Sample records for maximum temperature increases

  1. Increases in maximum stream temperatures after slash burning in a small experimental watershed.

    Treesearch

    Al Levno; Jack Rothacher

    1969-01-01

    The first year after slash was burned on a 237-acre clearcut watershed in the Cascade Range of Oregon, average maximum water temperatures increased 13°, 14°, and 12°F, during June, July, and August. A maximum stream temperature of 75°F. persisted for 3 hours on a day in July.

  2. Effects of Pouring Temperature and Electromagnetic Stirring on Porosity and Mechanical Properties of A357 Aluminum Alloy Rheo-Diecasting

    NASA Astrophysics Data System (ADS)

    Guo, An; Zhao, Junwen; Xu, Chao; Li, Hu; Han, Jing; Zhang, Xu

    2018-05-01

    Semisolid slurry of A357 aluminum alloy was prepared using a temperature-controllable electromagnetic stirrer and rheo-diecast at different temperatures. The effects of pouring temperature and electromagnetic stirring (EMS) on the porosity in rheo-diecast samples, as well as the relation between porosity and mechanical properties, were investigated. The results show that pouring temperature and EMS had minor influences on rheo-diecast microstructure but marked influence on the porosity. With decreasing slurry pouring temperature, the porosity decreased first and then increased, whereas the maximum pore ratio (ratio of shape factor to diameter of the largest pore) increased first and then decreased. The maximum pore ratio determines the level of tensile strength and elongation, and higher mechanical properties can be obtained with smaller and rounder pores in samples. The mechanical properties of the rheo-diecast samples increased linearly with increasing maximum pore ratio. The maximum pore ratio was 1.43 µm-1, and the minimum porosity level was 0.37% under EMS condition for the rheo-diecast samples obtained at a pouring temperature of 608 °C. With this porosity condition, the maximum tensile strength and elongation were achieved at 274 MPa and 4.9%, respectively. It was also revealed that EMS improves mechanical properties by reduction in porosity and an increase in maximum pore ratio.

  3. Statistical downscaling of CMIP5 outputs for projecting future maximum and minimum temperature over the Haihe River Bain, China

    NASA Astrophysics Data System (ADS)

    Yan, Tiezhu; Shen, Zhenyao; Heng, Lee; Dercon, Gerd

    2016-04-01

    Future climate change information is important to formulate adaptation and mitigation strategies for climate change. In this study, a statistical downscaling model (SDSM) was established using both NCEP reanalysis data and ground observations (daily maximum and minimum temperature) during the period 1971-2010, and then calibrated model was applied to generate the future maximum and minimum temperature projections using predictors from the two CMIP5 models (MPI-ESM-LR and CNRM-CM5) under two Representative Concentration Pathway (RCP2.6 and RCP8.5) during the period 2011-2100 for the Haihe River Basin, China. Compared to the baseline period, future change in annual and seasonal maximum and minimum temperature was computed after bias correction. The spatial distribution and trend change of annual maximum and minimum temperature were also analyzed using ensemble projections. The results shows that: (1)The downscaling model had a good applicability on reproducing daily and monthly mean maximum and minimum temperature over the whole basin. (2) Bias was observed when using historical predictors from CMIP5 models and the performance of CNRM-CM5 was a little worse than that of MPI-ESM-LR. (3) The change in annual mean maximum and minimum temperature under the two scenarios in 2020s, 2050s and 2070s will increase and magnitude of maximum temperature will be higher than minimum temperature. (4) The increase in temperature in the mountains and along the coastline is remarkably high than the other parts of the studies basin. (5) For annual maximum and minimum temperature, the significant upward trend will be obtained under RCP 8.5 scenario and the magnitude will be 0.37 and 0.39 ℃ per decade, respectively; the increase in magnitude under RCP 2.6 scenario will be upward in 2020s and then decrease in 2050s and 2070s, and the magnitude will be 0.01 and 0.01℃ per decade, respectively.

  4. Towards bridging the gap between climate change projections and maize producers in South Africa

    NASA Astrophysics Data System (ADS)

    Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus

    2018-05-01

    Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.

  5. Modeling and predicting the biofilm formation of Salmonella Virchow with respect to temperature and pH.

    PubMed

    Ariafar, M Nima; Buzrul, Sencer; Akçelik, Nefise

    2016-03-01

    Biofilm formation of Salmonella Virchow was monitored with respect to time at three different temperature (20, 25 and 27.5 °C) and pH (5.2, 5.9 and 6.6) values. As the temperature increased at a constant pH level, biofilm formation decreased while as the pH level increased at a constant temperature, biofilm formation increased. Modified Gompertz equation with high adjusted determination coefficient (Radj(2)) and low mean square error (MSE) values produced reasonable fits for the biofilm formation under all conditions. Parameters of the modified Gompertz equation could be described in terms of temperature and pH by use of a second order polynomial function. In general, as temperature increased maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation decreased; whereas, as pH increased; maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation increased. Two temperature (23 and 26 °C) and pH (5.3 and 6.3) values were used up to 24 h to predict the biofilm formation of S. Virchow. Although the predictions did not perfectly match with the data, reasonable estimates were obtained. In principle, modeling and predicting the biofilm formation of different microorganisms on different surfaces under various conditions could be possible.

  6. Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    Griffiths, G. M.; Chambers, L. E.; Haylock, M. R.; Manton, M. J.; Nicholls, N.; Baek, H.-J.; Choi, Y.; della-Marta, P. M.; Gosai, A.; Iga, N.; Lata, R.; Laurent, V.; Maitrepierre, L.; Nakamigawa, H.; Ouprasitwong, N.; Solofa, D.; Tahani, L.; Thuy, D. T.; Tibig, L.; Trewin, B.; Vediapan, K.; Zhai, P.

    2005-08-01

    Trends (1961-2003) in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.

  7. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2015-01-01

    Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

  8. Changes in minimum and maximum temperatures at the Pic du Midi in relation with humidity and cloudiness, 1882-1984

    NASA Astrophysics Data System (ADS)

    Dessens, J.; Bücher, A.

    In an attempt to contribute to the investigation on a global climate change, a historical series of minimum and maximum temperature data at the Pic du Midi, a mountain observatory at 2862 m a.s.l. in the French Pyrenees, is updated after correction of a systematic deviation due to a relocation of the station in 1971. These data, which now cover the 1882-1984 period, are examined in parallel with humidity and cloud cover data for the same period. From the beginning to the end of this period, observations show that the mean night-time temperature has increased by 2.39° C/100 yr while the mean daytime temperature has decreased by 0.50° C/100 yr. In consequence, the mean annual diurnal temperature range has dropped by 36%/100 yr. The maximum seasonal decrease is 46%/100 yr in spring. Season-to-season and year-to-year inter-relationships between minimum temperature, maximum temperature, relative humidity and cloud cover suggest that the decrease in maximum temperature is related to a concomitant increase of 15%/100 yr in both relative humidity and cloud cover.

  9. Climate Change and Simulation of Cardiovascular Disease Mortality: A Case Study of Mashhad, Iran.

    PubMed

    Baaghideh, Mohammad; Mayvaneh, Fatemeh

    2017-03-01

    Weather and climate play a significant role in human health. We are accustomed to affects the weather conditions. By increasing or decreasing the environment temperature or change of seasons, some diseases become prevalent or remove. This study investigated the role of temperature in cardiovascular disease mortality of city of Mashhad in the current decade and its simulation in the future decades under conditions of climate change. Cardiovascular disease mortality data and the daily temperatures data were used during (2004-2013) period. First, the correlation between cardiovascular disease mortality and maximum and minimum temperatures were calculated then by using General Circulation Model, Emissions Scenarios, and temperature data were extracted for the next five decades and finally, mortality was simulated. There is a strong positive association between maximum temperature and mortality (r= 0.83, P -value<0.01), also observed a negative and weak but significant association between minimum temperatures and mortality. The results obtained from simulation show increased temperature in the next decades in Mashhad and a 1 °C increase in maximum temperature is associated with a 4.27% (95%CI: 0.91, 7.00) increase in Cardiovascular disease mortality. By increasing temperature and the number of hot days the cardiovascular disease mortality increases and these increases will be intensified in the future decades. Therefore, necessary preventive measures are required to mitigate temperature effects with greater attention to vulnerable group.

  10. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    NASA Astrophysics Data System (ADS)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  11. Secular Trend of Surface Temperature at an Elevated Observatory in the Pyrenees.

    NASA Astrophysics Data System (ADS)

    Bücher, A.; Dessens, J.

    1991-08-01

    Surface temperature was measured at the Pic du Midi de Bigorre, 2862 m MSL, from the foundation of the Observatory in 1878 until the closing of the meteorological station in 1984. After testing the homogeneity of the series with the annual mean temperatures in western Europe and in southwestern France, the period 1882-1970 was retained for trend analysis.The mean annual temperature increased 0.83°C during the 89-yr period. This increase is the sum of a very significant increase in the daily minimum temperature (+ 2.11°C) and a decrease in the maximum temperature ( 0.45°C). In consequence, the most dramatic change in the temperature regime was the difference between maximum and minimum; this decreased from 8.05°C in 1882 to 5.49°C in 1970. A mean increase is observed in all seasons, but, as for western Europe, it is stronger in spring and fall than in winter and summer.Analysis of cloudiness data for the same period shows a 15% increase in annual mean cloudiness and also significant year-to-year correlations between cloudiness and the maximum and minimum temperature. In consequence, the change in the temperature regime observed at the Pic du Midi since the end of last century is most probably the result of a climatic change involving an increase in cloud cover and, maybe, an increasing greenhouse effect.

  12. Influence of stream characteristics and grazing intensity on stream temperatures in eastern Oregon.

    Treesearch

    S.B. Maloney; A.R. Tiedemann; D.A. Higgins; T.M. Quigley; D.B. Marx

    1999-01-01

    Stream temperatures were measured during summer months, 1978 to 1984, at 12 forested watersheds near John Day, Oregon, to determine temperature characteristics and assess effects of three range management strategies of increasing intensity. Maximum temperatures in streams of the 12 watersheds ranged from 12.5 to 27.8 oC. Maximum stream temperatures on four watersheds...

  13. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long cylinder. The spectral emittance, epsilon(lambda), is obtained by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depths, Kappa(R) = alpha(lambda)R, where alpha(lambda) is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance is nearly at its maximum value. There is an optimum cylinder radius, R(opt), for maximum emitter efficiency, eta(E). Values for R(opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing temperature.

  14. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As the magnitude of air temperatures increase in the four basins, peak flows decrease by larger amounts. If precipitation is held constant (no change from historical values), 17 to 26 percent decreases in peak flow occur at the four basins when temperature is increased by 7.2°F. If temperature is held constant, 26 to 38 percent increases in peak flow result from a 15-percent increase in precipitation. The largest decreases in peak flows at the four basins result from 15-percent decreases in precipitation combined with temperature increases of 10.8°F. The largest increases in peak flows generally result from 30-percent increases in precipitation combined with 3.6 °F decreases in temperatures. In many cases when temperature and precipitation both increase, small increases or decreases in annual daily maximum peak flows result. For likely changes projected for the northeastern United States for the middle of the 21st century (temperature increase of 3.6 °F and precipitation increases of 0 to 15 percent), peak-flow changes at the four coastal Maine basins in this study are modeled to be evenly distributed between increases and decreases of less than 25 percent. Peak flows with 50-percent and 1-percent AEPs (equivalent to 2-year and 100-year recurrence interval peak flows, respectively) were calculated for the four basins in the study using the PRMS-modeled annual daily maximum peak flows. Modeled peak flows with 50-percent and 1-percent AEPs with adjusted temperatures and precipitation were compared to unadjusted (historical) modeled values. Changes in peak flows with 50-percent AEPs are similar to changes in annual daily maximum peak flow; changes in peak flows with 1-percent AEPs are similar in pattern to changes in annual daily maximum peak flow, but some of the changes associated with increasing precipitation are much larger than changes in annual daily maximum peak flow. Substantial decreases in maximum annual winter snowpack water equivalent are modeled to occur with increasing air temperatures at the four basins in the study. (Snowpack is the snow on the ground that accumulates during a winter, and water equivalent is the amount of water in a snowpack if it were melted.) The decrease in modeled peak flows with increasing air temperature, given no change in precipitation amount, is likely caused by these decreases in winter snowpack and resulting decreases in snowmelt runoff. This Scientific Investigations Report, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Fact Sheet (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/fs/2013/3021/.

  15. Spatial distribution of temperature trends and extremes over Maharashtra and Karnataka States of India

    NASA Astrophysics Data System (ADS)

    Dhorde, Amit G.; Korade, Mahendra S.; Dhorde, Anargha A.

    2017-10-01

    Earth surface temperatures are changing worldwide together with the changes in the extreme temperatures. The present study investigates trends and variations of monthly maximum and minimum temperatures and their effects on seasonal fluctuations at different climatological stations of Maharashtra and Karnataka states of India. Trend analysis was performed on annual and seasonal mean maximum temperature (TMAX) and mean minimum temperature (TMIN) for the period 1969 to 2006. During the last 38 years, an increase in annual TMAX and TMIN has occurred. At most of the locations, the increase in TMAX was faster than the TMIN, resulting in an increase in diurnal temperature range. At the same time, annual mean temperature (TM) showed a significant increase over the study area. Percentiles were used to identify extreme temperature indices. An increase in occurrence of warm extremes was observed at southern locations, and cold extremes increased over the central and northeastern part of the study area. Occurrences of cold wave conditions have decreased rapidly compared to heat wave conditions.

  16. The influence of climate variables on dengue in Singapore.

    PubMed

    Pinto, Edna; Coelho, Micheline; Oliver, Leuda; Massad, Eduardo

    2011-12-01

    In this work we correlated dengue cases with climatic variables for the city of Singapore. This was done through a Poisson Regression Model (PRM) that considers dengue cases as the dependent variable and the climatic variables (rainfall, maximum and minimum temperature and relative humidity) as independent variables. We also used Principal Components Analysis (PCA) to choose the variables that influence in the increase of the number of dengue cases in Singapore, where PC₁ (Principal component 1) is represented by temperature and rainfall and PC₂ (Principal component 2) is represented by relative humidity. We calculated the probability of occurrence of new cases of dengue and the relative risk of occurrence of dengue cases influenced by climatic variable. The months from July to September showed the highest probabilities of the occurrence of new cases of the disease throughout the year. This was based on an analysis of time series of maximum and minimum temperature. An interesting result was that for every 2-10°C of variation of the maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue cases. For the minimum temperature, we observed that for the same variation, there was an average increase of 26.1-230.3% in the number of the dengue cases from April to August. The precipitation and the relative humidity, after analysis of correlation, were discarded in the use of Poisson Regression Model because they did not present good correlation with the dengue cases. Additionally, the relative risk of the occurrence of the cases of the disease under the influence of the variation of temperature was from 1.2-2.8 for maximum temperature and increased from 1.3-3.3 for minimum temperature. Therefore, the variable temperature (maximum and minimum) was the best predictor for the increased number of dengue cases in Singapore.

  17. Hydrologic and climatic changes in three small watersheds after timber harvest.

    Treesearch

    W.B. Fowler; J.D. Helvey; E.N. Felix

    1987-01-01

    No significant increases in annual water yield were shown for three small watersheds in northeastern Oregon after shelterwood cutting (30-percent canopy removal, 50-percent basal area removal) and clearcutting. Average maximum air temperature increased after harvest and average minimum air temperature decreased by up to 2.6 °C. Both maximum and minimum water...

  18. Analysis and modeling of extreme temperatures in several cities in northwestern Mexico under climate change conditions

    NASA Astrophysics Data System (ADS)

    García-Cueto, O. Rafael; Cavazos, M. Tereza; de Grau, Pamela; Santillán-Soto, Néstor

    2014-04-01

    The generalized extreme value distribution is applied in this article to model the statistical behavior of the maximum and minimum temperature distribution tails in four cities of Baja California in northwestern Mexico, using data from 1950-2010. The approach used of the maximum of annual time blocks. Temporal trends were included as covariates in the location parameter (μ), which resulted in significant improvements to the proposed models, particularly for the extreme maximum temperature values in the cities of Mexicali, Tijuana, and Tecate, and the extreme minimum temperature values in Mexicali and Ensenada. These models were used to estimate future probabilities over the next 100 years (2015-2110) for different time periods, and they were compared with changes in the extreme (P90th and P10th) percentiles of maximum and minimum temperature scenarios for a set of six general circulation models under low (RCP4.5) and high (RCP8.5) radiative forcings. By the end of the twenty-first century, the scenarios of the changes in extreme maximum summer temperature are of the same order in both the statistical model and the high radiative scenario (increases of 4-5 °C). The low radiative scenario is more conservative (increases of 2-3 °C). The winter scenario shows that minimum temperatures could be less severe; the temperature increases suggested by the probabilistic model are greater than those projected for the end of the century by the set of global models under RCP4.5 and RCP8.5 scenarios. The likely impacts on the region are discussed.

  19. Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous nitromethane/air mixtures.

    PubMed

    Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun

    2011-01-30

    The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Non-trivial behavior of the low temperature maximum of dielectric constant and location of the end critical point in Na0.5Bi0.5TiO3-0.06BaTiO3 lead free relaxor ferroelectrics crystals detected by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, Evgeniy; Tiagunova, Jenia; Mojaev, Evgeny; Roth, Michael

    2018-01-01

    [001] lead free relaxor ferroelectrics crystals of Na0.5Bi0.5TiO3-0.06BaTiO3 were studied by means of dielectric and acoustic emission methods in the temperature range of 25-240 °C and under a dc bias electric field up to 0.4 kV/cm. A temperature maximum of the dielectric constant was found near 170 °C, as well as the acoustic emission bursts pointed out to both the depolarization temperature near 120 °C and the temperature, corresponding to the maximum of dielectric constant, near 170 °C. While the depolarization temperature increased linearly, the temperature of the dielectric constant maximum was shown to exhibit a V-shape behavior under an electric field: it initially decreases, reaches a sharp minimum at some small threshold electric field of 0.15 kV/cm, and then starts to increase similar to the Curie temperature of the normal ferroelectrics, as the field enhances. Acoustic emission bursts, accompanying the depolarization temperature, weakened with the enhancing field, whereas the ones accompanying the temperature of the dielectric constant maximum exhibited two maxima: near 0.1 kV/cm and near 0.3 kV/cm. The meaning of these two acoustic emission maxima is discussed.

