The coronal structure of active regions
NASA Technical Reports Server (NTRS)
Landini, M.; Monsignori Fossi, B. C.; Krieger, A.; Vaiana, G. S.
1975-01-01
A four-parameter model, which assumes a Gaussian dependence of both temperature and pressure on distance from center, is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature, the maximum pressure, the width of the pressure distribution, and the width of the temperature distribution. The maximum temperature ranges from 2.2 to 2.8 million K, and the maximum density from 2 to 9 by 10 to the 9th power per cu cm. The range of the pressure-distribution width is from 2 to 4 by 10 to the 9th power cm and that of the temperature-distribution width from 2 to 7.
Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems
NASA Technical Reports Server (NTRS)
Lustig, P. H.; Holms, A. G.; Davison, H. W.
1973-01-01
The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.
Calculation of change in brain temperatures due to exposure to a mobile phone
NASA Astrophysics Data System (ADS)
Van Leeuwen, G. M. J.; Lagendijk, J. J. W.; Van Leersum, B. J. A. M.; Zwamborn, A. P. M.; Hornsleth, S. N.; Kotte, A. N. T. J.
1999-10-01
In this study we evaluated for a realistic head model the 3D temperature rise induced by a mobile phone. This was done numerically with the consecutive use of an FDTD model to predict the absorbed electromagnetic power distribution, and a thermal model describing bioheat transfer both by conduction and by blood flow. We calculated a maximum rise in brain temperature of 0.11 °C for an antenna with an average emitted power of 0.25 W, the maximum value in common mobile phones, and indefinite exposure. Maximum temperature rise is at the skin. The power distributions were characterized by a maximum averaged SAR over an arbitrarily shaped 10 g volume of approximately 1.6 W kg-1. Although these power distributions are not in compliance with all proposed safety standards, temperature rises are far too small to have lasting effects. We verified our simulations by measuring the skin temperature rise experimentally. Our simulation method can be instrumental in further development of safety standards.
NASA Astrophysics Data System (ADS)
van Hal, Ralf; van Kooten, Tobias; Rijnsdorp, Adriaan D.
2016-01-01
Changes in spatial distribution in several fish species have been related to recent increase in global temperature. In the North Sea, both a poleward shift and a shift to deeper water have been observed. Here, we study the underlying mechanism of these shifts in a comparative study of the changes in distribution of two boreal flatfish species (plaice Pleuronectes platessa and dab Limanda limanda) and three Lusitanian flatfish species (sole Solea solea, solenette Buglossidium luteum, and scaldfish Arnoglossus laterna) as recorded in annual bottom trawl surveys carried out in the North Sea in late summer since 1985. The distribution is analysed in relation to the bottom temperature at the time of the survey as well as to the seasonal maximum bottom temperature earlier in the year. It is shown that the boreal species plaice and dab moved to deeper water and maintained the seasonal maximum temperature that they experienced in earlier periods, while the Lusitanian species sole, solenette, and scaldfish experienced an increase in the seasonal maximum temperature that they experienced while maintaining their depth distribution. This overall response varied between length classes, reflecting a preference for higher temperature of the smaller length classes. The results lend support to the hypothesis that the fish displayed a direct response to the maximum temperature that occurred during the growth season before the time of sampling.
Universal inverse power-law distribution for temperature and rainfall in the UK region
NASA Astrophysics Data System (ADS)
Selvam, A. M.
2014-06-01
Meteorological parameters, such as temperature, rainfall, pressure, etc., exhibit selfsimilar space-time fractal fluctuations generic to dynamical systems in nature such as fluid flows, spread of forest fires, earthquakes, etc. The power spectra of fractal fluctuations display inverse power-law form signifying long-range correlations. A general systems theory model predicts universal inverse power-law form incorporating the golden mean for the fractal fluctuations. The model predicted distribution was compared with observed distribution of fractal fluctuations of all size scales (small, large and extreme values) in the historic month-wise temperature (maximum and minimum) and total rainfall for the four stations Oxford, Armagh, Durham and Stornoway in the UK region, for data periods ranging from 92 years to 160 years. For each parameter, the two cumulative probability distributions, namely cmax and cmin starting from respectively maximum and minimum data value were used. The results of the study show that (i) temperature distributions (maximum and minimum) follow model predicted distribution except for Stornowy, minimum temperature cmin. (ii) Rainfall distribution for cmin follow model predicted distribution for all the four stations. (iii) Rainfall distribution for cmax follows model predicted distribution for the two stations Armagh and Stornoway. The present study suggests that fractal fluctuations result from the superimposition of eddy continuum fluctuations.
Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling
Wang, Kai; Li, Liwei; Yin, Huaixian; Zhang, Tiezhu; Wan, Wubo
2015-01-01
A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it’s up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process. PMID:26444687
Experimental and numerical modeling research of rubber material during microwave heating process
NASA Astrophysics Data System (ADS)
Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling
2018-05-01
This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.
Chang, Yang; Zhao, Xiao-zhuo; Wang, Cheng; Ning, Fang-gang; Zhang, Guo-an
2015-01-01
Inhalation injury is an important cause of death after thermal burns. This study was designed to simulate the velocity and temperature distribution of inhalation thermal injury in the upper airway in humans using computational fluid dynamics. Cervical computed tomography images of three Chinese adults were imported to Mimics software to produce three-dimensional models. After grids were established and boundary conditions were defined, the simulation time was set at 1 minute and the gas temperature was set to 80 to 320°C using ANSYS software (ANSYS, Canonsburg, PA) to simulate the velocity and temperature distribution of inhalation thermal injury. Cross-sections were cut at 2-mm intervals, and maximum airway temperature and velocity were recorded for each cross-section. The maximum velocity peaked in the lower part of the nasal cavity and then decreased with air flow. The velocities in the epiglottis and glottis were higher than those in the surrounding areas. Further, the maximum airway temperature decreased from the nasal cavity to the trachea. Computational fluid dynamics technology can be used to simulate the velocity and temperature distribution of inhaled heated air.
NASA Astrophysics Data System (ADS)
Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.
2018-04-01
The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.
Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood
NASA Astrophysics Data System (ADS)
Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim
2017-04-01
Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models
Laser pulse heating of steel mixing with WC particles in a irradiated region
NASA Astrophysics Data System (ADS)
Shuja, S. Z.; Yilbas, B. S.; Ali, H.; Karatas, C.
2016-12-01
Laser pulse heating of steel mixing with tungsten carbide (WC) particles is carried out. Temperature field in the irradiated region is simulated in line with the experimental conditions. In the analysis, a laser pulse parameter is introduced, which defines the laser pulse intensity distribution at the irradiated surface. The influence of the laser parameter on the melt pool size and the maximum temperature increase in the irradiated region is examined. Surface temperature predictions are compared with the experimental data. In addition, the distribution of WC particles and their re-locations in the treated layer, due to combination of the natural convection and Marangoni currents, are predicted. The findings are compared to the experimental data. It is found that surface temperature predictions agree well with the experimental data. The dislocated WC particles form a streamlining in the near region of the melt pool wall, which agree with the experimental findings. The Gaussian distribution of the laser pulse intensity results in the maximum peak temperature and the maximum flow velocity inside the melt pool. In this case, the melt pool depth becomes the largest as compared to those corresponding to other laser pulse intensity distributions at the irradiated surface.
NASA Astrophysics Data System (ADS)
Charoenlerdchanya, A.; Rattanadecho, P.; Keangin, P.
2018-01-01
An infrared gas stove is a low-pressure gas stove type and it has higher thermal efficiency than the other domestic cooking stoves. This study considers the computationally determine water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The goal of this work is to investigate the effect of various pot diameters i.e. 220 mm, 240 mm and 260 mm on the water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The time-dependent heat transfer equation involving diffusion and convection coupled with the time-dependent fluid dynamic equation is implemented and is solved by using the finite element method (FEM). The computer simulation study is validated with an experimental study, which is use standard experiment by LPG test for low-pressure gas stove in households (TIS No. 2312-2549). The findings revealed that the water and air temperature distributions increase with greater heating time, which varies with the three different pot diameters (220 mm, 240 mm and 260 mm). Similarly, the greater heating time, the water and air velocity distributions increase that vary by pot diameters (220, 240 and 260 mm). The maximum water temperature in the case of pot diameter of 220 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 260 mm, respectively. However, the maximum air temperature in the case of pot diameter of 260 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 220 mm, respectively. The obtained results may provide a basis for improving the energy efficiency of infrared gas stoves and other equipment, including helping to reduce energy consumption.
Flint, L.E.; Flint, A.L.
2008-01-01
Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Parrish, Donna; Butryn, Ryan S.; Rizzo, Donna M.
2012-01-01
We developed a methodology to predict brook trout (Salvelinus fontinalis) distribution using summer temperature metrics as predictor variables. Our analysis used long-term fish and hourly water temperature data from the Dog River, Vermont (USA). Commonly used metrics (e.g., mean, maximum, maximum 7-day maximum) tend to smooth the data so information on temperature variation is lost. Therefore, we developed a new set of metrics (called event metrics) to capture temperature variation by describing the frequency, area, duration, and magnitude of events that exceeded a user-defined temperature threshold. We used 16, 18, 20, and 22°C. We built linear discriminant models and tested and compared the event metrics against the commonly used metrics. Correct classification of the observations was 66% with event metrics and 87% with commonly used metrics. However, combined event and commonly used metrics correctly classified 92%. Of the four individual temperature thresholds, it was difficult to assess which threshold had the “best” accuracy. The 16°C threshold had slightly fewer misclassifications; however, the 20°C threshold had the fewest extreme misclassifications. Our method leveraged the volumes of existing long-term data and provided a simple, systematic, and adaptable framework for monitoring changes in fish distribution, specifically in the case of irregular, extreme temperature events.
Zang, Hongrui; Liu, Yingxi; Han, Demin; Zhang, Luo; Wang, Tong; Sun, Xiuzhen; Li, Lifeng
2012-06-01
The airflow velocity and flux in maxillary sinuses were much lower than those in the nasal cavity, and the temperature in maxillary sinuses was much higher than the temperature in the middle meatus. With the increase of maximum diameter of the ostium, the above indices changed little. The purpose of the paper was to investigate, first, the flow and temperature distribution inside normal maxillary sinus in inspiration, and second, flow and temperature alteration with the increase of maximum ostium diameter. Three-dimensional models with nasal cavities and bilateral maxillary sinuses were constructed for computational fluid dynamics analysis. Virtual surgeries were implemented for the maxillary ostium, the maximum diameters of which were 8, 10, 12, and 15 mm, respectively. The finite volume method was used for numerical simulation. The indices of velocity, pressure, vector, and temperature were processed and compared between models. The airflow velocity in maxillary sinuses (average velocity 0.062 m/s) was much lower than that in the middle meatus (average velocity 3.26 m/s). With the increase of ostium diameter, airflow characteristics distributed in the maxillary sinuses changed little. The normal temperature in the maxillary sinus remained almost constant at 34°C and changed little with the increase of ostium diameter.
DeWeber, Jefferson T; Wagner, Tyler
2018-06-01
Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects. © 2018 John Wiley & Sons Ltd.
DeWeber, Jefferson T.; Wagner, Tyler
2018-01-01
Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects.
Gravity wave momentum flux estimation from CRISTA satellite data
NASA Astrophysics Data System (ADS)
Ern, M.; Preusse, P.; Alexander, M. J.; Offermann, D.
2003-04-01
Temperature altitude profiles measured by the CRISTA satellite were analyzed for gravity waves (GWs). Amplitudes, vertical and horizontal wavelengths of GWs are retrieved by applying a combination of maximum entropy method (MEM) and harmonic analysis (HA) to the temperature height profiles and subsequently comparing the so retrieved GW phases of adjacent altitude profiles. From these results global maps of the absolute value of the vertical flux of horizontal momentum have been estimated. Significant differences between distributions of the temperature variance and distributions of the momentum flux exist. For example, global maps of the momentum flux show a pronounced northward shift of the equatorial maximum whereas temperature variance maps of the tropics/subtropics are nearly symmetric with respect to the equator. This indicates the importance of the influence of horizontal and vertical wavelength distribution on global structures of the momentum flux.
NASA Astrophysics Data System (ADS)
Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek
2015-01-01
Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
Temperature distribution of a simplified rotor due to a uniform heat source
NASA Astrophysics Data System (ADS)
Welzenbach, Sarah; Fischer, Tim; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver
2018-03-01
In gas turbines, high combustion efficiency as well as operational safety are required. Thus, labyrinth seal systems with honeycomb liners are commonly used. In the case of rubbing events in the seal system, the components can be damaged due to cyclic thermal and mechanical loads. Temperature differences occurring at labyrinth seal fins during rubbing events can be determined by considering a single heat source acting periodically on the surface of a rotating cylinder. Existing literature analysing the temperature distribution on rotating cylindrical bodies due to a stationary heat source is reviewed. The temperature distribution on the circumference of a simplified labyrinth seal fin is calculated using an available and easy to implement analytical approach. A finite element model of the simplified labyrinth seal fin is created and the numerical results are compared to the analytical results. The temperature distributions calculated by the analytical and the numerical approaches coincide for low sliding velocities, while there are discrepancies of the calculated maximum temperatures for higher sliding velocities. The use of the analytical approach allows the conservative estimation of the maximum temperatures arising in labyrinth seal fins during rubbing events. At the same time, high calculation costs can be avoided.
Glass Fiber Resin Composites and Components at Arctic Temperatures
2015-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited GLASS FIBER RESIN...3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE GLASS FIBER RESIN COMPOSITES AND COMPONENTS AT ARCTIC TEMPERATURES 5...public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Glass fiber reinforced composites (GFRC
An Active Fire Temperature Retrieval Model Using Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Quigley, K. W.; Roberts, D. A.; Miller, D.
2017-12-01
Wildfire is both an important ecological process and a dangerous natural threat that humans face. In situ measurements of wildfire temperature are notoriously difficult to collect due to dangerous conditions. Imaging spectrometry data has the potential to provide some of the most accurate and highest temporally-resolved active fire temperature retrieval information for monitoring and modeling. Recent studies on fire temperature retrieval have used have used Multiple Endmember Spectral Mixture Analysis applied to Airborne Visible applied to Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) bands to model fire temperatures within the regions marked to contain fire, but these methods are less effective at coarser spatial resolutions, as linear mixing methods are degraded by saturation within the pixel. The assumption of a distribution of temperatures within pixels allows us to model pixels with an effective maximum and likely minimum temperature. This assumption allows a more robust approach to modeling temperature at different spatial scales. In this study, instrument-corrected radiance is forward-modeled for different ranges of temperatures, with weighted temperatures from an effective maximum temperature to a likely minimum temperature contributing to the total radiance of the modeled pixel. Effective maximum fire temperature is estimated by minimizing the Root Mean Square Error (RMSE) between modeled and measured fires. The model was tested using AVIRIS collected over the 2016 Sherpa Fire in Santa Barbara County, California,. While only in situ experimentation would be able to confirm active fire temperatures, the fit of the data to modeled radiance can be assessed, as well as the similarity in temperature distributions seen on different spatial resolution scales. Results show that this model improves upon current modeling methods in producing similar effective temperatures on multiple spatial scales as well as a similar modeled area distribution of those temperatures.
NASA Astrophysics Data System (ADS)
García-Cueto, O. Rafael; Cavazos, M. Tereza; de Grau, Pamela; Santillán-Soto, Néstor
2014-04-01
The generalized extreme value distribution is applied in this article to model the statistical behavior of the maximum and minimum temperature distribution tails in four cities of Baja California in northwestern Mexico, using data from 1950-2010. The approach used of the maximum of annual time blocks. Temporal trends were included as covariates in the location parameter (μ), which resulted in significant improvements to the proposed models, particularly for the extreme maximum temperature values in the cities of Mexicali, Tijuana, and Tecate, and the extreme minimum temperature values in Mexicali and Ensenada. These models were used to estimate future probabilities over the next 100 years (2015-2110) for different time periods, and they were compared with changes in the extreme (P90th and P10th) percentiles of maximum and minimum temperature scenarios for a set of six general circulation models under low (RCP4.5) and high (RCP8.5) radiative forcings. By the end of the twenty-first century, the scenarios of the changes in extreme maximum summer temperature are of the same order in both the statistical model and the high radiative scenario (increases of 4-5 °C). The low radiative scenario is more conservative (increases of 2-3 °C). The winter scenario shows that minimum temperatures could be less severe; the temperature increases suggested by the probabilistic model are greater than those projected for the end of the century by the set of global models under RCP4.5 and RCP8.5 scenarios. The likely impacts on the region are discussed.
Suwannatrai, A; Pratumchart, K; Suwannatrai, K; Thinkhamrop, K; Chaiyos, J; Kim, C S; Suwanweerakamtorn, R; Boonmars, T; Wongsaroj, T; Sripa, B
2017-01-01
Global climate change is now regarded as imposing a significant threat of enhancing transmission of parasitic diseases. Maximum entropy species distribution modeling (MaxEnt) was used to explore how projected climate change could affect the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand. A range of climate variables was used: the Hadley Global Environment Model 2-Earth System (HadGEM2-ES) climate change model and also the IPCC scenarios A2a for 2050 and 2070. Occurrence data from surveys conducted in 2009 and 2014 were obtained from the Department of Disease Control, Ministry of Public Health, Thailand. The MaxEnt model performed better than random for O. viverrini with training AUC values greater than 0.8 under current and future climatic conditions. The current distribution of O. viverrini is significantly affected by precipitation and minimum temperature. According to current conditions, parts of Thailand climatically suitable for O. viverrini are mostly in the northeast and north, but the parasite is largely absent from southern Thailand. Under future climate change scenarios, the distribution of O. viverrini in 2050 should be significantly affected by precipitation, maximum temperature, and mean temperature of the wettest quarter, whereas in 2070, significant factors are likely to be precipitation during the coldest quarter, maximum, and minimum temperatures. Maps of predicted future distribution revealed a drastic decrease in presence of O. viverrini in the northeast region. The information gained from this study should be a useful reference for implementing long-term prevention and control strategies for O. viverrini in Thailand.
NASA Astrophysics Data System (ADS)
Doughty, Austin; Hasanjee, Aamr; Pettitt, Alex; Silk, Kegan; Liu, Hong; Chen, Wei R.; Zhou, Feifan
2016-03-01
Laser Immunotherapy is a novel cancer treatment modality that has seen much success in treating many different types of cancer, both in animal studies and in clinical trials. The treatment consists of the synergistic interaction between photothermal laser irradiation and the local injection of an immunoadjuvant. As a result of the therapy, the host immune system launches a systemic antitumor response. The photothermal effect induced by the laser irradiation has multiple effects at different temperature elevations which are all required for optimal response. Therefore, determining the temperature distribution in the target tumor during the laser irradiation in laser immunotherapy is crucial to facilitate the treatment of cancers. To investigate the temperature distribution in the target tumor, female Wistar Furth rats were injected with metastatic mammary tumor cells and, upon sufficient tumor growth, underwent laser irradiation and were monitored using thermocouples connected to locally-inserted needle probes and infrared thermography. From the study, we determined that the maximum central tumor temperature was higher for tumors of less volume. Additionally, we determined that the temperature near the edge of the tumor as measured with a thermocouple had a strong correlation with the maximum temperature value in the infrared camera measurement.
Thermal Tolerance in Anuran Embryos with Different Reproductive Modes: Relationship to Altitude
Lynch, John D.
2013-01-01
Anurans are ectothermic animals very sensitive to temperature, mainly during the embryonic stage. In addition, environmental temperature decreases with altitude, and the amphibian fauna changes. Therefore, we studied the relationship between the embryonic thermal tolerances of twelve species of anurans and the temperatures of their microhabitat along an altitudinal gradient from 430 m to 2600 m. We hypothesized that there is a strong thermal adjustment of embryos to their microhabitat and, consequently, that temperature could be a limiting factor of altitudinal distribution of the anurans. We also compared the embryonic thermal tolerances according to six postulated reproductive modes of the study species. We found a significant relationship between the maximum and minimum thermal tolerances of the anuran embryos and the maximum and minimum temperatures of their microhabitat and altitudinal distribution. We also found a wide range of embryonic thermal tolerances for aquatic breeding species and a narrower range for terrestrial breeding species. Particularly, embryos of direct development species were the most sensitive to temperature. These results show the strong thermal adjustment of anuran embryos to their microhabitat and elevation and do not reject the hypothesis that temperature can be a limiting factor of their altitudinal distribution. PMID:23766678
3D thermal model of laser surface glazing for H13 tool steel
NASA Astrophysics Data System (ADS)
Kabir, I. R.; Yin, D.; Naher, S.
2017-10-01
In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.
NASA Technical Reports Server (NTRS)
Moshchalcov, V. V.; Zhukov, A. A.; Kuznetzov, V. D.; Metlushko, V. V.; Leonyuk, L. I.
1990-01-01
At the initial time intervals, preceding the thermally activated flux creep regime, fast nonlogarithmic relaxation is found. The fully magnetic moment Pm(t) relaxation curve is shown. The magnetic measurements were made using SQUID-magnetometer. Two different relaxation regimes exist. The nonlogarithmic relaxation for the initial time intervals may be related to the viscous Abrikosov vortices flow with j is greater than j(sub c) for high enough temperature T and magnetic field induction B. This assumption correlates with Pm(t) measurements. The characteristic time t(sub O) separating two different relaxation regimes decreases as temperature and magnetic field are lowered. The logarithmic magnetization relaxation curves Pm(t) for fixed temperature and different external magnetic field inductions B are given. The relaxation rate dependence on magnetic field, R(B) = dPm(B, T sub O)/d(1nt) has a sharp maximum which is similar to that found for R(T) temperature dependences. The maximum shifts to lower fields as temperature goes up. The observed sharp maximum is related to a topological transition in shielding critical current distribution and, consequently, in Abrikosov vortices density. The nonlogarithmic magnetization relaxation for the initial time intervals is found. This fast relaxation has almost an exponentional character. The sharp relaxation rate R(B) maximum is observed. This maximum corresponds to a topological transition in Abrikosov vortices distribution.
NASA Astrophysics Data System (ADS)
Zhang, Shuoting; Duan, Li; Kang, Qi
2018-05-01
The migration and interaction of axisymmetric two drops in a vertical temperature gradient is investigated experimentally on the ground. A silicon oil is used as the continuous phase, and a water-ethanol mixture is used as the drop phase, respectively. The migration and interaction of two drops, under the combined effects of buoyancy and thermocapillary, is recorded by a digital holographic interferometry measurement in the experiment to analyse the velocities and temperature distribution of the drops. As a result, when two drops migrate together, the drop affects the other drop by perturbing the temperature field around itself. For the leading drop, the velocity is faster than the one of the isolated drop, and the maximum of the interfacial temperature distribution is larger than the one of the isolated drop. For the trailing drop, the velocity is slower than the one of the isolated drop, and the maximum of the interfacial temperature distribution is less than the one of the isolated drop. The influence of the dimensionless initial distance between the drop centres to the drop migration is discussed in detail in this study.
Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression
NASA Astrophysics Data System (ADS)
Li, Jian; Li, Yunting; Zhang, Mingjiang; Liu, Yi; Zhang, Jianzhong; Yan, Baoqiang; Wang, Dong; Jin, Baoquan
2018-06-01
In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.
The Shifting Climate Portfolio of the Greater Yellowstone Area
Sepulveda, Adam J.; Tercek, Michael T.; Al-Chokhachy, Robert; Ray, Andrew M.; Thoma, David P.; Hossack, Blake R.; Pederson, Gregory T.; Rodman, Ann W.; Olliff, Tom
2015-01-01
Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world’s most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948–2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA’s physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change. PMID:26674185
The shifting climate portfolio of the Greater Yellowstone Area
Sepulveda, Adam; Tercek, Mike T; Al-Chokhachy, Robert K.; Ray, Andrew; Thoma, David P.; Hossack, Blake R.; Pederson, Gregory T.; Rodman, Ann; Olliff, Tom
2015-01-01
Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world’s most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948–2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA’s physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change.
NASA Astrophysics Data System (ADS)
Cai, Zhiqiang; Dai, Hongbin; Fu, Xibin
2018-06-01
In view of the special needs of the water supply and drainage system of swimming pool in gymnasium, the correlation of high density polyethylene (HDPE) pipe and the temperature field distribution during welding was investigated. It showed that the temperature field distribution has significant influence on the quality of welding. Moreover, the mechanical properties of the welded joint were analyzed by the bending test of the weld joint, and the micro-structure of the welded joint was evaluated by scanning electron microscope (SEM). The one-dimensional unsteady heat transfer model of polyethylene pipe welding joints was established by MARC. The temperature field distribution during welding process was simulated, and the temperature field changes during welding were also detected and compared by the thermo-couple temperature automatic acquisition system. Results indicated that the temperature of the end surface of the pipe does not reach the maximum value, when it is at the end of welding heating. Instead, it reaches the maximum value at 300 sand latent heat occurs during the welding process. It concludes that the weld quality is the highest when the welding pressure is 0.2 MPa, and the heating temperature of HDPE heat fusion welding is in the range of 210 °C-230 °C.
Maximum entropy approach to H -theory: Statistical mechanics of hierarchical systems
NASA Astrophysics Data System (ADS)
Vasconcelos, Giovani L.; Salazar, Domingos S. P.; Macêdo, A. M. S.
2018-02-01
A formalism, called H-theory, is applied to the problem of statistical equilibrium of a hierarchical complex system with multiple time and length scales. In this approach, the system is formally treated as being composed of a small subsystem—representing the region where the measurements are made—in contact with a set of "nested heat reservoirs" corresponding to the hierarchical structure of the system, where the temperatures of the reservoirs are allowed to fluctuate owing to the complex interactions between degrees of freedom at different scales. The probability distribution function (pdf) of the temperature of the reservoir at a given scale, conditioned on the temperature of the reservoir at the next largest scale in the hierarchy, is determined from a maximum entropy principle subject to appropriate constraints that describe the thermal equilibrium properties of the system. The marginal temperature distribution of the innermost reservoir is obtained by integrating over the conditional distributions of all larger scales, and the resulting pdf is written in analytical form in terms of certain special transcendental functions, known as the Fox H functions. The distribution of states of the small subsystem is then computed by averaging the quasiequilibrium Boltzmann distribution over the temperature of the innermost reservoir. This distribution can also be written in terms of H functions. The general family of distributions reported here recovers, as particular cases, the stationary distributions recently obtained by Macêdo et al. [Phys. Rev. E 95, 032315 (2017), 10.1103/PhysRevE.95.032315] from a stochastic dynamical approach to the problem.
Maximum entropy approach to H-theory: Statistical mechanics of hierarchical systems.
Vasconcelos, Giovani L; Salazar, Domingos S P; Macêdo, A M S
2018-02-01
A formalism, called H-theory, is applied to the problem of statistical equilibrium of a hierarchical complex system with multiple time and length scales. In this approach, the system is formally treated as being composed of a small subsystem-representing the region where the measurements are made-in contact with a set of "nested heat reservoirs" corresponding to the hierarchical structure of the system, where the temperatures of the reservoirs are allowed to fluctuate owing to the complex interactions between degrees of freedom at different scales. The probability distribution function (pdf) of the temperature of the reservoir at a given scale, conditioned on the temperature of the reservoir at the next largest scale in the hierarchy, is determined from a maximum entropy principle subject to appropriate constraints that describe the thermal equilibrium properties of the system. The marginal temperature distribution of the innermost reservoir is obtained by integrating over the conditional distributions of all larger scales, and the resulting pdf is written in analytical form in terms of certain special transcendental functions, known as the Fox H functions. The distribution of states of the small subsystem is then computed by averaging the quasiequilibrium Boltzmann distribution over the temperature of the innermost reservoir. This distribution can also be written in terms of H functions. The general family of distributions reported here recovers, as particular cases, the stationary distributions recently obtained by Macêdo et al. [Phys. Rev. E 95, 032315 (2017)10.1103/PhysRevE.95.032315] from a stochastic dynamical approach to the problem.
NASA Astrophysics Data System (ADS)
Semenov, A.; Shefov, N.; Fadel, Kh.
The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconom ic impacts. The full report is contained in 27 volumes.« less
Liger, Vladimir V; Mironenko, Vladimir R; Kuritsyn, Yurii A; Bolshov, Mikhail A
2018-05-17
A new algorithm for the estimation of the maximum temperature in a non-uniform hot zone by a sensor based on absorption spectrometry with a diode laser is developed. The algorithm is based on the fitting of the absorption spectrum with a test molecule in a non-uniform zone by linear combination of two single temperature spectra simulated using spectroscopic databases. The proposed algorithm allows one to better estimate the maximum temperature of a non-uniform zone and can be useful if only the maximum temperature rather than a precise temperature profile is of primary interest. The efficiency and specificity of the algorithm are demonstrated in numerical experiments and experimentally proven using an optical cell with two sections. Temperatures and water vapor concentrations could be independently regulated in both sections. The best fitting was found using a correlation technique. A distributed feedback (DFB) diode laser in the spectral range around 1.343 µm was used in the experiments. Because of the significant differences between the temperature dependences of the experimental and theoretical absorption spectra in the temperature range 300⁻1200 K, a database was constructed using experimentally detected single temperature spectra. Using the developed algorithm the maximum temperature in the two-section cell was estimated with accuracy better than 30 K.
Plant Distribution Data Show Broader Climatic Limits than Expert-Based Climatic Tolerance Estimates
Curtis, Caroline A.; Bradley, Bethany A.
2016-01-01
Background Although increasingly sophisticated environmental measures are being applied to species distributions models, the focus remains on using climatic data to provide estimates of habitat suitability. Climatic tolerance estimates based on expert knowledge are available for a wide range of plants via the USDA PLANTS database. We aim to test how climatic tolerance inferred from plant distribution records relates to tolerance estimated by experts. Further, we use this information to identify circumstances when species distributions are more likely to approximate climatic tolerance. Methods We compiled expert knowledge estimates of minimum and maximum precipitation and minimum temperature tolerance for over 1800 conservation plant species from the ‘plant characteristics’ information in the USDA PLANTS database. We derived climatic tolerance from distribution data downloaded from the Global Biodiversity and Information Facility (GBIF) and corresponding climate from WorldClim. We compared expert-derived climatic tolerance to empirical estimates to find the difference between their inferred climate niches (ΔCN), and tested whether ΔCN was influenced by growth form or range size. Results Climate niches calculated from distribution data were significantly broader than expert-based tolerance estimates (Mann-Whitney p values << 0.001). The average plant could tolerate 24 mm lower minimum precipitation, 14 mm higher maximum precipitation, and 7° C lower minimum temperatures based on distribution data relative to expert-based tolerance estimates. Species with larger ranges had greater ΔCN for minimum precipitation and minimum temperature. For maximum precipitation and minimum temperature, forbs and grasses tended to have larger ΔCN while grasses and trees had larger ΔCN for minimum precipitation. Conclusion Our results show that distribution data are consistently broader than USDA PLANTS experts’ knowledge and likely provide more robust estimates of climatic tolerance, especially for widespread forbs and grasses. These findings suggest that widely available expert-based climatic tolerance estimates underrepresent species’ fundamental niche and likely fail to capture the realized niche. PMID:27870859
NASA Technical Reports Server (NTRS)
Marble, Frank E.; Ritter, William K.; Miller, Mahlon A.
1946-01-01
For the normal range of engine power the impeller provided marked improvement over the standard spray-bar injection system. Mixture distribution at cruising was excellent, maximum cylinder temperatures were reduced about 30 degrees F, and general temperature distribution was improved. The uniform mixture distribution restored the normal response of cylinder temperature to mixture enrichment and it reduced the possibility of carburetor icing, while no serious loss in supercharger pressure rise resulted from injection of fuel near the impeller outlet. The injection impeller also furnished a convenient means of adding water to the charge mixture for internal cooling.
Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance
Robert J. Warren; Lacy Chick
2013-01-01
Rapid climate change may prompt species distribution shifts upward and poleward, but species movement in itself is not sufficient to establish climate causation. Other dynamics, such as disturbance history, may prompt species distribution shifts resembling those expected from rapid climate change. Links between species distributions, regional climate trends and...
NASA Astrophysics Data System (ADS)
Yan, Tiezhu; Shen, Zhenyao; Heng, Lee; Dercon, Gerd
2016-04-01
Future climate change information is important to formulate adaptation and mitigation strategies for climate change. In this study, a statistical downscaling model (SDSM) was established using both NCEP reanalysis data and ground observations (daily maximum and minimum temperature) during the period 1971-2010, and then calibrated model was applied to generate the future maximum and minimum temperature projections using predictors from the two CMIP5 models (MPI-ESM-LR and CNRM-CM5) under two Representative Concentration Pathway (RCP2.6 and RCP8.5) during the period 2011-2100 for the Haihe River Basin, China. Compared to the baseline period, future change in annual and seasonal maximum and minimum temperature was computed after bias correction. The spatial distribution and trend change of annual maximum and minimum temperature were also analyzed using ensemble projections. The results shows that: (1)The downscaling model had a good applicability on reproducing daily and monthly mean maximum and minimum temperature over the whole basin. (2) Bias was observed when using historical predictors from CMIP5 models and the performance of CNRM-CM5 was a little worse than that of MPI-ESM-LR. (3) The change in annual mean maximum and minimum temperature under the two scenarios in 2020s, 2050s and 2070s will increase and magnitude of maximum temperature will be higher than minimum temperature. (4) The increase in temperature in the mountains and along the coastline is remarkably high than the other parts of the studies basin. (5) For annual maximum and minimum temperature, the significant upward trend will be obtained under RCP 8.5 scenario and the magnitude will be 0.37 and 0.39 ℃ per decade, respectively; the increase in magnitude under RCP 2.6 scenario will be upward in 2020s and then decrease in 2050s and 2070s, and the magnitude will be 0.01 and 0.01℃ per decade, respectively.
Assessment of extreme value distributions for maximum temperature in the Mediterranean area
NASA Astrophysics Data System (ADS)
Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus
2015-04-01
Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New (2008), A European daily high-resolution gridded data set of surface temperature and precipitation for 1950 - 2006, J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.
The effects of spatial sampling choices on MR temperature measurements.
Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L
2011-02-01
The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.
The neotropical shrub Lupinus elegans, fromtemperate forests, may not adapt to climate change.
Soto-Correa, J C; Sáenz-Romero, C; Lindig-Cisneros, R; de la Barrera, E
2013-05-01
Considering that their distribution is limited to altitudinal gradients along mountains that are likely to become warmer and drier, climate change poses an increased threat to temperate forest species from tropical regions. We studied whether the understorey shrub Lupinus elegans, endemic to temperate forests of west-central Mexico, will be able to withstand the projected temperature increase under seven climate change scenarios. Seeds were collected along an altitudinal gradient and grown in a shade-house over 7 months before determining their temperature tolerance as electrolyte leakage. The plants from colder sites tolerated lower temperatures, i.e. the temperature at which half of the maximum electrolyte leakage occurred (LT50), ranged from −6.4 ± 0.7 to −2.4 ± 0.3 °C. In contrast, no pattern was found for tolerance to high temperature (LT50 average 42.8 ± 0.3 °C). The climate change scenarios considered here consistently estimated an increase in air temperature during the present century that was higher for the maximum air temperature than for the mean or minimum. In particular, the anomaly from the normal maximum air temperature at the study region ranged from 2.8 °C by 2030 to 5.8 °C by 2090. In this respect, the inability of L. elegans to adapt to increasingly higher temperatures found here, in addition to a possible inhibition of reproduction caused by warmer winters, may limit its future distribution.
The maximum growth rate of life on Earth
NASA Astrophysics Data System (ADS)
Corkrey, Ross; McMeekin, Tom A.; Bowman, John P.; Olley, June; Ratkowsky, David
2018-01-01
Life on Earth spans a range of temperatures and exhibits biological growth rates that are temperature dependent. While the observation that growth rates are temperature dependent is well known, we have recently shown that the statistical distribution of specific growth rates for life on Earth is a function of temperature (Corkrey et al., 2016). The maximum rates of growth of all life have a distinct limit, even when grown under optimal conditions, and which vary predictably with temperature. We term this distribution of growth rates the biokinetic spectrum for temperature (BKST). The BKST possibly arises from a trade-off between catalytic activity and stability of enzymes involved in a rate-limiting Master Reaction System (MRS) within the cell. We develop a method to extrapolate quantile curves for the BKST to obtain the posterior probability of the maximum rate of growth of any form of life on Earth. The maximum rate curve conforms to the observed data except below 0°C and above 100°C where the predicted value may be positively biased. The deviation below 0°C may arise from the bulk properties of water, while the degradation of biomolecules may be important above 100°C. The BKST has potential application in astrobiology by providing an estimate of the maximum possible growth rate attainable by terrestrial life and perhaps life elsewhere. We suggest that the area under the maximum growth rate curve and the peak rate may be useful characteristics in considerations of habitability. The BKST can serve as a diagnostic for unusual life, such as second biogenesis or non-terrestrial life. Since the MRS must have been heavily conserved the BKST may contain evolutionary relics. The BKST can serve as a signature summarizing the nature of life in environments beyond Earth, or to characterize species arising from a second biogenesis on Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
NASA Astrophysics Data System (ADS)
Hasan, Husna; Salam, Norfatin; Kassim, Suraiya
2013-04-01
Extreme temperature of several stations in Malaysia is modeled by fitting the annual maximum to the Generalized Extreme Value (GEV) distribution. The Augmented Dickey Fuller (ADF) and Phillips Perron (PP) tests are used to detect stochastic trends among the stations. The Mann-Kendall (MK) test suggests a non-stationary model. Three models are considered for stations with trend and the Likelihood Ratio test is used to determine the best-fitting model. The results show that Subang and Bayan Lepas stations favour a model which is linear for the location parameters while Kota Kinabalu and Sibu stations are suitable with a model in the logarithm of the scale parameters. The return level is the level of events (maximum temperature) which is expected to be exceeded once, on average, in a given number of years, is obtained.
Equatorial temperature anomaly during solar minimum
NASA Astrophysics Data System (ADS)
Suhasini, R.; Raghavarao, R.; Mayr, H. G.; Hoegy, W. R.; Wharton, L. E.
2001-11-01
We show evidence for the occurrence of the equatorial temperature anomaly (ETA) during solar minimum by analyzing the temperature and total ion density data from the Neutral Atmosphere Temperature Experiment (NATE) and the Cylindrical Electrostatic Probe (CEP), respectively, on board the Atmospheric Explorer-E satellite. The chosen data refer to a height of ~254 km in the African and Asian longitude sector (340.1°E-200°E) during a summer season in the Southern Hemisphere. As during the solar maximum period, the spatial characteristics of the ETA are similar to those of the equatorial ionization anomaly (EIA). A minimum in the gas temperature is collocated with the minimum in the ion density at the dip equator, and a temperature maximum on the south side of the equator is collocated with the density maximum of the EIA. The daytime behavior of ETA formation is about the same as that of EIA as both of them are clearly present at around 1300 and 1400 local solar time (LST) only. At 1400 LST the difference between the temperatures at the crest and the trough (ETA strength) reaches a maximum value of about 100°K which is ~14% of the temperature at the trough. Like the EIA, the ETA also suddenly disappears after 1400 LST. Thus the EIA appears to be a prerequisite for the ETA formation. During the premidnight time (2200 LST), however, while the EIA is nonexistent, the temperature distribution forms a pattern opposite to that at 1400 LST in the daytime. It shows a maximum around the dip equator and a broad minimum at the daytime crest region where the postsunset cooling also is faster and occurs earlier than at the dip equator. This nighttime maximum appears to be related to the signature of the midnight temperature maximum (MTM). Mass Spectrometer Incoherent Scatter (MSIS) model temperatures, in general, are higher than the observed average temperatures for the summer season and in particular for the region around the dip equator around noon hours.
Wang, Qing; Spicer, Robert A; Yang, Jian; Wang, Yu-Fei; Li, Cheng-Sen
2013-12-01
Eocene palynological samples from 37 widely distributed sites across China were analysed using co-existence approach to determine trends in space and time for seven palaeoclimate variables: Mean annual temperature, mean annual precipitation, mean temperature of the warmest month, mean temperature of the coldest month, mean annual range of temperature, mean maximum monthly precipitation and mean minimum monthly precipitation. Present day distributions and observed climates within China of the nearest living relatives of the fossil forms were used to find the range of a given variable in which a maximum number of taxa can coexist. Isotherm and isohyet maps for the early, middle and late Eocene were constructed. These illustrate regional changing patterns in thermal and precipitational gradients that may be interpreted as the beginnings of the modern Asian Monsoon system, and suggest that the uplift of parts of the Tibetan Plateau appear to have taken place by the middle to late Eocene. © 2013 John Wiley & Sons Ltd.
Ai, Haiming; Wu, Shuicai; Gao, Hongjian; Zhao, Lei; Yang, Chunlan; Zeng, Yi
2012-01-01
The temperature distribution in the region near a microwave antenna is a critical factor that affects the entire temperature field during microwave ablation of tissue. It is challenging to predict this distribution precisely, because the temperature in the near-antenna region varies greatly. The effects of water vaporisation and subsequent tissue carbonisation in an ex vivo porcine liver were therefore studied experimentally and in simulations. The enthalpy and high-temperature specific absorption rate (SAR) of liver tissues were calculated and incorporated into the simulation process. The accuracy of predictions for near-field temperatures in our simulations has reached the level where the average maximum error is less than 5°C. In addition, a modified thermal model that accounts for water vaporisation and the change in the SAR distribution pattern is proposed and validated with experiment. The results from this study may be useful in the clinical practice of microwave ablation and can be applied to predict the temperature field in surgical planning.
Orientational ordering of lamellar structures on closed surfaces
NASA Astrophysics Data System (ADS)
Pȩkalski, J.; Ciach, A.
2018-05-01
Self-assembly of particles with short-range attraction and long-range repulsion interactions on a flat and on a spherical surface is compared. Molecular dynamics simulations are performed for the two systems having the same area and the density optimal for formation of stripes of particles. Structural characteristics, e.g., a cluster size distribution, a number of defects, and an orientational order parameter (OP), as well as the specific heat, are obtained for a range of temperatures. In both cases, the cluster size distribution becomes bimodal and elongated clusters appear at the temperature corresponding to the maximum of the specific heat. When the temperature decreases, orientational ordering of the stripes takes place and the number of particles per cluster or stripe increases in both cases. However, only on the flat surface, the specific heat has another maximum at the temperature corresponding to a rapid change of the OP. On the sphere, the crossover between the isotropic and anisotropic structures occur in a much broader temperature interval; the orientational order is weaker and occurs at significantly lower temperature. At low temperature, the stripes on the sphere form spirals and the defects resemble defects in the nematic phase of rods adsorbed at a sphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
NASA Astrophysics Data System (ADS)
Rutkowska, Agnieszka; Kohnová, Silvia; Banasik, Kazimierz
2018-04-01
Probabilistic properties of dates of winter, summer and annual maximum flows were studied using circular statistics in three catchments differing in topographic conditions; a lowland, highland and mountainous catchment. The circular measures of location and dispersion were used in the long-term samples of dates of maxima. The mixture of von Mises distributions was assumed as the theoretical distribution function of the date of winter, summer and annual maximum flow. The number of components was selected on the basis of the corrected Akaike Information Criterion and the parameters were estimated by means of the Maximum Likelihood method. The goodness of fit was assessed using both the correlation between quantiles and a version of the Kuiper's and Watson's test. Results show that the number of components varied between catchments and it was different for seasonal and annual maxima. Differences between catchments in circular characteristics were explained using climatic factors such as precipitation and temperature. Further studies may include circular grouping catchments based on similarity between distribution functions and the linkage between dates of maximum precipitation and maximum flow.
Potential distribution dataset of honeybees in Indian Ocean Islands: Case study of Zanzibar Island.
Mwalusepo, Sizah; Muli, Eliud; Nkoba, Kiatoko; Nguku, Everlyn; Kilonzo, Joseph; Abdel-Rahman, Elfatih M; Landmann, Tobias; Fakih, Asha; Raina, Suresh
2017-10-01
Honeybees ( Apis mellifera ) are principal insect pollinators, whose worldwide distribution and abundance is known to largely depend on climatic conditions. However, the presence records dataset on potential distribution of honeybees in Indian Ocean Islands remain less documented. Presence records in shape format and probability of occurrence of honeybees with different temperature change scenarios is provided in this article across Zanzibar Island. Maximum entropy (Maxent) package was used to analyse the potential distribution of honeybees. The dataset provides information on the current and future distribution of the honey bees in Zanzibar Island. The dataset is of great importance for improving stakeholders understanding of the role of temperature change on the spatial distribution of honeybees.
Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions
NASA Astrophysics Data System (ADS)
Malik, M. Usman; Masood, W.; Qureshi, M. N. S.; Mirza, Arshad M.
2018-05-01
The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q) distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.
Amadio, C.J.; Hubert, W.A.; Johnson, Kevin; Oberlie, D.; Dufek, D.
2005-01-01
Factors affecting the occurrence of saugers Sander canadensis were studied throughout the Wind River basin, a high-elevation watershed (> 1,440 m above mean sea level) on the western periphery of the species' natural distribution in central Wyoming. Adult saugers appeared to have a contiguous distribution over 170 km of streams among four rivers in the watershed. The upstream boundaries of sauger distribution were influenced by summer water temperatures and channel slopes in two rivers and by water diversion dams that created barriers to upstream movement in the other two rivers. Models that included summer water temperature, maximum water depth, habitat type (pool or run), dominant substrate, and alkalinity accounted for the variation in sauger occurrence across the watershed within the areas of sauger distribution. Water temperature was the most important basin-scale habitat feature associated with sauger occurrence, and maximum depth was the most important site-specific habitat feature. Saugers were found in a larger proportion of pools than runs in all segments of the watershed and occurred almost exclusively in pools in upstream segments of the watershed. Suitable summer water temperatures and deep, low-velocity habitat were available to support saugers over a large portion of the Wind River watershed. Future management of saugers in the Wind River watershed, as well as in other small river systems within the species' native range, should involve (1) preserving natural fluvial processes to maintain the summer water temperatures and physical habitat features needed by saugers and (2) assuring that barriers to movement do not reduce upstream boundaries of populations.
Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi
2016-01-01
Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.
Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi
2016-01-01
Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points. PMID:26807579
Idrissi, Abdenacer; Vyalov, Ivan; Georgi, Nikolaj; Kiselev, Michael
2013-10-10
We combined molecular dynamics simulation and DBSCAN algorithm (Density Based Spatial Clustering of Application with Noise) in order to characterize the local density inhomogeneity distribution in supercritical fluids. The DBSCAN is an algorithm that is capable of finding arbitrarily shaped density domains, where domains are defined as dense regions separated by low-density regions. The inhomogeneity of density domain distributions of Ar system in sub- and supercritical conditions along the 50 bar isobar is associated with the occurrence of a maximum in the fluctuation of number of particles of the density domains. This maximum coincides with the temperature, Tα, at which the thermal expansion occurs. Furthermore, using Voronoi polyhedral analysis, we characterized the structure of the density domains. The results show that with increasing temperature below Tα, the increase of the inhomogeneity is mainly associated with the density fluctuation of the border particles of the density domains, while with increasing temperature above Tα, the decrease of the inhomogeneity is associated with the core particles.
Thermal distribution of microwave antenna for atrial fibrillation catheter ablation.
Zhang, Huijuan; Nan, Qun; Liu, Youjun
2013-09-01
The aim of this study is to investigate the effects of ablation parameters on thermal distribution during microwave atrial fibrillation catheter ablation, such as ablation time, ablation power, blood condition and antenna placement, and give proper ablative parameters to realise transmural ablation. In this paper, simplified 3D antenna-myocardium-blood finite element method models were built to simulate the endocardial ablation operation. Thermal distribution was obtained based on the coupled electromagnetic-thermal analysis. Under different antenna placement conditions and different microwave power inputs within 60 s, the lesion dimensions (maximum depth, maximum width) of the ablation zones were analysed. The ablation width and depth increased with the ablation time. The increase rate significantly slowed down after 10 s. The maximum temperature was located in 1 mm under the antenna tip when perpendicular to the endocardium, while 1.5 mm away from the antenna axis and 26 mm along the antenna (with antenna length about 30 mm) in the myocardium when parallel to the endocardium. The maximum temperature in the ablated area decreased and the effective ablation area (with the temperature raised to 50°C) shifted deeper into the myocardium due to the blood cooling. The research validated that the microwave antenna can provide continuous long and linear lesions for the treatment of atrial fibrillation. The dimensions of the created lesion widths were all larger than those of the depths. It is easy for the microwave antenna to produce transmural lesions for an atrial wall thickness of 2-6 mm by adjusting the applied power and ablation time.
Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region
NASA Astrophysics Data System (ADS)
Griffiths, G. M.; Chambers, L. E.; Haylock, M. R.; Manton, M. J.; Nicholls, N.; Baek, H.-J.; Choi, Y.; della-Marta, P. M.; Gosai, A.; Iga, N.; Lata, R.; Laurent, V.; Maitrepierre, L.; Nakamigawa, H.; Ouprasitwong, N.; Solofa, D.; Tahani, L.; Thuy, D. T.; Tibig, L.; Trewin, B.; Vediapan, K.; Zhai, P.
2005-08-01
Trends (1961-2003) in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.
NASA Astrophysics Data System (ADS)
Bottyán, Zsolt; Kircsi, Andrea; Szegedi, Sándor; Unger, János
2005-03-01
The climate of built-up regions differs significantly from rural regions and the most important modifying effect of urbanization on local climate is the urban temperature excess, otherwise called the urban heat island (UHI).This study examines the influence of built-up areas on the near-surface air temperature field in the case of the medium-sized city of Debrecen, Hungary. Mobile measurements were used under different weather conditions between March 2002 and March 2003. Efforts concentrated on the determination of the spatial distribution of mean maximum UHI intensity with special regard to land-use features such as built-up ratio and its areal extensions.In both (heating and non-heating) seasons the spatial distribution of the UHI intensity field showed a basically concentric shape with local anomalies. The mean maximum UHI intensity reaches more than 2.0 °C (heating season) and 2.5 °C (non-heating season) in the centre of the city. We established the relationship between the above-mentioned land-use parameters and mean maximum UHI intensity by means of multiple linear regression analysis. As the measured and predicted mean maximum UHI intensity patterns show, there is an obvious connection between the spatial distribution of urban thermal excess and the land-use parameters examined, so these parameters play a significant role in the development of the strong UHI intensity field over the city.
USDA-ARS?s Scientific Manuscript database
Phytophthora megakarya and Phytophthora palmivora cause cacao black pod rot of cacao. P. megakarya occurs in Africa while P. palmivora is distributed world-wide. P. palmivora has a higher temperature maximum (34°C) than P. megakarya (30°C). Factors contributing to temperature maxima in Phytophtho...
Malaria transmission in two localities in north-western Argentina
Dantur Juri, María J; Zaidenberg, Mario; Claps, Guillermo L; Santana, Mirta; Almirón, Walter R
2009-01-01
Background Malaria is one of the most important tropical diseases that affects people globally. The influence of environmental conditions in the patterns of temporal distribution of malaria vectors and the disease has been studied in different countries. In the present study, ecological aspects of the malaria vector Anopheles (Anopheles) pseudopunctipennis and their relationship with climatic variables, as well as the seasonality of malaria cases, were studied in two localities, El Oculto and Aguas Blancas, in north-western Argentina. Methods The fluctuation of An. pseudopunctipennis and the malaria cases distribution was analysed with Random Effect Poisson Regression. This analysis takes into account the effect of each climatic variable on the abundance of both vector and malaria cases, giving as results predicted values named Incidence Rate Radio. Results The number of specimens collected in El Oculto and Aguas Blancas was 4224 (88.07%) and 572 (11.93%), respectively. In El Oculto no marked seasonality was found, different from Aguas Blancas, where high abundance was detected at the end of spring and the beginning of summer. The maximum mean temperature affected the An. pseudopunctipennis fluctuation in El Oculto and Aguas Blancas. When considering the relationship between the number of malaria cases and the climatic variables in El Oculto, maximum mean temperature and accumulated rainfall were significant, in contrast with Aguas Blancas, where mean temperature and humidity showed a closer relationship to the fluctuation in the disease. Conclusion The temporal distribution patterns of An. pseudopunctipennis vary in both localities, but spring appears as the season with better conditions for mosquito development. Maximum mean temperature was the most important variable in both localities. Malaria cases were influenced by the maximum mean temperature in El Oculto, while the mean temperature and humidity were significant in Aguas Blancas. In Aguas Blancas peaks of mosquito abundance and three months later, peaks of malaria cases were observed. The study reported here will help to increase knowledge about not only vectors and malaria seasonality but also their relationships with the climatic variables that influence their appearances and abundances. PMID:19152707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Crezee, Johannes; Franken, Nicolaas A.P.
2014-03-01
Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normalmore » tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment modalities.« less
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Cha, W.; Andrich, P.; Anderson, C. P.; Ulvestad, A.; Harder, R.; Fuoss, P. H.; Awschalom, D. D.; Heremans, F. J.
2017-02-01
We observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strain-sensitive images as a function of time/temperature. Up to temperatures of 800 °C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8 × 10 - 4 were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 °C that are consistent with graphitization of the surface, a result verified with ensemble Raman measurements.
Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi
2016-09-15
A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.
Thermoeconomical Productivity Analysis in Manufacturing Sector in Indonesia
NASA Astrophysics Data System (ADS)
Liana Aji, Widya; Purqon, Acep
2017-07-01
Negative temperature is a phenomenon interesting to study. In negative temperature regime, Boltzmann distribution is inverted where many particles occupy the higher energy states than the lower one. Iyetomi proposed a negative temperature case in Japan and applied it to the labor productivity distribution where the particle and energy state are replaced by worker and labor productivity, respectively. In this paper, we investigate the negative temperature concept to the labor productivity distribution in manufacturing sector in Indonesia which is divided by three industry groups according to BPS (Center of Statistical Agency of Indonesia), i. e. large and medium industries, small industry, and micro industry. For all industry groups, food industry possesses maximum productivity. The results represent that the negative temperature of large and medium industries is around ten times lower than negative temperature of micro industry indicating large and medium industries is lack demand of worker, while the negative temperature of small industry is among the temperature negative of large and medium industries and micro industry.
Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves
NASA Astrophysics Data System (ADS)
Ghebreegziabher, Amanuel T.
Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.
Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985-2014
NASA Astrophysics Data System (ADS)
Raggad, Bechir
2018-05-01
In this study, two statistical approaches were adopted in the analysis of observed maximum temperature data collected from fifteen stations over Saudi Arabia during the period 1985-2014. In the first step, the behavior of extreme temperatures was analyzed and their changes were quantified with respect to the Expert Team on Climate Change Detection Monitoring indices. The results showed a general warming trend over most stations, in maximum temperature-related indices, during the period of analysis. In the second step, stationary and non-stationary extreme-value analyses were conducted for the temperature data. The results revealed that the non-stationary model with increasing linear trend in its location parameter outperforms the other models for two-thirds of the stations. Additionally, the 10-, 50-, and 100-year return levels were found to change with time considerably and that the maximum temperature could start to reappear in the different T-year return period for most stations. This analysis shows the importance of taking account the change over time in the estimation of return levels and therefore justifies the use of the non-stationary generalized extreme value distribution model to describe most of the data. Furthermore, these last findings are in line with the result of significant warming trends found in climate indices analyses.
NASA Astrophysics Data System (ADS)
Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao
2017-12-01
The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.
Temperature tracking by North Sea benthic invertebrates in response to climate change.
Hiddink, Jan G; Burrows, Michael T; García Molinos, Jorge
2015-01-01
Climate change is a major threat to biodiversity and distributions shifts are one of the most significant threats to global warming, but the extent to which these shifts keep pace with a changing climate is yet uncertain. Understanding the factors governing range shifts is crucial for conservation management to anticipate patterns of biodiversity distribution under future anthropogenic climate change. Soft-sediment invertebrates are a key faunal group because of their role in marine biogeochemistry and as a food source for commercial fish species. However, little information exists on their response to climate change. Here, we evaluate changes in the distribution of 65 North Sea benthic invertebrate species between 1986 and 2000 by examining their geographic, bathymetric and thermal niche shifts and test whether species are tracking their thermal niche as defined by minimum, mean or maximum sea bottom (SBT) and surface (SST) temperatures. Temperatures increased in the whole North Sea with many benthic invertebrates showing north-westerly range shifts (leading/trailing edges as well as distribution centroids) and deepening. Nevertheless, distribution shifts for most species (3.8-7.3 km yr(-1) interquantile range) lagged behind shifts in both SBT and SST (mean 8.1 km yr(-1)), resulting in many species experiencing increasing temperatures. The velocity of climate change (VoCC) of mean SST accurately predicted both the direction and magnitude of distribution centroid shifts, while maximum SST did the same for contraction of the trailing edge. The VoCC of SBT was not a good predictor of range shifts. No good predictor of expansions of the leading edge was found. Our results show that invertebrates need to shift at different rates and directions to track the climate velocities of different temperature measures, and are therefore lagging behind most temperature measures. If these species cannot withstand a change in thermal habitat, this could ultimately lead to a drop in benthic biodiversity. © 2014 John Wiley & Sons Ltd.
