billig, F. S.; Stockbridge, R. D.

    1982-03-01

    A procedure that provides a rational means for selecting an inlet/combustor configuration for a hypersonic airbreathing missile is presented. The particular problem that is addressed is the design of the sustained engine of a two stage missile that is constrained to be launched from a stowage volume that is either square or circular in cross section. The sustainer engine accelerates from a low altitude separation at Mach 4 and climbs to high altitude for cruise at Mach 8. The results show that a missile with an axisymmetric nose inlet provides a somewhat higher thrust capability and slightly better fuel efficiency than a chin type inlet. Aft entry inlets are shown to have a substantially lower thrust potential and lower engine efficiency. A criterion for determining the maximum contraction ratio of a fixed geometry inlet is established and applied to the exemplary missile designs. Combustor area ratio is examined and found to have a relatively small effect on engine performance for area ratios equal to or larger than that required to obtain maximum thrust at the take-over Mach number.

  2. Replacement of the anterior cruciate ligament with a bone-ligament-bone anterior cruciate ligament allograft in dogs.

    PubMed

    Vasseur, P B; Rodrigo, J J; Stevenson, S; Clark, G; Sharkey, N

    1987-06-01

    Acute replacement of the canine anterior cruciate ligament (ACL) with a frozen, bone-ligament-bone anterior cruciate ligament preparation was studied using biochemical, immunologic, and biomechanical testing methods. Nine dogs were used for the study, six dogs received allografts and three received autografts. No tissue antigen matching was performed. All nine dogs were killed nine months after surgery. Necropsy examination revealed that the ACL was not present in three joints (one autograft, two allografts). The two autograft and four allograft ligaments available for mechanical testing sustained mean maximum loads that were 10% and 14%, respectively, of the mean maximum loads sustained by the contralateral ACL. Autoradiography indicated that cellular activity was more pronounced in the autograft specimens. Hydroxyproline uptake was 200% and 45% of normal in the autograft and allograft ligaments, respectively. Both autograft and allograft specimens were producing Type I collagen at the time of killing. Antidonor dog leukocyte antigen (DLA) antibody was detected in the synovial fluid taken at the time of killing from six of six dogs that received allografts and in zero of three dogs that received autografts.

  3. Spring precipitation in inland Iberia: land-atmosphere interactions and recycling and amplification processes.

    NASA Astrophysics Data System (ADS)

    Rios-Entenza, A.; Miguez-Macho, G.

    2012-04-01

    Inland Iberia, the highest peak of rainfall occurs in May, being critical for agriculture in large water-limited areas. We investigate here the role of the soil moisture - precipitation feedback in the intensification of the water cycle in spring and in the aforementioned maximum of precipitation in the interior of the Iberian Peninsula. We conducted paired, high-resolution simulations with the WRF-ARW model, using a nested grid that covers the Iberian Peninsula at 5km resolution. Eleven months of May (from May 2000 to May 2010) and eleven months of January (from January 2000 to January 2010) were selected. For each month, we performed two simulations: a control one, where all land-atmosphere fluxes are normally set up, and the corresponding experiment, where evapotranspired water over land in the nested domain is not incorporated into the atmosphere, although the corresponding latent heat flux is considered in the surface energy budget. As expected, precipitation is higher in the control runs with respect to the experiments and, furthermore, this fraction of extra rainfall substantially exceeds the value of the analytical recycling ratio. This suggests that amplification processes, and not only direct recycling, may play an important role in the maximum of precipitation observed in the Iberian spring. We estimated the amplification effect to be as large as the recycling with calculations using analytical methods of separation of both contributions. We also develop here a procedure to quantify the amplification impact using the no-ET experiment and results confirm those obtained analytically. These results suggest that in the Iberian spring, under favourable synoptic conditions and given a small supply of external moisture that triggers large-scale convection, land-atmosphere interactions can intensify and sustain convective processes in time. Thus there is a large impact of local land-surface fluxes on precipitation and that alterations of anthropogenic nature can potentially influence the precipitation regime significantly.

  4. Performance of compost filtration practice for green infrastructure stormwater applications.

    PubMed

    Faucette, Britt; Cardoso, Fatima; Mulbry, Walter; Millner, Pat

    2013-09-01

    Urban storm water runoff poses a substantial threat of pollution to receiving surface waters. Green infrastructure, low impact development, green building ordinances, National Pollutant Discharge Elimination System (NPDES) storm water permit compliance, and Total Maximum Daily Load (TMDL) implementation strategies have become national priorities; however, designers need more sustainable, low-cost solutions to meet these goals and guidelines. The objective of this study was to determine the multiple-event removal efficiency and capacity of compost filter socks (FS) and filter socks with natural sorbents (NS) to remove soluble phosphorus, ammonium-nitrogen, nitrate-nitrogen, E. coli, Enterococcus, and oil from urban storm water runoff. Treatments were exposed to simulated storm water pollutant concentrations consistent with urban runoff originating from impervious surfaces, such as parking lots and roadways. Treatments were exposed to a maximum of 25 runoff events, or when removal efficiencies were < or = 25%, whichever occurred first. Experiments were conducted in triplicate. The filter socks with natural sorbents removed significantly greater soluble phosphorus than the filter socks alone, removing a total of 237 mg/linear m over eight runoff events, or an average of 34%. The filter socks with natural sorbents removed 54% of ammonium-nitrogen over 25 runoff events, or 533 mg/linear m, and only 11% of nitrate-nitrogen, or 228 mg/linear m. The filter socks and filter socks with natural sorbents both removed 99% of oil over 25 runoff events, or a total load of 38,486 mg/linear m. Over 25 runoff events the filter socks with natural sorbents removed E. coli and Enteroccocus at 85% and 65%, or a total load of 3.14 CFUs x 10(8)/ linear m and 1.5 CFUs x 10(9)/linear m, respectively; both were significantly greater than treatment by filter socks alone. Based on these experiments, this technique can be used to reduce soluble pollutants from storm water over multiple runoff events.

  5. Hot Press as a Sustainable Direct Recycling Technique of Aluminium: Mechanical Properties and Surface Integrity.

    PubMed

    Yusuf, Nur Kamilah; Lajis, Mohd Amri; Ahmad, Azlan

    2017-08-03

    Meltless recycling technique has been utilized to overcome the lack of primary resources, focusing on reducing the usage of energy and materials. Hot press was proposed as a novel direct recycling technique which results in astoundingly low energy usage in contrast with conventional recycling. The aim of this study is to prove the technical feasibility of this approach by characterizing the recycled samples. For this purpose, AA6061 aluminium chips were recycled by utilizing hot press process under various operating temperature (T s = 430, 480, and 530 °C) and holding times (t s = 60, 90, and 120 min). The maximum mechanical properties of recycled chip are Ultimate tensile strength (UTS) = 266.78 MPa, Elongation to failure (ETF) = 16.129%, while, for surface integrity of the chips, the calculated microhardness is 81.744 HV, exhibited at T s = 530 °C and t s = 120 min. It is comparable to theoretical AA6061 T4-temper where maximum UTS and microhardness is increased up to 9.27% and 20.48%, respectively. As the desired mechanical properties of forgings can only be obtained by means of a final heat treatment, T5-temper, aging after forging process was employed. Heat treated recycled billet AA6061 (T5-temper) are considered comparable with as-received AA6061 T6, where the value of microhardness (98.649 HV) at 175 °C and 120 min of aging condition was revealed to be greater than 3.18%. Although it is quite early to put a base mainly on the observations in experimental settings, the potential for significant improvement offered by the direct recycling methods for production aluminium scrap can be clearly demonstrated. This overtures perspectives for industrial development of solid state recycling processes as environmentally benign alternatives of current melting based practices.

  6. Photoimages and the release characteristics of lipophilic matrix tablets containing highly water-soluble potassium citrate with high drug loadings.

    PubMed

    Cao, Qing-Ri; Kim, Tae-Wan; Lee, Beom-Jin

    2007-07-18

    Two types of the carnauba wax-based lipophilic matrix tablet using spray-dried granules (SDT) or directly compressible powdered mixtures (DCT) were prepared for sustained release. The model drug was a highly water-soluble potassium citrate and loaded about 74% of the total tablet weight. The SDT slowly eroded and disintegrated during the release study without showing sustained release when the hydrophilic excipients were added. In contrast, the DCT was more efficient for sustained release. The release rate decreased with increasing carnauba wax concentration. In particular, the sustained release rate was markedly pronounced when the lipophilic stearyl alcohol and stearic acid were combined with the carnauba wax. The surface of the intact DCT appeared to be smooth and rusty. The DCT rose to the surface from the bottom of the vessel during the release test, and numerous pores and cracks with no signs of disintegration were also observed after the release test. The release profile was dependent on the formulation composition and preparation method of the matrix tablet. Diffusion-controlled leaching through the channels of the pores and cracks of the lipophilic matrix tablet (DCT) is a key to the sustained release.

  7. Design, Development and Optimization of S (-) Atenolol Floating Sustained Release Matrix Tablets Using Surface Response Methodology

    PubMed Central

    Gunjal, P. T.; Shinde, M. B.; Gharge, V. S.; Pimple, S. V.; Gurjar, M. K.; Shah, M. N.

    2015-01-01

    The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171

  8. Design, Development and Optimization of S (-) Atenolol Floating Sustained Release Matrix Tablets Using Surface Response Methodology.

    PubMed

    Gunjal, P T; Shinde, M B; Gharge, V S; Pimple, S V; Gurjar, M K; Shah, M N

    2015-01-01

    The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 3(2) full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  9. Properties, formation, and dissipation of the North Pacific Eastern Subtropical Mode Water and its impact on interannual spiciness anomalies

    NASA Astrophysics Data System (ADS)

    Katsura, Shota

    2018-03-01

    The properties, formation, and dissipation of the North Pacific Eastern Subtropical Mode Water (ESTMW), their interannual variability, and impact on spiciness anomalies in the upper permanent pycnocline were investigated using Argo profiling float data in 2005-2015. The core temperature and salinity of ESTMWs were horizontally compensated to a constant density, and core potential density concentrates in a range of 24.5-25.2 kg m-3 with two distinct peaks. ESTMWs showed different spatial distribution and persistence for its core potential density. Denser ESTMWs with a potential density of 24.9-25.2 kg m-3 were formed in winter mixed layer depth maximum centered at 30°N, 140°W and lighter ESTMWs of 24.5-24.9 kg m-3 were formed south and east of it. After formation through shoaling of the winter mixed layer, the former persisted until the following autumn and a small part of it subducted in winter, while the latter dissipated in summer. The formation region of ESTMW corresponded to the summer sea surface density maximum resulting from its poleward sea surface salinity front. Sea surface density maximum maintains weak stratification during summer, preconditioning the deepening of the winter mixed layer and hence the formation of ESTMWs. A relationship between the ESTMW formation region and the summer sea surface density maximum was also found in the North Atlantic and the South Pacific, implying the importance of sea surface salinity fronts and the associated summer sea surface density maximum to ESTMW formation. Interannual variations of ESTMW reflected that of the winter mixed layer in its formation region, and the thickness of ESTMW was related to the Pacific decadal oscillation. ESTMW contributed to the occurrence of spice injection and affected spiciness anomalies in the upper permanent pycnocline through its formation and dissipation.

  10. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R.; Idso, S.; Vedder, J.; Jackson, R.; Blanchard, M.; Goettelman, R.

    1975-01-01

    A procedure is presented for calculating 24-hour totals of evaporation from wet and drying soils. Its application requires a knowledge of the daily solar radiation, the maximum and minimum, air temperatures, moist surface albedo, and maximum and minimum surface temperatures. Tests of the technique on a bare field of Avondale loam at Phoenix, Arizona showed it to be independent of season.

  11. A 500 megabyte/second disk array

    NASA Technical Reports Server (NTRS)

    Ruwart, Thomas M.; Okeefe, Matthew T.

    1994-01-01

    Applications at the Army High Performance Computing Research Center's (AHPCRC) Graphic and Visualization Laboratory (GVL) at the University of Minnesota require a tremendous amount of I/O bandwidth and this appetite for data is growing. Silicon Graphics workstations are used to perform the post-processing, visualization, and animation of multi-terabyte size datasets produced by scientific simulations performed of AHPCRC supercomputers. The M.A.X. (Maximum Achievable Xfer) was designed to find the maximum achievable I/O performance of the Silicon Graphics CHALLENGE/Onyx-class machines that run these applications. Running a fully configured Onyx machine with 12-150MHz R4400 processors, 512MB of 8-way interleaved memory, 31 fast/wide SCSI-2 channel each with a Ciprico disk array controller we were able to achieve a maximum sustained transfer rate of 509.8 megabytes per second. However, after analyzing the results it became clear that the true maximum transfer rate is somewhat beyond this figure and we will need to do further testing with more disk array controllers in order to find the true maximum.

  12. Comparison of surface characteristics of retrieved cobalt-chromium femoral heads with and without ion implantation.

    PubMed

    McGrory, Brian J; Ruterbories, James M; Pawar, Vivek D; Thomas, Reginald K; Salehi, Abraham B

    2012-01-01

    Nitrogen ion implantation of CoCr is reported to produce increased surface hardness and a lower friction surface. Femoral heads with and without ion implantation retrieved from 1997 to 2003 were evaluated for surface roughness (average surface roughness [Ra], mean peak height [Rpm], and maximum distance from peak to valley [Rmax]), nanohardness, and the ion-treated layer thickness. The difference in average Rmax (P = .033) and average Rpm (P = .008) was statistically significant, but there was no correlation between the average or maximum roughness parameters (average surface roughness, Rmax, and Rpm) and time in vivo (P > .05). Overall, nanohardness was greater for the low-friction ion-treated heads (P < .001); and it decreased with increasing time in vivo (P = .01). Ion treatment produces an increased surface hardness, but the advantage of this increased hardness appears to dissipate over time in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. "SPURS" in the North Atlantic Salinity Maximum

    NASA Astrophysics Data System (ADS)

    Schmitt, Raymond

    2014-05-01

    The North Atlantic Salinity Maximum is the world's saltiest open ocean salinity maximum and was the focus of the recent Salinity Processes Upper-ocean Regional Study (SPURS) program. SPURS was a joint venture between US, French, Irish, and Spanish investigators. Three US and two EU cruises were involved from August, 1012 - October, 2013 as well as surface moorings, glider, drifter and float deployments. Shipboard operations included underway meteorological and oceanic data, hydrographic surveys and turbulence profiling. The goal is to improve our understanding of how the salinity maximum is maintained and how it may be changing. It is formed by an excess of evaporation over precipitation and the wind-driven convergence of the subtropical gyre. Such salty areas are getting saltier with global warming (a record high SSS was observed in SPURS) and it is imperative to determine the relative roles of surface water fluxes and oceanic processes in such trends. The combination of accurate surface flux estimates with new assessments of vertical and horizontal mixing in the ocean will help elucidate the utility of ocean salinity in quantifying the changing global water cycle.

  14. Manufacture of reconstruction-bricks in Mexico

    NASA Astrophysics Data System (ADS)

    Rojas-Valencia, Ma. Neftalí; Penagos, Armando Aguilar; Rojas, Denise Y. Fernández; López, Alberto López; Gálves, David Morillón

    2017-12-01

    In Mexico, around 33.600 tons of construction wastes are generated every day, Mexico City contributing for around tons/day, with fewer than 1.000 tons/day being sent to be recycled. For that reason the purpose of this study was to manufacture sustainable bricks, based on three types of wastes generated in the building industry: wood cutting residues, wastes from the excavation process (From Coapa and Cuautlancingo, Puebla, Mexico) and recycled aggregates. Water was added as kneading material, and Opuntia ficus-indica (mucilage) was supplemented as natural additive to improve the workability of the mixtures. Conventional firing process was substituted by drying in a solar drying chamber. Nine mixtures were prepared using 62% excavation wastes, 4% wood cutting residues and 11%, 17% and 34% recycled aggregates. These mixtures were classified in two groups depending on their granulometry: the first one denominated cementitious recycled aggregates only having granulometry from 25.4 mm, 9.52 mm to 6.35 mm to fines and the second group denominated all in one recycled aggregates having granulometry of 6.35 mm to fines. The quality of the sustainable bricks was evaluated according to compressive strength and water absorption parameters. The results of nine mixtures showed that the reconstruction-bricks manufactured with the mixture seven consisting of 9.52 mm and 6.35 mm construction residues (all in one) fines presented the highest strength values, lowest maximum initial absorption (4 g/min) compared to the norm NMX-C-037-ONNCCE-2013 which establishes that the maximum limit for walls exposed to the outside is 5 g/min. Using a solar desiccator made from construction residues, the bricks were dried in 11 days, the maximum temperature was 76 °C and the maximum solar radiation captured was 733.4 W/m2.