  1. Analysis of breast thermograms for ROI extraction and description using mathematical morphology

    NASA Astrophysics Data System (ADS)

    Zermeño-Loreto, O. A.; Toxqui-Quitl, C.; Orozco Guillén, E. E.; Padilla-Vivanco, A.

    2017-09-01

    The detection of a temperature increase or hot spots in breast thermograms can be related with high metabolic activity of disease cells. Image processing algorithms to seek mainly temperature increases above 3°C which have a high probability of being a malignancy are proposed. Also a derivative operator is used to highlights breast regions of interest (ROI). In order to determinate a medical alert, a feature descriptor of the ROI is constructed using its maximum temperature, maximum increase of temperature, sector/quadrant position in the breast, and area. The proposed algorithms are tested in a home database and a public database for mastology research.

  2. The comparison of thermal tissue injuries caused by ultrasonic scalpel and electrocautery use in rabbit tongue tissue

    PubMed Central

    Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan

    2012-01-01

    The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (p<0.05). It was concluded that the bipolar electrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541

  3. [Temporal change in annual air temperature and heat island effect in a coastal city and an inland city at mid-latitude in China during 1956-1998].

    PubMed

    Chao, Lu-men; Sun, Jian-xin

    2009-12-01

    Temporal changes in air temperature and urban heat island (UHI) effects during 1956-1998 were compared between a coastal city, Ji' nan, and an inland city, Xi' an, which were similar in latitude, size and development. During 1956-1978, except that the annual mean minimum temperature in Ji' nan increased by 0.37 degrees C x 10 a(-1), the temperature variables in the two cities did not display any apparent trend. During 1979-1998, all temperature variables of the two cities showed an increasing trend. Comparing with that in Ji' nan, the increasing rate of annual mean maximum temperature and annual mean temperature in Xi' an was greater, but that of annual mean minimum temperature was smaller. In the two cities, heat island effect occurred during 1956-1978 but without any apparent trend, whereas during 1979-1998, this effect increased with time, especially in Xi' an where the annual mean minimum temperature and annual mean temperature increased by 0.22 degrees C x 10 a(-1) and 0.32 degrees C x 10 a(-1), respectively. Both the level and the inter-annual variation of the heat island effect were much greater in Ji' nan than in Xi' an, but the increasing rate of this effect was greater in Xi' an than in Ji' nan. Obvious differences were observed in the increasing rate of annual mean maximum air temperature, annual mean air temperature, and annual mean minimum temperature as well as the heat island effect in Ji' nan, whereas negligible differences were found in Xi' an. Among the three temperature variables, annual mean minimum temperature displayed the most obvious increasing trend and was most affected by heat island effect, while annual mean maximum temperature was most variable inter-annually. Geographical location not only affected the magnitude of urban warming, but also affected the mode of urban warming and the strength of heat island effect.

  4. The Effects of Global Warming on Temperature and Precipitation Trends in Northeast America

    NASA Astrophysics Data System (ADS)

    Francis, F.

    2013-12-01

    The objective of this paper is to discuss the analysis of results in temperature and precipitation (rainfall) data and how they are affected by the theory of global warming in Northeast America. The topic was chosen because it will show the trends in temperature and precipitation and their relations to global warming. Data was collected from The Global Historical Climatology Network (GHCN). The data range from years of 1973 to 2012. We were able to calculate the yearly and monthly regress to estimate the relationship of variables found in the individual sources. With the use of specially designed software, analysis and manual calculations we are able to give a visualization of these trends in precipitation and temperature and to question if these trends are due to the theory of global warming. With the Calculation of the trends in slope we were able to interpret the changes in minimum and maximum temperature and precipitation. Precipitation had a 9.5 % increase over the past forty years, while maximum temperature increased 1.9 %, a greater increase is seen in minimum temperature of 3.3 % was calculated over the years. The trends in precipitation, maximum and minimum temperature is statistically significant at a 95% level.

  5. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long, cylinder. The spectral emittance, e(sub x), is obtained L- by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depth, K(sub R), where alpha(sub lambda), is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance depths, K(sub R) alpha(sub lambda)R, is nearly at its maximum value. There is an optimum cylinder radius, R(sub opt) for maximum emitter efficiency, n(sub E). Values for R(sub opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing, temperature.

  6. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  7. Long-term trends in daily temperature extremes in Iraq

    NASA Astrophysics Data System (ADS)

    Salman, Saleem A.; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Al-Abadi, Alaa M.

    2017-12-01

    The existence of long-term persistence (LTP) in hydro-climatic time series can lead to considerable change in significance of trends. Therefore, past findings of climatic trend studies that did not consider LTP became a disputable issue. A study has been conducted to assess the trends in temperature and temperature extremes in Iraq in recent years (1965-2015) using both ordinary Mann-Kendal (MK) test; and the modified Mann-Kendall (m-MK) test, which can differentiate the multi-decadal oscillatory variations from secular trends. Trends in annual and seasonal minimum and maximum temperatures, diurnal temperature range (DTR), and 14 temperature-related extremes were assessed. MK test detected the significant increases in minimum and maximum temperature at all stations, where m-MK test detected at 86% and 80% of all stations, respectively. The temperature in Iraq is increasing 2 to 7 times faster than global temperature rise. The minimum temperature is increasing more (0.48-1.17 °C/decade) than maximum temperature (0.25-1.01 °C/decade). Temperature rise is higher in northern Iraq and in summer. The hot extremes particularly warm nights are increasing all over Iraq at a rate of 2.92-10.69 days/decade, respectively. On the other hand, numbers of cold days are decreasing at some stations at a rate of - 2.65 to - 8.40 days/decade. The use of m-MK test along with MK test confirms the significant increase in temperature and some of the temperature extremes in Iraq. This study suggests that trends in many temperature extremes in the region estimated in previous studies using MK test may be due to natural variability of climate, which empathizes the need for validation of the trends by considering LTP in time series.

  8. Airflow and temperature distribution inside the maxillary sinus: a computational fluid dynamics simulation.

    PubMed

    Zang, Hongrui; Liu, Yingxi; Han, Demin; Zhang, Luo; Wang, Tong; Sun, Xiuzhen; Li, Lifeng

    2012-06-01

    The airflow velocity and flux in maxillary sinuses were much lower than those in the nasal cavity, and the temperature in maxillary sinuses was much higher than the temperature in the middle meatus. With the increase of maximum diameter of the ostium, the above indices changed little. The purpose of the paper was to investigate, first, the flow and temperature distribution inside normal maxillary sinus in inspiration, and second, flow and temperature alteration with the increase of maximum ostium diameter. Three-dimensional models with nasal cavities and bilateral maxillary sinuses were constructed for computational fluid dynamics analysis. Virtual surgeries were implemented for the maxillary ostium, the maximum diameters of which were 8, 10, 12, and 15 mm, respectively. The finite volume method was used for numerical simulation. The indices of velocity, pressure, vector, and temperature were processed and compared between models. The airflow velocity in maxillary sinuses (average velocity 0.062 m/s) was much lower than that in the middle meatus (average velocity 3.26 m/s). With the increase of ostium diameter, airflow characteristics distributed in the maxillary sinuses changed little. The normal temperature in the maxillary sinus remained almost constant at 34°C and changed little with the increase of ostium diameter.

  9. Possible combined influences of absorbing aerosols and anomalous atmospheric circulation on summertime diurnal temperature range variation over the middle and lower reaches of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Cai, Jiaxi; Guan, Zhaoyong; Ma, Fenhua

    2016-12-01

    Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.

  10. Orientation and Temperature Dependence of Work-Hardening Rate in Cd Single Crystals

    NASA Astrophysics Data System (ADS)

    Uçar, N.

    1997-03-01

    The orientation and temperature dependence of the work-hardening rate (WHR) has been investigated in tension in the temperature range from room temperature to 500 K in Cd single crystals. The WHR was found to decrease rapidly with increasing temperature. For 21-1-3 orientated crystals, the WHR increases firstly with increasing temperature until it passes a maximum at about 350 K.

  11. Estimating Long-Term Survival Temperatures at the Assemblage Level in the Marine Environment: Towards Macrophysiology

    PubMed Central

    Richard, Joëlle; Morley, Simon Anthony; Thorne, Michael A. S.; Peck, Lloyd Samuel

    2012-01-01

    Defining ecologically relevant upper temperature limits of species is important in the context of environmental change. The approach used in the present paper estimates the relationship between rates of temperature change and upper temperature limits for survival in order to evaluate the maximum long-term survival temperature (Ts). This new approach integrates both the exposure time and the exposure temperature in the evaluation of temperature limits. Using data previously published for different temperate and Antarctic marine environments, we calculated Ts in each environment, which allowed us to calculate a new index: the Warming Allowance (WA). This index is defined as the maximum environmental temperature increase which an ectotherm in a given environment can tolerate, possibly with a decrease in performance but without endangering survival over seasonal or lifetime time-scales. It is calculated as the difference between maximum long-term survival temperature (Ts) and mean maximum habitat temperature. It provides a measure of how close a species, assemblage or fauna are living to their temperature limits for long-term survival and hence their vulnerability to environmental warming. In contrast to data for terrestrial environments showing that warming tolerance increases with latitude, results here for marine environments show a less clear pattern as the smallest WA value was for the Peru upwelling system. The method applied here, relating upper temperature limits to rate of experimental warming, has potential for wide application in the identification of faunas with little capacity to survive environmental warming. PMID:22509340

  12. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s

    PubMed Central

    Hawkins, Ed; Fricker, Thomas E; Challinor, Andrew J; Ferro, Christopher A T; Kit Ho, Chun; Osborne, Tom M

    2013-01-01

    Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target. PMID:23504849

  13. Mid-depth temperature maximum in an estuarine lake

    NASA Astrophysics Data System (ADS)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~< 2 m), transparent water, daytime maximum of wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  14. 3D thermal model of laser surface glazing for H13 tool steel

    NASA Astrophysics Data System (ADS)

    Kabir, I. R.; Yin, D.; Naher, S.

    2017-10-01

    In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.

  15. Trends and variability of daily temperature and precipitation extremes during 1960-2012 in the Yangtze River Basin, China

    NASA Astrophysics Data System (ADS)

    Guan, Yinghui

    2017-04-01

    The variability of surface air temperature and precipitation extremes has been the focus of attention during the past several decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Using daily minimum (TN), maximum temperature (TX) and precipitation from 143 meteorological stations in the Yangtze River Basin (YRB), a suite of extreme climate indices recommended by the Expert Team on Climate Change Detection and Indices, which has rarely been applied in this region, were computed and analyzed during 1960-2012. The results show widespread significant changes in all temperature indices associated with warming in the YRB during 1960-2012. On the whole, cold-related indices, i.e., cold nights, cold days, frost days, icing days and cold spell duration index significantly decreased by -3.45, -1.03, -3.04, -0.42 and -1.6 days/decade, respectively. In contrast, warm-related indices such as warm nights, warm days, summer days, tropical nights and warm spell duration index significantly increased by 2.95, 1.71, 2.16, 1.05 and 0.73 days/decade. Minimum TN, maximum TN, minimum TX and maximum TX increased significantly by 0.42, 0.18, 0.19 and 0.14 °C/decade. Because of a faster increase in minimum temperature than maximum temperature, the diurnal temperature range (DTR) exhibited a significant decreasing trend of -0.09 °C/decade for the whole YRB during 1960-2012. Geographically, stations in the eastern Tibet Plateau and northeastern YRB showed stronger trends in almost all temperature indices. Time series analysis indicated that the YRB was dominated by a general cooling trend before the mid-1980s, but a warming trend afterwards. For precipitation, simple daily intensity index, very wet day precipitation, extremely wet day precipitation, extremely heavy precipitation days, maximum 1-day precipitation, maximum 5-day precipitation and maximum consecutive dry days all increased significantly during 1960-2012. In contrast, ≥ 10 mm precipitation days and maximum consecutive wet days decreased significantly, implying that the precipitation processes in YRB were dominated by precipitation events with shorter durations. Geographically, a wetting tendency was observed in the eastern Tibet Plateau and the middle and lower YRB, while the other regions experienced precipitation deficits. The increasing precipitation was mainly due to the intensification of extreme precipitation events and the decreasing precipitation may be attributed to the decrease of ≥ 10 mm precipitation days or moderate precipitation events. In addition, the regional trends were of greater magnitudes in the middle and lower YRB, indicating more frequent extreme precipitation events in these sub-regions.

  16. Impact of air temperature on physically-based maximum precipitation estimation through change in moisture holding capacity of air

    NASA Astrophysics Data System (ADS)

    Ishida, K.; Ohara, N.; Kavvas, M. L.; Chen, Z. Q.; Anderson, M. L.

    2018-01-01

    Impact of air temperature on the Maximum Precipitation (MP) estimation through change in moisture holding capacity of air was investigated. A series of previous studies have estimated the MP of 72-h basin-average precipitation over the American River watershed (ARW) in Northern California by means of the Maximum Precipitation (MP) estimation approach, which utilizes a physically-based regional atmospheric model. For the MP estimation, they have selected 61 severe storm events for the ARW, and have maximized them by means of the atmospheric boundary condition shifting (ABCS) and relative humidity maximization (RHM) methods. This study conducted two types of numerical experiments in addition to the MP estimation by the previous studies. First, the air temperature on the entire lateral boundaries of the outer model domain was increased uniformly by 0.0-8.0 °C with 0.5 °C increments for the two severest maximized historical storm events in addition to application of the ABCS + RHM method to investigate the sensitivity of the basin-average precipitation over the ARW to air temperature rise. In this investigation, a monotonous increase was found in the maximum 72-h basin-average precipitation over the ARW with air temperature rise for both of the storm events. The second numerical experiment used specific amounts of air temperature rise that is assumed to happen under future climate change conditions. Air temperature was increased by those specified amounts uniformly on the entire lateral boundaries in addition to application of the ABCS + RHM method to investigate the impact of air temperature on the MP estimate over the ARW under changing climate. The results in the second numerical experiment show that temperature increases in the future climate may amplify the MP estimate over the ARW. The MP estimate may increase by 14.6% in the middle of the 21st century and by 27.3% in the end of the 21st century compared to the historical period.

  17. Human population growth and temperature increase along with the increase in urbanisation, motor vehicle numbers and green area amount in the sample of Erzurum city, Turkey.

    PubMed

    Yilmaz, Sevgi; Toy, Süleyman; Demircioglu Yildiz, Nalan; Yilmaz, Hasan

    2009-01-01

    In the study, main purpose was to determine the effect of population growth along with the increase in urbanisation, motor vehicle use and green area amount on the temperature values using a 55-year data set in Erzurum, which is hardly industrialised, and one of the coldest cities with highest elevation in Turkey. Although the semi-decadal increases, means of which are 0.1 degrees C for mean, minimum and maximum temperatures, are not clear enough to make a strong comment even in the lights of figures or tables, it was found as the result of the statistical analysis that population growth and increases in the number of vehicles, the number of buildings and the green area amount in the city have no significant effect on mean temperatures. However, the relationships between population growth and maximum temperature; and the number of vehicles and minimum temperature were found to be statistically significant.

  18. Resistivity of a simple metal from room temperature to 10 to the 6th K

    NASA Astrophysics Data System (ADS)

    Milchberg, H. M.; Freeman, R. R.; Davey, S. C.; More, R. M.

    1988-11-01

    The resistivity of nearly solid-density Al was measured as a function of temperature over 4 orders of magnitude above ambient by observing the self-reflection of an intense, less than 0.5 psec, 308-nm light pulse incident on a planar Al target. As an increasing function of electron temperature, the resistivity is observed initially to increase, reach a maximum which is relatively constant over an extended temperature range, and then decrease at the highest temperatures. The broad maximum is interpreted as resistivity saturation, a condition in which the mean free path of the conduction electrons reaches a minimum value as a function of temperature, regardless of the extent of any further disorder in the material.

  19. [Indoor simulation on dew formation on plant leaves].

    PubMed

    Gao, Zhi-Yong; Wang, You-Ke; Wei, Xin-Guang; Liu, Shou-Yang; He, Zi-Li; Zhou, Yu-Hong

    2014-03-01

    Dew forming on plant leaves through water condensation plays a significant ecological role in arid and semi-arid areas as an ignorable fraction of water resources. In this study, an artificial intelligent climate chamber and an automatic temperature-control system for leaves were implemented to regulate the ambient temperature, the leaf surface temperature and the leaf inclination for dew formation. The impact of leaf inclination, ambient temperature and dew point-leaf temperature depression on the rate and quantity of dew accumulation on leaf surface were analyzed. The results indicated that the accumulation rate and the maximum volume of dew on leaves decreased with increasing the leaf inclination while increased with the increment of dew point-leaf temperature depression, ambient temperature and relative humidity. Under the horizontal configuration, dew accumulated linearly on leaf surface over time until the maximum volume (0.80 mm) was reached. However, dew would fall down after reaching the maximum volume when the leaf inclination existed (45 degrees or 90 degrees), significantly slowing down the accumulative rate, and the zigzag pattern for the dynamic of dew accumulation appeared.