A new thermal model for bone drilling with applications to orthopaedic surgery.
Lee, JuEun; Rabin, Yoed; Ozdoganlar, O Burak
2011-12-01
This paper presents a new thermal model for bone drilling with applications to orthopaedic surgery. The new model combines a unique heat-balance equation for the system of the drill bit and the chip stream, an ordinary heat diffusion equation for the bone, and heat generation at the drill tip, arising from the cutting process and friction. Modeling of the drill bit-chip stream system assumes an axial temperature distribution and a lumped heat capacity effect in the transverse cross-section. The new model is solved numerically using a tailor-made finite-difference scheme for the drill bit-chip stream system, coupled with a classic finite-difference method for the bone. The theoretical investigation addresses the significance of heat transfer between the drill bit and the bone, heat convection from the drill bit to the surroundings, and the effect of the initial temperature of the drill bit on the developing thermal field. Using the new model, a parametric study on the effects of machining conditions and drill-bit geometries on the resulting temperature field in the bone and the drill bit is presented. Results of this study indicate that: (1) the maximum temperature in the bone decreases with increased chip flow; (2) the transient temperature distribution is strongly influenced by the initial temperature; (3) the continued cooling (irrigation) of the drill bit reduces the maximum temperature even when the tip is distant from the cooled portion of the drill bit; and (4) the maximum temperature increases with increasing spindle speed, increasing feed rate, decreasing drill-bit diameter, increasing point angle, and decreasing helix angle. The model is expected to be useful in determination of optimum drilling conditions and drill-bit geometries. Copyright © 2011. Published by Elsevier Ltd.
Role of resolution in regional climate change projections over China
NASA Astrophysics Data System (ADS)
Shi, Ying; Wang, Guiling; Gao, Xuejie
2017-11-01
This paper investigates the sensitivity of projected future climate changes over China to the horizontal resolution of a regional climate model RegCM4.4 (RegCM), using RCP8.5 as an example. Model validation shows that RegCM performs better in reproducing the spatial distribution and magnitude of present-day temperature, precipitation and climate extremes than the driving global climate model HadGEM2-ES (HadGEM, at 1.875° × 1.25° degree resolution), but little difference is found between the simulations at 50 and 25 km resolutions. Comparison with observational data at different resolutions confirmed the added value of the RCM and finer model resolutions in better capturing the probability distribution of precipitation. However, HadGEM and RegCM at both resolutions project a similar pattern of significant future warming during both winter and summer, and a similar pattern of winter precipitation changes including dominant increase in most areas of northern China and little change or decrease in the southern part. Projected precipitation changes in summer diverge among the three models, especially over eastern China, with a general increase in HadGEM, little change in RegCM at 50 km, and a mix of increase and decrease in RegCM at 25 km resolution. Changes of temperature-related extremes (annual total number of daily maximum temperature > 25 °C, the maximum value of daily maximum temperature, the minimum value of daily minimum temperature in the three simulations especially in the two RegCM simulations are very similar to each other; so are the precipitation-related extremes (maximum consecutive dry days, maximum consecutive 5-day precipitation and extremely wet days' total amount). Overall, results from this study indicate a very low sensitivity of projected changes in this region to model resolution. While fine resolution is critical for capturing the spatial variability of the control climate, it may not be as important for capturing the climate response to homogeneous forcing (in this case greenhouse gas concentration changes).
[Temporal and spatial variation of MODIS vegetation indices in Hunan Province].
Lin, Hui; Xiong, Yu-Jiu; Wan, Ling-Feng; Mo, Deng-Kui; Sun, Hua
2007-03-01
Based on MODIS images and by using the algorithm of maximum value composite (MVC), the monthly vegetation indices (VIs) in 2005 in Hunan Province were obtained. Through the analysis of the MODIS VIs, Hunan Province was divided into six districts to describe the spatial distribution of the VIs, and by using the monthly mean temperature and rainfall data collected from 5 climatic monitoring stations in this province, the temporal variation of the VIs was analyzed. The results showed that the spatial distribution of MODIS VIs was positively correlated with vegetation cover, and appeared regional characteristics. The MODIS VIs varied with season, and the curves of their monthly mean values were downwards opening quadratic parabolas, with the maximum appeared in July. The value of MODIS EVI was smaller than that of MODIS NDVI. MODIS VI was mainly affected by monthly mean temperature, but this effect was decreased with decreasing latitude. The variation pattern of MODIS EVI was more apparent than that of MODIS NDVI, i. e. , the quadratic parabola of MODIS EVI was smoother, going gradually from minimum to maximum and then going down, while that of MODIS NDVI had tiny fluctuations on both sides of the maximum point.
NASA Astrophysics Data System (ADS)
Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.
2017-08-01
Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.
Oh, Sukhoon; Ryu, Yeun-Chul; Carluccio, Giuseppe; Sica, Christopher T.; Collins, Christopher M.
2013-01-01
Purpose Compare numerically-simulated and experimentally-measured temperature increase due to Specific energy Absorption Rate (SAR) from radiofrequency fields. Methods Temperature increase induced in both a phantom and in the human forearm when driving an adjacent circular surface coil was mapped using the proton resonance frequency shift technique of Magnetic Resonance (MR) thermography. The phantom and forearm were also modeled from MR image data, and both SAR and temperature change as induced by the same coil were simulated numerically. Results The simulated and measured temperature increase distributions were generally in good agreement for the phantom. The relative distributions for the human forearm were very similar, with the simulations giving maximum temperature increase about 25% higher than measured. Conclusion Although a number of parameters and uncertainties are involved, it should be possible to use numerical simulations to produce reasonably accurate and conservative estimates of temperature distribution to ensure safety in MR imaging. PMID:23804188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-05-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-04-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M
2017-05-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
County-Level Climate Uncertainty for Risk Assessments: Volume 25 Appendix X - Forecast Sea Ice Age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-05-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
County-Level Climate Uncertainty for Risk Assessments: Volume 27 Appendix Z - Forecast Ridging Rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
County-Level Climate Uncertainty for Risk Assessments: Volume 17 Appendix P - Forecast Soil Moisture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-05-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
County-Level Climate Uncertainty for Risk Assessments: Volume 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
Development of a High Temperature Heater using an Yttria Stabilized Zirconia Cored Brick Matrix
NASA Technical Reports Server (NTRS)
Smith, K. W.; Decoursin, D. G.
1971-01-01
The Ames pilot heater is a ceramic regenerative heater that provides high temperature air for aerodynamic and combustion experiments. The development of this heater to provide a heat storage bed with temperature capability of about 4600 R is described. A bed was designed and installed having cored brick elements of yttria-stabilized zirconia. The bed dimensions were 14 inches in diameter by 10 feet high. The thermal stress limitations of the bed were studied and maximum air flow rates based upon these limits were established. A combustion reheat system was designed and installed to provide the necessary control over the bed temperature distribution. The revised heater system was successfully operated at a maximum bed temperature of 4600 R. The successful operation demonstrated that yttria-stabilized zirconia cored brick can satisfy the high temperature-long duration requirement for storage heater applications.
NASA Astrophysics Data System (ADS)
Dhorde, Amit G.; Korade, Mahendra S.; Dhorde, Anargha A.
2017-10-01
Earth surface temperatures are changing worldwide together with the changes in the extreme temperatures. The present study investigates trends and variations of monthly maximum and minimum temperatures and their effects on seasonal fluctuations at different climatological stations of Maharashtra and Karnataka states of India. Trend analysis was performed on annual and seasonal mean maximum temperature (TMAX) and mean minimum temperature (TMIN) for the period 1969 to 2006. During the last 38 years, an increase in annual TMAX and TMIN has occurred. At most of the locations, the increase in TMAX was faster than the TMIN, resulting in an increase in diurnal temperature range. At the same time, annual mean temperature (TM) showed a significant increase over the study area. Percentiles were used to identify extreme temperature indices. An increase in occurrence of warm extremes was observed at southern locations, and cold extremes increased over the central and northeastern part of the study area. Occurrences of cold wave conditions have decreased rapidly compared to heat wave conditions.
NASA Astrophysics Data System (ADS)
Yang, Chao; Wu, Wei; Wu, Shu-Cheng; Liu, Hong-Bin; Peng, Qing
2014-02-01
Aroma types of flue-cured tobacco (FCT) are classified into light, medium, and heavy in China. However, the spatial distribution of FCT aroma types and the relationships among aroma types, chemical parameters, and climatic variables were still unknown at national scale. In the current study, multi-year averaged chemical parameters (total sugars, reducing sugars, nicotine, total nitrogen, chloride, and K2O) of FCT samples with grade of C3F and climatic variables (mean, minimum and maximum temperatures, rainfall, relative humidity, and sunshine hours) during the growth periods were collected from main planting areas across China. Significant relationships were found between chemical parameters and climatic variables ( p < 0.05). A spatial distribution map of FCT aroma types were produced using support vector machine algorithms and chemical parameters. Significant differences in chemical parameters and climatic variables were observed among the three aroma types based on one-way analysis of variance ( p < 0.05). Areas with light aroma type had significantly lower values of mean, maximum, and minimum temperatures than regions with medium and heavy aroma types ( p < 0.05). Areas with heavy aroma type had significantly lower values of rainfall and relative humidity and higher values of sunshine hours than regions with light and medium aroma types ( p < 0.05). The output produced by classification and regression trees showed that sunshine hours, rainfall, and maximum temperature were the most important factors affecting FCT aroma types at national scale.
Hruszkewycz, S. O.; Cha, W.; Andrich, P.; ...
2017-02-14
Here, we observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strain-sensitive images as a function of time/temperature. Up to temperatures of 800 °C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8 × 10 –4 were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 °C that are consistent with graphitization of the surface, a result verified withmore » ensemble Raman measurements.« less
Effects of temperature distribution on boundary layer stability for a circular cone at Mach 10
NASA Astrophysics Data System (ADS)
Rigney, Jeffrey M.
A CFD analysis was conducted on a circular cone at 3 degrees angle of attack at Mach 10 using US3D and STABL 3D to determine the effect of wall temperature on the stability characteristics that lead to laminar-to-turbulent transition. Wall temperature distributions were manipulated while all other flow inputs and geometric qualities were held constant. Laminar-to-turbulent transition was analyzed for isothermal and adiabatic wall conditions, a simulated short-duration wind tunnel case, and several hot-nose temperature distributions. For this study, stability characteristics include maximum N-factor growth and the corresponding frequency range, disturbance spatial amplification rate and the corresponding modal frequency, and stability neutral point location. STABL 3D analysis indicates that temperature distributions typical of those in short-duration hypersonic wind tunnels do not result in any significant difference on the stability characteristics, as compared to an isothermal wall boundary condition. Hypothetical distributions of much greater temperatures at and past the nose tip do show a trend of dampening of second-mode disturbances, most notably on the leeward ray. The most pronounced differences existed between the isothermal and adiabatic cases.
Boundary effects in a quasi-two-dimensional driven granular fluid.
Smith, N D; Smith, M I
2017-12-01
The effect of a confining boundary on the spatial variations in granular temperature of a driven quasi-two-dimensional layer of particles is investigated experimentally. The radial drop in the relative granular temperature ΔT/T exhibits a maximum at intermediate particle numbers which coincides with a crossover from kinetic to collisional transport of energy. It is also found that at low particle numbers, the distributions of radial velocities are increasingly asymmetric as one approaches the boundary. The radial and tangential granular temperatures split, and in the tails of the radial velocity distribution there is a higher population of fast moving particles traveling away rather than towards the boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.
The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary con- ditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045–2054 and 2085–2094) are compared with a historical decade (1995–2004). Probabilitymore » density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Finally, using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5–10 times per year in most CONUS and ≥ 95°F days will increase by 1–2 months by the end of the century.« less
Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; ...
2017-11-20
The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary con- ditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045–2054 and 2085–2094) are compared with a historical decade (1995–2004). Probabilitymore » density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Finally, using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5–10 times per year in most CONUS and ≥ 95°F days will increase by 1–2 months by the end of the century.« less
NASA Astrophysics Data System (ADS)
Salleh, Nur Hanim Mohd; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Saad, Ahmad Ramli; Sulaiman, Husna Mahirah; Ahmad, Wan Muhamad Amir W.
2014-07-01
Polynomial regression is used to model a curvilinear relationship between a response variable and one or more predictor variables. It is a form of a least squares linear regression model that predicts a single response variable by decomposing the predictor variables into an nth order polynomial. In a curvilinear relationship, each curve has a number of extreme points equal to the highest order term in the polynomial. A quadratic model will have either a single maximum or minimum, whereas a cubic model has both a relative maximum and a minimum. This study used quadratic modeling techniques to analyze the effects of environmental factors: temperature, relative humidity, and rainfall distribution on the breeding of Aedes albopictus, a type of Aedes mosquito. Data were collected at an urban area in south-west Penang from September 2010 until January 2011. The results indicated that the breeding of Aedes albopictus in the urban area is influenced by all three environmental characteristics. The number of mosquito eggs is estimated to reach a maximum value at a medium temperature, a medium relative humidity and a high rainfall distribution.
Cook, N J; Bench, C J; Liu, T; Chabot, B; Schaefer, A L
2018-01-01
An automated method of estimating the spatial distribution of piglets within a pen was used to assess huddling behaviour under normal conditions and during a febrile response to vaccination. The automated method was compared with a manual assessment of clustering activity. Huddling behaviour was partly related to environmental conditions and clock time such that more huddling occurred during the night and at lower ambient air temperatures. There were no positive relationships between maximum pig temperatures and environmental conditions, suggesting that the narrow range of air temperatures in this study was not a significant factor for pig temperature. Spatial distribution affected radiated pig temperature measurements by IR thermography. Higher temperatures were recorded in groups of animals displaying huddling behaviour. Huddling behaviour was affected by febrile responses to vaccination with increased huddling occurring 3 to 8 h post-vaccination. The automated method of assessing spatial distribution from an IR image successfully identified periods of huddling associated with a febrile response, and to changing environmental temperatures. Infrared imaging could be used to quantify temperature and behaviour from the same images.
NASA Astrophysics Data System (ADS)
Masocha, Mhosisi; Dube, Timothy; Maziva, Tendai
2018-06-01
Encosternum delegorguei spinola (edible stink bugs) is renowned for its high protein and contribution to the local economies of the people in Africa. Although many studies have evaluated the economic and nutritional importance of E. delegorguei, little is known about its geographic distribution and habitat yet the insects are an important source of protein and money for many people in Southern Africa. In this study maximum entropy model was used to predict the probability of presence of E. delegorguei in southern Zimbabwe. The environmental factors governing its geographic distribution in Zimbabwe were also evaluated. Presence/absence data were selected along thirty-five randomly selected transects. The climatic and topographic variables used to predict the distribution of E. delegorguei were: maximum temperature of the warmest month; minimum temperature of the coldest month; the normalised difference vegetation index (NDVI); altitude; slope; and aspect. It was found that E. delegorguei is most likely to occur on steep slopes with high NDVI located at an altitude ranging of 856 and 1450 m above sea level. These suitable habitats are characterised by mild temperatures ranging from 17 °C to 28 °C. These results are in agreement with previous studies indicating that E. delegorguei is sensitive to temperature, as well as tree cover and may contribute towards conserving its habitat, which is being fragmented by anthropogenic disturbance.
Gilman, Sarah E; Wethey, David S; Helmuth, Brian
2006-06-20
Global climate change is expected to have broad ecological consequences for species and communities. Attempts to forecast these consequences usually assume that changes in air or water temperature will translate into equivalent changes in a species' organismal body temperature. This simple change is unlikely because an organism's body temperature is determined by a complex series of interactions between the organism and its environment. Using a biophysical model, validated with 5 years of field observations, we examined the relationship between environmental temperature change and body temperature of the intertidal mussel Mytilus californianus over 1,600 km of its geographic distribution. We found that at all locations examined simulated changes in air or water temperature always produced less than equivalent changes in the daily maximum mussel body temperature. Moreover, the magnitude of body temperature change was highly variable, both within and among locations. A simulated 1 degrees C increase in air or water temperature raised the maximum monthly average of daily body temperature maxima by 0.07-0.92 degrees C, depending on the geographic location, vertical position, and temperature variable. We combined these sensitivities with predicted climate change for 2100 and calculated increases in monthly average maximum body temperature of 0.97-4.12 degrees C, depending on location and climate change scenario. Thus geographic variation in body temperature sensitivity can modulate species' experiences of climate change and must be considered when predicting the biological consequences of climate change.
Water mist injection in oil shale retorting
Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.
1980-07-30
Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.
Enhancing Thermoelectric Performance Using Nonlinear Transport Effects
NASA Astrophysics Data System (ADS)
Jiang, Jian-Hua; Imry, Yoseph
2017-06-01
We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.
Behavior of a tapered hub flange with a bolted flat cover in transient temperature field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawa, T.; Nakagomi, Y.; Hirose, T.
1996-02-01
When bolted flange connections with gaskets are used in mechanical structures such as pipe connections, bolted covers of casks, and pressure vessels in nuclear and chemical plants and cylinder heads in internal combustion engines, they are usually subjected to transient thermal conditions. An experimental and analytical study was made on a bolted connection subjected to thermal loading. The connection consists of an aluminum alloy tapered hub flange and a flat cover, including a gasket fastened by steel bolts and nuts. Temperature distribution in the connection was measured with thermocouples, and the axial bolt force, the maximum bolt stress, and themore » hub stress were measured by strain gages under a thermal condition that the inner surface of the flanges was heated and the outer surfaces of the flanges and the cover were held at room temperature. Finite difference analysis was made to obtain the temperature distributions in the connection due to a transient thermal condition. This paper demonstrates the method for obtaining an increment in axial bolt force and the maximum bolt stress. In all cases, the analytical results were fairly consistent with the experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chih-Yuan, E-mail: chen6563@gmail.com; Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Yang, Jer-Ren, E-mail: jryang@ntu.edu.tw
Nanometer-sized carbides that precipitated in a Ti–Mo bearing steel after interrupted continuous cooling in a temperature range of 620–700 °C with or without hot deformation were investigated by field-emission-gun transmission electron microscopy. The nanometer-sized carbides were identified as randomly homogeneous precipitation carbides and interphase precipitation carbides coexisting in the ferrite matrix. It is found that this dual precipitation morphology of carbides in the steel leads to the non-uniform mechanical properties of individual ferrite grains. Vickers hardness data mainly revealed that, in the specimens cooled at a rate of 0.5 °C/s without hot deformation, the range of Vickers hardness distribution wasmore » 230–340 HV 0.1 when cooling was interrupted at 680 °C, and 220–360 HV 0.1 when cooling was interrupted at 650 °C. For the specimens cooled at a rate of 0.5 °C/s with hot deformation, the range of Vickers hardness distribution was 290–360 HV 0.1 when cooling was interrupted at 680 °C, and 280–340 HV 0.1 when cooling was interrupted at 650 °C. Therefore, a narrower range of hardness distribution occurred in the specimens that underwent hot deformation and were then cooled with a lower interrupted cooling temperature. The uniform precipitation status in each ferrite grain can lead to ferrite grains with a narrower Vickers hardness distribution. On the other hand, interrupted cooling produced a maximum Vickers hardness of 320–330 HV 0.1 for the hot deformed specimens and 290–310 HV 0.1 for the non-deformed specimens with cooling interrupted in the temperature range of 660–670 °C. The maximum Vickers hardness obtained in such a temperature range can be ascribed to the full precipitation of the microalloying elements in the supersaturated ferrite matrix with a tiny size (~ 4–7 nm). - Highlight: • The interrupted continuous cooling temperatures were 620 °C to 700 °C. • Precipitation carbides with dual dispersed morphology coexisted in the matrix. • Heavy hot deformation narrowed the range of hardness distribution. • Full precipitation of nano-sized carbides achieved maximum hardening.« less
Capturing Characteristics of Atmospheric Refractivity Using Observations and Modeling Approaches
2015-06-01
Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Electromagnetic wave...INTENTIONALLY LEFT BLANK v ABSTRACT Electromagnetic wave propagation is sensitive to gradients of refractivity derived from atmospheric temperature...evaporation duct profiles is then run through AREPS to calculate the propagation loss of EM energy along the path of varying geometric and transmitter setups
Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan
NASA Astrophysics Data System (ADS)
Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun
2018-06-01
Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.
NASA Astrophysics Data System (ADS)
Gómez, I.; Estrela, M.
2009-09-01
Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).
A PV view of the zonal mean distribution of temperature and wind in the extratropical troposphere
NASA Technical Reports Server (NTRS)
Sun, De-Zheng; Lindzen, Richard S.
1994-01-01
The dependence of the temperature and wind distribution of the zonal mean flow in the extratropical troposphere on the gradient of pontential vorticity along isentropes is examined. The extratropics here refer to the region outside the Hadley circulation. Of particular interest is whether the distribution of temperature and wind corresponding to a constant potential vorticity (PV) along isentropes resembles the observed, and the implications of PV homogenization along isentropes for the role of the tropics. With the assumption that PV is homogenized along isentropes, it is found that the temperature distribution in the extratropical troposphere may be determined by a linear, first-order partial differential equation. When the observed surface temperature distribution and tropical lapse rate are used as the boundary conditions, the solution of the equation is close to the observed temperature distribution except in the upper troposphere adjacent to the Hadley circulation, where the troposphere with no PV gradient is considerably colder. Consequently, the jet is also stronger. It is also found that the meridional distribution of the balanced zonal wind is very sensitive to the meridional distribution of the tropopause temperature. The result may suggest that the requirement of the global momentum balance has no practical role in determining the extratropical temperature distribution. The authors further investigated the sensitivity of the extratropical troposphere with constant PV along isentropes to changes in conditions at the tropical boundary (the edge of the Hadley circulation). It is found that the temperature and wind distributions in the extratropical troposphere are sensitive to the vertical distribution of PV at the tropical boundary. With a surface distribution of temperature that decreases linearly with latitude, the jet maximum occurs at the tropical boundary and moves with it. The overall pattern of wind distribution is not sensitive to the change of the position of the tropical boundary. Finally, the temperature and wind distributions of an extratropical troposphere with a finite PV gradient are calculated. It is found that the larger the isentropic PV gradient, the warmer the troposphere and the weaker the jet.
Isotropic–Nematic Phase Transitions in Gravitational Systems. II. Higher Order Multipoles
NASA Astrophysics Data System (ADS)
Takács, Ádám; Kocsis, Bence
2018-04-01
The gravitational interaction among bodies orbiting in a spherical potential leads to the rapid relaxation of the orbital planes’ distribution, a process called vector resonant relaxation. We examine the statistical equilibrium of this process for a system of bodies with similar semimajor axes and eccentricities. We extend the previous model of Roupas et al. by accounting for the multipole moments beyond the quadrupole, which dominate the interaction for radially overlapping orbits. Nevertheless, we find no qualitative differences between the behavior of the system with respect to the model restricted to the quadrupole interaction. The equilibrium distribution resembles a counterrotating disk at low temperature and a spherical structure at high temperature. The system exhibits a first-order phase transition between the disk and the spherical phase in the canonical ensemble if the total angular momentum is below a critical value. We find that the phase transition erases the high-order multipoles, i.e., small-scale structure in angular momentum space, most efficiently. The system admits a maximum entropy and a maximum energy, which lead to the existence of negative temperature equilibria.
Modeling and optimization of an enhanced battery thermal management system in electric vehicles
NASA Astrophysics Data System (ADS)
Li, Mao; Liu, Yuanzhi; Wang, Xiaobang; Zhang, Jie
2018-06-01
This paper models and optimizes an air-based battery thermal management system (BTMS) in a battery module with 36 battery lithium-ion cells. A design of experiments is performed to study the effects of three key parameters (i.e., mass flow rate of cooling air, heat flux from the battery cell to the cooling air, and passage spacing size) on the battery thermal performance. Three metrics are used to evaluate the BTMS thermal performance, including (i) the maximum temperature in the battery module, (ii) the temperature uniformity in the battery module, and (iii) the pressure drop. It is found that (i) increasing the total mass flow rate may result in a more non-uniform distribution of the passage mass flow rate among passages, and (ii) a large passage spacing size may worsen the temperature uniformity on the battery walls. Optimization is also performed to optimize the passage spacing size. Results show that the maximum temperature difference of the cooling air in passages is reduced from 23.9 to 2.1 K by 91.2%, and the maximum temperature difference among the battery cells is reduced from 25.7 to 6.4 K by 75.1%.
Koseki, Shigenobu; Isobe, Seiichiro
2005-10-25
The growth of pathogenic bacteria Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on iceberg lettuce under constant and fluctuating temperatures was modelled in order to estimate the microbial safety of this vegetable during distribution from the farm to the table. Firstly, we examined pathogen growth on lettuce at constant temperatures, ranging from 5 to 25 degrees C, and then we obtained the growth kinetic parameters (lag time, maximum growth rate (micro(max)), and maximum population density (MPD)) using the Baranyi primary growth model. The parameters were similar to those predicted by the pathogen modelling program (PMP), with the exception of MPD. The MPD of each pathogen on lettuce was 2-4 log(10) CFU/g lower than that predicted by PMP. Furthermore, the MPD of pathogens decreased with decreasing temperature. The relationship between mu(max) and temperature was linear in accordance with Ratkowsky secondary model as was the relationship between the MPD and temperature. Predictions of pathogen growth under fluctuating temperature used the Baranyi primary microbial growth model along with the Ratkowsky secondary model and MPD equation. The fluctuating temperature profile used in this study was the real temperature history measured during distribution from the field at harvesting to the retail store. Overall predictions for each pathogen agreed well with observed viable counts in most cases. The bias and root mean square error (RMSE) of the prediction were small. The prediction in which mu(max) was based on PMP showed a trend of overestimation relative to prediction based on lettuce. However, the prediction concerning E. coli O157:H7 and Salmonella spp. on lettuce greatly overestimated growth in the case of a temperature history starting relatively high, such as 25 degrees C for 5 h. In contrast, the overall prediction of L. monocytogenes under the same circumstances agreed with the observed data.
2014-01-01
Background Numerous studies have reported on the associations between ambient temperatures and mortality. However, few multi-city studies have been conducted in developing countries including China. This study aimed to examine the association between high temperature and mortality outcomes in four cities with different climatic characteristics in China to identify the most vulnerable population, detect the threshold temperatures, and provide scientific evidence for public health policy implementations to respond to challenges from extreme heat. Methods A semi-parametric generalized additive model (GAM) with a Poisson distribution was used to analyze the impacts of the daily maximum temperature over the threshold on mortality after controlling for covariates including time trends, day of the week (DOW), humidity, daily temperature range, and outdoor air pollution. Results The temperature thresholds for all-cause mortality were 29°C, 35°C, 33°C and 34°C for Harbin, Nanjing, Shenzhen and Chongqing, respectively. After adjusting for potential confounders including air pollution, strong associations between daily maximum temperature and daily mortality from all-cause, cardiovascular, endocrine and metabolic outcomes, and particularly diabetes, were observed in different geographical cities, with increases of 3.2-5.5%, 4.6-7.5% and 12.5-31.9% (with 14.7-29.2% in diabetes), respectively, with each 1°C increment in the daily maximum temperature over the threshold. A stronger temperature-associated mortality was detected in females compared to males. Additionally, both the population over 55 years and younger adults aged 30 to 54 years reported significant heat-mortality associations. Conclusions Extreme heat is becoming a huge threat to public health and human welfare due to the strong temperature-mortality associations in China. Climate change with increasing temperatures may make the situation worse. Relevant public health strategies and an early extreme weather and health warning system should be developed and improved at an early stage to prevent and reduce the health risks due to extreme weather and climate change in China, given its huge population, diverse geographic distribution and unbalanced socioeconomic status with various climatic characteristics. PMID:25103276
Li, Yonghong; Cheng, Yibin; Cui, Guoquan; Peng, Chaoqiong; Xu, Yan; Wang, Yulin; Liu, Yingchun; Liu, Jingyi; Li, Chengcheng; Wu, Zhen; Bi, Peng; Jin, Yinlong
2014-08-07
Numerous studies have reported on the associations between ambient temperatures and mortality. However, few multi-city studies have been conducted in developing countries including China. This study aimed to examine the association between high temperature and mortality outcomes in four cities with different climatic characteristics in China to identify the most vulnerable population, detect the threshold temperatures, and provide scientific evidence for public health policy implementations to respond to challenges from extreme heat. A semi-parametric generalized additive model (GAM) with a Poisson distribution was used to analyze the impacts of the daily maximum temperature over the threshold on mortality after controlling for covariates including time trends, day of the week (DOW), humidity, daily temperature range, and outdoor air pollution. The temperature thresholds for all-cause mortality were 29°C, 35°C, 33°C and 34°C for Harbin, Nanjing, Shenzhen and Chongqing, respectively. After adjusting for potential confounders including air pollution, strong associations between daily maximum temperature and daily mortality from all-cause, cardiovascular, endocrine and metabolic outcomes, and particularly diabetes, were observed in different geographical cities, with increases of 3.2-5.5%, 4.6-7.5% and 12.5-31.9% (with 14.7-29.2% in diabetes), respectively, with each 1°C increment in the daily maximum temperature over the threshold. A stronger temperature-associated mortality was detected in females compared to males. Additionally, both the population over 55 years and younger adults aged 30 to 54 years reported significant heat-mortality associations. Extreme heat is becoming a huge threat to public health and human welfare due to the strong temperature-mortality associations in China. Climate change with increasing temperatures may make the situation worse. Relevant public health strategies and an early extreme weather and health warning system should be developed and improved at an early stage to prevent and reduce the health risks due to extreme weather and climate change in China, given its huge population, diverse geographic distribution and unbalanced socioeconomic status with various climatic characteristics.
NASA Astrophysics Data System (ADS)
Obuchi, Tomoyuki; Cocco, Simona; Monasson, Rémi
2015-11-01
We consider the problem of learning a target probability distribution over a set of N binary variables from the knowledge of the expectation values (with this target distribution) of M observables, drawn uniformly at random. The space of all probability distributions compatible with these M expectation values within some fixed accuracy, called version space, is studied. We introduce a biased measure over the version space, which gives a boost increasing exponentially with the entropy of the distributions and with an arbitrary inverse `temperature' Γ . The choice of Γ allows us to interpolate smoothly between the unbiased measure over all distributions in the version space (Γ =0) and the pointwise measure concentrated at the maximum entropy distribution (Γ → ∞ ). Using the replica method we compute the volume of the version space and other quantities of interest, such as the distance R between the target distribution and the center-of-mass distribution over the version space, as functions of α =(log M)/N and Γ for large N. Phase transitions at critical values of α are found, corresponding to qualitative improvements in the learning of the target distribution and to the decrease of the distance R. However, for fixed α the distance R does not vary with Γ which means that the maximum entropy distribution is not closer to the target distribution than any other distribution compatible with the observable values. Our results are confirmed by Monte Carlo sampling of the version space for small system sizes (N≤ 10).
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
Causes and Control of Corrosion in Buried-Conduit Heat Distribution Systems
1991-07-01
rubber , and foamed plastics such as polyurethanic anld phenolic) nominally contain 10 to 500 ppmn soluble chloide.’ Further, insulation can also become...pressure ratings. A maximum P X T limitation exists for all gasket materials. For example, the maximum temperature and pressure ratings for an EPDM ...ethylene propylene diene monomer) rubber material are, respectively, 3() ’F and 150 psi. The material, however, cannot be expected to perform
Microgravity nucleation and particle coagulation experiments support
NASA Technical Reports Server (NTRS)
Lilleleht, L. U.; Ferguson, F. T.
1987-01-01
A preliminary model for diffusion between concentric hemispheres was adapted to the cylindrical geometry of a microgravity nucleation apparatus, and extended to include the effects of radiation and conduction through the containment walls. Computer programs were developed to calculate first the temperature distribution and then the evolving concentration field using a finite difference formulation of the transient diffusion and radiation processes. The following estimations are made: (1) it takes approximately 35 minutes to establish a steady temperature field; (2) magnesium vapors released into the argon environment at the steady temperature distribution will reach a maximum supersaturation ratio of approximately 10,000 in the 20-second period at a distance of 15 cm from the source of vapors; and (3) approximately 750W electrical power will be required to maintain steady operating temperatures within the chamber.
Isotope Induced Proton Ordering in Partially Deuterated Aspirin
NASA Astrophysics Data System (ADS)
Schiebel, P.; Papoular, R. J.; Paulus, W.; Zimmermann, H.; Detken, A.; Haeberlen, U.; Prandl, W.
1999-08-01
We report the nuclear density distribution of partially deuterated aspirin, C8H5O4-CH2D, at 300 and 15 K, as determined by neutron diffraction coupled with maximum entropy method image reconstruction. While fully protonated and fully deuterated methyl groups in aspirin are delocalized at low temperatures due to quantum mechanical tunneling, we provide here direct evidence that in aspirin- CH2D at 15 K the methyl hydrogens are localized, while randomly distributed over three sites at 300 K. This is the first observation by diffraction methods of low-temperature isotopic ordering in condensed matter.
Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes
Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.
2013-01-01
Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow species to redistribute locally as climate changes.
Evaluating Changes in Distributions of Summer Stream Temperature following Forest Harvest
NASA Astrophysics Data System (ADS)
Johnson, S. L.; Reiter, M.; Jones, J.
2016-12-01
Stream temperature heat budgets are influenced by numerous processes; changes in incoming radiation have been shown to be a major driver of increased stream temperatures. Maximum daily temperature is a commonly used metric for evaluating stream temperature responses to land use. However, single metrics are not able to fully represent the magnitude and duration of temperatures experienced by instream biota. Analyses that make use of all the data: a) more accurately characterize shifts in summer stream temperature regimes, b) quantify potential exposure to critical and non-critical temperatures, and c) help researchers and managers to better understand stream temperature responses to manipulation of streamside and watershed vegetation. Here we examine the distributions of summer stream temperatures before and after forest harvest in the Trask River Watershed Study, in northwestern Oregon. We studied 15 small streams for 10 years; half of the sites had their catchments clearcut harvested in 2012. Four sites had no buffers, with some leave trees, and three sites had 25 ft buffers on both sides. Temperatures were measured during at 30min intervals. Even though these streams are generally cold, we observed high spatial and temporal variation among sites and years, with some sites having normally distributed temperatures, while others showed skewed distributions and long tails. Forest cover, aspect or elevation were not good predictors of temperature distributions pre-harvest. Preliminary analyses using travel time of the stream water suggest that sites with hyporheic flows had narrower distributions of temperatures. After harvest, sites without buffers showed the greatest shift in distributions of temperatures and widest temperature ranges, while sites with narrow buffers showed little change. We are exploring the implications of shifts in temperature distributions before and after harvest against the known thermal tolerances for the dominant resident species (Ascaphus truei; tailed frog tadpoles) in these headwater streams. Rarely in forested mountain landscapes do stream temperatures exceed lethal thresholds for cold water biota; with these analyses, we are quantifying chronic exposure, which could subsequently result in shifts in phenology or community structure.
Orienting Arc Lamps for Longest Life
NASA Technical Reports Server (NTRS)
Kiss, J.
1985-01-01
Temperature distribution strongly affects performance. Tests on floodlights for Space Shuttle payload bay show useful life of metal halide dc arc lamp prolonged by mounting "anode down" and wiring for maximum heat conduction away from electrodes. Anode-down configuration, anode and cathode temperatures stabilize at 333 degrees and 313 degrees C, respectively, after 1 hour of operation. Temperatures both below limit for quartz-to-metal seals, and lamps able to withstand a 2,000-hour life test with satisfactory light output at end.
Temperatures and Stresses on Hollow Blades For Gas Turbines
NASA Technical Reports Server (NTRS)
Pollmann, Erich
1947-01-01
The present treatise reports on theoretical investigations and test-stand measurements which were carried out in the BMW Flugmotoren GMbH in developing the hollow blade for exhaust gas turbines. As an introduction the temperature variation and the stress on a turbine blade for a gas temperature of 900 degrees and circumferential velocities of 600 meters per second are discussed. The assumptions onthe heat transfer coefficients at the blade profile are supported by tests on an electrically heated blade model. The temperature distribution in the cross section of a blade Is thoroughly investigated and the temperature field determined for a special case. A method for calculation of the thermal stresses in turbine blades for a given temperature distribution is indicated. The effect of the heat radiation on the blade temperature also is dealt with. Test-stand experiments on turbine blades are evaluated, particularly with respect to temperature distribution in the cross section; maximum and minimum temperature in the cross section are ascertained. Finally, the application of the hollow blade for a stationary gas turbine is investigated. Starting from a setup for 550 C gas temperature the improvement of the thermal efficiency and the fuel consumption are considered as well as the increase of the useful power by use of high temperatures. The power required for blade cooling is taken into account.
Numerical simulation of thermal stress distributions in Czochralski-grown silicon crystals
NASA Astrophysics Data System (ADS)
Kumar, M. Avinash; Srinivasan, M.; Ramasamy, P.
2018-04-01
Numerical simulation is one of the important tools in the investigation and optimization of the single-crystal silicon grown by the Czochralski (Cz) method. A 2D steady global heat transfer model was used to investigate the temperature distribution and the thermal stress distributions at particular crystal position during the Cz growth process. The computation determines the thermal stress such as von Mises stress and maximum shear stress distribution along grown crystal and shows possible reason for dislocation formation in the Cz-grown single-crystal silicon.
viral abundance distribution in deep waters of the Northern of South China Sea
NASA Astrophysics Data System (ADS)
He, Lei; Yin, Kedong
2017-04-01
Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.
High-temperature responses of North American cacti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.D.; Didden-Zopfy, B.; Nobel, P.S.
1984-04-01
High-temperature tolerances of 14 species of North American cacti were investigated. A reduction in the proportion of chlorenchyma cells taking up a vital stain (neutral red) and reduced nocturnal acid accumulation were used as indicators of high-temperature damage. All species tolerated relatively high tissue temperatures, the mean maximum tolerance being 64/sup 0/C, with an absolute maximum of 69/sup 0/ for two species of ferocactus. Such tissue tolerances to high temperature may be unsurpassed in vascular plants. Morphological features can affect tissue temperatures. Specifically, thin-stemmed species such as the cylindropuntias attain lower maximum temperatures under identical microclimatic conditions than do moremore » massive species; they also tend to be less tolerant of high-temperature stress. Stem diameter changes of three species of columnar ceriod cacti along a Sonoran Desert latitudinal transect were previously attributed to adaptation to progressively colder temperatures northward. Such changes can also be interpreted as a morphological adaptation to high temperatures, particularly in the southern Sonoran Desert. Interspecific differences in high-temperature tolerance may account for distributional differences among other species. Acclimation of high-temperature tolerances in response to increasing day/night air temperatures was observed in all 14 species, especially at higher growh temperatures. From 40/sup 0/ day/30/sup 0/ night to 50/sup 0//40/sup 0/, the tolerable tissue temperatures increased an average of 6/sup 0/. Half-times for the acclimation shifts were 1-3d. Although cacti attain extremely high tissue temperatures in desert habitats, tolerance of high temperatures and pronounced acclimation potential allow them to occur in some of the hottest habitats in North America.« less
Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs
Youchison, Dennis L.
2015-07-30
In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flowmore » perturbations caused by a 30 MW/m 2 off-normal heat flux applied over a 25 mm 2 area in addition to the nominal 5 MW/m 2 applied over a 75 mm 2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm 2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.« less
Maximum-Entropy Inference with a Programmable Annealer
Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.
2016-01-01
Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition. PMID:26936311
Atlantic salmon show capability for cardiac acclimation to warm temperatures.
Anttila, Katja; Couturier, Christine S; Overli, Oyvind; Johnsen, Arild; Marthinsen, Gunnhild; Nilsson, Göran E; Farrell, Anthony P
2014-06-24
Increases in environmental temperature predicted to result from global warming have direct effects on performance of ectotherms. Moreover, cardiac function has been observed to limit the tolerance to high temperatures. Here we show that two wild populations of Atlantic salmon originating from northern and southern extremes of its European distribution have strikingly similar cardiac responses to acute warming when acclimated to common temperatures, despite different local environments. Although cardiac collapse starts at 21-23 °C with a maximum heart rate of ~150 beats per min (bpm) for 12 °C-acclimated fish, acclimation to 20 °C considerably raises this temperature (27.5 °C) and maximum heart rate (~200 bpm). Only minor population differences exist and these are consistent with the warmer habitat of the southern population. We demonstrate that the considerable cardiac plasticity discovered for Atlantic salmon is largely independent of natural habitat, and we propose that observed cardiac plasticity may aid salmon to cope with global warming.
NASA Technical Reports Server (NTRS)
Cihlar, J. (Principal Investigator)
1980-01-01
Progress in the compilation and analysis of airborne and ground data to determine the relationship between the maximum surface minus maximum air temperature differential (delta Tsa) and available water (PAW) is reported. Also, results of an analysis of HCMM images to determine the effect of cloud cover on the availability of HCMM-type data are presented. An inverse relationship between delta Tsa and PAW is indicated along with stable delta Tsa vs. PAW distributions for fully developed canopies. Large variations, both geographical and diurnal, in the cloud cover images are reported. The average monthly daytime cloud cover fluctuated between 40 and 60 percent.
Paknejad, Masih; Abdullah, Amir; Azarhoushang, Bahman
2017-11-01
Temperature history and distribution of steel workpiece (X20Cr13) was measured by a high tech infrared camera under ultrasonic assisted dry creep feed up grinding. For this purpose, a special experimental setup was designed and fabricated to vibrate only workpiece along two directions by a high power ultrasonic transducer. In this study, ultrasonic effects with respect to grinding parameters including depth of cut (a e ), feed speed (v w ), and cutting speed (v s ) has been investigated. The results indicate that the ultrasonic vibration has considerable effect on reduction of temperature, depth of thermal damage of workpiece and width of temperature contours. Maximum temperature reduction of 25.91% was reported at condition of v s =15m/s, v w =500mm/min, a e =0.4mm in the presence of ultrasonic vibration. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat
2017-02-01
Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.
NASA Astrophysics Data System (ADS)
Mojahedi, Mahdi; Shekoohinejad, Hamidreza
2018-02-01
In this paper, temperature distribution in the continuous and pulsed end-pumped Nd:YAG rod crystal is determined using nonclassical and classical heat conduction theories. In order to find the temperature distribution in crystal, heat transfer differential equations of crystal with consideration of boundary conditions are derived based on non-Fourier's model and temperature distribution of the crystal is achieved by an analytical method. Then, by transferring non-Fourier differential equations to matrix equations, using finite element method, temperature and stress of every point of crystal are calculated in the time domain. According to the results, a comparison between classical and nonclassical theories is represented to investigate rupture power values. In continuous end pumping with equal input powers, non-Fourier theory predicts greater temperature and stress compared to Fourier theory. It also shows that with an increase in relaxation time, crystal rupture power decreases. Despite of these results, in single rectangular pulsed end-pumping condition, with an equal input power, Fourier theory indicates higher temperature and stress rather than non-Fourier theory. It is also observed that, when the relaxation time increases, maximum amounts of temperature and stress decrease.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1999-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
Vidal-García, Francisca; Serio-Silva, Juan Carlos
2011-07-01
We developed a potential distribution model for the tropical rain forest species of primates of southern Mexico: the black howler monkey (Alouatta pigra), the mantled howler monkey (Alouatta palliata), and the spider monkey (Ateles geoffroyi). To do so, we applied the maximum entropy algorithm from the ecological niche modeling program MaxEnt. For each species, we used occurrence records from scientific collections, and published and unpublished sources, and we also used the 19 environmental coverage variables related to precipitation and temperature from WorldClim to develop the models. The predicted distribution of A. pigra was strongly associated with the mean temperature of the warmest quarter (23.6%), whereas the potential distributions of A. palliata and A. geoffroyi were strongly associated with precipitation during the coldest quarter (52.2 and 34.3% respectively). The potential distribution of A. geoffroyi is broader than that of the Alouatta spp. The areas with the greatest probability of presence of A. pigra and A. palliata are strongly associated with riparian vegetation, whereas the presence of A. geoffroyi is more strongly associated with the presence of rain forest. Our most significant contribution is the identification of areas with a high probability of the presence of these primate species, which is information that can be applied to planning future studies and then establishing criteria for the creation of areas to primate conservation in Mexico.
Methane Emissions from Small Lakes: Dynamics and Distribution Patterns
NASA Astrophysics Data System (ADS)
Encinas Fernández, J. M.; Peeters, F.; Hofmann, H.
2014-12-01
The dynamics of dissolved methane were measured during three years in five small lakes with different surface areas and maximum water depth. We analyze and compare the horizontal and vertical distribution of dissolved methane within these lakes during different time periods: the stratified period in summer, the autumn overturn, the winter mixing period, and the period from spring to summer stratification. The horizontal distributions of dissolved methane within the lakes suggest that the relation between surface area and maximum water-depth is a key factor determining the heterogeneity of methane concentrations in the surface water. During most of the year littoral zones are the main source of the methane that is emitted to the atmosphere except for the overturn periods. The vertical distributions of temperature and dissolved oxygen within the different seasons affect the vertical distribution of dissolved methane and thus the methane budget within lakes. Anoxic conditions in the hypolimnion and the intense mixing during overturn periods are key factors for the overall annual methane emissions from lakes.
NASA Astrophysics Data System (ADS)
Weinert, Michael; Mathis, Moritz; Kröncke, Ingrid; Neumann, Hermann; Pohlmann, Thomas; Reiss, Henning
2016-06-01
In the marine realm, climate change can affect a variety of physico-chemical properties with wide-ranging biological effects, but the knowledge of how climate change affects benthic distributions is limited and mainly restricted to coastal environments. To project the response of benthic species of a shelf sea (North Sea) to the expected climate change, the distributions of 75 marine benthic species were modelled and the spatial changes in distribution were projected for 2099 based on modelled bottom temperature and salinity changes using the IPCC scenario A1B. Mean bottom temperature was projected to increase between 0.15 and 5.4 °C, while mean bottom salinity was projected to moderately increase by 1.7. The spatial changes in species distribution were modelled with Maxent and the direction and extent of these changes were assessed. The results showed a latitudinal northward shift for 64% of the species (maximum 109 km; brittle star Ophiothrix fragilis) and a southward shift for 36% (maximum 101 km; hermit crab Pagurus prideaux and the associated cloak anemone Adamsia carciniopados; 105 km). The relatively low rates of distributional shifts compared to fish or plankton species were probably influenced by the regional topography. The environmental gradients in the central North Sea along the 50 m depth contour might act as a 'barrier', possibly resulting in a compression of distribution range and hampering further shifts to the north. For 49 species this resulted in a habitat loss up to 100%, while only 11 species could benefit from the warming in terms of habitat gain. Particularly the benthic communities of the southern North Sea, where the strongest temperature increase was projected, would be strongly affected by the distributional changes, since key species showed northward shifts and high rates of habitat loss, with potential ramifications for the functioning of the ecosystem.
NASA Astrophysics Data System (ADS)
Coene, A.; Crevecoeur, G.; Dupré, L.; Vaes, P.
2013-06-01
In recent years, magnetic nanoparticles (MNPs) have gained increased attention due to their superparamagnetic properties. These properties allow the development of innovative biomedical applications such as targeted drug delivery and tumour heating. However, these modalities lack effective operation arising from the inaccurate quantification of the spatial MNP distribution. This paper proposes an approach for assessing the one-dimensional (1D) MNP distribution using electron paramagnetic resonance (EPR). EPR is able to accurately determine the MNP concentration in a single volume but not the MNP distribution throughout this volume. A new approach that exploits the solution of inverse problems for the correct interpretation of the measured EPR signals, is investigated. We achieve reconstruction of the 1D distribution of MNPs using EPR. Furthermore, the impact of temperature control on the reconstructed distributions is analysed by comparing two EPR setups where the latter setup is temperature controlled. Reconstruction quality for the temperature-controlled setup increases with an average of 5% and with a maximum increase of 13% for distributions with relatively lower iron concentrations and higher resolutions. However, these measurements are only a validation of our new method and form no hard limits.
Temperature dosimetry using MR relaxation characteristics of poly(vinyl alcohol) cryogel (PVA-C).
Lukas, L A; Surry, K J; Peters, T M
2001-11-01
Hyperthermic therapy is being used for a variety of medical treatments, such as tumor ablation and the enhancement of radiation therapy. Research in this area requires a tool to record the temperature distribution created by a heat source, similar to the dosimetry gels used in radiation therapy to record dose distribution. Poly(vinyl alcohol) cryogel (PVA-C) is presented as a material capable of recording temperature distributions between 45 and 70 degrees C, with less than a 1 degrees C error. An approximately linear, positive relationship between MR relaxation times and applied temperature is demonstrated, with a maximum of 16.3 ms/ degrees C change in T(1) and 10.2 ms/ degrees C in T(2) for a typical PVA-C gel. Applied heat reduces the amount of cross-linking in PVA-C, which is responsible for a predictable change in T(1) and T(2) times. Temperature distributions in PVA-C volumes may be determined by matching MR relaxation times across the volumes to calibration values produced in samples subjected to known temperatures. Factors such as thermotolerance, perfusion effects, and thermal conductivity of PVA-C are addressed for potentially extending this method to modeling thermal doses in tissue. Copyright 2001 Wiley-Liss, Inc.
Durante, Leonardo M; Cruz, Igor C S; Lotufo, Tito M C
2018-01-01
Palythoa caribaeorum is a zoanthid often dominant in shallow rocky environments along the west coast of the Atlantic Ocean, from the tropics to the subtropics. This species has high environmental tolerance and is a good space competitor in reef environments. Considering current and future scenarios in the global climate regime, this study aimed to model and analyze the distribution of P. caribaeorum , generating maps of potential distribution for the present and the year 2100. The distribution was modeled using maximum entropy (Maxent) based on 327 occurrence sites retrieved from the literature. Calcite concentration, maximum chlorophyll- a concentration, salinity, pH, and temperature range yielded a model with the smallest Akaike information criterion (2649.8), and were used in the present and future distribution model. Data from the HadGEM2-ES climate model were used to generate the projections for the year 2100. The present distribution of P. caribaeorum shows that parts of the Brazilian coast, Caribbean Sea, and Florida are suitable regions for the species, as they are characterized by high salinity and pH and small temperature variation. An expansion of the species' distribution was forecast northward under mild climate scenarios, while a decrease of suitable areas was forecast in the south. In the climate scenario with the most intense changes, P. caribaeorum would lose one-half of its suitable habitats, including the northernmost and southernmost areas of its distribution. The Caribbean Sea and northeastern Brazil, as well as other places under the influence of coastal upwellings, may serve as potential havens for this species.
Cruz, Igor C.S.
2018-01-01
Palythoa caribaeorum is a zoanthid often dominant in shallow rocky environments along the west coast of the Atlantic Ocean, from the tropics to the subtropics. This species has high environmental tolerance and is a good space competitor in reef environments. Considering current and future scenarios in the global climate regime, this study aimed to model and analyze the distribution of P. caribaeorum, generating maps of potential distribution for the present and the year 2100. The distribution was modeled using maximum entropy (Maxent) based on 327 occurrence sites retrieved from the literature. Calcite concentration, maximum chlorophyll-a concentration, salinity, pH, and temperature range yielded a model with the smallest Akaike information criterion (2649.8), and were used in the present and future distribution model. Data from the HadGEM2-ES climate model were used to generate the projections for the year 2100. The present distribution of P. caribaeorum shows that parts of the Brazilian coast, Caribbean Sea, and Florida are suitable regions for the species, as they are characterized by high salinity and pH and small temperature variation. An expansion of the species’ distribution was forecast northward under mild climate scenarios, while a decrease of suitable areas was forecast in the south. In the climate scenario with the most intense changes, P. caribaeorum would lose one-half of its suitable habitats, including the northernmost and southernmost areas of its distribution. The Caribbean Sea and northeastern Brazil, as well as other places under the influence of coastal upwellings, may serve as potential havens for this species. PMID:29785350
Research status of geothermal resources in China
NASA Astrophysics Data System (ADS)
Zhang, Lincheng; Li, Guang
2017-08-01
As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.
Dynamics of upper mantle rocks decompression melting above hot spots under continental plates
NASA Astrophysics Data System (ADS)
Perepechko, Yury; Sorokin, Konstantin; Sharapov, Victor
2014-05-01
Numeric 2D simulation of the decompression melting above the hot spots (HS) was accomplished under the following conditions: initial temperature within crust mantle section was postulated; thickness of the metasomatized lithospheric mantle is determined by the mantle rheology and position of upper asthenosphere boundary; upper and lower boundaries were postulated to be not permeable and the condition for adhesion and the distribution of temperature (1400-2050°C); lateral boundaries imitated infinity of layer. Sizes and distribution of lateral points, their symmetry, and maximum temperature varied between the thermodynamic condition for existences of perovskite - majorite transition and its excess above transition temperature. Problem was solved numerically a cell-vertex finite volume method for thermo hydrodynamic problems. For increasing convergence of iterative process the method of lower relaxation with different value of relaxation parameter for each equation was used. The method of through calculation was used for the increase in the computing rate for the two-layered upper mantle - lithosphere system. Calculated region was selected as 700 x (2100-4900) km. The time step for the study of the asthenosphere dynamics composed 0.15-0.65 Ma. The following factors controlling the sizes and melting degree of the convective upper mantle, are shown: a) the initial temperature distribution along the section of upper mantleb) sizes and the symmetry of HS, c) temperature excess within the HS above the temperature on the upper and lower mantle border TB=1500-2000oC with 5-15% deviation but not exceed 2350oC. It is found, that appearance of decompression melting with HS presence initiate primitive mantle melting at TB > of 1600oC. Initial upper mantle heating influence on asthenolens dimensions with a constant HS size is controlled mainly by decompression melting degree. Thus, with lateral sizes of HS = 400 km the decompression melting appears at TB > 1600oC and HS temperature (THS) > 1900oC asthenolens size ~700 km. When THS = of 2000oC the maximum melting degree of the primitive mantle is near 40%. An increase in the TB > 1900oC the maximum degree of melting could rich 100% with the same size of decompression melting zone (700 km). We examined decompression melting above the HS having LHS = 100 km - 780 km at a TB 1850- 2100oC with the thickness of lithosphere = 100 km.It is shown that asthenolens size (Lln) does not change substantially: Lln=700 km at LHS = of 100 km; Lln= 800 km at LHS = of 780 km. In presence of asymmetry of large HS the region of advection is developed above the HS maximum with the formation of asymmetrical cell. Influence of lithospheric plate thicknesses on appearance and evolution of asthenolens above the HS were investigated for the model stepped profile for the TB ≤ of 1750oS with Lhs = 100km and maximum of THS =2350oC. With an increase of TB the Lln difference beneath lithospheric steps is leveled with retention of a certain difference to melting degrees and time of the melting appearance a top of the HS. RFBR grant 12-05-00625.
Variability of tropical days over Greece within the second half of the twentieth century
NASA Astrophysics Data System (ADS)
Nastos, P. T.; Matzarakis, A. P.
2008-06-01
Tropical days (TD) are defined as the days with a maximum air temperature greater than 30.0 °C. It is clear that the study of TD includes also the absolute maximum temperatures, which are of great interest for the description of a region’s climate. These days are considered as very hot, and they particularly are of great importance not only for bioclimatology and applied sciences, but also for the individuals who are sensitive in the heat-stress. The regime of the TD in Greece is the focus of this study. The aim is to demonstrate their changes from decade to decade, for the time period 1960-2000. For this study, the Annual Number of Tropical Days (ANTD) recorded by each of the 26 meteorological stations of National Meteorological Service, which are uniformly distributed in the Hellenic peninsula, was calculated and analysed. In terms of quantifying the conditions in a humanbiometeorological manner, the thermal index Physiological Equivalent Temperature (PET) and the consecutive days for Athens have been included in this study. The trends of the TD for each station were analysed through the Mann-Kendall technique, while the spatial distribution per decade reveals the regions with change (increase or decrease) in the ANTD during the examined period. Two characteristic periods of change for the ANTD appear in the majority of the meteorological stations in Greece. The first period (1955-1976) is determined by a negative trend, which is statistically significant (c.l. 95%), for adequate stations. In the period between 1976 and 2000, the increase in the ANTD and the maximum temperature exceed the corresponding maximum that appeared in the beginning of the 1950s for several of the examined meteorological stations. The human-biometeorological analysis shows that the consecutive days of PET > 35 °C have had a positive trend in the last two decades of the last century.