  15. Generating a Simulated Fluid Flow over a Surface Using Anisotropic Diffusion

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2016-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using the gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and the gradient vector.

  16. Start-stop testing of two self-acting air-lubricated spiral groove thrust bearing coatings

    NASA Technical Reports Server (NTRS)

    Dunfee, J. D.; Shapiro, W.

    1974-01-01

    Start-stop tests were conducted on air-lubricated spiral-groove thrust bearings. Application of a matrix-bonded molybdenum disulfide (MoS2) coating over a porous chrome oxide coating resulted in significantly lower friction, compared to bearings coated with chrome oxide only. The MoS2 coated bearing sustained 15,000 start-stop cycles at a maximum of 3600 rpm. Each cycle was 15 seconds on, 30 seconds off. The chrome oxide coated bearing failed by local welding after 2030 cycles. Both types of coatings exhibited early failures under higher thrust loads when operating films were insufficient to sustain the load without overheating.

  17. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2017-09-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  18. Business Management in Sustainable Buildings: Ankara-Turkey Case

    NASA Astrophysics Data System (ADS)

    Kutay Karaca, Neşet; Burcu Gültekin, Arzuhan

    2017-10-01

    The concept of the sustainability is described as efficiently and effectively consuming of exhaustible and recyclable sources of the world. A sustainable building implements sustainability criteria in its life cycle, and business management is the process by which an organization uses its resources in the most efficient way to reach its goal. From the beginning, sustainable building proves their differences from the conventional buildings. Sustainable buildings are resource-efficient and environmentally responsible structures in terms of energy consumption, construction principles, siting, renovation and maintenance throughout its life cycle while conventional buildings are more traditional in these matters. The differences are observable especially in costs and expenditures. It is possible and feasible to compare and contrast the design, construction and management costs of both types of structures. Thence, contributions of sustainable buildings are priced favourably in terms of ecological and sociological aspects. In this context, a prospective projection can be made considering the extra costs of sustainable structures, as well as the consumption profits due to the use of less energy than conventional construction. Considering this, it is possible to project consumption savings in long term. By calculating a forward-looking net cash flow projection, it can be forecasted how much time it will take to cover the extra cost. When making decisions, investors always contemplate maximum profitability. Within the scope of this study, costs of sustainable and conventional buildings will be compared and contrasted through precedence of a sustainable building certificated and non-certificated building. It will be analysed in which time period the initial cost difference between them will be compensated totally and partially. Furthermore, an efficiency analyses will be done in the scope of the necessities and expenses of these businesses.

  19. Forest Soil Disturbance Monitoring Protocol: Volume I: Rapid assessment

    Treesearch

    Deborah S. Page-Dumroese; Ann M. Abbott; Thomas M. Rice

    2009-01-01

    This volume of the Forest Soil Disturbance Monitoring Protocol (FSDMP) describes how to monitor forest sites before and after ground disturbing management activities for physical attributes that could influence site resilience and long-term sustainability. The attributes describe surface conditions that affect site sustainability and hydrologic function. Monitoring the...

  20. Reconceptualizing the Pedagogical Value of Student Facilitation

    ERIC Educational Resources Information Center

    Oztok, Murat

    2016-01-01

    Sustained discourse is critical to the learning potential of online courses. And, while research has surfaced many factors that mediate interaction, it further suggests that sustained interaction remains elusive. In this paper, I propose that student facilitation may have an impact on the quality of facilitators' interactions following a week of…

  1. Building the Foundations for a Large-Scale, Cross-Sector Collaboration for a Sustainable and Permanent Return to the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Kapoglou, A.

    2017-10-01

    This presentation will describe how to build the foundations needed for a large scale, cross-industry collaboration to enable a sustainable and permanent return to the Moon based on system leadership, cross-sector partnership, and inclusive business.

  2. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  3. Habitability: A Review.

    PubMed

    Cockell, C S; Bush, T; Bryce, C; Direito, S; Fox-Powell, M; Harrison, J P; Lammer, H; Landenmark, H; Martin-Torres, J; Nicholson, N; Noack, L; O'Malley-James, J; Payler, S J; Rushby, A; Samuels, T; Schwendner, P; Wadsworth, J; Zorzano, M P

    2016-01-01

    Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of "habitability" and a "habitable environment." An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies.

  4. IMPROVING THE QUALITY, AVAILABILITY AND SUSTAINABILITY OF DRINKING WATER SUPPLIES THROUGH ANTIFOULING AND ANTISCALING DESALINATION MEMBRANES

    EPA Science Inventory

    Surface modification with the selected polymers is expected to reduce the fouling and scaling propensity of desalination membranes by strongly binding water at the membrane surface. Foulants will interact with this bound water layer and not with the membrane surface itself....

  5. Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells

    NASA Astrophysics Data System (ADS)

    Manoj, M. G.; Devara, P. C. S.; Safai, P. D.; Goswami, B. N.

    2011-12-01

    While some long breaks of monsoon intraseasonal oscillations (MISOs) are followed by active spells (BFA), some others are not (BNFA). The circulation during BFA (BNFA) cases helps (prevents) accumulation of absorbing aerosols over central India (CI) resulting in almost three times larger Aerosol Index (AI) over CI, during BFA cases compared to BNFA cases. A seminal role played by the absorbing aerosols in the transition from break to active spells is unraveled through modification of the north-south temperature gradient at lower levels. The meridional gradient of temperature at low level (∆ T) between aerosol-rich CI and pristine equatorial Indian Ocean is large (>6°C) and sustains for long time (>10 days) during BFA leading to significant moisture convergence to CI. The stability effect arising from surface cooling by the aerosols is overcome by the enhanced moisture convergence creating a moist static unstable atmosphere conducive for the large-scale organized convection over the CI region leading to the resurgence of active spells. The moisture convergence induced by ∆ T was also able to overcome possible aerosol indirect effect (Twomey effect) and initiate deep convection and transition to active condition. During BNFA cases, however the maximum ∆ T, which was weaker than the BFA cases by more than 1.5°C, could not sustain required moisture convergence and failed to lead to a sustained active spell. Using data from MODIS (MODerate resolution Imaging Spectroradiometer) onboard Terra and several other input parameters from various satellites for the period 2000-2009, the aerosol induced radiative forcing representative of two regions—the CI to the north and the pristine ocean to the south—were estimated and support the differences in observed ∆ T during the two cases. Our results highlight the need for proper inclusion of absorbing aerosols in dynamical models for simulation of the observed variability of MISOs and their extended range prediction.

  6. Development of Water-Triggered Chitosan Film Containing Glucamylase for Sustained Release of Resveratrol.

    PubMed

    Zhang, Dongliang; Cao, Yanfei; Ma, Chengye; Chen, Shanfeng; Li, Hongjun

    2017-03-29

    There is a paradox when incorporating enzyme into an edible chitosan film that chitosan is dissolved in acid solution and enzyme activity is maintained under mild conditions. A method for maintaining the pH of the chitosan solution at 4-6 to prepare a chitosan film containing β-cyclodextrin, resveratrol-β-cyclodextrin inclusion (RCI), was developed, using glucamylase and acetic acid. A considerable amount of resveratrol was released by the glucamylase-incorporated film within 15 days, and the maximum amount released was 46% of the total resveratrol content. The highest resveratrol release ratio (released resveratrol/total resveratrol) was obtained in the film with 6 mL of RCI. Scratches and spores were generated on the surface of the glucamylase-added film immersed in water (GAFW) for 7 days because of β-cyclodextrin hydrolysis during film drying and water immersion. RCI and β-cyclodextrin were extruded from the film surface and formed teardrops, which were erased by water on the GAFW surface but appeared on the glucamylase-added film without water immersion (GAF). The bubbles generated by the reaction of acetic acid and residual sodium bicarbonate were observed in both glucamylase-free films immersed in water (GFFW) for 7 days and without water immersion (GFF). The FT-IR spectra illustrated that the covalent bond was not generated during water immersion and β-cyclodextrin hydrolysis. The crystal structure of chitosan was destroyed by water immersion and β-cyclodextrin hydrolysis, resulting in the lowest chitosan crystallization peak at 22°. The increasing of water holding capacity determined by EDX presented the following order: GAF, GFFW, GFF, and GAFW.

  7. Multipactor suppression by micro-structured gold/silver coatings for space applications

    NASA Astrophysics Data System (ADS)

    Nistor, Valentin; González, Luis A.; Aguilera, Lydya; Montero, Isabel; Galán, Luis; Wochner, Ulrich; Raboso, David

    2014-10-01

    The secondary electron emission (SEE) from materials used in high power RF devices in space is the main trigger and sustaining mechanism of the resonant avalanche electron discharge known as the multipactor effect. It limits the attainable power of those devices. During recent decades, some scientific research has been focused on material properties for obtaining anti-multipactor coatings of low secondary emission yield (SEY). The European Space Agency (ESA) is leading a technological research on a new approach based on surface roughness that might perform as a kind of blackbody or Faraday cage effect. A multilayer coating structure was adopted for fulfilling the stringent requirements of the space. The surface of a standard silver plating was modified by a two-step treatment. First, a wet chemically etching process created a roughness of high aspect ratio, in the scale of microns. Secondly, the surface was coated with a protective 2 μm overlayer of gold, using magnetron sputtering. This anti-multipactor coating has been tested on several types of Ku-band WR75 waveguide transformers and band-pass filters, with excellent results. The multipactor effect was suppressed for two waveguides, even when applying the maximum available power levels. As for the other final four, the increase of multipactor power level was in the range of 4-6 dB. These results were obtained after more than one year of air exposure. In spite of the strong roughness, the insertion losses were diminished by 25% with respect to the values attained in the tests of the standard anti-multipactor coating, Alodine.

  8. Initial Screening of Environmentally Sustainable Surface Pretreatments for Adhesive Bonding Applications

    DTIC Science & Technology

    2017-05-17

    490F Type IV inorganic pretreatments resulted in little to no loss of adhesive bond strength during H/W conditioning and their potential use as bonding...sustainable TT-C-490F pretreatments resulted in little to no loss of adhesive bond strength during H/W conditioning and their potential use as...pretreatment was applied. Environmentally sustainable TT-C-490F Type IV inorganic pretreatments resulted in little to no loss of adhesive bond strength during

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Michael D.; Dater, Manasi; Whitaker, Ross

    In this study, statistical shape modeling (SSM) was used to quantify three-dimensional (3D) variation and morphologic differences between femurs with and without cam femoroacetabular impingement (FAI). 3D surfaces were generated from CT scans of femurs from 41 controls and 30 cam FAI patients. SSM correspondence particles were optimally positioned on each surface using a gradient descent energy function. Mean shapes for control and patient groups were defined from the resulting particle configurations. Morphological differences between group mean shapes and between the control mean and individual patients were calculated. Principal component analysis was used to describe anatomical variation present in bothmore » groups. The first 6 modes (or principal components) captured statistically significant shape variations, which comprised 84% of cumulative variation among the femurs. Shape variation was greatest in femoral offset, greater trochanter height, and the head-neck junction. The mean cam femur shape protruded above the control mean by a maximum of 3.3 mm with sustained protrusions of 2.5-3.0 mm along the anterolateral head-neck junction and distally along the anterior neck, corresponding well with reported cam lesion locations and soft-tissue damage. This study provides initial evidence that SSM can describe variations in femoral morphology in both controls and cam FAI patients and may be useful for developing new measurements of pathological anatomy. SSM may also be applied to characterize cam FAI severity and provide templates to guide patient-specific surgical resection of bone.« less

  10. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India

    USGS Publications Warehouse

    Owen, L.A.; Caffee, M.W.; Bovard, K.R.; Finkel, R.C.; Sharma, M.C.

    2006-01-01

    Terrestrial cosmogenic nuclide surface exposure dating of moraine boulders and alluvial fan sediments define the timing of five glacial advances over at least the last five glacial cycles in the Ladakh Range of the Transhimalaya. The glacial stages that have been identified are: the Indus Valley glacial stage, dated at older than 430 ka; the Leh glacial stage occurring in the penultimate glacial cycle or older; the Karglacial stage, occurring during the early part of the last glacial cycle; the Bazgo glacial stage, at its maximum during the middle of the last glacial cycle; and the early Holocene Khalling glacial stage. The exposure ages of the Indus Valley moraines are the oldest observed to date throughout the Himalayan orogen. We observe a pattern of progressively more restricted glaciation during the last five glacial cycles, likely indicating a progressive reduction in the moisture supply necessary to sustain glaciation. A possible explanation is that uplift of Himalayan ranges to the south and/or of the Karakoram Mountains to the west of the region may have effectively blocked moisture supply by the south Asian summer monsoon and mid-latitude westerlies, respectively. Alternatively, this pattern of glaciation may reflect a trend of progressively less extensive glaciation in mountain regions that has been observed globally throughout the Pleistocene. ?? 2006 Geological Society of America.

  11. Response Surface Optimization for Decaffeination and Theophylline Production by Fusarium solani.

    PubMed

    Nanjundaiah, Shwetha; Bhatt, Praveena; Rastogi, Navin Kumar; Thakur, Munna Singh

    2016-01-01

    Coffee processing industries generate caffeine-containing waste that needs to be treated and decaffeinated before being disposed. Five fungal isolates obtained on caffeine-containing mineral media were tested for their ability to utilize caffeine at high concentrations. An isolate identified as Fusarium solani could utilize caffeine as a sole source of carbon and nitrogen up to 5 g/l and could degrade it to an extent of 30-53 % in 120 h. Sucrose that was added as an auxiliary substrate (5 g/l) enhanced the biodecaffeination of caffeine to 88 % in 96 h. The addition of co- substrate (sucrose) not only resulted in higher biodecaffeination efficiency, but also reduced the incubation period from the initial 120 to 96 h. Theophylline and 3-methyl xanthine were obtained as the major metabolites of decaffeination at 96 and 120 h, respectively. Response surface methodology used to optimize the process parameters for maximum biodecaffeination as well as theophylline production showed that a pH of 5.8, temperature of 24 °C and inoculum size of 4.8 × 10(5) spores/ml have resulted in a complete biodecaffeination of caffeine as well as the production of theophylline with a yield of 33 % (w/w). Results thus show that a viable and sustainable process can be developed for the detoxification of caffeine along with the recovery of theophylline, a commercially important chemical.

  12. Monitoring planktivorous seabird populations: Validating surface counts of crevice-nesting auklets using mark-resight techniques

    USGS Publications Warehouse

    Sheffield, L.M.; Gall, Adrian E.; Roby, D.D.; Irons, D.B.; Dugger, K.M.

    2006-01-01

    Least Auklets (Aethia pusilla (Pallas, 1811)) are the most abundant species of seabird in the Bering Sea and offer a relatively efficient means of monitoring secondary productivity in the marine environment. Counting auklets on surface plots is the primary method used to track changes in numbers of these crevice-nesters, but counts can be highly variable and may not be representative of the number of nesting individuals. We compared average maximum counts of Least Auklets on surface plots with density estimates based on mark–resight data at a colony on St. Lawrence Island, Alaska, during 2001–2004. Estimates of breeding auklet abundance from mark–resight averaged 8 times greater than those from maximum surface counts. Our results also indicate that average maximum surface counts are poor indicators of breeding auklet abundance and do not vary consistently with auklet nesting density across the breeding colony. Estimates of Least Auklet abundance from mark–resight were sufficiently precise to meet management goals for tracking changes in seabird populations. We recommend establishing multiple permanent banding plots for mark–resight studies on colonies selected for intensive long-term monitoring. Mark–resight is more likely to detect biologically significant changes in size of auklet breeding colonies than traditional surface count techniques.