  20. The neotropical shrub Lupinus elegans, fromtemperate forests, may not adapt to climate change.

    PubMed

    Soto-Correa, J C; Sáenz-Romero, C; Lindig-Cisneros, R; de la Barrera, E

    2013-05-01

    Considering that their distribution is limited to altitudinal gradients along mountains that are likely to become warmer and drier, climate change poses an increased threat to temperate forest species from tropical regions. We studied whether the understorey shrub Lupinus elegans, endemic to temperate forests of west-central Mexico, will be able to withstand the projected temperature increase under seven climate change scenarios. Seeds were collected along an altitudinal gradient and grown in a shade-house over 7 months before determining their temperature tolerance as electrolyte leakage. The plants from colder sites tolerated lower temperatures, i.e. the temperature at which half of the maximum electrolyte leakage occurred (LT50), ranged from −6.4 ± 0.7 to −2.4 ± 0.3 °C. In contrast, no pattern was found for tolerance to high temperature (LT50 average 42.8 ± 0.3 °C). The climate change scenarios considered here consistently estimated an increase in air temperature during the present century that was higher for the maximum air temperature than for the mean or minimum. In particular, the anomaly from the normal maximum air temperature at the study region ranged from 2.8 °C by 2030 to 5.8 °C by 2090. In this respect, the inability of L. elegans to adapt to increasingly higher temperatures found here, in addition to a possible inhibition of reproduction caused by warmer winters, may limit its future distribution.

  1. Trends in Middle East climate extreme indices from 1950 to 2003

    NASA Astrophysics Data System (ADS)

    Zhang, Xuebin; Aguilar, Enric; Sensoy, Serhat; Melkonyan, Hamlet; Tagiyeva, Umayra; Ahmed, Nader; Kutaladze, Nato; Rahimzadeh, Fatemeh; Taghipour, Afsaneh; Hantosh, T. H.; Albert, Pinhas; Semawi, Mohammed; Karam Ali, Mohammad; Said Al-Shabibi, Mansoor Halal; Al-Oulan, Zaid; Zatari, Taha; Al Dean Khelet, Imad; Hamoud, Saleh; Sagir, Ramazan; Demircan, Mesut; Eken, Mehmet; Adiguzel, Mustafa; Alexander, Lisa; Peterson, Thomas C.; Wallis, Trevor

    2005-11-01

    A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950-2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.

  2. Temperature induced changes in size dependent distributions of two boreal and three Lusitanian flatfish species: A comparative study

    NASA Astrophysics Data System (ADS)

    van Hal, Ralf; van Kooten, Tobias; Rijnsdorp, Adriaan D.

    2016-01-01

    Changes in spatial distribution in several fish species have been related to recent increase in global temperature. In the North Sea, both a poleward shift and a shift to deeper water have been observed. Here, we study the underlying mechanism of these shifts in a comparative study of the changes in distribution of two boreal flatfish species (plaice Pleuronectes platessa and dab Limanda limanda) and three Lusitanian flatfish species (sole Solea solea, solenette Buglossidium luteum, and scaldfish Arnoglossus laterna) as recorded in annual bottom trawl surveys carried out in the North Sea in late summer since 1985. The distribution is analysed in relation to the bottom temperature at the time of the survey as well as to the seasonal maximum bottom temperature earlier in the year. It is shown that the boreal species plaice and dab moved to deeper water and maintained the seasonal maximum temperature that they experienced in earlier periods, while the Lusitanian species sole, solenette, and scaldfish experienced an increase in the seasonal maximum temperature that they experienced while maintaining their depth distribution. This overall response varied between length classes, reflecting a preference for higher temperature of the smaller length classes. The results lend support to the hypothesis that the fish displayed a direct response to the maximum temperature that occurred during the growth season before the time of sampling.

  3. A three-stage hybrid model for regionalization, trends and sensitivity analyses of temperature anomalies in China from 1966 to 2015

    NASA Astrophysics Data System (ADS)

    Wu, Feifei; Yang, XiaoHua; Shen, Zhenyao

    2018-06-01

    Temperature anomalies have received increasing attention due to their potentially severe impacts on ecosystems, economy and human health. To facilitate objective regionalization and examine regional temperature anomalies, a three-stage hybrid model with stages of regionalization, trends and sensitivity analyses was developed. Annual mean and extreme temperatures were analyzed using the daily data collected from 537 stations in China from 1966 to 2015, including the annual mean, minimum and maximum temperatures (Tm, TNm and TXm) as well as the extreme minimum and maximum temperatures (TNe and TXe). The results showed the following: (1) subregions with coherent temperature changes were identified using the rotated empirical orthogonal function analysis and K-means clustering algorithm. The numbers of subregions were 6, 7, 8, 9 and 8 for Tm, TNm, TXm, TNe and TXe, respectively. (2) Significant increases in temperature were observed in most regions of China from 1966 to 2015, although warming slowed down over the last decade. This warming primarily featured a remarkable increase in its minimum temperature. For Tm and TNm, 95% of the stations showed a significant upward trend at the 99% confidence level. TNe increased the fastest, at a rate of 0.56 °C/decade, whereas 21% of the stations in TXe showed a downward trend. (3) The mean temperatures (Tm, TNm and TXm) in the high-latitude regions increased more quickly than those in the low-latitude regions. The maximum temperature increased significantly at high elevations, whereas the minimum temperature increased greatly at middle-low elevations. The most pronounced warming occurred in eastern China in TNe and northwestern China in TXe, with mean elevations of 51 m and 2098 m, respectively. A cooling trend in TXe was observed at the northwestern end of China. The warming rate in TNe varied the most among the subregions (0.63 °C/decade).

  4. The effect of temperature on amount and structure of motor variability during 2-minute maximum voluntary contraction.

    PubMed

    Brazaitis, Marius; Skurvydas, Albertas; Pukėnas, Kazimieras; Daniuseviciūtė, Laura; Mickevicienė, Dalia; Solianik, Rima

    2012-11-01

    In this study, we questioned whether local cooling of muscle or heating involving core and muscle temperatures are the main indicators for force variability. Ten volunteers performed a 2-min maximum voluntary contraction (MVC) of the knee extensors under control (CON) conditions after passive heating (HT) and cooling (CL) of the lower body. HT increased muscle and rectal temperatures, whereas CL lowered muscle temperature but did not affect rectal temperature. During 2-min MVC, peak force decreased to a lower level in HT compared with CON and CL experiments. Greater central fatigue was found in the HT experiment, and there was less in the CL experiment than in the CON experiment. Increased core and muscle temperature increased physiological tremor and the amount and structural complexity of force variability of the exercising muscles, whereas local muscle cooling decreased all force variability variables measured. Copyright © 2012 Wiley Periodicals, Inc.

  5. Effects of radiofrequency probe application on irrigation fluid temperature in the wrist joint.

    PubMed

    Sotereanos, Dean G; Darlis, Nickolaos A; Kokkalis, Zinon T; Zanaros, George; Altman, Gregory T; Miller, Mark Carl

    2009-12-01

    Radiofrequency (RF) probes used in wrist arthroscopy may raise joint fluid temperature, increasing the risk of capsular and ligamentous damage. The purposes of the current study were to measure joint fluid temperature during wrist arthroscopy with the use of RF probes, and to determine whether using an outlet portal will reduce the maximum temperature. We performed wrist arthroscopy on 8 cadaveric arms. Ablation and coagulation cycles using RF probe were performed at documented locations within the joint. This was done for 60-second intervals on both the radial and ulnar side of the wrist, to mimic clinical practice. We used 4 fiberoptic phosphorescent probes to measure temperature (radial, ulnar, inflow-tube, and outflow-tube probes) and measured joint fluid temperature with and without outflow. There was a significant difference between wrists with and without outflow when examining maximum ablation temperatures (p < .002). All specimens showed higher maximum and average ablation temperatures without outflow. Maximum joint temperatures, greater than 60 degrees C, were observed in only no-outflow conditions. In performing RF ablation during wrist arthroscopy, the use of an outlet portal reduces the joint fluid temperature. Without an outlet portal, maximum temperatures can exceed desirable levels when using ablation; such temperatures have the potential to damage adjacent tissues. It is useful to maintain adequate outflow when using the radiofrequency probes during wrist arthroscopy.

  6. Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India

    NASA Astrophysics Data System (ADS)

    Sharma, Priyank J.; Loliyana, V. D.; S. R., Resmi; Timbadiya, P. V.; Patel, P. L.

    2017-12-01

    The flood risk across the globe is intensified due to global warming and subsequent increase in extreme temperature and precipitation. The long-term trends in extreme rainfall (1944-2013) and temperature (1969-2012) indices have been investigated at annual, seasonal, and monthly time scales using nonparametric Mann-Kendall (MK), modified Mann-Kendall (MMK), and Sen's slope estimator tests. The extreme rainfall and temperature indices, recommended by the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI), have been analyzed at finer spatial scales for trend detection. The results of trend analyses indicate decreasing trend in annual total rainfall, significant decreasing trend in rainy days, and increasing trend in rainfall intensity over the basin. The seasonal rainfall has been found to decrease for all the seasons except postmonsoon, which could affect the rain-fed agriculture in the basin. The 1- and 5-day annual maximum rainfalls exhibit mixed trends, wherein part of the basin experiences increasing trend, while other parts experience a decreasing trend. The increase in dry spells and concurrent decrease in wet spells are also observed over the basin. The extreme temperature indices revealed increasing trends in hottest and coldest days, while decreasing trends in coldest night are found over most parts of the basin. Further, the diurnal temperature range is also found to increase due to warming tendency in maximum temperature (T max) at a faster rate compared to the minimum temperature (T min). The increase in frequency and magnitude of extreme rainfall in the basin has been attributed to the increasing trend in maximum and minimum temperatures, reducing forest cover, rapid pace of urbanization, increase in human population, and thereby increase in the aerosol content in the atmosphere. The findings of the present study would significantly help in sustainable water resource planning, better decision-making for policy framework, and setting up infrastructure against flood disasters in Upper Tapi Basin, India.

  7. Utilization of Satellite Data to Identify and Monitor Changes in Frequency of Meteorological Events

    NASA Astrophysics Data System (ADS)

    Mast, J. C.; Dessler, A. E.

    2017-12-01

    Increases in temperature and climate variability due to human-induced climate change is increasing the frequency and magnitude of extreme heat events (i.e., heatwaves). This will have a detrimental impact on the health of human populations and habitability of certain land locations. Here we seek to utilize satellite data records to identify and monitor extreme heat events. We analyze satellite data sets (MODIS and AIRS land surface temperatures (LST) and water vapor profiles (WV)) due to their global coverage and stable calibration. Heat waves are identified based on the frequency of maximum daily temperatures above a threshold, determined as follows. Land surface temperatures are gridded into uniform latitude/longitude bins. Maximum daily temperatures per bin are determined and probability density functions (PDF) of these maxima are constructed monthly and seasonally. For each bin, a threshold is calculated at the 95th percentile of the PDF of maximum temperatures. Per each bin, an extreme heat event is defined based on the frequency of monthly and seasonal days exceeding the threshold. To account for the decreased ability of the human body to thermoregulate with increasing moisture, and to assess lethality of the heat events, we determine the wet-bulb temperature at the locations of extreme heat events. Preliminary results will be presented.

  8. Meteorological variables and bacillary dysentery cases in Changsha City, China.

    PubMed

    Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa

    2014-04-01

    This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature.

  9. Meteorological Variables and Bacillary Dysentery Cases in Changsha City, China

    PubMed Central

    Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa

    2014-01-01

    This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature. PMID:24591435

  10. Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam-Poupart, Ariane; Smargiassi, Audrey; Institut national de santé publique du Québec

    2014-10-15

    Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures inmore » 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in colder temperate zones. - Highlights: • 259 heat-related compensated illnesses were modeled with ambient temperature • An overall risk ratio of 1.419 (95% CI 1.326–1.520) for every 1 °C increase was found • Risk estimates were similar for men and women and by large age groups. • There were little lag effects (IRRs of 1.206 to 1.471 for every 1 °C increase)« less

  11. Daily mean temperature estimate at the US SUFRAD stations as an average of the maximum and minimum temperatures

    DOE PAGES

    Chylek, Petr; Augustine, John A.; Klett, James D.; ...

    2017-09-30

    At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less

  12. Daily mean temperature estimate at the US SUFRAD stations as an average of the maximum and minimum temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chylek, Petr; Augustine, John A.; Klett, James D.

    At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less

  13. Cryogenic temperature dependence of the voltage transfer characteristics of CMOS inverters

    NASA Astrophysics Data System (ADS)

    Deen, M. J.

    1988-08-01

    The voltage transfer characteristics of CMOS inverters have been studied in detail as a function of temperature between 77 and 300 K and supply voltages between 2 and 20 V. The logic levels, maximum gain, unity gain points, noise margins and other parameters, such as ( VH - VL), all showed a marked improvement as the temperature was lowered. In particular, for one inverter with a supply of 5 V, the maximum gain increased from 57 to 105, ( VIH - VIL) decreased from 0.50 to 0.28 V and ( VH - VL) increased from 4.46 to 4.75 V on decreasing the temperature from 300 to 77 K. For all the inverters, these and other parameters showed a smooth monotonic improvement as the temperature was lowered. These and the other results obtained can be qualitatively explained as due to an increase in the absolute values in the threshold voltages of the PMOS and NMOS transistors and to an increase in the carrier mobility as the temperature was lowered.

  14. Evaluation of extreme temperature events in northern Spain based on process control charts

    NASA Astrophysics Data System (ADS)

    Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.

    2018-02-01

    Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.

  15. [Finite element analysis of temperature field of retina by electrical stimulation with microelectrode array].

    PubMed

    Wang, Wei; Qiao, Qingli; Gao, Weiping; Wu, Jun

    2014-12-01

    We studied the influence of electrode array parameters on temperature distribution to the retina during the use of retinal prosthesis in order to avoid thermal damage to retina caused by long-term electrical stimulation. Based on real epiretinal prosthesis, a three-dimensional model of electrical stimulation for retina with 4 X 4 microelectrode array had been established using the finite element software (COMSOL Multiphysics). The steady-state temperature field of electrical stimulation of the retina was calculated, and the effects of the electrode parameters such as the distance between the electrode contacts, the materials and area of the electrode contact on temperature field were considered. The maximum increase in the retina steady temperature was about 0. 004 degrees C with practical stimulation current. When the distance between the electrode contacts was changed from 130 microm to 520 microm, the temperature was reduced by about 0.006 microC. When the contact radius was doubled from 130 microm to 260 microm, the temperature decrease was about 0.005 degrees C. It was shown that there were little temperature changes in the retina with a 4 x 4 epiretinal microelectrode array, reflecting the safety of electrical stimulation. It was also shown that the maximum temperature in the retina decreased with increasing the distance between the electrode contacts, as well as increasing the area of electrode contact. However, the change of the maximum temperature was very small when the distance became larger than the diameter of electrode contact. There was no significant difference in the effects of temperature increase among the different electrode materials. Rational selection of the distance between the electrode contacts and their area in electrode design can reduce the temperature rise induced by electrical stimulation.

  16. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations

    NASA Astrophysics Data System (ADS)

    Zhao, Junhua; Jiang, Jin-Wu; Rabczuk, Timon

    2013-12-01

    The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS2) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS2. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.

  17. Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China.

    PubMed

    Wu, Xiaocheng; Lang, Lingling; Ma, Wenjun; Song, Tie; Kang, Min; He, Jianfeng; Zhang, Yonghui; Lu, Liang; Lin, Hualiang; Ling, Li

    2018-07-01

    Dengue fever is an important infectious disease in Guangzhou, China; previous studies on the effects of weather factors on the incidence of dengue fever did not consider the linearity of the associations. This study evaluated the effects of daily mean temperature, relative humidity and rainfall on the incidence of dengue fever. A generalized additive model with splines smoothing function was performed to examine the effects of daily mean, minimum and maximum temperatures, relative humidity and rainfall on incidence of dengue fever during 2006-2014. Our analysis detected a non-linear effect of mean, minimum and maximum temperatures and relative humidity on dengue fever with the thresholds at 28°C, 23°C and 32°C for daily mean, minimum and maximum temperatures, 76% for relative humidity, respectively. Below the thresholds, there was a significant positive effect, the excess risk in dengue fever for each 1°C in the mean temperature at lag7-14days was 10.21%, (95% CI: 6.62% to 13.92%), 7.10% (95% CI: 4.99%, 9.26%) for 1°C increase in daily minimum temperature in lag 11days, and 2.27% (95% CI: 0.84%, 3.72%) for 1°C increase in daily maximum temperature in lag 10days; and each 1% increase in relative humidity of lag7-14days was associated with 1.95% (95% CI: 1.21% to 2.69%) in risk of dengue fever. Future prevention and control measures and epidemiology studies on dengue fever should consider these weather factors based on their exposure-response relationship. Copyright © 2018. Published by Elsevier B.V.

  18. Prediction of climate change in Brunei Darussalam using statistical downscaling model

    NASA Astrophysics Data System (ADS)

    Hasan, Dk. Siti Nurul Ain binti Pg. Ali; Ratnayake, Uditha; Shams, Shahriar; Nayan, Zuliana Binti Hj; Rahman, Ena Kartina Abdul

    2017-06-01

    Climate is changing and evidence suggests that the impact of climate change would influence our everyday lives, including agriculture, built environment, energy management, food security and water resources. Brunei Darussalam located within the heart of Borneo will be affected both in terms of precipitation and temperature. Therefore, it is crucial to comprehend and assess how important climate indicators like temperature and precipitation are expected to vary in the future in order to minimise its impact. This study assesses the application of a statistical downscaling model (SDSM) for downscaling General Circulation Model (GCM) results for maximum and minimum temperatures along with precipitation in Brunei Darussalam. It investigates future climate changes based on numerous scenarios using Hadley Centre Coupled Model, version 3 (HadCM3), Canadian Earth System Model (CanESM2) and third-generation Coupled Global Climate Model (CGCM3) outputs. The SDSM outputs were improved with the implementation of bias correction and also using a monthly sub-model instead of an annual sub-model. The outcomes of this assessment show that monthly sub-model performed better than the annual sub-model. This study indicates a satisfactory applicability for generation of maximum temperatures, minimum temperatures and precipitation for future periods of 2017-2046 and 2047-2076. All considered models and the scenarios were consistent in predicting increasing trend of maximum temperature, increasing trend of minimum temperature and decreasing trend of precipitations. Maximum overall trend of Tmax was also observed for CanESM2 with Representative Concentration Pathways (RCP) 8.5 scenario. The increasing trend is 0.014 °C per year. Accordingly, by 2076, the highest prediction of average maximum temperatures is that it will increase by 1.4 °C. The same model predicts an increasing trend of Tmin of 0.004 °C per year, while the highest trend is seen under CGCM3-A2 scenario which is 0.009 °C per year. The highest change predicted for the Tmin is therefore 0.9 °C by 2076. The precipitation showed a maximum trend of decrease of 12.7 mm year. It is also seen in the output using CanESM2 data that precipitation will be more chaotic with some reaching 4800 mm per year and also producing low rainfall about 1800 mm per year. All GCMs considered are consistent in predicting it is very likely that Brunei is expected to experience more warming as well as less frequent precipitation events but with a possibility of intensified and drastically high rainfalls in the future.