Simulations and Experiments of the Nonisothermal Forging Process of a Ti-6Al-4V Impeller
NASA Astrophysics Data System (ADS)
Prabhu, T. Ram
2016-09-01
In the present study, a nonisothermal precision forging process of a Ti-6Al-4V first-stage impeller for the gas turbine engine was simulated using the finite element software. The simulation results such as load requirements, damage, velocity field, stress, strain, and temperature distributions are discussed in detail. Simulations predicted the maximum load requirement of about 80 MN. The maximum temperature loss was observed at the contour surface regions. The center and contour regions are the high-strained regions in the part. To validate the model, forging experiments mimicking simulations were performed in the α + β phases region (930 °C). The selected locations of the part were characterized for tensile properties at 27 and 200 °C, hardness, microstructure, grain size, and the amount of primary α phase based on the strain distribution results. The soundness of the forged part was verified using fluorescent penetrant test (Mil Std 2175 Grade A) and ultrasonic test (AMS 2630 class A1). From the experimental results, it was found that the variations in the hardness, tensile properties at room, and elevated temperature are not significant. The microstructure, grain size, and primary α phase content are nearly same.
NASA Astrophysics Data System (ADS)
Greco, Angelo; Cao, Dongpu; Jiang, Xi; Yang, Hong
2014-07-01
A simplified one-dimensional transient computational model of a prismatic lithium-ion battery cell is developed using thermal circuit approach in conjunction with the thermal model of the heat pipe. The proposed model is compared to an analytical solution based on variable separation as well as three-dimensional (3D) computational fluid dynamics (CFD) simulations. The three approaches, i.e. the 1D computational model, analytical solution, and 3D CFD simulations, yielded nearly identical results for the thermal behaviours. Therefore the 1D model is considered to be sufficient to predict the temperature distribution of lithium-ion battery thermal management using heat pipes. Moreover, a maximum temperature of 27.6 °C was predicted for the design of the heat pipe setup in a distributed configuration, while a maximum temperature of 51.5 °C was predicted when forced convection was applied to the same configuration. The higher surface contact of the heat pipes allows a better cooling management compared to forced convection cooling. Accordingly, heat pipes can be used to achieve effective thermal management of a battery pack with confined surface areas.
Enhanced pinning in superconducting thin films with graded pinning landscapes
NASA Astrophysics Data System (ADS)
Motta, M.; Colauto, F.; Ortiz, W. A.; Fritzsche, J.; Cuppens, J.; Gillijns, W.; Moshchalkov, V. V.; Johansen, T. H.; Sanchez, A.; Silhanek, A. V.
2013-05-01
A graded distribution of antidots in superconducting a-Mo79Ge21 thin films has been investigated by magnetization and magneto-optical imaging measurements. The pinning landscape has maximum density at the sample border, decreasing linearly towards the center. Its overall performance is noticeably superior than that for a sample with uniformly distributed antidots: For high temperatures and low fields, the critical current is enhanced, whereas the region of thermomagnetic instabilities in the field-temperature diagram is significantly suppressed. These findings confirm the relevance of graded landscapes on the enhancement of pinning efficiency, as recently predicted by Misko and Nori [Phys. Rev. B 85, 184506 (2012)].
In situ measurements of plasma properties during gas-condensation of Cu nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koten, M. A., E-mail: mark.koten@gmail.com; Shield, J. E.; Voeller, S. A.
2016-03-21
Since the mean, standard deviation, and modality of nanoparticle size distributions can vary greatly between similar input conditions (e.g., power and gas flow rate), plasma diagnostics were carried out in situ using a double-sided, planar Langmuir probe to determine the effect the plasma has on the heating of clusters and their final size distributions. The formation of Cu nanoparticles was analyzed using cluster-plasma physics, which relates the processes of condensation and evaporation to internal plasma properties (e.g., electron temperature and density). Monitoring these plasma properties while depositing Cu nanoparticles with different size distributions revealed a negative correlation between average particlemore » size and electron temperature. Furthermore, the modality of the size distributions also correlated with the modality of the electron energy distributions. It was found that the maximum cluster temperature reached during plasma heating and the material's evaporation point regulates the growth process inside the plasma. In the case of Cu, size distributions with average sizes of 8.2, 17.3, and 24.9 nm in diameter were monitored with the Langmuir probe, and from the measurements made, the cluster temperatures for each deposition were calculated to be 1028, 1009, and 863 K. These values are then compared with the onset evaporation temperature of particles of this size, which was estimated to be 1059, 1068, and 1071 K. Thus, when the cluster temperature is too close to the evaporation temperature, less particle growth occurs, resulting in the formation of smaller particles.« less
Wiesbaden AB, Germany, Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F
1972-08-16
temperatures, extreme maximum and miinimum temperatures, psychrometric sunmmary of wet-bulb temperature depression versusI dry-bulb temperature._means...14 5.1 033 MA us3 s , 33 *,~76, ~ ____ 6 5 410-0 U~i 4 6 it" 4! - 4 0 4 fl? 2 . a354,,-S 35W 11-44*0 - 3 5i f 4F1 5fu 7. 1,i 2 62M e a * _ 601_...body of the -ummary consists of a bivariate percentage frequeucy distribution of wet-bulb depression in 17 classes anread horisontally; by 2-degree
Jacobsen, Svein; Stauffer, Paul R
2007-02-21
The total thermal dose that can be delivered during hyperthermia treatments is frequently limited by temperature heterogeneities in the heated tissue volume. Reliable temperature information on the heated area is thus vital for the optimization of clinical dosimetry. Microwave radiometry has been proposed as an accurate, quick and painless temperature sensing technique for biological tissue. Advantages include the ability to sense volume-averaged temperatures from subsurface tissue non-invasively, rather than with a limited set of point measurements typical of implanted temperature probes. We present a procedure to estimate the maximum tissue temperature from a single radiometric brightness temperature which is based on a numerical simulation of 3D tissue temperature distributions induced by microwave heating at 915 MHz. The temperature retrieval scheme is evaluated against errors arising from unknown variations in thermal, electromagnetic and design model parameters. Whereas realistic deviations from base values of dielectric and thermal parameters have only marginal impact on performance, pronounced deviations in estimated maximum tissue temperature are observed for unanticipated variations of the temperature or thickness of the bolus compartment. The need to pay particular attention to these latter applicator construction parameters in future clinical implementation of the thermometric method is emphasized.
NASA Astrophysics Data System (ADS)
Jacobsen, Svein; Stauffer, Paul R.
2007-02-01
The total thermal dose that can be delivered during hyperthermia treatments is frequently limited by temperature heterogeneities in the heated tissue volume. Reliable temperature information on the heated area is thus vital for the optimization of clinical dosimetry. Microwave radiometry has been proposed as an accurate, quick and painless temperature sensing technique for biological tissue. Advantages include the ability to sense volume-averaged temperatures from subsurface tissue non-invasively, rather than with a limited set of point measurements typical of implanted temperature probes. We present a procedure to estimate the maximum tissue temperature from a single radiometric brightness temperature which is based on a numerical simulation of 3D tissue temperature distributions induced by microwave heating at 915 MHz. The temperature retrieval scheme is evaluated against errors arising from unknown variations in thermal, electromagnetic and design model parameters. Whereas realistic deviations from base values of dielectric and thermal parameters have only marginal impact on performance, pronounced deviations in estimated maximum tissue temperature are observed for unanticipated variations of the temperature or thickness of the bolus compartment. The need to pay particular attention to these latter applicator construction parameters in future clinical implementation of the thermometric method is emphasized.
García-Vázquez, Uri; D’Addario, Maristella
2018-01-01
Land use and climate change are affecting the abundance and distribution of species. The Trans-Mexican Volcanic Belt (TMVB) is a very diverse region due to geological history, geographic position, and climate. It is also one of the most disturbed regions in Mexico. Reptiles are particularly sensitive to environmental changes due to their low dispersal capacity and thermal ecology. In this study, we define the important environmental variables (considering climate, topography, and land use) and potential distribution (present and future) of the five Thamnophis species present in TMVB. To do so, we used the maximum entropy modeling software (MAXENT). First, we modeled to select the most important variables to explain the distribution of each species, then we modeled again using only the most important variables and projected these models to the future considering a middle-moderate climate change scenario (rcp45), and land use and vegetation variables for the year 2050 (generated according to land use changes that occurred between years 2002 and 2011). Arid vegetation had an important negative effect on habitat suitability for all species, and minimum temperature of the coldest month was important for four of the five species. Thamnophis cyrtopsis was the species with the lowest tolerance to minimum temperatures. The maximum temperature of the warmest month was important for T. scalaris and T. cyrtopsis. Low percentages of agriculture were positive for T. eques and T. melanogaster but, at higher values, agriculture had a negative effect on habitat suitability for both species. Elevation was the most important variable to explain T. eques and T. melanogaster potential distribution while distance to Abies forests was the most important variable for T. scalaris and T. scaliger. All species had a high proportion of their potential distribution in the TMVB. However, according to our models, all Thamnophis species will experience reductions in their potential distribution in this region. T. scalaris will suffer the biggest reduction because this species is limited by high temperatures and will not be able to shift its distribution upward, as it is already present in the highest elevations of the TMVB. PMID:29666767
Natural convection heat transfer in water near its density maximum
NASA Astrophysics Data System (ADS)
Yen, Yin-Chao
1990-12-01
This monograph reviews and summarizes to date the experimental and analytical results on the effect of water density near its maximum convection, transient flow and temperature structure characteristics: (1) in a vertical enclosure; (2) in a vertical annulus; (3) between horizontal concentric cylinders; (4) in a square enclosure; (5) in a rectangular enclosure; (6) in a horizontal layer; (7) in a circular confined melt layer; and (8) in bulk water during melting. In a layer of water containing a maximum density temperature of 4 C, the onset of convection (the critical number) is found not to be a constant value as in the classical normal fluid but one that varies with the imposed thermal and hydrodynamic boundaries. In horizontal layers, a nearly constant temperature zone forms and continuously expands between the warm and cold boundaries. A minimum heat transfer exists in most of the geometries studied and, in most cases, can be expressed in terms of a density distribution parameter. The effect of this parameter on a cells formation, disappearance and transient structure is discussed, and the effect of split boundary flow on heat transfer is presented.
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.; Hoegy, W. R.; Chen, T. C.
1993-01-01
Using a comprehensive ionospheric data set comprised of all available ion composition and plasma temperature measurements from satellites, the vertical distributions of ion composition and plasma temperatures are defined from middle latitudes up into the polar cap for summer conditions for altitudes below about 1200 km. These data are sufficient to allow a numerical estimation of the latitudinal variation of the light ion outflows from within the plasmasphere to the polar wind regions. The altitude at which significant light ion outflow begins is found to be lower during solar minimum conditions than during solar maximum. The H(+) outward speeds are of the order of 1 km/s near 1100 km during solar maximum but attain several km/s speeds for solar minimum. He(+) shows a similar altitude development of flow but attains polar cap speeds much less than 1 km/s at altitudes below 1100 km, particularly under solar maximum conditions. Outward flows are also found in the topside F-region for noontime magnetic flux tubes within the plasmasphere.
Hudson, Thomas J; Looi, Thomas; Pichardo, Samuel; Amaral, Joao; Temple, Michael; Drake, James M; Waspe, Adam C
2018-02-01
Magnetic resonance-guided focused ultrasound (MRgFUS) is emerging as a treatment alternative for osteoid osteoma and painful bone metastases. This study describes a new simulation platform that predicts the distribution of heat generated by MRgFUS when applied to bone tissue. Calculation of the temperature distribution was performed using two mathematical models. The first determined the propagation and absorption of acoustic energy through each medium, and this was performed using a multilayered approximation of the Rayleigh integral method. The ultrasound energy distribution derived from these equations could then be converted to heat energy, and the second mathematical model would then use the heat generated to determine the final temperature distribution using a finite-difference time-domain application of Pennes' bio-heat transfer equation. Anatomical surface geometry was generated using a modified version of a mesh-based semiautomatic segmentation algorithm, and both the acoustic and thermodynamic models were calculated using a parallelized algorithm running on a graphics processing unit (GPU) to greatly accelerate computation time. A series of seven porcine experiments were performed to validate the model, comparing simulated temperatures to MR thermometry and assessing spatial, temporal, and maximum temperature accuracy in the soft tissue. The parallelized algorithm performed acoustic and thermodynamic calculations on grids of over 10 8 voxels in under 30 s for a simulated 20 s of heating and 40 s of cooling, with a maximum time per calculated voxel of less than 0.3 μs. Accuracy was assessed by comparing the soft tissue thermometry to the simulation in the soft tissue adjacent to bone using four metrics. The maximum temperature difference between the simulation and thermometry in a region of interest around the bone was measured to be 5.43 ± 3.51°C average absolute difference and a percentage difference of 16.7%. The difference in heating location resulted in a total root-mean-square error of 4.21 ± 1.43 mm. The total size of the ablated tissue calculated from the thermal dose approximation in the simulation was, on average, 67.6% smaller than measured from the thermometry. The cooldown was much faster in the simulation, where it decreased by 14.22 ± 4.10°C more than the thermometry in 40 s after sonication ended. The use of a Rayleigh-based acoustic model combined with a discretized bio-heat transfer model provided a rapid three-dimensional calculation of the temperature distribution through bone and soft tissue during MRgFUS application, and the parallelized GPU algorithm provided the computational speed that would be necessary for an intraoperative treatment planning software platform. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Sim, Jai Kyoung; Hyun, Jaeyub; Doh, Il; Ahn, Bongyoung; Kim, Yong Tae
2018-02-01
A thin-film resistance temperature detector (RTD) array is proposed to measure the temperature distribution inside a phantom. HIFU (high-intensity focused ultrasound) is a non-invasive treatment method using focused ultrasound to heat up a localized region, so it is important to measure the temperature distribution without affecting the ultrasonic field and heat conduction. The present 25 µm thick PI (polyimide) film is transparent not only to an ultrasonic field, because its thickness is much smaller than the wavelength of ultrasound, but also to heat conduction, owing to its negligible thermal mass compared to the phantom. A total of 33 RTDs consisting of Pt resistors and interconnection lines were patterned on a PI substrate using MEMS (microelectromechanical systems) technology, and a polymer phantom was fabricated with the film at the center. The expanded uncertainty of the RTDs was 0.8 K. In the experimental study using a 1 MHz HIFU transducer, the maximum temperature inside the phantom was measured as 70.1 °C just after a HIFU excitation of 6.4 W for 180 s. The time responses of the RTDs at different positions also showed the residual heat transfer inside the phantom after HIFU excitation. HIFU results with the phantom showed that a thin-film RTD array can measure the temperature distribution inside a phantom.
NASA Astrophysics Data System (ADS)
Lee, Hanjie; Pearlstein, Arne J.
2000-09-01
We present steady axisymmetric computations of solute distributions and radial segregation for vertical Bridgman growth of pyridine-doped benzene, a binary aromatic system with anisotropic solid-phase thermal conductivity, that serves as a model of solute transport in crystal growth of organic nonlinear optical materials. The radial variation of solid-phase mass fraction ( Cs) of pyridine, which is rejected at the growing interface, depends strongly on growth conditions. High growth velocities tend to increase Cs near the centerline, the ampoule wall, or both, and low growth velocities give more nearly uniform radial distributions. The maximum ampoule-wall temperature gradient also affects radial segregation, with convex-to-the-liquid interfaces at small temperature gradients being associated with radially monotonic Cs distributions, and ridged interfaces at higher gradients being associated with nonmonotonic distributions having maxima at the centerline and ampoule wall. Nonuniformity is strongly determined by both interface shape and the nature of the flow near the interface. Solute is transported down to the interface by a large toroidal vortex, and swept radially inward to the centerline by a second, flattened toroidal cell. When the interface is depressed at its junction with the ampoule wall, rejected solute accumulates in the overlying liquid, where convection is relatively weak, resulting in local solute enrichment of the solid. Computations at normal and zero gravity show that for two very similar interface shapes, a maximum in the radial solid-phase solute distribution at the ampoule wall is associated with the interface shape, while the maximum on the centerline is associated with sweeping of solute to the centerline by a vortical flow on the interface. We also show that radial solute segregation depends significantly on whether account is taken of the anisotropy of the solid-phase thermal conductivity. Finally, the computations provide guidance as to the minimum ampoule length required to produce an axially uniform solute distribution over at least part of the length of a boule.
NASA Astrophysics Data System (ADS)
Cortés, Joaquin; Valencia, Eliana
1997-07-01
Monte Carlo experiments are used to investigate the adsorption of argon on a heterogeneous solid with a periodic distribution of surface energy. A study is made of the relation between the adsorbate molecule's diameter and the distance between the sites of maximum surface energy on the critical temperature, the observed phase changes, and the commensurability of the surface phase structure determined in the simulation.
Water Resources Data for California, 1965; Part 2: Water Quality Records
1965-01-01
Water quality information is presented for chemical quality, fluvial sediment, and water temperatures. The chemical quality includes concentrations of individual dissolved constituents and certain properties or characteristics such as hardness, sodium-adsorption-ratio, specific conductance, and pH. Fluvial sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment and bed material. Water temperature data represent once-daily observations except for stations where a continuous temperature recorder furnishes information from which daily minimums and maximums are obtained.
Water Resources Data for California, 1966; Part 2: Water Quality Records
1967-01-01
Water-quality information is presented for chemical quality, fluvial sediment, and water temperatures. The chemical quality includes concentrations of individual dissolved constituents and certain properties or characteristics such as hardness, sodium-adsorption ratio, specific conductance, and pH. Fluvial-sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment and bed material. Water-temperature data represent once-daily observations except for stations where a continuous temperature recorder furnishes information from which daily minimums and maximums are obtained.
Spatial and temporal temperature distribution optimization for a geostationary antenna
NASA Technical Reports Server (NTRS)
Tsuyuki, G.; Miyake, R.
1992-01-01
The Geostationary Microwave Precipitation Radiometer antenna is considered and a thermal design analysis is performed to determine a design that would minimize on-orbit antenna temporal and spatial temperature gradients. The final design is based on an optically opaque radome which covered the antenna. The average orbital antenna temperature is found to be 9 C with maximum temporal and spatial variations of 34 C and 1 C, respectively. An independent thermal distortion analysis showed that this temporal variation would give an antenna figure error of 14 microns.
Thermal Analysis of ZPPR High Pu Content Stored Fuel
Solbrig, Charles W.; Pope, Chad L.; Andrus, Jason P.
2014-09-17
The Zero Power Physics Reactor (ZPPR) operated from April 18, 1969, until 1990. ZPPR operated at low power for testing nuclear reactor designs. This paper examines the temperature of Pu content ZPPR fuel while it is in storage. Heat is generated in the fuel due to Pu and Am decay and is a concern for possible cladding damage. Damage to the cladding could lead to fuel hydriding and oxidizing. A series of computer simulations were made to determine the range of temperatures potentially occuring in the ZPPR fuel. The maximum calculated fuel temperature is 292°C (558°F). Conservative assumptions in themore » model intentionally overestimate temperatures. The stored fuel temperatures are dependent on the distribution of fuel in the surrounding storage compartments, the heat generation rate of the fuel, and the orientation of fuel. Direct fuel temperatures could not be measured but storage bin doors, storage sleeve doors, and storage canister temperatures were measured. Comparison of these three temperatures to the calculations indicates that the temperatures calculated with conservative assumptions are, as expected, higher than the actual temperatures. The maximum calculated fuel temperature with the most conservative assumptions is significantly below the fuel failure criterion of 600°C (1,112°F).« less
Wang, Wei; Qiao, Qingli; Gao, Weiping; Wu, Jun
2014-12-01
We studied the influence of electrode array parameters on temperature distribution to the retina during the use of retinal prosthesis in order to avoid thermal damage to retina caused by long-term electrical stimulation. Based on real epiretinal prosthesis, a three-dimensional model of electrical stimulation for retina with 4 X 4 microelectrode array had been established using the finite element software (COMSOL Multiphysics). The steady-state temperature field of electrical stimulation of the retina was calculated, and the effects of the electrode parameters such as the distance between the electrode contacts, the materials and area of the electrode contact on temperature field were considered. The maximum increase in the retina steady temperature was about 0. 004 degrees C with practical stimulation current. When the distance between the electrode contacts was changed from 130 microm to 520 microm, the temperature was reduced by about 0.006 microC. When the contact radius was doubled from 130 microm to 260 microm, the temperature decrease was about 0.005 degrees C. It was shown that there were little temperature changes in the retina with a 4 x 4 epiretinal microelectrode array, reflecting the safety of electrical stimulation. It was also shown that the maximum temperature in the retina decreased with increasing the distance between the electrode contacts, as well as increasing the area of electrode contact. However, the change of the maximum temperature was very small when the distance became larger than the diameter of electrode contact. There was no significant difference in the effects of temperature increase among the different electrode materials. Rational selection of the distance between the electrode contacts and their area in electrode design can reduce the temperature rise induced by electrical stimulation.
Rodríguez-Castañeda, G; MacVean, C; Cardona, C; Hof, A R
2017-07-01
Factors limiting distribution range for most species are generally unknown regardless of whether they are native or invasive. We studied factors that could enable or restrict the distribution of two cosmopolitan invasive leafminer fly species, Liriomyza huidobrensis (Blanchard) and Liriomyza sativae (Blanchard) in their native niche. In order to test which ecological and environmental factors affect leafminer distribution we conducted thermal tolerance assays, sampled along elevation gradients and modeled species distribution. Findings from the field and rearing chambers showed a physiological restriction due to high temperatures for L. huidobrensis at 28-29 °C, above which adult emergence is compromised. We also found that maximum temperatures below 22 °C, typical of tropical highlands, favored L. huidobrensis. L. sativae was found across a wider temperature range (i.e., from 21 to 36 °C) in Guatemala. Our finding of a physiological threshold in temperature for L. huidobrensis may enable us to predict its invasive risk when combined with the environmental conditions at horticultural ports of entry and the global agricultural landscape. Further, it strengthens our predictions on shifts in distribution of the leafminer fly under future climate. We also found a temperature mediated competitive exclusion interaction between the two herbivore species, where L. sativae occurred at temperatures < 22 °C only in the absence of L. huidobrensis. We show that parasitoids had a negative effect on the leafminer flies, which varied with host plant. Finally, we show the importance of taking a multiaspect approach when investigating what limits distribution and invasiveness of a species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Code of Federal Regulations, 2010 CFR
2010-04-01
... temperature to partially or completely inactivate the naturally occurring enzymes and to effect other physical..., storage, and distribution. The maximum safe moisture level for a food is based on its water activity (aw... procedures or identify recommended equipment. (r) Water activity (aw) is a measure of the free moisture in a...
Code of Federal Regulations, 2011 CFR
2011-04-01
... temperature to partially or completely inactivate the naturally occurring enzymes and to effect other physical..., storage, and distribution. The maximum safe moisture level for a food is based on its water activity (aw... procedures or identify recommended equipment. (r) Water activity (aw) is a measure of the free moisture in a...
Minimum maximum temperature gradient coil design.
While, Peter T; Poole, Michael S; Forbes, Larry K; Crozier, Stuart
2013-08-01
Ohmic heating is a serious problem in gradient coil operation. A method is presented for redesigning cylindrical gradient coils to operate at minimum peak temperature, while maintaining field homogeneity and coil performance. To generate these minimaxT coil windings, an existing analytic method for simulating the spatial temperature distribution of single layer gradient coils is combined with a minimax optimization routine based on sequential quadratic programming. Simulations are provided for symmetric and asymmetric gradient coils that show considerable improvements in reducing maximum temperature over existing methods. The winding patterns of the minimaxT coils were found to be heavily dependent on the assumed thermal material properties and generally display an interesting "fish-eye" spreading of windings in the dense regions of the coil. Small prototype coils were constructed and tested for experimental validation and these demonstrate that with a reasonable estimate of material properties, thermal performance can be improved considerably with negligible change to the field error or standard figures of merit. © 2012 Wiley Periodicals, Inc.
Two-Flux Method for Transient Radiative Transfer in a Semitransparent Layer
NASA Technical Reports Server (NTRS)
Siegel, Robert
1996-01-01
The two-flux method was used to obtain transient solutions for a plane layer including internal reflections and scattering. The layer was initially at uniform temperature, and was heated or cooled by external radiation and convection. The two-flux equations were examined as a means for evaluating the radiative flux gradient in the transient energy equation. Comparisons of transient temperature distributions using the two-flux method were made with results where the radiative flux gradient was evaluated from the exact radiative transfer equations. Good agreement was obtained for optical thicknesses from 0.5 to 5 and for refractive indices of 1 and 2. Illustrative results obtained with the two-flux method demonstrate the effect of isotropic scattering coupled with changing the refractive index. For small absorption with large scattering the maximum layer temperature is increased when the refractive index is increased. For larger absorption the effect is opposite, and the maximum temperature decreases with increased refractive index .
Physical Limitations of Phosphor layer thickness and concentration for White LEDs.
Tan, Cher Ming; Singh, Preetpal; Zhao, Wenyu; Kuo, Hao-Chung
2018-02-05
Increasing phosphor layer thickness and concentration can enhance the lumen flux of white LED (W-LED). In this work, we found that increasing the phosphor layer thickness and concentration can increase its temperature, and there is also a maximum thickness and concentration beyond which their increase will not lead to lumen increase, but only temperature increase. Higher thickness and higher concentration also results in warm light instead of White light. The maximum thickness and concentration are found to be limited by the scattering of light rays with higher % decrease of blue light rays than the yellow light rays. The results obtained in this work can also be used to compute the temperature and thermo-mechanical stress distribution of an encapsulated LED, demonstrating its usefulness to the design of encapsulated LED packages. Simulation software like ANSYS and TracePro are used extensively to verify the root cause mechanisms.
Thermal analysis of the intact mandibular premolar: a finite element analysis.
Oskui, I Z; Ashtiani, M N; Hashemi, A; Jafarzadeh, H
2013-09-01
To obtain temperature distribution data through human teeth focusing on the pulp-dentine junction (PDJ). A three-dimensional tooth model was reconstructed using computer-aided design software from computed tomographic images. Subsequently, temperature distribution was numerically determined through the tooth for three different heat loads. Loading type I was equivalent to a 60° C mouth temperature for 1 s. Loading type II started with a 60° C mouth temperature, decreasing linearly to 37° C over 10 s. Loading type III repeated the pattern of type II in three consecutive cycles, with a 5 s resting time between cycles. The maximum temperatures of the pulp were 37.9° C, 39.0° C and 41.2° C for loading types I, II, and III, respectively. The largest temperature rise occurred with the cyclic loading, that is, type III. For the heat loads considered, the predicted peak temperatures at the PDJ were less than the reported temperature thresholds of irreversible pulpal damage. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum
NASA Astrophysics Data System (ADS)
Frezzotti, A.; Gibelli, L.; Lockerby, D. A.; Sprittles, J. E.
2018-05-01
Evaporation of a binary liquid into near-vacuum conditions has been studied using numerical solutions of a system of two coupled Enskog-Vlasov equations. Liquid-vapor coexistence curves have been mapped out for different liquid compositions. The evaporation process has been investigated at a range of liquid temperatures sufficiently lower than the critical one for the vapor not to significantly deviate from the ideal behavior. It is found that the shape of the distribution functions of evaporating atoms is well approximated by an anisotropic Maxwellian distribution with different characteristic temperatures for velocity components normal and parallel to the liquid-vapor interface. The anisotropy reduces as the evaporation temperature decreases. Evaporation coefficients are computed based on the separation temperature and the maximum concentration of the less volatile component close to the liquid-vapor interface. This choice leads to values which are almost constant in the simulation conditions.
Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012
Chen, Tianqi; Sarnat, Stefanie E.; Grundstein, Andrew J.; Winquist, Andrea
2017-01-01
Background: Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves’ impact on population morbidity, such as emergency department (ED) visits. Objectives: We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993–2012. Methods: Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of ≥2 consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945–2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Results: Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03–1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02–1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00–1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Conclusions: Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44 PMID:28599264
Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012.
Chen, Tianqi; Sarnat, Stefanie E; Grundstein, Andrew J; Winquist, Andrea; Chang, Howard H
2017-05-31
Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves' impact on population morbidity, such as emergency department (ED) visits. We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993-2012. Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945-2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03-1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02-1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00-1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44.
NASA Astrophysics Data System (ADS)
Krakov, M. S.; Nikiforov, I. V.
2011-12-01
For the low-speed magnetic fluid seals, the influence of the meridional flow, induced by the shaft rotation, on the distribution of magnetic particles concentration, is studied. Influence of the thermomagnetic convection on the structure of this flow and on the temperature distribution in high-speed magnetic fluid seals is investigated also. The problems were examined by numerical methods. It is discovered that even very slow rotation of the shaft homogenises distribution of the magnetic particles concentration in the seal and thereby enlarges its operation life. For high-speed seals thermomagnetic convection provides the penetration of the fluid flow in the region of the narrow gap and levels off the temperature distribution decreasing its maximum value and thereby enlarges its operation life too. It is found also that the influence of thermomagnetic convection grows with the viscosity increasing.
Part, Chérie E; Edwards, Phil; Hajat, Shakoor; Collins, Lisa M
2016-09-01
Climate change impact assessment and adaptation research in agriculture has focused primarily on crop production, with less known about the potential impacts on livestock. We investigated how the prevalence of health and welfare conditions in broiler (meat) chickens changes with weather (temperature, rainfall, air frost) in a temperate climate. Cases of 16 conditions were recorded at approved slaughterhouses in Great Britain. National prevalence rates and distribution mapping were based on data from more than 2.4 billion individuals, collected between January 2011 and December 2013. Analysis of temporal distribution and associations with national weather were based on monthly data from more than 6.8 billion individuals, collected between January 2003 and December 2013. Ascites, bruising/fractures, hepatitis and abnormal colour/fever were most common, at annual average rates of 29.95, 28.00, 23.76 and 22.29 per 10 000, respectively. Ascites and abnormal colour/fever demonstrated clear annual cycles, with higher rates in winter than in summer. Ascites prevalence correlated strongly with maximum temperature at 0 and -1 month lags. Abnormal colour/fever correlated strongly with temperature at 0 lag. Maximum temperatures of approximately 8°C and approximately 19°C marked the turning points of curve in a U-shaped relationship with mortality during transportation and lairage. Future climate change research on broilers should focus on preslaughter mortality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Han, Yuefeng; Stein, Michael L.
2016-02-10
The Weather Research and Forecast (WRF) model downscaling skill in extreme maximum daily temperature is evaluated by using the generalized extreme value (GEV) distribution. While the GEV distribution has been used extensively in climatology and meteorology for estimating probabilities of extreme events, accurately estimating GEV parameters based on data from a single pixel can be difficult, even with fairly long data records. This work proposes a simple method assuming that the shape parameter, the most difficult of the three parameters to estimate, does not vary over a relatively large region. This approach is applied to evaluate 31-year WRF-downscaled extreme maximummore » temperature through comparison with North American Regional Reanalysis (NARR) data. Uncertainty in GEV parameter estimates and the statistical significance in the differences of estimates between WRF and NARR are accounted for by conducting bootstrap resampling. Despite certain biases over parts of the United States, overall, WRF shows good agreement with NARR in the spatial pattern and magnitudes of GEV parameter estimates. Both WRF and NARR show a significant increase in extreme maximum temperature over the southern Great Plains and southeastern United States in January and over the western United States in July. The GEV model shows clear benefits from the regionally constant shape parameter assumption, for example, leading to estimates of the location and scale parameters of the model that show coherent spatial patterns.« less
Edwards, Phil; Hajat, Shakoor
2016-01-01
Climate change impact assessment and adaptation research in agriculture has focused primarily on crop production, with less known about the potential impacts on livestock. We investigated how the prevalence of health and welfare conditions in broiler (meat) chickens changes with weather (temperature, rainfall, air frost) in a temperate climate. Cases of 16 conditions were recorded at approved slaughterhouses in Great Britain. National prevalence rates and distribution mapping were based on data from more than 2.4 billion individuals, collected between January 2011 and December 2013. Analysis of temporal distribution and associations with national weather were based on monthly data from more than 6.8 billion individuals, collected between January 2003 and December 2013. Ascites, bruising/fractures, hepatitis and abnormal colour/fever were most common, at annual average rates of 29.95, 28.00, 23.76 and 22.29 per 10 000, respectively. Ascites and abnormal colour/fever demonstrated clear annual cycles, with higher rates in winter than in summer. Ascites prevalence correlated strongly with maximum temperature at 0 and −1 month lags. Abnormal colour/fever correlated strongly with temperature at 0 lag. Maximum temperatures of approximately 8°C and approximately 19°C marked the turning points of curve in a U-shaped relationship with mortality during transportation and lairage. Future climate change research on broilers should focus on preslaughter mortality. PMID:27703686
Thermal Analysis of the PediaFlow pediatric ventricular assist device.
Gardiner, Jeffrey M; Wu, Jingchun; Noh, Myounggyu D; Antaki, James F; Snyder, Trevor A; Paden, David B; Paden, Brad E
2007-01-01
Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generation: copper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2 degrees C during normal operation.
Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005-2010
NASA Astrophysics Data System (ADS)
Wood, Wendy H.; Marshall, Shawn J.; Whitehead, Terri L.; Fargey, Shannon E.
2018-03-01
Near-surface air temperatures were monitored from 2005 to 2010 in a mesoscale network of 230 sites in the foothills of the Rocky Mountains in southwestern Alberta, Canada. The monitoring network covers a range of elevations from 890 to 2880 m above sea level and an area of about 18 000 km2, sampling a variety of topographic settings and surface environments with an average spatial density of one station per 78 km2. This paper presents the multiyear temperature dataset from this study, with minimum, maximum, and mean daily temperature data available at https://doi.org/10.1594/PANGAEA.880611. In this paper, we describe the quality control and processing methods used to clean and filter the data and assess its accuracy. Overall data coverage for the study period is 91 %. We introduce a weather-system-dependent gap-filling technique to estimate the missing 9 % of data. Monthly and seasonal distributions of minimum, maximum, and mean daily temperature lapse rates are shown for the region.
Minimally-invasive Ultrasound Devices for Treating Low Back Pain
NASA Astrophysics Data System (ADS)
Nau, William; Diederich, C.; Shu, R.; Kinsey, A.; Lotz, J.; Ferrier, W.; Sutton, J.; Pellegrino, R.
2006-05-01
Catheter-based ultrasound is being investigated for the potential to deliver heat to disc tissue for the treatment of discogenic low back pain. Two ultrasound applicator design configurations were tested: an intradiscal (IDUS) applicator which can be implanted directly within the disc, and an extradiscal (EDUS) applicator which is placed adjacent to the disc. In vitro heating trials were performed in human lumbar cadaveric disc segments instrumented with 24 thermocouples to obtain detailed maps of the temperature distributions. A low temperature elevation heating protocol in which the maximum temperature measured 5 mm away from the applicator is controlled to 52° C for the treatment period, and a high temperature elevation protocol (maximum temperature controlled to >70° C) were evaluated in this study. In vivo experiments were performed in sheep cervical spine using both applicator configurations, and both heating protocols. Steady-state temperature maps, and thermal doses (t43) calculated from the transient temperature data were used to assess regions of thermal damage within the disc. During the in vitro human disc studies using the high temperature protocol, temperatures were maintained at 71.5° ± 0.4°C 5 mm from an IDUS applicator implanted within the annular wall, with a maximum temperature (Tmax) of 78.6°C (t43 > 4.85 × 1010 min) measured 2 mm from the applicator. For the EDUS applicator, the temperature was maintained at 78.7° °C 5 mm from the applicator, with a Tmax of 86.3°C within 1 mm of the applicator surface. In the in vivo sheep studies, steady-state temperatures were maintained at 49.4° ± 0.3°C (t43 = 8.74 × 102 min) and 73.2° ± 0.6°C (t43 = 1.34 × 1010 min) with the IDUS applicator for the low and high temperature protocols, respectively. Using the EDUS applicator, temperatures were maintained at 54.4° ± 3.2°C (t43 = 4.11 × 104 min) and 69.4° ± 2.8°C (t43 = 2.81 × 109 min) for the two protocols. Directional heating was demonstrated with both applicator design configurations. Results from these studies demonstrated the capability to control temperature distributions within targeted regions of the disc using interstitial ultrasound with greater thermal penetration than can be achieved with the RF heating devices currently in clinical use. Thus interstitial ultrasound offers a potential alternative heating modality for the clinical management of low back pain.
The effect of gas double-dynamic on mass distribution in solid-state fermentation.
Chen, Hong-Zhang; Zhao, Zhi-Min; Li, Hong-Qiang
2014-05-10
The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5°C and 2.48mg/(hg) under static aeration solid-state fermentation (SASSF) and 33.9°C and 5.38mg/(hg) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30±1°C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products. Copyright © 2014 Elsevier Inc. All rights reserved.
Bouska, Kristen; Whitledge, Gregory W.; Lant, Christopher; Schoof, Justin
2018-01-01
Land cover is an important determinant of aquatic habitat and is projected to shift with climate changes, yet climate-driven land cover changes are rarely factored into climate assessments. To quantify impacts and uncertainty of coupled climate and land cover change on warm-water fish species’ distributions, we used an ensemble model approach to project distributions of 14 species. For each species, current range projections were compared to 27 scenario-based projections and aggregated to visualize uncertainty. Multiple regression and model selection techniques were used to identify drivers of range change. Novel, or no-analogue, climates were assessed to evaluate transferability of models. Changes in total probability of occurrence ranged widely across species, from a 63% increase to a 65% decrease. Distributional gains and losses were largely driven by temperature and flow variables and underscore the importance of habitat heterogeneity and connectivity to facilitate adaptation to changing conditions. Finally, novel climate conditions were driven by mean annual maximum temperature, which stresses the importance of understanding the role of temperature on fish physiology and the role of temperature-mitigating management practices.
Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants.
Kaspari, Michael; Clay, Natalie A; Lucas, Jane; Revzen, Shai; Kay, Adam; Yanoviak, Stephen P
2016-04-01
We studied the Thermal Performance Curves (TPCs) of 87 species of rainforest ants and found support for both the Thermal Adaptation and Phosphorus-Tolerance hypotheses. TPCs relate a fitness proxy (here, worker speed) to environmental temperature. Thermal Adaptation posits that thermal generalists (ants with flatter, broader TPCs) are favored in the hotter, more variable tropical canopy compared to the cooler, less variable litter below. As predicted, species nesting in the forest canopy 1) had running speeds less sensitive to temperature; 2) ran over a greater range of temperatures; and 3) ran at lower maximum speeds. Tradeoffs between tolerance and maximum performance are often invoked for constraining the evolution of thermal generalists. There was no evidence that ant species traded off thermal tolerance for maximum speed, however. Phosphorus-Tolerance is a second mechanism for generating ectotherms able to tolerate thermal extremes. It posits that ants active at high temperatures invest in P-rich machinery to buffer their metabolism against thermal extremes. Phosphorus content in ant tissue varied three-fold, and as predicted, temperature sensitivity was lower and thermal range was higher in P-rich species. Combined, we show how the vertical distribution of hot and variable vs. cooler and stable microclimates in a single forest contribute to a diversity of TPCs and suggest that a widely varying P stoichiometry among these ants may drive some of these differences.
ANN based Real-Time Estimation of Power Generation of Different PV Module Types
NASA Astrophysics Data System (ADS)
Syafaruddin; Karatepe, Engin; Hiyama, Takashi
Distributed generation is expected to become more important in the future generation system. Utilities need to find solutions that help manage resources more efficiently. Effective smart grid solutions have been experienced by using real-time data to help refine and pinpoint inefficiencies for maintaining secure and reliable operating conditions. This paper proposes the application of Artificial Neural Network (ANN) for the real-time estimation of the maximum power generation of PV modules of different technologies. An intelligent technique is necessary required in this case due to the relationship between the maximum power of PV modules and the open circuit voltage and temperature is nonlinear and can't be easily expressed by an analytical expression for each technology. The proposed ANN method is using input signals of open circuit voltage and cell temperature instead of irradiance and ambient temperature to determine the estimated maximum power generation of PV modules. It is important for the utility to have the capability to perform this estimation for optimal operating points and diagnostic purposes that may be an early indicator of a need for maintenance and optimal energy management. The proposed method is accurately verified through a developed real-time simulator on the daily basis of irradiance and cell temperature changes.
NASA Astrophysics Data System (ADS)
Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif
2016-02-01
The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.
Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas
NASA Astrophysics Data System (ADS)
Zhu, Ding Yu; Shen, Jian Qi
2016-03-01
The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.
The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se; Wikfeldt, K. Thor
We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collectivemore » character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.« less
The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.
Here, we analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates amore » collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ~13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ~20 K.« less
The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water
NASA Astrophysics Data System (ADS)
Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders; Pettersson, Lars G. M.
2016-08-01
We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ˜13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ˜20 K.
The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water
Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.; ...
2016-08-25
Here, we analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates amore » collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ~13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ~20 K.« less
NASA Astrophysics Data System (ADS)
Xuegang Xin, Sherman; Gu, Shiyong; Carluccio, Giuseppe; Collins, Christopher M.
2015-01-01
Due to the strong dependence of tissue electrical properties on temperature, it is important to consider the potential effects of intense tissue heating on the RF electromagnetic fields during MRI, as can occur in MR-guided focused ultrasound surgery. In principle, changes of the RF electromagnetic fields could affect both efficacy of RF pulses, and the MRI-induced RF heating (SAR) pattern. In this study, the equilibrium temperature distribution in a whole-body model with 2 mm resolution before and during intense tissue heating up to 60 °C at the target region was calculated. Temperature-dependent electric properties of tissues were assigned to the model to establish a temperature-dependent electromagnetic whole-body model in a 3T MRI system. The results showed maximum changes in conductivity, permittivity, ≤ft|\\mathbf{B}1+\\right|, and SAR of about 25%, 6%, 2%, and 20%, respectively. Though the B1 field and SAR distributions are both temperature-dependent, the potential harm to patients due to higher SARs is expected to be minimal and the effects on the B1 field distribution should have minimal effect on images from basic MRI sequences.
NASA Astrophysics Data System (ADS)
Baier, Tobias; Dölger, Julia; Hardt, Steffen
2014-05-01
For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger than the channel dimensions. If one of the surfaces is suitably structured, this nonequilibrium distribution can be exploited for momentum transfer in a tangential direction between the two surfaces. This opens up the possibility to extract work from the system which operates as a heat engine. Since both surfaces are held at constant temperatures, the mode of momentum transfer is different from the thermal creep flow that has gained more attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted, and configurations with maximum thermodynamic efficiency are identified. Overall, it is shown that significant efficiencies can be obtained by tangential momentum transfer between structured surfaces.
Baier, Tobias; Dölger, Julia; Hardt, Steffen
2014-05-01
For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger than the channel dimensions. If one of the surfaces is suitably structured, this nonequilibrium distribution can be exploited for momentum transfer in a tangential direction between the two surfaces. This opens up the possibility to extract work from the system which operates as a heat engine. Since both surfaces are held at constant temperatures, the mode of momentum transfer is different from the thermal creep flow that has gained more attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted, and configurations with maximum thermodynamic efficiency are identified. Overall, it is shown that significant efficiencies can be obtained by tangential momentum transfer between structured surfaces.
We have applied a statistical stream network (SSN) model to predict stream thermal metrics (summer monthly medians, growing season maximum magnitude and timing, and daily rates of change) across New England nontidal streams and rivers, excluding northern Maine watersheds that ext...
Analysis of permafrost depths on Mars
NASA Technical Reports Server (NTRS)
Crescenti, G. H.
1984-01-01
The Martian surface thermal characteristics as they effect the thickness and distribution of the permafrost are discussed. Parameters such as temperature mean, maximum, and minimum, heat flow values, and damping depths are derived and applied to a model of the Martian cryosphere. A comparison is made between the permafrost layers of Earth and Mars.
Siders, Zachary A.; Westgate, Andrew J.; Johnston, David W.; Murison, Laurie D.; Koopman, Heather N.
2013-01-01
The local distribution of basking sharks in the Bay of Fundy (BoF) is unknown despite frequent occurrences in the area from May to November. Defining this species’ spatial habitat use is critical for accurately assessing its Special Concern conservation status in Atlantic Canada. We developed maximum entropy distribution models for the lower BoF and the northeast Gulf of Maine (GoM) to describe spatiotemporal variation in habitat use of basking sharks. Under the Maxent framework, we assessed model responses and distribution shifts in relation to known migratory behavior and local prey dynamics. We used 10 years (2002-2011) of basking shark surface sightings from July-October acquired during boat-based surveys in relation to chlorophyll-a concentration, sea surface temperature, bathymetric features, and distance to seafloor contours to assess habitat suitability. Maximum entropy estimations were selected based on AICc criterion and used to predict habitat utilizing three model-fitting routines as well as converted to binary suitable/non-suitable habitat using the maximum sensitivity and specificity threshold. All models predicted habitat better than random (AUC values >0.796). From July-September, a majority of habitat was in the BoF, in waters >100 m deep, and in the Grand Manan Basin. In October, a majority of the habitat shifted southward into the GoM and to areas >200 m deep. Model responses suggest that suitable habitat from July - October is dependent on a mix of distance to the 0, 100, 150, and 200 m contours but in some models on sea surface temperature (July) and chlorophyll-a (August and September). Our results reveal temporally dynamic habitat use of basking sharks within the BoF and GoM. The relative importance of predictor variables suggests that prey dynamics constrained the species distribution in the BoF. Also, suitable habitat shifted minimally from July-September providing opportunities to conserve the species during peak abundance in the region. PMID:24324747
Iannella, Mattia; Cerasoli, Francesco; Biondi, Maurizio
2017-01-01
Climate is often considered as a key ecological factor limiting the capability of expansion of most species and the extent of suitable habitats. In this contribution, we implement Species Distribution Models (SDMs) to study two parapatric amphibians, Lissotriton vulgaris meridionalis and L. italicus , investigating if and how climate has influenced their present and past (Last Glacial Maximum and Holocene) distributions. A database of 901 GPS presence records was generated for the two newts. SDMs were built through Boosted Regression Trees and Maxent, using the Worldclim bioclimatic variables as predictors. Precipitation-linked variables and the temperature annual range strongly influence the current occurrence patterns of the two Lissotriton species analyzed. The two newts show opposite responses to the most contributing variables, such as BIO7 (temperature annual range), BIO12 (annual precipitation), BIO17 (precipitation of the driest quarter) and BIO19 (precipitation of the coldest quarter). The hypothesis of climate influencing the distributions of these species is also supported by the fact that the co-occurrences within the sympatric area fall in localities characterized by intermediate values of these predictors. Projections to the Last Glacial Maximum and Holocene scenarios provided a coherent representation of climate influences on the past distributions of the target species. Computation of pairwise variables interactions and the discriminant analysis allowed a deeper interpretation of SDMs' outputs. Further, we propose a multivariate environmental dissimilarity index (MEDI), derived through a transformation of the multivariate environmental similarity surface (MESS), to deal with extrapolation-linked uncertainties in model projections to past climate. Finally, the niche equivalency and niche similarity tests confirmed the link between SDMs outputs and actual differences in the ecological niches of the two species. The different responses of the two species to climatic factors have significantly contributed to shape their current distribution, through contractions, expansions and shifts over time, allowing to maintain two wide allopatric areas with an area of sympatry in Central Italy. Moreover, our SDMs hindcasting shows many concordances with previous phylogeographic studies carried out on the same species, thus corroborating the scenarios of potential distribution during the Last Glacial Maximum and the Holocene emerging from the models obtained.
NASA Technical Reports Server (NTRS)
Schuller, F. T.; Pinel, S. I.; Signer, H. R.
1985-01-01
Parametric tests were conducted with a 35-mm-bore, split-inner-ring ball bearing with a double-inner-land-guided cage. Provisions were made for through-the-inner-ring lubrication. Test condictions were either a thrust load of 667 N (150 lb) or a combined load of 667 N (150 lb) thrust and 222 N (50 lb) radial, shaft speeds from 32000 to 72000 rpm, and an oil-inlet temperature of 394 K (250 deg F). Outer ring cooling was used in some tests. Tests were run with either 50 or 75 percent of the total oil flow distributed to the inner-ring raceway. Successful operation was experienced with both 50% and 75% flow patterns to 2.5 million DN. Cooling the outer ring had little effect on inner-ring temperature; however, the outer-ring temperature decreased as much as 7% at 2.5 million DN. Maximum recorded power loss was 3.1 kW (4.2 hp), and maximum cage slip was 8.7 percent. Both occurred at a shaft speed of 72000 rpm, a lubricant flow rate of 1900 cu/min (0.50 gal/min), a combined load, and no outer-ring cooling.
Displacements of Metallic Thermal Protection System Panels During Reentry
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Blosser, Max L.; Wurster, Kathryn E.
2006-01-01
Bowing of metallic thermal protection systems for reentry of a previously proposed single-stage-to-orbit reusable launch vehicle was studied. The outer layer of current metallic thermal protection system concepts typically consists of a honeycomb panel made of a high temperature nickel alloy. During portions of reentry when the thermal protection system is exposed to rapidly varying heating rates, a significant temperature gradient develops across the honeycomb panel thickness, resulting in bowing of the honeycomb panel. The deformations of the honeycomb panel increase the roughness of the outer mold line of the vehicle, which could possibly result in premature boundary layer transition, resulting in significantly higher downstream heating rates. The aerothermal loads and parameters for three locations on the centerline of the windward side of this vehicle were calculated using an engineering code. The transient temperature distributions through a metallic thermal protection system were obtained using 1-D finite volume thermal analysis, and the resulting displacements of the thermal protection system were calculated. The maximum deflection of the thermal protection system throughout the reentry trajectory was 6.4 mm. The maximum ratio of deflection to boundary layer thickness was 0.032. Based on previously developed distributed roughness correlations, it was concluded that these defections will not result in tripping the hypersonic boundary layer.
A Maximum-Likelihood Approach to Force-Field Calibration.
Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam
2015-09-28
A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + β proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + β protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions.
Status of holographic interferometry at University of Michigan
NASA Technical Reports Server (NTRS)
Vest, Charles
1987-01-01
Reflection holograms were taken of a jet of air injected traverse to a subsonic stream. The technique of reflection holograms allowed maximum viewing angle and minimum distance to the jet. Holographic interferometry is being used to measure the temperature distribution in a growing crystal. Computations of the temperatures are being made. A phase shift interferometer was used to study flows with very weak changes in refractive index, of the order of 1 shift. Tomographic techniques are being developed for strong refractive cases.
Thermal analysis of underground power cable system
NASA Astrophysics Data System (ADS)
Rerak, Monika; Ocłoń, Paweł
2017-10-01
The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.
A novel approach for detecting heat waves: the Standardized Heat-Wave Index.
NASA Astrophysics Data System (ADS)
Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro
2016-04-01
Extreme temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. The ability to capture the occurrence of extreme temperature events is therefore an essential property of a multi-hazard extreme climate indicator. In this paper we introduce a new index for the detection of such extreme temperature events called SHI (Standardized Heat-Wave Index), developed in the context of XCF project for the construction of a multi-hazard extreme climate indicator (ECI). SHI is a probabilistic index based on the analysis of maximum daily temperatures time series; it is standardized, enabling comparisons overs space/time and with other indices, and it is capable of describing both extreme cold and hot events. Given a particular location, SHI is constructed using the time series of local maximum daily temperatures with the following procedure: three-days cumulated maximum daily temperatures are assigned to each day of the time series; probabilities of occurrence in the same months the reference days belong to are computed for each of the previous calculated values; such probability values are thus projected on a standard normal distribution, obtaining our standardized indices. In this work we present results obtained using NCEP Reanalysis dataset for air temperature at sigma 0.995 level, which timespan ranges from 1948 to 2014. Given the specific framework of this work, the geographical focus of this study is limited to the African continent. We present a validation of the index by showing its use for monitoring heat-waves under different climate regimes.
Hirata, Akimasa; Watanabe, Soichi; Taki, Masao; Fujiwara, Osamu; Kojima, Masami; Sasaki, Kazuyuki
2008-02-01
This study calculated the temperature elevation in the rabbit eye caused by 2.45-GHz near-field exposure systems. First, we calculated specific absorption rate distributions in the eye for different antennas and then compared them with those observed in previous studies. Next, we re-examined the temperature elevation in the rabbit eye due to a horizontally-polarized dipole antenna with a C-shaped director, which was used in a previous study. For our computational results, we found that decisive factors of the SAR distribution in the rabbit eye were the polarization of the electromagnetic wave and antenna aperture. Next, we quantified the eye average specific absorption rate as 67 W kg(-1) for the dipole antenna with an input power density at the eye surface of 150 mW cm(-2), which was specified in the previous work as the minimum cataractogenic power density. The effect of administrating anesthesia on the temperature elevation was 30% or so in the above case. Additionally, the position where maximum temperature in the lens appears is discussed due to different 2.45-GHz microwave systems. That position was found to appear around the posterior of the lens regardless of the exposure condition, which indicates that the original temperature distribution in the eye was the dominant factor.
Geographical Distribution of Thundersnow and their Properties from GPM Ku-band Radar
NASA Astrophysics Data System (ADS)
Adhikari, A.; Liu, C.
2017-12-01
Lightning in snow and freezing rain are relatively uncommon, compared to the warm season thunderstorm. These events can be identified by lightning with the surface temperature colder than 0oC, or named as "cold lightning", A six-years of "cold lightning" characteristics and climatology, including seasonal, diurnal, and surface temperature distribution, are generated after collocating WWLLN and NLDN lightning with ERA-Interim 2 meter temperature. The thundersnow cases are further identified with all vertical temperature profile below 0oC, and the freezing rain cases have temperature warmer than 4oC somewhere in the column above the freezing surface. The statistics of thundersnow events from WWLLN and NLDN are compared over the United States (US). Though with different detection efficiency, WWLLN and NLDN demonstrate almost identical geographical distribution of thundersnow over the US. Taking the full advantage of the Global Precipitation Measuring Mission (GPM) Ku band radar, Thunder Snow Features (TSFs) are defined with contiguous area of non-zero near surface snow precipitation derived from Ku radar along with the collocated WWLLN lightning strikes. Though only a small number of TSFs are identified with three year GPM data, all TSFs have maximum radar reflectivity above 30 dBZ at temperature colder than -10oC, which indicates the importance of non-inductive charging in these events.
Exploring the association between heat and mortality in Switzerland between 1995 and 2013.
Ragettli, Martina S; Vicedo-Cabrera, Ana M; Schindler, Christian; Röösli, Martin
2017-10-01
Designing effective public health strategies to prevent adverse health effect of hot weather is crucial in the context of global warming. In Switzerland, the 2003 heat have caused an estimated 7% increase in all-cause mortality. As a consequence, the Swiss Federal Office of Public Health developed an information campaign to raise public awareness on heat threats. For a better understanding on how hot weather affects daily mortality in Switzerland, we assessed the effect of heat on daily mortality in eight Swiss cities and population subgroups from 1995 to 2013 using different temperature metrics (daily mean (Tmean), maximum (Tmax), minimum (Tmin) and maximum apparent temperature (Tappmax)), and aimed to evaluate variations of the heat effect after 2003 (1995-2002 versus 2004-2013). We applied conditional quasi-Poisson regression models with non-linear distributed lag functions to estimate temperature-mortality associations over all cities (1995-2013) and separately for two time periods (1995-2002, 2004-2013). Relative risks (RR) of daily mortality were estimated for increases in temperature from the median to the 98th percentile of the warm season temperature distribution. Over the whole time period, significant temperature-mortality relationships were found for all temperature indicators (RR (95% confidence interval): Tappmax: 1.12 (1.05; 1.18); Tmax: 1.15 (1.08-1.22); Tmean: 1.16 (1.09-1.23); Tmin 1.23 (1.15-1.32)). Mortality risks were higher at the beginning of the summer, especially for Tmin. In the more recent time period, we observed a non-significant reduction in the effect of high temperatures on mortality, with the age group > 74 years remaining the population at highest risk. High temperatures continue to be a considerable risk factor for human health in Switzerland after 2003. More effective public health measures targeting the elderly should be promoted with increased attention to the first heat events in summer and considering both high day-time and night-time temperatures. Copyright © 2017 Elsevier Inc. All rights reserved.