  13. Antarctic ice dynamics and southern ocean surface hydrology during the last glacial maximum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labeyrie, L.D.; Burckle, L.; Labracherie, M.

    1985-01-01

    Eight high sedimentation rate cores located between 61/sup 0/S and 43/sup 0/S in the Atlantic and Indian sectors of the Southern Ocean have been studied in detail for foraminifera and diatom /sup 18/O//sup 16/O ratios, and changes in radiolarian and diatom specific abundance. Comparison of these different parameters permits a detailed description of the surface water hydrology during the last glacial maximum. The authors demonstrate that from 25 kyr BP to 15 kyr BP a large number of icebergs formed around the Antarctic continent. Melting along the Polar Front decreased surface salinity by approximately 1.5 per thousand between 43/sup 0/Smore » and 50/sup 0/S. They propose that an increase of snow accumulation at the Antarctic periphery and downdraw during maximum ice extension are primary causes for this major discharge of icebergs.« less

  14. Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs

    NASA Astrophysics Data System (ADS)

    Li, Yufeng; Wang, Shuai; Su, Xilin; Tang, Weihan; Li, Qiang; Guo, Maofeng; Zhang, Ye; Zhang, Minyan; Yun, Feng; Hou, Xun

    2017-11-01

    Ag coated microgroove with extreme large aspect-ratio of 500:1 was fabricated on p-GaN capping layer to investigate the coupling behavior between quantum wells and surface plasmon in highly spatial resolution. Significant photoluminescence enhancement was observed when the distance between Ag film and QWs was reduced from 220 nm to about 20 nm. A maximum enhancement ratio of 18-fold was achieved at the groove bottom where the surface plasmonic coupling was considered the strongest. Such enhancement ratio was found highly affected by the excitation power density. It also shows high correlation to the internal quantum efficiency as a function of coupling effect and a maximum Purcell Factor of 1.75 was estimated at maximum coupling effect, which matches number calculated independently from the time-resolved photoluminescence measurement. With such Purcell Factor, the efficiency was greatly enhanced and the droop was significantly suppressed.

  15. Conjunctive-use optimization model of the Mississippi River Valley alluvial aquifer of Southeastern Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.; Clark, Brian R.; Stanton, Gregory P.

    2003-01-01

    The Mississippi River Valley alluvial aquifer is a water-bearing assemblage of gravels and sands that underlies about 32,000 square miles of Missouri, Kentucky, Tennessee, Mississippi, Louisiana, and Arkansas. Because of the heavy demands placed on the aquifer, several large cones of depression have formed in the potentiometric surface, resulting in lower well yields and degraded water quality in some areas. A ground-water flow model of the alluvial aquifer was previously developed for an area covering 3,826 square miles, extending south from the Arkansas River into the southeastern corner of Arkansas, parts of northeastern Louisiana, and western Mississippi. The flow-model results indicated that continued ground-water withdrawals at rates commensurate with those of 1997 could not be sustained indefinitely without causing water levels to decline below half the original saturated thickness of the aquifer. Conjunctive-use optimization modeling was applied to the flow model of the alluvial aquifer to develop withdrawal rates that could be sustained relative to the constraints of critical ground-water area designation. These withdrawal rates form the basis for estimates of sustainable yield from the alluvial aquifer and from rivers specified within the alluvial aquifer model. A management problem was formulated as one of maximizing the sustainable yield from all ground-water and surface-water withdrawal cells within limits imposed by plausible withdrawal rates, and within specified constraints involving hydraulic head and streamflow. Steady-state conditions were selected because the maximized withdrawals are intended to represent sustainable yield of the system (a rate that can be maintained indefinitely).One point along the Arkansas River and one point along Bayou Bartholomew were specified for obtaining surface-water sustainable-yield estimates within the optimization model. Streamflow constraints were specified at two river cells based on average 7-day low flows with 10-year recurrence intervals. Sustainable-yield estimates were affected by the allowable upper limit on withdrawals from wells specified in the optimization model. Withdrawal rates were allowed to increase to 200 percent of the withdrawal rate in 1997. As the overall upper limit is increased, the sustainable yield generally increases. Tests with the optimization model show that without limits on pumping, wells adjacent to sources of water, such as large rivers, would have optimal withdrawal rates that were orders of magnitude larger than rates corresponding to those of 1997. Specifying an upper withdrawal limit of 100 percent of the 1997 withdrawal rate, the sustainable yield from ground water for the entire study area is 70.3 million cubic feet per day, which is about 96 percent of the amount withdrawn in 1997 (73.5 million cubic feet per day). If the upper withdrawal limit is increased to 150 percent of the 1997 withdrawal rate, the sustainable yield from ground water for the entire study area is 80.6 million cubic feet per day, which is about 110 percent of the amount withdrawn in 1997. If the upper withdrawal limit is increased to 200 percent of the 1997 withdrawal rate, the sustainable yield from ground water for the entire study area is 110.2 million cubic feet per day, which is about 150 percent of the amount withdrawn in 1997. Total sustainable yield from the Arkansas River and Bayou Bartholomew is about 4,900 million cubic feet per day, or about 6,700 percent of the amount of ground-water withdrawn in 1997. The large, sustainable yields from surface water represent a potential source of water that could supplement ground water and meet the total water demand. Unmet demand (defined as the difference between the optimized withdrawal rate or sustainable yield, and the anticipated demand) was calculated using different demand rates based on multiples of the 1997-withdrawal rate. Assuming that demand is the 1997 withdrawal rate, and that sustainable-

  16. A synbiotic multiparticulate microcapsule for enhancing inulin intestinal release and Bifidobacterium gastro-intestinal survivability.

    PubMed

    Fayed, Bahgat; Abood, Amira; El-Sayed, Hoda S; Hashem, Amal M; Mehanna, Nayra S H

    2018-08-01

    A novel synbiotic multiparticulate microparticle was produced in the current study to expand the synbiotic industrial applications. Initially, the inulin was fabricated into PLGA nanoparticles. After the inulin entrapment efficiency was boosted to reach 92.9 ± 8.4% by adjusting the formulation parameters, the developed particles were characterized by different techniques such as particle size analyzer, TEM, and TLC. The obtained data showed that the particle size was 115.8 ± 82.7 nm, the particles had smooth surface and round shape, and the fabrication procedure did not affect the integrity of the inulin. Later, the inulin loaded nanoparticles together with selected Bifidobacterium species were double coated with gum arabic and alginate. The maximum survivability of the encapsulated Bifidobacterium in the simulated gastric solution reached 88.29% of the initial population, which was significantly higher than the survivability of the free bacteria. Finally, the inulin release from the multiparticulate microparticles was studied and found to be sustained over three days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Quaternary deposits in southwestern Afghanistan

    USGS Publications Warehouse

    Smith, G.I.

    1974-01-01

    Geologic evidence in the closed Seistan Basin of southwestern Afghanistan and adjacent parts of Iran and Pakistan indicates that a lake as much as 65,000 sq km in size occupied this closed depression during Pleistocene time. The deposits consist mostly of lacustrine silt and clay and have a maximum observed thickness of about 250 m. A layer of alluvial gravels overlies the sequence. The deposits are probably early or middle Pleistocene in age; they are old enough to have sustained nearly 300 m of erosion over large areas but are not faulted or detectably folded in the central part of the basin although they are upwarped along the west edge of the basin. Sand dunes cover extensive areas of the basin. Dune orientation shows that the strong surface winds enter the basin blowing toward the south-southeast and then are deflected to the east, apparently as a response to mountains bordering the basin on its south side. The Gawdezereh, a large deflation depression, may be a result of an augmented excavation ability of winds that oc urs where turbulence is created along a zone of deflection. ?? 1974.

  18. A poly(acrylonitrile)-functionalized porous aromatic framework synthesized by atom-transfer radical polymerization for the extraction of uranium from seawater

    DOE PAGES

    Yue, Yanfeng; Zhang, Chenxi; Tang, Qing; ...

    2015-10-30

    In order to ensure a sustainable reserve of fuel for nuclear power generation, tremendous research efforts have been devoted to developing advanced sorbent materials for extracting uranium from seawater. In this work, a porous aromatic framework (PAF) was surface-functionalized with poly(acrylonitrile) through atom-transfer radical polymerization (ATRP). Batches of this adsorbent were conditioned with potassium hydroxide (KOH) at room temperature or 80 °C prior to contact with a uranium-spiked seawater simulant, with minimal differences in uptake observed as a function of conditioning temperature. A maximum capacity of 4.81 g-U/kg-ads was obtained following 42 days contact with uranium-spiked filtered environmental seawater, whichmore » demonstrates a comparable adsorption rate. A kinetic investigation revealed extremely rapid uranyl uptake, with more than 80% saturation reached within 14 days. Furthermore, relying on the semiordered structure of the PAF adsorbent, density functional theory (DFT) calculations reveal cooperative interactions between multiple adsorbent groups yield a strong driving force for uranium binding.« less

  19. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hao, Xiaodong; Wang, Jie; Ding, Bing; Wang, Ya; Chang, Zhi; Dou, Hui; Zhang, Xiaogang

    2017-06-01

    Bacterial cellulose (BC), a typical biomass prepared from the microbial fermentation process, has been proved that it can be an ideal platform for design of three-dimensional (3D) multifunctional nanomaterials in energy storage and conversion field. Here we developed a simple and general silica-assisted strategy for fabrication of interconnected 3D meso-microporous carbon nanofiber networks by confine nanospace pyrolysis of sustainable BC, which can be used as binder-free electrodes for high-performance supercapacitors. The synthesized carbon nanofibers exhibited the features of interconnected 3D networks architecture, large surface area (624 m2 g-1), mesopores-dominated hierarchical porosity, and high graphitization degree. The as-prepared electrode (CN-BC) displayed a maximum specific capacitance of 302 F g-1 at a current density of 0.5 A g-1, high-rate capability and good cyclicity in 6 M KOH electrolyte. This work, together with cost-effective preparation strategy to make high-value utilization of cheap biomass, should have significant implications in the green and mass-producible energy storage.

  20. Optimal control of algae growth by controlling CO 2 and nutrition flow using Pontryagin Maximum Principle

    NASA Astrophysics Data System (ADS)

    Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi

    2017-09-01

    There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.

  1. Meletin sustained-release gliadin nanoparticles prepared via solvent surface modification on blending electrospraying

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Yao; Zhang, Man; Liu, Zhe-Peng; Wang, Ke; Yu, Deng-Guang

    2018-03-01

    Almost all electrospraying processes are carried out under an air-solution interface, thereby overlooking the potential influence of an additional solvent surface modification between air and the working solution. A pure solvent was explored to temporarily and dynamically surround the solutions utilized for blending electrospraying, which contained a guest drug meletin and a protein drug carrier gliadin. The new modified processes created protein-based medicated nanoparticles (P2) with higher quality than their counterparts (P1) from blending processes, as demonstrated by the SEM and TEM images. Although the particles from the two processes were similar (nanocomposites), and the particles P1 were larger than P2, the later provided a better meletin sustained-release profile than the former. This finding was verified by the smaller initial burst release, longer sustained-release time period, and shorter late leveling-off stage. These unanticipated results were attributed to the rounder surface, the more uniform size distribution, and the smaller total surface area of particles P2 than P1. The microformation mechanism of the modified coaxial process was suggested. The protocols reported here paved a new way for the development of new kinds of functional nanoparticles by modifying the interfaces of working fluids during electrospraying.

  2. Effect of denture cleansers on color stability, surface roughness, and hardness of different denture base resins

    PubMed Central

    Porwal, Anand; Khandelwal, Meenakshi; Punia, Vikas; Sharma, Vivek

    2017-01-01

    Aim: The purpose of this study was to evaluate the effect of different denture cleansers on the color stability, surface hardness, and roughness of different denture base resins. Materials and Methods: Three denture base resin materials (conventional heat cure resin, high impact resin, and polyamide denture base resin) were immersed for 180 days in commercially available two denture cleansers (sodium perborate and sodium hypochlorite). Color, surface roughness, and hardness were measured for each sample before and after immersion procedure. Statistical Analysis: One-way analysis of variance and Tukey's post hoc honestly significant difference test were used to evaluate color, surface roughness, and hardness data before and after immersion in denture cleanser (α =0.05). Results: All denture base resins tested exhibited a change in color, surface roughness, and hardness to some degree in both denture cleansers. Polyamides resin immersed in sodium perborate showed a maximum change in color after immersion for 180 days. Conventional heat cure resin immersed in sodium hypochlorite showed a maximum change in surface roughness and conventional heat cure immersed in sodium perborate showed a maximum change in hardness. Conclusion: Color changes of all denture base resins were within the clinically accepted range for color difference. Surface roughness change of conventional heat cure resin was not within the clinically accepted range of surface roughness. The choice of denture cleanser for different denture base resins should be based on the chemistry of resin and cleanser, denture cleanser concentration, and duration of immersion. PMID:28216847

  3. Nano-catalysts: Bridging the gap between homogeneous and heterogeneous catalysis

    EPA Science Inventory

    Functionalized nanoparticles have emerged as sustainable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. We envisioned a catalyst system, which can bridge the homogenous and heterogeneous system. Postsynthetic surface modifica...

  4. Genetic effects on transpiration, canopy conductance, stomatal sensitivity to vapour pressure deficit, and cavitation resistance in loblolly pine

    Treesearch

    Michael J Aspinwall; John S King; Jean-Christophe Domec; Steven E McKeand; Isik Fikret

    2011-01-01

    Physiological uniformity and genetic effects on canopy-level gas-exchange and hydraulic function could impact loblolly pine (Pinus taeda L.) plantation sustainability and ecosystem dynamics under projected changes in climate. Over a 1-year period, we examined genetic effects on mean and maximum mid-day canopy conductance (Gs, Gsmax...

  5. Open Flexible Lifelong Learning as a Catalyst for Sustainable Development in Sub-Saharan Africa

    ERIC Educational Resources Information Center

    Olakulehin, Felix Kayode

    2010-01-01

    Educational provision in developing sub-Saharan Africa states has been severely hindered by the hydra-headed problems of access, cost and quality. Amidst these challenges is the pledge of regional and national education policymakers and development planners to ensure that there is maximum access equitable and qualitative education for all (EFA) in…

  6. Earth observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-09-03

    ISS007-E-14419 (4 September 2003) --- This view featuring Hurricane Fabian was taken by one of the Expedition 7 crewmembers onboard the International Space Station (ISS) while it was in orbit over Hispaniola. At the time this photo was taken, Fabian had maximum sustained winds of 120 mph and was moving to the north-northwest at 12 mph.

  7. Sustained neurotensin exposure promotes cell surface recruitment of NTS2 receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perron, Amelie; Sharif, Nadder; Gendron, Louis

    2006-05-12

    In this study, we investigated whether persistent agonist stimulation of NTS2 receptors gives rise to down-regulation, in light of reports that their activation induced long-lasting effects. To address this issue, we incubated COS-7 cells expressing the rat NTS2 with neurotensin (NT) for up to 24 h and measured resultant cell surface [{sup 125}I]-NT binding. We found that NTS2-expressing cells retained the same surface receptor density despite efficient internalization mechanisms. This preservation was neither due to NTS2 neosynthesis nor recycling since it was not blocked by cycloheximide or monensin. However, it appeared to involve translocation of spare receptors from internal stores,more » as NT induced NTS2 migration from trans-Golgi network to endosome-like structures. This stimulation-induced regulation of cell surface NTS2 receptors was even more striking in rat spinal cord neurons. Taken together, these results suggest that sustained NTS2 activation promotes recruitment of intracellular receptors to the cell surface, thereby preventing functional desensitization.« less

  8. Generating a Simulated Fluid Flow Over an Aircraft Surface Using Anisotropic Diffusion

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.