  19. Effect of Climate Change on Water Temperature and ...

    EPA Pesticide Factsheets

    There is increasing evidence that our planet is warming and this warming is also resulting in rising sea levels. Estuaries which are located at the interface between land and ocean are impacted by these changes. We used CE-QUAL-W2 water quality model to predict changes in water temperature as a function of increasing air temperatures and rising sea level for the Yaquina Estuary, Oregon (USA). Annual average air temperature in the Yaquina watershed is expected to increase about 0.3 deg C per decade by 2040-2069. An air temperature increase of 3 deg C in the Yaquina watershed is likely to result in estuarine water temperature increasing by 0.7 to 1.6 deg C. Largest water temperature increases are expected in the upper portion of the estuary, while sea level rise may ameliorate some of the warming in the lower portion of the estuary. Smallest changes in water temperature are predicted to occur in the summer, and maximum changes during the winter and spring. Increases in air temperature may result in an increase in the number of days per year that the 7-day maximum average temperature exceeds 18 deg C (criterion for protection of rearing and migration of salmonids and trout) as well as other water quality concerns. In the upstream portion of the estuary, a 4 deg C increase in air temperature is predicted to cause an increase of 40 days not meeting the temperature criterion, while in the lower estuary the increase will depend upon rate of sea level rise (rang

  20. Investigation of temperature and its indices under climate change scenarios over different regions of Rajasthan state in India

    NASA Astrophysics Data System (ADS)

    Sharma, Aditya; Sharma, Devesh; Panda, S. K.; Dubey, Swatantra Kumar; Pradhan, Rajani K.

    2018-02-01

    The ongoing increases in concentrations of atmospheric greenhouse gas will most likely affect global climate for the rest of this century. Global warming brings a huge provocation to society and human beings. Single extreme events and increased climate variability have a greater impact than long-term changes in the mean of climatic variables. This study analyzed the temperature projections for Rajasthan state, India using data obtain from two General Circulation Models (GFCM21 and HadCM3) for three Intergovernmental Panel on Climate Change (IPCC) Special Range of Emission Scenarios (SRES) A1B, A2, and B1. A 30 years of maximum (Tmax) and minimum (Tmin) temperature for the period 1976-2005 has been obtained from India Meteorological Department (IMD) and by using LARS-WG5 to generate the long-term weather series for three different periods i.e. 2011-2040 (2025s), 2041-2070 (2055s), and 2071-2100 (2085s). Further to determine the changes in extreme temperature events, the data for the baseline period and the future periods was represented by eight extreme temperature indices. Results illustrate that an increase in minimum and the maximum temperature are observed in all the three future periods. The average mean temperature for base period and three future periods over four regions of Rajasthan was observed highest in region 3 which shows an incessantly increased in mean temperature about 2.6 °C i.e. north-east and north-west part of Rajasthan. Two GCMs depicts that the incessant temperatures may be increase in the future and future maximum temperature in all the seasons varies from 2.43 °C to 4.27 °C in the direction from south to north of Rajasthan during 2071-2100. While for minimum temperature, the range of temperature changes varies from 0.23 °C to 1.42 °C from south-east to north-west of Rajasthan during 2011-2040. In the temperature indices, the number of tropical nights (TR20), warmest day (TX90p), warmest night (TN90p) and summer days (SU25) is expected to increase during all three future periods. The maximum changes was found in region 2 (39.4 days) and region 1 (38.8 days) during the 2071-2100 periods, followed by 2041-2070 and 2011-2040. In all the four regions, the annual occurrence of Cold Spells Duration Indicator (CSDI) decreased and Warm Spells Duration Indicator (WSDI) increased for all three future periods.

  1. A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101

    PubMed Central

    Lawson, Tracy; Geider, Richard J.

    2017-01-01

    Trichodesmium is a globally important marine diazotroph that accounts for approximately 60 − 80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt. PMID:28081236

  2. A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101.

    PubMed

    Boatman, Tobias G; Lawson, Tracy; Geider, Richard J

    2017-01-01

    Trichodesmium is a globally important marine diazotroph that accounts for approximately 60 - 80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt.

  3. Intra-Seasonal Variability of Climate and Peasant Perception of Climate Change in Massili Basin in Burkina Faso.

    NASA Astrophysics Data System (ADS)

    Kabore Bontogho, P. E.

    2014-12-01

    Knowledge of climate variability is relevant and challenging for farmers, decision makers and population in general. Ninety percent of Burkina Faso active population is engaged in agriculture and livestock, which accounts for 39% of gross domestic product. Located between the coordinates 1o15'-1o55' West and 12o17'- 12o50'North, Massili basin includes Ouagadougou the capital and has four dams, of which the most important dam, Loumbila is used for the capital water supply and irrigation. A change of climate may affect the water resources most likely limit the access to safe water. In order to characterize Massili basin climate variability, daily temperature and precipitation over 1960 to 2012 was analyzed using long-term records from the Ouagadougou synoptic station. By applying R-climdex and instat tools, indices were calculated by a consistent approach recommended by the World Meteorological Organization Expert Team on Climate Change Detection and Indices. The precipitation parameters computed were: the maximum 5-day precipitationamount; the number of days with precipitation amount ≥50 mm ; the maximum precipitation amount in consecutive wet days with RR≥ 1mm; the consecutives dry days;the extremely wet days ; the extreme precipitation in one day, the total precipitation in wet days; the temperature indices computed were : the maximum of the maximum daily temperature, the minimum of daily maximum temperature,the minimum of daily minimum temperature,the cold spell duration indices and the warm spell duration indicator. Results show a slight increase of the maximum 5-day precipitation, maximum precipitation amount in consecutive wet days with RR≥1mm, the onset delayed and the cessation is earlier meaning that the rainfall period is shortening. The total precipitationwas decreased in the basin but there is a slight increase in the occurrence of extremely wet days. CSDI is decreasing while warm spell duration indices are increasing. In parallel of the data analysis, a survey of 200 peasant spread within 20 villages was done to assess their perception on climate change. Farmers perception corroborate with the above results as their majority describes climate change as decrease of rainfall (79%) and increase of temperature (99%). In addition, all farmers agreed that more floods are occurring.

  4. Temperature dependence of an AlInP 63Ni betavoltaic cell

    NASA Astrophysics Data System (ADS)

    Butera, S.; Lioliou, G.; Krysa, A. B.; Barnett, A. M.

    2016-10-01

    In this paper, the performance of an Al0.52In0.48P 63Ni radioisotope cell is reported over the temperature range of -20 °C to 140 °C. A 400 μm diameter p+-i-n+ (2 μm i-layer) Al0.52In0.48P mesa photodiode was used as a conversion device in a novel betavoltaic cell. Dark current measurements on the Al0.52In0.48P detector showed that the saturation current increased increasing the temperature, while the ideality factor decreased. The effects of the temperature on the key cell parameters were studied in detail showing that the open circuit voltage, the maximum output power, and the internal conversion efficiency decreased when the temperature was increased. At -20 °C, an open circuit voltage and a maximum output power of 0.52 V and 0.28 pW, respectively, were measured.

  5. Changing climate and endangered high mountain ecosystems in Colombia.

    PubMed

    Ruiz, Daniel; Moreno, Hernán Alonso; Gutiérrez, María Elena; Zapata, Paula Andrea

    2008-07-15

    High mountain ecosystems are among the most sensitive environments to changes in climatic conditions occurring on global, regional and local scales. The article describes the changing conditions observed over recent years in the high mountain basin of the Claro River, on the west flank of the Colombian Andean Central mountain range. Local ground truth data gathered at 4150 m, regional data available at nearby weather stations, and satellite info were used to analyze changes in the mean and the variance, and significant trends in climatic time series. Records included minimum, mean and maximum temperatures, relative humidity, rainfall, sunshine, and cloud characteristics. In high levels, minimum and maximum temperatures during the coldest days increased at a rate of about 0.6 degrees C/decade, whereas maximum temperatures during the warmest days increased at a rate of about 1.3 degrees C/decade. Rates of increase in maximum, mean and minimum diurnal temperature range reached 0.6, 0.7, and 0.5 degrees C/decade. Maximum, mean and minimum relative humidity records showed reductions of about 1.8, 3.9 and 6.6%/decade. The total number of sunny days per month increased in almost 2.1 days. The headwaters exhibited no changes in rainfall totals, but evidenced an increased occurrence of unusually heavy rainfall events. Reductions in the amount of all cloud types over the area reached 1.9%/decade. In low levels changes in mean monthly temperatures and monthly rainfall totals exceeded + 0.2 degrees C and - 4% per decade, respectively. These striking changes might have contributed to the retreat of glacier icecaps and to the disappearance of high altitude water bodies, as well as to the occurrence and rapid spread of natural and man-induced forest fires. Significant reductions in water supply, important disruptions of the integrity of high mountain ecosystems, and dramatic losses of biodiversity are now a steady menu of the severe climatic conditions experienced by these fragile tropical environments.

  6. Time trends in minimum mortality temperatures in Castile-La Mancha (Central Spain): 1975-2003

    NASA Astrophysics Data System (ADS)

    Miron, Isidro J.; Criado-Alvarez, Juan José; Diaz, Julio; Linares, Cristina; Mayoral, Sheila; Montero, Juan Carlos

    2008-03-01

    The relationship between air temperature and human mortality is described as non-linear, with mortality tending to rise in response to increasingly hot or cold ambient temperatures from a given minimum mortality or optimal comfort temperature, which varies from some areas to others according to their climatic and socio-demographic characteristics. Changes in these characteristics within any specific region could modify this relationship. This study sought to examine the time trend in the maximum temperature of minimum organic-cause mortality in Castile-La Mancha, from 1975 to 2003. The analysis was performed by using daily series of maximum temperatures and organic-cause mortality rates grouped into three decades (1975-1984, 1985-1994, 1995-2003) to compare confidence intervals ( p < 0.05) obtained by estimating the 10-yearly mortality rates corresponding to the maximum temperatures of minimum mortality calculated for each decade. Temporal variations in the effects of cold and heat on mortality were ascertained by means of ARIMA models (Box-Jenkins) and cross-correlation functions (CCF) at seven lags. We observed a significant decrease in comfort temperature (from 34.2°C to 27.8°C) between the first two decades in the Province of Toledo, along with a growing number of significant lags in the summer CFF (1, 3 and 5, respectively). The fall in comfort temperature is attributable to the increase in the effects of heat on mortality, due, in all likelihood, to the percentage increase in the elderly population.

  7. Comparison of the photothermal effects of 808nm gold nanorod and indocyanine green solutions using an 805nm diode laser

    NASA Astrophysics Data System (ADS)

    Hasanjee, Aamr M.; Zhou, Feifan; West, Connor; Silk, Kegan; Doughty, Austin; Bahavar, Cody F.; Chen, Wei R.

    2016-03-01

    Non-invasive laser immunotherapy (NLIT) is a treatment method for metastatic cancer which combines noninvasive laser irradiation with immunologically modified nanostructures to ablate a primary tumor and induce a systemic anti-tumor response. To further expand the development of NLIT, two different photosensitizing agents were compared: gold nanorods (GNR) with an optical absorption peak of 808 nm and indocyanine green (ICG) with an optical absorption peak of ~800 nm. Various concentrations of GNR and ICG solutions were irradiated at different power densities using an 805 nm diode laser, and the temperature of the solutions was monitored during irradiation using a thermal camera. For comparison, dye balls made up of a 1:1 volume ratio of gel solution to GNR or ICG solution were placed in phantom gels and were then irradiated using the 805 nm diode laser to imitate the effect of laser irradiation on in vivo tumors. Non-invasive laser irradiation of GNR solution for 2 minutes resulted in a maximum increase in temperature by 31.8 °C. Additionally, similar irradiation of GNR solution dye ball within phantom gel for 10 minutes resulted in a maximum temperature increase of 8.2 °C. Comparatively, non-invasive laser irradiation of ICG solution for 2 minutes resulted in a maximum increase in temperature by 28.0 °C. Similar irradiation of ICG solution dye ball within phantom gel for 10 minutes yielded a maximum temperature increase of only 3.4 °C. Qualitatively, these studies showed that GNR solutions are more effective photosensitizing agents than ICG solution.

  8. A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.

  9. How changes of climate extremes affect summer and winter crop yields and water productivity in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, D.; Cammarano, D.

    2017-12-01

    Modeling changes of crop production at regional scale is important to make adaptation measures for sustainably food supply under global change. In this study, we explore how changing climate extremes in the 20th and 21st century affect maize (summer crop) and wheat (winter crop) yields in an agriculturally important region: the southeast United States. We analyze historical (1950-1999) and projected (2006-2055) precipitation and temperature extremes by calculating the changes of 18 climate extreme indices using the statistically downscaled CMIP5 data from 10 general circulation models (GCMs). To evaluate how these climate extremes affect maize and wheat yields, historical baseline and projected maize and wheat yields under RCP4.5 and RCP8.5 scenarios are simulated using the DSSAT-CERES maize and wheat models driven by the same downscaled GCMs data. All of the changes are examined at 110 locations over the study region. The results show that most of the precipitation extreme indices do not have notable change; mean precipitation, precipitation intensity, and maximum 1-day precipitation are generally increased; the number of rainy days is decreased. The temperature extreme indices mostly showed increased values on mean temperature, number of high temperature days, diurnal temperature range, consecutive high temperature days, maximum daily maximum temperature, and minimum daily minimum temperature; the number of low temperature days and number of consecutive low temperature days are decreased. The conditional probabilistic relationships between changes in crop yields and changes in extreme indices suggested different responses of crop yields to climate extremes during sowing to anthesis and anthesis to maturity periods. Wheat yields and crop water productivity for wheat are increased due to an increased CO2 concentration and minimum temperature; evapotranspiration, maize yields, and crop water productivity for wheat are decreased owing to the increased temperature extremes. We found the effects of precipitation changes on both yields are relatively uncertain.

  10. Temperature effects on gallium arsenide 63Ni betavoltaic cell.

    PubMed

    Butera, S; Lioliou, G; Barnett, A M

    2017-07-01

    A GaAs 63 Ni radioisotope betavoltaic cell is reported over the temperature range 70°C to -20°C. The temperature effects on the key cell parameters were investigated. The saturation current decreased with decreased temperature; whilst the open circuit voltage, the short circuit current, the maximum power and the internal conversion efficiency values decreased with increased temperature. A maximum output power and an internal conversion efficiency of 1.8pW (corresponding to 0.3μW/Ci) and 7% were observed at -20°C, respectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Is applicable thermodynamics of negative temperature for living organisms?

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2017-11-01

    During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature

  12. A new thermal model for bone drilling with applications to orthopaedic surgery.

    PubMed

    Lee, JuEun; Rabin, Yoed; Ozdoganlar, O Burak

    2011-12-01

    This paper presents a new thermal model for bone drilling with applications to orthopaedic surgery. The new model combines a unique heat-balance equation for the system of the drill bit and the chip stream, an ordinary heat diffusion equation for the bone, and heat generation at the drill tip, arising from the cutting process and friction. Modeling of the drill bit-chip stream system assumes an axial temperature distribution and a lumped heat capacity effect in the transverse cross-section. The new model is solved numerically using a tailor-made finite-difference scheme for the drill bit-chip stream system, coupled with a classic finite-difference method for the bone. The theoretical investigation addresses the significance of heat transfer between the drill bit and the bone, heat convection from the drill bit to the surroundings, and the effect of the initial temperature of the drill bit on the developing thermal field. Using the new model, a parametric study on the effects of machining conditions and drill-bit geometries on the resulting temperature field in the bone and the drill bit is presented. Results of this study indicate that: (1) the maximum temperature in the bone decreases with increased chip flow; (2) the transient temperature distribution is strongly influenced by the initial temperature; (3) the continued cooling (irrigation) of the drill bit reduces the maximum temperature even when the tip is distant from the cooled portion of the drill bit; and (4) the maximum temperature increases with increasing spindle speed, increasing feed rate, decreasing drill-bit diameter, increasing point angle, and decreasing helix angle. The model is expected to be useful in determination of optimum drilling conditions and drill-bit geometries. Copyright © 2011. Published by Elsevier Ltd.

  13. Temperature and molecular-weight dependences of acoustic behaviors of polystyrene studied using Brillouin spectroscopy

    NASA Astrophysics Data System (ADS)

    Oh, Soo Han; Lee, Byoung Wan; Ko, Jae-Hyeon; Lee, Hyeonju; Park, Jaehoon; Ko, Young Ho; Kim, Kwang Joo

    2017-04-01

    The acoustic properties of three polystyrene polymers with different molecular weights were investigated as a function of temperature by using Brillouin light scattering. The longitudinal sound velocity showed a change in the slope, which depended on the molecular weight, at the glass transition temperature. The absorption coefficient exhibited a maximum above the glass transition temperature, and the maximum temperature became higher as the molecular weight was increased. Comparison with previous acoustic studies on polystyrene indicate that a substantial frequency dispersion caused by strong coupling between the longitudinal acoustic waves and the segmental motions exists in the high-temperature range.