Harsch, Melanie A.; HilleRisLambers, Janneke
2016-01-01
Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)–despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species’ elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834
Kok, H P; de Greef, M; Bel, A; Crezee, J
2009-08-01
In regional hyperthermia, optimization is useful to obtain adequate applicator settings. A speed-up of the previously published method for high resolution temperature based optimization is proposed. Element grouping as described in literature uses selected voxel sets instead of single voxels to reduce computation time. Elements which achieve their maximum heating potential for approximately the same phase/amplitude setting are grouped. To form groups, eigenvalues and eigenvectors of precomputed temperature matrices are used. At high resolution temperature matrices are unknown and temperatures are estimated using low resolution (1 cm) computations and the high resolution (2 mm) temperature distribution computed for low resolution optimized settings using zooming. This technique can be applied to estimate an upper bound for high resolution eigenvalues. The heating potential of elements was estimated using these upper bounds. Correlations between elements were estimated with low resolution eigenvalues and eigenvectors, since high resolution eigenvectors remain unknown. Four different grouping criteria were applied. Constraints were set to the average group temperatures. Element grouping was applied for five patients and optimal settings for the AMC-8 system were determined. Without element grouping the average computation times for five and ten runs were 7.1 and 14.4 h, respectively. Strict grouping criteria were necessary to prevent an unacceptable exceeding of the normal tissue constraints (up to approximately 2 degrees C), caused by constraining average instead of maximum temperatures. When strict criteria were applied, speed-up factors of 1.8-2.1 and 2.6-3.5 were achieved for five and ten runs, respectively, depending on the grouping criteria. When many runs are performed, the speed-up factor will converge to 4.3-8.5, which is the average reduction factor of the constraints and depends on the grouping criteria. Tumor temperatures were comparable. Maximum exceeding of the constraint in a hot spot was 0.24-0.34 degree C; average maximum exceeding over all five patients was 0.09-0.21 degree C, which is acceptable. High resolution temperature based optimization using element grouping can achieve a speed-up factor of 4-8, without large deviations from the conventional method.
NASA Technical Reports Server (NTRS)
Bond, Aleck C.; Rumsey, Charles B.
1957-01-01
Skin temperatures and surface pressures have been measured on a slightly blunted cone-cylinder-flare configuration to a maximum Mach number of 9.89 with a rocket-propelled model. The cone had a t o t a l angle of 25 deg and the flare had a 10 deg half-angle. Temperature data were obtained at eight cone locations, four cylinder locations, and seven flare locations; pressures were measured at one cone location, one cylinder location, and three flare locations. Four stages of propulsion were utilized and a reentry type of trajectory was employed in which the high-speed portion of flight was obtained by firing the last two stages during the descent of the model from a peak altitude of 99,400 feet. The Reynolds number at peak Mach number was 1.2 x 10(exp 6) per foot of model length. The model length was 6.68 feet. During the higher speed portions of flight, temperature measurements along one element of the nose cone indicated that the boundary layer was probably laminar, whereas on the opposite side of the nose the measurements indicated transitional or turbulent flow. Temperature distributions along one meridian of the model showed the flare to have the highest temperatures and the cylinder generally to have the lowest. A maximum temperature of 970 F was measured on the cone element showing the transitional or turbulent flow; along the opposite side of the model, the maximum temperatures of the cone, cylinder, and flare were 545 F, 340 F, and 680 F, respectively, at the corresponding time.
Trend analysis of air temperature and precipitation time series over Greece: 1955-2010
NASA Astrophysics Data System (ADS)
Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.
2012-04-01
In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.
NASA Astrophysics Data System (ADS)
Eludoyin, A. O.; Akinbode, O. M.; Archibong, E. O.
2007-07-01
This study was carried out in one of the Administrative State Capitals in the southwestern part of Nigeria. Its aim is to serve as a baseline data for highlighting the effect of spatial distribution of settlements, population, and socioeconomic activities on urban air temperature and relative humidity. The main objective of the study is to assess the impact of urban growth on the microclimate of the administrative city. Temperature and relative humidity data from 1992 to 2001 were obtained from the three existing meteorological stations in Akure, the Administrative Capital of Ondo State, Nigeria, namely the Federal Ministry of Aviation, Akure Airport station (FMA), Federal University of Technology, Akure (FUTA) and the Federal School of Agriculture (SOA). Air temperature and relative humidity measurements along primary roads and in the built up areas were obtained from seventeen stations, using sling psychrometer. The data were subsequently analysed for spatial and temporal variations. The results obtained indicated that while the maximum, average and minimum temperatures showed significant annual variations, the spatial variations among the existing meteorological stations were not significant. The city is characterized by increasing annual mean temperatures whose maximum was significantly higher than that of Ondo town — another important town within the state. The annual mean temperatures ranged between 26.2°C and 30.4°C. Minimum and maximum temperatures varied from 12.3°C to 26°C and 22.5°C to 39.6°C, respectively while the relative humidity ranged between 27.5% and 98.2%. Urban `heat island' intensity was exhibited around central business district of the Oba market. 2007 American Institute of Physics
Changes of the time-varying percentiles of daily extreme temperature in China
NASA Astrophysics Data System (ADS)
Li, Bin; Chen, Fang; Xu, Feng; Wang, Xinrui
2017-11-01
Identifying the air temperature frequency distributions and evaluating the trends in time-varying percentiles are very important for climate change studies. In order to get a better understanding of the recent temporal and spatial pattern of the temperature changes in China, we have calculated the trends in temporal-varying percentiles of the daily extreme air temperature firstly. Then we divide all the stations to get the spatial patterns for the percentile trends using the average linkage cluster analysis method. To make a comparison, the shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 are also examined. Important results in three aspects have been achieved: (1) In terms of the trends in temporal-varying percentiles of the daily extreme air temperature, the most intense warming for daily maximum air temperature (Tmax) was detected in the upper percentiles with a significant increasing tendency magnitude (>2.5 °C/50year), and the greatest warming for daily minimum air temperature (Tmin) occurred with very strong trends exceeding 4 °C/50year. (2) The relative coherent spatial patterns for the percentile trends were found, and stations for the whole country had been divided into three clusters. The three primary clusters were distributed regularly to some extent from north to south, indicating the possible large influence of the latitude. (3) The most significant shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 was found in Tmax. More than half part of the frequency distribution show negative trends less than -0.5 °C/50year in 1961-1985, while showing trends less than 2.5 °C/50year in 1986-2010.
NASA Astrophysics Data System (ADS)
Khan, F.; Pilz, J.; Spöck, G.
2017-12-01
Spatio-temporal dependence structures play a pivotal role in understanding the meteorological characteristics of a basin or sub-basin. This further affects the hydrological conditions and consequently will provide misleading results if these structures are not taken into account properly. In this study we modeled the spatial dependence structure between climate variables including maximum, minimum temperature and precipitation in the Monsoon dominated region of Pakistan. For temperature, six, and for precipitation four meteorological stations have been considered. For modelling the dependence structure between temperature and precipitation at multiple sites, we utilized C-Vine, D-Vine and Student t-copula models. For temperature, multivariate mixture normal distributions and for precipitation gamma distributions have been used as marginals under the copula models. A comparison was made between C-Vine, D-Vine and Student t-copula by observational and simulated spatial dependence structure to choose an appropriate model for the climate data. The results show that all copula models performed well, however, there are subtle differences in their performances. The copula models captured the patterns of spatial dependence structures between climate variables at multiple meteorological sites, however, the t-copula showed poor performance in reproducing the dependence structure with respect to magnitude. It was observed that important statistics of observed data have been closely approximated except of maximum values for temperature and minimum values for minimum temperature. Probability density functions of simulated data closely follow the probability density functions of observational data for all variables. C and D-Vines are better tools when it comes to modelling the dependence between variables, however, Student t-copulas compete closely for precipitation. Keywords: Copula model, C-Vine, D-Vine, Spatial dependence structure, Monsoon dominated region of Pakistan, Mixture models, EM algorithm.
NASA Astrophysics Data System (ADS)
Ma, Zheshu; Wu, Jieer
2011-08-01
Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even "dirty" fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.
NASA Astrophysics Data System (ADS)
Marx, Benjamin; Rath, Alexander; Kolm, Frederick; Schröder, Andreas; Buntebarth, Christian; Dreß, Albrecht; Hill, Wieland
2016-05-01
For high-voltage cables, the maximum temperature of the insulation must never be exceeded at any location and at any load condition. The local temperatures depend not only on the cable design and load history, but also on the local thermal environment of the cable. Therefore, distributed temperature monitoring of high-voltage cables is essential to ensure the integrity of the cable at high load. Especially, the load of the export cables of wind farms varies strongly in dependence on weather conditions. In this field study, we demonstrate the measurement performance of a new, robust Brillouin distributed temperature sensing system (Brillouin-DTS). The system is based on spontaneous Brillouin scattering and does not require a fibre loop. This is essential for long submarine high-voltage cables, where normally no loop can be formed in the seabed. It is completely passively cooled and does not contain any moving or wearing parts. The instrument is dedicated for use in industrial and other rough environments. With a measuring time below 10 min, the temperature resolution is better than 1 °C for distances up to 50 km. In the field study, the submarine export cable of an off-shore wind farm has been monitored. The temperature profile of the export cable shows several hot spots, mostly located at cable joints, and also several cold spots.
NASA Astrophysics Data System (ADS)
Salem, Shiva; Salem, Amin; Parni, Mohammad Hosein; Jafarizad, Abbas
2018-06-01
In this article, urea, glycine and hexamethylenetetramine were blended in accordance with the mixture design algorithm to prepare γ-Al2O3 by auto-combustion technique. Aluminum nitrate was then mixed with the stoichiometric contents of prepared fuel solutions to obtain gel systems. The gels exhibited a typical self-propagating combustion behavior at low temperature, directly resulting amorphous materials. The precursors were calcined at various temperatures ranging from 700 to 900 °C. The treated powders were evaluated by determining the methylene blue (MB) adsorption efficiency. The production condition to obtain γ-Al2O3 with maximum surface area depends on fuel composition and calcination temperature. The alumina powder fabricated by this procedure was uniformly distributed and contains nano-sized secondary particles with diameter about 10-30 nm in which the average pore size is 3.2 nm induced large surface area, 240 m2g-1. The employment of hexamethylenetetramine provides a potential for synthesis of γ-Al2O3 at lower temperature, 700 °C, with maximum MB removal efficiency.
Laser-saturated fluorescence measurements in laminar sooting diffusion flames
NASA Technical Reports Server (NTRS)
Wey, Changlie
1993-01-01
The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.
USSR Report, Physics and Mathematics.
1987-01-14
polarization distribution in these crystals at a temperature above the 70°C phase transition point corresponding to maximum dielectric permittivity ...are derived theoretically and matched with experimental data. The theory is based on the relation between complex dielectric permittivity and...Kramers-Heisenberg relation for polarizability. Both real and imaginary parts of dielectric permittivity are evaluated, assuming a valence band fully
NASA Astrophysics Data System (ADS)
Aroudam, El. H.
In this paper, we present a modelling of the performance of a reactor of a solar cooling machine based carbon-ammonia activated bed. Hence, for a solar radiation, measured in the Energetic Laboratory of the Faculty of Sciences in Tetouan (northern Morocco), the proposed model computes the temperature distribution, the pressure and the ammonia concentration within the activated carbon bed. The Dubinin-Radushkevich formula is used to compute the ammonia concentration distribution and the daily cycled mass necessary to produce a cooling effect for an ideal machine. The reactor is heated at a maximum temperature during the day and cool at the night. A numerical simulation is carried out employing the recorded solar radiation data measured locally and the daily ambient temperature for the typical clear days. Initially the reactor is at ambient temperature, evaporating pressure; Pev=Pst(Tev=0 ∘C) and maintained at uniform concentration. It is heated successively until the threshold temperature corresponding to the condensing pressure; Pcond=Pst(Tam) (saturation pressure at ambient temperature; in the condenser) and until a maximum temperature at a constant pressure; Pcond. The cooling of the reactor is characterised by a fall of temperature to the minimal values at night corresponding to the end of a daily cycle. We use the mass balance equations as well as energy equation to describe heat and mass transfer inside the medium of three phases. A numerical solution of the obtained non linear equations system based on the implicit finite difference method allows to know all parameters characteristic of the thermodynamic cycle and consider principally the daily evolution of temperature, ammonia concentration for divers positions inside the reactor. The tube diameter of the reactor shows the dependence of the optimum value on meteorological parameters for 1 m2 of collector surface.
NASA Astrophysics Data System (ADS)
Wang, Pin; Zhao, Han; You, Fangxin; Zhou, Hailong; Goggins, William B.
2017-08-01
Hand, foot, and mouth disease (HFMD) is an enterovirus-induced infectious disease, mainly affecting children under 5 years old. Outbreaks of HFMD in recent years indicate the disease interacts with both the weather and season. This study aimed to investigate the seasonal association between HFMD and weather variation in Chongqing, China. Generalized additive models and distributed lag non-linear models based on a maximum lag of 14 days, with negative binomial distribution assumed to account for overdispersion, were constructed to model the association between reporting HFMD cases from 2009 to 2014 and daily mean temperature, relative humidity, total rainfall and sun duration, adjusting for trend, season, and day of the week. The year-round temperature and relative humidity, rainfall in summer, and sun duration in winter were all significantly associated with HFMD. An inverted-U relationship was found between mean temperature and HFMD above 19 °C in summer, with a maximum morbidity at 27 °C, while the risk increased linearly with the temperature in winter. A hockey-stick association was found for relative humidity in summer with increasing risks over 60%. Heavy rainfall, relative to no rain, was found to be associated with reduced HFMD risk in summer and 2 h of sunshine could decrease the risk by 21% in winter. The present study showed meteorological variables were differentially associated with HFMD incidence in two seasons. Short-term weather variation surveillance and forecasting could be employed as an early indicator for potential HFMD outbreaks.
The ecological niche of Dermacentor marginatus in Germany.
Walter, Melanie; Brugger, Katharina; Rubel, Franz
2016-06-01
The ixodid tick Dermacentor marginatus (Sulzer, 1776) is endemic throughout southern Europe in the range of 33-51 (°) N latitude. In Germany, however, D. marginatus was exclusively reported in the Rhine valley and adjacent areas. Its northern distribution limit near Giessen is located at the coordinates 8.32 (°) E/50.65 (°) N. Particularly with regard to the causative agents of rickettsioses, tularemia, and Q fever, the observed locations as well as the potential distribution of the vector D. marginatus in Germany are of special interest. Applying a dataset of 118 georeferenced tick locations, the ecological niche for D. marginatus was calculated. It is described by six climate parameters based on temperature and relative humidity and another six environmental parameters including land cover classes and altitude. The final ecological niche is determined by the frequency distributions of these 12 parameters at the tick locations. Main parameters are the mean annual temperature (frequency distribution characterized by the minimum, median, and maximum of 6.1, 9.9, and 12.2 (°)C), the mean annual relative humidity (73.7, 76.7, and 80.9 %), as well as the altitude (87, 240, 1108 m). The climate and environmental niche is used to estimate the habitat suitability of D. marginatus in Germany by applying the BIOCLIM model. Finally, the potential spatial distribution of D. marginatus was calculated and mapped by determining an optimal threshold value of the suitability index, i.e., the maximum of sensitivity and specificity (Youden index). The model performance is expressed by AUC = 0.91.
NASA Astrophysics Data System (ADS)
Peña Angulo, Dhais; Trigo, Ricardo; Cortesi, Nicola; Gonzalez-Hidalgo, Jose Carlos
2016-04-01
We have analyzed at monthly scale the spatial distribution of Pearson correlation between monthly mean of maximum (Tmax) and minimum (Tmin) temperatures with weather types (WTs) in the Iberian Peninsula (IP), represent them in a high spatial resolution grid (10km x 10km) from MOTEDAS dataset (Gonzalez-Hidalgo et al., 2015a). The WT classification was that developed by Jenkinson and Collison, adapted to the Iberian Peninsula by Trigo and DaCamara, using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The spatial distribution of Pearson correlations shows a clear zonal gradient in Tmax under the zonal advection produced in westerly (W) and easterly (E) flows, with negative correlation in the coastland where the air mass come from but positive correlation to the inland areas. The same is true under North-West (NW), North-East (NE), South-West (SW) and South-East (SE) WTs. These spatial gradients are coherent with the spatial distribution of the main mountain chain and offer an example of regional adiabatic phenomena that affect the entire IP (Peña-Angulo et al., 2015b). These spatial gradients have not been observed in Tmin. We suggest that Tmin values are less sensitive to changes in Sea Level Pressure and more related to local factors. These directional WT present a monthly frequency over 10 days and could be a valuable tool for downscaling processes. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298 Peña-Angulo, D., Trigo, R., Cortesi, C., González-Hidalgo, J.C. (2015b): The influence of weather types on the monthly average maximum and minimum temperatures in the Iberian Peninsula. Submitted to Hydrology and Earth System Sciences.
Temperature tolerance of young-of-the-year cisco, Coregonus artedii
Edsall, Thomas A.; Colby, Peter J.
1970-01-01
Young-of-the-year ciscoes (Coregonus artedii) acclimated to 2, 5, 10, 20 and 25 C and tested for tolerance to high and low temperatures provide the first detailed description of the thermal tolerance of coregonids in North America. The upper ultimate lethal temperature of the young ciscoes was 26 C (6 C higher than the maximum sustained temperature tolerated by adult ciscoes in nature) and the ultimate lower lethal temperature approached 0 C (near that commonly tolerated in nature by adult ciscoes). The temperature of 26 C is slightly higher than the lowest ultimate upper lethal temperature recorded for North American freshwater fishes; however, published information on the depth distributions of fishes in the Great Lakes suggests that some of the other coregonids may be less tolerant of high temperatures than the cisco.
Effects of increasing aerosol on regional climate change in China: Observation and modeling
NASA Astrophysics Data System (ADS)
Qian, Y.; Leung, L.; Ghan, S. J.
2002-12-01
We present regional simulations of climate, aerosol properties, and direct radiative forcing and climatic effects of aerosol and analyze the pollutant emissions and observed climatic data during the latter decades of last century in China. The regional model generally captures the spatial distributions and seasonal pattern of temperature and precipitation. Aerosol extinction coefficient and aerosol optical depth are generally well simulated in both magnitude and spatial distribution, which provides a reliable foundation for estimating the radiative forcing and climatic effects of aerosol. The radiative forcing of aerosol is in the range of -1 to -14 W m-2 in autumn and summer and -1 to -9 W m-2 in spring and winter, with substantial spatial variability at the sub-regional scale. A strong maximum in negative radiative forcing corresponding to the maximum optical depth is found over the Sichuan Basin, where emission as well as relative humidity are high, and stagnant atmospheric conditions inhibit pollutants dispersion. Negative radiative forcing of aerosol induces a surface cooling, which is stronger in the range of -0.6 to -1.2oC in autumn and winter than in spring (-0.3 to -0.6oC) and summer (0.0 to -0.9oC) over the Sichuan Basin and East China due to more significant effects of cloud and precipitation in the summer and spring. Aerosol-induced cooling is mainly contributed by cooling in the daytime temperature. The cooling reaches a maximum and is statistically significant in the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of temperature trends observed in the second half of the twentieth century, including the asymmetric daily maximum and minimum temperature trends, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. It supports the hypothesis that the observed temperature trends during the latter decades of the twentieth century, especially the cooling trends over the Sichuan Basin and some parts of East China, which are exceptions to the large scale warming trend in the northern hemisphere, are at least partly related to the cooling induced by atmospheric aerosol loading that has been increasing since the middle of the last century.
NASA Astrophysics Data System (ADS)
Makos, Michał; Dzierżek, Jan; Nitychoruk, Jerzy; Zreda, Marek
2014-07-01
During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26-21 ka (LGM I - maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N-S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.
Aleiferis, Pavlos; Charalambides, Alexandros; Hardalupas, Yannis; Soulopoulos, Nikolaos; Taylor, A M K P; Urata, Yunichi
2015-05-10
Schlieren [Schlieren and Shadowgraphy Techniques (McGraw-Hill, 2001); Optics of Flames (Butterworths, 1963)] is a non-intrusive technique that can be used to detect density variations in a medium, and thus, under constant pressure and mixture concentration conditions, measure whole-field temperature distributions. The objective of the current work was to design a schlieren system to measure line-of-sight (LOS)-averaged temperature distribution with the final aim to determine the temperature distribution inside the cylinder of internal combustion (IC) engines. In a preliminary step, we assess theoretically the errors arising from the data reduction used to determine temperature from a schlieren measurement and find that the total error, random and systematic, is less than 3% for typical conditions encountered in the present experiments. A Z-type, curved-mirror schlieren system was used to measure the temperature distribution from a hot air jet in an open air environment in order to evaluate the method. Using the Abel transform, the radial distribution of the temperature was reconstructed from the LOS measurements. There was good agreement in the peak temperature between the reconstructed schlieren and thermocouple measurements. Experiments were then conducted in a four-stroke, single-cylinder, optical spark ignition engine with a four-valve, pentroof-type cylinder head to measure the temperature distribution of the reaction zone of an iso-octane-air mixture. The engine optical windows were designed to produce parallel rays and allow accurate application of the technique. The feasibility of the method to measure temperature distributions in IC engines was evaluated with simulations of the deflection angle combined with equilibrium chemistry calculations that estimated the temperature of the reaction zone at the position of maximum ray deflection as recorded in a schlieren image. Further simulations showed that the effects of exhaust gas recirculation and air-to-fuel ratio on the schlieren images were minimal under engine conditions compared to the temperature effect. At 20 crank angle degrees before top dead center (i.e., 20 crank angle degrees after ignition timing), the measured temperature of the flame front was in agreement with the simulations (730-1320 K depending on the shape of the flame front). Furthermore, the schlieren images identified the presence of hot gases ahead of the reaction zone due to diffusion and showed that there were no hot spots in the unburned mixture.
Effects of repeated bending load at room temperature for composite Nb3Sn wires
NASA Astrophysics Data System (ADS)
Awaji, Satoshi; Watanabe, Kazuo; Katagiri, Kazumune
2003-09-01
In order to realize a react and wind (R&W) method for Nb3Sn wires, the influences of a bending load at room temperature are investigated. Usually, the superconducting wires undergo bending loads at room temperature repeatedly during winding and insulation processes. We define these bending loads as 'pre-bending' treatments. We applied the pre-bending strain of 0 and 0.5% to the highly strengthened CuNb/(Nb, Ti)3Sn wires, and measured the stress/strain properties and critical currents. The improvements of stress dependence of normalized critical current and the increase of the maximum critical current by the pre-bending treatments were found. The model based on the distribution of the local tensile strain as a bending strain describes the experimental results well without the increase of the maximum critical current. When the pre-bending strain was applied, the calculated results indicate that the mechanical properties are improved due to the local work hardening, and hence the stress dependence of Ic increases.
Zhou, Junwen; Liu, Shiyu; Zhou, Nan; Fan, Liangliang; Zhang, Yaning; Peng, Peng; Anderson, Erik; Ding, Kuan; Wang, Yunpu; Liu, Yuhuan; Chen, Paul; Ruan, Roger
2018-05-01
A continuous fast microwave-assisted pyrolysis system was designed, fabricated, and tested with sewage sludge. The system is equipped with continuous biomass feeding, mixing of biomass and microwave absorbent, and separated catalyst upgrading. The effect of the sludge pyrolysis temperature (450, 500, 550, and 600 °C) on the products yield, distribution and potentially energy recovery were investigated. The physical, chemical, and energetic properties of the raw sewage sludge and bio-oil, char and gas products obtained were analyzed using elemental analyzer, GC-MS, Micro-GC, SEM and ICP-OES. While the maximum bio-oil yield of 41.39 wt% was obtained at pyrolysis temperature of 550 °C, the optimal pyrolysis temperature for maximum overall energy recovery was 500 °C. The absence of carrier gas in the process may be responsible for the high HHV of gas products. This work could provide technical support for microwave-assisted system scale-up and sewage sludge utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Investigations on cooling with forced flow of He II. Part 2
NASA Astrophysics Data System (ADS)
Srinivasan, R.; Hofmann, A.
The measurements described in Part 1 of this Paper have been extended to a pressure of 7 bar . The value of the conductivity function, f( T), at a temperature greater than Tmax, at which it exhibits a maximum, drops rapidly with increasing pressure. Below Tmax the change in f( T) with pressure is less drastic. The Gorter-Mellink constant, AGM, increases linearly with pressure in the range 1.5-2 K and its pressure coefficient at 1 bar is 0.038 ± 0.01 per bar, independent of temperature. The superfilter is tested at 1.8 K. The flow through the superfilter is Gorter-Mellink flow. The maximum flow rate decreases as the pressure increases. The temperature distribution in the test section with and without flow is adequately described by the one-dimensional model discussed in Part 1. It is concluded that for heat transfer to He II in forced flow there is no advantage in working at pressures > 1 bar. 1 bar = 100 kPa
Magnetic properties of M0.3Fe2.7O4 (M = Fe, Zn and Mn) ferrites nanoparticles
NASA Astrophysics Data System (ADS)
Modaresi, Nahid; Afzalzadeh, Reza; Aslibeiki, Bagher; Kameli, Parviz
2018-06-01
In the present article a comparative study on the structural and magnetic properties of nano-sized M0.3Fe0.7Fe2O4 (M = Fe, Zn and Mn) ferrites have been reported. The X-ray diffraction (XRD) patterns show that the crystallite size depends on the cation distribution. The Rietveld refinement of XRD patterns using MAUD software determines the distribution of cations and unit cell dimensions. The magnetic measurements show that the maximum and minimum value of saturation magnetization is obtained for Zn and Mn doped samples, respectively. The peak temperature of AC magnetic susceptibility of Zn and Fe doped samples below 300 K shows the superparamagnetic behavior in these samples at room temperature. the AC susceptibility results confirm the presence of strong interactions between the nanoparticles which leads to a superspin glass state in the samples at low temperatures.
Distribution of blocking temperatures in nano-oxide layers of specular spin valves
NASA Astrophysics Data System (ADS)
Ventura, J.; Araujo, J. P.; Sousa, J. B.; Veloso, A.; Freitas, P. P.
2007-06-01
Specular spin valves show enhanced giant magnetoresistive (GMR) ratio when compared to other, simpler, spin valve structures. The enhancement of GMR results from specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of the pinned and free layer. These oxides forming the NOL order antiferromagnetically (AFM) below a temperature T ˜175 K. Here, we study the effects of the pinned layer magnetization and its domain structure on the AFM ordering of the NOL by performing field cooling measurements with different cooling fields (H0). We observe enhanced (reduced) exchange field and magnetoresistive ratio for H0>0(<0), i.e., parallel (antiparallel) to the pinned magnetization. These measurements allowed us to confirm the existence of a wide distribution of blocking temperatures (TB) in the NOL of specular spin valves, having a maximum at T ≈175 K, and extending to NOL regions with TB as low as 15 K.
Investigation of air stream from combustor-liner air entry holes, 3
NASA Technical Reports Server (NTRS)
Aiba, T.; Nakano, T.
1979-01-01
Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.
Applicability of AgMERRA Forcing Dataset to Fill Gaps in Historical in-situ Meteorological Data
NASA Astrophysics Data System (ADS)
Bannayan, M.; Lashkari, A.; Zare, H.; Asadi, S.; Salehnia, N.
2015-12-01
Integrated assessment studies of food production systems use crop models to simulate the effects of climate and socio-economic changes on food security. Climate forcing data is one of those key inputs of crop models. This study evaluated the performance of AgMERRA climate forcing dataset to fill gaps in historical in-situ meteorological data for different climatic regions of Iran. AgMERRA dataset intercompared with in- situ observational dataset for daily maximum and minimum temperature and precipitation during 1980-2010 periods via Root Mean Square error (RMSE), Mean Absolute Error (MAE) and Mean Bias Error (MBE) for 17 stations in four climatic regions included humid and moderate, cold, dry and arid, hot and humid. Moreover, probability distribution function and cumulative distribution function compared between model and observed data. The results of measures of agreement between AgMERRA data and observed data demonstrated that there are small errors in model data for all stations. Except for stations which are located in cold regions, model data in the other stations illustrated under-prediction for daily maximum temperature and precipitation. However, it was not significant. In addition, probability distribution function and cumulative distribution function showed the same trend for all stations between model and observed data. Therefore, the reliability of AgMERRA dataset is high to fill gaps in historical observations in different climatic regions of Iran as well as it could be applied as a basis for future climate scenarios.
Wang, Rulin; Li, Qing; He, Shisong; Liu, Yuan; Wang, Mingtian; Jiang, Gan
2018-01-01
Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to the kiwifruit industry throughout the world and accounts for substantial economic losses in China. The aim of the present study was to test and explore the possibility of using MaxEnt (maximum entropy models) to predict and analyze the future large-scale distribution of Psa in China. Based on the current environmental factors, three future climate scenarios, which were suggested by the fifth IPCC report, and the current distribution sites of Psa, MaxEnt combined with ArcGIS was applied to predict the potential suitable areas and the changing trend of Psa in China. The jackknife test and correlation analysis were used to choose dominant climatic factors. The receiver operating characteristic curve (ROC) drawn by MaxEnt was used to evaluate the accuracy of the simulation. The results showed that under current climatic conditions, the area from latitude 25° to 36°N and from longitude 101° to 122°E is the primary potential suitable area of Psa in China. The highly suitable area (with suitability between 66 and 100) was mainly concentrated in Northeast Sichuan, South Shaanxi, most of Chongqing, West Hubei and Southwest Gansu and occupied 4.94% of land in China. Under different future emission scenarios, both the areas and the centers of the suitable areas all showed differences compared with the current situation. Four climatic variables, i.e., maximum April temperature (19%), mean temperature of the coldest quarter (14%), precipitation in May (11.5%) and minimum temperature in October (10.8%), had the largest impact on the distribution of Psa. The MaxEnt model is potentially useful for forecasting the future adaptive distribution of Psa under climate change, and it provides important guidance for comprehensive management.
Methven, David A.; Piatt, John F.
1991-01-01
The seasonal abundance and vertical distribution of capelin in relation to water temperature have been investigated by conducting repeated hydroacoustic surveys at a coastal site off eastern Newfoundland. Water temperatures were warmer in 1983 than in 1984 as indicated by the earlier appearance and greater depth of the seasonal thermocline. Correspondingly, schools of capelin appeared earlier, were more abundant, and extended deeper in the water column in 1983 than in 1984. Most capelin were found between the surface and the 5°C isotherm. In both years, initial peaks of capelin abundance occurred when nearshore water temperatures increased from about 0-1°C to above 6°C and, at or near, periods of maximum tidal oscillation. Short-term variations in the depth of the 5°C isotherm were related to nearshore wind-induced upwelling events. Annual variations corresponded to the volume of cold (>0°C) water and sea-ice transported south by the Labrador Current.
2013-01-01
Background The distribution of anopheline mosquitoes is determined by temporally dynamic environmental and human-associated variables, operating over a range of spatial scales. Macro-spatial short-term trends are driven predominantly by prior (lagged) seasonal changes in climate, which regulate the abundance of suitable aquatic larval habitats. Micro-spatial distribution is determined by the location of these habitats, proximity and abundance of available human bloodmeals and prevailing micro-climatic conditions. The challenge of analysing—in a single coherent statistical framework—the lagged and distributed effect of seasonal climate changes simultaneously with the effects of an underlying hierarchy of spatial factors has hitherto not been addressed. Methods Data on Anopheles gambiae sensu stricto and A. funestus collected from households in Kilifi district, Kenya, were analysed using polynomial distributed lag generalized linear mixed models (PDL GLMMs). Results Anopheline density was positively and significantly associated with amount of rainfall between 4 to 47 days, negatively and significantly associated with maximum daily temperature between 5 and 35 days, and positively and significantly associated with maximum daily temperature between 29 and 48 days in the past (depending on Anopheles species). Multiple-occupancy households harboured greater mosquito numbers than single-occupancy households. A significant degree of mosquito clustering within households was identified. Conclusions The PDL GLMMs developed here represent a generalizable framework for analysing hierarchically-structured data in combination with explanatory variables which elicit lagged effects. The framework is a valuable tool for facilitating detailed understanding of determinants of the spatio-temporal distribution of Anopheles. Such understanding facilitates delivery of targeted, cost-effective and, in certain circumstances, preventative antivectorial interventions against malaria. PMID:24330615
Information flow in layered networks of non-monotonic units
NASA Astrophysics Data System (ADS)
Schittler Neves, Fabio; Martim Schubert, Benno; Erichsen, Rubem, Jr.
2015-07-01
Layered neural networks are feedforward structures that yield robust parallel and distributed pattern recognition. Even though much attention has been paid to pattern retrieval properties in such systems, many aspects of their dynamics are not yet well characterized or understood. In this work we study, at different temperatures, the memory activity and information flows through layered networks in which the elements are the simplest binary odd non-monotonic function. Our results show that, considering a standard Hebbian learning approach, the network information content has its maximum always at the monotonic limit, even though the maximum memory capacity can be found at non-monotonic values for small enough temperatures. Furthermore, we show that such systems exhibit rich macroscopic dynamics, including not only fixed point solutions of its iterative map, but also cyclic and chaotic attractors that also carry information.
Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model
NASA Astrophysics Data System (ADS)
Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.
2016-12-01
The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.
Understanding Peripheral Bat Populations Using Maximum-Entropy Suitability Modeling
Barnhart, Paul R.; Gillam, Erin H.
2016-01-01
Individuals along the periphery of a species distribution regularly encounter more challenging environmental and climatic conditions than conspecifics near the center of the distribution. Due to these potential constraints, individuals in peripheral margins are expected to change their habitat and behavioral characteristics. Managers typically rely on species distribution maps when developing adequate management practices. However, these range maps are often too simplistic and do not provide adequate information as to what fine-scale biotic and abiotic factors are driving a species occurrence. In the last decade, habitat suitability modelling has become widely used as a substitute for simplistic distribution mapping which allows regional managers the ability to fine-tune management resources. The objectives of this study were to use maximum-entropy modeling to produce habitat suitability models for seven species that have a peripheral margin intersecting the state of North Dakota, according to current IUCN distributions, and determine the vegetative and climatic characteristics driving these models. Mistnetting resulted in the documentation of five species outside the IUCN distribution in North Dakota, indicating that current range maps for North Dakota, and potentially the northern Great Plains, are in need of update. Maximum-entropy modeling showed that temperature and not precipitation were the variables most important for model production. This fine-scale result highlights the importance of habitat suitability modelling as this information cannot be extracted from distribution maps. Our results provide baseline information needed for future research about how and why individuals residing in the peripheral margins of a species’ distribution may show marked differences in habitat use as a result of urban expansion, habitat loss, and climate change compared to more centralized populations. PMID:27935936
NASA Astrophysics Data System (ADS)
Dérerová, Jana; Kohút, Igor; Radwan, Anwar H.; Bielik, Miroslav
2017-12-01
The temperature model of the lithosphere along profile passing through the Red Sea region has been derived using 2D integrated geophysical modelling method. Using the extrapolation of failure criteria, lithology and calculated temperature distribution, we have constructed the rheological model of the lithosphere in the area. We have calculated the strength distribution in the lithosphere and constructed the strength envelopes for both compressional and extensional regimes. The obtained results indicate that the strength steadily decreases from the Western desert through the Eastern desert towards the Red Sea where it reaches its minimum for both compressional and extensional regime. Maximum strength can be observed in the Western desert where the largest strength reaches values of about 250-300 MPa within the upper crust on the boundary between upper and lower crust. In the Eastern desert we observe slightly decreased strength with max values about 200-250 MPa within upper crust within 15 km with compression being dominant. These results suggest mostly rigid deformation in the region or Western and Eastern desert. In the Red Sea, the strength rapidly decreases to its minimum suggesting ductile processes as a result of higher temperatures.
NASA Technical Reports Server (NTRS)
Boeer, K. W.
1971-01-01
Theoretical and experimental investigations on CdS single crystals and CuxS:CdS photovoltaic cells prepared from CdS single crystals by a chemical-dip procedure are described. The studies are aimed at clarifying cell mechanisms which affect key cell properties (efficiency, reliability, and lifetime) by examining the properties of intrinsic and extrinsic defects in the junction and surface regions and their effects on carrier transport through these regions. The experimental research described includes studies of thermal, infrared, and field quenching of acceptor-doped CdS crystals; investigation of optical and electrical properties of CuxS:CdS photovoltaic cells (current-voltage characteristics, spectral distribution of photocurrent and photovoltage) and the dependence of these properties on temperature and light intensity; measurement of changes, as a result of heat treatment in ultrahigh vacuum, in the spectral distribution of photoconductivity at room temperature and liquid nitrogen temperature, the luminescence spectrum at liquid nitrogen temperature, and the thermally stimulated current curves of CdS crystals; determination of the effect of irradiation with 150 keV (maximum) X-rays on the spectral distribution of photoconductivity and thermally-stimulated current of CdS crystals; and studies of the effect of growth conditions on the photoconductive properties of CdS crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz
2014-05-01
Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length ofmore » the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1?km (24%) and the Rakaia Glacier of 9.3?km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (-14% and -18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.« less
A maximum entropy thermodynamics of small systems.
Dixit, Purushottam D
2013-05-14
We present a maximum entropy approach to analyze the state space of a small system in contact with a large bath, e.g., a solvated macromolecular system. For the solute, the fluctuations around the mean values of observables are not negligible and the probability distribution P(r) of the state space depends on the intricate details of the interaction of the solute with the solvent. Here, we employ a superstatistical approach: P(r) is expressed as a marginal distribution summed over the variation in β, the inverse temperature of the solute. The joint distribution P(β, r) is estimated by maximizing its entropy. We also calculate the first order system-size corrections to the canonical ensemble description of the state space. We test the development on a simple harmonic oscillator interacting with two baths with very different chemical identities, viz., (a) Lennard-Jones particles and (b) water molecules. In both cases, our method captures the state space of the oscillator sufficiently well. Future directions and connections with traditional statistical mechanics are discussed.
Area and Carbon Content of Sphagnum Since Last Glacial Maximum
Gajewski, K. [University of Ottawa, Ottawa, Ontario (Canada); Viau, A. [University of Ottawa, Ottawa, Ontario (Canada); Sawada, M. [University of Ottawa, Ottawa, Ontario (Canada); Atkinson, D. [University of Ottawa, Ottawa, Ontario (Canada); Wilson, S. [University of Ottawa, Ottawa, Ontario (Canada)
2002-01-01
The distribution and abundance of Sphagnum spores in North America and Eurasia are mapped for the past 21ka, as described in Gajewski et al. (2002). In summary, spore data were taken from existing pollen data bases, as were radiocarbon chronologies. The abundance of Sphagnum spores was mapped at 2000-year intervals beginning 21000 years BP (before present). The present-day distribution of abundant Sphagnum spores corresponds closely to areas with peatland development, with maximum Sphagnum abundance between 630 and 1300 mm annual precipitation and between -2° and 60°C mean annual air temperature. Carbon content of peatlands was generated from estimated peatland area, calculated values of peat thickness, and specified values of bulk density (112 × 103 g m-3) and fraction of carbon (51.7%).
NASA Technical Reports Server (NTRS)
Munasinghe, L.; Jun, T.; Rind, D. H.
2012-01-01
Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.
Salvadeo, Christian J.; Gómez-Gallardo U., Alejandro; Nájera-Caballero, Mauricio; Urbán-Ramirez, Jorge; Lluch-Belda, Daniel
2015-01-01
The environmental conditions of the breeding and feeding grounds of the gray whale (Eschrichtius robustus) fluctuates at inter-annual scales in response to regional and basin climate patterns. Thus, the goals of this study were to assess if there are any relationships between summer sea ice on their feeding ground and counts of gray whale mother-calf (MC) pairs at Ojo de Liebre Lagoon (OLL); and if El Niño Southern Oscillation (ENSO) influences the winter distribution of gray whales MC pairs in the three primary breeding lagoons of OLL, San Ignacio Lagoon (SIL) and Santo Domingo Channel north of Bahia Magdalena (SDCh). Maximum February counts of MC pairs were compared with the length of the open-water season at the Bering Sea during the previous year. Then, an ENSO index and sea surface temperature anomalies outside the primary lagoons was compared with the maximum February counts of MC pairs at these lagoons. Results showed that maximum counts of MC pairs in OLL correlates with sea ice conditions in their feeding grounds from the previous feeding season, and this relationship can be attributed to changes in nutritive condition of females. ENSO-related variability influences distribution of MC pairs in the southern area of SDCh during the warm 1998 El Niño and cold 1999 La Niña. This supports the hypothesis that changes in the whales’ distribution related to sea temperature occurs to reduce thermal-stress and optimize energy utilization for newborn whales. Although this last conclusion should be considered in view of the limited data available from all the whales’ wintering locations in all the years considered. PMID:26309028
Salvadeo, Christian J; Gómez-Gallardo U, Alejandro; Nájera-Caballero, Mauricio; Urbán-Ramirez, Jorge; Lluch-Belda, Daniel
2015-01-01
The environmental conditions of the breeding and feeding grounds of the gray whale (Eschrichtius robustus) fluctuates at inter-annual scales in response to regional and basin climate patterns. Thus, the goals of this study were to assess if there are any relationships between summer sea ice on their feeding ground and counts of gray whale mother-calf (MC) pairs at Ojo de Liebre Lagoon (OLL); and if El Niño Southern Oscillation (ENSO) influences the winter distribution of gray whales MC pairs in the three primary breeding lagoons of OLL, San Ignacio Lagoon (SIL) and Santo Domingo Channel north of Bahia Magdalena (SDCh). Maximum February counts of MC pairs were compared with the length of the open-water season at the Bering Sea during the previous year. Then, an ENSO index and sea surface temperature anomalies outside the primary lagoons was compared with the maximum February counts of MC pairs at these lagoons. Results showed that maximum counts of MC pairs in OLL correlates with sea ice conditions in their feeding grounds from the previous feeding season, and this relationship can be attributed to changes in nutritive condition of females. ENSO-related variability influences distribution of MC pairs in the southern area of SDCh during the warm 1998 El Niño and cold 1999 La Niña. This supports the hypothesis that changes in the whales' distribution related to sea temperature occurs to reduce thermal-stress and optimize energy utilization for newborn whales. Although this last conclusion should be considered in view of the limited data available from all the whales' wintering locations in all the years considered.
Thorogood, Robert M.
1986-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, Robert M.
1983-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, R.M.
1983-12-27
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.
Effect of laser beam on temperature distribution on artificial cylindrical shaped hard tissue bones
NASA Astrophysics Data System (ADS)
Al-Akhras, M.-Ali H.; Qaseer, Mohammad-Khair; Albiss, B. A.; Gezawa, Umar S.
2018-02-01
Samples from fresh lamb chest bones were made in cylindrical shapes to study the time variation of temperature T as functions of the cylindrical radius and depth when its front surface exposed to a laser beam of 110Mw power and 642nm wavelength. The laser beam was directed at the center of the front surface of the horizontal cylinder. The measurements were done in vacuum and at atmospheric pressure. Our data reveal the linear variation of T with time, followed by a gradual increase before it reaches a plateau value at higher time. This sort of behavior independent of the radius or the depth where the temperature was measured. Moreover, the maximum variation occurs on the front surface where the laser beam was hitting and diminishes gradually with depth deep inside the cylinder. Data at atmospheric pressure showed less changes in temperature. The temperature distribution in bone due to laser irradiation is very important for a rational use of laser therapy as well as in the surgery to minimizes the thermal tissue damage.
Electric field control in DC cable test termination by nano silicone rubber composite
NASA Astrophysics Data System (ADS)
Song, Shu-Wei; Li, Zhongyuan; Zhao, Hong; Zhang, Peihong; Han, Baozhong; Fu, Mingli; Hou, Shuai
2017-07-01
The electric field distributions in high voltage direct current cable termination are investigated with silicone rubber nanocomposite being the electric stress control insulator. The nanocomposite is composed of silicone rubber, nanoscale carbon black and graphitic carbon. The experimental results show that the physical parameters of the nanocomposite, such as thermal activation energy and nonlinearity-relevant coefficient, can be manipulated by varying the proportion of the nanoscale fillers. The numerical simulation shows that safe electric field distribution calls for certain parametric region of the thermal activation energy and nonlinearity-relevant coefficient. Outside the safe parametric region, local maximum of electric field strength around the stress cone appears in the termination insulator, enhancing the breakdown of the cable termination. In the presence of the temperature gradient, thermal activation energy and nonlinearity-relevant coefficient work as complementary factors to produce a reasonable electric field distribution. The field maximum in the termination insulator show complicate variation in the transient processes. The stationary field distribution favors the increase of the nonlinearity-relevant coefficient; for the transient field distribution in the process of negative lighting impulse, however, an optimized value of the nonlinearity-relevant coefficient is necessary to equalize the electric field in the termination.
Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun
2016-11-01
This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Quantifying Observed Temperature Extremes in the Southeastern United States
NASA Astrophysics Data System (ADS)
Sura, P.; Stefanova, L. B.; Griffin, M.; Worsnop, R.
2011-12-01
There is broad consensus that the most hazardous effects of climate change are related to a potential increase (in frequency and/or intensity) of extreme weather and climate events. In particular, the statistics of regional daily temperature extremes are of practical interest for the agricultural community and energy suppliers. This is notably true for the Southeastern United States where winter hard freezes are a relatively rare and potentially catastrophic event. Here we use a long record of quality-controlled observations collected from 272 National Weather Service (NWS) Cooperative Observing Network (COOP) stations throughout Florida, Georgia, Alabama, and South and North Carolina to provide a detailed climatology of temperature extremes in the Southeastern United States. We employ two complementary approaches. First, we analyze the effect of El Nino-Southern Oscillation (ENSO) and the Arctic Oscillation (AO) on the non-Gaussian (i.e. higher order) statistics of wintertime daily minimum and maximum temperatures. We find a significant and spatially varying impact of ENSO and AO on the non-Gaussian statistics of daily maximum and minimum temperatures throughout the domain. Second, the extremes of the temperature distributions are studied by calculating the 1st and 99th percentiles, and then analyzing the number of days with record low/high temperatures per season. This analysis of daily temperature extremes reveals oscillating, multi-decadal patterns with spatially varying centers of action.
Third law of thermodynamics in the presence of a heat flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camacho, J.
1995-01-01
Following a maximum entropy formalism, we study a one-dimensional crystal under a heat flux. We obtain the phonon distribution function and evaluate the nonequilibrium temperature, the specific heat, and the entropy as functions of the internal energy and the heat flux, in both the quantum and the classical limits. Some analogies between the behavior of equilibrium systems at low absolute temperature and nonequilibrium steady states under high values of the heat flux are shown, which point to a possible generalization of the third law in nonequilibrium situations.
Global potential distribution of Drosophila suzukii (Diptera, Drosophilidae)
dos Santos, Luana A.; Mendes, Mayara F.; Krüger, Alexandra P.; Blauth, Monica L.; Gottschalk, Marco S.
2017-01-01
Drosophila suzukii (Matsumura) is a species native to Western Asia that is able to pierce intact fruit during egg laying, causing it to be considered a fruit crop pest in many countries. Drosophila suzukii have a rapid expansion worldwide; occurrences were recorded in North America and Europe in 2008, and South America in 2013. Due to this rapid expansion, we modeled the potential distribution of this species using the Maximum Entropy Modeling (MaxEnt) algorithm and the Genetic Algorithm for Ruleset Production (GARP) using 407 sites with known occurrences worldwide and 11 predictor variables. After 1000 replicates, the value of the average area under the curve (AUC) of the model predictions with 1000 replicates was 0.97 for MaxEnt and 0.87 for GARP, indicating that both models had optimal performances. The environmental variables that most influenced the prediction of the MaxEnt model were the annual mean temperature, the maximum temperature of the warmest month, the mean temperature of the coldest quarter and the annual precipitation. The models indicated high environmental suitability, mainly in temperate and subtropical areas in the continents of Asia, Europe and North and South America, where the species has already been recorded. The potential for further invasions of the African and Australian continents is predicted due to the environmental suitability of these areas for this species. PMID:28323903
Abdo, David A; Bellchambers, Lynda M; Evans, Scott N
2012-01-01
Coral reefs face increasing pressures particularly when on the edge of their distributions. The Houtman Abrolhos Islands (Abrolhos) are the southernmost coral reef system in the Indian Ocean, and one of the highest latitude reefs in the world. These reefs have a unique mix of tropical and temperate marine fauna and flora and support 184 species of coral, dominated by Acropora species. A significant La Niña event during 2011 produced anomalous conditions of increased temperature along the whole Western Australian coastline, producing the first-recorded widespread bleaching of corals at the Abrolhos. We examined long term trends in the marine climate at the Abrolhos using historical sea surface temperature data (HadISST data set) from 1900-2011. In addition in situ water temperature data for the Abrolhos (from data loggers installed in 2008, across four island groups) were used to determine temperature exposure profiles. Coupled with the results of coral cover surveys conducted annually since 2007; we calculated bleaching thresholds for monitoring sites across the four Abrolhos groups. In situ temperature data revealed maximum daily water temperatures reached 29.54°C in March 2011 which is 4.2°C above mean maximum daily temperatures (2008-2010). The level of bleaching varied across sites with an average of ∼12% of corals bleached. Mortality was high, with a mean ∼50% following the 2011 bleaching event. Prior to 2011, summer temperatures reached a mean (across all monitoring sites) of 25.1°C for 2.5 days. However, in 2011 temperatures reached a mean of 28.1°C for 3.3 days. Longer term trends (1900-2011) showed mean annual sea surface temperatures increase by 0.01°C per annum. Long-term temperature data along with short-term peaks in 2011, outline the potential for corals to be exposed to more frequent bleaching risk with consequences for this high latitude coral reef system at the edge of its distribution.
Designing gradient coils with reduced hot spot temperatures.
While, Peter T; Forbes, Larry K; Crozier, Stuart
2010-03-01
Gradient coil temperature is an important concern in the design and construction of MRI scanners. Closely spaced gradient coil windings cause temperature hot spots within the system as a result of Ohmic heating associated with large current being driven through resistive material, and can strongly affect the performance of the coils. In this paper, a model is presented for predicting the spatial temperature distribution of a gradient coil, including the location and extent of temperature hot spots. Subsequently, a method is described for designing gradient coils with improved temperature distributions and reduced hot spot temperatures. Maximum temperature represents a non-linear constraint and a relaxed fixed point iteration routine is proposed to adjust coil windings iteratively to minimise this coil feature. Several examples are considered that assume different thermal material properties and cooling mechanisms for the gradient system. Coil winding solutions are obtained for all cases considered that display a considerable drop in hot spot temperature (>20%) when compared to standard minimum power gradient coils with equivalent gradient homogeneity, efficiency and inductance. The method is semi-analytical in nature and can be adapted easily to consider other non-linear constraints in the design of gradient coils or similar systems. Crown Copyright (c) 2009. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, L.; Kerr, L. A.; Bridger, E.
2016-12-01
Changes in species distributions have been widely associated with climate change. Understanding how ocean conditions influence marine fish distributions is critical for elucidating the role of climate in ecosystem change and forecasting how fish may be distributed in the future. Species distribution models (SDMs) can enable estimation of the likelihood of encountering species in space or time as a function of environmental conditions. Traditional SDMs are applied to scientific-survey data that include both presences and absences. Maximum entropy (MaxEnt) models are promising tools as they can be applied to presence-only data, such as those collected from fisheries or citizen science programs. We used MaxEnt to relate the occurrence records of marine fish species (e.g. Atlantic herring, Atlantic mackerel, and butterfish) from NOAA Northeast Fisheries Observer Program to environmental conditions. Environmental variables from earth system data, such as sea surface temperature (SST), sea bottom temperature (SBT), Chlorophyll-a, bathymetry, North Atlantic oscillation (NAO), and Atlantic multidecadal oscillation (AMO), were matched with species occurrence for MaxEnt modeling the fish distributions in Northeast Shelf area. We developed habitat suitability maps for these species, and assessed the relative influence of environmental factors on their distributions. Overall, SST and Chlorophyll-a had greatest influence on their monthly distributions, with bathymetry and SBT having moderate influence and climate indices (NAO and AMO) having little influence. Across months, Atlantic herring distribution was most related to SST 10th percentile, and Atlantic mackerel and butterfish distributions were most related to previous month SST. The fish distributions were most affected by previous month Chlorophyll-a in summer months, which may indirectly indicate the accumulative impact of primary productivity. Results highlighted the importance of spatial and temporal scales when using SDMs to investigate the habitat suitability and distributions of a focal species. MaxEnt models have the potential to provide hindcasts of where species might have been in the past in relation to historical environmental conditions, nowcasts in relation to current conditions, or forecasts of future species distributions.
Material distribution in light water reactor-type bundles tested under severe accident conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noack, V.; Hagen, S.J.L.; Hofmann, P.
1997-02-01
Severe fuel damage experiments simulating small-break loss-of-coolant accidents have been carried out in the CORA out-of-pile test facility at Forschungszentrum Karlsruhe. Rod bundles with electrically heated fuel rod simulators containing annular UO{sub 2} pellets, UO{sub 2} full pellet rods, and absorber rods of two kinds (Ag/In/Cd to represent pressurized water reactor conditions and B{sub 4}C to represent boiling water reactor and VVER-1000 fuel elements) were subjected to temperature transients up to 2,300 K. A special method was applied to determine the axial mass distribution of bundle materials. The low-temperature melt formation by various interactions between zirconium and components of absorbermore » and spacer grids strongly influences the bundle degradation and material relocation. Absorber materials can separate from the fuel by a noncoherent relocation of the materials at different temperatures. The distributions of solidified materials in the different test bundles show a clear dependence on the axial temperature profile. Coolant channel blockages are observed mainly at the lower end of the bundle, i.e., near the lowest elevation at which an oxidation excursion resulting from the highly exothermic zirconium-steam reaction had been experienced. This elevation corresponds with a steep axial temperature gradient in the maximum temperature attained. Oxide layers on Zircaloy result in reduced melt formation.« less
Djennad, Abdelmajid; Lo Iacono, Giovanni; Sarran, Christophe; Fleming, Lora E; Kessel, Anthony; Haines, Andy; Nichols, Gordon L
2018-04-27
To understand the impact of weather on infectious diseases, information on weather parameters at patient locations is needed, but this is not always accessible due to confidentiality or data availability. Weather parameters at nearby locations are often used as a proxy, but the accuracy of this practice is not known. Daily Campylobacter and Cryptosporidium cases across England and Wales were linked to local temperature and rainfall at the residence postcodes of the patients and at the corresponding postcodes of the laboratory where the patient's specimen was tested. The paired values of daily rainfall and temperature for the laboratory versus residence postcodes were interpolated from weather station data, and the results were analysed for agreement using linear regression. We also assessed potential dependency of the findings on the relative geographic distance between the patient's residence and the laboratory. There was significant and strong agreement between the daily values of rainfall and temperature at diagnostic laboratories with the values at the patient residence postcodes for samples containing the pathogens Campylobacter or Cryptosporidium. For rainfall, the R-squared was 0.96 for the former and 0.97 for the latter, and for maximum daily temperature, the R-squared was 0.99 for both. The overall mean distance between the patient residence and the laboratory was 11.9 km; however, the distribution of these distances exhibited a heavy tail, with some rare situations where the distance between the patient residence and the laboratory was larger than 500 km. These large distances impact the distributions of the weather variable discrepancies (i.e. the differences between weather parameters estimated at patient residence postcodes and those at laboratory postcodes), with discrepancies up to ±10 °C for the minimum and maximum temperature and 20 mm for rainfall. Nevertheless, the distributions of discrepancies (estimated separately for minimum and maximum temperature and rainfall), based on the cases where the distance between the patient residence and the laboratory was within 20 km, still exhibited tails somewhat longer than the corresponding exponential fits suggesting modest small scale variations in temperature and rainfall. The findings confirm that, for the purposes of studying the relationships between meteorological variables and infectious diseases using data based on laboratory postcodes, the weather results are sufficiently similar to justify the use of laboratory postcode as a surrogate for domestic postcode. Exclusion of the small percentage of cases where there is a large distance between the residence and the laboratory could increase the precision of estimates, but there are generally strong associations between daily weather parameters at residence and laboratory.
Germination shifts of C3 and C4 species under simulated global warming scenario.
Zhang, Hongxiang; Yu, Qiang; Huang, Yingxin; Zheng, Wei; Tian, Yu; Song, Yantao; Li, Guangdi; Zhou, Daowei
2014-01-01
Research efforts around the world have been increasingly devoted to investigating changes in C3 and C4 species' abundance or distribution with global warming, as they provide important insight into carbon fluxes and linked biogeochemical cycles. However, changes in the early life stage (e.g. germination) of C3 and C4 species in response to global warming, particularly with respect to asymmetric warming, have received less attention. We investigated germination percentage and rate of C3 and C4 species under asymmetric (+3/+6°C at day/night) and symmetric warming (+5/+5°C at day/night), simulated by alternating temperatures. A thermal time model was used to calculate germination base temperature and thermal time constant. Two additional alternating temperature regimes were used to test temperature metrics effect. The germination percentage and rate increased continuously for C4 species, but increased and then decreased with temperature for C3 species under both symmetric and asymmetric warming. Compared to asymmetric warming, symmetric warming significantly overestimated the speed of germination percentage change with temperature for C4 species. Among the temperature metrics (minimum, maximum, diurnal temperature range and average temperature), maximum temperature was most correlated with germination of C4 species. Our results indicate that global warming may favour germination of C4 species, at least for the C4 species studied in this work. The divergent effects of asymmetric and symmetric warming on plant germination also deserve more attention in future studies.
Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam-Poupart, Ariane; Smargiassi, Audrey; Institut national de santé publique du Québec
2014-10-15
Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures inmore » 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in colder temperate zones. - Highlights: • 259 heat-related compensated illnesses were modeled with ambient temperature • An overall risk ratio of 1.419 (95% CI 1.326–1.520) for every 1 °C increase was found • Risk estimates were similar for men and women and by large age groups. • There were little lag effects (IRRs of 1.206 to 1.471 for every 1 °C increase)« less
An economic model of friendship and enmity for measuring social balance in networks
NASA Astrophysics Data System (ADS)
Lee, Kyu-Min; Shin, Euncheol; You, Seungil
2017-12-01
We propose a dynamic economic model of networks where agents can be friends or enemies with one another. This is a decentralized relationship model in that agents decide whether to change their relationships so as to minimize their imbalanced triads. In this model, there is a single parameter, which we call social temperature, that captures the degree to which agents care about social balance in their relationships. We show that the global structure of relationship configuration converges to a unique stationary distribution. Using this stationary distribution, we characterize the maximum likelihood estimator of the social temperature parameter. Since the estimator is computationally challenging to calculate from real social network datasets, we provide a simple simulation algorithm and verify its performance with real social network datasets.
NASA Astrophysics Data System (ADS)
Mildrexler, D. J.; Zhao, M.; Running, S. W.
2014-12-01
Land Surface Temperature (LST) is a good indicator of the surface energy balance because it is determined by interactions and energy fluxes between the atmosphere and the ground. The variability of land surface properties and vegetation densities across the Earth's surface changes these interactions and gives LST a unique biogeographic influence. Natural and human-induced disturbances modify the surface characteristics and alter the expression of LST. This results in a heterogeneous and dynamic thermal environment. Measurements that merge these factors into a single global metric, while maintaining the important biophysical and biogeographical factors of the land surface's thermal environment are needed to better understand integrated temperature changes in the Earth system. Using satellite-based LST we have developed a new global metric that focuses on one critical component of LST that occurs when the relationship between vegetation density and surface temperature is strongly coupled: annual maximum LST (LSTmax). A 10 year evaluation of LSTmax histograms that include every 1-km pixel across the Earth's surface reveals that this integrative measurement is strongly influenced by the biogeographic patterns of the Earth's ecosystems, providing a unique comparative view of the planet every year that can be likened to the Earth's thermal maximum fingerprint. The biogeographical component is controlled by the frequency and distribution of vegetation types across the Earth's land surface and displays a trimodal distribution. The three modes are driven by ice covered polar regions, forests, and hot desert/shrubland environments. In ice covered areas the histograms show that the heat of fusion results in a convergence of surface temperatures around the melting point. The histograms also show low interannual variability reflecting two important global land surface dynamics; 1) only a small fraction of the Earth's surface is disturbed in any given year, and 2) when considered at the global scale, the positive and negative climate forcings resulting from the aggregate effects of the loss of vegetation to disturbances and the regrowth from natural succession are roughly in balance. Changes in any component of the histogram can be tracked and would indicate a major change in the Earth system.
Mesospheric temperatures estimated from the meteor radar observations at Mohe, China
NASA Astrophysics Data System (ADS)
Liu, Libo; Liu, Huixin; Le, Huijun; Chen, Yiding; Sun, Yang-Yi; Ning, Baiqi; Hu, Lianhuan; Wan, Weixing; Li, Na; Xiong, Jiangang
2017-02-01
In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5°N, 122.3°E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Second, the full width at half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM as a function of TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2°S, 58.8°E) station.
NASA Astrophysics Data System (ADS)
Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju
2016-01-01
The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.
NASA Astrophysics Data System (ADS)
Abhilash, K. P.; Christopher Selvin, P.; Nalini, B.; Somasundaram, K.; Sivaraj, P.; Chandra Bose, A.
2016-04-01
The nano-crystalline Li0.5La0.5TiO3 (LLTO) was prepared as an electrolyte material for lithium-ion batteries by the sol-gel method. The prepared LLTO material is characterized by structural, morphological and electrical characterizations. The LLTO shows the cubic perovskite structure with superlattice formation. The uniform distribution of LLTO particles has been analyzed by the SEM and TEM analysis of the sample. Impedance measurements at various temperatures were carried out and the temperature dependent conductivity of as prepared LLTO nanopowders at different temperatures from room temperature to 448 K has been analyzed. The transport mechanism has been analyzed using the dielectric and modulus analysis of the sample. Maximum grain conductivity of the order of 10-3 S cm-1 has been obtained for the sample at higher temperatures.
NASA Astrophysics Data System (ADS)
Aydın, Özgür; Nakajima, Hironori; Kitahara, Tatsumi
2015-10-01
Addressing the fuel distribution and endothermic cooling by the internal reforming, we have measured longitudinal current/temperature variations by ;Electrode-segmentation; in a microtubular solid oxide fuel cell operated with syngas (50% pre-reformed methane) and equivalent H2/N2 (100% conversion of syngas to H2) at three different flow rates. Regardless of the syngas flow rates, currents and temperatures show irregular fluctuations with varying amplitudes from upstream to downstream segment. Analysis of the fluctuations suggests that the methane steam reforming reaction is highly affected by the H2 partial pressure. Current-voltage curves plotted for the syngas and equivalent H2/N2 flow rates reveal that the fuel depletion is enhanced toward the downstream during the syngas operation, resulting in a larger performance degradation. All the segments exhibit temperature drops with the syngas flow compared with the equivalent H2/N2 flow due to the endothermic cooling by the methane steam reforming reaction. Despite the drops, the segment temperatures remain above the furnace temperature; besides, the maximum temperature difference along the cell diminishes. The MSR reaction rate does not consistently increase with the decreasing gas inlet velocity (increasing residence time on the catalyst); which we ascribe to the dominating impact of the local temperatures.
Uncertainties in observations and climate projections for the North East India
NASA Astrophysics Data System (ADS)
Soraisam, Bidyabati; Karumuri, Ashok; D. S., Pai
2018-01-01
The Northeast-India has undergone many changes in climatic-vegetation related issues in the last few decades due to increased human activities. However, lack of observations makes it difficult to ascertain the climate change. The study involves the mean, seasonal cycle, trend and extreme-month analysis for summer-monsoon and winter seasons of observed climate data from Indian Meteorological Department (1° × 1°) and Aphrodite & CRU-reanalysis (both 0.5° × 0.5°), and five regional-climate-model simulations (LMDZ, MPI, GFDL, CNRM and ACCESS) data from AR5/CORDEX-South-Asia (0.5° × 0.5°). Long-term (1970-2005) observed, minimum and maximum monthly temperature and precipitation, and the corresponding CORDEX-South-Asia data for historical (1970-2005) and future-projections of RCP4.5 (2011-2060) have been analyzed for long-term trends. A large spread is found across the models in spatial distributions of various mean maximum/minimum climate statistics, though models capture a similar trend in the corresponding area-averaged seasonal cycles qualitatively. Our observational analysis broadly suggests that there is no significant trend in rainfall. Significant trends are observed in the area-averaged minimum temperature during winter. All the CORDEX-South-Asia simulations for the future project either a decreasing insignificant trend in seasonal precipitation, but increasing trend for both seasonal maximum and minimum temperature over the northeast India. The frequency of extreme monthly maximum and minimum temperature are projected to increase. It is not clear from future projections how the extreme rainfall months during JJAS may change. The results show the uncertainty exists in the CORDEX-South-Asia model projections over the region in spite of the relatively high resolution.
Spatial outline of malaria transmission in Iran.
Barati, Mohammad; Keshavarz-valian, Hossein; Habibi-nokhandan, Majid; Raeisi, Ahmad; Faraji, Leyla; Salahi-moghaddam, Abdoreza
2012-10-01
To conduct for modeling spatial distribution of malaria transmission in Iran. Records of all malaria cases from the period 2008-2010 in Iran were retrieved for malaria control department, MOH&ME. Metrological data including annual rainfall, maximum and minimum temperature, relative humidity, altitude, demographic, districts border shapefiles, and NDVI images received from Iranian Climatologic Research Center. Data arranged in ArcGIS. 99.65% of malaria transmission cases were focused in southeast part of Iran. These transmissions had statistically correlation with altitude (650 m), maximum (30 °C), minimum (20 °C) and average temperature (25.3 °C). Statistical correlation and overall relationship between NDVI (118.81), relative humidity (⩾45%) and rainfall in southeast area was defined and explained in this study. According to ecological condition and mentioned cut-off points, predictive map was generated using cokriging method. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Tsumura, Y; Uchiyama, K; Moriguchi, Y; Ueno, S; Ihara-Ujino, T
2012-12-01
Local adaptation is important in evolutionary processes and speciation. We used multiple tests to identify several candidate genes that may be involved in local adaptation from 1026 loci in 14 natural populations of Cryptomeria japonica, the most economically important forestry tree in Japan. We also studied the relationships between genotypes and environmental variables to obtain information on the selective pressures acting on individual populations. Outlier loci were mapped onto a linkage map, and the positions of loci associated with specific environmental variables are considered. The outlier loci were not randomly distributed on the linkage map; linkage group 11 was identified as a genomic island of divergence. Three loci in this region were also associated with environmental variables such as mean annual temperature, daily maximum temperature, maximum snow depth, and so on. Outlier loci identified with high significance levels will be essential for conservation purposes and for future work on molecular breeding.
Zhang, Tangtang; Wen, Jun; van der Velde, Rogier; Meng, Xianhong; Li, Zhenchao; Liu, Yuanyong; Liu, Rong
2008-01-01
The total atmospheric water vapor content (TAWV) and land surface temperature (LST) play important roles in meteorology, hydrology, ecology and some other disciplines. In this paper, the ENVISAT/AATSR (The Advanced Along-Track Scanning Radiometer) thermal data are used to estimate the TAWV and LST over the Loess Plateau in China by using a practical split window algorithm. The distribution of the TAWV is accord with that of the MODIS TAWV products, which indicates that the estimation of the total atmospheric water vapor content is reliable. Validations of the LST by comparing with the ground measurements indicate that the maximum absolute derivation, the maximum relative error and the average relative error is 4.0K, 11.8% and 5.0% respectively, which shows that the retrievals are believable; this algorithm can provide a new way to estimate the LST from AATSR data. PMID:27879795
Habitat Suitability Model for the Distribution of Ixodes scapularis (Acari: Ixodidae) in Minnesota
Johnson, T. L.; Bjork, J. K. H.; Neitzel, D. F.; Dorr, F. M.; Schiffman, E. K.; Eisen, R. J.
2016-01-01
Ixodes scapularis Say, the black-legged tick, is the primary vector in the eastern United States of several pathogens causing human diseases including Lyme disease, anaplasmosis, and babesiosis. Over the past two decades, I. scapularis-borne diseases have increased in incidence as well as geographic distribution. Lyme disease exists in two major foci in the United States, one encompassing northeastern states and the other in the Upper Midwest. Minnesota represents a state with an appreciable increase in counties reporting I. scapularis-borne illnesses, suggesting geographic expansion of vector populations in recent years. Recent tick distribution records support this assumption. Here, we used those records to create a fine resolution, subcounty-level distribution model for I. scapularis using variable response curves in addition to tests of variable importance. The model identified 19% of Minnesota as potentially suitable for establishment of the tick and indicated with high accuracy (AUC = 0.863) that the distribution is driven by land cover type, summer precipitation, maximum summer temperatures, and annual temperature variation. We provide updated records of established populations near the northwestern species range limit and present a model that increases our understanding of the potential distribution of I. scapularis in Minnesota. PMID:27026161
Dunham, J.B.; Rosenberger, A.E.; Luce, C.H.; Rieman, B.E.
2007-01-01
Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a pre-post fire comparison of temperatures between two sites (one from a burned stream and one unburned) over 13 years, a short-term (3 year) pre-post fire comparison of a burned and unburned stream with spatially extensive data, and a short-term (1 year) comparative study of spatial variability in temperatures using a "space for time" substitutive design across 90 sites in nine streams (retrospective comparative study). The latter design included streams with a history of stand-replacing wildfire and streams with severe post-fire reorganization of channels due to debris flows and flooding. Results from these three studies indicated that summer maximum water temperatures can remain significantly elevated for at least a decade following wildfire, particularly in streams with severe channel reorganization. In the retrospective comparative study we investigated occurrence of native rainbow trout (Oncorhynchus mykiss) and tailed frog larvae (Ascaphus montanus) in relation to maximum stream temperatures during summer. Both occurred in nearly every site sampled, but tailed frog larvae were found in much warmer water than previously reported in the field (26.6??C maximum summer temperature). Our results show that physical stream habitats can remain altered (for example, increased temperature) for many years following wildfire, but that native aquatic vertebrates can be resilient. In a management context, this suggests wildfire may be less of a threat to native species than human influences that alter the capacity of stream-living vertebrates to persist in the face of natural disturbance. ?? 2007 Springer Science+Business Media, LLC.
Hot Weather Impacts on New York City Restaurant Food Safety Violations and Operations.
Dominianni, Christine; Lane, Kathryn; Ahmed, Munerah; Johnson, Sarah; McKELVEY, Wendy; Ito, Kazuhiko
2018-06-06
Previous studies have shown that higher ambient air temperature is associated with increased incidence of gastrointestinal illnesses, possibly as a result of leaving potentially hazardous food in the temperature danger zone for too long. However, little is known about the effect of hot weather on restaurant practices to maintain safe food temperatures. We examined hot weather impacts on restaurant food safety violations and operations in New York City using quantitative and qualitative methods. We used data from 64,661 inspections conducted among 29,614 restaurants during May to September, 2011 to 2015. We used Poisson time-series regression to estimate the cumulative relative risk (CRR) of temperature-related food safety violations across a range of daily maximum temperature (13 to 40°C [56 to 104°F]) over a lag of 0 to 3 days. We present CRRs for an increase in daily maximum temperature from the median (28°C [82°F]) to the 95th percentile (34°C [93°F]) values. Maximum temperature increased the risk of violations for cold food holding above 5°C (41°F) (CRR, 1.19; 95% CI, 1.14, 1.25) and insufficient refrigerated or hot holding equipment (CRR, 2.37; 95% CI, 2.02, 2.79). We also conducted focus groups among restaurant owners and managers to aid interpretation of findings and identify challenges or knowledge gaps that prevent hot weather preparedness. Focus group participants cited refrigeration issues as a common problem during hot weather. Participants expressed the need for more guidance on hot weather and power outages to be delivered concisely. Our findings suggest that hotter temperatures may compromise cold and hot food holding, possibly by straining refrigeration or other equipment. The findings have public health implications because holding potentially hazardous foods in the temperature danger zone allows foodborne pathogens to proliferate and increases risk for foodborne illness. Distribution of simple guidelines that can be easily accessed during emergencies could help restaurants respond better.
NASA Technical Reports Server (NTRS)
Winter, Jonathan M.; Beckage, Brian; Bucini, Gabriela; Horton, Radley M.; Clemins, Patrick J.
2016-01-01
The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly approximately 1/ 8 deg) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30"), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (1/ 8 deg) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.
Thermal infrared remote sensing of water temperature in riverine landscapes
Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé
2012-01-01
Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.
Thermal infrared remote sensing of water temperature in riverine landscapes: Chapter 5
Carbonneau, Rebecca N.; Piégay, Hervé; Handcock, R.N; Torgersen, Christian E.; Cherkauer, K.A; Gillespie, A.R; Tockner, K; Faux, R. N.; Tan, Jing
2012-01-01
Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001). Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature (Cherkauer et al., 2005).
Energy and enthalpy distribution functions for a few physical systems.
Wu, K L; Wei, J H; Lai, S K; Okabe, Y
2007-08-02
The present work is devoted to extracting the energy or enthalpy distribution function of a physical system from the moments of the distribution using the maximum entropy method. This distribution theory has the salient traits that it utilizes only the experimental thermodynamic data. The calculated distribution functions provide invaluable insight into the state or phase behavior of the physical systems under study. As concrete evidence, we demonstrate the elegance of the distribution theory by studying first a test case of a two-dimensional six-state Potts model for which simulation results are available for comparison, then the biphasic behavior of the binary alloy Na-K whose excess heat capacity, experimentally observed to fall in a narrow temperature range, has yet to be clarified theoretically, and finally, the thermally induced state behavior of a collection of 16 proteins.
NASA Astrophysics Data System (ADS)
Gao, Youtang; Ding, Huan; Xue, Xiao; Xu, Yuan; Chang, Benkang
2010-10-01
Testing device TST-05B, which is suitable for adaptability test of semiconductor devices, electronic products and other military equipment under the condition of the surrounding air temperature rapidly changing, is used here for temperature shock test.Thermal stability technology of thermoelectric cooler control circuit infrared sight under temperature shock is studied in this paper. Model parameters and geometry is configured for ADI devices (ADN8830), welding material and PCB which are used in system. Thermoelectric cooler control circuit packaged by CSP32 distribution are simulated and analyzed by thermal shock and waveform through engineering finite element analysis software ANSYYS. Because solders of the whole model have much stronger stress along X direction than that of other directions, initial stress constraints along X direction are primarily considered when the partial model of single solder is imposed by thermal load. When absolute thermal loads stresses of diagonal nodes with maximum strains are separated from the whole model, interpolation is processed according to thermal loads circulation. Plastic strains and thermal stresses of nodes in both sides of partial model are obtained. The analysis results indicates that with thermal load circulation, maximum forces of each circulation along X direction are increasingly enlarged and with the accumulation of plastic strains of danger point, at the same time structural deformation and the location of maximum equivalent plastic strain in the solder joints at the first and eighth, the composition will become invalid in the end.
Zhang, Yunquan; Li, Cunlu; Feng, Renjie; Zhu, Yaohui; Wu, Kai; Tan, Xiaodong; Ma, Lu
2016-01-01
Less evidence concerning the association between ambient temperature and mortality is available in developing countries/regions, especially inland areas of China, and few previous studies have compared the predictive ability of different temperature indictors (minimum, mean, and maximum temperature) on mortality. We assessed the effects of temperature on daily mortality from 2003 to 2010 in Jiang’an District of Wuhan, the largest city in central China. Quasi-Poisson generalized linear models combined with both non-threshold and double-threshold distributed lag non-linear models (DLNM) were used to examine the associations between different temperature indictors and cause-specific mortality. We found a U-shaped relationship between temperature and mortality in Wuhan. Double-threshold DLNM with mean temperature performed best in predicting temperature-mortality relationship. Cold effect was delayed, whereas hot effect was acute, both of which lasted for several days. For cold effects over lag 0–21 days, a 1 °C decrease in mean temperature below the cold thresholds was associated with a 2.39% (95% CI: 1.71, 3.08) increase in non-accidental mortality, 3.65% (95% CI: 2.62, 4.69) increase in cardiovascular mortality, 3.87% (95% CI: 1.57, 6.22) increase in respiratory mortality, 3.13% (95% CI: 1.88, 4.38) increase in stroke mortality, and 21.57% (95% CI: 12.59, 31.26) increase in ischemic heart disease (IHD) mortality. For hot effects over lag 0–7 days, a 1 °C increase in mean temperature above the hot thresholds was associated with a 25.18% (95% CI: 18.74, 31.96) increase in non-accidental mortality, 34.10% (95% CI: 25.63, 43.16) increase in cardiovascular mortality, 24.27% (95% CI: 7.55, 43.59) increase in respiratory mortality, 59.1% (95% CI: 41.81, 78.5) increase in stroke mortality, and 17.00% (95% CI: 7.91, 26.87) increase in IHD mortality. This study suggested that both low and high temperature were associated with increased mortality in Wuhan, and that mean temperature had better predictive ability than minimum and maximum temperature in the association between temperature and mortality. PMID:27438847
Highly Refractory Porous Ceramics,
1979-03-14
some cases is not desirable. A uniform distribution of tem- peratures in the melting ch the use of thermally insulating materials, i. e. stability of...materials with micropores that a are inaccessible to penetration by sl s and other melts , which appears, how- ever, to be a very difficult problem...requirements for refractoriness, chemical stability, etc. In accordance with GOST 5040-68, maximum temperatures were established for the melting chamber
NASA Astrophysics Data System (ADS)
Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.
2003-04-01
In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation zones for SWE accuracy assessment. Model simulations did a poor job at estimating the spatial distribution of SWE. Basin clusters where the solar radiative flux dominated the melt flux were simulated more accurately than those dominated by the turbulent fluxes or the longwave radiative flux.
Heat waves in Senegal : detection, characterization and associated processes.
NASA Astrophysics Data System (ADS)
Gnacoussa Sambou, Marie Jeanne; Janicot, Serge; Badiane, Daouda; Pohl, Benjamin; Dieng, Abdou L.; Gaye, Amadou T.
2017-04-01
Atmospheric configuration and synoptic evolution of patterns associated with Senegalese heat wave (HW) are examined on the period 1979-2014 using the Global Surface Summary of the Day (GSOD) observational database and ERA-Interim reanalysis. Since there is no objective and uniform definition of HW events, threshold methods based on atmospheric variables as daily maximum (Tmax) / minimum (Tmin) temperatures and daily mean apparent temperature (AT) are used to define HW threshold detection. Each criterion is related to a specific category of HW events: Tmax (warm day events), Tmin (warm night events) and AT (combining temperature and moisture). These definitions are used in order to characterize as well as possible the warm events over the Senegalese regions (oceanic versus continental region). Statistics on time evolution and spatial distribution of warm events are carried out over the 2 seasons of maximum temperature (March-May and October-November). For each season, a composite of HW events, as well as the most extended event over Senegal (as a case study) are analyzed using usual atmospheric fields (sea level pressure, geopotential height, total column water content, wind components, 2m temperature). This study is part of the project ACASIS (https://acasis.locean-ipsl.upmc.fr/doku.php) on heat waves occurrences over the Sahel and their impact on health. Keywords: heat wave, Senegal, ACASIS.
Analysis of the relationship between the monthly temperatures and weather types in Iberian Peninsula
NASA Astrophysics Data System (ADS)
Peña Angulo, Dhais; Trigo, Ricardo; Nicola, Cortesi; José Carlos, González-Hidalgo
2016-04-01
In this study, the relationship between the atmospheric circulation and weather types and the monthly average maximum and minimum temperatures in the Iberian Peninsula is modeled (period 1950-2010). The temperature data used were obtained from a high spatial resolution (10km x 10km) dataset (MOTEDAS dataset, Gonzalez-Hidalgo et al., 2015a). In addition, a dataset of Portuguese temperatures was used (obtained from the Portuguese Institute of Sea and Atmosphere). The weather type classification used was the one developed by Jenkinson and Collison, which was adapted for the Iberian Peninsula by Trigo and DaCamara (2000), using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The analysis of the behaviour of monthly temperatures based on the weather types was carried out using a stepwise regression procedure of type forward to estimate temperatures in each cell of the considered grid, for each month, and for both maximum and minimum monthly average temperatures. The model selects the weather types that best estimate the temperatures. From the validation model it was obtained the error distribution in the time (months) and space (Iberian Peninsula). The results show that best estimations are obtained for minimum temperatures, during the winter months and in coastal areas. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298
The Aqua-planet Experiment (APE): Response to Changed Meridional SST Profile
NASA Technical Reports Server (NTRS)
Williamson, David L.; Blackburn, Michael; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut;
2013-01-01
This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea- ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double structure off the equator, keeping the minimum over the maximum SST. In both situations only modest changes appear in the shifted profile of zonal average precipitation. When the upward branch of the Hadley circulation moves into the hemisphere with SST maximum, the zonal average zonal, meridional and vertical winds all indicate that the Hadley cell in the other hemisphere dominates.
NASA Astrophysics Data System (ADS)
Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.
2015-05-01
Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.
Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng
2016-03-01
Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results show that both of the temperature and H2O concentration rose with the arrival of detonation wave. With the increase of the vertical distance between the detonation tube nozzle and the laser path, the time of temperature and concentration coming to the peak delayed, and the temperature variation trend tended to slow down. At 20 cm from detonation tube nozzle, the maximum temperature hit 1 329 K and the maximum H2O concentration of 0.19 occurred at 4 ms after ignition. The research can provide with us the support for expanding the detonation test field with absorption spectroscopy technology, and can also help to promote the detonation mechanism research and to enhance the level of detonation engine control technology.
Active Region Moss: Doppler Shifts from Hinode/EIS Observations
NASA Technical Reports Server (NTRS)
Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.
2012-01-01
Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.
Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.
Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying
2015-10-01
Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.
NASA Astrophysics Data System (ADS)
Shen, L.; Mickley, L. J.; Gilleland, E.
2016-04-01
We develop a statistical model using extreme value theory to estimate the 2000-2050 changes in ozone episodes across the United States. We model the relationships between daily maximum temperature (Tmax) and maximum daily 8 h average (MDA8) ozone in May-September over 2003-2012 using a Point Process (PP) model. At ~20% of the sites, a marked decrease in the ozone-temperature slope occurs at high temperatures, defined as ozone suppression. The PP model sometimes fails to capture ozone-Tmax relationships, so we refit the ozone-Tmax slope using logistic regression and a generalized Pareto distribution model. We then apply the resulting hybrid-extreme value theory model to projections of Tmax from an ensemble of downscaled climate models. Assuming constant anthropogenic emissions at the present level, we find an average increase of 2.3 d a-1 in ozone episodes (>75 ppbv) across the United States by the 2050s, with a change of +3-9 d a-1 at many sites.
Multiscale thermal refugia and stream habitat associations of chinook salmon in northwestern Oregon
Torgersen, Christian E.; Price, David M.; Li, Hiram W.; McIntosh, B.A.
1999-01-01
We quantified distribution and behavior of adult spring chinook salmon (Oncorhynchus tshawytscha) related to patterns of stream temperature and physical habitat at channel-unit, reach-, and section-level spatial scales in a wilderness stream and a disturbed stream in the John Day River basin in northeastern Oregon. We investigated the effectiveness of thermal remote sensing for analyzing spatial patterns of stream temperature and assessed habitat selection by spring chinook salmon, evaluating whether thermal refugia might be responsible for the persistence of these stocks in rivers where water temperatures frequently exceed their upper tolerance levels (25A?C) during spawning migration. By presenting stream temperature and the ecology of chinook salmon in a historical context, we could evaluate how changes in riverine habitat and thermal spatial structure, which can be caused by land-use practices, may influence distributional patterns of chinook salmon. Thermal remote sensing provided spatially continuous maps of stream temperature for reaches used by chinook salmon in the upper subbasins of the Middle Fork and North Fork John Day River. Electivity analysis and logistic regression were used to test for associations between the longitudinal distribution of salmon and cool-water areas and stream habitat characteristics. Chinook salmon were distributed nonuniformly in reaches throughout each stream. Salmon distribution and cool water temperature patterns were most strongly related at reach-level spatial scales in the warm stream, the Middle Fork (maximum likelihood ratio: P 0.30). Pools were preferred by adult chinook salmon in both subbasins (Bonferroni confidence interval: P a?? 0.05); however, riffles were used proportionately more frequently in the North Fork than in the Middle Fork. Our observations of thermal refugia and their use by chinook salmon at multiple spatial scales reveal that, although heterogeneity in the longitudinal stream temperature profile may be viewed as an ecological warning sign, thermal patchiness in streams also should be recognized for its biological potential to provide habitat for species existing at the margin of their environmental tolerances.
Temperature-induced excess mortality in Moscow, Russia.
Revich, Boris; Shaposhnikov, Dmitri
2008-05-01
After considering the observed long-term trends in average monthly temperatures distribution in Moscow, the authors evaluated how acute mortality responded to changes in daily average, minimum and maximum temperatures throughout the year, and identified vulnerable population groups, by age and causes of death. A plot of the basic mortality-temperature relationship indicated that this relationship was V-shaped with the minimum around 18 degrees C. Each 1 degree C increment of average daily temperature above 18 degrees C resulted in an increase in deaths from all non-accidental causes by 2.8%, from coronary heart disease by 2.7%, from cerebrovascular diseases by 4.7%, and from respiratory diseases by 8.7%, with a lag of 0 or 1 day. Each 1 degrees C drop of average daily temperature from +18 degrees C to -10 degrees C resulted in an increase in deaths from all non-accidental causes by 0.49%, from coronary heart disease by 0.57%, from cerebrovascular diseases by 0.78%, and from respiratory diseases by 1.5%, with lags of maximum association varying from 3 days for non-accidental mortality to 6 days for cerebrovascular mortality. In the age group 75+ years, corresponding risks were consistently higher by 13-30%. The authors also estimated the increase in non-accidental deaths against the variation of daily temperatures. For each 1 degrees C increase of variation of temperature throughout the day, mortality increased by 0.3-1.9%, depending on other assumptions of the model.
Temperature-induced excess mortality in Moscow, Russia
NASA Astrophysics Data System (ADS)
Revich, Boris; Shaposhnikov, Dmitri
2008-05-01
After considering the observed long-term trends in average monthly temperatures distribution in Moscow, the authors evaluated how acute mortality responded to changes in daily average, minimum and maximum temperatures throughout the year, and identified vulnerable population groups, by age and causes of death. A plot of the basic mortality temperature relationship indicated that this relationship was V-shaped with the minimum around 18°C. Each 1°C increment of average daily temperature above 18°C resulted in an increase in deaths from all non-accidental causes by 2.8%, from coronary heart disease by 2.7%, from cerebrovascular diseases by 4.7%, and from respiratory diseases by 8.7%, with a lag of 0 or 1 day. Each 1°C drop of average daily temperature from +18°C to -10°C resulted in an increase in deaths from all non-accidental causes by 0.49%, from coronary heart disease by 0.57%, from cerebrovascular diseases by 0.78%, and from respiratory diseases by 1.5%, with lags of maximum association varying from 3 days for non-accidental mortality to 6 days for cerebrovascular mortality. In the age group 75+ years, corresponding risks were consistently higher by 13 30%. The authors also estimated the increase in non-accidental deaths against the variation of daily temperatures. For each 1°C increase of variation of temperature throughout the day, mortality increased by 0.3 1.9%, depending on other assumptions of the model.
The effect of air temperature and human thermal indices on mortality in Athens, Greece
NASA Astrophysics Data System (ADS)
Nastos, Panagiotis T.; Matzarakis, Andreas
2012-05-01
This paper investigates whether there is any association between the daily mortality for the wider region of Athens, Greece and the thermal conditions, for the 10-year period 1992-2001. The daily mortality datasets were acquired from the Hellenic Statistical Service and the daily meteorological datasets, concerning daily maximum and minimum air temperature, from the Hellinikon/Athens meteorological station, established at the headquarters of the Greek Meteorological Service. Besides, the daily values of the thermal indices Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) were evaluated in order to interpret the grade of physiological stress. The first step was the application of Pearson's χ 2 test to the compiled contingency tables, resulting in that the probability of independence is zero ( p = 0.000); namely, mortality is in close relation to the air temperature and PET/UTCI. Furthermore, the findings extracted by the generalized linear models showed that, statistically significant relationships ( p < 0.01) between air temperature, PET, UTCI and mortality exist on the same day. More concretely, on one hand during the cold period (October-March), a 10°C decrease in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 13%, 15%, 2%, 7% and 6% of the probability having a death, respectively. On the other hand, during the warm period (April-September), a 10°C increase in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 3%, 1%, 10%, 3% and 5% of the probability having a death, respectively. Taking into consideration the time lag effect of the examined parameters on mortality, it was found that significant effects of 3-day lag during the cold period appears against 1-day lag during the warm period. In spite of the general aspect that cold conditions seem to be favourable factors for daily mortality, the air temperature and PET/UTCI exceedances over specific thresholds depending on the distribution reveal that, very hot conditions are risk factors for the daily mortality.
Temperature initiated passive cooling system
Forsberg, Charles W.
1994-01-01
A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.
Simulation study on the maximum continuous working condition of a power plant boiler
NASA Astrophysics Data System (ADS)
Wang, Ning; Han, Jiting; Sun, Haitian; Cheng, Jiwei; Jing, Ying'ai; Li, Wenbo
2018-05-01
First of all, the boiler is briefly introduced to determine the mathematical model and the boundary conditions, then the boiler under the BMCR condition numerical simulation study, and then the BMCR operating temperature field analysis. According to the boiler actual test results and the hot BMCR condition boiler output test results, the simulation results are verified. The main conclusions are as follows: the position and size of the inscribed circle in the furnace and the furnace temperature distribution and test results under different elevation are compared and verified; Accuracy of numerical simulation results.
Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures
NASA Technical Reports Server (NTRS)
Chahine, Moustafa T.
1995-01-01
New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.
Anharmonic Thermal Oscillations of the Electron Momentum Distribution in Lithium Fluoride
NASA Astrophysics Data System (ADS)
Erba, A.; Maul, J.; Itou, M.; Dovesi, R.; Sakurai, Y.
2015-09-01
Anharmonic thermal effects on the electron momentum distribution of a lithium fluoride single crystal are experimentally measured through high-resolution Compton scattering and theoretically modeled with ab initio simulations, beyond the harmonic approximation to the lattice potential, explicitly accounting for thermal expansion. Directional Compton profiles are measured at two different temperatures, 10 and 300 K, with a high momentum space resolution (0.10 a.u. in full width at half maximum), using synchrotron radiation. The effect of temperature on measured directional Compton profiles is clearly revealed by oscillations extending almost up to |p |=4 a .u . , which perfectly match those predicted from quantum-mechanical simulations. The wave-function-based Hartree-Fock method and three classes of the Kohn-Sham density functional theory (local-density, generalized-gradient, and hybrid approximations) are adopted. The lattice thermal expansion, as described with the quasiharmonic approach, is found to entirely account for the effect of temperature on the electron momentum density within the experimental accuracy.
Assessing the risk zones of Chagas' disease in Chile, in a world marked by global climatic change
Tapia-Garay, Valentina; Figueroa, Daniela P; Maldonado, Ana; Frías-Laserre, Daniel; Gonzalez, Christian R; Parra, Alonso; Canals, Lucia; Apt, Werner; Alvarado, Sergio; Cáceres, Dante; Canals, Mauricio
2018-01-01
BACKGROUND Vector transmission of Trypanosoma cruzi appears to be interrupted in Chile; however, data show increasing incidence of Chagas' disease, raising concerns that there may be a reemerging problem. OBJECTIVE To estimate the actual risk in a changing world it is necessary to consider the historical vector distribution and correlate this distribution with the presence of cases and climate change. METHODS Potential distribution models of Triatoma infestans and Chagas disease were performed using Maxent, a machine-learning method. FINDINGS Climate change appears to play a major role in the reemergence of Chagas' disease and T. infestans in Chile. The distribution of both T. infestans and Chagas' disease correlated with maximum temperature, and the precipitation during the driest month. The overlap of Chagas' disease and T. infestans distribution areas was high. The distribution of T. infestans, under two global change scenarios, showed a minimal reduction tendency in suitable areas. MAIN CONCLUSION The impact of temperature and precipitation on the distribution of T. infestans, as shown by the models, indicates the need for aggressive control efforts; the current control measures, including T. infestans control campaigns, should be maintained with the same intensity as they have at present, avoiding sylvatic foci, intrusions, and recolonisation of human dwellings. PMID:29211105
Hot temperatures during the dry season reduce survival of a resident tropical bird.
Woodworth, Bradley K; Norris, D Ryan; Graham, Brendan A; Kahn, Zachary A; Mennill, Daniel J
2018-05-16
Understanding how climate change will shape species distributions in the future requires a functional understanding of the demographic responses of animals to their environment. For birds, most of our knowledge of how climate influences population vital rates stems from research in temperate environments, even though most of Earth's avian diversity is concentrated in the tropics. We evaluated effects of Southern Oscillation Index (SOI) and local temperature and rainfall at multiple temporal scales on sex-specific survival of a resident tropical bird, the rufous-and-white wren Thryophilus rufalbus , studied over 15 years in the dry forests of northwestern Costa Rica. We found that annual apparent survival of males was 8% higher than females, more variable over time, and responded more strongly to environmental variation than female survival, which did not vary strongly with SOI or local weather. For males, mean and maximum local temperatures were better predictors of survival than either rainfall or SOI, with high temperatures during the dry season and early wet season negatively influencing survival. These results suggest that, even for species adapted to hot environments, further temperature increases may threaten the persistence of local populations in the absence of distributional shifts. © 2018 The Author(s).
Çelik Köycü, Berrak; İmirzalıoğlu, Pervin
2017-07-01
Daily consumption of food and drink creates rapid temperature changes in the oral cavity. Heat transfer and thermal stress caused by temperature changes in restored teeth may damage the hard and soft tissue components, resulting in restoration failure. This study evaluates the temperature distribution and related thermal stress on mandibular molar teeth restored via three indirect restorations using three-dimensional (3D) finite element analysis (FEA). A 3D finite element model was constructed of a mandibular first molar and included enamel, dentin, pulp, surrounding bone, and indirect class 2 restorations of type 2 dental gold alloy, ceramic, and composite resin. A transient thermal FEA was performed to investigate the temperature distribution and the resulting thermal stress after simulated temperature changes from 36°C to 4 or 60°C for a 2-second time period. The restoration models had similar temperature distributions at 2 seconds in both the thermal conditions. Compared with 60°C exposure, the 4°C condition resulted in thermal stress values of higher magnitudes. At 4ºC, the highest stress value observed was tensile stress (56 to 57 MPa), whereas at 60°C, the highest stress value observed was compressive stress (42 to 43 MPa). These stresses appeared at the cervical region of the lingual enamel. The thermal stress at the restoration surface and resin cement showed decreasing order of magnitude as follows: composite > gold > ceramic, in both thermal conditions. The properties of the restorative materials do not affect temperature distribution at 2 seconds in restored teeth. The pulpal temperature is below the threshold for vital pulp tissue (42ºC). Temperature changes generate maximum thermal stress at the cervical region of the enamel. With the highest thermal expansion coefficient, composite resin restorations exhibit higher stress patterns than ceramic and gold restorations. © 2015 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Zaslavsky, Aleksander M.; Tkachov, Viktor V.; Protsenko, Stanislav M.; Bublikov, Andrii V.; Suleimenov, Batyrbek; Orshubekov, Nurbek; Gromaszek, Konrad
2017-08-01
The paper considers the problem of automated decentralized distribution of the electric energy among unlimited-power electric heaters providing the given temperature distribution within the zones of monitored object heating in the context of maximum use of electric power which limiting level is time-dependent randomly. Principles of collective selforganization automata for solving the problem are analyzed. It has been shown that after all the automata make decision, equilibrium of Nash type is attained when unused power within the electric network is not more than a power of any non-energized electric heater.
Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow
NASA Technical Reports Server (NTRS)
Bakirov, F. G.; Shaykhutdinov, Z. G.
1985-01-01
An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.
Novikov Engine with Fluctuating Heat Bath Temperature
NASA Astrophysics Data System (ADS)
Schwalbe, Karsten; Hoffmann, Karl Heinz
2018-04-01
The Novikov engine is a model for heat engines that takes the irreversible character of heat fluxes into account. Using this model, the maximum power output as well as the corresponding efficiency of the heat engine can be deduced, leading to the well-known Curzon-Ahlborn efficiency. The classical model assumes constant heat bath temperatures, which is not a reasonable assumption in the case of fluctuating heat sources. Therefore, in this article the influence of stochastic fluctuations of the hot heat bath's temperature on the optimal performance measures is investigated. For this purpose, a Novikov engine with fluctuating heat bath temperature is considered. Doing so, a generalization of the Curzon-Ahlborn efficiency is found. The results can help to quantify how the distribution of fluctuating quantities affects the performance measures of power plants.
Adverse Climatic Conditions and Impact on Construction Scheduling and Cost
1988-01-01
ABBREVIATIONS ABS MAX MAX TEMP ...... Absolute maximum maximum temperature ABS MIN MIN TEMP ...... Absolute minimum minimum temperature BTU...o Degrees Farenheit MEAN MAX TEMP o.................... Mean maximum temperature MEAN MIN TEMP...temperatures available, a determination had to be made as to whether forecasts were based on absolute , mean, or statistically derived temperatures
Temperature initiated passive cooling system
Forsberg, C.W.
1994-11-01
A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.
Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.
2001-01-01
Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle thermal fatigue behavior has been investigated on a flat Haynes 188 alloy specimen, under the test condition of 30-Hz cycle frequency (33-msec pulse period and 10-msec pulse width including a 0.2-msec pulse spike; ref. 4). Temperature distributions were calculated with one-dimensional finite difference models. The calculations show that that the 0.2-msec pulse spike can cause an additional 40 C temperature fluctuation with an interaction depth of 0.08 mm near the specimen surface region. This temperature swing will be superimposed onto the temperature swing of 80 C that is induced by the 10-msec laser pulse near the 0.53-mm-deep surface interaction region.
Arunachalam, K.; Maccarini, P. F.; Craciunescu, O. I.; Schlorff, J. L.; Stauffer, P. R.
2010-01-01
Purpose To study temperature and thermal dose distributions of ThermoBrachytherapy Surface Applicators (TBSA) developed for concurrent or sequential high dose rate (HDR) brachytherapy and microwave hyperthermia treatment of chest wall recurrence and other superficial disease. Methods A steady state thermodynamics model coupled with the fluid dynamics of water bolus and electromagnetic radiation of hyperthermia applicator is used to characterize the temperature distributions achievable with TBSA applicators in an elliptical phantom model of the human torso. Power deposited by 915 MHz conformal microwave array (CMA) applicators is used to assess the specific absorption rate (SAR) distributions of rectangular (500 cm2) and L-shaped (875 cm2) TBSA. The SAR distribution in tissue and fluid flow distribution inside the Dual-Input Dual-Output (DIDO) water bolus are coupled to solve the steady state temperature and thermal dose distributions of rectangular TBSA (R-TBSA) for superficial tumor targets extending 10–15 mm beneath the skin surface. Thermal simulations are carried out for a range of bolus inlet temperature (Tb=38–43°C), water flow rate (Qb=2–4 L/min) and tumor blood perfusion (ωb=2–5 kg/m3/s) to characterize their influence on thermal dosimetry. Results Steady state SAR patterns of R- and L-TBSA demonstrate the ability to produce conformal and localized power deposition inside tumor target sparing surrounding normal tissues and nearby critical organs. Acceptably low variation in tissue surface cooling and surface temperature homogeneity was observed for the new DIDO bolus at 2 L/min water flow rate. Temperature depth profiles and thermal dose volume histograms indicate bolus inlet temperature (Tb) to be the most influential factor on thermal dosimetry. A 42 °C water bolus was observed to be the optimal choice for superficial tumors extending 10–15 mm from the surface even under significant blood perfusion. Lower bolus temperature may be chosen to reduce thermal enhancement ratio (TER) in the most sensitive skin where maximum radiation dose is delivered and to extend thermal enhancement of radiation dose deeper. Conclusion This computational study indicates that well-localized elevation of tumor target temperature to 40–44 °C can be accomplished by large surface-conforming TBSA applicators using appropriate selection of coupling bolus temperature. PMID:20224154
Using pairs of physiological models to estimate temporal variation in amphibian body temperature.
Roznik, Elizabeth A; Alford, Ross A
2014-10-01
Physical models are often used to estimate ectotherm body temperatures, but designing accurate models for amphibians is difficult because they can vary in cutaneous resistance to evaporative water loss. To account for this variability, a recently published technique requires a pair of agar models that mimic amphibians with 0% and 100% resistance to evaporative water loss; the temperatures of these models define the lower and upper boundaries of possible amphibian body temperatures for the location in which they are placed. The goal of our study was to develop a method for using these pairs of models to estimate parameters describing the distributions of body temperatures of frogs under field conditions. We radiotracked green-eyed treefrogs (Litoria serrata) and collected semi-continuous thermal data using both temperature-sensitive radiotransmitters with an automated datalogging receiver, and pairs of agar models placed in frog locations, and we collected discrete thermal data using a non-contact infrared thermometer when frogs were located. We first examined the accuracy of temperature-sensitive transmitters in estimating frog body temperatures by comparing transmitter data with direct temperature measurements taken simultaneously for the same individuals. We then compared parameters (mean, minimum, maximum, standard deviation) characterizing the distributions of temperatures of individual frogs estimated from data collected using each of the three methods. We found strong relationships between thermal parameters estimated from data collected using automated radiotelemetry and both types of thermal models. These relationships were stronger for data collected using automated radiotelemetry and impermeable thermal models, suggesting that in the field, L. serrata has a relatively high resistance to evaporative water loss. Our results demonstrate that placing pairs of thermal models in frog locations can provide accurate estimates of the distributions of temperatures experienced by individual frogs, and that comparing temperatures from model pairs to direct measurements collected simultaneously on frogs can be used to broadly characterize the skin resistance of a species, and to select which model type is most appropriate for estimating temperature distributions for that species. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rosenwaks, Salman; Barmashenko, Boris D.; Bruins, Esther; Furman, Dov; Rybalkin, Victor; Katz, Arje
2002-05-01
Spatial distributions of the gain and temperament across the flow were studied for transonic and supersonic schemes of the iodine injection in a slit nozzle supersonic chemical oxygen-iodine laser as a function of the iodine and secondary nitrogen flow rate, jet penetration parameter and gas pumping rate. The mixing efficiency for supersonic injection of iodine is found to be much larger than for transonic injection, the maximum values of the gain being approximately 0.65 percent/cm for both injection schemes. Measurements of the gain distribution as a function of the iodine molar flow rate nI2 were carried out. For transonic injection the optimal value of nI2 at the flow centerline is smaller than that at the off axis location. The temperature is distributed homogeneously across the flow, increasing only in the narrow boundary layers near the walls. Opening a leak downstream of the cavity in order to decease the Mach number results in a decrease of the gain and increase of the temperature. The mixing efficiency in this case is much larger than for closed leak.
Parametric study on the characteristics of a SDBD actuator with a serrated electrode
NASA Astrophysics Data System (ADS)
Gao, Guoqiang; Peng, Kaisheng; Dong, Lei; Wei, Wenfu; Wu, Guangning
2017-06-01
Active flow control based on surface dielectric barrier discharge (SDBD) has become a focus of research in recent years, due to its unique advantages and diverse potential applications. Compared with the conventional SDBD with straight electrodes, the serrated electrode-based SDBD has a great advantage due to its 3D flow topology. It is believed that the boundary layer separation of moving objects can be controlled more effectively with this new type of SDBD. In SDBD with a serrated electrode, the R (tip sharpness) and N (tip number per unit length) have a great influence on the discharge and induced airflow characteristics. In this paper, a parametric study of the characteristics of SDBD with a serrated electrode has been conducted with different ranges of R and N. Aspects of the power consumption, the steady medium temperature distribution, and the maximum induced airflow velocity have been investigated. The results indicate that there is a critical value of R and N where the maximum power consumption and induced airflow velocity are achieved. The uniformity of the steady temperature distribution of the medium surface is found to be more dependent on N. We found that the accelerating effects of the induced airflow can be evaluated with the Schlieren technique, which agree well with the results from the pitot tube.
Know your limits? Climate extremes impact the range of Scots pine in unexpected places
Julio Camarero, J.; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel
2015-01-01
Background and Aims Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin (‘rear edge’) of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species’ European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). Methods A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. Key Results The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. Conclusions The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern ‘rear edge’, in order to avoid biased predictions based solely on warmer climatic scenarios. PMID:26292992
An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing
NASA Technical Reports Server (NTRS)
Radil, Kevin; Zeszotek, Michelle
2004-01-01
A series of tests was performed to determine the internal temperature profile in a compliant bump-type foil journal air bearing operating at room temperature under various speeds and load conditions. The temperature profile was collected by instrumenting a foil bearing with nine, type K thermocouples arranged in the center and along the bearing s edges in order to measure local temperatures and estimate thermal gradients in the axial and circumferential directions. To facilitate the measurement of maximum temperatures from viscous shearing in the air film, the thermocouples were tack welded to the backside of the bumps that were in direct contact with the top foil. The mating journal was coated with a high temperature solid lubricant that, together with the bearing, underwent high temperature start-stop cycles to produce a smooth, steady-state run-in surface. Tests were conducted at speeds from 20 to 50 krpm and loads ranging from 9 to 222 N. The results indicate that, over the conditions tested, both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. The temperature distribution was nearly symmetric about the bearing center at 20 and 30 krpm but became slightly skewed toward one side at 40 and 50 krpm. Surprisingly, the maximum temperatures did not occur at the bearing edge where the minimum film thickness is expected but rather in the middle of the bearing where analytical investigations have predicted the air film to be much thicker. Thermal gradients were common during testing and were strongest in the axial direction from the middle of the bearing to its edges, reaching 3.78 8C/mm. The temperature profile indicated the circumferential thermal gradients were negligible.
Low temperature resistance in saplings and ramets of Polylepis sericea in the Venezuelan Andes
NASA Astrophysics Data System (ADS)
Rada, Fermín; García-Núñez, Carlos; Rangel, Sairo
2009-09-01
The frequent occurrence of all year-round below zero temperatures in tropical high mountains constitutes a most stressful climatic factor that plants have to confront. Polylepis forests are found well above the continuous forest line and are distributed throughout the Andean range. These trees require particular traits to overcome functional limitations imposed on them at such altitudes. Considering seedling and sapling stages as filter phases in stressful environments, some functional aspects of the regeneration of Polylepis sericea, a species associated to rock outcrops in the Venezuelan Andes, were studied. We characterized microclimatic conditions within a forest, in a forest gap and surrounding open páramo and determined low temperature resistance mechanisms in seedlings, saplings and ramets. Conditions in the forest understory were more stable compared to the forest gaps and open surrounding páramo. Minimum temperatures close to the ground were 3.6 °C lower in the open páramo compared to the forest understory. Maximum temperatures were 9.0 °C higher in the open páramo. Ice nucleation and injury temperatures occurred between -6 and -8 °C for both ramets and saplings, an evidence of frost avoidance to low nighttime temperatures. In this particular forest, this resistance ability is determinant in their island-like distribution in very specific less severe temperature habitats.
Climatology and trends of summer high temperature days in India during 1969-2013
NASA Astrophysics Data System (ADS)
Jaswal, A. K.; Rao, P. C. S.; Singh, Virendra
2015-02-01
Based on the daily maximum air temperature data from 176 stations in India from 1969 to 2013, the climatological distribution of the number of days with high temperature (HT) defined as days with maximum temperature higher than 37°C during summer season (March-June) are studied. With a focus on the regional variability and long-term trends, the impacts of HT days are examined by dividing the country into six geographical regions (North, West, North-central, East, South-central and South). Although the long-term (1969-2013) climatological numbers of HT days display well-defined spatial patterns, there is clear change in climatological mean and coefficient of variation of HT days in a recent period (1991-2013). The long period trends indicate increase in summer HT days by 3%, 5%, and 18% in north, west, and south regions, respectively and decrease by 4% and 9% in north-central and east regions respectively. However, spatial variations in HT days exist across different regions in the country. The data analysis shows that 2010 was the warmest summer year and 2013 was the coolest summer year in India. Comparison of spatial distributions of trends in HT days for 1969-1990 and 1991-2013 periods reveal that there is an abrupt increase in the number of HT days over north, west and north-central regions of India probably from mid 1990s. A steep increase in summer HT days in highly populated cities of Mumbai, New Delhi, Chennai, Jaipur, and Visakhapatnam is noticed during the recent period of 1991-2013. The summer HT days over southern India indicate significant positive correlation with Nino 3.4 index for three months' running mean (December-January-February, January-March, February-April, March-May and April-June).
Interspecific variation in growth responses to climate and competition of five eastern tree species.
Rollinson, Christine R; Kaye, Margot W; Canham, Charles D
2016-04-01
Climate and competition are often presented from two opposing views of the dominant driver of individual tree growth and species distribution in temperate forests, such as those in the eastern United States. Previous studies have provided abundant evidence indicating that both factors influence tree growth, and we argue that these effects are not independent of one another and rather that interactions between climate, competition, and size best describe tree growth. To illustrate this point, we describe the growth responses of five common eastern tree species to interacting effects of temperature, precipitation, competition, and individual size using maximum likelihood estimation. Models that explicitly include interactions among these four factors explained over half of the variance in annual growth for four out of five species using annual climate. Expanding temperature and precipitation analyses to include seasonal interactions resulted in slightly improved models with a mean R2 of 0.61 (SD 0.10). Growth responses to individual factors as well their interactions varied greatly among species. For example, growth sensitivity to temperature for Quercus rubra increased with maximum annual precipitation, but other species showed no change in sensitivity or slightly reduced annual growth. Our results also indicate that three-way interactions among individual stem size, competition, and temperature may determine which of the five co-occurring species in our study could have the highest growth rate in a given year. Continued consideration and quantification of interactions among climate, competition, and individual-based characteristics are likely to increase understanding of key biological processes such as tree growth. Greater parameterization of interactions between traditionally segregated factors such as climate and competition may also help build a framework to reconcile drivers of individual-based processes such as growth with larger-scale patterns of species distribution.
NASA Astrophysics Data System (ADS)
Savenkova, E. N.; Gavrilov, N. M.; Pogoreltsev, A. I.; Manuilova, R. O.
2017-05-01
Using the data of meteorological information reanalysis, a statistical analysis of dates of the main sudden stratospheric warmings observed in 1958-2014 has been performed and their inhomogeneous distribution in winter months with maximums in the beginning of January, from the end of January to the beginning of February, and in the end of February has been shown. To explain these regularities, a climatological analysis of variations in the amplitudes and vertical components of Eliassen-Palm fluxes created by large-scale planetary waves (PWs), as well as of zonal-mean winds and deviations of temperature from their winter-average values in high northern latitudes at heights of up to 50 km from the surface has been carried out using the 20-year (1995-2014) collection of daily meteorological information from the UK Met Office database. During the aforementioned intervals of observing more frequent sudden stratospheric warmings, climatological maximums of temperature perturbations, local minimums of eastward winds, and local maximums of the amplitude and Eliassen-Palm fluxes of PWs with a zonal wavenumber of 1 in the high-latitude northern stratosphere were found. Distinctions between atmospheric characteristics averaged over two last decades have been revealed.
Xiang, Jianjun; Hansen, Alana; Liu, Qiyong; Liu, Xiaobo; Tong, Michael Xiaoliang; Sun, Yehuan; Cameron, Scott; Hanson-Easey, Scott; Han, Gil-Soo; Williams, Craig; Weinstein, Philip; Bi, Peng
2017-02-01
This study aims to (1) investigate the associations between climatic factors and dengue; and (2) identify the susceptible subgroups. De-identified daily dengue cases in Guangzhou for 2005-2014 were obtained from the Chinese Center for Disease Control and Prevention. Weather data were downloaded from the China Meteorological Data Sharing Service System. Distributed lag non-linear models (DLNM) were used to graphically demonstrate the three-dimensional temperature-dengue association. Generalised estimating equation models (GEE) with piecewise linear spline functions were used to quantify the temperature-dengue associations. Threshold values were estimated using a broken-stick model. Middle-aged and older people, people undertaking household duties, retirees, and those unemployed were at high risk of dengue. Reversed U-shaped non-linear associations were found between ambient temperature, relative humidity, extreme wind velocity, and dengue. The optimal maximum temperature (T max ) range for dengue transmission in Guangzhou was 21.6-32.9°C, and 11.2-23.7°C for minimum temperature (T min ). A 1°C increase of T max and T min within these ranges was associated with 11.9% and 9.9% increase in dengue at lag0, respectively. Although lag effects of temperature were observed for up to 141 days for T max and 150 days for T min , the maximum lag effects were observed at 32 days and 39 days respectively. Average relative humidity was negatively associated with dengue when it exceeded 78.9%. Maximum wind velocity (>10.7m/s) inhibited dengue transmission. Climatic factors had significant impacts on dengue in Guangzhou. Lag effects of temperature on dengue lasted the local whole epidemic season. To reduce the likely increasing dengue burden, more efforts are needed to strengthen the capacity building of public health systems. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.;
2017-01-01
We find that the reflectance of the lunar surface within 5 deg of latitude of theSouth Pole increases rapidly with decreasing temperature, near approximately 110K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5 deg from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10 deg to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al. 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200K and possibly at 300K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. 2015 based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.
NASA Astrophysics Data System (ADS)
Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; Paige, David A.; Smith, David E.; Zuber, Maria T.
2017-08-01
We find that the reflectance of the lunar surface within 5° of latitude of the South Pole increases rapidly with decreasing temperature, near ∼110 K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5° from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10° to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110 K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al., 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200 K and possibly at 300 K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. (2015) based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.