  9. Surface plasmon coupled chemiluminescence during adsorption of oxygen on magnesium surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagemann, Ulrich; Nienhaus, Hermann, E-mail: hermann.nienhaus@uni-due.de

    The dissociative adsorption of oxygen molecules on magnesium surfaces represents a non-adiabatic reaction exhibiting exoelectron emission, chemicurrent generation, and weak chemiluminescence. Using thin film Mg/Ag/p-Si(111) Schottky diodes with 1 nm Mg on a 10-60 nm thick Ag layer as 2π-photodetectors, the chemiluminescence is internally detected with a much larger efficiency than external methods. The chemically induced photoyield shows a maximum for a Ag film thickness of 45 nm. The enhancement is explained by surface plasmon coupled chemiluminescence, i.e., surface plasmon polaritons are effectively excited in the Ag layer by the oxidation reaction and decay radiatively leading to the observed photocurrent.more » Model calculations of the maximum absorption in attenuated total reflection geometry support the interpretation. The study demonstrates the extreme sensitivity and the practical usage of internal detection schemes for investigating surface chemiluminescence.« less

  10. Methods to enhance seismic faults and construct fault surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Xinming; Zhu, Zhihui

    2017-10-01

    Faults are often apparent as reflector discontinuities in a seismic volume. Numerous types of fault attributes have been proposed to highlight fault positions from a seismic volume by measuring reflection discontinuities. These attribute volumes, however, can be sensitive to noise and stratigraphic features that are also apparent as discontinuities in a seismic volume. We propose a matched filtering method to enhance a precomputed fault attribute volume, and simultaneously estimate fault strikes and dips. In this method, a set of efficient 2D exponential filters, oriented by all possible combinations of strike and dip angles, are applied to the input attribute volume to find the maximum filtering responses at all samples in the volume. These maximum filtering responses are recorded to obtain the enhanced fault attribute volume while the corresponding strike and dip angles, that yield the maximum filtering responses, are recoded to obtain volumes of fault strikes and dips. By doing this, we assume that a fault surface is locally planar, and a 2D smoothing filter will yield a maximum response if the smoothing plane coincides with a local fault plane. With the enhanced fault attribute volume and the estimated fault strike and dip volumes, we then compute oriented fault samples on the ridges of the enhanced fault attribute volume, and each sample is oriented by the estimated fault strike and dip. Fault surfaces can be constructed by directly linking the oriented fault samples with consistent fault strikes and dips. For complicated cases with missing fault samples and noisy samples, we further propose to use a perceptual grouping method to infer fault surfaces that reasonably fit the positions and orientations of the fault samples. We apply these methods to 3D synthetic and real examples and successfully extract multiple intersecting fault surfaces and complete fault surfaces without holes.

  11. Afterslip behavior following the M6.0, 2014 South Napa earthquake with implications for afterslip forecasting on other seismogenic faults

    USGS Publications Warehouse

    Lienkaemper, James J.; DeLong, Stephen B.; Domrose, Carolyn J; Rosa, Carla M.

    2016-01-01

    The M6.0, 24 Aug. 2014 South Napa, California, earthquake exhibited unusually large slip for a California strike-slip event of its size with a maximum coseismic surface slip of 40-50 cm in the north section of the 15 km-long rupture. Although only minor (<10 cm) surface slip occurred coseismically in the southern 9-km section of the rupture, there was considerable postseismic slip, so that the maximum total slip one year after the event approached 40-50 cm, about equal to the coseismic maximum in the north. We measured the accumulation of postseismic surface slip on four, ~100-m-long alignment arrays for one year following the event. Because prolonged afterslip can delay reconstruction of fault-damaged buildings and infrastructure, we analyzed its gradual decay to estimate when significant afterslip would likely end. This forecasting of Napa afterslip suggests how we might approach the scientific and engineering challenges of afterslip from a much larger M~7 earthquake anticipated on the nearby, urban Hayward Fault. However, we expect its afterslip to last much longer than one year.The M6.0, 24 Aug. 2014 South Napa, California, earthquake exhibited unusually large slip for a California strike-slip event of its size with a maximum coseismic surface slip of 40-50 cm in the north section of the 15 km-long rupture. Although only minor (<10 cm) surface slip occurred coseismically in the southern 9-km section of the rupture, there was considerable postseismic slip, so that the maximum total slip one year after the event approached 40-50 cm, about equal to the coseismic maximum in the north. We measured the accumulation of postseismic surface slip on four, ~100-m-long alignment arrays for one year following the event. Because prolonged afterslip can delay reconstruction of fault-damaged buildings and infrastructure, we analyzed its gradual decay to estimate when significant afterslip would likely end. This forecasting of Napa afterslip suggests how we might approach the scientific and engineering challenges of afterslip from a much larger M~7 earthquake anticipated on the nearby, urban Hayward Fault. However, we expect its afterslip to last much longer than one year.

  12. In situ thermal polymerisation of natural oils as novel sustainable approach in nanographite particle production

    NASA Astrophysics Data System (ADS)

    Datsyuk, Vitaliy; Trotsenko, Svitlana; Reich, Stephanie

    2018-01-01

    A sustainable approach to graphite exfoliation via in situ thermal polymerization of fish oil results in the production of nanographite particles. The material was characterized by elemental analysis, transmission electron microscopy, and Raman spectroscopy. The thermal polymerization of fish oil was controlled by monitoring the viscosity and measuring the iodine number. The number of structural defects on the graphitic surface remained constant during the synthesis. The protocol leads to a hydrophobization of the nanographite surface. Immobilized polyoil islands create sterical hindrance and stabilize the nanographite particles in engineering polymers.

  13. Numerical and Observational Investigations of Long-Lived Mcs-Induced Severe Surface Wind Events: the Derecho

    NASA Astrophysics Data System (ADS)

    Schmidt, Jerome Michael

    This study addresses the production of sustained, straight-line, severe surface winds associated with mesoscale convective systems (MCSs) of extratropical origin otherwise known as derechos. The physical processes which govern the observed derecho characteristics are identified and their possible forcing mechanisms are determined. Detailed observations of two derechos are presented along with simulations using the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS). The observations revealed a derecho environment characterized by strong vertical wind shear through the depth of the troposphere and large values of convective available potential energy (CAPE). The thermodynamic environment of the troposphere in each case had a distinct three-layer structure consisting of: (i) a surface-based stable layer of 1-to-2 km in depth, (ii) an elevated well -mixed layer of 2-4 km in depth, and (iii) an upper tropospheric layer of intermediate stability that extended to the tropopause. Two primary sets of simulations were performed to assess the impact of the observed environmental profiles on the derecho structure, propagation, and longevity. The first set consisted of nested-grid regional-scale simulations initialized from the standard NMC analyses on a domain having relatively coarse horizontal resolution (75 km). The second set of simulations consisted of two and three-dimensional experiments initialized in a horizontally homogeneous environment having a relatively fine horizontal resolution (2 km) and explicit microphysics. The results from these experiments indicate the importance of convectively -induced gravity waves on the MCS structure, propagation, longevity, and severe surface wind development. The sensitivity of the simulated convection and gravity waves to variations in the vertical wind shear and moisture profiles are described. Detailed Doppler radar analyses and 3-D simulations of a severe, bow echo squall line are presented which reveal the unique 3-D circulation features which accompany these mesoscale convective systems. We illustrate how the mesoscale and convective-scale flow fields within the bow echo establish the severe surface wind maximum. (Abstract shortened with permission of author.).

  14. Study on the response of unsaturated soil slope based on the effects of rainfall intensity and slope angle

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Ashraf Mohamad; Hamzah, Nur Hasliza

    2017-07-01

    Rainfall has been considered as the major cause of the slope failure. The mechanism leading to slope failures included the infiltration process, surface runoff, volumetric water content and pore-water pressure of the soil. This paper describes a study in which simulated rainfall events were used with 2-dimensional soil column to study the response of unsaturated soil behavior based on different slope angle. The 2-dimensional soil column is used in order to demonstrate the mechanism of the slope failure. These unsaturated soil were tested with four different slope (15°, 25°, 35° and 45°) and subjected to three different rainfall intensities (maximum, mean and minimum). The following key results were obtained: (1) the stability of unsaturated soil decrease as the rainwater infiltrates into the soil. Soil that initially in unsaturated state will start to reach saturated state when rainwater seeps into the soil. Infiltration of rainwater will reduce the matric suction in the soil. Matric suction acts in controlling soil shear strength. Reduction in matric suction affects the decrease in effective normal stress, which in turn diminishes the available shear strength to a point where equilibrium can no longer be sustained in the slope. (2) The infiltration rate of rainwater decreases while surface runoff increase when the soil nearly achieve saturated state. These situations cause the soil erosion and lead to slope failure. (3) The steepness of the soil is not a major factor but also contribute to slope failures. For steep slopes, rainwater that fall on the soil surface will become surface runoff within a short time compare to the water that infiltrate into the soil. While for gentle slopes, water that becomes surface runoff will move slowly and these increase the water that infiltrate into the soil.

  15. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Steffen, Konrad; Chien, Y. L.; Foster, James L.; Robinson, David A.; Riggs, George A.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 degree isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plus or minus 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approximately 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  16. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S.; Steffen, Konrad; Chien, Janet Y. L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 deg. isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 +/- 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approx. 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near- surface melt on the Greenland ice sheet.

  17. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0?? isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3??2.09??C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ???2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  18. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D. K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0deg isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plusmn 2.09 degC, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ~2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  19. Nitrogen sustainability and beef cattle feedyards: introduction and influence of pen surface conditions and diet

    USDA-ARS?s Scientific Manuscript database

    Greater public awareness of the potential effects of agriculture on the environment calls for beef production systems that are sustainable with regard to the environment, society, and the economy. Reactive nitrogen (N) from feedyards could negatively influence air and water quality in the event of v...

  20. Educating for Ecological Sustainability: Montessori Education Leads the Way

    ERIC Educational Resources Information Center

    Sutton, Ann

    2009-01-01

    These days, the word "green," and the more comprehensive term "sustainability," surface in numerous arenas, whether it be exhortations to recycle more, employ compact fluorescent lightbulbs, use less hot water, avoid products with excess packaging, adjust thermostats, plant trees, turn off electronic devices when not in use, or buy organic and…

  1. Flaw Growth of 6Al-4V Titanium in a Freon TF Environment

    NASA Technical Reports Server (NTRS)

    Tiffany, C. F.; Masters, J. N.; Bixler, W. D.

    1969-01-01

    The plane strain threshold stress intensity and sustained stress flaw growth rates were experimentally determined for 6AI-4V S.T.A. titanium forging and weldments in environments of Freon TF at room temperature. Sustained load tests of surface flawed specimens were conducted with the experimental approach based on linear elastic fracture mechanics. It was concluded that sustained stress flaw growth rates, in conjunction with threshold stress intensities, can be used in assessing the service life of pressure vessels.

  2. Assessing the influence of sustainable trail design and maintenance on soil loss.

    PubMed

    Marion, Jeffrey L; Wimpey, Jeremy

    2017-03-15

    Natural-surfaced trail systems are an important infrastructure component providing a means for accessing remote protected natural area destinations. The condition and usability of trails is a critical concern of land managers charged with providing recreational access while preserving natural conditions, and to visitors seeking high quality recreational opportunities and experiences. While an adequate number of trail management publications provide prescriptive guidance for designing, constructing, and maintaining natural-surfaced trails, surprisingly little research has been directed at providing a scientific basis for this guidance. Results from a review of the literature and three scientific studies are presented to model and clarify the influence of factors that substantially influence trail soil loss and that can be manipulated by trail professionals to sustain high traffic while minimizing soil loss over time. Key factors include trail grade, slope alignment angle, tread drainage features, and the amount of rock in tread substrates. A new Trail Sustainability Rating is developed and offered as a tool for evaluating or improving the sustainability of existing or new trails. Published by Elsevier Ltd.

  3. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.

    PubMed

    Jetly, Aditya; Vakarelski, Ivan U; Thoroddsen, Sigurdur T

    2018-02-28

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses a commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meter tall water tank, it is demonstrated that even a very thin air layer (∼1-2 μm) that covers the freshly dipped superhydrophobic sphere can reduce the drag force on the spheres by up to 80%, at Reynolds numbers from 10 5 to 3 × 10 5 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implications for the development of sustainable air-layer-based energy saving technologies.

  4. Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons.

    PubMed

    Bazaka, Kateryna; Jacob, Mohan V; Ostrikov, Kostya Ken

    2016-01-13

    Sustainable societal and economic development relies on novel nanotechnologies that offer maximum efficiency at minimal environmental cost. Yet, it is very challenging to apply green chemistry approaches across the entire life cycle of nanotech products, from design and nanomaterial synthesis to utilization and disposal. Recently, novel, efficient methods based on nonequilibrium reactive plasma chemistries that minimize the process steps and dramatically reduce the use of expensive and hazardous reagents have been applied to low-cost natural and waste sources to produce value-added nanomaterials with a wide range of applications. This review discusses the distinctive effects of nonequilibrium reactive chemistries and how these effects can aid and advance the integration of sustainable chemistry into each stage of nanotech product life. Examples of the use of enabling plasma-based technologies in sustainable production and degradation of nanotech products are discussed-from selection of precursors derived from natural resources and their conversion into functional building units, to methods for green synthesis of useful naturally degradable carbon-based nanomaterials, to device operation and eventual disintegration into naturally degradable yet potentially reusable byproducts.

  5. Cardiovascular responses to a high-volume continuous circuit resistance training protocol.

    PubMed

    Gotshalk, Lincoln A; Berger, Richard A; Kraemer, William J

    2004-11-01

    The purpose of this investigation was to determine the level of cardiovascular stress elicited by continuous and prolonged circuit resistance training (CRT). Each of the 11 men who volunteered as a subject were tested to determine oxygen consumption and heart rate responses to a submaximal and maximal treadmill protocol and a CRT session consisting of 10 exercises and 10 repetitions at 40% of 1 repetition maximum (1RM) for each station with 4.6 circuits performed. The physiological stress of the CRT in this study was evident by the sustained heart rate of more than 70% of maximum for 16.6 minutes, with the last 12 minutes at more than 80%. Despite the large anaerobic component in CRT, Vo(2) was sustained at 50% or more of maximum for the final 12 minutes. Treadmill running, involving large muscle groups, increased Vo(2) more rapidly than CRT, where alternating larger and smaller muscle groups were used. In addition, at the same Vo(2) heart rate differed significantly between the 2 modes of activity. Heart rate in CRT was higher (at 165) than the heart rate of 150 found during treadmill running at the same 50% Vo(2). Such workouts may be used in a training cycle in classical linear periodization or in a nonlinear program day targeting local muscular endurance under intense cardiorespiratory conditions, which may help individuals develop enhanced toleration of physiological environments where high cardiovascular demands and higher lactate concentrations are present.

  6. Measuring soil sustainability via soil resilience.

    PubMed

    Ludwig, Marie; Wilmes, Paul; Schrader, Stefan

    2018-06-01

    Soils are the nexus of water, energy and food, which illustrates the need for a holistic approach in sustainable soil management. The present study therefore aimed at identifying a bioindicator for the evaluation of soil management sustainability in a cross-disciplinary approach between soil science and multi-omics research. For this purpose we first discuss the remaining problems and challenges of evaluating sustainability and consequently suggest one measurable bioindicator for soil management sustainability. In this concept, we define soil sustainability as the maintenance of soil functional integrity. The potential to recover functional and structural integrity after a disturbance is generally defined as resilience. This potential is a product of the past and the present soil management, and at the same time prospect of possible soil responses to future disturbances. Additionally, it is correlated with the multiple soil functions and hence reflecting the multifunctionality of the soil system. Consequently, resilience can serve as a bioindicator for soil sustainability. The measurable part of soil resilience is the response diversity, calculated from the systematic contrasting of multi-omic markers for genetic potential and functional activity, and referred to as potential Maximum Ecological Performance (MEPpot) in this study. Calculating MEPpot will allow to determine the thresholds of resistance and resilience and potential tipping points for a regime shift towards irreversible or permanent unfavorable soil states for each individual soil considered. The calculation of such ecosystem thresholds is to our opinion the current global cross-disciplinary challenge. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. 46 CFR 172.087 - Cargo loading assumptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...