  14. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    2015-11-01

    Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.

  15. Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales.

    PubMed

    Gilman, Sarah E; Wethey, David S; Helmuth, Brian

    2006-06-20

    Global climate change is expected to have broad ecological consequences for species and communities. Attempts to forecast these consequences usually assume that changes in air or water temperature will translate into equivalent changes in a species' organismal body temperature. This simple change is unlikely because an organism's body temperature is determined by a complex series of interactions between the organism and its environment. Using a biophysical model, validated with 5 years of field observations, we examined the relationship between environmental temperature change and body temperature of the intertidal mussel Mytilus californianus over 1,600 km of its geographic distribution. We found that at all locations examined simulated changes in air or water temperature always produced less than equivalent changes in the daily maximum mussel body temperature. Moreover, the magnitude of body temperature change was highly variable, both within and among locations. A simulated 1 degrees C increase in air or water temperature raised the maximum monthly average of daily body temperature maxima by 0.07-0.92 degrees C, depending on the geographic location, vertical position, and temperature variable. We combined these sensitivities with predicted climate change for 2100 and calculated increases in monthly average maximum body temperature of 0.97-4.12 degrees C, depending on location and climate change scenario. Thus geographic variation in body temperature sensitivity can modulate species' experiences of climate change and must be considered when predicting the biological consequences of climate change.

  16. Stream shading, summer streamflow and maximum water temperature following intense wildfire in headwater streams

    Treesearch

    Michael Amaranthus; Howard Jubas; David Arthur

    1989-01-01

    Adjacent headwater streams were monitored for postfire shade, summer streamflow and maximum water temperature following the 40,000 ha Silver Complex fire in southern Oregon. Average postfire shade (30 percent) for the three streams was considerably less than prefire shade (est.>90 percent). Dramatic increases in direct solar radiation resulted in large but variable...

  17. Production test IP-376-D, Supplement B Irradiation of MGCR-HDR-3 Test Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baars, R.E.

    The objective of this supplement to PT-IP-376-D, Irradiation of MGCR-HDR-3 Test Element is to authorize 1000 hours of operation at a maximum test specimen surface temperature of 1700 F. The original production test authorized a test duration of four months at a maximum specimen surface temperature of 1500 F; supplement A authorized extension of the test duration to ten months. The desired increase in surface temperature is requested to demonstrate the general feasibility of operation of the fuel element at 1700 F, and to obtain specific information on the performance of Hastelloy-X cladding and fuel bodies. The increased temperature hasmore » been approved by the Atomic Energy Commission.« less

  18. Geo-spatial analysis of temporal trends of temperature and its extremes over India using daily gridded (1°×1°) temperature data of 1969-2005

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Seshasai, M. V. R.; Rao, S. V. C. Kameswara; Dadhwal, V. K.

    2017-10-01

    Daily gridded (1°×1°) temperature data (1969-2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season ( kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann-Kendall statistics ( α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test ( α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02-0.04 °C year-1) were found to be higher than that of maximum temperature (0.01-0.02 °C year-1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.

  19. Physical Limitations of Phosphor layer thickness and concentration for White LEDs.

    PubMed

    Tan, Cher Ming; Singh, Preetpal; Zhao, Wenyu; Kuo, Hao-Chung

    2018-02-05

    Increasing phosphor layer thickness and concentration can enhance the lumen flux of white LED (W-LED). In this work, we found that increasing the phosphor layer thickness and concentration can increase its temperature, and there is also a maximum thickness and concentration beyond which their increase will not lead to lumen increase, but only temperature increase. Higher thickness and higher concentration also results in warm light instead of White light. The maximum thickness and concentration are found to be limited by the scattering of light rays with higher % decrease of blue light rays than the yellow light rays. The results obtained in this work can also be used to compute the temperature and thermo-mechanical stress distribution of an encapsulated LED, demonstrating its usefulness to the design of encapsulated LED packages. Simulation software like ANSYS and TracePro are used extensively to verify the root cause mechanisms.

  20. Vegetation greenness impacts on maximum and minimum temperatures in northeast Colorado

    USGS Publications Warehouse

    Hanamean, J. R.; Pielke, R.A.; Castro, C. L.; Ojima, D.S.; Reed, Bradley C.; Gao, Z.

    2003-01-01

    The impact of vegetation on the microclimate has not been adequately considered in the analysis of temperature forecasting and modelling. To fill part of this gap, the following study was undertaken.A daily 850–700 mb layer mean temperature, computed from the National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis, and satellite-derived greenness values, as defined by NDVI (Normalised Difference Vegetation Index), were correlated with surface maximum and minimum temperatures at six sites in northeast Colorado for the years 1989–98. The NDVI values, representing landscape greenness, act as a proxy for latent heat partitioning via transpiration. These sites encompass a wide array of environments, from irrigated-urban to short-grass prairie. The explained variance (r2 value) of surface maximum and minimum temperature by only the 850–700 mb layer mean temperature was subtracted from the corresponding explained variance by the 850–700 mb layer mean temperature and NDVI values. The subtraction shows that by including NDVI values in the analysis, the r2 values, and thus the degree of explanation of the surface temperatures, increase by a mean of 6% for the maxima and 8% for the minima over the period March–October. At most sites, there is a seasonal dependence in the explained variance of the maximum temperatures because of the seasonal cycle of plant growth and senescence. Between individual sites, the highest increase in explained variance occurred at the site with the least amount of anthropogenic influence. This work suggests the vegetation state needs to be included as a factor in surface temperature forecasting, numerical modeling, and climate change assessments.

  1. Jet impingement heat transfer enhancement for the GPU-3 Stirling engine

    NASA Technical Reports Server (NTRS)

    Johnson, D. C.; Congdon, C. W.; Begg, L. L.; Britt, E. J.; Thieme, L. G.

    1981-01-01

    A computer model of the combustion-gas-side heat transfer was developed to predict the effects of a jet impingement system and the possible range of improvements available. Using low temperature (315 C (600 F)) pretest data in an updated model, a high temperature silicon carbide jet impingement heat transfer system was designed and fabricated. The system model predicted that at the theoretical maximum limit, jet impingement enhanced heat transfer can: (1) reduce the flame temperature by 275 C (500 F); (2) reduce the exhaust temperature by 110 C (200 F); and (3) increase the overall heat into the working fluid by 10%, all for an increase in required pumping power of less than 0.5% of the engine power output. Initial tests on the GPU-3 Stirling engine at NASA-Lewis demonstrated that the jet impingement system increased the engine output power and efficiency by 5% - 8% with no measurable increase in pumping power. The overall heat transfer coefficient was increased by 65% for the maximum power point of the tests.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingham, J.G.

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33%more » of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.« less

  3. Intrapulpal Temperature Increases Caused by 445-nm Diode Laser-Assisted Debonding of Self-Ligating Ceramic Brackets During Simulated Pulpal Fluid Circulation.

    PubMed

    Stein, Steffen; Wenzler, Johannes; Hellak, Andreas; Schauseil, Michael; Korbmacher-Steiner, Heike; Braun, Andreas

    2018-04-01

    This study investigated temperature increases in dental pulp resulting from laser-assisted debonding of ceramic brackets using a 445-nm diode laser. Eighteen ceramic brackets were bonded in standardized manner to 18 caries-free human third molars. Pulpal fluid circulation was simulated by pumping distilled water at 37°C through the pulp chamber. The brackets were irradiated with a 445-nm diode laser. Temperatures were measured using a thermal camera at points P1 (center of the pulp) and P2 (in the hard dental tissue) at the baseline (T0), at the start and end of laser application (T1 and T2), and the maximum during the sequence (T max ). Significant differences in the temperatures measured at P1 and P2 were observed among T0, T1, T2, and T max . Significant increases in temperature were noted at points P1 and P2, between T1 and T2, T1 and T max , and T2 and T max . The maximum P2 values were significantly higher than at P1. The maximum temperature increase measured in the pulp was 2.23°C, lower than the critical threshold of 5.5°C. On the basis of the laser settings used, there is no risk to the vitality of dental pulp during laser-assisted debonding of ceramic brackets with a 445-nm diode laser.

  4. Climatic factors and community - associated methicillin-resistant Staphylococcus aureus skin and soft-tissue infections - a time-series analysis study.

    PubMed

    Sahoo, Krushna Chandra; Sahoo, Soumyakanta; Marrone, Gaetano; Pathak, Ashish; Lundborg, Cecilia Stålsby; Tamhankar, Ashok J

    2014-08-29

    Skin and soft tissue infections caused by Staphylococcus aureus (SA-SSTIs) including methicillin-resistant Staphylococcus aureus (MRSA) have experienced a significant surge all over the world. Changing climatic factors are affecting the global burden of dermatological infections and there is a lack of information on the association between climatic factors and MRSA infections. Therefore, association of temperature and relative humidity (RH) with occurrence of SA-SSTIs (n = 387) and also MRSA (n = 251) was monitored for 18 months in the outpatient clinic at a tertiary care hospital located in Bhubaneswar, Odisha, India. The Kirby-Bauer disk diffusion method was used for antibiotic susceptibility testing. Time-series analysis was used to investigate the potential association of climatic factors (weekly averages of maximum temperature, minimum temperature and RH) with weekly incidence of SA-SSTIs and MRSA infections. The analysis showed that a combination of weekly average maximum temperature above 33 °C coinciding with weekly average RH ranging between 55% and 78%, is most favorable for the occurrence of SA-SSTIs and MRSA and within these parameters, each unit increase in occurrence of MRSA was associated with increase in weekly average maximum temperature of 1.7 °C (p = 0.044) and weekly average RH increase of 10% (p = 0.097).

  5. Igniter adapter-to-igniter chamber deflection test

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Testing was performed to determine the maximum RSRM igniter adapter-to-igniter chamber joint deflection at the crown of the inner joint primary seal. The deflection data was gathered to support igniter inner joint gasket resiliency predictions which led to launch commit criteria temperature determinations. The proximity (deflection) gage holes for the first test (Test No. 1) were incorrectly located; therefore, the test was declared a non-test. Prior to Test No. 2, test article configuration was modified with the correct proximity gage locations. Deflection data were successfully acquired during Test No. 2. However, the proximity gage deflection measurements were adversely affected by temperature increases. Deflections measured after the temperature rise at the proximity gages were considered unreliable. An analysis was performed to predict the maximum deflections based on the reliable data measured before the detectable temperature rise. Deflections to the primary seal crown location were adjusted to correspond to the time of maximum expected operating pressure (2,159 psi) to account for proximity gage bias, and to account for maximum attach and special bolt relaxation. The maximum joint deflection for the igniter inner joint at the crown of the primary seal, accounting for all significant correction factors, was 0.0031 in. (3.1 mil). Since the predicted (0.003 in.) and tested maximum deflection values were sufficiently close, the launch commit criteria was not changed as a result of this test. Data from this test should be used to determine if the igniter inner joint gasket seals are capable of maintaining sealing capability at a joint displacement of (1.4) x (0.0031 in.) = 0.00434 inches. Additional testing should be performed to increase the database on igniter deflections and address launch commit criteria temperatures.

  6. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  7. Association between temperature and death in residential populations in Shanghai

    NASA Astrophysics Data System (ADS)

    Hsia, L. B.; Lu, J. K.

    1988-03-01

    The study is focused on patterns of daily deaths in Shanghai for the period from 1 May 1979 to 30 April 1980. From May to September the deaths in all age groups are lower, but increase gradually from October and reach to a peak in February. This confirms results found in other countries, namely the death rate is increased in winter. The peak for the population aged over 70 is the highest of the three different age groups. Correlation analyses were carried out on three temperature parameters (daily minimum, maximum and mean temperatures) and six categories of death (heart disease, coronary heart disease, cerebrovascular disease, cancer, respiratory disease and total deaths). The results reveal that the average daily temperature is very significant for the six categories of death. There are three correlations: straight line relationship, parabolic relationship and exponential relationship. These different types arise from the different morbidity rates. Death from the different disease is also increased during days when the daily maximum temperature is over 35° C or the daily minimum temperature is below 0°C. This shows, in general, that days of extreme temperature lead to an increase in the death rate.

  8. Anomalous and non-Gaussian diffusion in Hertzian spheres

    NASA Astrophysics Data System (ADS)

    Ouyang, Wenze; Sun, Bin; Sun, Zhiwei; Xu, Shenghua

    2018-09-01

    By means of molecular dynamics simulations, we study the non-Gaussian diffusion in the fluid of Hertzian spheres. The time dependent non-Gaussian parameter, as an indicator of the dynamic heterogeneity, is increased with the increasing of temperature. When the temperature is high enough, the dynamic heterogeneity becomes very significant, and it seems counterintuitive that the maximum of non-Gaussian parameter and the position of its peak decrease monotonically with the increasing of density. By fitting the curves of self intermediate scattering function, we find that the character relaxation time τα is surprisingly not coupled with the time τmax where the non-Gaussian parameter reaches to a maximum. The intriguing features of non-Gaussian diffusion at high enough temperatures can be associated with the weakly correlated mean-field behavior of Hertzian spheres. Especially the time τmax is nearly inversely proportional to the density at extremely high temperatures.

  9. Science and software support for spacecraft solar occultation experiments

    NASA Technical Reports Server (NTRS)

    Hessameddin, G.; Becher, J.

    1982-01-01

    The temperature dependence of absorption coefficients of ozone was studied between 7567 A and 3630 A. When the gas was cooled from room temperature to -108 C, an overall increase in the absorption coefficients was noticed. The maximum increase of 5% occurred at lambda = 6020 A. In general, the absorption is linearly dependent on temperature.

  10. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.

    PubMed

    Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash

    2017-03-01

    High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.

  11. Outbursts in Symbiotic Binaries

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Kenyon, Scott J.

    2003-01-01

    Two models have been proposed for the outbursts of symbiotic stars. In the thermonuclear model, outbursts begin when the hydrogen burning shell of a hot white dwarf reaches a critical mass. After a rapid increase in the luminosity and effective temperature, the white dwarf evolves at constant luminosity to lower effective temperatures, remains at optical maximum for several years, and then returns to quiescence along a white dwarf cooling curve. In disk instability models, the brightness rises when the accretion rate from the disk onto the central white dwarf abruptly increases by factors of 5-20. After a few month to several year period at maximum, both the luminosity and the effective temperature of the disk decline as the system returns to quiescence.

  12. Effect of Structural Parameters on the Combustion Performance of Platelet Engines

    NASA Astrophysics Data System (ADS)

    Liang, Yin; Liu, Weiqiang

    2017-12-01

    Numerical simulation was adopted to determine its flow and combustion characteristics by using gaseous methane and oxygen as the main propellants, the effects of nozzle space and expanding angle are examined for the single element splash platelet injector. Navier-Stokes (N-S) equations were solved for the gas-gas flow field with a reduced mechanism involving 9 species and 1 reaction. Results indicated that large corner recirculation zones are produced in the combustor head. This phenomenon consequently enhances mixing and stabilizes combustion, but non-uniformity in temperature contour is observed in the combustor head. Recirculation zone decreases as nozzle space increases, which induces the decrease of maximum temperature and high temperature regions, but it has little influence on the combustion efficiency and combustion length. The combustion length and maximum temperature decrease initially and then increase as expanding angle increases. Conversely, a D value of 2.4 mm and γ value of 60° are selected for the future works because of the shortest combustion length and minimum temperature of the injector faceplate.

  13. Global temperature change

    PubMed Central

    Hansen, James; Sato, Makiko; Ruedy, Reto; Lo, Ken; Lea, David W.; Medina-Elizade, Martin

    2006-01-01

    Global surface temperature has increased ≈0.2°C per decade in the past 30 years, similar to the warming rate predicted in the 1980s in initial global climate model simulations with transient greenhouse gas changes. Warming is larger in the Western Equatorial Pacific than in the Eastern Equatorial Pacific over the past century, and we suggest that the increased West–East temperature gradient may have increased the likelihood of strong El Niños, such as those of 1983 and 1998. Comparison of measured sea surface temperatures in the Western Pacific with paleoclimate data suggests that this critical ocean region, and probably the planet as a whole, is approximately as warm now as at the Holocene maximum and within ≈1°C of the maximum temperature of the past million years. We conclude that global warming of more than ≈1°C, relative to 2000, will constitute “dangerous” climate change as judged from likely effects on sea level and extermination of species. PMID:17001018

  14. Elevated temperature mechanical properties of line pipe steels

    NASA Astrophysics Data System (ADS)

    Jacobs, Taylor Roth

    The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow strength and strain hardening occurred increased with increasing strain rate. Strain rate sensitivities were measured using flow stress data from multiple tensile tests and strain rate jump tests on single tensile samples. In flow stress strain rate sensitivity measurements, a transition from negative to positive strain rate sensitivity was observed in the X52 steel at approximately 275--300 °C, and negative strain rate sensitivity was observed at all elevated temperature testing conditions in the X70 steels. In jump test strain rate sensitivity measurements, all four steels exhibited a transition from negative to positive strain rate sensitivity at approximately 250--275 °C. Anisotropic deformation in the X70 steels was observed by measuring the geometry of the fracture surfaces of the tensile samples. The degree of anisotropy changed as a function of temperature and minima in the degree of anisotropy was observed at approximately 300 °C for all three X70 steels. DSA was verified as an active strengthening mechanism at elevated temperatures for all line pipe steels tested resulting in serrated yielding, a minimum in ductility as a function of temperature, a maximum in flow strength as a function of temperature, a maximum in average strain hardening rate as a function of temperature, and negative strain rate sensitivities. Mechanical properties of the X70 steels exhibited different functionality with respect to temperature compared to the X52 steels at temperatures greater than 250 ºC. Changes in the acicular ferrite microstructure during deformation such as precipitate coarsening, dynamic precipitation, tempering of martensite in martensite-austenite islands, or transformation of retained austenite could account for differences in tensile property functionality between the X52 and X70 steels. Long term aging under load (LTA) testing of the X70 steels resulted in increased yield strength compared to standard elevated temperature tensile tests at all temperatures as a result of static strain aging. LTA specimen ultimate tensile strengths (UTS) increased slightly at 200 °C, were comparable at 275 °C, and decreased significantly at 350 °C when compared to as-received (standard) tests at 350 °C. Observed reductions in UTS were a result of decreased strain hardening in the LTA specimens compared to standard tensile specimens. Ideal elevated temperature operating conditions (based on tensile properties) for the X70 line pipe steels in the temperature range relevant to the steam assisted gravity drainage process are around 275--325 °C at the strain rates tested. In the temperature range of 275--325 °C the X70 steels exhibited continuous plastic deformation, a maximum in ductility, a maximum in flow stress, improved strain hardening compared to intermediate temperatures, reduced anisotropic deformation, and after extended use at elevated temperatures, yield strength increases with little change in UTS.