Hashemipour, Maryam Alsadat; Mohammadpour, Ali; Nassab, Seiied Abdolreza Gandjalikhan
2010-01-01
In this paper, the temperature and stress distributions in an exact 3D-model of a restored maxillary second premolar tooth are obtained with finite element approach. The carious teeth need to restore with appropriate restorative materials. There are too many restorative materials which can be used instead of tooth structures; since tooth structures are being replaced, the restorative materials should be similar to original structure as could as possible. In the present study, a Mesial Occlusal Distal (MOD) type of restoration is chosen and applied to a sound tooth model. Four cases of restoration are investigated: two cases in which base are used under restorative materials and two cases in which base is deleted. The restorative materials are amalgam and composite and glass-inomer is used as a base material. Modeling is done in the solid works ambient by means of an exact measuring of a typical human tooth dimensions. Tooth behavior under thermal load due to consuming hot liquids is analyzed by means of a three dimensional finite element method using ANSYS software. The highest values of tensile and compressive stresses are compared with tensile and compressive strength of the tooth and restorative materials and the value of shear stress on the tooth and restoration junctions is compared with the bond strength. Also, sound tooth under the same thermal load is analyzed and the results are compared with those obtained for restored models. Temperature and stress distributions in the tooth are calculated for each case, with a special consideration in the vicinity of pulp and restoration region. Numerical results show that in two cases with amalgam, using the base material (Glass-ionomer) under the restorative material causes to decrease the maximum temperature in the restorative teeth. In the stress analysis, it is seen that the principal stress has its maximum values in composite restorations. The maximum temperatures are found in the restoration case of amalgam without base. Besides, it is found that restoration has not any influence on the stress values at DEJ, such that for all cases, these values are close to sound tooth results.
Use of remote sensing for land use policy formulation
NASA Technical Reports Server (NTRS)
1983-01-01
Multispectral scanning, infrared imagery, thematic mapping, and spectroradiometry from LANDSAT, GOES, and ground based instruments are being used to determine conifer distribution, maximum and minimum temperatures, topography, and crop diseases in Michigan's lower Peninsula. Image interpretation and automatic digital processing information from LANDSAT data are employed to classify and map the coniferous forests. Radiant temperature data from GOES were compared to temperature readings from the climatological station network. Digital data from LANDSAT is being used to develop techniques for detecting, monitoring, and modeling land surface change. Improved reflectance signatures through spectroradiometry aided in the detection of viral diseases in blueberry fields and vineyards. Soil survey maps from aerial reconnaissance are included as well as information on education, conferences, and awards.
Exospheric hydrogen above St-Santin /France/
NASA Technical Reports Server (NTRS)
Derieux, A.; Lejeune, G.; Bauer, P.
1975-01-01
The temperature and hydrogen concentration of the exosphere was determined using incoherent scatter measurements performed above St. Santin from 1969 to 1972. The hydrogen concentration was deduced from measurements of the number density of positive hydrogen and oxygen ions. A statistical analysis is given of the hydrogen concentration as a function of the exospheric temperature and the diurnal variation of the hydrogen concentration is investigated for a few selected days of good quality observation. The data averaged with respect to the exospheric temperature without consideration of the local time exhibits a distribution consistent with a constant effective Jeans escape flux of about 9 x 10 to the 7 cu cm/s. The local time variation exhibits a maximum to minimum concentration ratio of at least 3.5.
NASA Technical Reports Server (NTRS)
Taylor, C. M.; Bill, R. C.
1978-01-01
A ceramic/metallic aircraft gas turbine outer gas path seal designed for improved engine performance was studied. Transient temperature and stress profiles in a test seal geometry were determined by numerical analysis. During a simulated engine deceleration cycle from sea-level takeoff to idle conditions, the maximum seal temperature occurred below the seal surface, therefore the top layer of the seal was probably subjected to tensile stresses exceeding the modulus of rupture. In the stress analysis both two- and three-dimensional finite element computer programs were used. Predicted trends of the simpler and more easily usable two-dimensional element programs were borne out by the three-dimensional finite element program results.
DE LA Vega, G J; Schilman, P E
2018-03-01
In order to assess how triatomines (Hemiptera, Reduviidae), Chagas disease vectors, are distributed through Latin America, we analysed the relationship between the ecological niche and the limits of the physiological thermal niche in seven species of triatomines. We combined two methodological approaches: species distribution models, and physiological tolerances. First, we modelled the ecological niche and identified the most important abiotic factor for their distribution. Then, thermal tolerance limits were analysed by measuring maximum and minimum critical temperatures, upper lethal temperature, and 'chill-coma recovery time'. Finally, we used phylogenetic independent contrasts to analyse the link between limiting factors and the thermal tolerance range for the assessment of ecological hypotheses that provide a different outlook for the geo-epidemiology of Chagas disease. In triatomines, thermo-tolerance range increases with increasing latitude mainly due to better cold tolerances, suggesting an effect of thermal selection. In turn, physiological analyses show that species reaching southernmost areas have a higher thermo-tolerance than those with tropical distributions, denoting that thermo-tolerance is limiting the southern distribution. Understanding the latitudinal range along its physiological limits of disease vectors may prove useful to test ecological hypotheses and improve strategies and efficiency of vector control at the local and regional levels. © 2017 The Royal Entomological Society.
NASA Astrophysics Data System (ADS)
Scolari, Enrica; Sossan, Fabrizio; Paolone, Mario
2018-01-01
Due to the increasing proportion of distributed photovoltaic (PV) production in the generation mix, the knowledge of the PV generation capacity has become a key factor. In this work, we propose to compute the PV plant maximum power starting from the indirectly-estimated irradiance. Three estimators are compared in terms of i) ability to compute the PV plant maximum power, ii) bandwidth and iii) robustness against measurements noise. The approaches rely on measurements of the DC voltage, current, and cell temperature and on a model of the PV array. We show that the considered methods can accurately reconstruct the PV maximum generation even during curtailment periods, i.e. when the measured PV power is not representative of the maximum potential of the PV array. Performance evaluation is carried out by using a dedicated experimental setup on a 14.3 kWp rooftop PV installation. Results also proved that the analyzed methods can outperform pyranometer-based estimations, with a less complex sensing system. We show how the obtained PV maximum power values can be applied to train time series-based solar maximum power forecasting techniques. This is beneficial when the measured power values, commonly used as training, are not representative of the maximum PV potential.
Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich
2016-03-29
A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.
Stability of ice on the Moon with rough topography
NASA Astrophysics Data System (ADS)
Rubanenko, Lior; Aharonson, Oded
2017-11-01
The heat flux incident upon the surface of an airless planetary body is dominated by solar radiation during the day, and by thermal emission from topography at night. Motivated by the close relationship between this heat flux, the surface temperatures, and the stability of volatiles, we consider the effect of the slope distribution on the temperature distribution and hence prevalence of cold-traps, where volatiles may accumulate over geologic time. We develop a thermophysical model accounting for insolation, reflected and emitted radiation, and subsurface conduction, and use it to examine several idealized representations of rough topography. We show how subsurface conduction alters the temperature distribution of bowl-shaped craters compared to predictions given by past analytic models. We model the dependence of cold-traps on crater geometry and quantify the effect that while deeper depressions cast more persistent shadows, they are often too warm to trap water ice due to the smaller sky fraction and increased reflected and reemitted radiation from the walls. In order to calculate the temperature distribution outside craters, we consider rough random surfaces with a Gaussian slope distribution. Using their derived temperatures and additional volatile stability models, we estimate the potential area fraction of stable water ice on Earth's Moon. For example, surfaces with slope RMS ∼15° (corresponding to length-scales ∼10 m on the lunar surface) located near the poles are found to have a ∼10% exposed cold-trap area fraction. In the subsurface, the diffusion barrier created by the overlaying regolith increases this area fraction to ∼40%. Additionally, some buried water ice is shown to remain stable even beneath temporarily illuminated slopes, making it more readily accessible to future lunar excavation missions. Finally, due to the exponential dependence of stability of ice on temperature, we are able to constrain the maximum thickness of the unstable layer to a few decimeters.
Dutta, Jaideep; Kundu, Balaram
2017-05-01
The genesis of the present research paper is to develop a revised exact analytical solution of thermal profile of 1-D Pennes' bioheat equation (PBHE) for living tissues influenced in thermal therapeutic treatments. In order to illustrate the temperature distribution in living tissue both Fourier and non-Fourier model of 1-D PBHE has been solved by 'Separation of variables' technique. Till date most of the research works have been carried out with the constant initial steady temperature of tissue which is not at all relevant for the biological body due to its nonhomogeneous living cells. There should be a temperature variation in the body before the therapeutic treatment. Therefore, a coupled heat transfer in skin surface before therapeutic heating must be taken account for establishment of exact temperature propagation. This approach has not yet been considered in any research work. In this work, an initial condition for solving governing differential equation of heat conduction in biological tissues has been represented as a function of spatial coordinate. In a few research work, initial temperature distribution with PBHE has been coupled in such a way that it eliminates metabolic heat generation. The study has been devoted to establish the comparison of thermal profile between present approach and published theoretical approach for particular initial and boundary conditions inflicted in this investigation. It has been studied that maximum temperature difference of existing approach for Fourier temperature distribution is 19.6% while in case of non-Fourier, it is 52.8%. We have validated our present analysis with experimental results and it has been observed that the temperature response based on the spatial dependent variable initial condition matches more accurately than other approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
2018-01-01
Natural hazards (events that may cause actual disasters) are established in the literature as major causes of various massive and destructive problems worldwide. The occurrences of earthquakes, floods and heat waves affect millions of people through several impacts. These include cases of hospitalisation, loss of lives and economic challenges. The focus of this study was on the risk reduction of the disasters that occur because of extremely high temperatures and heat waves. Modelling average maximum daily temperature (AMDT) guards against the disaster risk and may also help countries towards preparing for extreme heat. This study discusses the use of the r largest order statistics approach of extreme value theory towards modelling AMDT over the period of 11 years, that is, 2000–2010. A generalised extreme value distribution for r largest order statistics is fitted to the annual maxima. This is performed in an effort to study the behaviour of the r largest order statistics. The method of maximum likelihood is used in estimating the target parameters and the frequency of occurrences of the hottest days is assessed. The study presents a case study of South Africa in which the data for the non-winter season (September–April of each year) are used. The meteorological data used are the AMDT that are collected by the South African Weather Service and provided by Eskom. The estimation of the shape parameter reveals evidence of a Weibull class as an appropriate distribution for modelling AMDT in South Africa. The extreme quantiles for specified return periods are estimated using the quantile function and the best model is chosen through the use of the deviance statistic with the support of the graphical diagnostic tools. The Entropy Difference Test (EDT) is used as a specification test for diagnosing the fit of the models to the data.
WE-DE-201-12: Thermal and Dosimetric Properties of a Ferrite-Based Thermo-Brachytherapy Seed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrell, G; Shvydka, D; Parsai, E I
Purpose: The novel thermo-brachytherapy (TB) seed provides a simple means of adding hyperthermia to LDR prostate permanent implant brachytherapy. The high blood perfusion rate (BPR) within the prostate motivates the use of the ferrite and conductive outer layer design for the seed cores. We describe the results of computational analyses of the thermal properties of this ferrite-based TB seed in modelled patient-specific anatomy, as well as studies of the interseed and scatter (ISA) effect. Methods: The anatomies (including the thermophysical properties of the main tissue types) and seed distributions of 6 prostate patients who had been treated with LDR brachytherapymore » seeds were modelled in the finite element analysis software COMSOL, using ferrite-based TB and additional hyperthermia-only (HT-only) seeds. The resulting temperature distributions were compared to those computed for patient-specific seed distributions, but in uniform anatomy with a constant blood perfusion rate. The ISA effect was quantified in the Monte Carlo software package MCNP5. Results: Compared with temperature distributions calculated in modelled uniform tissue, temperature distributions in the patient-specific anatomy were higher and more heterogeneous. Moreover, the maximum temperature to the rectal wall was typically ∼1 °C greater for patient-specific anatomy than for uniform anatomy. The ISA effect of the TB and HT-only seeds caused a reduction in D90 similar to that found for previously-investigated NiCu-based seeds, but of a slightly smaller magnitude. Conclusion: The differences between temperature distributions computed for uniform and patient-specific anatomy for ferrite-based seeds are significant enough that heterogeneous anatomy should be considered. Both types of modelling indicate that ferrite-based seeds provide sufficiently high and uniform hyperthermia to the prostate, without excessively heating surrounding tissues. The ISA effect of these seeds is slightly less than that for the previously-presented NiCu-based seeds.« less
Development of a bioenergetics model for the threespine stickleback Gasterosteus aculeatus
Hovel, Rachel A.; Beauchamp, David A.; Hansen, Adam G.; Sorel, Mark H.
2016-01-01
The Threespine Stickleback Gasterosteus aculeatus is widely distributed across northern hemisphere ecosystems, has ecological influence as an abundant planktivore, and is commonly used as a model organism, but the species lacks a comprehensive model to describe bioenergetic performance in response to varying environmental or ecological conditions. This study parameterized a bioenergetics model for the Threespine Stickleback using laboratory measurements to determine mass- and temperature-dependent functions for maximum consumption and routine respiration costs. Maximum consumption experiments were conducted across a range of temperatures from 7.5°C to 23.0°C and a range of fish weights from 0.5 to 4.5 g. Respiration experiments were conducted across a range of temperatures from 8°C to 28°C. Model sensitivity was consistent with other comparable models in that the mass-dependent parameters for maximum consumption were the most sensitive. Growth estimates based on the Threespine Stickleback bioenergetics model suggested that 22°C is the optimal temperature for growth when food is not limiting. The bioenergetics model performed well when used to predict independent, paired measures of consumption and growth observed from a separate wild population of Threespine Sticklebacks. Predicted values for consumption and growth (expressed as percent body weight per day) only deviated from observed values by 2.0%. Our model should provide insight into the physiological performance of this species across a range of environmental conditions and be useful for quantifying the trophic impact of this species in food webs containing other ecologically or economically important species.
NASA Astrophysics Data System (ADS)
Soni, Abhishek Kumar
2018-05-01
Intensity ratio investigation in the Y2WO6:Tm3+-Yb3+ phosphors synthesized by solid state reaction method has been discussed first time under 980 nm laser diode excitation with the help of multiple peak fitting. The temperature dependent upconversion emission study has been performed for optical temperature sensing by using stark sublevels of 1G4 level of Tm3+ ion. The intensity of the two stark sublevels is varied due to the thermalization under the application of external temperature. The energy gap has been calculated about ∼427 cm‑1 of the two stark sublevels via Boltzmann’s population distribution law. The calculated sensitivity (maximum about ∼34 × 10‑4 K‑1 at 303 K) and optical heating properties prove the utility of the prepared phosphor in making optical temperature sensing probe and optical heater.
Temperature field study of hot water circulation pump shaft system
NASA Astrophysics Data System (ADS)
Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.
2016-05-01
In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.
Analysis of on-orbit thermal characteristics of the 15-meter hoop/column antenna
NASA Technical Reports Server (NTRS)
Andersen, Gregory C.; Farmer, Jeffery T.; Garrison, James
1987-01-01
In recent years, interest in large deployable space antennae has led to the development of the 15 meter hoop/column antenna. The thermal environment the antenna is expected to experience during orbit is examined and the temperature distributions leading to reflector surface distortion errors are determined. Two flight orientations corresponding to: (1) normal operation, and (2) use in a Shuttle-attached flight experiment are examined. A reduced element model was used to determine element temperatures at 16 orbit points for both flight orientations. The temperature ranged from a minimum of 188 K to a maximum of 326 K. Based on the element temperatures, orbit position leading to possible worst case surface distortions were determined, and the subsequent temperatures were used in a static finite element analysis to quantify surface control cord deflections. The predicted changes in the control cord lengths were in the submillimeter ranges.
NASA Astrophysics Data System (ADS)
Populoh, S.; Trottmann, M.; Brunko, O. C.; Thiel, P.; Weidenkaff, A.
2013-08-01
A dedicated test stand was developed and built to characterize the efficiency, power output and open circuit voltage of various thermoelectric generators (TEGs) based on tellurides, heusler compounds and thermoelectric oxides. The test stand allows measurements of TEGs of sizes up to 4 cm × 4 cm at hot side temperatures up to 1150 K in different atmospheres. Special care was taken about the heat flux measurement by precise measurement of the temperature distribution within the reference block. In order to demonstrate the functionality of the test stand thermoelectric oxide modules (TOM) were built from n-type perovskite-type manganates and p-type cuprates. The modules were tested regarding their stability, maximum power output and efficiency at temperatures up to 1100 K. The TOMs withstand large temperature gradients and operated in ambient air yielding high power densities.
Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species
Collier, Catherine J.; Ow, Yan X.; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L.; O'Brien, Katherine R.; Hrebien, Victoria; Adams, Matthew P.
2017-01-01
Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt) for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature). The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis (33°C), but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum for plant net productivity was lower than ambient summer water temperature in Z. muelleri, indicating likely contemporary heat stress. In contrast, thermal optima of H. uninervis and C. serrulata exceeded ambient water temperature. This study found limited capacity to acclimate: thus the thermal optima can forewarn of both the present and future vulnerability to ocean warming during periods of elevated water temperature. PMID:28878790
Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species.
Collier, Catherine J; Ow, Yan X; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L; O'Brien, Katherine R; Hrebien, Victoria; Adams, Matthew P
2017-01-01
Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species ( Cymodocea serrulata, Halodule uninervis , and Zostera muelleri ). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum ( T opt ) for gross photosynthesis of Z. muelleri , which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The T opt for photosynthesis of the tropical species, H. uninervis and C. serrulata , was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature ( T opt varied by 1°C in C. serrulata and 2°C in H. uninervis , and the variation did not follow changes in ambient water temperature). The T opt for gross photosynthesis were higher than T opt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis ( 33°C), but remained unchanged at 35°C in C. serrulata . Both estimated plant net productivity and T opt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum for plant net productivity was lower than ambient summer water temperature in Z. muelleri , indicating likely contemporary heat stress. In contrast, thermal optima of H. uninervis and C. serrulata exceeded ambient water temperature. This study found limited capacity to acclimate: thus the thermal optima can forewarn of both the present and future vulnerability to ocean warming during periods of elevated water temperature.
Zhang, Lin; Hou, Xuexia; Liu, Huixin; Liu, Wei; Wan, Kanglin; Hao, Qin
2016-01-01
To predict the potential geographic distribution of Lyme disease in Qinghai by using Maximum Entropy model (MaxEnt). The sero-diagnosis data of Lyme disease in 6 counties (Huzhu, Zeku, Tongde, Datong, Qilian and Xunhua) and the environmental and anthropogenic data including altitude, human footprint, normalized difference vegetation index (NDVI) and temperature in Qinghai province since 1990 were collected. By using the data of Huzhu Zeku and Tongde, the prediction of potential distribution of Lyme disease in Qinghai was conducted with MaxEnt. The prediction results were compared with the human sero-prevalence of Lyme disease in Datong, Qilian and Xunhua counties in Qinghai. Three hot spots of Lyme disease were predicted in Qinghai, which were all in the east forest areas. Furthermore, the NDVI showed the most important role in the model prediction, followed by human footprint. Datong, Qilian and Xunhua counties were all in eastern Qinghai. Xunhua was in hot spot areaⅡ, Datong was close to the north of hot spot area Ⅲ, while Qilian with lowest sero-prevalence of Lyme disease was not in the hot spot areas. The data were well modeled in MaxEnt (Area Under Curve=0.980). The actual distribution of Lyme disease in Qinghai was in consistent with the results of the model prediction. MaxEnt could be used in predicting the potential distribution patterns of Lyme disease. The distribution of vegetation and the range and intensity of human activity might be related with Lyme disease distribution.
Pinkernell, Stefan; Beszteri, Bánk
2014-08-01
Fragilariopsis kerguelensis, a dominant diatom species throughout the Antarctic Circumpolar Current, is coined to be one of the main drivers of the biological silicate pump. Here, we study the distribution of this important species and expected consequences of climate change upon it, using correlative species distribution modeling and publicly available presence-only data. As experience with SDM is scarce for marine phytoplankton, this also serves as a pilot study for this organism group. We used the maximum entropy method to calculate distribution models for the diatom F. kerguelensis based on yearly and monthly environmental data (sea surface temperature, salinity, nitrate and silicate concentrations). Observation data were harvested from GBIF and the Global Diatom Database, and for further analyses also from the Hustedt Diatom Collection (BRM). The models were projected on current yearly and seasonal environmental data to study current distribution and its seasonality. Furthermore, we projected the seasonal model on future environmental data obtained from climate models for the year 2100. Projected on current yearly averaged environmental data, all models showed similar distribution patterns for F. kerguelensis. The monthly model showed seasonality, for example, a shift of the southern distribution boundary toward the north in the winter. Projections on future scenarios resulted in a moderately to negligibly shrinking distribution area and a change in seasonality. We found a substantial bias in the publicly available observation datasets, which could be reduced by additional observation records we obtained from the Hustedt Diatom Collection. Present-day distribution patterns inferred from the models coincided well with background knowledge and previous reports about F. kerguelensis distribution, showing that maximum entropy-based distribution models are suitable to map distribution patterns for oceanic planktonic organisms. Our scenario projections indicate moderate effects of climate change upon the biogeography of F. kerguelensis.
Evaluation of Ultra High Pressure (UHP) Firefighting in a Room-and-Contents Fire
2017-03-15
Burn Room and Hangar Temperature Prior to Ignition ............................................... 18 Figure 12. Effect of Temperature on Normalized...Figure 20. Maximum Average Temperature and Heat Flux ......................................................... 22 Figure 21. Effect of Maximum Average...Aspirated Ceiling Temperature .................................... 23 Figure 22. Effect of Maximum Average Floor Heat Flux on Extinguishment Quantity
Mapping Topoclimate and Microclimate in the Monarch Butterfly Biosphere Reserve, Mexico
NASA Astrophysics Data System (ADS)
Weiss, S. B.
2006-12-01
Overwintering monarch butterflies in Mexico select areas of the high elevation Oyamel fir -pine forest providing a canopy that protects them from extremes of cold, heat, sun, and wind. These exacting microclimatic conditions are found in relatively small areas of forest with appropriate topography and canopy cover. The major goal of this investigation is to map topoclimatic and microclimatic conditions within the Monarch Butterfly Biosphere Reserve by combining temperature monitoring (iButton Thermochrons), hemispherical canopy photography, multiple regression, and GIS modeling. Temperature measurements included base weather stations and arrays of Thermochrons (on the north-side of trees at 2m height) across local topographic and canopy cover gradients. Topoclimatic models of minimum temperatures included topographic position, slope, and elevation, and predicted that thermal belts on slopes and cold air drainage into canyons create local minimum temperature gradients of 2°C. Topoclimatic models of maximum temperatures models included elevation, topographic position, and relative solar exposure, with local gradients of 3°C. These models, which are independent of forest canopy structure, were then projected across the entire region. Forest canopy structure, including direct and diffuse solar radiation, was assessed with hemispherical photography at each Thermochron site. Canopy cover affected minimum temperatures primarily on the calmest, coldest nights. Maximum temperatures were predicted by direct radiation below the canopy. Fine- scale grids (25 m spacing) at three overwintering sites characterized effects of canopy gaps and edges on temperature and wind exposure. The effects of temperature variation were considered for lipid loss rates, ability to take flight, and freezing mortality. Lipid loss rates were estimated by measured hourly temperatures. Many of the closed canopy sites allowed for substantial lipid reserves at the end of the season (March 15), but increases in average temperature could effectively deplete lipids by that time. The large influence of canopy cover on daytime maximum temperatures demonstrates that forest thinning directly reduces habitat suitability. Monarchs' flight behavior under warmer conditions suggests that daytime temperatures drive the dynamics of monarch distribution within colonies. Thinning also decreases nighttime minimum temperatures, and increases wind exposure. These results create a basis for quantitative understanding of the combinations of topography and forest structure that provide high quality overwintering habitat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, M.A.; Kueppers, L.M.; Sloan, L.C.
In the western United States, more than 30,500 square miles has been converted to irrigated agriculture and urban areas. This study compares the climate responses of four regional climate models (RCMs) to these past land-use changes. The RCMs used two contrasting land cover distributions: potential natural vegetation, and modern land cover that includes agriculture and urban areas. Three of the RCMs represented irrigation by supplementing soil moisture, producing large decreases in August mean (-2.5 F to -5.6 F) and maximum (-5.2 F to -10.1 F) 2-meter temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture alsomore » resulted in large increases in relative humidity (9 percent 36 percent absolute change). Only one of the RCMs produced increases in summer minimum temperature. Converting natural vegetation to urban land cover produced modest but discernable climate effects in all models, with the magnitude of the effects dependent upon the preexisting vegetation type. Overall, the RCM results indicate that land use change impacts are most pronounced during the summer months, when surface heating is strongest and differences in surface moisture between irrigated land and natural vegetation are largest. The irrigation effect on summer maximum temperatures is comparable in magnitude (but opposite in sign) to predicted future temperature change due to increasing greenhouse gas concentrations.« less
Regional Impacts of Urbanization in the United States
NASA Technical Reports Server (NTRS)
Bounoua, Lahouari; Zhang, Ping; Nigro, Joseph; Lachir, Asia; Thome, Kurtis
2017-01-01
We simulate the impact of impervious surface areas (ISA) on the U.S. local and regional climate. At a local scale, we find the urban area warmer than the surrounding vegetation in most cities, except in arid climate cities where urban temperature is cooler for much of the daytime. For all 9 regions studied, simulated results show that the growing season maximum surface temperature difference between urban and the dominant vegetation occurs around mid-day and is strongest in the northern regions. Regional temperature differences of 3.0 C, 3.4 C, and 3.9 C were simulated in the Northeast, Midwest, and Northwest, respectively. In these regions evaporative cooling, during the growing season, creates a stronger urban heat island (UHI). The UHI is less pronounced during winter when vegetation is dormant. Our results suggest that the ISA temperature is set by building material's characteristics and its departure from that of the surrounding vegetation is essentially driven by evaporative cooling. Except when rainfall is small, the highest surface runoff to precipitation ratios are simulated in most cities, especially when precipitation events occur as heavy downpours. In terms of photosynthesis, we provide a detailed distribution of maximum production in the U.S., a needed product for policy and urban planners.
Simulation of Soil Frost and Thaw Fronts Dynamics with Community Land Model 4.5
NASA Astrophysics Data System (ADS)
Gao, J.; Xie, Z.
2016-12-01
Freeze-thaw processes in soils, including changes in frost and thaw fronts (FTFs) , are important physical processes. The movement of FTFs affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere, and then the land surface hydrothermal process. In this study, a two-directional freeze and thaw algorithm for simulating FTFs is incorporated into the community land surface model CLM4.5, which is called CLM4.5-FTF. The simulated FTFs depth and soil temperature of CLM4.5-FTF compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen soil). Because the soil temperature profile within a soil layer can be estimated according to the position of FTFs, CLM4.5 performed better in soil temperature simulation. Permafrost and seasonally frozen ground conditions in China from 1980 to 2010 were simulated using the CLM4.5-FTF. Numerical experiments show that the spatial distribution of simulated maximum frost depth by CLM4.5-FTF has seasonal variation obviously. Significant positive active-layer depth trends for permafrost regions and negative maximum freezing depth trends for seasonal frozen soil regions are simulated in response to positive air temperature trends except west of Black Sea.
Jakubinek, Michael B; O'Neill, Catherine; Felix, Chris; Price, Richard B; White, Mary Anne
2008-11-01
Excessive heat produced during the curing of light-activated dental restorations may injure the dental pulp. The maximum temperature excursion at the pulp-dentin junction provides a means to assess the risk of thermal injury. In this investigation we develop and evaluate a model to simulate temperature increases during light-curing of dental restorations and use it to investigate the influence of several factors on the maximum temperature excursion along the pulp-dentin junction. Finite element method modeling, using COMSOL 3.3a, was employed to simulate temperature distributions in a 2D, axisymmetric model tooth. The necessary parameters were determined from a combination of literature reports and our measurements of enthalpy of polymerization, heat capacity, density, thermal conductivity and reflectance for several dental composites. Results of the model were validated using in vitro experiments. Comparisons with in vitro experiments indicate that the model provides a good approximation of the actual temperature increases. The intensity of the curing light, the curing time and the enthalpy of polymerization of the resin composite were the most important factors. The composite is a good insulator and the greatest risk occurs when using the light to cure the thin layer of bonding resin or in deep restorations that do not have a liner to act as a thermal barrier. The results show the importance of considering temperature increases when developing curing protocols. Furthermore, we suggest methods to minimize the temperature increase and hence the risk of thermal injury. The physical properties measured for several commercial composites may be useful in other studies.
NASA Astrophysics Data System (ADS)
Li, Zhi; Jin, Jiming
2017-11-01
Projected hydrological variability is important for future resource and hazard management of water supplies because changes in hydrological variability can cause more disasters than changes in the mean state. However, climate change scenarios downscaled from Earth System Models (ESMs) at single sites cannot meet the requirements of distributed hydrologic models for simulating hydrological variability. This study developed multisite multivariate climate change scenarios via three steps: (i) spatial downscaling of ESMs using a transfer function method, (ii) temporal downscaling of ESMs using a single-site weather generator, and (iii) reconstruction of spatiotemporal correlations using a distribution-free shuffle procedure. Multisite precipitation and temperature change scenarios for 2011-2040 were generated from five ESMs under four representative concentration pathways to project changes in streamflow variability using the Soil and Water Assessment Tool (SWAT) for the Jing River, China. The correlation reconstruction method performed realistically for intersite and intervariable correlation reproduction and hydrological modeling. The SWAT model was found to be well calibrated with monthly streamflow with a model efficiency coefficient of 0.78. It was projected that the annual mean precipitation would not change, while the mean maximum and minimum temperatures would increase significantly by 1.6 ± 0.3 and 1.3 ± 0.2 °C; the variance ratios of 2011-2040 to 1961-2005 were 1.15 ± 0.13 for precipitation, 1.15 ± 0.14 for mean maximum temperature, and 1.04 ± 0.10 for mean minimum temperature. A warmer climate was predicted for the flood season, while the dry season was projected to become wetter and warmer; the findings indicated that the intra-annual and interannual variations in the future climate would be greater than in the current climate. The total annual streamflow was found to change insignificantly but its variance ratios of 2011-2040 to 1961-2005 increased by 1.25 ± 0.55. Streamflow variability was predicted to become greater over most months on the seasonal scale because of the increased monthly maximum streamflow and decreased monthly minimum streamflow. The increase in streamflow variability was attributed mainly to larger positive contributions from increased precipitation variances rather than negative contributions from increased mean temperatures.
Integrated Solar-Energy-Harvesting and -Storage Device
NASA Technical Reports Server (NTRS)
whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian
2004-01-01
A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.
NASA Technical Reports Server (NTRS)
Kim, S.; Trinh, H. P.
1993-01-01
A gas generator which can be ignited reliably during the initial start-up period and offers fairly uniform gas temperature at the exit was studied numerically. Various sizes and shapes of the mixing enhancement devices and their positions were examined to evaluate the uniformity of the exit gas temperature and the change of internal pressure drop incurred by introducing the mixing enhancement devices. By introducing a turbulence ring and a splash plate with an appropriate size and position, it was possible to obtain fairly uniform gas temperature distributions and a maximum gas temperature that is within the design limit temperature of 1600 R at the generator exit. However, with the geometry studied, the pressure drop across the generator was great, approximately 1150 psi, to satisfy the assigned design limit temperature. If the design limit temperature is increased to 1650 R, the pressure drop across the generator could be lowered by as much as 350 psi.
Rivas, Sandra; González-Muñoz, María Jesús; Santos, Valentín; Parajó, Juan Carlos
2014-06-01
Water soluble compounds were removed from Pinus pinaster wood by a mild aqueous extraction, and the treated wood was subjected to hydrothermal processing to convert most hemicelluloses into soluble saccharides (including low molecular weight polymers, oligomers and monosaccharides). The liquid phase containing hemicellulose-derived saccharides was acidified with sulfuric acid and heated up to 130-250°C to obtain furans and levulinic acid as major products. The concentration profiles of the major compounds participating in the reactions were interpreted by a kinetic model. A maximum conversion of pentoses into furfural near 80% was predicted at high temperature and short time, conditions leading to 24% conversion of hexoses into HMF. Production of levulinic acid was favored at low temperatures. Maximum molar conversion of hexoses into levulinic acid (66.7% at 130°C) needed a long reaction time (235 h). A value of 53.0% can be achieved at 170°C after 5 h. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieter Leckel
2006-10-15
Gas liquors, tar oils, and tar products resulting from the coal gasification of a high-temperature Fischer-Tropsch plant can be successfully refined to fuel blending components by the use of severe hydroprocessing conditions. High operating temperatures and pressures combined with low space velocities ensure the deep hydrogenation of refractory oxygen, sulfur, and nitrogen compounds. Hydrodeoxygenation, particularly the removal of phenolic components, hydrodesulfurization, and hydrodenitrogenation were obtained at greater than 99% levels using the NiMo and NiW on {gamma}-Al{sub 2}O{sub 3} catalysts. Maximum deoxygenation activity was achieved using the NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst having a maximum pore size distribution in the rangemore » of 110-220{angstrom}. The NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst, which also has a relatively high proportion of smaller pore sizes (35-60 {angstrom}), displays lower hydrogenation activity. 30 refs., 1 fig. 8 tabs.« less
NASA Astrophysics Data System (ADS)
Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu
2018-06-01
A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.
Evidence of the Lower Thermospheric Winter-to-Summer Circulation
NASA Astrophysics Data System (ADS)
Qian, L.; Burns, A. G.; Yue, J.
2017-12-01
Numerical studies showed that the lower thermospheric winter-to-summer circulation is driven by wave dissipation, and it plays a significant role in trace gas distributions in the mesosphere and lower thermosphere (MLT), and in the composition of the thermosphere. Direct observations of this circulation are difficult. However, it leaves clear signatures in tracer distributions. Recent analysis of CO2 observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite showed dynamically driven dense isolines of CO2 at summer high latitudes. We conduct modeling and observational studies to understand the CO2 distribution and circulation patterns in the MLT. We found that there exists maximum vertical gradient of CO2 at summer high latitudes, driven by the convergence of the upwelling of the mesospheric circulation and the downwelling of the lower thermospheric circulation; this maximum vertical gradient of CO2 is located at a higher altitude in the winter hemisphere, driven by the convergence of the upwelling of the lower thermospheric circulation and the downwelling of the solar-driven thermospheric circulation. Based on SABER CO2 distribution, the bottom of the lower thermospheric circulation is located between 95 km and 100 km, and it has a vertical extent of 10 km. Analysis of the SABER CO2 and temperature at summer high latitudes showed that the bottom of this circulation is consistently higher than the mesopause height by 10 km; and its location does not change much between solar maximum and solar minimum.
NASA Astrophysics Data System (ADS)
Lazoglou, Georgia; Anagnostopoulou, Christina; Tolika, Konstantia; Kolyva-Machera, Fotini
2018-04-01
The increasing trend of the intensity and frequency of temperature and precipitation extremes during the past decades has substantial environmental and socioeconomic impacts. Thus, the objective of the present study is the comparison of several statistical methods of the extreme value theory (EVT) in order to identify which is the most appropriate to analyze the behavior of the extreme precipitation, and high and low temperature events, in the Mediterranean region. The extremes choice was made using both the block maxima and the peaks over threshold (POT) technique and as a consequence both the generalized extreme value (GEV) and generalized Pareto distributions (GPDs) were used to fit them. The results were compared, in order to select the most appropriate distribution for extremes characterization. Moreover, this study evaluates the maximum likelihood estimation, the L-moments and the Bayesian method, based on both graphical and statistical goodness-of-fit tests. It was revealed that the GPD can characterize accurately both precipitation and temperature extreme events. Additionally, GEV distribution with the Bayesian method is proven to be appropriate especially for the greatest values of extremes. Another important objective of this investigation was the estimation of the precipitation and temperature return levels for three return periods (50, 100, and 150 years) classifying the data into groups with similar characteristics. Finally, the return level values were estimated with both GEV and GPD and with the three different estimation methods, revealing that the selected method can affect the return level values for both the parameter of precipitation and temperature.
A novel calibration method of focused light field camera for 3-D reconstruction of flame temperature
NASA Astrophysics Data System (ADS)
Sun, Jun; Hossain, Md. Moinul; Xu, Chuan-Long; Zhang, Biao; Wang, Shi-Min
2017-05-01
This paper presents a novel geometric calibration method for focused light field camera to trace the rays of flame radiance and to reconstruct the three-dimensional (3-D) temperature distribution of a flame. A calibration model is developed to calculate the corner points and their projections of the focused light field camera. The characteristics of matching main lens and microlens f-numbers are used as an additional constrains for the calibration. Geometric parameters of the focused light field camera are then achieved using Levenberg-Marquardt algorithm. Total focused images in which all the points are in focus, are utilized to validate the proposed calibration method. Calibration results are presented and discussed in details. The maximum mean relative error of the calibration is found less than 0.13%, indicating that the proposed method is capable of calibrating the focused light field camera successfully. The parameters obtained by the calibration are then utilized to trace the rays of flame radiance. A least square QR-factorization algorithm with Plank's radiation law is used to reconstruct the 3-D temperature distribution of a flame. Experiments were carried out on an ethylene air fired combustion test rig to reconstruct the temperature distribution of flames. The flame temperature obtained by the proposed method is then compared with that obtained by using high-precision thermocouple. The difference between the two measurements was found no greater than 6.7%. Experimental results demonstrated that the proposed calibration method and the applied measurement technique perform well in the reconstruction of the flame temperature.
Searching for Water Ice at the Lunar North Pole Using High-Resolution Images and Radar
NASA Technical Reports Server (NTRS)
Mitchell, J. L.; Lawrence, S. J.; Robinson, M. S.; Speyerer, E. J.; Denevi, B. W.
2017-01-01
Permanently shadowed regions (PSRs) at the lunar poles are potential reservoirs of frozen volatiles, and are therefore high-priority exploration targets. PSRs trap water and other volatiles because their annual maximum temperatures (40-100K) are lower than the sublimation temperatures of these species (i.e. H2O approx.104K). Previous studies using various remote sensing techniques have not been able to definitively characterize the distribution or abundance of ice in lunar PSRs. The purpose of this study is to search for signs of ice in PSRs using two complimentary remote sensing techniques: radar and visible images.
NASA Astrophysics Data System (ADS)
M, H. Moghtader Dindarlu; M Kavosh, Tehrani; H, Saghafifar; A, Maleki
2015-12-01
In this paper, according to the temperature and strain distribution obtained by considering the Gaussian pump profile and dependence of physical properties on temperature, we derive an analytical model for refractive index variations of the diode side-pumped Nd:YAG laser rod. Then we evaluate this model by numerical solution and our maximum relative errors are 5% and 10% for variations caused by thermo-optical and thermo-mechanical effects; respectively. Finally, we present an analytical model for calculating the focal length of the thermal lens and spherical aberration. This model is evaluated by experimental results.
NASA Technical Reports Server (NTRS)
Berg, Wesley; Chase, Robert
1992-01-01
Global estimates of monthly, seasonal, and annual oceanic rainfall are computed for a period of one year using data from the Special Sensor Microwave/Imager (SSM/I). Instantaneous rainfall estimates are derived from brightness temperature values obtained from the satellite data using the Hughes D-matrix algorithm. The instantaneous rainfall estimates are stored in 1 deg square bins over the global oceans for each month. A mixed probability distribution combining a lognormal distribution describing the positive rainfall values and a spike at zero describing the observations indicating no rainfall is used to compute mean values. The resulting data for the period of interest are fitted to a lognormal distribution by using a maximum-likelihood. Mean values are computed for the mixed distribution and qualitative comparisons with published historical results as well as quantitative comparisons with corresponding in situ raingage data are performed.
Analyzing the effect of tool edge radius on cutting temperature in micro-milling process
NASA Astrophysics Data System (ADS)
Liang, Y. C.; Yang, K.; Zheng, K. N.; Bai, Q. S.; Chen, W. Q.; Sun, G. Y.
2010-10-01
Cutting heat is one of the important physical subjects in the cutting process. Cutting heat together with cutting temperature produced by the cutting process will directly have effects on the tool wear and the life as well as on the workpiece processing precision and surface quality. The feature size of the workpiece is usually several microns. Thus, the tiny changes of cutting temperature will affect the workpiece on the surface quality and accuracy. Therefore, cutting heat and temperature generated in micro-milling will have significantly different effect than the one in the traditional tools cutting. In this paper, a two-dimensional coupled thermal-mechanical finite element model is adopted to determine thermal fields and cutting temperature during the Micro-milling process, by using software Deform-2D. The effect of tool edge radius on effective stress, effective strain, velocity field and cutting temperature distribution in micro-milling of aluminum alloy Al2024-T6 were investigated and analyzed. Also, the transient cutting temperature distribution was simulated dynamically. The simulation results show that the cutting temperature in Micro-milling is lower than those occurring in conventional milling processes due to the small loads and low cutting velocity. With increase of tool edge radius, the maximum temperature region gradually occurs on the contact region between finished surfaced and flank face of micro-cutter, instead of the rake face or the corner of micro-cutter. And this phenomenon shows an obvious size effect.
NASA Astrophysics Data System (ADS)
Cambridge, M. L.; Breeman, A. M.; Kraak, S.; van den Hoek, C.
1987-09-01
The relationship between distribution boundaries and temperature responses of some North Atlantic Cladophora species (Chlorophyta) was experimentally examined under various regimes of temperature, light and daylength. Experimentally determined critical temperature intervals, in which survival, growth or reproduction was limited, were compared with annual temperature regimes (monthly means and extremes) at sites inside and outside distribution boundaries. The species tested belonged to two phytogeographic groups: (1) the tropical West Atlantic group ( C. submarina: isolate from Curaçao) and (2) the amphiatlantic tropical to warm temperate group ( C. prolifera: isolate from Corsica; C. coelothrix: isolates from Brittany and Curaçao; and C. laetevirens: isolates from deep and shallow water in Corsica and from Brittany). In accordance with distribution from tropical to warm temperate regions, each of the species grew well between 20 30°C and reproduction and growth were limited at and below 15°C. The upper survival limit in long days was <35°C in all species but high or maximum growth rates occurred at 30°C. C. prolifera, restricted to the tropical margins, had the most limited survival at 35°C. Experimental evidence suggests that C. submarina is restricted to the Caribbean and excluded from the more northerly American mainland and Gulf of Mexico coasts by sporadic low winter temperatures in the nearshore waters, when cold northerly weather penetrates far south every few years. Experimental evidence suggests that C. prolifera, C. coelothrix and C. laetevirens are restricted to their northern European boundaries by summer temperatures too low for sufficient growth and/or reproduction. Their progressively more northerly located boundaries were accounted for by differences in growth rates over the critical 10 15°C interval. C. prolifera and C. coelothrix are excluded or restricted in distribution on North Sea coasts by lethal winter temperatures, again differences in cold tolerance accounting for differences in their distribution patterns. On the American coast, species were probably restricted by lethal winter temperatures in the nearshore and, in some cases, by the absence of suitable hard substrates in the more equable offshore waters. Isolates from two points along the European coast (Brittany, Corsica) of C. laetevirens showed no marked differences in their temperature tolerance but the Caribbean and European isolates of C. coelothrix differed markedly in their tolerance to low temperatures, the lethal limit of the Caribbean isolate lying more than 5°C higher (at ca 5°C).
Fiedler, Thomas M; Ladd, Mark E; Bitz, Andreas K
2017-01-01
The purpose of this work was to perform an RF safety evaluation for a bilateral four-channel transmit/receive breast coil and to determine the maximum permissible input power for which RF exposure of the subject stays within recommended limits. The safety evaluation was done based on SAR as well as on temperature simulations. In comparison to SAR, temperature is more directly correlated with tissue damage, which allows a more precise safety assessment. The temperature simulations were performed by applying three different blood perfusion models as well as two different ambient temperatures. The goal was to evaluate whether the SAR and temperature distributions correlate inside the human body and whether SAR or temperature is more conservative with respect to the limits specified by the IEC. A simulation model was constructed including coil housing and MR environment. Lumped elements and feed networks were modeled by a network co-simulation. The model was validated by comparison of S-parameters and B 1 + maps obtained in an anatomical phantom. Three numerical body models were generated based on 3 Tesla MRI images to conform to the coil housing. SAR calculations were performed and the maximal permissible input power was calculated based on IEC guidelines. Temperature simulations were performed based on the Pennes bioheat equation with the power absorption from the RF simulations as heat source. The blood perfusion was modeled as constant to reflect impaired patients as well as with a linear and exponential temperature-dependent increase to reflect two possible models for healthy subjects. Two ambient temperatures were considered to account for cooling effects from the environment. The simulation model was validated with a mean deviation of 3% between measurement and simulation results. The highest 10 g-averaged SAR was found in lung and muscle tissue on the right side of the upper torso. The maximum permissible input power was calculated to be 17 W. The temperature simulations showed that temperature maximums do not correlate well with the position of the SAR maximums in all considered cases. The body models with an exponential blood perfusion increase did not exceed the temperature limit when an RF power according to the SAR limit was applied; in this case, a higher input power level by up to 73% would be allowed. The models with a constant or linear perfusion exceeded the limit for the local temperature when the local SAR limit was adhered to and would require a decrease in the input power level by up to 62%. The maximum permissible input power was determined based on SAR simulations with three newly generated body models and compared with results from temperature simulations. While SAR calculations are state-of-the-art and well defined as they are based on more or less well-known material parameters, temperature simulations depend strongly on additional material, environmental and physiological parameters. The simulations demonstrated that more consideration needs be made by the MR community in defining the parameters for temperature simulations in order to apply temperature limits instead of SAR limits in the context of MR RF safety evaluations. © 2016 American Association of Physicists in Medicine.
Towards bridging the gap between climate change projections and maize producers in South Africa
NASA Astrophysics Data System (ADS)
Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus
2018-05-01
Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.
Swart, Belinda L; von der Heyden, Sophie; Bester-van der Merwe, Aletta; Roodt-Wilding, Rouvay
2015-12-01
The genus Seriola includes several important commercially exploited species and has a disjunct distribution globally; yet phylogenetic relationships within this genus have not been thoroughly investigated. This study reports the first comprehensive molecular phylogeny for this genus based on mitochondrial (Cytb) and nuclear gene (RAG1 and Rhod) DNA sequence data for all extant Seriola species (nine species, n=27). All species were found to be monophyletic based on Maximum parsimony, Maximum likelihood and Bayesian inference. The closure of the Tethys Sea (12-20 MYA) coincides with the divergence of a clade containing ((S. fasciata and S. peruana), S. carpenteri) from the rest of the Seriola species, while the formation of the Isthmus of Panama (±3 MYA) played an important role in the divergence of S. fasciata and S. peruana. Furthermore, factors such as climate and water temperature fluctuations during the Pliocene played important roles during the divergence of the remaining Seriola species. Copyright © 2015 Elsevier Inc. All rights reserved.
Application of a stepwise method for analyzing fouling in shell-and-tube exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prieto, M.M.; Miranda, J.; Sigales, B.
1999-12-01
This article presents the results of the application of a quite simple method for analyzing shell-side fouling in shell-and-tube exchangers, capable of taking into account the formation or irregular fouling deposits with variable thermal conductivity. This method, based on the utilization of elementary heat exchangers, has been implemented for E-shell TEMA-type heat exchangers with two tube passes. Several fouling deposit distributions have been simulated so as to ascertain their effects on the heat transfer rate. These distributions consider that fouling is concentrated in zones where the temperature of the fluids is maximum or minimum.
Boehme, Lars; Thompson, Dave; Fedak, Mike; Bowen, Don; Hammill, Mike O.; Stenson, Garry B.
2012-01-01
Predicting how marine mammal populations respond to habitat changes will be essential for developing conservation management strategies in the 21st century. Responses to previous environmental change may be informative in the development of predictive models. Here we describe the likely effects of the last ice age on grey seal population size and distribution. We use satellite telemetry data to define grey seal foraging habitat in terms of the temperature and depth ranges exploited by the contemporary populations. We estimate the available extent of such habitat in the North Atlantic at present (between 1.42·106 km2 and 2.07·106 km2) and at the last glacial maximum (between 4.74·104 km2 and 2.11·105 km2); taking account of glacial and seasonal sea-ice coverage, estimated reductions of sea-level (123 m) and sea surface temperature hind-casts. Most of the extensive continental shelf waters (North Sea, Baltic Sea and Scotian Shelf), currently supporting >95% of grey seals, were unavailable during the last glacial maximum. A combination of lower sea-level and extensive ice-sheets, massively increased seasonal sea-ice coverage and southerly extent of cold water would have pushed grey seals into areas with no significant shelf waters. The habitat during the last glacial maximum might have been as small as 3% of today's extent and grey seal populations may have fallen to similarly low numbers. An alternative scenario involving a major change to a pelagic or bathy-pelagic foraging niche cannot be discounted. However, hooded seals currently dominate that niche and may have excluded grey seals from such habitat. If as seems likely, the grey seal population fell to very low levels it would have remained low for several thousand years before expanding into current habitats over the past 12,000 years or so. PMID:23300843
NASA Astrophysics Data System (ADS)
Bond, R. M.; Stubblefield, A. P.
2012-12-01
Stream temperature plays a critical role in determining the overall structure and function of stream ecosystems. Aquatic fauna are particularly vulnerable to projected increases in the magnitude and duration of elevated stream temperatures from global climate change. Northern California cold water salmon and trout fisheries have been declared thermally impacted by the California State Water Resources Control Board. This study employed Distributed Temperature Sensing (DTS) to detect stream heating and cooling at one meter resolution along a one kilometer section of the North Fork of the Salmon River, a tributary of the Klamath River, northern California, USA. The Salmon River has an extensive legacy of hydraulic gold mining tailing which have been reworked into large gravel bars; creating shallow wide runs, possibly filling in pools and disrupting riparian vegetation recruitment. Eight days of temperature data were collected at 15 minute intervals during July 2012. Three remote weather stations were deployed during the study period. The main objectives of this research were: one, quantify thermal inputs that create and maintain thermal refugia for cold water fishes; two, investigate the role of riparian and topographic shading in buffering peak summer temperatures; and three, create and validate a physically based stream heating model to predict effects of riparian management, drought, and climate change on stream temperature. DTS was used to spatially identify cold water seeps and quantify their contribution to the stream's thermal regime. Along the one kilometer reach, hyporheic flow was identified using DTS. The spring was between 16-18°C while the peak mainstem temperature above the spring reached a maximum of 23°C. The study found a diel heating cycle of 5°C with a Maximum Weekly Average Temperature (MWAT) of over 22°C; exceeding salmon and trout protective temperature standards set by USEPA Region 10. Twenty intensive fish counts over five days were conducted to assess the relative abundance of Chinook (Oncorhynchus tshawytscha), coho (O. kisutch), and steelhead (O. mykiss) use of thermal refugia. The North Fork Salmon River is the largest river to be instrumented with DTS technology. The researchers will use the DTS data and thermal model to make suggestions for management actions to improve the Salmon River's thermal regime.
Phenol-Formaldehyde Resin for Optical-Chemical Temperature Sensing.
Claucherty, Steven; Sakaue, Hirotaka
2018-05-30
The application of phenol-formaldehyde (PF) resin as an optical temperature sensor is investigated. Recent developments in optical luminescent sensors allow for global measurements to be made over the surface of a test article, extending beyond conventional point measurements. Global temperature distributions are particularly helpful when validating computational models or when mapping temperature over complex geometries, and can be used to calculate surface heat flux values. Temperature-sensitive paint (TSP) is a novel chemical approach to obtaining these global temperature measurements, but there are still challenges to overcome to make it a reliable tool. A sensor with a wide range of temperature sensitivity is desired to provide the maximum amount of utility, especially for tests spanning large temperature gradients. Naturally luminescent materials such as PF resin provide an attractive alternative to chemical sensor coatings, and PF resin is studied for this reason. Static tests of different PF resin samples are conducted using two binder materials to strengthen the material: cloth and paper. The material shows temperature sensitivities up to -0.8%/K, demonstrating the usefulness of PF resin as a temperature sensor.
Niche evolution and thermal adaptation in the temperate species Drosophila americana.
Sillero, N; Reis, M; Vieira, C P; Vieira, J; Morales-Hojas, R
2014-08-01
The study of ecological niche evolution is fundamental for understanding how the environment influences species' geographical distributions and their adaptation to divergent environments. Here, we present a study of the ecological niche, demographic history and thermal performance (locomotor activity, developmental time and fertility/viability) of the temperate species Drosophila americana and its two chromosomal forms. Temperature is the environmental factor that contributes most to the species' and chromosomal forms' ecological niches, although precipitation is also important in the model of the southern populations. The past distribution model of the species predicts a drastic reduction in the suitable area for the distribution of the species during the last glacial maximum (LGM), suggesting a strong bottleneck. However, DNA analyses did not detect a bottleneck signature during the LGM. These contrasting results could indicate that D. americana niche preference evolves with environmental change, and thus, there is no evidence to support niche conservatism in this species. Thermal performance experiments show no difference in the locomotor activity across a temperature range of 15 to 38 °C between flies from the north and the south of its distribution. However, we found significant differences in developmental time and fertility/viability between the two chromosomal forms at the model's optimal temperatures for the two forms. However, results do not indicate that they perform better for the traits studied here in their respective optimal niche temperatures. This suggests that behaviour plays an important role in thermoregulation, supporting the capacity of this species to adapt to different climatic conditions across its latitudinal distribution. © 2014 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.
Climate change and the northern Russian treeline zone.
MacDonald, G M; Kremenetski, K V; Beilman, D W
2008-07-12
The Russian treeline is a dynamic ecotone typified by steep gradients in summer temperature and regionally variable gradients in albedo and heat flux. The location of the treeline is largely controlled by summer temperatures and growing season length. Temperatures have responded strongly to twentieth-century global warming and will display a magnified response to future warming. Dendroecological studies indicate enhanced conifer recruitment during the twentieth century. However, conifers have not yet recolonized many areas where trees were present during the Medieval Warm period (ca AD 800-1,300) or the Holocene Thermal Maximum (HTM; ca 10,000-3,000 years ago). Reconstruction of tree distributions during the HTM suggests that the future position of the treeline due to global warming may approximate its former Holocene maximum position. An increased dominance of evergreen tree species in the northern Siberian forests may be an important difference between past and future conditions. Based on the slow rates of treeline expansion observed during the twentieth century, the presence of steep climatic gradients associated with the current Arctic coastline and the prevalence of organic soils, it is possible that rates of treeline expansion will be regionally variable and transient forest communities with species abundances different from today's may develop.
Two dimensional finite element thermal model of laser surface glazing for H13 tool steel
NASA Astrophysics Data System (ADS)
Kabir, I. R.; Yin, D.; Naher, S.
2016-10-01
A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.
Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.
Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa. PMID:24000278
Ma, Rui; Yuan, Nana; Sun, Shichang; Zhang, Peixin; Fang, Lin; Zhang, Xianghua; Zhao, Xuxin
2017-06-01
Under microwave irradiation, raw sludge was pyrolyzed mainly by evaporation of water, with a weight loss ratio of 84.8% and a maximum temperature not exceeding 200°C. High-temperature pyrolysis of SiC sludge could be realized, with a weight loss ratio of 93.4% and a final pyrolysis temperature of 1131.7°C. Variations between the electric field intensity distribution are the main reason for the differences of pyrolysis efficiencies. HFSS simulation showed that the electric field intensity of the raw sludge gradually decreased from 2.94×10 4 V/m to 0.88×10 4 V/m when pyrolysis ends, while that of SiC sludge decreased from 3.73×10 4 V/m at the beginning to 1.28×10 4 V/m, then increased to 4.03×10 4 V/m. The electromagnetic effect is the main factor (r≥0.91) influencing the temperature increase and weight loss of raw sludge. Both the electromagnetic effect and heat conduction effect influenced temperature rise and weight loss of SiC sludge, but the former's influence was comparatively larger. Copyright © 2017 Elsevier Ltd. All rights reserved.
The vertical distribution of nutrients and oxygen 18 in the upper Arctic Ocean
NASA Astrophysics Data System (ADS)
BjöRk, GöRan
1990-09-01
The observed vertical nutrient distribution including a maximum at about 100 m depth in the Arctic Ocean is investigated using a one-dimensional time-dependent circulation model together with a simple biological model. The circulation model includes a shelf-forced circulation. This is thought to take place in a box from which the outflow is specified regarding temperature and volume flux at different salinities. It has earlier been shown that the circulation model is able to reproduce the observed mean salinity and temperature stratification in the Arctic Ocean. Before introducing nutrients in the model a test is performed using the conservative tracer δ18 (18O/16O ratio) as one extra state variable in order to verify the circulation model. It is shown that the field measurements can be simulated. The result is, however, rather sensitive to the tracer concentration in the Bering Strait inflow. The nutrients nitrate, phosphate, and silicate are then treated by coupling a simple biological model to the circulation model. The biological model describes some overall effects of production, sinking, and decomposition of organic matter. First a standard case of the biological model is presented. This is followed by some modified cases. It is shown that the observed nutrient distribution including the maximum can be generated. The available nutrient data from the Arctic Ocean are not sufficient to decide which among the cases is the most likely to occur. One case is, however, chosen as the best case. A nutrient budget and estimates of the magnitudes of the new production are presented for this case.