  8. 46 CFR 172.087 - Cargo loading assumptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...

  9. 46 CFR 172.087 - Cargo loading assumptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...

  10. 46 CFR 172.087 - Cargo loading assumptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...

  11. 46 CFR 172.087 - Cargo loading assumptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...

  12. On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.

  13. A Novel Approach for Dry Powder Coating of Pellets with Ethylcellulose. Part II: Evaluation of Caffeine Release.

    PubMed

    Albertini, Beatrice; Melegari, Cecilia; Bertoni, Serena; Dolci, Luisa Stella; Passerini, Nadia

    2018-04-01

    The objective of this study was to assess the efficacy and the capability of a novel ethylcellulose-based dry-coating system to obtain prolonged and stable release profiles of caffeine-loaded pellets. Lauric and oleic acids at a suitable proportion were used to plasticize ethylcellulose. The effect of coating level, percentage of drug loading, inert core particle size, and composition of the coating formulation including the anti-sticking agent on the drug release profile were fully investigated. A coating level of 15% w/w was the maximum layered amount which could modify the drug release. The best controlled drug release was obtained by atomizing talc (2.5% w/w) together with the solid plasticizer during the dry powder-coating process. SEM pictures revealed a substantial drug re-crystallization on the pellet surface, and the release studies evidenced that caffeine diffused through the plasticized polymer acting as pore former. Therefore, the phenomenon of caffeine migration across the coating layer had a strong influence on the permeability of the coating membrane. Comparing dry powder-coated pellets to aqueous film-coated ones, drug migration happened during storage, though more sustained release profiles were obtained. The developed dry powder-coating process enabled the production of stable caffeine sustained release pellets. Surprisingly, the release properties of the dry-coated pellets were mainly influenced by the way of addition of talc into the dry powder-coating blend and by the drug nature and affinity to the coating components. It would be interesting to study the efficacy of novel coating system using a different API.

  14. A wet, heterogeneous lunar interior: Lower mantle and core dynamo evolution

    NASA Astrophysics Data System (ADS)

    Evans, A. J.; Zuber, M. T.; Weiss, B. P.; Tikoo, S. M.

    2014-05-01

    While recent analyses of lunar samples indicate the Moon had a core dynamo from at least 4.2-3.56 Ga, mantle convection models of the Moon yield inadequate heat flux at the core-mantle boundary to sustain thermal core convection for such a long time. Past investigations of lunar dynamos have focused on a generally homogeneous, relatively dry Moon, while an initial compositionally stratified mantle is the expected consequence of a postaccretionary lunar magma ocean. Furthermore, recent re-examination of Apollo samples and geophysical data suggests that the Moon contains at least some regions with high water content. Using a finite element model, we investigate the possible consequences of a heterogeneously wet, compositionally stratified interior for the evolution of the Moon. We find that a postoverturn model of mantle cumulates could result in a core heat flux sufficiently high to sustain a dynamo through 2.5 Ga and a maximum surface, dipolar magnetic field strength of less than 1 μT for a 350-km core and near ˜2 μT for a 450-km core. We find that if water was transported or retained preferentially in the deep interior, it would have played a significant role in transporting heat out of the deep interior and reducing the lower mantle temperature. Thus, water, if enriched in the lower mantle, could have influenced core dynamo timing by over 1.0 Gyr and enhanced the vigor of a lunar core dynamo. Our results demonstrate the plausibility of a convective lunar core dynamo even beyond the period currently indicated by the Apollo samples.

  15. Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production

    PubMed Central

    2014-01-01

    Background The search for promising and renewable sources of carbohydrates for the production of biofuels and other biorenewables has been stimulated by an increase in global energy demand in the face of growing concern over greenhouse gas emissions and fuel security. In particular, interest has focused on non-food lignocellulosic biomass as a potential source of abundant and sustainable feedstock for biorefineries. Here we investigate the potential of three Brazilian grasses (Panicum maximum, Pennisetum purpureum and Brachiaria brizantha), as well as bark residues from the harvesting of two commercial Eucalyptus clones (E. grandis and E. grandis x urophylla) for biofuel production, and compare these to sugarcane bagasse. The effects of hot water, acid, alkaline and sulfite pretreatments (at increasing temperatures) on the chemical composition, morphology and saccharification yields of these different biomass types were evaluated. Results The average yield (per hectare), availability and general composition of all five biomasses were compared. Compositional analyses indicate a high level of hemicellulose and lignin removal in all grass varieties (including sugarcane bagasse) after acid and alkaline pretreatment with increasing temperatures, whilst the biomasses pretreated with hot water or sulfite showed little variation from the control. For all biomasses, higher cellulose enrichment resulted from treatment with sodium hydroxide at 130°C. At 180°C, a decrease in cellulose content was observed, which is associated with high amorphous cellulose removal and 5-hydroxymethyl-furaldehyde production. Morphological analysis showed the effects of different pretreatments on the biomass surface, revealing a high production of microfibrillated cellulose on grass surfaces, after treatment with 1% sodium hydroxide at 130°C for 30 minutes. This may explain the higher hydrolysis yields resulting from these pretreatments, since these cellulosic nanoparticles can be easily accessed and cleaved by cellulases. Conclusion Our results show the potential of three Brazilian grasses with high productivity yields as valuable sources of carbohydrates for ethanol production and other biomaterials. Sodium hydroxide at 130°C was found to be the most effective pretreatment for enhanced saccharification yields. It was also efficient in the production of microfibrillated cellulose on grass surfaces, thereby revealing their potential as a source of natural fillers used for bionanocomposites production. PMID:24438499

  16. Sustained exercise-trained juvenile black carp (Mylopharyngodon piceus) at a moderate water velocity exhibit improved aerobic swimming performance and increased postprandial metabolic responses

    PubMed Central

    Li, Xiuming; Zhang, Yaoguang; Li, Xiaojin; Zheng, Hua; Peng, Jianglan

    2018-01-01

    ABSTRACT The objectives of this study were to examine whether sustained exercise training at four water velocities, i.e. nearly still water (control), 1 body length (BL) s−1, 2 BL s−1 and 4 BL s−1, has effects on swimming performance and digestive metabolism in juvenile black carp (Mylopharyngodon piceus). The results demonstrated that fish subjected to sustained training at 2 and 4 BL s−1 showed significantly higher critical swimming speed (Ucrit) and maximum metabolic rate (MMR) over the control group. Fish subjected to sustained training at 1 and 2 BL s−1 showed a significantly (30 and 54%) prolonged duration, 14 and 17% higher postprandial ṀO2 increment (i.e. ṀO2peak), and 62 and 92% more energy expended on specific dynamic action (SDA), respectively, after consuming a similar meal over fish kept in nearly still water. These results suggest that (1) sustained exercise training at a higher speed (2 or 4 BL s−1) had a positive influence on the aerobic swimming performance of juvenile M. piceus, which may be associated with improved aerobic metabolism; and (2) sustained exercise training at a lower speed (1 or 2 BL s−1) resulted in elevated postprandial metabolic responses in juvenile M. piceus. PMID:29463516

  17. Effects of metal surface grinding at the porcelain try-in stage of fixed dental prostheses.

    PubMed

    Kılınç, Halil İbrahim; Kesim, Bülent; Gümüş, Hasan Önder; Dinçel, Mehmet; Erkaya, Selçuk

    2014-08-01

    This study was to evaluate the effect of grinding of the inner metal surface during the porcelain try-in stage on metal-porcelain bonding considering the maximum temperature and the vibration of samples. Ninety-one square prism-shaped (1 × 1 × 1.5 mm) nickel-chrome cast frameworks 0.3 mm thick were prepared. Porcelain was applied on two opposite outer axial surfaces of the frameworks. The grinding was performed from the opposite axial sides of the inner metal surfaces with a low-speed handpiece with two types of burs (diamond, tungsten-carbide) under three grinding forces (3.5 N, 7 N, 14 N) and at two durations (5 seconds, 10 seconds). The shear bond strength (SBS) test was performed with universal testing machine. Statistical analyzes were performed at 5% significance level. The samples subjected to grinding under 3.5 N showed higher SBS values than those exposed to grinding under 7 N and 14 N (P<.05). SBS values of none of the groups differed from those of the control group (P>.05). The types of bur (P=.965) and the duration (P=.679) did not affect the SBS values. On the other hand, type of bur, force applied, and duration of the grinding affected the maximum temperatures of the samples, whereas the maximum vibration was affected only by the type of bur (P<.05). Grinding the inner metal surface did not affect the metal-porcelain bond strength. Although the grinding affected the maximum temperature and the vibration values of the samples, these did not influence the bonding strength.

  18. Lithium storage in structurally tunable carbon anode derived from sustainable source

    DOE PAGES

    Lim, Daw Gen; Kim, Kyungho; Razdan, Mayuri; ...

    2017-09-01

    Here, a meticulous solid state chemistry approach has been developed for the synthesis of carbon anode from a sustainable source. The reaction mechanism of carbon formation during pyrolysis of sustainable feed-stock was studied in situ by employing Raman microspectroscopy. No Raman spectral changes observed below 160°C (thermally stable precursor) followed by color change, however above 280°C characteristic D and G bands of graphitic carbon are recorded. Derived carbon particles exhibited high specific surface area with low structural ordering (active carbons) to low specific surface area with high graphitic ordering as a function of increasing reaction temperature. Carbons synthesized at 600°Cmore » demonstrated enhanced reversible lithiation capacity (390 mAh g -1), high charge-discharge rate capability, and stable cycle life. On the contrary, carbons synthesized at higher temperatures (>1200°C) produced more graphite-like structure yielding longer specific capacity retention with lower reversible capacity.« less

  19. Coral Bleaching Products - Office of Satellite and Product Operations

    Science.gov Websites

    weeks. One DHW is equivalent to one week of sea surface temperatures one degree Celsius greater than the expected summertime maximum. Two DHWs are equivalent to two weeks at one degree above the expected summertime maximum OR one week of two degrees above the expected summertime maximum. Also called Coral Reef

  20. A key parameter on the adsorption of diluted aniline solutions with activated carbons: The surface oxygen content.

    PubMed

    Pardo, Beatrice; Ferrer, Nabí; Sempere, Julià; Gonzalez-Olmos, Rafael

    2016-11-01

    A total of 11 different commercial activated carbons (AC) with well characterized textural properties and oxygen surface content were tested as adsorbents for the removal of aniline as a target water pollutant. The maximum adsorption capacity of aniline for the studied AC was from 138.9 to 257.9 mg g(-1) at 296.15 K and it was observed to be strongly related to the textural properties of the AC, mainly with the BET surface area and the micropore volume. It was not observed any influence of the oxygen surface content of the AC on the maximum adsorption capacity. However, it was found that at low aniline aqueous concentration, the presence of oxygen surface groups plays a dominant role during the adsorption. A high concentration of oxygen surface groups, mainly carboxylic and phenolic groups, decreases the aniline adsorption regardless of the surface area of the AC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Factors affecting the estimate of primary production from space

    NASA Technical Reports Server (NTRS)

    Balch, W. M.; Byrne, C. F.

    1994-01-01

    Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface mixed layer, which is useful for predicting integral biomass and primary production.

  2. Performance of an ion-cyclotron-wave plasma apparatus operated in the radiofrequency sustained mode

    NASA Technical Reports Server (NTRS)

    Swett, C. C.; Woollett, R. R.

    1973-01-01

    An experimental study has been made of an ion-cyclotron-wave apparatus operated in the RF-sustained mode, that is, a mode in which the Stix RF coil both propagates the waves and maintains the plasma. Problems associated with this method of operation are presented. Some factors that are important to the coupling of RF power are noted. In general, the wave propagation and wave damping data agree with theory. Some irregularities in wave fields are observed. Maximum ion temperature is 870 eV at a density of five times 10 to the 12th power cu cm and RF power of 90 kW. Coupling efficiency is 70 percent.

  3. Operating features of an ion-cyclotron-wave plasma apparatus running in the RF-sustained mode

    NASA Technical Reports Server (NTRS)

    Swett, C. C.

    1972-01-01

    An experimental study has been made of an ion-cyclotron-wave apparatus operated in the RF-sustained mode. This is a mode in which the Stix RF coil both propagates the waves and maintains the plasma. Problems associated with this method of operation are presented. Some factors that are important to the coupling of RF power are noted. In general, the wave-propagation and wave-damping data agree with theory. Some irregularities in wave fields are observed. Maximum ion temperature is 870 eV at a density of 5 times 10 to the 12th power per cubic centimeter and RF power of 90 kW. Coupling efficiency is 70 percent.

  4. Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes

    USGS Publications Warehouse

    Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.

    2013-01-01

    Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow species to redistribute locally as climate changes.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Warren, Charles David; ERDMAN III, DONALD L

    Due to its increased use in the automotive and aerospace industries, joining of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) to metals demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using a new laser based technique, in which the laser interference power profile was created by splitting the beam and guiding those beams to the sample surface by overlapping each other with defined angles to each other. Results were presented for the overlap shear testing of single-lap joints made with Al 5182 and CFPCmore » specimens whose surfaces prepared by (a) surface abrasion and solvent cleaning; and (b) laser-interference structured surfaces by rastering with a 4 mm laser beam at approximately 3.5 W power. CFPC specimens of T700S carbon fiber, Prepreg T70 epoxy, 4 or 5 ply thick, 0/90o plaques were used. Adhesive DP810 was used to bond Al and CFPC. The bondline was 0.25mm and the bond length was consistent among all joints produced. First, the effect of the laser speed on the joint performance was evaluated by laser-interference structure Al and CFPC surfaces with a beam angle of 3o and laser beam speeds of 3, 5, and 10 mm/s. For this sensitivity study, 3 joint specimens were used per each joint type. Based on the results for minimum, maximum, and mean values for the shear lap strength and maximum load for all the 9 joint types, two joint types were selected for further evaluations. Six additional joint specimens were prepared for these two joint types in order to obtain better statistics and the shear test data was presented for the range, mean, and standard deviation. The results for the single-lap shear tests obtained for six joint specimens, indicate that the shear lap strength, maximum load, and displacement at maximum load for those joints made with laser-interference structured surfaces were increased by approximately 14.8%, 16%, and 100%, respectively over those measured for the baseline joints.« less

  6. Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion.

    PubMed

    Lee, Jung-Hwan; Jo, Jeong-Ki; Kim, Dong-Ae; Patel, Kapil Dev; Kim, Hae-Won; Lee, Hae-Hyoung

    2018-04-01

    Although polymethyl methacrylate (PMMA) is widely used as a dental material, a major challenge of using this substance is its poor antimicrobial (anti-adhesion) effects, which increase oral infections. Here, graphene-oxide nanosheets (nGO) were incorporated into PMMA to introduce sustained antimicrobial-adhesive effects by increasing the hydrophilicity of PMMA. After characterizing nGO and nGO-incorporated PMMA (up to 2wt%) in terms of morphology and surface characteristics, 3-point flexural strength and hardness were evaluated. The anti-adhesive effects were determined for 4 different microbial species with experimental specimens and the underlying anti-adhesive mechanism was investigated by a non-thermal oxygen plasma treatment. Sustained antimicrobial-adhesive effects were characterized with incubation in artificial saliva for up to 28 days. The typical nanosheet morphology was observed for nGO. Incorporating nGO into PMMA roughened its surface and increased its hydrophilicity without compromising flexural strength or surface hardness. An anti-adhesive effect after 1h of exposure to microbial species in artificial saliva was observed in nGO-incorporated specimens, which accelerated with increasing levels of nGO without significant cytotoxicity to oral keratinocytes. Plasma treatment of native PMMA demonstrated that the antimicrobial-adhesive effects of nGO incorporation were at least partially due to increased hydrophilicity, not changes in the surface roughness. A sustained antimicrobial-adhesive property against Candida albicans was observed in 2% nGO for up to 28 days. The presence of sustained anti-adhesion properties in nGO-incorporated PMMA without loading any antimicrobial drugs suggests the potential usefulness of this compound as a promising antimicrobial dental material for dentures, orthodontic devices and provisional restorative materials. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. The investigation of MCM-48-type and MCM-41-type mesoporous silica as oral solid dispersion carriers for water insoluble cilostazol.