  15. Kondo temperature and Heavy Fermion behavior in Yb1-xYxCuAl series of alloys

    NASA Astrophysics Data System (ADS)

    Rojas, D. P.; Gandra, F. G.; Medina, A. N.; Fernández Barquín, L.; Gómez Sal, J. C.

    2018-05-01

    Results on x-ray diffraction, electrical resistivity, specific heat and magnetization on the Yb1-xYxCuAl series of compounds are reported. The analysis of the x-ray data shows the increase of the unit cell volume with the Y dilution. The electrical resistivity shows an evolution from Kondo lattice regime for x ≤ 0.6 to single impurity behavior for x = 0.8 and 0.94. The electronic coefficient γ shows values of Heavy Fermion systems along the series for 0 ≤ x < 1 . On the other hand, dc magnetic susceptibility measurements show typical curves of intermediate valence systems with a maximum around 25 K. Below this maximum, the values of low temperature susceptibility (χ (0)) decrease with the increase of Y content. From the dependence of χ (0) and γ upon Y substitution, an increase of 12% of the Kondo temperature (TK) for x = 0.8 alloy respect to the reference YbCuAl (x = 0) is estimated. This is further supported by the evolution of the temperature of the maximum in the magnetic contribution of the specific heat. The overall results can be explained by the increase of the hybridization as consequence of negative pressure effects obtained by the chemical substitution of Yb by Y, thus leading to the increase of TK, in agreement with the Doniach's diagram.

  16. Preliminary tests of an advanced high-temperature combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.

    1983-01-01

    A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.

  17. Observed changes of temperature extremes during 1960-2005 in China: natural or human-induced variations?

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Jianfeng; David Chen, Yongqin; Chen, Xiaohong

    2011-12-01

    The purpose of this study was to statistically examine changes of surface air temperature in time and space and to analyze two factors potentially influencing air temperature changes in China, i.e., urbanization and net solar radiation. Trends within the temperature series were detected by using Mann-Kendall trend test technique. The scientific problem this study expected to address was that what could be the role of human activities in the changes of temperature extremes. Other influencing factors such as net solar radiation were also discussed. The results of this study indicated that: (1) increasing temperature was observed mainly in the northeast and northwest China; (2) different behaviors were identified in the changes of maximum and minimum temperature respectively. Maximum temperature seemed to be more influenced by urbanization, which could be due to increasing urban albedo, aerosol, and air pollutions in the urbanized areas. Minimum temperature was subject to influences of variations of net solar radiation; (3) not significant increasing and even decreasing temperature extremes in the Yangtze River basin and the regions south to the Yangtze River basin could be the consequences of higher relative humidity as a result of increasing precipitation; (4) the entire China was dominated by increasing minimum temperature. Thus, we can say that the warming process of China was reflected mainly by increasing minimum temperature. In addition, consistently increasing temperature was found in the upper reaches of the Yellow River basin, the Yangtze River basin, which have the potential to enhance the melting of permafrost in these areas. This may trigger new ecological problems and raise new challenges for the river basin scale water resource management.

  18. Analytical investigation of chord size and cooling methods on turbine blade cooling requirements. Book 1: Sections 1 through 8 and appendixes A through I

    NASA Technical Reports Server (NTRS)

    Faulkner, F. E.

    1971-01-01

    A study was conducted to determine the effect of chord size on air cooled turbine blades. In the preliminary design phase, eight turbine blade cooling configurations in 0.75-in., 1.0-in., and 1.5-in. chord sizes were analyzed to determine the maximum turbine inlet temperature capabilities. A pin fin convection cooled configuration and a film-impingement cooled configuration were selected for a final design analysis in which the maximum turbine inlet temperature was determined as a function of the cooling air inlet temperature and the turbine inlet total pressure for each of the three chord sizes. The cooling air flow requirements were also determined for a varying cooling air inlet temperature with a constant turbine inlet temperature. It was determined that allowable turbine inlet temperature increases with increasing chord for the convection cooled and transpiration cooled designs, however, the film-convection cooled designs did not have a significant change in turbine inlet temperature with chord.

  19. Monitoring the body temperature of cows and calves using video recordings from an infrared thermography camera.

    PubMed

    Hoffmann, Gundula; Schmidt, Mariana; Ammon, Christian; Rose-Meierhöfer, Sandra; Burfeind, Onno; Heuwieser, Wolfgang; Berg, Werner

    2013-06-01

    The aim of this study was to assess the variability of temperatures measured by a video-based infrared camera (IRC) in comparison to rectal and vaginal temperatures. The body surface temperatures of cows and calves were measured contactless at different body regions using videos from the IRC. Altogether, 22 cows and 9 calves were examined. The differences of the measured IRC temperatures among the body regions, i.e. eye (mean: 37.0 °C), back of the ear (35.6 °C), shoulder (34.9 °C) and vulva (37.2 °C), were significant (P < 0.01), except between eye and vulva (P = 0.99). The quartile ranges of the measured IRC temperatures at the 4 above mentioned regions were between 1.2 and 1.8 K. Of the investigated body regions the eye and the back of the ear proved to be suitable as practical regions for temperature monitoring. The temperatures of these 2 regions could be gained by the use of the maximum temperatures of the head and body area. Therefore, only the maximum temperatures of both areas were used for further analysis. The data analysis showed an increase for the maximum temperature measured by IRC at head and body area with an increase of rectal temperature in cows and calves. The use of infrared thermography videos has the advantage to analyze more than 1 picture per animal in a short period of time, and shows potential as a monitoring system for body temperatures in cattle.

  20. Production of a nitrogeneous humic fertilizer by the oxidation-ammoniation of lignite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coca, J.

    1984-12-01

    Two lignite samples were oxidised with HNO/sub 3/ (20% wt) at 75 C and treated afterwards with NH/sub 3/ in a fluidised-bed reactor in a temperature range 100-375 C. The effects of temperature, NH/sub 3/ flow rate, and reaction time on the total N/sub 2/ content of the product are reported. The product contained 7-13% wt of total N/sub 2/ which increased as the ammoniation temperature increased. Soil nitrification measurements of the N/sub 2/-enriched lignites showed that the maximum conversion to nitrates and rate of nitrification are exhibited by the product obtained at the lowest ammoniation temperature, i.e. 100 C.more » Maximum conversion to nitrates at that temperature was 45%, which compares well with similar products such as ammoniated peat (35%) and ammonium nitrohumates (45%).« less

  1. Iridium/Rhenium Parts For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Harding, John T.; Wooten, John R.

    1991-01-01

    Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.

  2. High-temperature responses of North American cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.D.; Didden-Zopfy, B.; Nobel, P.S.

    1984-04-01

    High-temperature tolerances of 14 species of North American cacti were investigated. A reduction in the proportion of chlorenchyma cells taking up a vital stain (neutral red) and reduced nocturnal acid accumulation were used as indicators of high-temperature damage. All species tolerated relatively high tissue temperatures, the mean maximum tolerance being 64/sup 0/C, with an absolute maximum of 69/sup 0/ for two species of ferocactus. Such tissue tolerances to high temperature may be unsurpassed in vascular plants. Morphological features can affect tissue temperatures. Specifically, thin-stemmed species such as the cylindropuntias attain lower maximum temperatures under identical microclimatic conditions than do moremore » massive species; they also tend to be less tolerant of high-temperature stress. Stem diameter changes of three species of columnar ceriod cacti along a Sonoran Desert latitudinal transect were previously attributed to adaptation to progressively colder temperatures northward. Such changes can also be interpreted as a morphological adaptation to high temperatures, particularly in the southern Sonoran Desert. Interspecific differences in high-temperature tolerance may account for distributional differences among other species. Acclimation of high-temperature tolerances in response to increasing day/night air temperatures was observed in all 14 species, especially at higher growh temperatures. From 40/sup 0/ day/30/sup 0/ night to 50/sup 0//40/sup 0/, the tolerable tissue temperatures increased an average of 6/sup 0/. Half-times for the acclimation shifts were 1-3d. Although cacti attain extremely high tissue temperatures in desert habitats, tolerance of high temperatures and pronounced acclimation potential allow them to occur in some of the hottest habitats in North America.« less

  3. Influence of shoulder diameter on Temperature and Z-parameter during friction stir welding of Al 6082 alloy

    NASA Astrophysics Data System (ADS)

    Kishore Mugada, Krishna; Adepu, Kumar

    2018-03-01

    In this research article, the effect of increasing shoulder diameter on temperature and Zener Holloman (Z)-parameter for friction stir butt welded AA6082-T6 was studied. The temperature at the Advancing side (AS) of weld was measured using the K-Type thermocouple at four different equidistant locations. The developed analytical model is utilized to predict the maximum temperature (Tpeak) during the welding. The strain, strain rate, Z- Parameter for all the shoulders at four distinct locations were evaluated. The temperature increases with increase in shoulder diameter and the maximum temperature was recorded for 24mm shoulder diameter. The computed log Z values are compared with the available process map and results shows that the values are in stable flow region and near to stir zone the values are in Dynamic recrystallization region (DRX). The axial load (Fz) and total tool torque (N-m) are found to be higher for shoulder diameter of 21 mm i.e., 6.3 kN and 56.5 N-m respectively.

  4. Changes in heat waves indices in Romania over the period 1961-2015

    NASA Astrophysics Data System (ADS)

    Croitoru, Adina-Eliza; Piticar, Adrian; Ciupertea, Antoniu-Flavius; Roşca, Cristina Florina

    2016-11-01

    In the last two decades many climate change studies have focused on extreme temperatures as they have a significant impact on environment and society. Among the weather events generated by extreme temperatures, heat waves are some of the most harmful. The main objective of this study was to detect and analyze changes in heat waves in Romania based on daily observation data (maximum and minimum temperature) over the extended summer period (May-Sept) using a set of 10 indices and to explore the spatial patterns of changes. Heat wave data series were derived from daily maximum and minimum temperature data sets recorded in 29 weather stations across Romania over a 55-year period (1961-2015). In this study, the threshold chosen was the 90th percentile calculated based on a 15-day window centered on each calendar day, and for three baseline periods (1961-1990, 1971-2000, and 1981-2010). Two heat wave definitions were considered: at least three consecutive days when maximum temperature exceeds 90th percentile, and at least three consecutive days when minimum temperature exceeds 90th percentile. For each of them, five variables were calculated: amplitude, magnitude, number of events, duration, and frequency. Finally, 10 indices resulted for further analysis. The main results are: most of the indices have statistically significant increasing trends; only one index for one weather station indicated statistically significant decreasing trend; the changes are more intense in case of heat waves detected based on maximum temperature compared to those obtained for heat waves identified based on minimum temperature; western and central regions of Romania are the most exposed to increasing heat waves.

  5. Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content.

    PubMed

    Kahraman, Kevser; Koksel, Hamit; Ng, Perry K W

    2015-05-01

    The optimum reaction conditions (temperature and pH) for the preparation of cross-linked (CL) corn and wheat starches with maximum resistant starch (RS) content were investigated by using response surface methodology (RSM). According to the preliminary results, five levels were selected for reaction temperature (38-70 °C) and pH (10-12) in the main study. RS contents of the CL corn and wheat starch samples increased with increasing temperature and pH, and pH had a greater influence on RS content than had temperature. The maximum RS content (with a maximum p value of 0.4%) was obtained in wheat starch cross-linked at 38 °C and pH 12. In the case of CL corn starch, the optimum condition was 70 °C and pH 12. CL corn and wheat starch samples were also produced separately under the optimum conditions and their RS contents were 80.4% and 83.9%, respectively. These results were also in agreement with the values predicted by RSM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic.

    PubMed

    Stewart, M; Stafford, K J; Dowling, S K; Schaefer, A L; Webster, J R

    2008-03-18

    The possibility that pain can be detected from changes in eye temperature and heart rate variability (HRV) during disbudding was examined in thirty calves, randomly assigned to four treatments: 1) sham handling (control), 2) local anaesthetic (LA, cornual nerve injection) and sham disbudded, 3) sham LA and disbudded, 4) LA and disbudded. During a 40 min sampling period, maximum eye temperature, behavior and HRV parameters were recorded continuously. One week later, twelve disbudded calves were injected with adrenocorticotrophic hormone (ACTH) or saline and maximum eye temperature was recorded. There was a rapid drop in eye temperature during the 5 min following disbudding without LA (P<0.05). Eye temperature then increased and was higher than baseline over the remaining sampling period following both disbudding procedures (P<0.001), a response which could not be explained by increased physical activity LA increased eye temperature prior to disbudding (P<0.001). Heart rate increased (P<0.001) during the 5 min following disbudding with and without LA, however, LF/HF ratio only increased during this time (P<0.01) following disbudding without LA. Eye temperature did not change following ACTH, suggesting that hypothalamus-pituitary-adrenal axis (HPA) activity is not responsible for the changes in eye temperature following disbudding. The increase in LF/HF ratio following disbudding without LA suggests an acute sympathetic response to pain, which could be responsible for the drop in eye temperature via vasoconstriction. HRV and eye temperature together may be a useful non-invasive and more immediate index of pain than HPA activity alone.

  7. The effect of temperature and loading frequency on the converse piezoelectric response of soft PZT ceramics

    NASA Astrophysics Data System (ADS)

    Dapeng, Zhu; Qinghui, Jiang; Yingwei, Li

    2017-12-01

    The converse piezoelectric coefficient d 33 of soft PZT ceramics was measured from 20 °C to 150 °C under different loading frequency. Results showed that in the tested temperature range, the evolution of d 33 obeys the Rayleigh-law behavior. The influence of temperature on d 33 is a little complicated. For instance, the maximum d 33 was observed at 150 °C when the applied electric field E was at 0.1 kV mm-1. When E increased to 0.3 kV mm-1 and 0.4 kV mm-1, the maximum d 33 was observed at 120 °C and 100 °C, respectively. Such behaviors are rationalized by the evolution of the Rayleigh parameters d init and α. For d init, it increases as temperature increases. While for α, it first increases and then decreases with the increase of temperature due to the evolution of the spontaneous strain and the volume of the switched domains. In the tested loading frequency, d 33 decreased linearly with the logarithm of the frequency of electric field. With the increase of temperature, the influence of frequency on d 33 gradually weakened, implying that at high temperature, the motion of domain walls became active and the pinning effect of defects nearly disappeared.

  8. Study on the Effect of Thermal and Magnetic Stimulation by Measuring of the Peripheral Blood Flow and Skin Temperature

    NASA Astrophysics Data System (ADS)

    Kubota, Kouhei; Nuruki, Atsuo; Tamari, Youzou; Yunokuchi, Kazutomo

    Recently, the stiff shoulder accompanying the muscle fatigue becomes an issue of public concern. Therefore, we paid attention to the effect of the thermal and magnetic stimulation for the muscle fatigue. The maximum voluntary contraction has recovered significantly, and also peripheral blood flow has increased by stimulation. In order to evaluate if the thermal and magnetic stimulation has any effects, three parameters was measured, which are the maximum voluntary contraction, peripheral blood flow and skin temperature. The skin temperature, however, did not changed significantly.

  9. Chcanges in Germinability and Activities of Polyphenol Oxidase and Peroxidase in Seeds of Pentaclethramacrophylla During Lowtemperature Treatment

    NASA Astrophysics Data System (ADS)

    Udosen, I. R.; Nkang, A. E.; Sam, S. M.

    2012-07-01

    Activities of peroxidase (POD) and polyphenol Oxidase (PPO) were investigated in seeds of Pentaclethramacrophylla during low temperature treatment. The seeds from the small-sized fruits (variety A) and those of the big-sized fruits (variety B) showed high germination, with maximum germination values ranging between 60 ñ 90%. Low temperature treatment did not significantly (P< 0.5) affect maximum germination values. Activities of POD and PPO increased initially (2-4 days) but declined with prolonged (6ñ8 days) low temperature treatment.

  10. Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum.

    PubMed

    Currano, Ellen D; Wilf, Peter; Wing, Scott L; Labandeira, Conrad C; Lovelock, Elizabeth C; Royer, Dana L

    2008-02-12

    The Paleocene-Eocene Thermal Maximum (PETM, 55.8 Ma), an abrupt global warming event linked to a transient increase in pCO2, was comparable in rate and magnitude to modern anthropogenic climate change. Here we use plant fossils from the Bighorn Basin of Wyoming to document the combined effects of temperature and pCO2 on insect herbivory. We examined 5,062 fossil leaves from five sites positioned before, during, and after the PETM (59-55.2 Ma). The amount and diversity of insect damage on angiosperm leaves, as well as the relative abundance of specialized damage, correlate with rising and falling temperature. All reach distinct maxima during the PETM, and every PETM plant species is extensively damaged and colonized by specialized herbivores. Our study suggests that increased insect herbivory is likely to be a net long-term effect of anthropogenic pCO2 increase and warming temperatures.

  11. Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?