Wave propagation model of heat conduction and group speed
NASA Astrophysics Data System (ADS)
Zhang, Long; Zhang, Xiaomin; Peng, Song
2018-03-01
In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.
NASA Astrophysics Data System (ADS)
Rifai, S. W.; Anderson, L. O.; Bohlman, S.
2015-12-01
Blowdowns, which are large tree mortality events caused by downbursts, create large pulses of carbon emissions in the short term and alter successional dynamics and species composition of forests, thus affecting long term biogeochemical cycling of tropical forests. Changing climate, especially increasing temperatures and frequency of extreme climate events, may cause changes in the frequency of blowdowns, but there has been little spatiotemporal analysis to associate the interannual variation in the frequency of blowdowns with annual climate parameters. We mapped blowdowns greater than 25 ha using a time series of Landsat images from 1984-2012 in the northwestern Amazon to estimate the annual size distribution of these blowdowns. The difference in forest area affected by blowdowns between the years with the highest and lowest blowdown activity were on the order of 10 - 30 times greater depending on location. Spatially, we found the probability of large blowdowns to be higher in regions with higher annual rainfall. Temporally, we found a positive correlation between the probability of large blowdown events and maximum dry season air temperature (R2 = 0.1-0.46). Mean and maximum blowdown size also increased with maximum dry season air temperature. The strength of these relationships varied between scene locations which may be related to cloud cover obscuring the land surface in the satellite images, or biophysical characteristics of the sites. Potentially, elevated dry season temperatures during the transition from the dry season to the wet season (October - December) may exacerbate atmospheric instabilities, which promote downburst occurrences. Most global circulation models predict dry season air temperatures to increase 2-5 ℃ in the northwestern Amazon by 2050. Should the blowdown disturbance regime continue increasing with elevated dry season temperatures, the northwestern Amazon is likely to experience more catastrophic tree mortality events which has direct consequences for both the carbon emissions and carbon storage capacity of the northwestern Amazon.
Modeled future peak streamflows in four coastal Maine rivers
Hodgkins, Glenn A.; Dudley, Robert W.
2013-01-01
To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As the magnitude of air temperatures increase in the four basins, peak flows decrease by larger amounts. If precipitation is held constant (no change from historical values), 17 to 26 percent decreases in peak flow occur at the four basins when temperature is increased by 7.2°F. If temperature is held constant, 26 to 38 percent increases in peak flow result from a 15-percent increase in precipitation. The largest decreases in peak flows at the four basins result from 15-percent decreases in precipitation combined with temperature increases of 10.8°F. The largest increases in peak flows generally result from 30-percent increases in precipitation combined with 3.6 °F decreases in temperatures. In many cases when temperature and precipitation both increase, small increases or decreases in annual daily maximum peak flows result. For likely changes projected for the northeastern United States for the middle of the 21st century (temperature increase of 3.6 °F and precipitation increases of 0 to 15 percent), peak-flow changes at the four coastal Maine basins in this study are modeled to be evenly distributed between increases and decreases of less than 25 percent. Peak flows with 50-percent and 1-percent AEPs (equivalent to 2-year and 100-year recurrence interval peak flows, respectively) were calculated for the four basins in the study using the PRMS-modeled annual daily maximum peak flows. Modeled peak flows with 50-percent and 1-percent AEPs with adjusted temperatures and precipitation were compared to unadjusted (historical) modeled values. Changes in peak flows with 50-percent AEPs are similar to changes in annual daily maximum peak flow; changes in peak flows with 1-percent AEPs are similar in pattern to changes in annual daily maximum peak flow, but some of the changes associated with increasing precipitation are much larger than changes in annual daily maximum peak flow. Substantial decreases in maximum annual winter snowpack water equivalent are modeled to occur with increasing air temperatures at the four basins in the study. (Snowpack is the snow on the ground that accumulates during a winter, and water equivalent is the amount of water in a snowpack if it were melted.) The decrease in modeled peak flows with increasing air temperature, given no change in precipitation amount, is likely caused by these decreases in winter snowpack and resulting decreases in snowmelt runoff. This Scientific Investigations Report, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Fact Sheet (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/fs/2013/3021/.
Min, Kyungguk; Liu, Kaijun; Gary, S. Peter
2016-03-18
Here, a ring-like proton velocity distribution with ∂f p(v ⊥)/∂v ⊥>0 and which is sufficiently anisotropic can excite two distinct types of growing modes in the inner magnetosphere: ion Bernstein instabilities with multiple ion cyclotron harmonics and quasi-perpendicular propagation and an Alfvén-cyclotron instability at frequencies below the proton cyclotron frequency and quasi-parallel propagation. Recent particle-in-cell simulations have demonstrated that even if the maximum linear growth rate of the latter instability is smaller than the corresponding growth of the former instability, the saturation levels of the fluctuating magnetic fields can be greater for the Alfvén-cyclotron instability than for the ion Bernsteinmore » instabilities. In this study, linear dispersion theory and two-dimensional particle-in-cell simulations are used to examine scalings of the linear growth rate and saturation level of the two types of growing modes as functions of the temperature anisotropy T ⊥/T || for a general ring-like proton distribution with a fixed ring speed of 2v A, where v A is the Alfvén speed. For the proton distribution parameters chosen, the maximum linear theory growth rate of the Alfvén-cyclotron waves is smaller than that of the fastest-growing Bernstein mode for the wide range of anisotropies (1≤T ⊥/T ||≤7) considered here. Yet the corresponding particle-in-cell simulations yield a higher saturation level of the fluctuating magnetic fields for the Alfvén-cyclotron instability than for the Bernstein modes as long as inline image. Since fast magnetosonic waves with ion Bernstein instability properties observed in the magnetosphere are often not accompanied by electromagnetic ion cyclotron waves, the results of the present study indicate that the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should not be very anisotropic.« less
NASA Astrophysics Data System (ADS)
Cardoso, Rita M.; Soares, Pedro M. M.; Lima, Daniela C. A.; Miranda, Pedro M. A.
2018-02-01
Large temperature spatio-temporal gradients are a common feature of Mediterranean climates. The Portuguese complex topography and coastlines enhances such features, and in a small region large temperature gradients with high interannual variability is detected. In this study, the EURO-CORDEX high-resolution regional climate simulations (0.11° and 0.44° resolutions) are used to investigate the maximum and minimum temperature projections across the twenty-first century according to RCP4.5 and RCP8.5. An additional WRF simulation with even higher resolution (9 km) for RCP8.5 scenario is also examined. All simulations for the historical period (1971-2000) are evaluated against the available station observations and the EURO-CORDEX model results are ranked in order to build multi-model ensembles. In present climate models are able to reproduce the main topography/coast related temperature gradients. Although there are discernible differences between models, most present a cold bias. The multi-model ensembles improve the overall representation of the temperature. The ensembles project a significant increase of the maximum and minimum temperatures in all seasons and scenarios. Maximum increments of 8 °C in summer and autumn and between 2 and 4 °C in winter and spring are projected in RCP8.5. The temperature distributions for all models show a significant increase in the upper tails of the PDFs. In RCP8.5 more than half of the extended summer (MJJAS) has maximum temperatures exceeding the historical 90th percentile and, on average, 60 tropical nights are projected for the end of the century, whilst there are only 7 tropical nights in the historical period. Conversely, the number of cold days almost disappears. The yearly average number of heat waves increases by seven to ninefold by 2100 and the most frequent length rises from 5 to 22 days throughout the twenty-first century. 5% of the longest events will last for more than one month. The amplitude is overwhelming larger, reaching values which are not observed in the historical period. More than half of the heat waves will be stronger than the extreme heat wave of 2003 by the end of the century. The future heatwaves will also enclose larger areas, approximately 100 events in the 2071-2100 period (more than 3 per year) will cover the whole country. The RCP4.5 scenario has in general smaller magnitudes.
NASA Astrophysics Data System (ADS)
José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María
2016-04-01
In the current context of global change, mountainous areas constitute singular locations in which these changes can be traced. Early detection of significant shifts of snow state variables in semiarid regions can help assess climate variability impacts and future snow dynamics in northern latitudes. The Sierra Nevada mountain range, in southern Spain, is a representative example of snow areas in Mediterranean-climate regions and both monitoring and modelling efforts have been performed to assess this variability and its significant scales. This work presents a decadal trend analysis throughout the 50-yr period 1960-2010 performed on some snow-related variables over Sierra Nevada, in Spain, which is included in the global climate change observatories network around the world. The study area comprises 4583 km2 distributed throughout the five head basins influenced by these mountains, with altitude values ranging from 140 to 3479 m.a.s.l., just 40 km from the Mediterranean coastline. Meteorological variables obtained from 44 weather stations from the National Meteorological Agency were studied and further used as input to the distributed hydrological model WiMMed (Polo et al., 2010), operational at the study area, to obtain selected snow variables. Decadal trends were obtained, together with their statistical significance, over the following variables, averaged over the whole study area: (1) annual precipitation; (2) annual snowfall; annual (3) mean, (4) maximum and (5) minimum daily temperature; annual (6) mean and (7) maximum daily fraction of snow covered areas; (8) annual number of days with snow cover; (9) mean and (10) maximum daily snow water equivalent; (11) annual number of extreme precipitation events; and (12) mean intensity of the annual extreme precipitation events. These variables were also studied over each of the five regions associated to each basin in the range. Globally decreasing decadal trends were obtained for all the meteorological variables, with the exception of the average annual mean and maximum daily temperature. In the case of the snow-related variables, no significant trends are observed at this time scale; nonetheless, a global decreasing rate is predominant in most of the variables. The torrential events are more frequent in the last decades of the study period, with an apparently increasing associated dispersion. This study constitutes a first sound analysis of the long-term observed trends of the snow regime in this area under the context of increasing temperature and decreasing precipitation regimes. The results highlight the complexity of non-linearity in environmental processes in Mediterranean regions, and point out to a significant shift in the precipitation and temperature regime, and thus on the snow-affected hydrological variables in the study area.
Marchin, Renée M; Dunn, Robert R; Hoffmann, William A
2014-12-01
In the eastern United States, winter temperature has been increasing nearly twice as fast as summer temperature, but studies of warming effects on plants have focused on species that are photosynthetically active in summer. The terrestrial orchid Tipularia discolor is leafless in summer and acquires C primarily in winter. The optimum temperature for photosynthesis in T. discolor is higher than the maximum temperature throughout most of its growing season, and therefore growth can be expected to increase with warming. Contrary to this hypothesis, experimental warming negatively affected reproductive fitness (number of flowering stalks, flowers, fruits) and growth (change in leaf area from 2010 to 2012) in T. discolor. Temperature in June-July was critical for flowering, and mean July temperature greater than 29 °C (i.e., 2.5 °C above ambient) eliminated reproduction. Warming of 1.2 °C delayed flowering by an average of 10 days and fruiting by an average of 5 days. Warming of 4.4 °C reduced relative growth rates by about 60%, which may have been partially caused by the direct effects of temperature on photosynthesis and respiration. Warming indirectly increased vapor pressure deficit (VPD) by 0.2-0.5 kPa, and leaf-to-air VPD over 1.3 kPa restricted stomatal conductance of T. discolor to 10-40% of maximum conductance. These results highlight the need to account for changes in VPD when estimating temperature responses of plant species under future warming scenarios. Increasing temperature in the future will likely be an important limiting factor to the distribution of T. discolor, especially along the southern edge of its range.
Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA
Muths, E.; Pilliod, D.S.; Livo, L.J.
2008-01-01
Amphibian populations continue to be imperiled by the chytrid fungus (Batrachochytrium dendrobatidis). Understanding where B. dendrobatidis (Bd) occurs and how it may be limited by environmental factors is critical to our ability to effectively conserve the amphibians affected by Bd. We sampled 1247 amphibians (boreal toads and surrogates) at 261 boreal toad (Bufo boreas) breeding sites (97 clusters) along an 11?? latitudinal gradient in the Rocky Mountains to determine the distribution of B. dendrobatidis and examine environmental factors, such as temperature and elevation, that might affect its distribution. The fungus was detected at 64% of all clusters and occurred across a range of elevations (1030-3550 m) and latitudes (37.6-48.6??) but we detected it in only 42% of clusters in the south (site elevations higher), compared to 84% of clusters in the north (site elevations lower). Maximum ambient temperature (daily high) explained much of the variation in Bd occurrence in boreal toad populations and thus perhaps limits the occurrence of the pathogen in the Rocky Mountains to areas where climatic conditions facilitate optimal growth of the fungus. This information has implications in global climate change scenarios where warming temperatures may facilitate the spread of disease into previously un- or little-affected areas (i.e., higher elevations). This study provides the first regional-level, field-based effort to examine the relationship of environmental and geographic factors to the distribution of B. dendrobatidis in North America and will assist managers to focus on at-risk populations as determined by the local temperature regimes, latitude and elevation.
Thermal Modeling and Management of Solid Oxide Fuel Cells Operating with Internally Reformed Methane
NASA Astrophysics Data System (ADS)
Wu, Yiyang; Shi, Yixiang; Cai, Ningsheng; Ni, Meng
2018-06-01
A detailed three-dimensional mechanistic model of a large-scale solid oxide fuel cell (SOFC) unit running on partially pre-reformed methane is developed. The model considers the coupling effects of chemical and electrochemical reactions, mass transport, momentum and heat transfer in the SOFC unit. After model validation, parametric simulations are conducted to investigate how the methane pre-reforming ratio affects the transport and electrochemistry of the SOFC unit. It is found that the methane steam reforming reaction has a "smoothing effect", which can achieve more uniform distributions of gas compositions, current density and temperature among the cell plane. In the case of 1500 W/m2 power density output, adding 20% methane absorbs 50% of internal heat production inside the cell, reduces the maximum temperature difference inside the cell from 70 K to 22 K and reduces the cathode air supply by 75%, compared to the condition of completely pre-reforming of methane. Under specific operating conditions, the pre-reforming ratio of methane has an optimal range for obtaining a good temperature distribution and good cell performance.
AgRISTARS: Supporting research. Spring small grains planting date distribution model
NASA Technical Reports Server (NTRS)
Hodges, T.; Artley, J. A. (Principal Investigator)
1981-01-01
A model was developed using 996 planting dates at 51 LANDSAT segments for spring wheat and spring barley in Minnesota, Montana, North Dakota, and South Dakota in 1979. Daily maximum and minimum temperatures and precipitation were obtained from the cooperative weather stations nearest to each segment. The model uses a growing degree day summation modified for daily temperature range to estimate the beginning of planting and uses a soil surface wetness variable to estimate how a fixed number of planting days are distributed after planting begins. For 1979, the model predicts first, median, and last planting dates with root mean square errors of 7.91, 6.61, and 7.09 days, respectively. The model also provides three or four dates to represent periods of planting activity within the planting season. Although the full model was not tested on an independent data set, it may be suitable in areas other than the U.S. Great Plains where spring small grains are planted as soon as soil and air temperatures become warm enough in the spring for plant growth.
Monte Carlo study of magnetic nanoparticles adsorbed on halloysite Al2Si2O5(OH) 4 nanotubes
NASA Astrophysics Data System (ADS)
Sotnikov, O. M.; Mazurenko, V. V.; Katanin, A. A.
2017-12-01
We study properties of magnetic nanoparticles adsorbed on the halloysite surface. For that a distinct magnetic Hamiltonian with a random distribution of spins on a cylindrical surface was solved by using a nonequilibrium Monte Carlo method. The parameters for our simulations, the anisotropy constant, nanoparticle size distribution, saturated magnetization, and geometrical characteristics of the halloysite template, were taken from recent experiments. We calculate the hysteresis loops and temperature dependence of the zero-field-cooling (ZFC) susceptibility, the maximum of which determines the blocking temperature. It is shown that the dipole-dipole interaction between nanoparticles moderately increases the blocking temperature and weakly increases the coercive force. The obtained hysteresis loops (e.g., the value of the coercive force) for Ni nanoparticles are in reasonable agreement with the experimental data. We also discuss the sensitivity of the hysteresis loops and ZFC susceptibilities to the change in anisotropy and dipole-dipole interaction, as well as the 3 d -shell occupation of the metallic nanoparticles; in particular we predict larger coercive force for Fe than for Ni nanoparticles.
Lee, Kyong-Hwan; Shin, Dae-Hyun
2007-01-01
Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 degrees C) and high (400 degrees C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 degrees C was firstly aromatic products and then olefin products, while at 400 degrees C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 degrees C) and 83 min (at 400 degrees C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was concluded that the characteristics of liquid product on the pyrolysis of plastic mixtures were strongly influenced by lapse time of reaction and degradation temperature.
ALTO, BARRY W.; JULIANO, STEVEN A.
2008-01-01
We investigated how temperature and precipitation regime encountered over the life cycle of Aedes albopictus (Skuse) affects populations. Caged populations of A. albopictus were maintained at 22, 26, and 30°C. Cages were equipped with containers that served as sites for oviposition and larval development. All cages were assigned to one of three simulated precipitation regimes: (1) low fluctuation regime - water within the containers was allowed to evaporate to 90% of its maximum before being refilled, (2) high fluctuation regime - water was allowed to evaporate to 25% of its maximum before being refilled, and (3) drying regime - water was allowed to evaporate to complete container dryness before being refilled. Greater temperature and the absence of drying resulted in greater production of adults. Greater temperature in combination with drying were detrimental to adult production. These precipitation effects on adult production were absent at 22°C. Greater temperatures and drying treatments yielded higher and lower eclosion rates, respectively and, both yielded greater mortality. Development time and size of adults decreased with increased temperatures, and drying produced larger adults. Greater temperatures resulted in greater egg mortality. These results suggest that populations occurring in warmer regions are likely to produce more adults as long as containers do not dry completely. Populations in cooler regions are likely to produce fewer adults with the variability of precipitation contributing less to variation in adult production. Predicted climate change in North America is likely to extend the northern distribution of A. albopictus and to limit further its establishment in arid regions. PMID:11580037
Chantre, Guillermo R; Batlla, Diego; Sabbatini, Mario R; Orioli, Gustavo
2009-06-01
Models based on thermal-time approaches have been a useful tool for characterizing and predicting seed germination and dormancy release in relation to time and temperature. The aims of the present work were to evaluate the relative accuracy of different thermal-time approaches for the description of germination in Lithospermum arvense and to develop an after-ripening thermal-time model for predicting seed dormancy release. Seeds were dry-stored at constant temperatures of 5, 15 or 24 degrees C for up to 210 d. After different storage periods, batches of 50 seeds were incubated at eight constant temperature regimes of 5, 8, 10, 13, 15, 17, 20 or 25 degrees C. Experimentally obtained cumulative-germination curves were analysed using a non-linear regression procedure to obtain optimal population thermal parameters for L. arvense. Changes in these parameters were described as a function of after-ripening thermal-time and storage temperature. The most accurate approach for simulating the thermal-germination response of L. arvense was achieved by assuming a normal distribution of both base and maximum germination temperatures. The results contradict the widely accepted assumption of a single T(b) value for the entire seed population. The after-ripening process was characterized by a progressive increase in the mean maximum germination temperature and a reduction in the thermal-time requirements for germination at sub-optimal temperatures. The after-ripening thermal-time model developed here gave an acceptable description of the observed field emergence patterns, thus indicating its usefulness as a predictive tool to enhance weed management tactics.
NASA Astrophysics Data System (ADS)
Orru, Hans; Åström, Daniel Oudin
2017-05-01
The relationship between temperature and mortality is well established but has seldom been investigated in terms of external causes. In some Eastern European countries, external cause mortality is substantial. Deaths owing to external causes are the third largest cause of mortality in Estonia, after cardiovascular disease and cancer. Death rates owing to external causes may reflect behavioural changes among a population. The aim for the current study was to investigate if there is any association between temperature and external cause mortality, in Estonia. We collected daily information on deaths from external causes (ICD-10 diagnosis codes V00-Y99) and maximum temperatures over the period 1997-2013. The relationship between daily maximum temperature and mortality was investigated using Poisson regression, combined with a distributed lag non-linear model considering lag times of up to 10 days. We found significantly higher mortality owing to external causes on hot (the same and previous day) and cold days (with a lag of 1-3 days). The cumulative relative risks for heat (an increase in temperature from the 75th to 99th percentile) were 1.24 (95% confidence interval, 1.14-1.34) and for cold (a decrease from the 25th to 1st percentile) 1.19 (1.03-1.38). Deaths due to external causes might reflect changes in behaviour among a population during periods of extreme hot and cold temperatures and should therefore be investigated further, because such deaths have a severe impact on public health, especially in Eastern Europe where external mortality rates are high.
NASA Astrophysics Data System (ADS)
Kaczmarczyk, Michał
2017-11-01
The basic source of information for determining the temperature distribution in the rock mass and thus the potential for thermal energy contained in geothermal water conversion to electricity, are: temperature measurements in stable geothermic conditions, temperature measurements in unstable conditions, measurements of maximum temperatures at the bottom of the well. Incorrect temperature estimation can lead to errors during thermodynamic parameters calculation and consequently economic viability of the project. The analysis was performed for the geothermal water temperature range of 86-100°C, for dry working fluid R245fa. As a result of the calculations, the data indicate an increase in geothermal power as the geothermal water temperature increases. At 86°C, the potential power is 817.48 kW, increases to 912.20 kW at 88°C and consequently to 1 493.34 kW at 100°C. These results are not surprising, but show a scale of error in assessing the potential that can result improper interpretation of the rock mass and geothermal waters temperature.
NASA Astrophysics Data System (ADS)
Chen, S.; Tao, C.; Li, H.; Zhou, J.; Deng, X.; Tao, W.; Zhang, G.; Liu, W.; He, Y.
2014-12-01
The Precious Stone Mountain hydrothermal field (PSMHF) is located on the southern rim of the Galapagos Microplate. It was found at the 3rd leg of the 2009 Chinese DY115-21 expedition on board R/V Dayangyihao. It is efficient to learn the distribution of hydrothermal plumes and locate the hydrothermal vents by detecting the anomalies of turbidity and temperature. Detecting seawater turbidity by MAPR based on deep-tow technology is established and improved during our cruises. We collected data recorded by MAPR and information from geological sampling, yielding the following results: (1)Strong hydrothermal turbidity and temperature anomalies were recorded at 1.23°N, southeast and northwest of PSMHF. According to the CTD data on the mooring system, significant temperature anomalies were observed over PSMHF at the depth of 1,470 m, with anomalies range from 0.2℃ to 0.4℃, which gave another evidence of the existence of hydrothermal plume. (2)At 1.23°N (101.4802°W/1.2305°N), the nose-shaped particle plume was concentrated at a depth interval of 1,400-1,600 m, with 200 m thickness and an east-west diffusion range of 500 m. The maximum turbidity anomaly (0.045 △NTU) was recorded at the depth of 1,500 m, while the background anomaly was about 0.01△NTU. A distinct temperature anomaly was also detected at the seafloor near 1.23°N. Deep-tow camera showed the area was piled up by hydrothermal sulfide sediments. (3) In the southeast (101.49°W/1.21°N), the thickness of hydrothermal plume was 300 m and it was spreading laterally at a depth of 1,500-1,800 m, for a distance about 800 m. The maximum turbidity anomaly of nose-shaped plume is about 0.04 △NTU at the depth of 1,600 m. Distinct temperature anomaly was also detected in the northwest (101.515°W/1.235°N). (4) Terrain and bottom current were the main factors controlling the distribution of hydrothermal plume. Different from the distribution of hydrothermal plumes on the mid-ocean ridges, which was mostly effected by seafloor topography, the terrain of the PSMHF was relatively flat, so the impact was negligible. Southwest direction bottom current at the speed of 0.05 m/s in PSMHF had a great influence on the distribution and spreading direction of hydrothermal plume. Keyword: hydrothermal plume, Precious Stone Mountain hydrothermal field, turbidity
Transition Experiments on Large Bluntness Cones with Distributed Roughness in Hypersonic Flight
NASA Technical Reports Server (NTRS)
Reda, Daniel. C.; Wilder, Michael C.; Prabhu, Dinesh K.
2012-01-01
Large bluntness cones with smooth nosetips and roughened frusta were flown in the NASA Ames hypersonic ballistic range at a Mach number of 10 through quiescent air environments. Global surface intensity (temperature) distributions were optically measured and analyzed to determine transition onset and progression over the roughened surface. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted to predict values of key dimensionless parameters used to correlate transition on such configurations in hypersonic flow. For these large bluntness cases, predicted axial distributions of the roughness Reynolds number showed (for each specified freestream pressure) that this parameter was a maximum at the physical beginning of the roughened zone and decreased with increasing run length along the roughened surface. Roughness-induced transition occurred downstream of this maximum roughness Reynolds number location, and progressed upstream towards the beginning of the roughened zone as freestream pressure was systematically increased. Roughness elements encountered at the upstream edge of the roughened frusta thus acted like a finite-extent trip array, consistent with published results concerning the tripping effectiveness of roughness bands placed on otherwise smooth surfaces.
NASA Technical Reports Server (NTRS)
Jensen, Eric; Bergman, John; Pfister, Leonard; Ueyama, Rei; Kinnison, Doug
2014-01-01
Trajectory calculations with convective influence diagnosed from geostationary-satellite cloud measurements are used to evaluate the relative importance of different Tropical Tropopause Layer (TTL) transport pathways for establishing the distribution of carbon monoxide (CO) at 100 hPa as observed by the Microwave Limb Sounder (MLS) on board the Aura satellite. Carbon monoxide is a useful tracer for investigating TTL transport and convective influence because the CO lifetime is comparable to the time require for slow ascent through the TTL (a couple of months). Offline calculations of TTL radiative heating are used to determine the vertical motion field. The simple trajectory model does a reasonable job of reproducing the MLS CO distributions during Boreal wintertime and summertime. The broad maximum in CO concentration over the Pacific is primarily a result of the strong radiative heating (indicating upward vertical motion) associated with the abundant TTL cirrus in this region. Sensitivity tests indicate that the distinct CO maximum in the Asian monsoon anticyclone is strongly impacted by extreme convective systems with detrainment of polluted air above 360 K potential temperature. The relative importance of different CO source regions will also be discussed.
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-01-01
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-07-15
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.
Experimental and simulation studies of neutron-induced single-event burnout in SiC power diodes
NASA Astrophysics Data System (ADS)
Shoji, Tomoyuki; Nishida, Shuichi; Hamada, Kimimori; Tadano, Hiroshi
2014-01-01
Neutron-induced single-event burnouts (SEBs) of silicon carbide (SiC) power diodes have been investigated by white neutron irradiation experiments and transient device simulations. It was confirmed that a rapid increase in lattice temperature leads to formation of crown-shaped aluminum and cracks inside the device owing to expansion stress when the maximum lattice temperature reaches the sublimation temperature. SEB device simulation indicated that the peak lattice temperature is located in the vicinity of the n-/n+ interface and anode contact, and that the positions correspond to a hammock-like electric field distribution caused by the space charge effect. Moreover, the locations of the simulated peak lattice temperature agree closely with the positions of the observed destruction traces. Furthermore, it was theoretically demonstrated that the period of temperature increase of a SiC power device is two orders of magnitude less than that of a Si power device, using a thermal diffusion equation.
NASA Astrophysics Data System (ADS)
Lee, Chieh-Han; Yu, Hwa-Lung; Chien, Lung-Chang
2014-05-01
Dengue fever has been identified as one of the most widespread vector-borne diseases in tropical and sub-tropical. In the last decade, dengue is an emerging infectious disease epidemic in Taiwan especially in the southern area where have annually high incidences. For the purpose of disease prevention and control, an early warning system is urgently needed. Previous studies have showed significant relationships between climate variables, in particular, rainfall and temperature, and the temporal epidemic patterns of dengue cases. However, the transmission of the dengue fever is a complex interactive process that mostly understated the composite space-time effects of dengue fever. This study proposes developing a one-week ahead warning system of dengue fever epidemics in the southern Taiwan that considered nonlinear associations between weekly dengue cases and meteorological factors across space and time. The early warning system based on an integration of distributed lag nonlinear model (DLNM) and stochastic Bayesian Maximum Entropy (BME) analysis. The study identified the most significant meteorological measures including weekly minimum temperature and maximum 24-hour rainfall with continuous 15-week lagged time to dengue cases variation under condition of uncertainty. Subsequently, the combination of nonlinear lagged effects of climate variables and space-time dependence function is implemented via a Bayesian framework to predict dengue fever occurrences in the southern Taiwan during 2012. The result shows the early warning system is useful for providing potential outbreak spatio-temporal prediction of dengue fever distribution. In conclusion, the proposed approach can provide a practical disease control tool for environmental regulators seeking more effective strategies for dengue fever prevention.
Effects of cooling system parameters on heat transfer in PAFC stack. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali A.
1985-01-01
Analytical and experimental study for the effects of cooling system parameters on the heat transfer and temperature distribution in the electrode plates of a phosphoric acid fuel-cell has been conducted. An experimental set-up that simulates the operating conditions prevailing in a phosphoric-acid fuel-cell stack was designed and constructed. The set-up was then used to measure the overall heat transfer coefficient, the thermal contact resistance, and the electrode temperature distribution for two different cooling plate configurations. Two types of cooling plate configurations, serpentine and straight, were tested. Air, water, and oil were used as coolants. Measurements for the heat transfer coefficient and the thermal contact resistance were made for various flow rates ranging from 16 to 88 Kg/hr, and stack clamping pressure ranging from O to 3448 Kpa. The experimental results for the overall heat transfer coefficient were utilized to derive mathematical relations for the overall heat transfer coefficient as a function of stack clamping pressure and Reynolds number for the three coolants. The empirically derived formulas were incorporated in a previously developed computer program to predict electrodes temperature distribution and the performance of the stack cooling system. The results obtained were then compared with those available in the literature. The comparison showed maximum deviation of +/- 11%.
Superconductor-insulator transition on annealed complex networks.
Bianconi, Ginestra
2012-06-01
Cuprates show multiphase and multiscale complexity that has hindered physicists search for the mechanism of high T{c} for many years. Recently the interest has been addressed to a possible optimum inhomogeneity of dopants, defects, and interstitials, and the structural scale invariance of dopants detected by scanning micro-x-ray diffraction has been reported to promote the critical temperature. In order to shed light on critical phenomena on granular materials, here we propose a stylized model capturing the essential characteristics of the superconducting-insulator transition of a highly dynamical, heterogeneous granular material: the random transverse Ising model (RTIM) on annealed complex network. We show that when the networks encode for high heterogeneity of the expected degrees described by a power-law distribution, the critical temperature for the onset of the superconducting phase diverges to infinity as the power-law exponent γ of the expected degree distribution is less than 3, i.e., γ<3. Moreover we investigate the case in which the critical state of the electronic background is triggered by an external parameter g that determines an exponential cutoff in the power-law expected degree distribution characterized by an exponent γ. We find that for g=g{c} the critical temperature for the superconducting-insulator transition has a maximum if γ>3 and diverges if γ<3.
Stochastic investigation of temperature process for climatic variability identification
NASA Astrophysics Data System (ADS)
Lerias, Eleutherios; Kalamioti, Anna; Dimitriadis, Panayiotis; Markonis, Yannis; Iliopoulou, Theano; Koutsoyiannis, Demetris
2016-04-01
The temperature process is considered as the most characteristic hydrometeorological process and has been thoroughly examined in the climate-change framework. We use a dataset comprising hourly temperature and dew point records to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e., mean process variance vs. scale) for various time periods. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
Estimating missing daily temperature extremes in Jaffna, Sri Lanka
NASA Astrophysics Data System (ADS)
Thevakaran, A.; Sonnadara, D. U. J.
2018-04-01
The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
Simulation of Earth-Moon-Mars Environments for the Assessment of Organ Doses
NASA Astrophysics Data System (ADS)
Kim, M. Y.; Schwadron, N. A.; Townsend, L.; Cucinotta, F. A.
2010-12-01
Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) at solar minimum and solar maximum are simulated in order to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmosphere of Earth or Mars, space vehicle, and astronaut’s body tissues using the HZETRN/QMSFRG computer code. In LEO, exposures are reduced compared to deep space because particles are deflected by the Earth’s magnetic field and absorbed by the solid body of the Earth. Geomagnetic transmission function as a function of altitude was applied for the particle flux of charged particles, and the shift of the organ exposures to higher velocity or lower stopping powers compared to those in deep space was analyzed. In the transport through Mars atmosphere, a vertical distribution of atmospheric thickness was calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution was implemented to describe the spherically distributed atmospheric distance along the slant path at each altitude. The resultant directional shielding by Mars atmosphere at solar minimum and solar maximum was used for the particle flux simulation at various altitudes on the Martian surface. Finally, atmospheric shielding was coupled with vehicle and body shielding for organ dose estimates. We made predictions of radiation dose equivalents and evaluated acute symptoms at LEO, moon, and Mars at solar minimum and solar maximum.
United States Air Force Summer Faculty Research Program (1987). Program Technical Report. Volume 2.
1987-12-01
the area of statistical inference, distribution theory and stochastic * •processes. I have taught courses in random processes and sample % j .functions...controlled phase separation of isotropic, binary mixtures, the theory of spinodal decomposition has been developed by Cahn and Hilliard.5 ,6 This theory is...peak and its initial rate of growth at a given temperature are predicted by the spinodal theory . The angle of maximum intensity is then determined by
Ionic currents and charge movements in organ-cultured rat skeletal muscle.
Hollingworth, S; Marshall, M W; Robson, E
1984-12-01
The middle of the fibre voltage-clamp technique was used to measure ionic currents and non-linear charge movements in intact, organ-cultured (in vitro denervated) mammalian fast-twitch (rat extensor digitorum longus) muscle fibres. Muscle fibres organ cultured for 4 days can be used as electrophysiological and morphological models for muscles in vivo denervated for the same length of time. Sodium currents in organ-cultured muscle fibres are similar to innervated fibres except that in the temperature range 0-20 degrees C (a) in the steady state, the voltage distribution of inactivation in cultured fibres is shifted negatively some 20 mV; (b) at the same temperature and membrane potential, the time constant of inactivation in cultured fibres is about twice that of innervated fibres. Potassium currents in innervated and cultured fibres at 15 degrees C can be fitted with the Hodgkin-Huxley n variable raised to the second power. Despite the large range we would estimate that the maximum value of the steady-state potassium conductance of cultured fibres is about one-half that of innervated fibres. The estimated maximum amount of charge moved in cultured fibre is about one-third that in innervated fibres. Compared to innervated fibres, culturing doubles the kinetics of the decay phase of charge movement. The possibility of a negative shift of the voltage distribution of charge movements in cultured fibres is discussed.
NASA Astrophysics Data System (ADS)
Israyandi, Zahrina, Ida; Mulia, Kamarza
2017-03-01
One of many steps in palm oil refining process is deacidification which aims to separate free fatty acids and other compounds from the oil. The deacidification process was using a green solvent, known as NADES, that consisted of betaine monohydrate and propionic acid at molar ratio of 1:8. In this study, the process conditions were optimized using the response surface method (RSM) through central composite design in order to predict the maximum distribution coefficient of palmitic acid. The obtained regression equation of the basic model for optimization was: y = 0.717 + 0.003x1 + 0.043 x2 + 0.148x3 - 0.005 x1x1 - 0.030 x2x2 + 0.047 x3x3 - 0.008 x1x2 + 0.008 x1x3 + 0.033 x2x3. The independent variables are x1 ≡ temperature (40, 60, 80 °C), x2≡ amount of palmitic acid in the palm oil (2, 5, 8 %) and x3 ≡ mass ratios of oil to NADES (1:2, 1:1, 2:1). The optimum process condition found was temperature of 62.3°C, palmitic acid content of 8%, and NADES to palm oil mass ratio of 1:2, resulting in the maximum distribution coefficient of 0.96.
Hypsometry and the distribution of high-alpine lakes in the European Alps
NASA Astrophysics Data System (ADS)
Prasicek, Günther; Otto, Jan-Christoph; Buckel, Johannes; Keuschnig, Markus
2017-04-01
Climate change strongly affects alpine landscapes. Cold-climate processes shape the terrain in a typical way and ice-free overdeepenings in cirques and glacial valleys as well as different types of moraines favor the formation of lakes. These water bodies act as sediment sinks and high-alpine water storage but may also favor outburst and flooding events. Glacier retreat worldwide is associated with an increasing number and size of high-alpine lakes which implies a concurrent expansion of sediment retention and natural hazard potential. Rising temperatures are regarded to be the major cause for this development, but other factors such as the distribution of area over elevation and glacier erosional and depositional dynamics may play an important role as well. While models of ice flow and glacial erosion are employed to understand the impact of glaciers on mountain landscapes, comprehensive datasets and analyses on the distribution of existing high-alpine lakes are lacking. In this study we present an exhaustive database of natural lakes in the European Alps and analyze lake distribution with respect to hypsometry. We find that the distribution of lake number and lake area over elevation only weakly coincides with hypsometry. Unsurprisingly, largest lakes are often tectonically influenced and located at the fringe of the mountain range and in prominent inter-montane basins. With increasing elevation, however, the number of lakes, lake area and total area decrease until a local minimum is reached around the equilibrium line latitude (ELA) of the last glacial maximum (LGM). Above the LGM ELA, total area further decreases, but lake number and area increase again. A local maximum in lake area coincides with an absolute maximum in lake number between the ELAs of the LGM and the little ice age around 2500 m. We conclude that glacial erosional and depositional dynamics control the distribution and size of high-alpine lakes and thus demand for exceptional attention when predicting future lake development.
NASA Technical Reports Server (NTRS)
Bahrami, Parviz A.
1996-01-01
Theoretical analysis and numerical computations are performed to set forth a new model of film condensation on a horizontal cylinder. The model is more general than the well-known Nusselt model of film condensation and is designed to encompass all essential features of the Nusselt model. It is shown that a single parameter, constructed explicitly and without specification of the cylinder wall temperature, determines the degree of departure from the Nusselt model, which assumes a known and uniform wall temperature. It is also known that the Nusselt model is reached for very small, as well as very large, values of this parameter. In both limiting cases the cylinder wall temperature assumes a uniform distribution and the Nusselt model is approached. The maximum deviations between the two models is rather small for cases which are representative of cylinder dimensions, materials and conditions encountered in practice.
Do `negative' temperatures exist?
NASA Astrophysics Data System (ADS)
Lavenda, B. H.
1999-06-01
A modification of the second law is required for a system with a bounded density of states and not the introduction of a `negative' temperature scale. The ascending and descending branches of the entropy versus energy curve describe particle and hole states, having thermal equations of state that are given by the Fermi and logistic distributions, respectively. Conservation of energy requires isentropic states to be isothermal. The effect of adiabatically reversing the field is entirely mechanical because the only difference between the two states is their energies. The laws of large and small numbers, leading to the normal and Poisson approximations, characterize statistically the states of infinite and zero temperatures, respectively. Since the heat capacity also vanishes in the state of maximum disorder, the third law can be generalized in systems with a bounded density of states: the entropy tends to a constant as the temperature tends to either zero or infinity.
Optimal leveling of flow over one-dimensional topography by Marangoni stresses
NASA Astrophysics Data System (ADS)
Gramlich, C. M.; Homsy, G. M.; Kalliadasis, Serafim
2001-11-01
A thin viscous film flowing over a step down in topography exhibits a capillary ridge near the step, which may be undesirable in applications. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. Lubrication theory results in a differential equation for the free surface, which can be solved numerically for any given topography and temperature profile. Leveling the ridge is then formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. Optimized heaters with 'top-hat' or parabolic temperature profiles replace the original ridge with two smaller ridges of equal size, achieving leveling of better than 50%. An optimized asymmetric n-step temperature distribution results in (n+1) ridges and reduces the variation in surface height by a factor of better than 1/(n+1).
Koch, J A; Stewart, R E; Beiersdorfer, P; Shepherd, R; Schneider, M B; Miles, A R; Scott, H A; Smalyuk, V A; Hsing, W W
2012-10-01
Future implosion experiments at the national ignition facility (NIF) will endeavor to simultaneously measure electron and ion temperatures with temporal and spatial resolution in order to explore non-equilibrium temperature distributions and their relaxation toward equilibrium. In anticipation of these experiments, and with understanding of the constraints of the NIF facility environment, we have explored the use of Doppler broadening of mid-Z dopant emission lines, such as krypton He-α at 13 keV, as a diagnostic of time- and potentially space-resolved ion temperature. We have investigated a number of options analytically and with numerical raytracing, and we have identified several promising candidate spectrometer designs that meet the expected requirements of spectral and temporal resolution and data signal-to-noise ratio for gas-filled exploding pusher implosions, while providing maximum flexibility for use on a variety of experiments that potentially include burning plasma.
The characteristics on spatiotemporal variations of summer heatwaves in China
NASA Astrophysics Data System (ADS)
Qixiang, C.; Wang, L.; Wu, S., II; Li, Y.
2016-12-01
Summer heatwaves in China have impacts on forestry, agriculture resource, infrastructure, and heat -related illness and mortality. Based on daily air temperature and relative humidity from the Chinese Meteorological Data Sharing Service System, the spatial distribution and trends of the intensity, duration, and frequency of heatwaves in China during 1960-2015 were analyzed. Considering climatic variability, we defined a heatwave as a spell of consecutive days with maximum temperatures exceeding the relative threshold (temperature percentile) .We also consider a indices combined hot days and tropical nights (CHT), and the humidity-corrected apparent temperature (AT) to analyze the health impacts of hot days in summer. This study shows that while the average frequency and duration of heatwaves has an increasing trend since 1990s, the North China Plain has a decreasing trend. This study also shows that the largest CHT values occur in southeast China, and the largest AT values occur in South China.
The FORBIO Climate data set for climate analyses
NASA Astrophysics Data System (ADS)
Delvaux, C.; Journée, M.; Bertrand, C.
2015-06-01
In the framework of the interdisciplinary FORBIO Climate research project, the Royal Meteorological Institute of Belgium is in charge of providing high resolution gridded past climate data (i.e. temperature and precipitation). This climate data set will be linked to the measurements on seedlings, saplings and mature trees to assess the effects of climate variation on tree performance. This paper explains how the gridded daily temperature (minimum and maximum) data set was generated from a consistent station network between 1980 and 2013. After station selection, data quality control procedures were developed and applied to the station records to ensure that only valid measurements will be involved in the gridding process. Thereafter, the set of unevenly distributed validated temperature data was interpolated on a 4 km × 4 km regular grid over Belgium. The performance of different interpolation methods has been assessed. The method of kriging with external drift using correlation between temperature and altitude gave the most relevant results.
The cross wavelet analysis of dengue fever variability influenced by meteorological conditions
NASA Astrophysics Data System (ADS)
Lin, Yuan-Chien; Yu, Hwa-Lung; Lee, Chieh-Han
2015-04-01
The multiyear variation of meteorological conditions induced by climate change causes the changing diffusion pattern of infectious disease and serious epidemic situation. Among them, dengue fever is one of the most serious vector-borne diseases distributed in tropical and sub-tropical regions. Dengue virus is transmitted by several species of mosquito and causing lots amount of human deaths every year around the world. The objective of this study is to investigate the impact of meteorological variables to the temporal variation of dengue fever epidemic in southern Taiwan. Several extreme and average indices of meteorological variables, i.e. temperature and humidity, were used for this analysis, including averaged, maximum and minimum temperature, and average rainfall, maximum 1-hr rainfall, and maximum 24-hr rainfall. This study plans to identify and quantify the nonlinear relationship of meteorological variables and dengue fever epidemic, finding the non-stationary time-frequency relationship and phase lag effects of those time series from 1998-2011 by using cross wavelet method. Results show that meteorological variables all have a significant time-frequency correlation region to dengue fever epidemic in frequency about one year (52 weeks). The associated phases can range from 0 to 90 degrees (0-13 weeks lag from meteorological factors to dengue incidences). Keywords: dengue fever, cross wavelet analysis, meteorological factor
Habitat Suitability Model for the Distribution of Ixodes scapularis (Acari: Ixodidae) in Minnesota.
Johnson, T L; Bjork, J K H; Neitzel, D F; Dorr, F M; Schiffman, E K; Eisen, R J
2016-05-01
Ixodes scapularis Say, the black-legged tick, is the primary vector in the eastern United States of several pathogens causing human diseases including Lyme disease, anaplasmosis, and babesiosis. Over the past two decades, I. scapularis-borne diseases have increased in incidence as well as geographic distribution. Lyme disease exists in two major foci in the United States, one encompassing northeastern states and the other in the Upper Midwest. Minnesota represents a state with an appreciable increase in counties reporting I. scapularis-borne illnesses, suggesting geographic expansion of vector populations in recent years. Recent tick distribution records support this assumption. Here, we used those records to create a fine resolution, subcounty-level distribution model for I. scapularis using variable response curves in addition to tests of variable importance. The model identified 19% of Minnesota as potentially suitable for establishment of the tick and indicated with high accuracy (AUC = 0.863) that the distribution is driven by land cover type, summer precipitation, maximum summer temperatures, and annual temperature variation. We provide updated records of established populations near the northwestern species range limit and present a model that increases our understanding of the potential distribution of I. scapularis in Minnesota. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.
NASA Technical Reports Server (NTRS)
Day, R. L.; Petersen, G. W.
1983-01-01
Thermal-infrared data from the Heat Capacity Mapping Mission satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures (MAST) and annual surface temperature amplitudes (AMP) in semi-arid east central Utah. Diurnal data with minimal snow and cloud cover were selected for five dates throughout a yearly period and geometrically co-registered. Rubber-sheet stretching was aided by the WARP program which allowed preview of image transformations. Daytime maximum and nighttime minimum temperatures were averaged to generation average daily temperature (ADT) data set for each of the five dates. Five ADT values for each pixel were used to fit a sine curve describing the theoretical annual surface temperature response as defined by a solution of a one-dimensinal heat flow equation. Linearization of the equation produced estimates of MAST and AMP plus associated confidence statistics. MAST values were grouped into classes and displayed on a color video screen. Diurnal surface temperatures and MAST were primarily correlated with elevation.
Pitteri, Sharon J.; Chrisman, Paul A.; McLuckey, Scott A.
2005-01-01
In this study, the electron-transfer dissociation (ETD) behavior of cations derived from 27 different peptides (22 of which are tryptic peptides) has been studied in a 3D quadrupole ion trap mass spectrometer. Ion/ion reactions between peptide cations and nitrobenzene anions have been examined at both room temperature and in an elevated temperature bath gas environment to form ETD product ions. From the peptides studied, the ETD sequence coverage tends to be inversely related to peptide size. At room temperature, very high sequence coverage (~100%) was observed for small peptides (≤7 amino acids). For medium-sized peptides composed of 8–11 amino acids, the average sequence coverage was 46%. Larger peptides with 14 or more amino acids yielded an average sequence coverage of 23%. Elevated-temperature ETD provided increased sequence coverage over room-temperature experiments for the peptides of greater than 7 residues, giving an average of 67% for medium-sized peptides and 63% for larger peptides. Percent ETD, a measure of the extent of electron transfer, has also been calculated for the peptides and also shows an inverse relation with peptide size. Bath gas temperature does not have a consistent effect on percent ETD, however. For the tryptic peptides, fragmentation is localized at the ends of the peptides suggesting that the distribution of charge within the peptide may play an important role in determining fragmentation sites. A triply protonated peptide has also been studied and shows behavior similar to the doubly charged peptides. These preliminary results suggest that for a given charge state there is a maximum size for which high sequence coverage is obtained and that increasing the bath gas temperature can increase this maximum. PMID:16131079
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2013-01-01
Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.
Thorpe, A.N.; Senftle, F.E.; Finkelman, R.B.; Dulong, F.T.; Bostick, N.H.
1998-01-01
Magnetization measurements have been made on natural coke-coal samples collected at various distances from a felsic porphyry dike in a coal seam in Dutch Creek Mine, Colorado to help characterize the nature and distribution of the iron-bearing phases. The magnetization passes through a maximum at the coke-to-coal transition about 31 cm from the dike contact. The magnetic measurements support the geochemical data indicating that magmatic fluids along with a high-temperature gas pulse moved into the coal bed. Interaction of the magmatic fluids with the coal diminished the reducing power of the thermal gas pulse from the dike to a point about 24 cm into the coal. The hot reducing gas penetrated further and produced a high temperature (~400-525??C) zone (at about 31 cm) just ahead of the magmatic fluids. Metallic iron found in this zone is the principal cause of the observed high magnetization. Beyond this zone, the temperature was too low to alter the coal significantly.Magnetization measurements have been made on natural coke-coal samples collected at various distances from a felsic porphyry dike in a coal seam in Dutch Creek Mine, Colorado to help characterize the nature and distribution of the iron-bearing phases. The magnetization passes through a maximum at the coke-to-coal transition about 31 cm from the dike contact. The magnetic measurements support the geochemical data indicating that magmatic fluids along with a high-temperature gas pulse moved into the coal bed. Interaction of the magmatic fluids with the coal diminished the reducing power of the thermal gas pulse from the dike to a point about 24 cm into the coal. The hot reducing gas penetrated further and produced a high temperature (approximately 400-525 ??C) zone (at about 31 cm) just ahead of the magmatic fluids. Metallic iron found in this zone is the principal cause of the observed high magnetization. Beyond this zone, the temperature was too low to alter the coal significantly.
Exhaust-Gas Pressure and Temperature Survey of F404-GE-400 Turbofan Engine
NASA Technical Reports Server (NTRS)
Walton, James T.; Burcham, Frank W., Jr.
1986-01-01
An exhaust-gas pressure and temperature survey of the General Electric F404-GE-400 turbofan engine was conducted in the altitude test facility of the NASA Lewis Propulsion System Laboratory. Traversals by a survey rake were made across the exhaust-nozzle exit to measure the pitot pressure and total temperature. Tests were performed at Mach 0.87 and a 24,000-ft altitude and at Mach 0.30 and a 30,000-ft altitude with various power settings from intermediate to maximum afterburning. Data yielded smooth pressure and temperature profiles with maximum jet temperatures approximately 1.4 in. inside the nozzle edge and maximum jet temperatures from 1 to 3 in. inside the edge. A low-pressure region located exactly at engine center was noted. The maximum temperature encountered was 3800 R.
Transition in the equilibrium distribution function of relativistic particles.
Mendoza, M; Araújo, N A M; Succi, S; Herrmann, H J
2012-01-01
We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.
Transition in the Equilibrium Distribution Function of Relativistic Particles
Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.
2012-01-01
We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed. PMID:22937220
Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt.
Morueta-Holme, Naia; Engemann, Kristine; Sandoval-Acuña, Pablo; Jonas, Jeremy D; Segnitz, R Max; Svenning, Jens-Christian
2015-10-13
Global climate change is driving species poleward and upward in high-latitude regions, but the extent to which the biodiverse tropics are similarly affected is poorly known due to a scarcity of historical records. In 1802, Alexander von Humboldt ascended the Chimborazo volcano in Ecuador. He recorded the distribution of plant species and vegetation zones along its slopes and in surrounding parts of the Andes. We revisited Chimborazo in 2012, precisely 210 y after Humboldt's expedition. We documented upward shifts in the distribution of vegetation zones as well as increases in maximum elevation limits of individual plant taxa of >500 m on average. These range shifts are consistent with increased temperatures and glacier retreat on Chimborazo since Humboldt's study. Our findings provide evidence that global warming is strongly reshaping tropical plant distributions, consistent with Humboldt's proposal that climate is the primary control on the altitudinal distribution of vegetation.
Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt
Morueta-Holme, Naia; Engemann, Kristine; Sandoval-Acuña, Pablo; Jonas, Jeremy D.; Segnitz, R. Max; Svenning, Jens-Christian
2015-01-01
Global climate change is driving species poleward and upward in high-latitude regions, but the extent to which the biodiverse tropics are similarly affected is poorly known due to a scarcity of historical records. In 1802, Alexander von Humboldt ascended the Chimborazo volcano in Ecuador. He recorded the distribution of plant species and vegetation zones along its slopes and in surrounding parts of the Andes. We revisited Chimborazo in 2012, precisely 210 y after Humboldt’s expedition. We documented upward shifts in the distribution of vegetation zones as well as increases in maximum elevation limits of individual plant taxa of >500 m on average. These range shifts are consistent with increased temperatures and glacier retreat on Chimborazo since Humboldt’s study. Our findings provide evidence that global warming is strongly reshaping tropical plant distributions, consistent with Humboldt’s proposal that climate is the primary control on the altitudinal distribution of vegetation. PMID:26371298
Thermal effects on an embedded grating sensor in an FRP structure
NASA Astrophysics Data System (ADS)
Lau, Kin-tak; Yuan, Libo; Zhou, Li-min
2001-08-01
Much research has been carried out in the field of using optical fibre sensors as internal strain and temperature measuring devices for advanced composite structures in recent years. The specific application is the use of embedded optical fibre sensors for smart composite reinforcement for strain monitoring in an innovative civil engineering structure, particularly for the structure after rehabilitation. Researchers have also paid attention to using the optical fibre sensor for monitoring the condition of composite materials during manufacturing and curing processes. However, heat induced in the curing process may influence the accuracy of measurement and eventuate in causing damage at the bond interface between the optical fibre and the surrounding matrix material because of the different thermal properties of silica fibre and composite materials. In this paper, a simple theoretical model is introduced to determine the interfacial properties of the embedded optical fibre system in composite laminates with different values of the coefficient of thermal expansion under different temperature environments. A finite-element method is used to compare the result from the theoretical prediction. The results show that the maximum shear stress in the coating layer decreases with increasing surrounding temperature when the optical fibre is embedded into carbon and Kevlar fibre composites. In contrast, increasing the temperature when the optical fibre is embedded into glass fibre composite results in the increase of maximum shear stress of the material. The compaction pressure distribution along the circumference of the coating layer also varies with temperature.
NASA Astrophysics Data System (ADS)
Höbel, M.; Haffner, K.
1999-05-01
Instrumentation that allows the behaviour of a hydro-generator thrust bearing to be monitored during operation is described. The measurement system was developed at the Asea Brown Boveri corporate research centre in Switzerland and was tested under realistic operating conditions at the Harbin Electric Machinery Company bearing-testing facility in the People's Republic of China. Newly developed fibre-optical proximity probes were used for the on-line monitoring of the thin oil film between the static and rotating parts of the bearing. These sensors are based on a back-reflection technique and can be used for various target materials such as Babbitt and Teflon. The monitoring system comprises about 120 temperature sensors, four pressure sensors and five optical oil-film thickness sensors. Temperature sensors are installed at specific static locations, whereas pressure and oil-film sensors are positioned in the runner and generate data during rotation. A special feature of the monitoring equipment is its on-line processing capability. Digital signal processors operating in parallel handle pressure and oil-film thickness data. Important measurement parameters such as the maximum pressure, maximum temperature and minimum oil-film thickness are displayed on-line. Detailed three-dimensional temperature information on one of the load segments can be obtained from subsequent off-line data analysis. The system also calculates two-dimensional plots of the oil-film thickness and pressure for most of the 12 load segments.
Use of spacecraft data to derive regions on Mars where liquid water would be stable
Lobitz, Brad; Wood, Byron L.; Averner, Maurice M.; McKay, Christopher P.
2001-01-01
Combining Viking pressure and temperature data with Mars Orbital Laser Altimeter topography data, we have computed the fraction of the martian year during which pressure and temperature allow for liquid water to be stable on the martian surface. We find that liquid water would be stable within the Hellas and Argyre basin and over the northern lowlands equatorward of about 40°. The location with the maximum period of stable conditions for liquid water is in the southeastern portion of Utopia Planitia, where 34% of the year liquid water would be stable if it were present. Locations of stability appear to correlate with the distribution of valley networks. PMID:11226204
Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells
NASA Technical Reports Server (NTRS)
Prince, J. L.; Lathrop, J. W.
1979-01-01
The results of accelerated stress testing of four different types of silicon terrestrial solar cells are discussed. The accelerated stress tests used included bias-temperature tests, bias-temperature-humidity tests, thermal cycle and thermal shock tests, and power cycle tests. Characterization of the cells was performed before stress testing and at periodic down-times, using electrical measurement, visual inspection, and metal adherence pull tests. Electrical parameters measured included short-circuit current, open circuit voltage, and output power, voltage, and current at the maximum power point. Incorporated in the report are the distributions of the prestress electrical data for all cell types. Data were also obtained on cell series and shunt resistance.
Use of Spacecraft Data to Drive Regions on Mars where Liquid Water would be Stable
NASA Technical Reports Server (NTRS)
Lobitz, Brad; Wood, Byron L.; Averner, Maurice M.; McKay, Christopher P.; MacElroy, Robert D.