    PubMed

    Wang, Yanzhu; Sun, Lizhang; Jiang, Tongying; Zhang, Jinghai; Zhang, Chen; Sun, Changshan; Deng, Yihui; Sun, Jin; Wang, Siling

    2014-06-01

    To explore the suitable application of MCM-41 (Mobil Composition of Matter number forty-one)-type and MCM-48-type mesoporous silica in the oral water insoluble drug delivery system. Cilostazol (CLT) as a model drug was loaded into synthesized MCM-48 (Mobil Composition of Matter number forty-eight) and commercial MCM-41 by three common methods. The obtained MCM-41, MCM-48 and CLT-loaded samples were characterized by means of nitrogen adsorption, thermogravimetric analysis, ultraviolet-visible spectrophotometry, scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry and powder X-ray diffractometer. It was found that solvent evaporation method was preferred according to the drug loading efficiency and the maximum percent cumulative drug dissolution. MCM-48 with 3D cubic pore structure and MCM-41 with 2D long tubular structure are nearly spherical particles in 300-500 nm. Nevertheless, the silica carriers with similar large specific surface areas and concentrating pore size distributions (978.66 m(2)/g, 3.8 nm for MCM-41 and 1108.04 m(2)/g, 3.6 nm for MCM-48) exhibited different adsorption behaviors for CLT. The maximum percent cumulative drug release of the two CLT/silica solid dispersion (CLT-MCM-48 and CLT-MCM-41) was 63.41% and 85.78% within 60 min, respectively; while in the subsequent 12 h release experiment, almost 100% cumulative drug release were both obtained. In the pharmacokinetics aspect, the maximum plasma concentrations of CLT-MCM-48 reached 3.63 mg/L by 0.92 h. The AUC0-∞ values of the CLT-MCM-41 and CLT-MCM-48 were 1.14-fold and 1.73-fold, respectively, compared with the commercial preparation. Our findings suggest that MCM-41-type and MCM-48-type mesoporous silica have great promise as solid dispersion carriers for sustained and immediate release separately.

  8. Sustained delivery of siRNA/mesoporous silica nanoparticle (siRNA/MSN) complexes from nanofiber scaffolds for long-term gene silencing.

    PubMed

    Pinese, Coline; Lin, Junquan; Milbreta, Ulla; Li, Mingqiang; Wang, Yucai; Leong, Kam W; Chew, Sing Yian

    2018-06-08

    A low toxicity and efficient delivery system is needed to deliver small interfering RNAs (siRNA) in vitro and in vivo. The use of mesoporous silica nanoparticles (MSN) is becoming increasingly common due to its biocompatibility, tunable pore size and customizable properties. However, bolus delivery of siRNA/MSN complexes remains suboptimal, especially when a sustained and long-term administration is required. Here, we utilized electrospun scaffolds for sustained delivery of siRNA/MSN-PEI through surface adsorption and nanofiber encapsulation. As a proof-of-concept, we targeted collagen type I expression to modulate fibrous capsule formation. Surface adsorption of siRNA/MSN-PEI provided sustained availability of siRNA for at least 30 days in vitro. As compared to conventional bolus delivery, such scaffold-mediated transfection provided more effective gene silencing (p < 0.05). On the contrary, a longer sustained release was attained (at least 5 months) when siRNA/MSN-PEI complexes were encapsulated within the electrospun fibers. In vivo subcutaneous implantation and biodistribution analysis of these scaffolds revealed that siRNA remained localized up to ∼290 μm from the implants. Finally, a fibrous capsule reduction of ∼45.8 % was observed after 4 weeks in vivo as compared to negative scrambled siRNA treatment. Taken together, these results demonstrate the efficacy of scaffold-mediated sustained delivery of siRNA/MSN-PEI for long-term non-viral gene silencing applications. The bolus delivery of siRNA/ Mesoporous Silica Nanoparticles (MSN) complexes shows high efficiency to silence protein agonists of tumoral processes as cancer treatments. However, in tissue engineering area, scaffold mediated delivery is desired to achieve a local and sustained release of therapeutics. We showed the feasibility and the efficacy of siRNA/MSN delivered from electrospun scaffolds through surface adsorption and nanofiber encapsulation. We showed that this method enhances siRNA transfection efficiency and sustained targeted proteins silencing in vitro and in vivo. As a proof of concept, in this study, we targeted collagen type I expression to modulate fibrous capsule formation. However this platform can be applied to the release and transfection of siRNA or miRNA in cancer and tissue engineering applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Sustainability of professionals’ adherence to clinical practice guidelines in medical care: a systematic review

    PubMed Central

    Ament, Stephanie M C; de Groot, Jeanny J A; Maessen, José M C; Dirksen, Carmen D; van der Weijden, Trudy; Kleijnen, Jos

    2015-01-01

    Objectives To evaluate (1) the state of the art in sustainability research and (2) the outcomes of professionals’ adherence to guideline recommendations in medical practice. Design Systematic review. Data sources Searches were conducted until August 2015 in MEDLINE, CINAHL, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL) and the Guidelines International Network (GIN) library. A snowball strategy, in which reference sections of other reviews and of included papers were searched, was used to identify additional papers. Eligibility criteria Studies needed to be focused on sustainability and on professionals’ adherence to clinical practice guidelines in medical care. Studies had to include at least 2 measurements: 1 before (PRE) or immediately after implementation (EARLY POST) and 1 measurement longer than 1 year after active implementation (LATE POST). Results The search retrieved 4219 items, of which 14 studies met the inclusion criteria, involving 18 sustainability evaluations. The mean timeframe between the end of active implementation and the sustainability evaluation was 2.6 years (minimum 1.5–maximum 7.0). The studies were heterogeneous with respect to their methodology. Sustainability was considered to be successful if performance in terms of professionals’ adherence was fully maintained in the late postimplementation phase. Long-term sustainability of professionals’ adherence was reported in 7 out of 18 evaluations, adherence was not sustained in 6 evaluations, 4 evaluations showed mixed sustainability results and in 1 evaluation it was unclear whether the professional adherence was sustained. Conclusions (2) Professionals’ adherence to a clinical practice guideline in medical care decreased after more than 1 year after implementation in about half of the cases. (1) Owing to the limited number of studies, the absence of a uniform definition, the high risk of bias, and the mixed results of studies, no firm conclusion about the sustainability of professionals’ adherence to guidelines in medical practice can be drawn. PMID:26715477

  10. Sustainability of professionals' adherence to clinical practice guidelines in medical care: a systematic review.

    PubMed

    Ament, Stephanie M C; de Groot, Jeanny J A; Maessen, José M C; Dirksen, Carmen D; van der Weijden, Trudy; Kleijnen, Jos

    2015-12-29

    To evaluate (1) the state of the art in sustainability research and (2) the outcomes of professionals' adherence to guideline recommendations in medical practice. Systematic review. Searches were conducted until August 2015 in MEDLINE, CINAHL, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL) and the Guidelines International Network (GIN) library. A snowball strategy, in which reference sections of other reviews and of included papers were searched, was used to identify additional papers. Studies needed to be focused on sustainability and on professionals' adherence to clinical practice guidelines in medical care. Studies had to include at least 2 measurements: 1 before (PRE) or immediately after implementation (EARLY POST) and 1 measurement longer than 1 year after active implementation (LATE POST). The search retrieved 4219 items, of which 14 studies met the inclusion criteria, involving 18 sustainability evaluations. The mean timeframe between the end of active implementation and the sustainability evaluation was 2.6 years (minimum 1.5-maximum 7.0). The studies were heterogeneous with respect to their methodology. Sustainability was considered to be successful if performance in terms of professionals' adherence was fully maintained in the late postimplementation phase. Long-term sustainability of professionals' adherence was reported in 7 out of 18 evaluations, adherence was not sustained in 6 evaluations, 4 evaluations showed mixed sustainability results and in 1 evaluation it was unclear whether the professional adherence was sustained. (2) Professionals' adherence to a clinical practice guideline in medical care decreased after more than 1 year after implementation in about half of the cases. (1) Owing to the limited number of studies, the absence of a uniform definition, the high risk of bias, and the mixed results of studies, no firm conclusion about the sustainability of professionals' adherence to guidelines in medical practice can be drawn. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue for SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.

    2016-01-01

    A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the selective laser melt (SLM) process. This factor is the reduction at a common fatigue life from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition. Various vendors provided specimens. To reduce the number of degrees-of-freedom, only one heat treat condition was evaluated. Testing temperatures included room temperature, 800F, 1000F, and 1200F. The two surface conditions were compared at constant lives, where data was available. The recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness <= 4 micro-inches/inch) is approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce the same life in the as built surface condition. As an alternative method, the surface finish was incorporated into a new parameter with the maximum stress. The new parameter was formulated to be similar to the fracture mechanics stress intensity factor, and it was named the pseudo stress intensity factor, Kp. Using Kp, the variance seemed acceptable across all sources, and the knockdown factor was estimated over the range of data identified by Kp where data occurred. A plot of the results suggests that the knockdown factor is a function of temperature, and that for low lives the knockdown is greater than the knockdown observed above about one million cycles, where it stabilizes. One data point at room temperature was clearly different, and the sparsity of data in the higher life region reduces the value of these results. The method does appear to provide useful results, and further characterization of the method is suggested.

  12. Concrete Cutting Refinement for Crater Repair

    DTIC Science & Technology

    2015-08-01

    Identification of damage sustained to the airfield operating surfaces, 2. Selection of minimum pavement surface areas required to support air- craft...also studied to identify the appropriate lineup and stop locations to achieve the desired overcut lengths. Edwards et al. (2015) recommends overcut

  13. Global warming related transient albedo feedback in the Arctic and its relation to the seasonality of sea ice

    NASA Astrophysics Data System (ADS)

    Andry, Olivier; Bintanja, Richard; Hazeleger, Wilco

    2015-04-01

    The Arctic is warming two to three times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (i.e. 2007, 2012). Considering that the Arctic Ocean is mainly ice-covered and that the albedo of sea ice is very high compared to that of open water, the change in sea ice cover is very likely to have a strong impact on the local surface albedo feedback. Here we quantify the temporal changes in surface albedo feedback in response to global warming. Usually feedbacks are evaluated as being representative and constant for long time periods, but we show here that the strength of climate feedbacks in fact varies strongly with time. For instance, time series of the amplitude of the surface albedo feedback, derived from future climate simulations (CIMP5, RCP8.5 up to year 2300) using a kernel method, peaks around the year 2100. This maximum is likely caused by an increased seasonality in sea-ice cover that is inherently associated with sea ice retreat. We demonstrate that the Arctic average surface albedo has a strong seasonal signature with a maximum in spring and a minimum in late summer/autumn. In winter when incoming solar radiation is minimal the surface albedo doesn't have an important effect on the energy balance of the climate system. The annual mean surface albedo is thus determined by the seasonality of both downwelling shortwave radiation and sea ice cover. As sea ice cover reduces the seasonal signature is modified, the transient part from maximum sea ice cover to its minimum is shortened and sharpened. The sea ice cover is reduced when downwelling shortwave radiation is maximum and thus the annual surface albedo is drastically smaller. Consequently the change in annual surface albedo with time will become larger and so will the surface albedo feedback. We conclude that a stronger seasonality in sea ice leads to a stronger surface albedo feedback, which accelerates melting of sea ice. Hence, the change in seasonality and the associated change in feedback strength is an integral part of the positive surface albedo feedback leading to Arctic amplification and diminishing sea ice cover in the next century when global climate warms.

  14. 46 CFR 171.080 - Damage stability standards for vessels with Type I or Type II subdivision.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to which the vessel heels after sustained damage, are swung out if necessary, fully loaded and ready...; and (C) Survival craft on the side of the vessel opposite that to which the vessel heels remain stowed... damage occurs. (3) The estimated maximum angle of heel before equalization must be approved by the...

  15. Implementing Embedded Training (ET): Volume 8. Incorporating ET Into Unit Training

    DTIC Science & Technology

    1988-11-01

    gunner station console .... ............ .. B-15 B-2. Initial training flowchart ...... ................ B-24 B-3. Proficiency training flowchart ...B-27 B-4. Sustainment training flowchart ..... .............. B-29 B-5. Expert training flowchart ...... ................. . B-31 viii...performance task at a later time. This flexibility allows maximum learning for different learning styles. In this way, the beginner can maximize his B-21

  16. Lessons Learned from the Development and Implementation of a Knowledge Management Program for the Naval Sea Systems Command

    DTIC Science & Technology

    2017-03-01

    ABSTRACT (maximum 200 words) This study applied knowledge management (KM) theories and principles to develop and implement a KM program for the... principles to develop and implement a KM program for the Naval Sea Systems Command (NAVSEA) that strengthens the workforce’s understanding of the...23 C. EXECUTION AND SUSTAINMENT .............................................. 24 1. Marketing

  17. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  18. Tokamak startup using point-source dc helicity injection.

    PubMed

    Battaglia, D J; Bongard, M W; Fonck, R J; Redd, A J; Sontag, A C

    2009-06-05

    Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.

  19. 76 FR 25295 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands King and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... crab rebuilding plan to define the stock as rebuilt the first year the stock biomass is above the level... stock assessment model to estimate the biomass level and fishing rate necessary to achieve maximum sustainable yield. Tier 4 stocks have a stock assessment model that estimates biomass using the historical...

  20. Laryngeal Aerodynamics in Children with Hearing Impairment versus Age and Height Matched Normal Hearing Peers.

    PubMed

    Das, Barshapriya; Chatterjee, Indranil; Kumar, Suman

    2013-01-01

    Lack of proper auditory feedback in hearing-impaired subjects results in functional voice disorder. It is directly related to discoordination of intrinsic and extrinsic laryngeal muscles and disturbed contraction and relaxation of antagonistic muscles. A total of twenty children in the age range of 5-10 years were considered for the study. They were divided into two groups: normal hearing children and hearing aid user children. Results showed a significant difference in the vital capacity, maximum sustained phonation, and fast adduction abduction rate having equal variance for normal and hearing aid user children, respectively, but no significant difference was found in the peak flow value with being statistically significant. A reduced vital capacity in hearing aid user children suggests a limited use of the lung volume for speech production. It may be inferred from the study that the hearing aid user children have poor vocal proficiency which is reflected in their voice. The use of voicing component in hearing impaired subjects is seen due to improper auditory feedback. It was found that there was a significant difference in the vital capacity, maximum sustained phonation (MSP), and fast adduction abduction rate and no significant difference in the peak flow.

  1. Relationship between exploitation, oscillation, MSY and extinction.

    PubMed

    Ghosh, Bapan; Kar, T K; Legovic, T

    2014-10-01

    We give answers to two important problems arising in current fisheries: (i) how maximum sustainable yield (MSY) policy is influenced by the initial population level, and (ii) how harvesting, oscillation and MSY are related to each other in prey-predator systems. To examine the impact of initial population on exploitation, we analyze a single species model with strong Allee effect. It is found that even when the MSY exists, the dynamic solution may not converge to the equilibrium stock if the initial population level is higher but near the critical threshold level. In a prey-predator system with Allee effect in the prey species, the initial population does not have such important impact neither on MSY nor on maximum sustainable total yield (MSTY). However, harvesting the top predator may cause extinction of all species if odd number of trophic levels exist in the ecosystem. With regard to the second problem, we study two prey-predator models and establish that increasing harvesting effort either on prey, predator or both prey and predator destroys previously existing oscillation. Moreover, equilibrium stock both at MSY and MSTY level is stable. We also discuss the validity of found results to other prey-predator systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Impact dynamics of particle-coated droplets

    NASA Astrophysics Data System (ADS)

    Supakar, T.; Kumar, A.; Marston, J. O.