    NASA Astrophysics Data System (ADS)

    Trimmel, Heidelinde; Weihs, Philipp; Leidinger, David; Formayer, Herbert; Kalny, Gerda; Melcher, Andreas

    2018-01-01

    Global warming has already affected European rivers and their aquatic biota, and climate models predict an increase of temperature in central Europe over all seasons. We simulated the influence of expected changes in heat wave intensity during the 21st century on water temperatures of a heavily impacted pre-alpine Austrian river and analysed future mitigating effects of riparian vegetation shade on radiant and turbulent energy fluxes using the deterministic Heat Source model. Modelled stream water temperature increased less than 1.5 °C within the first half of the century. Until 2100, a more significant increase of around 3 °C in minimum, maximum and mean stream temperatures was predicted for a 20-year return period heat event. The result showed clearly that in a highly altered river system riparian vegetation was not able to fully mitigate the predicted temperature rise caused by climate change but would be able to reduce water temperature by 1 to 2 °C. The removal of riparian vegetation amplified stream temperature increases. Maximum stream temperatures could increase by more than 4 °C even in annual heat events. Such a dramatic water temperature shift of some degrees, especially in summer, would indicate a total shift of aquatic biodiversity. The results demonstrate that effective river restoration and mitigation require re-establishing riparian vegetation and emphasize the importance of land-water interfaces and their ecological functioning in aquatic environments.

  12. Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.

    NASA Astrophysics Data System (ADS)

    Yang, H. W.; Ouarda, T.

    2015-12-01

    This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.

  13. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    PubMed

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation, and hindered the spikelet degeneration.

  14. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    PubMed

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  15. [Up-conversion luminescent materials of Y2O3: RE(RE=Er or Er/Yb) prepared by sol-gel combustion synthesis].

    PubMed

    Han, Peng-de; Zhang, Le; Huang, Xiao-gu; Wang, Li-xi; Zhang, Qi-tu

    2010-11-01

    Y2O3 powders doped with rare-earth ions were synthesized by sol-gel combustion synthesis. Effects of different calcinating temperatures, Er+ doping concentration and Yb3+ doping concentration were investigated. It was shown that the single well crystallized Y2O3 powders could be obtained at 800 degrees C; as the calcinating temperature increased, the crystallinity and upconversion luminescence intensity were higher; the particle size was uniform around 1 microm at 900 degrees C; when Er3+ doping concentration was 1 mol%, the green upconversion luminescence intensity reached the maximum, but for red upconversion luminescence, when Er3+ doping concentration was 4 mol%, its luminescence intensity reached the maximum; as the ratio of Yb3+ to Er3+ was 4:1, the green emission intensity reached the maximum, while the red emission intensity was always increasing as Yb3+ doping concentration increased.

  16. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data

    NASA Technical Reports Server (NTRS)

    Munasinghe, L.; Jun, T.; Rind, D. H.

    2012-01-01

    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  17. Climatic Factors and Community — Associated Methicillin-Resistant Staphylococcus aureus Skin and Soft-Tissue Infections — A Time-Series Analysis Study

    PubMed Central

    Sahoo, Krushna Chandra; Sahoo, Soumyakanta; Marrone, Gaetano; Pathak, Ashish; Lundborg, Cecilia Stålsby; Tamhankar, Ashok J.

    2014-01-01

    Skin and soft tissue infections caused by Staphylococcus aureus (SA-SSTIs) including methicillin-resistant Staphylococcus aureus (MRSA) have experienced a significant surge all over the world. Changing climatic factors are affecting the global burden of dermatological infections and there is a lack of information on the association between climatic factors and MRSA infections. Therefore, association of temperature and relative humidity (RH) with occurrence of SA-SSTIs (n = 387) and also MRSA (n = 251) was monitored for 18 months in the outpatient clinic at a tertiary care hospital located in Bhubaneswar, Odisha, India. The Kirby-Bauer disk diffusion method was used for antibiotic susceptibility testing. Time-series analysis was used to investigate the potential association of climatic factors (weekly averages of maximum temperature, minimum temperature and RH) with weekly incidence of SA-SSTIs and MRSA infections. The analysis showed that a combination of weekly average maximum temperature above 33 °C coinciding with weekly average RH ranging between 55% and 78%, is most favorable for the occurrence of SA-SSTIs and MRSA and within these parameters, each unit increase in occurrence of MRSA was associated with increase in weekly average maximum temperature of 1.7 °C (p = 0.044) and weekly average RH increase of 10% (p = 0.097). PMID:25177823

  18. Heat wave phenomenon in southern Slovakia: long-term changes and variability of daily maximum air temperature in Hurbanovo within the 1901-2009 period

    NASA Astrophysics Data System (ADS)

    Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.

    2010-09-01

    Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave incidence in connection with macro scale circulation patterns in central European region.

  19. Climatic indicators over Catalonia during the last century

    NASA Astrophysics Data System (ADS)

    Busto, M.; Prohom, M.

    2010-09-01

    The Meteorological Service of Catalonia releases a yearly bulletin whose main objective is to try to detect climate trends over Catalonia during the last decades. Climate indicators are obtained from the analysis of historical daily air temperature, sea temperature and rainfall series. Those series have been first completed, analyzed for quality control and homogenized to ensure its final reliability. Regarding homogenization, monthly air temperature series have been tested and corrected according to the methodology proposed by Caussinus and Mestre (2004). For the two longest air temperature series, the calculated correction factors have been transferred to the daily values following Vincent et al. (2002) recommendations, while no significant inhomogeneities have been detected for precipitation series. The analysis of temperature trends, for the period 1950-2010, of 17 selected climatic series spread across the territory shows a common temperature increase between +0.19 to +0.24 °C/decade. This warming trend is uniform and no specific sub-regional trends are detected. Furthermore, the seasonal approach reveals that mean maximum temperature increases at a higher rate than mean minimum temperature. The summer temperature rise is the most significant, between +0.32 and +0.44 °C/decade, while autumn is the only season showing no significant positive trend. The summer maximum temperature shows the highest increase, exceeding +0.39 °C/decade in all the 17 series. The climatic extremes analysis of the longest Catalan series (Ebre Observatory in Roquetes, Tarragona, since 1905 and Fabra Observatory in Barcelona since 1913) reveals an increase in the number of summer days, tropical nights, minimum of maximum temperature, warm days and warm nights, and a decrease in the number of frost days, cold nights, cold days and cold spell duration indicator. Concerning precipitation, the only significant trend is the reduction of snow days. These trends were calculated according to the Expert Team on Climate Change Detection and Indices (ETCCDI). The sea temperature trend in l'Estartit (NE coast of Catalonia, Costa Brava) since 1974 shows a steady increment in all the measured levels (surface, -20 m, -50 m and -80 m) of +0,33 °C/decade on average. Temperature increment is maximum at -20 m, with +0.36 °C/decade variation. Moreover, there is an increase in the sea level of +3.35 cm/decade. CAUSSINUS, H. and MESTRE, O. (2004): Detection and correction of artificial shifts in climate series. Journal of the Royal Statistical Society Series C - Applied Statistics, 53, 405-425. VINCENT, L.A., ZHANG, X., BONSAL, B.R., HOGG, W.D. (2002): Homogenization of daily temperatures over Canada. Journal of Climate, 15, 1322-1334

  20. Temperature influence on the fast pyrolysis of manure samples: char, bio-oil and gases production

    NASA Astrophysics Data System (ADS)

    Fernandez-Lopez, Maria; Anastasakis, Kostas; De Jong, Wiebren; Valverde, Jose Luis; Sanchez-Silva, Luz

    2017-11-01

    Fast pyrolysis characterization of three dry manure samples was studied using a pyrolyzer. A heating rate of 600°C/s and a holding time of 10 s were selected to reproduce industrial conditions. The effect of the peak pyrolysis temperature (600, 800 and 1000°C) on the pyrolysis product yield and composition was evaluated. Char and bio-oil were gravimetrically quantified. Scanning electron microscopy (SEM) was used to analyse the char structure. H2, CH4, CO and CO2 were measured by means of gas chromatography (GC). A decrease in the char yield and an increase of the gas yield were observed when temperature increased. From 800°C on, it was observed that the char yield of samples Dig R and SW were constant, which indicated that the primary devolatilization reactions stopped. This fact was also corroborated by GC analysis. The bio-oil yield slightly increased with temperature, showing a maximum of 20.7 and 27.8 wt.% for samples Pre and SW, respectively, whereas sample Dig R showed a maximum yield of 16.5 wt.% at 800°C. CO2 and CO were the main released gases whereas H2 and CH4 production increased with temperature. Finally, an increase of char porosity was observed with temperature.

  1. Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienold, M.; Humboldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin; Deutsches Zentrum für Luft und Raumfahrt, Rutherfordstr. 2, 12489 Berlin

    2015-11-16

    We report on the observation of an approximately linear reduction in the maximum operating temperature with an increasing emission frequency for terahertz quantum-cascade lasers between 4.2 and 5.4 THz. These lasers are based on the same design type, but vary in period length and barrier height for the cascade structure. The sample emitting at the highest frequency around 5.4 THz can be operated in pulsed mode up to 56 K. We identify an additional relaxation channel for electrons by longitudinal optical phonon scattering from the upper to the lower laser level and increasing optical losses toward higher frequencies as major processes,more » leading to the observed temperature behavior.« less

  2. Role of resolution in regional climate change projections over China

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Wang, Guiling; Gao, Xuejie

    2017-11-01

    This paper investigates the sensitivity of projected future climate changes over China to the horizontal resolution of a regional climate model RegCM4.4 (RegCM), using RCP8.5 as an example. Model validation shows that RegCM performs better in reproducing the spatial distribution and magnitude of present-day temperature, precipitation and climate extremes than the driving global climate model HadGEM2-ES (HadGEM, at 1.875° × 1.25° degree resolution), but little difference is found between the simulations at 50 and 25 km resolutions. Comparison with observational data at different resolutions confirmed the added value of the RCM and finer model resolutions in better capturing the probability distribution of precipitation. However, HadGEM and RegCM at both resolutions project a similar pattern of significant future warming during both winter and summer, and a similar pattern of winter precipitation changes including dominant increase in most areas of northern China and little change or decrease in the southern part. Projected precipitation changes in summer diverge among the three models, especially over eastern China, with a general increase in HadGEM, little change in RegCM at 50 km, and a mix of increase and decrease in RegCM at 25 km resolution. Changes of temperature-related extremes (annual total number of daily maximum temperature > 25 °C, the maximum value of daily maximum temperature, the minimum value of daily minimum temperature in the three simulations especially in the two RegCM simulations are very similar to each other; so are the precipitation-related extremes (maximum consecutive dry days, maximum consecutive 5-day precipitation and extremely wet days' total amount). Overall, results from this study indicate a very low sensitivity of projected changes in this region to model resolution. While fine resolution is critical for capturing the spatial variability of the control climate, it may not be as important for capturing the climate response to homogeneous forcing (in this case greenhouse gas concentration changes).

  3. Analysis of hydrogen plasma in MPCVD reactor

    NASA Astrophysics Data System (ADS)

    Shivkumar, Gayathri

    The aim of this work is to build a numerical model that can predict the plasma properties of hydrogen plasmas inside a Seki Technotron Corp. AX5200S MPCVD system so that it may be used to understand and optimize the conditions for the growth of carbon nanostructures. A 2D model of the system is used in the finite element high frequency Maxwell solver and heat trasfer solver in COMSOL Multiphysics, where the solvers are coupled with user defined functions to analyze the plasma. A simplified chemistry model is formulated in order to determine the electron temperature in the plasma. This is used in the UDFs which calculate the electron number density as well as electron temperature. A Boltzmann equation solver for electrons in weakly ionized gases under uniform electric fields, called BOLSIG+, is used to obtain certain input parameters required for these UDFs. The system is modeled for several reactor geometries at pressures of 10 Torr and 30 Torr and powers ranging from 300 W to 700 W. The variation of plasma characteristics with changes in input conditions is studied and the electric field, electron number density, electron temperature and gas temperature are seen to increase with increasing power. Electric field, electron number density and electron temperature decrease and gas temperature increases with increasing pressure. The modeling results are compared with experimental measurements and a good agreement is found after calibrating the parameter gamma in Funer's model to match experimental electron number densities. The gas temperature is seen to have a weak dependence on power and a strong dependence on gas pressure. On an average, the gas temperature at a point 5 mm above the center of the puck increases from about 1000 K at a pressure of 10 Torr to about 1500 K at 30 Torr. The inclusion of the pillar produces an increase in the maximum electron number density of approximately 50%; it is higher under some conditions. It increases the maximum electron temperature by about 70% and at 500 W and 30 Torr, the maximum gas temperature is seen to increase by 50%. The effect of susceptor position is studied and it is seen that the only condition favorable to growth would be to raise it by less than 25 mm from the initial reference position or to maintain it at the same level.

  4. Experimental and numerical modeling research of rubber material during microwave heating process

    NASA Astrophysics Data System (ADS)

    Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling

    2018-05-01

    This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.

  5. Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation

    NASA Technical Reports Server (NTRS)

    Taylor, E S; Leary, W A; Diver, J R

    1940-01-01

    An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.

  6. Hot Weather Impacts on New York City Restaurant Food Safety Violations and Operations.

    PubMed

    Dominianni, Christine; Lane, Kathryn; Ahmed, Munerah; Johnson, Sarah; McKELVEY, Wendy; Ito, Kazuhiko

    2018-06-06

    Previous studies have shown that higher ambient air temperature is associated with increased incidence of gastrointestinal illnesses, possibly as a result of leaving potentially hazardous food in the temperature danger zone for too long. However, little is known about the effect of hot weather on restaurant practices to maintain safe food temperatures. We examined hot weather impacts on restaurant food safety violations and operations in New York City using quantitative and qualitative methods. We used data from 64,661 inspections conducted among 29,614 restaurants during May to September, 2011 to 2015. We used Poisson time-series regression to estimate the cumulative relative risk (CRR) of temperature-related food safety violations across a range of daily maximum temperature (13 to 40°C [56 to 104°F]) over a lag of 0 to 3 days. We present CRRs for an increase in daily maximum temperature from the median (28°C [82°F]) to the 95th percentile (34°C [93°F]) values. Maximum temperature increased the risk of violations for cold food holding above 5°C (41°F) (CRR, 1.19; 95% CI, 1.14, 1.25) and insufficient refrigerated or hot holding equipment (CRR, 2.37; 95% CI, 2.02, 2.79). We also conducted focus groups among restaurant owners and managers to aid interpretation of findings and identify challenges or knowledge gaps that prevent hot weather preparedness. Focus group participants cited refrigeration issues as a common problem during hot weather. Participants expressed the need for more guidance on hot weather and power outages to be delivered concisely. Our findings suggest that hotter temperatures may compromise cold and hot food holding, possibly by straining refrigeration or other equipment. The findings have public health implications because holding potentially hazardous foods in the temperature danger zone allows foodborne pathogens to proliferate and increases risk for foodborne illness. Distribution of simple guidelines that can be easily accessed during emergencies could help restaurants respond better.

  7. Shearing at the end of summer affects body temperature of free-living Angora goats ( Capra aegagrus) more than does shearing at the end of winter.

    PubMed

    Hetem, R S; de Witt, B A; Fick, L G; Fuller, A; Kerley, G I H; Maloney, S K; Meyer, L C R; Mitchell, D

    2009-07-01

    Angora goats are known to be vulnerable to cold stress, especially after shearing, but their thermoregulatory responses to shearing have not been measured. We recorded activity, and abdominal and subcutaneous temperatures, for 10 days pre-shearing and post-shearing, in 10 Angora goats inhabiting the succulent thicket of the Eastern Cape, South Africa, in both March (late summer) and September (late winter). Within each season, environmental conditions were similar pre-shearing and post-shearing, but September was an average 5°C colder than March. Shearing resulted in a decreased mean (P < 0.0001), minimum (P < 0.0001) and maximum daily abdominal temperature (P < 0.0001). Paradoxically, the decrease in daily mean (P = 0.03) and maximum (P = 0.01) abdominal temperatures, from pre-shearing to post-shearing, was greater in March than in September. Daily amplitude of body temperature rhythm (P < 0.0001) and the maximum rate of abdominal temperature rise (P < 0.0001) increased from pre-shearing to post-shearing, resulting in an earlier diurnal peak in abdominal temperature (P = 0.001) post-shearing. These changes in amplitude, rate of abdominal temperature rise and time of diurnal peak in abdominal temperature suggest that the goats' thermoregulatory system was more labile after shearing. Mean daily subcutaneous temperatures also decreased post-shearing (P < 0.0001), despite our index goat selecting more stable microclimates after shearing in March (P = 0.03). Following shearing, there was an increased difference between abdominal and subcutaneous temperatures (P < 0.0001) at night, suggesting that the goats used peripheral vasoconstriction to limit heat loss. In addition to these temperature changes, mean daily activity increased nearly two-fold after March shearing, but not September shearing. This increased activity after March shearing was likely the result of an increased foraging time, food intake and metabolic rate, as suggested by the increased water influx (P = 0.0008). Thus, Angora goats entered a heat conservation mode after shearing in both March and September. That the transition from the fleeced to the shorn state had greater thermoregulatory consequences in March than in September may provide a mechanistic explanation for Angora goats' vulnerability to cold in summer.

  8. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows.

    PubMed

    West, J W; Mullinix, B G; Bernard, J K

    2003-01-01

    Lactating cows were exposed to moderate and hot, humid weather to determine the effect of increasing ambient temperature, relative humidity, or temperature-humidity index (THI) on intake, milk yield, and milk temperature. Minimum and maximum temperatures averaged 17.9 and 29.5 degrees C (cool period) and 22.5 and 34.4 degrees C (hot period), and minimum and maximum THI averaged 63.8 and 76.6 (cool period) and 72.1 and 83.6 (hot period). Environmental conditions had minor effects on intake and milk yield during the cool period. During the hot period, the THI 2 d earlier and mean air temperature 2 d earlier had the greatest impact on milk yield and DMI, respectively. Both breeds maintained milk temperature within normal ranges during the cool period, but Holstein and Jersey p.m. milk temperatures averaged 39.6 and 39.2 degrees C during the hot period. Current day mean air temperature during the hot period had the greatest impact on cow p.m. milk temperature, and minimum air temperature had the greatest influence on a.m. milk temperature. Dry matter intake and milk yield declined linearly with respective increases in air temperature or THI during the hot period and milk temperature increased linearly with increasing air temperature. Dry matter intake and milk yield both exhibited a curvilinear relationship with milk temperature. Environmental modifications should target the effects of high temperatures on cow body temperature and should modify the environment at critical times during the day when cows are stressed, including morning hours when ambient temperatures are typically cooler and cows are not assumed to be stressed.