2001-01-01
Combining Viking pressure and temperature data with Mars Orbital Laser Altimeter (MOLA) topography data we have computed the fraction of the martian year during which pressure and temperature allow for liquid water to be stable on the martian surface. We find that liquid water would be stable within the Hellas and Argyre basin and over the northern lowlands equatorward of about 40 degrees. The location with the maximum period of stable conditions for liquid water is in the southeastern portion of Utopia Planitia where 34% of the year liquid water would be stable if it was present. Locations of stability appear to correlate with the distribution of valley networks.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Gang; Abe, Tomohiro; Moriyoshi, Chikako; Tanaka, Hiroshi; Kuroiwa, Yoshihiro
2018-07-01
Synchrotron-radiation X-ray diffraction studies as a function of temperature reveal the structural origin of the spontaneous polarization and related lattice strains in stoichiometric LiTaO3. Electron charge density distribution maps visualized by the maximum entropy method clearly demonstrate that ordering of the disordered Li ion in the polar direction accompanied by deformation of the oxygen octahedra lead to the ferroelectric phase transition. The ionic polarization attributed to the ionic displacements is dominant in the polar structure. The structural change occurs continuously at the phase transition temperature, which suggests a second-order phase transition.
NASA Technical Reports Server (NTRS)
Green, Robert O.
2001-01-01
Imaging spectroscopy offers a framework based in physics and chemistry for scientific investigation of a wide range of phenomena of interest in the Earth environment. In the scientific discipline of volcanology knowledge of lava temperature and distribution at the surface provides insight into the volcano status and subsurface processes. A remote sensing strategy to measure surface lava temperatures and distribution would support volcanology research. Hot targets such as molten lava emit spectral radiance as a function of temperature. A figure shows a series of Planck functions calculated radiance spectra for hot targets at different temperatures. A maximum Lambertian solar reflected radiance spectrum is shown as well. While similar in form, each hot target spectrum has a unique spectral shape and is distinct from the solar reflected radiance spectrum. Based on this temperature-dependent signature, imaging spectroscopy provides an innovative approach for the remote-sensing-based measurement of lava temperature. A natural site for investigation of the measurement of lava temperature is the Big Island of Hawaii where molten lava from the Kilauea vent is present at the surface. In the past, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data sets have been used for the analysis of hot volcanic targets and hot burning fires. The research presented here builds upon and extends this earlier work. The year 2000 Hawaii AVIRIS data set has been analyzed to derive lava temperatures taking into account factors of fractional fill, solar reflected radiance, and atmospheric attenuation of the surface emitted radiance. The measurements, analyses, and current results for this research are presented here.
An Experimental Investigation of the Laminar Flamelet Concept for Soot Properties
NASA Technical Reports Server (NTRS)
Diez, F. J.; Aalburg, C.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Faeth, G. M.
2007-01-01
The soot properties of round, nonbuoyant, laminar jet diffusion flames are described, based on experiments at microgravity carried out on orbit during three flights of the Space Shuttle Columbia, (Flights STS-83, 94 and 107). Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K and ambient pressures of 35-100 kPa. Measurements included soot volume fraction distributions using deconvoluted laser extinction imaging, and soot temperature distributions using deconvoluted multiline emission imaging. Flowfield modeling based on the work of Spalding is presented. The present work explores whether soot properties of these flames are universal functions of mixture fraction, i.e., whether they satisfy soot state relationships. Measurements are presented, including radiative emissions and distributions of soot temperature and soot volume fraction. It is shown that most of the volume of these flames is bounded by the dividing streamline and thus should follow residence time state relationships. Most streamlines from the fuel supply to the surroundings are found to exhibit nearly the same maximum soot volume fraction and temperature. The radiation intensity along internal streamlines also is found to have relatively uniform values. Finally, soot state relationships were observed, i.e., soot volume fraction was found to correlate with estimated mixture fraction for each fuel/pressure selection. These results support the existence of soot property state relationships for steady nonbuoyant laminar diffusion flames, and thus in a large class of practical turbulent diffusion flames through the application of the laminar flamelet concept.
Waltemeyer, S.D.
1995-01-01
A sediment-transport model to simulate channel change was applied to a 1-mile reach of Cuchillo Negro Creek at the Interstate 25 crossing at Truth or Consequences, New Mexico, using the Bridge-Stream Tube model for Alluvial River Simulation (BRI-STARS). The 500-year flood discharge was estimated to be 10,700 cubic feet per second. The 100-year, 500-year, and regional maximum discharges were used to design synthetic and discretized hydrographs using a flood volume equation. The regional maximum discharge relation was developed for New Mexico based on 259 streamflow-gaging stations' maximum peak discharge. The regional maximum-peak discharge for the site was determined to be 81,700 cubic feet per second. Bed-material particle-size distribution was determined for six size classes ranging from 1 to 30 millimeters. The median diameter was 4.6 millimeters at the bed surface and 9.0 millimeters 13 feet below the bed surface. Bed-material discharge for use in the model was estimated to be 18,770 tons per day using hydraulic properties, water temperature, and Yang's gravel equation. Channel-change simulations showed a maximum channel degradation of 1.38 feet for the regional maximum-peak discharge hydrograph.
Vaikousi, Hariklia; Biliaderis, Costas G; Koutsoumanis, Konstantinos P
2009-08-15
The applicability of a microbial Time Temperature Indicator (TTI) prototype, based on the growth and metabolic activity of a Lactobacillus sakei strain developed in a previous study, in monitoring quality of modified atmosphere packed (MAP) minced beef was evaluated at conditions simulating the chill chain. At all storage temperatures examined (0, 5, 10, 15 degrees C), the results showed that lactic acid bacteria (LAB) were the dominant bacteria and can be used as a good spoilage index of MAP minced beef. The end of product's shelf life as revealed by the sensory evaluation coincided with a LAB population level of 7 log(10) CFU/g. For all temperatures tested, the growth of L. sakei in the TTI resembled closely the growth of LAB in the meat product, with similar temperature dependence of the micro(max) and thus similar activation energy values calculated as 111.90 and 106.90 kJ/mol, for the two systems, respectively. In addition, the end point of TTI colour change coincided with the time of sensory rejection point of the beef product during its storage under isothermal chilled temperature conditions. The estimated activation energy, E(alpha), values obtained for parameters related to the response of DeltaE (total colour change of the TTI) describing the kinetics of colour change of the TTI during isothermal storage (i.e. the maximum specific rate of DeltaEpsilon evolution curve, micro(DeltaEpsilon), and also the reciprocal of t(i), time at which half of the maximum DeltaEpsilon is reached), were 112.77 and 127.28 kJ/mol, respectively. Finally, the application of the microbial TTI in monitoring the quality deterioration of MAP minced beef due to spoilage was further evaluated under dynamic conditions of storage, using two separate low temperature periodic changing scenarios, resembling the actual conditions occurring in the distribution chill chain. The results showed that the end point of TTI, after storage at those fluctuating temperature conditions, was noted very close to the end of product's sensorial shelf life. This finding points to the applicability of the developed microbial TTI as a valuable tool for monitoring the quality status during distribution and storage of chilled meat products, which are spoiled by lactic acid bacteria or other bacteria exhibiting similar kinetic responses and spoilage potential.
NASA Astrophysics Data System (ADS)
Safeeq, Mohammad; Fares, Ali
2011-12-01
Daily and sub-daily weather data are often required for hydrological and environmental modeling. Various weather generator programs have been used to generate synthetic climate data where observed climate data are limited. In this study, a weather data generator, ClimGen, was evaluated for generating information on daily precipitation, temperature, and wind speed at four tropical watersheds located in Hawai`i, USA. We also evaluated different daily to sub-daily weather data disaggregation methods for precipitation, air temperature, dew point temperature, and wind speed at Mākaha watershed. The hydrologic significance values of the different disaggregation methods were evaluated using Distributed Hydrology Soil Vegetation Model. MuDRain and diurnal method performed well over uniform distribution in disaggregating daily precipitation. However, the diurnal method is more consistent if accurate estimates of hourly precipitation intensities are desired. All of the air temperature disaggregation methods performed reasonably well, but goodness-of-fit statistics were slightly better for sine curve model with 2 h lag. Cosine model performed better than random model in disaggregating daily wind speed. The largest differences in annual water balance were related to wind speed followed by precipitation and dew point temperature. Simulated hourly streamflow, evapotranspiration, and groundwater recharge were less sensitive to the method of disaggregating daily air temperature. ClimGen performed well in generating the minimum and maximum temperature and wind speed. However, for precipitation, it clearly underestimated the number of extreme rainfall events with an intensity of >100 mm/day in all four locations. ClimGen was unable to replicate the distribution of observed precipitation at three locations (Honolulu, Kahului, and Hilo). ClimGen was able to reproduce the distributions of observed minimum temperature at Kahului and wind speed at Kahului and Hilo. Although the weather data generation and disaggregation methods were concentrated in a few Hawaiian watersheds, the results presented can be used to similar mountainous location settings, as well as any specific locations aimed at furthering the site-specific performance evaluation of these tested models.
Haze is an important medium for the spread of rotavirus.
Ye, Qing; Fu, Jun-Feng; Mao, Jian-Hua; Shen, Hong-Qiang; Chen, Xue-Jun; Shao, Wen-Xia; Shang, Shi-Qiang; Wu, Yi-Feng
2016-09-01
This study investigated whether the rotavirus infection rate in children is associated with temperature and air pollutants in Hangzhou, China. This study applied a distributed lag non-linear model (DLNM) to assess the effects of daily meteorological data and air pollutants on the rotavirus positive rate among outpatient children. There was a negative correlation between temperature and the rotavirus infection rate. The impact of temperature on the detection rate of rotavirus presented an evident lag effect, the temperature change shows the greatest impact on the detection rate of rotavirus approximate at lag one day, and the maximum relative risk (RR) was approximately 1.3. In 2015, the maximum cumulative RR due to the cumulative effect caused by the temperature drop was 2.5. Particulate matter (PM) 2.5 and PM10 were the primary air pollutants in Hangzhou. The highest RR of rotavirus infection occurred at lag 1-1.5 days after the increase in the concentration of these pollutants, and the RR increased gradually with the increase in concentration. Based on the average concentrations of PM2.5 of 53.9 μg/m(3) and PM10 of 80.6 μg/m(3) in Hangzhou in 2015, the cumulative RR caused by the cumulative effect was 2.5 and 2.2, respectively. The current study suggests that temperature is an important factor impacting the rotavirus infection rate of children in Hangzhou. Air pollutants significantly increased the risk of rotavirus infection, and dosage, lag and cumulative effects were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effects of hot nights on mortality in Barcelona, Spain
NASA Astrophysics Data System (ADS)
Royé, D.
2017-12-01
Heat-related effects on mortality have been widely analyzed using maximum and minimum temperatures as exposure variables. Nevertheless, the main focus is usually on the former with the minimum temperature being limited in use as far as human health effects are concerned. Therefore, new thermal indices were used in this research to describe the duration of night hours with air temperatures higher than the 95% percentile of the minimum temperature (hot night hours) and intensity as the summation of these air temperatures in degrees (hot night degrees). An exposure-response relationship between mortality due to natural, respiratory, and cardiovascular causes and summer night temperatures was assessed using data from the Barcelona region between 2003 and 2013. The non-linear relationship between the exposure and response variables was modeled using a distributed lag non-linear model. The estimated associations for both exposure variables and mortality shows a relationship with high and medium values that persist significantly up to a lag of 1-2 days. In mortality due to natural causes, an increase of 1.1% per 10% (CI95% 0.6-1.5) for hot night hours and 5.8% per each 10° (CI95% 3.5-8.2%) for hot night degrees is observed. The effects of hot night hours reach their maximum with 100% and lead to an increase by 9.2% (CI95% 5.3-13.1%). The hourly description of night heat effects reduced to a single indicator in duration and intensity is a new approach and shows a different perspective and significant heat-related effects on human health.
Know your limits? Climate extremes impact the range of Scots pine in unexpected places.
Julio Camarero, J; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel
2015-11-01
Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin ('rear edge') of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species' European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern 'rear edge', in order to avoid biased predictions based solely on warmer climatic scenarios. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effects of radiofrequency probe application on irrigation fluid temperature in the wrist joint.
Sotereanos, Dean G; Darlis, Nickolaos A; Kokkalis, Zinon T; Zanaros, George; Altman, Gregory T; Miller, Mark Carl
2009-12-01
Radiofrequency (RF) probes used in wrist arthroscopy may raise joint fluid temperature, increasing the risk of capsular and ligamentous damage. The purposes of the current study were to measure joint fluid temperature during wrist arthroscopy with the use of RF probes, and to determine whether using an outlet portal will reduce the maximum temperature. We performed wrist arthroscopy on 8 cadaveric arms. Ablation and coagulation cycles using RF probe were performed at documented locations within the joint. This was done for 60-second intervals on both the radial and ulnar side of the wrist, to mimic clinical practice. We used 4 fiberoptic phosphorescent probes to measure temperature (radial, ulnar, inflow-tube, and outflow-tube probes) and measured joint fluid temperature with and without outflow. There was a significant difference between wrists with and without outflow when examining maximum ablation temperatures (p < .002). All specimens showed higher maximum and average ablation temperatures without outflow. Maximum joint temperatures, greater than 60 degrees C, were observed in only no-outflow conditions. In performing RF ablation during wrist arthroscopy, the use of an outlet portal reduces the joint fluid temperature. Without an outlet portal, maximum temperatures can exceed desirable levels when using ablation; such temperatures have the potential to damage adjacent tissues. It is useful to maintain adequate outflow when using the radiofrequency probes during wrist arthroscopy.
Energy-filtered cold electron transport at room temperature.
Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin
2014-09-10
Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.
Principle of maximum entanglement entropy and local physics of strongly correlated materials.
Lanatà, Nicola; Strand, Hugo U R; Yao, Yongxin; Kotliar, Gabriel
2014-07-18
We argue that, because of quantum entanglement, the local physics of strongly correlated materials at zero temperature is described in a very good approximation by a simple generalized Gibbs distribution, which depends on a relatively small number of local quantum thermodynamical potentials. We demonstrate that our statement is exact in certain limits and present numerical calculations of the iron compounds FeSe and FeTe and of the elemental cerium by employing the Gutzwiller approximation that strongly support our theory in general.
High-performance mc-Si ingot grown by modified DS system: Numerical investigation
NASA Astrophysics Data System (ADS)
Thiyagaragjan, M.; Aravindan, G.; Srinivasan, M.; Ramasamy, P.
2018-04-01
Numerical investigation is carried out on multi-crystalline silicon ingot grown by using side-top and side-bottom heaters and the temperature distribution, von Mises stress and maximum shear stress are analyzed. In order to analyze the changes, results from the side-top and side-bottom heaters are compared. The stress values are reduced, when the side-bottom heaters are placed. A 2D numerical approach is successfully applied to study the stress parameters in directional solidification silicon.
Spatial and temporal variation in the association between temperature and salmonellosis in NZ.
Lal, Aparna; Hales, Simon; Kirk, Martyn; Baker, Michael G; French, Nigel P
2016-04-01
Modelling the relationship between weather, climate and infectious diseases can help identify high-risk periods and provide understanding of the determinants of longer-term trends. We provide a detailed examination of the non-linear and delayed association between temperature and salmonellosis in three New Zealand cities (Auckland, Wellington and Christchurch). Salmonella notifications were geocoded to the city of residence for the reported case. City-specific associations between weekly maximum temperature and the onset date for reported salmonella infections (1997-2007) were modelled using non-linear distributed lag models, while controlling for season and long-term trends. Relatively high temperatures were positively associated with infection risk in Auckland (n=3,073) and Christchurch (n=880), although the former showed evidence of a more immediate relationship with exposure to high temperatures. There was no significant association between temperature and salmonellosis risk in Wellington. Projected increases in temperature with climate change may have localised health impacts, suggesting that preventative measures will need to be region-specific. This evidence contributes to the increasing concern over the public health impacts of climate change. © 2015 Public Health Association of Australia.
Soil and air temperatures for different habitats in Mount Rainier National Park.
Sarah E. Greene; Mark Klopsch
1985-01-01
This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...
Mitchell, Patrick J; O'Grady, Anthony P; Hayes, Keith R; Pinkard, Elizabeth A
2014-01-01
Increases in drought and temperature stress in forest and woodland ecosystems are thought to be responsible for the rise in episodic mortality events observed globally. However, key climatic drivers common to mortality events and the impacts of future extreme droughts on tree survival have not been evaluated. Here, we characterize climatic drivers associated with documented tree die-off events across Australia using standardized climatic indices to represent the key dimensions of drought stress for a range of vegetation types. We identify a common probabilistic threshold associated with an increased risk of die-off across all the sites that we examined. We show that observed die-off events occur when water deficits and maximum temperatures are high and exist outside 98% of the observed range in drought intensity; this threshold was evident at all sites regardless of vegetation type and climate. The observed die-off events also coincided with at least one heat wave (three consecutive days above the 90th percentile for maximum temperature), emphasizing a pivotal role of heat stress in amplifying tree die-off and mortality processes. The joint drought intensity and maximum temperature distributions were modeled for each site to describe the co-occurrence of both hot and dry conditions and evaluate future shifts in climatic thresholds associated with the die-off events. Under a relatively dry and moderate warming scenario, the frequency of droughts capable of inducing significant tree die-off across Australia could increase from 1 in 24 years to 1 in 15 years by 2050, accompanied by a doubling in the occurrence of associated heat waves. By defining commonalities in drought conditions capable of inducing tree die-off, we show a strong interactive effect of water and high temperature stress and provide a consistent approach for assessing changes in the exposure of ecosystems to extreme drought events. PMID:24772285
Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718
NASA Astrophysics Data System (ADS)
Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol
2017-12-01
Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.
Wieser, Gerhard; Oberhuber, Walter; Walder, Lisa; Spieler, Daniela; Gruber, Andreas
2011-01-01
Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European Alps, where low temperatures limit carbon metabolism. We focused on the effects of air and soil temperature on net photosynthesis (Pn) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian Alps. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall. In general, Pn was significantly lower in fall as compared to summer. Nevertheless, independent from season mean Pn values tended to increase with elevation and were positively correlated with root zone temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement. Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime. PMID:21379394
Influence of smooth temperature variation on hotspot ignition
NASA Astrophysics Data System (ADS)
Reinbacher, Fynn; Regele, Jonathan David
2018-01-01
Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H2-air reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. However, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.
Multidecadal warming of Antarctic waters.
Schmidtko, Sunke; Heywood, Karen J; Thompson, Andrew F; Aoki, Shigeru
2014-12-05
Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt. Copyright © 2014, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xian, Fenglin; Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra 2601; Ye, Jiandong, E-mail: yejd@nju.edu.cn
In this work, anion alloying is engineered in ZnON nanocrystalline films, and the resultant evolution of the structural transition, subgap states, and carrier transport is investigated. A broad distribution of sub-gap states above the valence band maximum is introduced by nitrogen due to the hybridization of N 2p and O 2p orbitals. The phase transition from partially amorphous states to full crystallinity occurs above a characteristic growth temperature of 100 °C, and the localized states are suppressed greatly due to the reduction of nitrogen composition. The electronic properties are dominated by grain boundary scattering and electron transport across boundary barriers throughmore » thermal activation at band edge states at high temperatures. The conductivity below 130 K exhibits a weak temperature dependence, which is a signature of variable-range hopping conduction between localized states introduced by nitrogen incorporation.« less
Assessment of mesoscale convective systems using IR brightness temperature in the southwest of Iran
NASA Astrophysics Data System (ADS)
Rafati, Somayeh; Karimi, Mostafa
2017-07-01
In this research, the spatial and temporal distribution of Mesoscale Convective Systems was assessed in the southwest of Iran using Global merged satellite IR brightness temperature (acquired from Meteosat, GOES, and GMS geostationary satellites) and synoptic station data. Event days were selected using a set of storm reports and precipitation criteria. The following criteria are used to determine the days with occurrence of convective systems: (1) at least one station reported 6-h precipitation exceeding 10 mm and (2) at least three stations reported phenomena related to convection (thunderstorm, lightning, and shower). MCSs were detected based on brightness temperature, maximum areal extent, and duration thresholds (228 K, 10,000 km2, and 3 h, respectively). An MCS occurrence classification system is developed based on mean sea level, 850 and 500 hPa pressure patterns.
Oxide-apertured VCSEL with short period superlattice
NASA Astrophysics Data System (ADS)
Li, Lin; Zhong, Jingchang; Zhang, Yongming; Su, Wei; Zhao, Yingjie; Yan, Changling; Hao, Yongqin; Jiang, Xiaoguang
2004-12-01
Novel distributed Bragg reflectors (DBRs) with 4.5 pairs of GaAs/AlAs short period superlattice (SPS) used in oxide-apertured vertical-cavity surface-emitting lasers (VCSELs) were designed. The structure of a 22-period Al_(0.9)Ga_(0.1)As (69.5 nm)/4.5-pair [GaAs (10 nm)-AlAs (1.9 nm)] DBR was grown on an n+ GaAs substrate (100) 2 deg. off toward <111>A by molecular beam epitaxy. The emitting wavelength was 850 nm with low threshold current of about 2 mA, corresponding to the threshold current density of 2 kA/cm2. The maximum output power was more than 1 mW. The VCSEL device temperature was increased by heating ambient temperature from 20 to 100 (Celsius degree) and the threshold current increased slowly with the increase of temperature.
NASA Astrophysics Data System (ADS)
Beranová, Romana; Kyselý, Jan; Hanel, Martin
2018-04-01
The study compares characteristics of observed sub-daily precipitation extremes in the Czech Republic with those simulated by Hadley Centre Regional Model version 3 (HadRM3) and Rossby Centre Regional Atmospheric Model version 4 (RCA4) regional climate models (RCMs) driven by reanalyses and examines diurnal cycles of hourly precipitation and their dependence on intensity and surface temperature. The observed warm-season (May-September) maxima of short-duration (1, 2 and 3 h) amounts show one diurnal peak in the afternoon, which is simulated reasonably well by RCA4, although the peak occurs too early in the model. HadRM3 provides an unrealistic diurnal cycle with a nighttime peak and an afternoon minimum coinciding with the observed maximum for all three ensemble members, which suggests that convection is not captured realistically. Distorted relationships of the diurnal cycles of hourly precipitation to daily maximum temperature in HadRM3 further evidence that underlying physical mechanisms are misrepresented in this RCM. Goodness-of-fit tests indicate that generalised extreme value distribution is an applicable model for both observed and RCM-simulated precipitation maxima. However, the RCMs are not able to capture the range of the shape parameter estimates of distributions of short-duration precipitation maxima realistically, leading to either too many (nearly all for HadRM3) or too few (RCA4) grid boxes in which the shape parameter corresponds to a heavy tail. This means that the distributions of maxima of sub-daily amounts are distorted in the RCM-simulated data and do not match reality well. Therefore, projected changes of sub-daily precipitation extremes in climate change scenarios based on RCMs not resolving convection need to be interpreted with caution.
NASA Astrophysics Data System (ADS)
Dessens, J.; Bücher, A.
In an attempt to contribute to the investigation on a global climate change, a historical series of minimum and maximum temperature data at the Pic du Midi, a mountain observatory at 2862 m a.s.l. in the French Pyrenees, is updated after correction of a systematic deviation due to a relocation of the station in 1971. These data, which now cover the 1882-1984 period, are examined in parallel with humidity and cloud cover data for the same period. From the beginning to the end of this period, observations show that the mean night-time temperature has increased by 2.39° C/100 yr while the mean daytime temperature has decreased by 0.50° C/100 yr. In consequence, the mean annual diurnal temperature range has dropped by 36%/100 yr. The maximum seasonal decrease is 46%/100 yr in spring. Season-to-season and year-to-year inter-relationships between minimum temperature, maximum temperature, relative humidity and cloud cover suggest that the decrease in maximum temperature is related to a concomitant increase of 15%/100 yr in both relative humidity and cloud cover.
Morley, Simon A; Martin, Stephanie M; Day, Robert W; Ericson, Jess; Lai, Chien-Houng; Lamare, Miles; Tan, Koh-Siang; Thorne, Michael A S; Peck, Lloyd S
2012-01-01
The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of "duration tenacity", which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (T(opt)) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CT(max) and T(opt) over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions.
Morley, Simon A.; Martin, Stephanie M.; Day, Robert W.; Ericson, Jess; Lai, Chien-Houng; Lamare, Miles; Tan, Koh-Siang; Thorne, Michael A. S.; Peck, Lloyd S.
2012-01-01
The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of “duration tenacity”, which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (Topt) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CTmax and Topt over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions. PMID:23285194
Chantre, Guillermo R.; Batlla, Diego; Sabbatini, Mario R.; Orioli, Gustavo
2009-01-01
Background and Aims Models based on thermal-time approaches have been a useful tool for characterizing and predicting seed germination and dormancy release in relation to time and temperature. The aims of the present work were to evaluate the relative accuracy of different thermal-time approaches for the description of germination in Lithospermum arvense and to develop an after-ripening thermal-time model for predicting seed dormancy release. Methods Seeds were dry-stored at constant temperatures of 5, 15 or 24 °C for up to 210 d. After different storage periods, batches of 50 seeds were incubated at eight constant temperature regimes of 5, 8, 10, 13, 15, 17, 20 or 25 °C. Experimentally obtained cumulative-germination curves were analysed using a non-linear regression procedure to obtain optimal population thermal parameters for L. arvense. Changes in these parameters were described as a function of after-ripening thermal-time and storage temperature. Key Results The most accurate approach for simulating the thermal-germination response of L. arvense was achieved by assuming a normal distribution of both base and maximum germination temperatures. The results contradict the widely accepted assumption of a single Tb value for the entire seed population. The after-ripening process was characterized by a progressive increase in the mean maximum germination temperature and a reduction in the thermal-time requirements for germination at sub-optimal temperatures. Conclusions The after-ripening thermal-time model developed here gave an acceptable description of the observed field emergence patterns, thus indicating its usefulness as a predictive tool to enhance weed management tactics. PMID:19332426
Effect of summer outdoor temperatures on work-related injuries in Quebec (Canada).
Adam-Poupart, Ariane; Smargiassi, Audrey; Busque, Marc-Antoine; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Labrèche, France
2015-05-01
To quantify the associations between occupational injury compensations and exposure to summer outdoor temperatures in Quebec (Canada). The relationship between 374,078 injuries compensated by the Workers' Compensation Board (WCB) (between May and September, 2003-2010) and maximum daily outdoor temperatures was modelled using generalised linear models with negative binomial distributions. Pooled effect sizes for all 16 health regions of Quebec were estimated with random-effect models for meta-analyses for all compensations and by sex, age group, mechanism of injury, industrial sector and occupations (manual vs other) within each sector. Time lags and cumulative effect of temperatures were also explored. The relationship between daily counts of compensations and maximum daily temperatures reached statistical significance for three health regions. The incidence rate ratio (IRR) of daily compensations per 1°C increase was 1.002 (95% CI 1.002 to 1.003) for all health regions combined. Statistically significant positive associations were observed for men, workers aged less than 45 years, various industrial sectors with both indoor and outdoor activities, and for slips/trips/falls, contact with object/equipment and exposure to harmful substances/environment. Manual occupations were not systematically at higher risk than non-manual and mixed ones. This study is the first to quantify the association between work-related injury compensations and exposure to summer temperatures according to physical demands of the occupation and this warrants further investigations. In the context of global warming, results can be used to estimate future impacts of summer outdoor temperatures on workers, as well as to plan preventive interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Vulnerability to the impact of temperature variability on mortality in 31 major Chinese cities.
Yang, Jun; Zhou, Maigeng; Li, Mengmeng; Liu, Xiaobo; Yin, Peng; Sun, Qinghua; Wang, Jun; Wu, Haixia; Wang, Boguang; Liu, Qiyong
2018-08-01
Few studies have analyzed the health effects of temperature variability (TV) accounting for both interday and intraday variations in ambient temperature. In this study, TV was defined as the standard deviations of the daily minimum and maximum temperature during different exposure days. Distributed lag non-linear Poisson regression model was used to examine the city-specific effect of TV on mortality in 31 Chinese municipalities and provincial capital cities. The national estimate was pooled through a meta-analysis based on the restricted maximum likelihood estimation. To assess effect modification on TV-mortality association by individual characteristics, stratified analyses were further fitted. Potential effect modification by city characteristics was performed through a meta-regression analysis. In total, 259 million permanent residents and 4,481,090 non-accidental deaths were covered in this study. The effect estimates of TV on mortality were generally increased by longer exposure days. A 1 °C increase in TV at 0-7 days' exposure was associated with a 0.60% (95% CI: 0.25-0.94%), 0.65% (0.24-1.05%), 0.82% (0.29-1.36%), 0.86% (0.42-1.31%), 0.98% (0.57-1.39%) and 0.54% (-0.11-1.20%) increase in non-accidental, cardiovascular, IHD, stroke, respiratory and COPD mortalities, respectively. Those with lower levels of educational attainment were significantly susceptible to TV. Cities with dense population, higher mean temperatures, and relative humidity and lower diurnal temperature ranges also had higher mortality risks caused by TV. This study demonstrated that TV had considerable health effects. An early warning system to alert residents about large temperature variations is recommended, which may have a significant impact on the community awareness and public health. Copyright © 2018 Elsevier Ltd. All rights reserved.
GCM simulations of Titan's middle and lower atmosphere and comparison to observations
NASA Astrophysics Data System (ADS)
Lora, Juan M.; Lunine, Jonathan I.; Russell, Joellen L.
2015-04-01
Simulation results are presented from a new general circulation model (GCM) of Titan, the Titan Atmospheric Model (TAM), which couples the Flexible Modeling System (FMS) spectral dynamical core to a suite of external/sub-grid-scale physics. These include a new non-gray radiative transfer module that takes advantage of recent data from Cassini-Huygens, large-scale condensation and quasi-equilibrium moist convection schemes, a surface model with "bucket" hydrology, and boundary layer turbulent diffusion. The model produces a realistic temperature structure from the surface to the lower mesosphere, including a stratopause, as well as satisfactory superrotation. The latter is shown to depend on the dynamical core's ability to build up angular momentum from surface torques. Simulated latitudinal temperature contrasts are adequate, compared to observations, and polar temperature anomalies agree with observations. In the lower atmosphere, the insolation distribution is shown to strongly impact turbulent fluxes, and surface heating is maximum at mid-latitudes. Surface liquids are unstable at mid- and low-latitudes, and quickly migrate poleward. The simulated humidity profile and distribution of surface temperatures, compared to observations, corroborate the prevalence of dry conditions at low latitudes. Polar cloud activity is well represented, though the observed mid-latitude clouds remain somewhat puzzling, and some formation alternatives are suggested.
Temperature and Pressure from Collapsing Pores in HMX
NASA Astrophysics Data System (ADS)
Hardin, D. Barrett
2017-06-01
The thermal and mechanical response of collapsing voids in HMX is analyzed. In this work, the focus is simulating the temperature and pressure fields arising from isolated, idealized pores as they collapse in the presence of a shock. HMX slabs are numerically generated which contain a single pore, isolated from the boundaries to remove all wave reflections. In order to understand the primary pore characteristics leading to temperature rise, a series of 2D, plane strain simulations are conducted on HMX slabs containing both cylindrical and elliptical pores of constant size equal to the area of a circular pore with a 1 micron diameter. Each of these pore types is then subjected to shock pressures ranging from a weak shock that is unable to fully collapse the pore to a strong shock which overwhelms the tendency for localization. Results indicate that as shock strength increases, pore collapse phenomenology for a cylindrical pore transitions from a mode dominated by localized melt cracking to an idealized hydrodynamic pore collapse. For the case of elliptical pores, the orientation causing maximum temperature and pressure rise is found. The relative heating in elliptical pores is then quantified as a function of pore orientation and aspect ratio for a pore of a given area. Distribution A: Distribution unlimited. (96TW 2017-0036).
Increases in maximum stream temperatures after slash burning in a small experimental watershed.
Al Levno; Jack Rothacher
1969-01-01
The first year after slash was burned on a 237-acre clearcut watershed in the Cascade Range of Oregon, average maximum water temperatures increased 13°, 14°, and 12°F, during June, July, and August. A maximum stream temperature of 75°F. persisted for 3 hours on a day in July.
Wikner, I; Gebresenbet, G; Nilsson, C
2003-03-01
Transport by road can induce significant stress in cattle. Thermal stress is among the main stress producing factors during transport. The provision of ventilation in livestock transport vehicles is usually through openings along the sides of the vehicle. The incoming air will affect air quality inside by regulating temperature, relative humidity, gas levels and levels of other contaminants. The aim of the present investigation was to map out the air quality in a commercial cattle transport vehicle under various climatic conditions and with varying stocking densities and transport times. Distributions of air temperature, relative humidity and concentrations of ammonia, carbon dioxide, oxygen and methane have been determined during 35 experimental journeys. In average the mean temperature inside the compartment was about 3 degrees C and 6 degrees C higher than outside temperature in summer (+7.8(-)+24.0 degrees C) and winter (-24.3(-)+12.7 degrees C) conditions respectively. The temperature increment inside, as could be expected from theory, increased with reduced ventilation and increased animal density. Many stops to load new animals lowered the temperature increment and relative humidity in winter time. In summer more stops made the compartment temperature and relative humidity increase. The inside temperature distribution was less than about 3 degrees C during both summer and winter season. Average ammonia level varied between 3 and 6 ppm depending on stocking density and number of stops with a maximum value of 18 ppm. No detectable methane levels could be found inside the compartment at any time.
Development of a proof of concept low temperature 4He Superfluid Magnetic Pump
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.; Miller, Franklin K.
2017-03-01
We describe the development and experimental results of a proof of concept Superfluid Magnetic Pump in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He-4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, Stirling, or active magnetic regenerative refrigerators. Due to the superior thermal transport properties of sub-Lambda 4He this pump can also be used as a simple circulator to distribute cooling over large surface areas. Our pump was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pa using only the more common isotope of helium, 4He. This pump worked in an ;ideal; thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be implemented in suitable sub Kelvin refrigeration systems.
NASA Astrophysics Data System (ADS)
Wang, Chaolin; Zhong, Shaobo; Zhang, Fushen; Huang, Quanyi
2016-11-01
Precipitation interpolation has been a hot area of research for many years. It had close relation to meteorological factors. In this paper, precipitation from 91 meteorological stations located in and around Yunnan, Guizhou and Guangxi Zhuang provinces (or autonomous region), Mainland China was taken into consideration for spatial interpolation. Multivariate Bayesian maximum entropy (BME) method with auxiliary variables, including mean relative humidity, water vapour pressure, mean temperature, mean wind speed and terrain elevation, was used to get more accurate regional distribution of annual precipitation. The means, standard deviations, skewness and kurtosis of meteorological factors were calculated. Variogram and cross- variogram were fitted between precipitation and auxiliary variables. The results showed that the multivariate BME method was precise with hard and soft data, probability density function. Annual mean precipitation was positively correlated with mean relative humidity, mean water vapour pressure, mean temperature and mean wind speed, negatively correlated with terrain elevation. The results are supposed to provide substantial reference for research of drought and waterlog in the region.
In situ SAXS study on size changes of platinum nanoparticles with temperature
NASA Astrophysics Data System (ADS)
Wang, W.; Chen, X.; Cai, Q.; Mo, G.; Jiang, L. S.; Zhang, K.; Chen, Z. J.; Wu, Z. H.; Pan, W.
2008-09-01
Poly(vinylpyrrolidone) (PVP)-coated platinum (Pt) nanoparticles were prepared in methanol-water reduction method. In situ small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) techniques were used to probe the size change of particles and crystallites with temperature. Tangent-by-tangent (TBT) method of SAXS data analysis was improved and used to get the particle size distribution (PSD) from SAXS intensity. Scherrer’s equation was used to derive the crystallite size from XRD pattern. Combining SAXS and XRD results, a step-like characteristic of the Pt nanoparticle growth has been found. Three stages (diffusion, aggregation, and agglomeration) can be used to describe the growth of the Pt nanoparticles and nanocrystallites. Aggregation was found to be the main growth mode of the Pt nanoparticles during heating. The maximum growth rates of Pt nanoparticles and Pt nanocrystallites, as well as the maximum aggregation degree of Pt nanocrystallites were found, respectively, at 250 °C, 350 °C and 300 °C. These results are helpful to understanding the growth mode of nanoparticles, as well as controlling the nanoparticle size.
Ideal heat transfer conditions for tubular solar receivers with different design constraints
NASA Astrophysics Data System (ADS)
Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez
2017-06-01
The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.
NASA Astrophysics Data System (ADS)
Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai
2017-01-01
The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.
Quantifying environmental limiting factors on tree cover using geospatial data.
Greenberg, Jonathan A; Santos, Maria J; Dobrowski, Solomon Z; Vanderbilt, Vern C; Ustin, Susan L
2015-01-01
Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree cover across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree cover? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree cover. We found that the study area showed system-wide limitations on tree cover, and each of the factors showed evidence of being limiting on tree cover. However, only 1.2% of the total area appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree cover in the study area. Where sites were near their theoretical maximum, non-forest sites (tree cover < 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree cover between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range.
Impacts of Future Climate Change on Ukraine Transportation System
NASA Astrophysics Data System (ADS)
Khomenko, Inna
2016-04-01
Transportation not only affects climate, but are strongly influenced with the climate conditions, and key hubs of the transportation sector are cities. Transportation decision makers have an opportunity now to prepare for projected climate changes owing to development of emission scenarios. In the study impact of climate change on operation of road transport along highways are analyzed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean and maximum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 8 cities (Dnipropetrovsk, Khmelnytskyi, Kirovohrad, Kharkiv, Odesa, Ternopil, Vinnytsia and Voznesensk) situated down the highways. The highways of 'Odesa-Voznesensk-Dnipropetrovsk-Kharkiv' and 'Dnipropetrovsk-Kirovohrad-Vinnytsia-Khmelnytskyi-Ternopil' are considered. The first highway goes across the Black Sea Lowland, the Dnieper Upland and Dnieper Lowland, the other passes through the Dnieper and Volhynia-Podillia Uplands. The both highways are situated in steppe and forest-steppe native zones. For both scenarios, significant climate warming is registered; it is revealed in significant increase of average monthly and yearly temperature by 2-3°C in all cities in questions, and also, in considerable increment of frequency of days with maximum temperature higher than +30 and 35°C, except Kharkiv, where decrease number of days with such temperatures is observed. On the contrary, number of days with daily mean temperature being equal to or below 0°C decreases in the south of steppe, is constant in the north of steppe and increases in the forest-steppe native zone. Extreme negative temperatures don't occur in the steppe zone, but takes place in the forest-steppe zone. Results obtained shows that road surface must hold in extreme maximum temperature, and in the forest-steppe zone hazards of extreme negative temperatures must be considered. Frequency of winter events that make road surface worse such as glaze-clear ice, frozen snow that had initially melted on a warm road surface, ice and snow slippery coats etc., are high enough, especially in the forest-steppe zone. In the Black Sea Lowland among winter events the frozen snow that had initially melted on a warm road surface is most commonly observed, that is connected with high occurrence of the thaws. Because of increase in frequency of shower precipitation in all cities wet road surface is observed most frequently, especially in May and June; it must be taken into account for construction of roads, too. Monthly mean wind speed shows that in Odesa and Kharkiv significant increase in average monthly and yearly wind speeds are observed, by 0,5-1 m/s in comparison with the period of 1961 to 1990. On the contrary, in Dnipropetrovsk, wind speed decreases by 0,7 m/s. Frequency distribution of maximum wind speed shows that high wind speeds are more frequent in the winter months.
Improved silicon nitride for advanced heat engines
NASA Technical Reports Server (NTRS)
Yeh, H. C.; Wimmer, J. M.; Huang, H. H.; Rorabaugh, M. E.; Schienle, J.; Styhr, K. H.
1985-01-01
The AiResearch Casting Company baseline silicon nitride (92 percent GTE SN-502 Si sub 3 N sub 4 plus 6 percent Y sub 2 O sub 3 plus 2 percent Al sub 2 O sub 3) was characterized with methods that included chemical analysis, oxygen content determination, electrophoresis, particle size distribution analysis, surface area determination, and analysis of the degree of agglomeration and maximum particle size of elutriated powder. Test bars were injection molded and processed through sintering at 0.68 MPa (100 psi) of nitrogen. The as-sintered test bars were evaluated by X-ray phase analysis, room and elevated temperature modulus of rupture strength, Weibull modulus, stress rupture, strength after oxidation, fracture origins, microstructure, and density from quantities of samples sufficiently large to generate statistically valid results. A series of small test matrices were conducted to study the effects and interactions of processing parameters which included raw materials, binder systems, binder removal cycles, injection molding temperatures, particle size distribution, sintering additives, and sintering cycle parameters.
Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides
NASA Technical Reports Server (NTRS)
Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.
2007-01-01
Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers
160mJ and 9ns electro-optics Q-switched conductively cooled 1047nm Nd:YLF laser
NASA Astrophysics Data System (ADS)
Yang, Qi; Ma, Jian; Lu, Tingting; Ma, Xiuhua; Zhu, Xiaolei
2015-02-01
A compact diode side-pumped conductively cooled 1047 nm Nd:YLF slab laser with high energy and short pulse width is developed. Through ray tracing method, we design a home-made pump module to homogenize the pump intensity. Based on the Possion equation, a thermal conduct model of side-pump laser is established. The temperature distribution in laser crystal is obtained, and the thermal lens is caculated. With the absorbed pump energy of 818 mJ, the maximum output energy of 228 mJ is achieved in free-running mode. At a repetition rate of 50 Hz, 160 mJ, 9 ns 1047 nm infrared light is obtained under the maximum absorbed pump energy, and the slope efficiency is 27.8%.
Cong-Cong, Xia; Cheng-Fang, Lu; Si, Li; Tie-Jun, Zhang; Sui-Heng, Lin; Yi, Hu; Ying, Liu; Zhi-Jie, Zhang
2016-12-02
To explore the technique of maximum entropy model for extracting Oncomelania hupensis snail habitats in Poyang Lake zone. The information of snail habitats and related environment factors collected in Poyang Lake zone were integrated to set up the maximum entropy based species model and generate snail habitats distribution map. Two Landsat 7 ETM+ remote sensing images of both wet and drought seasons in Poyang Lake zone were obtained, where the two indices of modified normalized difference water index (MNDWI) and normalized difference vegetation index (NDVI) were applied to extract snail habitats. The ROC curve, sensitivities and specificities were applied to assess their results. Furthermore, the importance of the variables for snail habitats was analyzed by using Jackknife approach. The evaluation results showed that the area under receiver operating characteristic curve (AUC) of testing data by the remote sensing-based method was only 0.56, and the sensitivity and specificity were 0.23 and 0.89 respectively. Nevertheless, those indices above-mentioned of maximum entropy model were 0.876, 0.89 and 0.74 respectively. The main concentration of snail habitats in Poyang Lake zone covered the northeast part of Yongxiu County, northwest of Yugan County, southwest of Poyang County and middle of Xinjian County, and the elevation was the most important environment variable affecting the distribution of snails, and the next was land surface temperature (LST). The maximum entropy model is more reliable and accurate than the remote sensing-based method for the sake of extracting snail habitats, which has certain guiding significance for the relevant departments to carry out measures to prevent and control high-risk snail habitats.
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina
2010-01-01
Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).
Simulation, design and fabrication of a planar micro thermoelectric generator
NASA Astrophysics Data System (ADS)
Pelegrini, S.; Adami, A.; Collini, C.; Conci, P.; Lorenzelli, L.; Pasa, A. A.
2013-05-01
This study describes the design, simulation, and micro fabrication of a micro thermoelectric generator (μTEG) based on planar technology using constantan (CuNi) and copper (Cu) thermocouples deposited electrochemically (ECD) on silicon substrate. The present thin film technology can be manufactured into large area and also on flexible substrate with low cost of production and can be used to exploit waste heat from equipments or hot surfaces in general. In the current implementation, the silicon structure has been designed and optimized with analytical models and FE simulations in order to exploit the different thermal conductivity of silicon and air gaps to produce the maximum temperature difference on a planar surface. The results showed that a temperature difference of 10K across the structure creates a temperature difference of 5.3K on the thermocouples, thus providing an efficiency of thermal distribution up to 55%, depending on the heat convection at the surface. Efficiency of module has been experimentally tested under different working condition, showing the dependence of module output on the external heat exchange (natural and forced convection). Maximum generated potential at 6m/s airflow is 5.7V/m2 K and thermoelectric efficiency is 1.9μW K-2 m-2.
NASA Astrophysics Data System (ADS)
Gamaly, Eugene G.; Rode, Andrei V.
2016-08-01
Powerful short laser pulse focused on a surface swiftly transforms the solid into the thermally and electrically inhomogeneous conductive plasma with the large temperature and dielectric permeability gradients across the focal spot. The laser-affected spot becomes thermally inhomogeneous with where temperature has maximum in the centre and gradually decreasing to the boundaries of the spot in accord to the spatial intensity distribution of the Gaussian pulse. Here we study the influence of laser polarisation on ionization and absorption of laser radiation in the focal spot. In this paper we would like to discuss new effect in thermally inhomogeneous plasma under the action of imposed high frequency electric field. We demonstrate that high-frequency (HF) electric field is coupled with the temperature gradient generating the additional contribution to the conventional electronic heat flow. The additional heat flow strongly depends on the polarisation of the external field. It appears that effect has maximum when the imposed electric field is collinear to the thermal gradient directed along the radius of a circular focal spot. Therefore, the linear polarised field converts the circular laser affected spot into an oval with the larger oval's axis parallel to the field direction. We compare the developed theory to the available experiments, discuss the results and future directions.
NASA Astrophysics Data System (ADS)
Lee, Chieh-Han; Yu, Hwa-Lung
2014-05-01
Dengue fever has been recognized as the most important widespread vector-borne infectious disease in recent decades. Over 40% of the world's population is risk from dengue and about 50-100 million people are infected world wide annually. Previous studies have found that dengue fever is highly correlated with climate covariates. Thus, the potential effects of global climate change on dengue fever are crucial to epidemic concern, in particular, the transmission of the disease. This present study investigated the nonlinearity of time-delayed impact of climate on spatio-temporal variations of dengue fever in the southern Taiwan during 1998 to 2011. A distributed lag nonlinear model (DLNM) is used to assess the nonlinear lagged effects of meteorology. The statistically significant meteorological factors are considered, including weekly minimum temperature and maximum 24-hour rainfall. The relative risk and the distribution of dengue fever then predict under various climate change scenarios. The result shows that the relative risk is similar for different scenarios. In addition, the impact of rainfall on the incidence risk is higher than temperature. Moreover, the incidence risk is associated to spatially population distribution. The results can be served as practical reference for environmental regulators for the epidemic prevention under climate change scenarios.
The Impacts of Air Temperature on Accidental Casualties in Beijing, China.
Ma, Pan; Wang, Shigong; Fan, Xingang; Li, Tanshi
2016-11-02
Emergency room (ER) visits for accidental casualties, according to the International Classification of Deceases 10th Revision Chapters 19 and 20, include injury, poisoning, and external causes (IPEC). Annual distribution of 187,008 ER visits that took place between 2009 and 2011 in Beijing, China displayed regularity rather than random characteristics. The annual cycle from the Fourier series fitting of the number of ER visits was found to explain 63.2% of its total variance. In this study, the possible effect and regulation of meteorological conditions on these ER visits are investigated through the use of correlation analysis, as well as statistical modeling by using the Distributed Lag Non-linear Model and Generalized Additive Model. Correlation analysis indicated that meteorological variables that positively correlated with temperature have a positive relationship with the number of ER visits, and vice versa. The temperature metrics of maximum, minimum, and mean temperatures were found to have similar overall impacts, including both the direct impact on human mental/physical conditions and indirect impact on human behavior. The lag analysis indicated that the overall impacts of temperatures higher than the 50th percentile on ER visits occur immediately, whereas low temperatures show protective effects in the first few days. Accidental casualties happen more frequently on warm days when the mean temperature is higher than 14 °C than on cold days. Mean temperatures of around 26 °C result in the greatest possibility of ER visits for accidental casualties. In addition, males were found to face a higher risk of accidental casualties than females at high temperatures. Therefore, the IPEC-classified ER visits are not pure accidents; instead, they are associated closely with meteorological conditions, especially temperature.
NASA Astrophysics Data System (ADS)
Lewkowicz, A. G.; Smith, K. M.
2004-12-01
The BTS (Basal Temperature of Snow) method to predict permafrost probability in mountain basins uses elevation as an easily available and spatially distributed independent variable. The elevation coefficient in the BTS regression model is, in effect, a substitute for ground temperature lapse rates. Previous work in Wolf Creek (60° 8'N 135° W), a mountain basin near Whitehorse, has shown that the model breaks down in a mid-elevation valley (1250 m asl) where actual permafrost probability is roughly twice that predicted by the model (60% vs. 20-30%). The existence of a double tree-line at the site suggested that air temperature inversions might be the cause of this inaccuracy (Lewkowicz and Ednie, 2004). This paper reports on a first year (08/2003-08/2004) of hourly air and ground temperature data collected along an altitudinal transect within the valley in upper Wolf Creek. Measurements were made at sites located 4, 8, 22, 82 and 162 m above the valley floor. Air temperature inversions between the lowest and highest measurement points occurred 42% of the time and in all months, but were most frequent and intense in winter (>60% of December and January) and least frequent in September (<25% of time). They generally developed after sunset and reached a maximum amplitude before sunrise. Only 11 inversions that lasted through more than one day occurred during the year, and only from October to February. The longest continuous duration was 145 h while the greatest inversion magnitude measured over the 160 m transect was 19° C. Ground surface temperatures are more difficult to interpret because of differences in soils and vegetation cover along the transect and the effects of seasonal snow cover. In many cases, however, air temperature inversions are not duplicated in the ground temperature record. Nevertheless, the annual altitudinal ground temperature gradient is much lower than would be expected from a standard atmospheric lapse rate, suggesting that the inversions do have an important impact on permafrost distribution at this site. More generally, therefore, it appears probable that any reduction in inversion frequency resulting from a more vigorous atmospheric circulation in the context of future climate change, would have a significant effect on permafrost distribution in mountain basins.
Analysis of temperature trends in Northern Serbia
NASA Astrophysics Data System (ADS)
Tosic, Ivana; Gavrilov, Milivoj; Unkašević, Miroslava; Marković, Slobodan; Petrović, Predrag
2017-04-01
An analysis of air temperature trends in Northern Serbia for the annual and seasonal time series is performed for two periods: 1949-2013 and 1979-2013. Three data sets of surface air temperatures: monthly mean temperatures, monthly maximum temperatures, and monthly minimum temperatures are analyzed at 9 stations that have altitudes varying between 75 m and 102 m. Monthly mean temperatures are obtained as the average of the daily mean temperatures, while monthly maximum (minimum) temperatures are the maximum (minimum) values of daily temperatures in corresponding month. Positive trends were found in 29 out of 30 time series, and the negative trend was found only in winter during the period 1979-2013. Applying the Mann-Kendall test, significant positive trends were found in 15 series; 7 in the period 1949-2013 and 8 in the period 1979-2013; and no significant trend was found in 15 series. Significant positive trends are dominated during the year, spring, and summer, where it was found in 14 out of 18 cases. Significant positive trends were found 7, 5, and 3 times in mean, maximum and minimum temperatures, respectively. It was found that the positive temperature trends are dominant in Northern Serbia.
Gvoždík, Lumír; Kristín, Peter
2017-03-15
Temperature is an important factor determining distribution and abundance of organisms. Predicting the impact of warming climate on ectotherm populations requires information about species' thermal requirements, i.e. their so-called 'thermal niche'. The characterization of thermal niche remains a complicated task. We compared the applicability of two indirect approaches, based on reaction norm (aerobic scope curve) and optimality (preferred body temperature) concepts, for indirect estimation of thermal niche while using newts, Ichthyosaura alpestris , as a study system. If the two approaches are linked, then digesting newts should keep their body temperatures close to values maximizing aerobic scope for digestion. After feeding, newts maintained their body temperatures within a narrower range than did hungry individuals. The range of preferred body temperatures was well below the temperature maximizing aerobic scope for digestion. Optimal temperatures for factorial aerobic scope fell within the preferred body temperature range of digesting individuals. We conclude that digesting newts prefer body temperatures that are optimal for the maximum aerobic performance but relative to the maintenance costs. What might be termed the 'economic' thermoregulatory response explains the mismatch between thermal physiology and behaviour in this system. © 2017. Published by The Company of Biologists Ltd.
Chromospheric Activity of HAT-P-11: An Unusually Active Planet-hosting K Star
NASA Astrophysics Data System (ADS)
Morris, Brett M.; Hawley, Suzanne L.; Hebb, Leslie; Sakari, Charli; Davenport, James. R. A.; Isaacson, Howard; Howard, Andrew W.; Montet, Benjamin T.; Agol, Eric
2017-10-01
Kepler photometry of the hot Neptune host star HAT-P-11 suggests that its spot latitude distribution is comparable to the Sun’s near solar maximum. We search for evidence of an activity cycle in the Ca II H & K chromospheric emission S-index with archival Keck/HIRES spectra and observations from the echelle spectrograph on the Astrophysical Research Consortium 3.5 m Telescope at Apache Point Observatory. The chromospheric emission of HAT-P-11 is consistent with an ≳ 10 year activity cycle, which plateaued near maximum during the Kepler mission. In the cycle that we observed, the star seemed to spend more time near active maximum than minimum. We compare the {log}{R}{HK}{\\prime } normalized chromospheric emission index of HAT-P-11 with other stars. HAT-P-11 has unusually strong chromospheric emission compared to planet-hosting stars of similar effective temperature and rotation period, perhaps due to tides raised by its planet.
Spatiotemporal variability of extreme temperature frequency and amplitude in China
NASA Astrophysics Data System (ADS)
Zhang, Yuanjie; Gao, Zhiqiu; Pan, Zaitao; Li, Dan; Huang, Xinhui
2017-03-01
Temperature extremes in China are examined based on daily maximum and minimum temperatures from station observations and multiple global climate models. The magnitude and frequency of extremes are expressed in terms of return values and periods, respectively, estimated by the fitted Generalized Extreme Value (GEV) distribution of annual extreme temperatures. The observations suggest that changes in temperature extremes considerably exceed changes in the respective climatological means during the past five decades, with greater amplitude of increases in cold extremes than in warm extremes. The frequency of warm (cold) extremes increases (decreases) over most areas, with an increasingly faster rate as the extremity level rises. Changes in warm extremes are more dependent on the varying shape of GEV distribution than the location shift, whereas changes in cold extremes are more closely associated with the location shift. The models simulate the overall pattern of temperature extremes during 1961-1981 reasonably well in China, but they show a smaller asymmetry between changes in warm and cold extremes primarily due to their underestimation of increases in cold extremes especially over southern China. Projections from a high emission scenario show the multi-model median change in warm and cold extremes by 2040 relative to 1971 will be 2.6 °C and 2.8 °C, respectively, with the strongest changes in cold extremes shifting southward. By 2040, warm extremes at the 1971 20-year return values would occur about every three years, while the 1971 cold extremes would occur once in > 500 years.
NASA Technical Reports Server (NTRS)
Vinogradov, A. P.; Ilyin, N. P.; Kolomeytsava, L. N.
1977-01-01
The distribution patterns of Ni, Co, Mn, and Cr were studied in olivines of various origins: from meteorites (chondrites, achondrites, pallasites), which are likely analogs of the protoplanetary material, to peridotite inclusions in kimberlite pipes, which are analogs of mantle material. According to X-ray microanalysis data, nickel is concentrated in peridotite olivines, while manganese is concentrated in meteoritic olivines. The maximum chromium content was found in ureilites, which were formed under reducing conditions. Experiments at pressures of 20 to 70 kbar and temperatures of 1100 to 2000 C have shown that in a mixture of olivine and Ni metal or NiO, nickel enters the silicate phase, displacing Fe into the metallic phase. Equilibrium temperatures were estimated from the Fe, Ni distribution coefficients between the metal and olivine: 1500 K for pallasites, 1600 K for olivine-bronzite H6 chondrites, 1200 K for olivine-hypersthene L6, 900 K for LL6, and 1900 K for ureilites (at P = 1 atm). The equilibrium conditions of peridotites are close to T = 1800 K and P over 100 kbar. It is concluded that there is a sharp difference between the conditions of differentiation of the protoplanetary material at the time meteorites were formed and the conditions of differentiation of the planets into concentric layers.
NASA Astrophysics Data System (ADS)
Rahman, Md. Rejaur; Lateh, Habibah
2017-04-01
In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80-2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20-2.48 °C) was found in the southern, southeastern and northeastern parts during 1971-2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (-0.75 mm per year) and post-monsoon rainfall (-0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011-2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.