    2017-01-01

    We present findings from an experimental study of the impact of liquid marbles onto solid surfaces. Using dual-view high-speed imaging, we reveal details of the impact dynamics previously not reported. During the spreading stage it is observed that particles at the surface flow rapidly to the periphery of the drop, i.e., the lamella. We characterize the spreading with the maximum spread diameter, comparing to impacts of pure liquid droplets. The principal result is a power-law scaling for the normalized maximum spread in terms of the impact Weber number, Dmax/D0˜Weα , with α ≈1 /3 . However, the best description of the spreading is obtained by considering a total energy balance, in a similar fashion to Pasandideh-Fard et al. [Phys. Fluids 8, 650 (1996)], 10.1063/1.868850. By using hydrophilic target surfaces, the marble integrity is lost even for moderate impact speeds as the particles at the surface separate and allow liquid-solid contact to occur. Remarkably, however, we observe no significant difference in the maximum spread between hydrophobic and hydrophilic targets, which is rationalized by the presence of the particles. Finally, for the finest particles used, we observe the formation of nonspherical arrested shapes after retraction and rebound from hydrophobic surfaces, which is quantified by a circularity measurement of the side profiles.

  3. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.

    PubMed

    Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff

    2016-05-01

    Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.

  4. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline

    PubMed Central

    Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff

    2016-01-01

    Abstract Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear–surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established. PMID:26555738

  5. Quality of water and chemistry of bottom sediment in the Rillito Creek basin, Tucson, Arizona, 1986-92

    USGS Publications Warehouse

    Tadayon, Saeid; Smith, C.F.

    1994-01-01

    Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.

  6. Sustainability of agricultural water use worldwide

    NASA Astrophysics Data System (ADS)

    Tuninetti, M.; Tamea, S.; Dalin, C.

    2017-12-01

    Water is a renewable but limited resource. Most human use of freshwater resources is for agriculture, and global water demand for agriculture is increasing because of the growth in food demand, driven by increasing population and changing diets. Hence, measuring the pressure exerted by agriculture on freshwater sources is a key issue. The sustainability of water use depends on the water source renewability rate: the water use is not sustainable (depleting the water storage) where/when it exceeds the renewable freshwater availability. In this study, we explore the sustainability of rain and irrigation water use for the production of nine major crops, globally at a 5'x5' spatial resolution. We split the crop water use into soil moisture (from rainfall) and irrigation, with, for the first time, separating ground- and surface-water sources, which is a key distinction because the renewability of these two water sources can be very different. In order to physically quantify the extent to which crop water use is sustainable, we measure the severity of the source depletion as the number of years required for the hydrological cycle to replenish the water resource used by the annual crop production, namely the Water Debt. This newly developed indicator allows one to compare the depletion level of the three water sources at a certain location for a specific crop. Hence, we mapped, for each crop, the number of years required to replenish the water withdrawn from soil-, surface- and ground-water resources. Each map identifies the hotspots for each water source, highlighting regions and crops that threaten most the water resource. We found that the water debt with soil moisture is heterogeneous in space but always lower than one year indicating a non-surprising sustainability of rain-fed agriculture. Rice and sugarcane make the largest contribution to global soil moisture depletion. Water debt in surface water is particularly high in areas of intense wheat and cotton production; major hotspots are located along the Nile River and near the Aral Lake. The water debt in groundwater is much larger in the High Plain aquifer and Indo-Gangetic plain. On a global average, seed cotton has the highest WD in surface water (i.e., 6.5 years) while rice has the highest WD in groundwater (i.e., 4.2 years).

  7. Maximum Frictional Charge Generation on Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Calle, Carlos; Groop, Ellen; Mantovani, James; Buehler, Martin

    2001-03-01

    The maximum amount of charge that a given surface area can hold is limited by the surrounding environmental conditions such as the atmospheric composition, pressure, humidity, and temperature. Above this charge density limit, the surface will discharge to the atmosphere or to a nearby conductive surface that is at a different electric potential. We have performed experiments using the MECA Electrometer, a flight instrument developed jointly by the Jet Propulsion Laboratory and NASA Kennedy Space Center to study the electrostatic properties of the Martian soil. The electrometer contains five types of polymers: fiberglass/epoxy, polycarbonate (Lexan), polytetraflouroethylene (Teflon), Rulon J, and polymethylmethacrylate (PMMA, Lucite). We repeatedly rubbed the polymers with another material until each polymer's charge saturation was determined. We will discuss the correlation of our data with the triboelectric series.

  8. Variation of the low level winds during the passage of a thunderstorm gust front

    NASA Technical Reports Server (NTRS)

    Sinclair, R. W.; Anthes, R. A.; Panofsky, H. A.

    1973-01-01

    Three time histories of wind profiles in thunderstorm gust fronts at Cape Kennedy and three at Oklahoma City are analyzed. Wind profiles at maximum wind strength below 100 m follow logarithmic laws, so that winds above the surface layer can be estimated from surface winds once the roughness length is known. A statistical analysis of 81 cases of surface winds during thunderstorms at Tampa revealed no predictor with skill to predict the time of maximum gust. Some 34% of the variance of the strength of the gust is accounted for by a stability index and surface wind prior to the gust; the regression equations for these variables are given. The coherence between microscale wind speed variations at the different levels has the same proportions as in non-thunderstorm cases.

  9. Sources and levels of ambient ocean sound near the Antarctic Peninsula.

    PubMed

    Dziak, Robert P; Bohnenstiehl, DelWayne R; Stafford, Kathleen M; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J; Lau, Tai-Kwan; Haxel, Joseph H; Mellinger, David K

    2015-01-01

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10-20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15-28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.

  10. Sources and Levels of Ambient Ocean Sound near the Antarctic Peninsula

    PubMed Central

    Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J.; Lau, Tai-Kwan; Haxel, Joseph H.; Mellinger, David K.

    2015-01-01

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean. PMID:25875205

  11. High-power CMUTs: design and experimental verification.

    PubMed

    Yamaner, F Yalçin; Olçum, Selim; Oğuz, H Kağan; Bozkurt, Ayhan; Köymen, Hayrettin; Atalar, Abdullah

    2012-06-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with piezoelectric transducers in high-power applications. As the output pressures increase, nonlinearity of CMUT must be reconsidered and optimization is required to reduce harmonic distortions. In this paper, we describe a design approach in which uncollapsed CMUT array elements are sized so as to operate at the maximum radiation impedance and have gap heights such that the generated electrostatic force can sustain a plate displacement with full swing at the given drive amplitude. The proposed design enables high output pressures and low harmonic distortions at the output. An equivalent circuit model of the array is used that accurately simulates the uncollapsed mode of operation. The model facilities the design of CMUT parameters for high-pressure output, without the intensive need for computationally involved FEM tools. The optimized design requires a relatively thick plate compared with a conventional CMUT plate. Thus, we used a silicon wafer as the CMUT plate. The fabrication process involves an anodic bonding process for bonding the silicon plate with the glass substrate. To eliminate the bias voltage, which may cause charging problems, the CMUT array is driven with large continuous wave signals at half of the resonant frequency. The fabricated arrays are tested in an oil tank by applying a 125-V peak 5-cycle burst sinusoidal signal at 1.44 MHz. The applied voltage is increased until the plate is about to touch the bottom electrode to get the maximum peak displacement. The observed pressure is about 1.8 MPa with -28 dBc second harmonic at the surface of the array.

  12. Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A bioorganic substrates-mediated synthesis.

    PubMed

    Mercado, D Fabio; Magnacca, Giuliana; Malandrino, Mery; Rubert, Aldo; Montoneri, Enzo; Celi, Luisella; Bianco Prevot, Alessandra; Gonzalez, Mónica C

    2014-03-26

    This paper describes the synthesis of paramegnetic iron-containing hydroxyapatite nanoparticles and their increased Cu(2+) sorbent capacity when using Ca(2+) complexes of soluble bioorganic substrates from urban wastes as synthesis precursors. A thorough characterization of the particles by TEM, XRD, FTIR spectroscopy, specific surface area, TGA, XPS, and DLS indicates that loss of crystallinity, a higher specific area, an increased surface oxygen content, and formation of surface iron phases strongly enhance Cu(2+) adsorption capacity of hydroxyapatite-based materials. However, the major effect of the surface and morphologycal modifications is the size diminution of the aggregates formed in aqueous solutions leading to an increased effective surface available for Cu(2+) adsorption. Maximum sorption values of 550-850 mg Cu(2+) per gram of particles suspended in an aqueous solution at pH 7 were determined, almost 10 times the maximum values observed for hydroxyapatite nanoparticles suspensions under the same conditions.

  13. Surface acoustic wave micromotor with arbitrary axis rotational capability

    NASA Astrophysics Data System (ADS)

    Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.

    2011-11-01

    A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.

  14. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  15. Duplex stainless steel fracture surface analysis using X-ray fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajanna, K.; Pathiraj, B.; Kolster, B.H.

    1997-02-01

    The fatigue fracture surface of a duplex stainless steel was analyzed using x-ray fractography. A lower than average austenite content was observed at the fracture surface due to the transformation of austenite into deformation-induced martensite. The influence of fatigue cycling on the transformation was confined to a depth of about 30 {micro}m below the fracture surface. X-ray analyses of both the ferrite-martensite and the austenite phases indicated residual stresses ({sigma}{sub r}) increasing with depth from the fracture surface and reaching a maximum some tens of microns below the fracture surface. The lower {sigma}{sub r} observed at the fracture surface hasmore » been attributed to the stress relaxation effects caused by the new fracture surfaces created in the crack growth process. The observed decrease in full width at half maximum (FWHM) in the ferrite-martensite phase was presumed to be due to the dynamic recovery effect that was likely to occur within the material close to the crack tip as a consequence of fatigue cycling.« less

  16. Moderate-resolution sea surface temperature data for the Arctic Ocean Ecoregions

    EPA Science Inventory

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. Of particular interest is the fate of the Arctic Ocean, which provides critical habitat to commercially important fish (M...

  17. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [West Richland, WA; Shin, Yongsoon [Richland, WA

    2003-03-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  18. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-05-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  19. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-06-22

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  20. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2005-01-25

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  1. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers

    NASA Astrophysics Data System (ADS)

    Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.

    2017-12-01

    Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.

  2. Implementation of efficient irrigation management for a sustainable agriculture. LIFE+ project IRRIMAN

    NASA Astrophysics Data System (ADS)

    Pérez-Pastor, Alejandro; Garcia-Vila, Margarita; Gamero-Ojeda, Pedro; Ascensión Carmona, M.°; Hernandez, David; José Alarcón, Juan; Nicolás, Emilio; Nortes, Pedro; Aroca, Antonio; María de la Rosa, Jose; Zornoza, Raúl; Faz, Ángel; Molina, Angel; Torres, Roque; Ruiz, Manuel; Calatrava, Javier

    2016-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. But its success greatly depends on the adequate application of the water deficit and requires a continuous and precise control of the plant and soil water status to adjust the water supplies at every crop phenological period. The main objective of this project is to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. With the adoption of this irrigation management we mean to ensure efficient use of water resources, improving quantitative water management, preserving high level of water quality and avoiding misuse and deterioration of water resources. The adoption of efficient irrigation will also lead to increments in water productivity, increments in the potential carbon fixation of the agroecosystem, and decrease energy costs of pressurized irrigation, together with mitigation and adaptation to climate change. The project will achieve the general objective by implication of farmers, irrigation communities, agronomists, industry, consultants, associations and public administration, by increments in social awareness for sustainable irrigation benefits, optimization of irrigation scheduling, improvements in technology, and dissemination of sustainable irrigation guidelines. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  3. Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels.

    PubMed

    Schver, Giovanna C R M; Lee, Ping I

    2018-05-07

    Under nonsink dissolution conditions, the kinetic-solubility profiles of amorphous solid dispersions (ASDs) based on soluble carriers typically exhibit so-called "spring-and-parachute" concentration-time behaviors. However, the kinetic-solubility profiles of ASDs based on insoluble carriers (including hydrogels) are known to show sustained supersaturation during nonsink dissolution through a matrix-regulated diffusion mechanism by which the supersaturation of the drug is built up gradually and sustained over an extended period without any dissolved polymers acting as crystallization inhibitors. Despite previous findings demonstrating the interplay between supersaturation rates and total doses on the kinetic-solubility profiles of soluble amorphous systems (including ASDs based on dissolution-regulated releases from soluble polymer carriers), the combined effects of supersaturation rates and doses on the kinetic-solubility profiles of ASDs based on diffusion-regulated releases from water-insoluble carriers have not been investigated previously. Thus, the objective of this study is to examine the impacts of total doses and supersaturation-generation rates on the resulting kinetic-solubility profiles of ASDs based on insoluble hydrogel carriers. We employed a previously established ASD-carrier system based on water-insoluble-cross-linked-poly(2-hydroxyethyl methacrylate) (PHEMA)-hydrogel beads and two poorly water soluble model drugs: the weakly acidic indomethacin (IND) and the weakly basic posaconazole (PCZ). Our results show clearly for the first time that by using the smallest-particle-size fraction and a high dose (i.e., above the critical dose), it is indeed possible to significantly shorten the duration of sustained supersaturation in the kinetic-solubility profile of an ASD based on a water-insoluble hydrogel carrier, such that it resembles the spring-and-parachute dissolution profiles normally associated with ASDs based on soluble carriers. This generates sufficiently rapid initial supersaturation buildup above the critical supersaturation, resulting in more rapid precipitation. Above this smallest-particle-size range, the matrix-diffusion-regulated nonlinear rate of drug release gets slower, which results in a more modest rate of supersaturation buildup, leading to a maximum supersaturation below the critical-supersaturation level without appreciable precipitation. The area-under-the-curve (AUC) values of the in vitro kinetic-solubility concentration-time profiles were used to correlate the corresponding trends in dissolution enhancement. There are observed monotonic increases in AUC values with increasing particle sizes for high-dose ASDs based on water-insoluble hydrogel matrixes, as opposed to the previously reported AUC maxima at some intermediate supersaturation rates or doses in soluble amorphous systems, whereas in the case of low-dose ASDs (i.e., below the critical dose levels), crystallization would be negligible, leading to sustained supersaturation with all particle sizes (i.e., eventually reaching the same maximum supersaturation) and the smallest particle size reaching the maximum supersaturation the fastest. As a result, the smallest particle sizes yield the largest AUC values in the case of low-dose ASDs based on water-insoluble hydrogel matrixes. In addition to probing the interplay between the supersaturation-generation rates and total doses in ASDs based on insoluble hydrogel carriers, our results further support the fact that through either increasing the hydrogel-particle size or lowering the total dose to achieve maximum supersaturation still below the critical-supersaturation level, it is possible to avoid drug precipitation so as to maintain sustained supersaturation.

  4. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    NASA Astrophysics Data System (ADS)

    Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim

    2016-04-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  5. NUCLEAR REACTOR CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, G.E.; Bell, F.R.; Page, R.W.

    1963-03-01

    A nuclear reactor core is described. It contains fuel in the form of blocks or pellets that have a grooved, wrinkled, or corrugated surface to provide a greater radiating surface area. The surfaces of spaces in the core are correspondingly corrugated for maximum heat exchange area. (C.E.S.)

  6. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  7. Calculating the Maximum Density of the Surface Packing of Ions in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Kislenko, S. A.; Moroz, Yu. O.; Karu, K.; Ivaništšev, V. B.; Fedorov, M. V.

    2018-05-01

    The maximum density of monolayer packing on a graphene surface is calculated by means of molecular dynamics (MD) for ions of characteristic size and symmetry: 1-butyl-3-methylimidazolium [BMIM]+, tetrabutylammonium [TBA]+, tetrafluoroborate [BF4]-, dicyanamide [DCA]-, and bis(trifluoromethane) sulfonimide [TFSI]-. The characteristic orientations of ions in a closely packed monolayer are found. It is shown that the formation of a closely packed monolayer is possible for [DCA]- and [BF4]- anions only at surface charges that exceed the limit of the electrochemical stability of the corresponding ionic liquids. For the [TBA]+ cation, a monolayer structure can be observed at the charge of nearly 30 μC/cm2 attainable in electrochemical experiment.

  8. Stability analysis for capillary channel flow: 1d and 3d computations

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.

    The subject of the presentation are numerical studies on capillary channel flow, based on results of the sounding rocket TEXUS experiments. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behavior, a dimensionless one-dimensional model and a corresponding three-dimensional model were developed. The one-dimensional model is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The experimental and evaluated contour data show good agreement for a sequence of transient flow rate perturbations. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies lead to a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate.

  9. TU-EF-304-04: A Heart Motion Model for Proton Scanned Beam Chest Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, B; Kiely, J Blanco; Lin, L

    Purpose: To model fast-moving heart surface motion as a function of cardiac-phase in order to compensate for the lack of cardiac-gating in evaluating accurate dose to coronary structures. Methods: Ten subjects were prospectively imaged with a breath-hold, cardiac-gated MRI protocol to determine heart surface motion. Radial and planar views of the heart were resampled into a 3-dimensional volume representing one heartbeat. A multi-resolution optical flow deformable image registration algorithm determined tissue displacement during the cardiac-cycle. The surface of the heart was modeled as a thin membrane comprised of voxels perpendicular to a pencil beam scanning (PBS) beam. The membrane’s out-of-planemore » spatial displacement was modeled as a harmonic function with Lame’s equations. Model accuracy was assessed with the root mean squared error (RMSE). The model was applied to a cohort of six chest wall irradiation patients with PBS plans generated on phase-sorted 4DCT. Respiratory motion was separated from the cardiac motion with a previously published technique. Volumetric dose painting was simulated and dose accumulated to validate plan robustness (target coverage variation accepted within 2%). Maximum and mean heart surface dose assessed the dosimetric impact of heart and coronary artery motion. Results: Average and maximum heart surface displacements were 2.54±0.35mm and 3.6mm from the end-diastole phase to the end-systole cardiac-phase respectively. An average RMSE of 0.11±0.04 showed the model to be accurate. Observed errors were greatest between the circumflex artery and mitral valve level of the heart anatomy. Heart surface displacements correspond to a 3.6±1.0% and 5.1±2.3% dosimetric impact on the maximum and mean heart surface DVH indicators respectively. Conclusion: Although heart surface motion parallel to beam’s direction was substantial, its maximum dosimetric impact was 5.1±2.3%. Since PBS delivers low doses to coronary structures relative to photon radiotherapy, it is unknown whether this variation would be clinically significant for late effects.« less

  10. Laser pulse heating of steel mixing with WC particles in a irradiated region

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-12-01

    Laser pulse heating of steel mixing with tungsten carbide (WC) particles is carried out. Temperature field in the irradiated region is simulated in line with the experimental conditions. In the analysis, a laser pulse parameter is introduced, which defines the laser pulse intensity distribution at the irradiated surface. The influence of the laser parameter on the melt pool size and the maximum temperature increase in the irradiated region is examined. Surface temperature predictions are compared with the experimental data. In addition, the distribution of WC particles and their re-locations in the treated layer, due to combination of the natural convection and Marangoni currents, are predicted. The findings are compared to the experimental data. It is found that surface temperature predictions agree well with the experimental data. The dislocated WC particles form a streamlining in the near region of the melt pool wall, which agree with the experimental findings. The Gaussian distribution of the laser pulse intensity results in the maximum peak temperature and the maximum flow velocity inside the melt pool. In this case, the melt pool depth becomes the largest as compared to those corresponding to other laser pulse intensity distributions at the irradiated surface.

  11. A theoretical model to determine the capacity performance of shape-specific electrodes

    NASA Astrophysics Data System (ADS)

    Yue, Yuan; Liang, Hong

    2018-06-01

    A theory is proposed to explain and predict the electrochemical process during reaction between lithium ions and electrode materials. In the model, the process of reaction is proceeded into two steps, surface adsorption and diffusion of lithium ions. The surface adsorption is an instantaneous process for lithium ions to adsorb onto the surface sites of active materials. The diffusion of lithium ions into particles is determined by the charge-discharge condition. A formula to determine the maximum specific capacity of active materials at different charging rates (C-rates) is derived. The maximum specific capacity is correlated to characteristic parameters of materials and cycling - such as size, aspect ratio, surface area, and C-rate. Analysis indicates that larger particle size or greater aspect ratio of active materials and faster C-rates can reduce maximum specific capacity. This suggests that reducing particle size of active materials and slowing the charge-discharge speed can provide enhanced electrochemical performance of a battery cell. Furthermore, the model is validated by published experimental results. This model brings new understanding in quantification of electrochemical kinetics and capacity performance. It enables development of design strategies for novel electrodes and future generation of energy storage devices.

  12. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    REID, ROBERT S.; PEARSON, J. BOSIE; STEWART, ERIC T.

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WSTmore » is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.« less

  13. Behavior of aircraft antiskid breaking systems on dry and wet runway surfaces: A slip-ratio-controlled system with ground speed reference from unbraked nose wheel

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.

    1977-01-01

    An experimental investigation was conducted at the Langley aircraft landing loads and traction facility to study the braking and cornering response of a slip ratio controlled aircraft antiskid braking system with ground speed reference derived from an unbraked nose wheel. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a DC-9 series 10 airplane. During maximum braking, the average ratio of the drag force friction coefficient developed by the antiskid system to the maximum drag force friction coefficient available was higher on the dry surface than on damp and flooded surfaces, and was reduced with lighter vertical loads, higher yaw angles, and when new tire treads were replaced by worn treads. Similarly, the average ratio of side force friction coefficient developed by the tire under antiskid control to the maximum side force friction coefficient available to a freely rolling yawed tire decreased with increasing yaw angle, generally increased with ground speed, and decreased when tires with new treads were replaced by those with worn treads.

  14. The effects of large-scale pumping and diversion on the water resources of Dane County, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Bradbury, Kenneth R.; Krohelski, James T.

    2001-01-01

    Throughout many parts of the U.S., there is growing concern over the effects of rapid urban growth and development on water resources. Ground- water and surface-water systems (which comprise the hydrologic system) are linked in much of Wisconsin, and ground water can be utilized both for drinking water and as a source of water for sustaining lakes, streams, springs, and wetlands. Ground water is important for surface-water systems because it commonly has greater dissolved solids and more acid-neutraliz- ing capacity than surface water or precipitation. The supplies of ground water are finite, however, and, in many cases ground water used for one purpose cannot be used for another. Moreover, ground-water use and withdrawal patterns may not be easy to alter once established. Thus, urban and rural planners are faced with decisions that balance the need for ground- water withdrawals while maintaining the quantity and quality of ground water for sustaining surface-water resources. Science-based information on the ground-water system and the connections to surface-water systems provides valuable insight for such decisions.

  15. Aerobic methane production in surface waters of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Finke, N.; Crespo-Medina, M.; Schweers, J.; Joye, S. B.

    2011-12-01

    Near surface water of the global oceans often show elevated methane concentrations compared to the water column below with concentrations in supersaturation in regard to the atmosphere (Lamontagne et al. 1973), resulting in a source of this potent greenhouse gas to the atmosphere. The mechanisms leading to methane supersaturation in surface waters remains unclear. Incubations with Trichodesmium-containing Pacific surface water suggested methylphosphonate as potential methane precursor under phosphate limiting conditions (Karl et al. 2008), whereas in phosphate rich Arctic surface waters, DMSP addition stimulated methane production (Damm et al. 2010). Surface waters of the Gulf of Mexico typically exhibit a methane maximum that is conincident with the deep chlorophyll maximum, below the depths where Trichodesmium is abundant. Addition of methylphosphonate, dimethylsulfoniopropionate (DMSP) or methane thiol (MeSH), the proposed methane precursor in DMSP conversion to methane, to oxic sea water did not affect methane production within the chlorophyll maximum at most stations, whereas methyl phosphonate addition stimulated methane production in the surface water and proposed deep Trichodesmium horizon. Pre-filtration of the water through a 10 μm sieve, which eliminated Trichodesmium, or through a 1.2 μm filter, which eliminated additional cyanobacteria such as Synechococcus, did not reduce methane production. Under dark oxic and dark anoxic conditions, however, methane production was reduced 5 and 7-20 fold, respectively, indicating that anerobic methane production in anoxic microniches is not responsible for the methane production. The reduction of methane production under dark conditions suggests that methane production is, in some yet unrecognized way, linked to phototrophic metabolism. Cyanobacteria are likely not responsible for the observed aerobic methane production in the surface waters of the Gulf of Mexico and while methylphosphonate is a potential precursor in the surface waters, the precursor and methanism of methane production within the coincident deep chlorophyll/methane maximum remains unknown. Lamontagne R, Swinnert J, Linnenbo V, Smith WD (1973) Methane concentrations in various marine environments. Journal of Geophysical Research 78, 5317-5324 Karl DM et al. (2008) Aerobic production of methane in the sea. Nature Geosciences 1, 473-478 Damm E et al. (2010) Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences 7, 1099-1108

  16. Effects of metal surface grinding at the porcelain try-in stage of fixed dental prostheses

    PubMed Central

    Kesim, Bülent; Gümüş, Hasan Önder; Dinçel, Mehmet; Erkaya, Selçuk

    2014-01-01

    PURPOSE This study was to evaluate the effect of grinding of the inner metal surface during the porcelain try-in stage on metal-porcelain bonding considering the maximum temperature and the vibration of samples. MATERIALS AND METHODS Ninety-one square prism-shaped (1 × 1 × 1.5 mm) nickel-chrome cast frameworks 0.3 mm thick were prepared. Porcelain was applied on two opposite outer axial surfaces of the frameworks. The grinding was performed from the opposite axial sides of the inner metal surfaces with a low-speed handpiece with two types of burs (diamond, tungsten-carbide) under three grinding forces (3.5 N, 7 N, 14 N) and at two durations (5 seconds, 10 seconds). The shear bond strength (SBS) test was performed with universal testing machine. Statistical analyzes were performed at 5% significance level. RESULTS The samples subjected to grinding under 3.5 N showed higher SBS values than those exposed to grinding under 7 N and 14 N (P<.05). SBS values of none of the groups differed from those of the control group (P>.05). The types of bur (P=.965) and the duration (P=.679) did not affect the SBS values. On the other hand, type of bur, force applied, and duration of the grinding affected the maximum temperatures of the samples, whereas the maximum vibration was affected only by the type of bur (P<.05). CONCLUSION Grinding the inner metal surface did not affect the metal-porcelain bond strength. Although the grinding affected the maximum temperature and the vibration values of the samples, these did not influence the bonding strength. PMID:25177476

  17. Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model

    NASA Astrophysics Data System (ADS)

    Larson, K. J.; Başaǧaoǧlu, H.; Mariño, M. A.

    2001-02-01

    Land subsidence caused by the excessive use of ground water resources has traditionally caused serious and costly damage to the Los Banos-Kettleman City area of California's San Joaquin Valley. Although the arrival of surface water from the Central Valley Project has reduced subsidence in recent decades, the growing instability of surface water supplies has refocused attention on the future of land subsidence in the region. This paper uses integrated numerical ground water and land subsidence models to simulate land subsidence caused by ground water overdraft. The simulation model is calibrated using observed data from 1972 to 1998, and the responsiveness of the model to variations in subsidence parameters are analyzed through a sensitivity analysis. A probable future drought scenario is used to evaluate the effect on land subsidence of three management alternatives over the next thirty years. The model reveals that maintaining present practices virtually eliminates unrecoverable land subsidence, but may not be a sustainable alternative because of a growing urban population to the south and concern over the ecological implications of water exportation from the north. The two other proposed management alternatives reduce the dependency on surface water by increasing ground water withdrawal. Land subsidence is confined to tolerable levels in the more moderate of these proposals, while the more aggressive produces significant long-term subsidence. Finally, an optimization model is formulated to determine maximum ground water withdrawal from nine pumping sub-basins without causing irrecoverable subsidence during the forecast period. The optimization model reveals that withdrawal can be increased in certain areas on the eastern side of the study area without causing significant inelastic subsidence.

  18. Functional interfacing of Rhodospirillum rubrum chromatophores to a conducting support for capture and conversion of solar energy.

    PubMed

    Harrold, John W; Woronowicz, Kamil; Lamptey, Joana L; Awong, John; Baird, James; Moshar, Amir; Vittadello, Michele; Falkowski, Paul G; Niederman, Robert A

    2013-09-26

    Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm(2) with a maximum current of 1.5 μA/cm(2), which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells.

  19. High intensity ultrasound transducer used in gene transfection

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle P.; Keilman, George W.; Noble, Misty L.; Brayman, Andrew A.; Miao, Carol H.

    2012-11-01

    This paper describes a novel therapeutic high intensity non-focused ultrasound (HIU) transducer designed with uniform pressure distribution to aid in accelerated gene transfer in large animal liver tissues in vivo. The underlying HIU transducer was used to initiate homogeneous cavitation throughout the tissue while delivering up to 2.7 MPa at 1.1 MHz across its radiating surface. The HIU transducer was built into a 6 cm diameter x 1.3 cm tall housing ergonomically designed to avoid collateral damage to the surrounding anatomy during dynamic motion. The ultrasound (US) radiation was applied in a 'paintbrush-like' manner to the surface of the liver. The layers and geometry of the transducer were carefully selected to maximize the active diameter (5.74 cm), maximize the electrical to acoustic conversion efficiency (85%) to achieve 2.7 MPa of peak negative pressure, maximize the frequency operating band at the fundamental resonance to within a power transfer delta of 1 dB, and reduce the pressure delta to within 2 dB across the radiating surface. For maximum peak voltage into the transducer, a high performance piezoceramic was chosen and a DC bias circuit was built integral to the system. An apodized two element annular pattern was made from a single piezoceramic element, resulting in significant pressure uniformity enhancement. In addition to using apodization for pressure uniformity, a proprietary multi-layered structure was used to improve efficiency while sustaining an operating band from 900 kHz to 1.3 MHz. The resultant operating band allowed for dithering techniques using frequency modulation. The underlying HIU transducer for use in large animals enhances gene expression up to 6300-fold.

  20. Constraining Subsurface Structure and Composition Using Seismic Refraction Surveys of Proglacial Valleys in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Mark, B. G.; Baker, E. A.; Aubry-Wake, C.; Somers, L. D.; Wigmore, O.

    2015-12-01

    As tropical glaciers rapidly recede in response to climate change, the storage and discharge of groundwater will play an increasing role in regulating river baseflow, particularly during the dry season, when stream flow is currently sustained predominantly by glacial melt. Little is understood regarding the hydrogeologic processes controlling base flow characteristics of low-gradient proglacial valleys of the Cordillera Blanca in Northwestern Peru, which has the world's highest density of tropical glaciers. To better understand the processes of groundwater storage and discharge in proglacial meadows, we completed seismic refraction surveys in three representative valleys of the Cordillera Blanca range: the Quilcayhuanca, Yanamarey, and Pachacoto valleys. The locations of survey transects were chosen based on locations of previous sediment core sampling, GPR lines, and quantification of groundwater-surface water interaction derived from dye and temperature tracing experiments. The seismic surveys consisted of 48 vertical component geophones with 2.5 m spacing. Across the three representative valleys a total of 15 surveys were conducted, covering a distance of 1800 m in cross, down, and oblique-valley directions. Preliminary interpretation of the seismic refraction data indicates a maximum imaging depth of 16 m below land surface, and a transition from glacio-lacustrine sediments to buried saturated talus at a depth of 6 m in the Quilcayhuanca valley. The organic-rich glacio-lacustrine sediments in the Yanamarey valley have seismic velocities ranging from 300 to 800 m/s and are >16 m in thickness at mid- valley. Weathered metasedimentary bedrock in the Pachacoto valley was imaged at ~5 m below the valley surface, exhibiting a p-wave velocity of 3400 m/s. The knowledge of hydrogeologic structure derived from seismic refraction surveys will provide crucial boundary conditions for future groundwater models of the valleys of the Cordillera Blanca.

Top