  9. Exchange of Groundwater and Surface-Water Mediated by Permafrost Response to Seasonal and Long Term Air Temperature Variation

    USGS Publications Warehouse

    Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.

  10. Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.

    PubMed

    Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir

    2017-08-04

    Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.

  11. First investigations to refine video-based IR thermography as a non-invasive tool to monitor the body temperature of calves.

    PubMed

    Hoffmann, G; Schmidt, M; Ammon, C

    2016-09-01

    In this study, a video-based infrared camera (IRC) was investigated as a tool to monitor the body temperature of calves. Body surface temperatures were measured contactless using videos from an IRC fixed at a certain location in the calf feeder. The body surface temperatures were analysed retrospectively at three larger areas: the head area (in front of the forehead), the body area (behind forehead) and the area of the entire animal. The rectal temperature served as a reference temperature and was measured with a digital thermometer at the corresponding time point. A total of nine calves (Holstein-Friesians, 8 to 35 weeks old) were examined. The average maximum temperatures of the area of the entire animal (mean±SD: 37.66±0.90°C) and the head area (37.64±0.86°C) were always higher than that of the body area (36.75±1.06°C). The temperatures of the head area and of the entire animal were very similar. However, the maximum temperatures as measured using IRC increased with an increase in calf rectal temperature. The maximum temperatures of each video picture for the entire visible body area of the calves appeared to be sufficient to measure the superficial body temperature. The advantage of the video-based IRC over conventional IR single-picture cameras is that more than one picture per animal can be analysed in a short period of time. This technique provides more data for analysis. Thus, this system shows potential as an indicator for continuous temperature measurements in calves.

  12. Two-Flux Method for Transient Radiative Transfer in a Semitransparent Layer

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1996-01-01

    The two-flux method was used to obtain transient solutions for a plane layer including internal reflections and scattering. The layer was initially at uniform temperature, and was heated or cooled by external radiation and convection. The two-flux equations were examined as a means for evaluating the radiative flux gradient in the transient energy equation. Comparisons of transient temperature distributions using the two-flux method were made with results where the radiative flux gradient was evaluated from the exact radiative transfer equations. Good agreement was obtained for optical thicknesses from 0.5 to 5 and for refractive indices of 1 and 2. Illustrative results obtained with the two-flux method demonstrate the effect of isotropic scattering coupled with changing the refractive index. For small absorption with large scattering the maximum layer temperature is increased when the refractive index is increased. For larger absorption the effect is opposite, and the maximum temperature decreases with increased refractive index .

  13. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    NASA Astrophysics Data System (ADS)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  14. Competition between ionic adsorption and desorption on electrochemical double layer capacitor electrodes in acetonitrile solutions at different currents and temperatures

    NASA Astrophysics Data System (ADS)

    Park, Sieun; Kang, Seok-Won; Kim, Ketack

    2017-12-01

    The operation of electrochemical double layer capacitors at high currents and viscosities and at low temperatures is difficult. Under these conditions, ion transport is limited, and some of the electrode area is unavailable for adsorption, which results in a low capacitance. Increasing the temperature helps to increase the ionic movement, leading to enhanced adsorption and increased capacitance. In contrast, ion desorption (self-discharge) surpasses the capacitance improvement when ions gain a high amount of energy with increasing temperature. For example, temperatures as high as 70 °C cause a very high rate of ionic desorption in acetonitrile solutions in which the individual properties of the two electrolytes-tetraethylammonium tetrafluoroborate (TEA BF4) and ethylmethylimidazolium tetrafluoroborate (EMI BF4)-are not distinguishable. The capacitance improvement and self-discharge are balanced, resulting in a capacitance peak at mid-range temperatures, i.e., 35-45 °C, in the more viscous electrolyte, i.e., TEA BF4. The less viscous electrolyte, i.e., EMI BF4 has a wider capacitance peak from 25 to 45 °C and higher capacitance than that of TEA BF4. Because the maximum power is obtained in the mid-temperature range (35-45 °C), it is necessary to control the viscosity and temperature to obtain the maximum power in a given device.

  15. Measurement of the temperature distribution inside the power cable using distributed temperature system

    NASA Astrophysics Data System (ADS)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  16. Calcination Conditions on the Properties of Porous TiO2 Film

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjie; Pei, Xiaobei; Bai, Jiawei; He, Hongbo

    2014-03-01

    Porous TiO2 films were deposited on SiO2 precoated glass-slides by sol-gel method using PEG1000 as template. The strongest XRD diffraction peak at 2θ = 25.3° is attributed to [101] plane of anatase TiO2 in the film. The increases of calcination temperature and time lead to stronger diffraction peak intensity. High transmittance and blue shift of light absorption edge are the properties of the film prepared at high calcination temperature. The average pore size of the films increases with the increasing calcination temperature as the result of TiO2 crystalline particles growing up and aggregation, accompanied with higher specific surface area. Photocatalytic activity of porous TiO2 films increases with the increasing calcination temperature. The light absorption edge of the films slightly moves to longer wavelength region along with the increasing calcination time. The mesoporous film calcinated at 500 °C for 2 h has the highest transmittance, the maximum surface area, and the maximum total pore volume. Consequently, the optimum degradation activity is achieved on the porous TiO2 film calcinated at 500 °C for 2 h.

  17. Experimental Study of Turning Temperature and Turning Vibration for the Tool of Different Wear State

    NASA Astrophysics Data System (ADS)

    Li, Shuncai; Yu, Qiu; Yuan, Guanlei; Liang, Li

    2018-03-01

    By a vibration test device and Vib’SYS analysis system, a three-dimensional piezoelectric acceleration sensor and an infrared thermometer and its collection system, the turning experiments under different spindle speeds were carried out on three cutting tools with different wear states, and the change law of cutting temperature at the tool tip and change law of three-dimensional vibration with turning time were obtained. The results indicate that: (1) The temperature of the initial wear tool and the middle wear tool under a small turning parameter increased slowly with turning time; while under a greater turning parameter, the temperature of the middle wear tool varies significantly with time; (2) The temperature of the severe wear tool increased sharply at the later feeding stage; (3) The change laws of the tools vibration acceleration maximum with the spindle speeds are similar for the initial wear tool and the middle wear tool, which shows a trend of increasing at first and then decreasing; (4) the average value of vibration acceleration self-power spectrum of severe wear tool constantly increase with the spindle speed; (5) the maximum impact is along the radial direction for the tools of different wear state.

  18. Temperature-induced excess mortality in Moscow, Russia.

    PubMed

    Revich, Boris; Shaposhnikov, Dmitri

    2008-05-01

    After considering the observed long-term trends in average monthly temperatures distribution in Moscow, the authors evaluated how acute mortality responded to changes in daily average, minimum and maximum temperatures throughout the year, and identified vulnerable population groups, by age and causes of death. A plot of the basic mortality-temperature relationship indicated that this relationship was V-shaped with the minimum around 18 degrees C. Each 1 degree C increment of average daily temperature above 18 degrees C resulted in an increase in deaths from all non-accidental causes by 2.8%, from coronary heart disease by 2.7%, from cerebrovascular diseases by 4.7%, and from respiratory diseases by 8.7%, with a lag of 0 or 1 day. Each 1 degrees C drop of average daily temperature from +18 degrees C to -10 degrees C resulted in an increase in deaths from all non-accidental causes by 0.49%, from coronary heart disease by 0.57%, from cerebrovascular diseases by 0.78%, and from respiratory diseases by 1.5%, with lags of maximum association varying from 3 days for non-accidental mortality to 6 days for cerebrovascular mortality. In the age group 75+ years, corresponding risks were consistently higher by 13-30%. The authors also estimated the increase in non-accidental deaths against the variation of daily temperatures. For each 1 degrees C increase of variation of temperature throughout the day, mortality increased by 0.3-1.9%, depending on other assumptions of the model.

  19. Temperature-induced excess mortality in Moscow, Russia

    NASA Astrophysics Data System (ADS)

    Revich, Boris; Shaposhnikov, Dmitri

    2008-05-01

    After considering the observed long-term trends in average monthly temperatures distribution in Moscow, the authors evaluated how acute mortality responded to changes in daily average, minimum and maximum temperatures throughout the year, and identified vulnerable population groups, by age and causes of death. A plot of the basic mortality temperature relationship indicated that this relationship was V-shaped with the minimum around 18°C. Each 1°C increment of average daily temperature above 18°C resulted in an increase in deaths from all non-accidental causes by 2.8%, from coronary heart disease by 2.7%, from cerebrovascular diseases by 4.7%, and from respiratory diseases by 8.7%, with a lag of 0 or 1 day. Each 1°C drop of average daily temperature from +18°C to -10°C resulted in an increase in deaths from all non-accidental causes by 0.49%, from coronary heart disease by 0.57%, from cerebrovascular diseases by 0.78%, and from respiratory diseases by 1.5%, with lags of maximum association varying from 3 days for non-accidental mortality to 6 days for cerebrovascular mortality. In the age group 75+ years, corresponding risks were consistently higher by 13 30%. The authors also estimated the increase in non-accidental deaths against the variation of daily temperatures. For each 1°C increase of variation of temperature throughout the day, mortality increased by 0.3 1.9%, depending on other assumptions of the model.

  20. Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985-2014

    NASA Astrophysics Data System (ADS)

    Raggad, Bechir

    2018-05-01

    In this study, two statistical approaches were adopted in the analysis of observed maximum temperature data collected from fifteen stations over Saudi Arabia during the period 1985-2014. In the first step, the behavior of extreme temperatures was analyzed and their changes were quantified with respect to the Expert Team on Climate Change Detection Monitoring indices. The results showed a general warming trend over most stations, in maximum temperature-related indices, during the period of analysis. In the second step, stationary and non-stationary extreme-value analyses were conducted for the temperature data. The results revealed that the non-stationary model with increasing linear trend in its location parameter outperforms the other models for two-thirds of the stations. Additionally, the 10-, 50-, and 100-year return levels were found to change with time considerably and that the maximum temperature could start to reappear in the different T-year return period for most stations. This analysis shows the importance of taking account the change over time in the estimation of return levels and therefore justifies the use of the non-stationary generalized extreme value distribution model to describe most of the data. Furthermore, these last findings are in line with the result of significant warming trends found in climate indices analyses.

  1. Influence of temperature on flavour compound production from citrate by Lactobacillus rhamnosus ATCC 7469.

    PubMed

    De Figueroa, R M; Oliver, G; Benito de Cárdenas, I L

    2001-03-01

    The citrate utilization by Lactobacillus rhamnosus ATCC 7469 was found to be temperature-dependent. The maximum citrate utilization and incorporation of [1,5-14C]citrate rate were observed at 37 degreesC. At this temperature, maximum citrate lyase activity and specific diacetyl and acetoin production (Y(DA%)) were observed. The high levels of alpha-acetolactate synthase and low levels of diacetyl reductase, acetoin reductase and L-lactate dehydrogenase found at 37 degreesC led to an accumulation of diacetyl and acetoin. Optimum lactic acid production was observed at 45 degreesC, according to the high lactate dehydrogenase activity. The NADH oxidase activity increased with increasing culture temperature from 22 degreesC to 37 degreesC. Thus there are greater quantities of pyruvate available for the production of alpha-acetolactate, diacetyl and aceotin, and less diacetyl and acetoin are reduced.

  2. Effect of Vacuum Frying on Changes in Quality Attributes of Jackfruit (Artocarpus heterophyllus) Bulb Slices.

    PubMed

    Maity, Tanushree; Bawa, A S; Raju, P S

    2014-01-01

    The effect of frying temperatures and durations on the quality of vacuum fried jackfruit (JF) chips was evaluated. Moisture content and breaking force of JF chips decreased with increase in frying temperature and time during vacuum frying whereas the oil content increased. The frying time for JF chips was found to be 30, 25, and 20 minutes at 80, 90, and 100°C, respectively. JF chips fried at higher temperature resulted in maximum shrinkage (48%). The lightness in terms of hunter L (*) value decreased significantly (P < 0.05) during frying. Sensory evaluation showed maximum acceptability for JF chips fried at 90°C for 25 min. Frying under vacuum at lower temperatures was found to retain bioactive compounds such as total phenolics, total flavonoids, and total carotenoids in JF chips. Almost 90% of carotenoids were lost from the samples after 30 min of frying at 100°C.

  3. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    USGS Publications Warehouse

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  4. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum.

    PubMed

    Sluijs, Appy; Schouten, Stefan; Pagani, Mark; Woltering, Martijn; Brinkhuis, Henk; Sinninghe Damsté, Jaap S; Dickens, Gerald R; Huber, Matthew; Reichart, Gert-Jan; Stein, Ruediger; Matthiessen, Jens; Lourens, Lucas J; Pedentchouk, Nikolai; Backman, Jan; Moran, Kathryn

    2006-06-01

    The Palaeocene/Eocene thermal maximum, approximately 55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from 18 degrees C to over 23 degrees C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10 degrees C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms--perhaps polar stratospheric clouds or hurricane-induced ocean mixing--to amplify early Palaeogene polar temperatures.

  5. Temperature and salinity regulation of growth and gas exchange of Salicornia fruticosa (L.) L.

    PubMed

    Abdulrahman, Farag Saleh; Williams, George J

    1981-03-01

    Salicornia fruticosa was collected from a salt marsh on the Mediterranean sea coast in Libya. Growth and gas exchange of this C 3 species were monitered in plants pretreated at various NaCl concentrations (0, 171, 342, 513 and 855 mM). Maximum growth was at 171 mM NaCl under cool growth conditions (20/10° C) and at 342 mM NaCl under warm growth conditions (30/15° C) with minimum growth at 0 mM NaCl (control). Net photosynthesis (Pn) was greatest in plants grown in 171 mM NaCl with plants grown at 513 and 855 mM having lowest rates. Maximum Pn was at 20-25° C shoot temperatures with statistically significant reductions at 30° C in control plants while salt treated plants showed such reductions at 35° C. Salt treatments increased dark respiration over the control at 171 and 342 mM but reduced it at higher concentrations. Photorespiration was reduced by salt treatment and increased by increasing shoot temperature. Greatest transpiration was in 171 mM NaCl treated plants and increasing shoot temperature increased transpiration in all treatments. Stomatal resistance to CO 2 influx was influenced only moderately by temperature while increasing salinity resulted in increased stomatal resistance. In general both temperature and salinity increased the mesophyll resistance to CO 2 influx. The species seems adapted to the warm saline habitat along the Mediterranean sea coast, at least partially, by its ability to maintain relatively high Pn at moderate NaCl concentrations over a broad range of shoot temperatures.

  6. The Effects of Engine Speed and Mixture Temperature on the Knocking Characteristics of Several Fuels

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1940-01-01

    Six 100-octane and two 87-octane aviation engine fuels were tested in a modified C.F.R. variable-compression engine at 1,500, 2,000 and 2,500 rpm. The mixture temperature was raised from 50 to 300 F in approximately 50 degree steps and, at each temperature, the compression ratio was adjusted to give incipient knock as shown by a cathode ray indicator. The results are presented in tabular form. The results are analyzed on the assumption that the conditions which determine whether a given fuel will knock are the maximum values of density and temperature reached by the burning gases. A maximum permissible density factor, proportional to the maximum density of the burning gases just prior to incipient knock, and the temperature of the burning gases at that time were computed for each of the test conditions. Values of the density factors were plotted against the corresponding end-gas temperatures for the three engine speeds and also against engine speed for several and end-gas temperatures. The maximum permissible density factor varied only slightly with engine speed but decreased rapidly with an increase in the end-gas temperature. The effect of changing the mixture temperature was different for fuels of different types. The results emphasize the desirability of determining the anti knock values of fuels over a wide range of engine and intake-air conditions rather that at a single set of conditions.

  7. Dielectric, thermal and Raman spectroscopy studies of lead-free (Na0.5Bi0.5)1-xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics

    NASA Astrophysics Data System (ADS)

    Suchanicz, J.; Bovtun, V.; Dutkiewicz, E. M.; Konieczny, K.; Sitko, D.; Kluczewska, K.; Wajda, A.; Kalvane, A.; Sternberg, A.

    2016-08-01

    Lead-free (Na0.5Bi0.5)1-xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics with relative densities above 97% were prepared by solid-state synthesis process. Their dielectric, thermal and Raman properties were studied. X-ray diffraction analysis shows perovskite structure with rhombohedral symmetry at room temperature. Sr doping of Na0.5Bi0.5TiO3 (NBT) results in an increase of the dielectric permittivity, diffusing of the permittivity maximum and its shift toward lower temperatures. The temperature of the rhombohedral-tetragonal phase transition indicated by the differential scanning calorimetry (DSC) peak and relaxational dielectric anomaly near the depolarization temperature are also shifted toward lower temperatures. The observed increase and broadening of the permittivity maximum, enhancement of the dielectric relaxation near the depolarization temperature, broadening of the DSC anomaly related to the rhombohedral-tetragonal phase transition and broadening of the Raman bands with increasing Sr content are attributed to the increase of the degree of cationic disorder and evident enhancement of the relaxor-like features in NBT-xST. This enhancement could play a positive role in the improvement of the piezoelectric performance of NBT-based ceramics.

  8. Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications

    PubMed Central

    Chlenova, Anna A.; Moiseev, Alexey A.; Derevyanko, Mikhail S.; Semirov, Aleksandr V.; Lepalovsky, Vladimir N.

    2017-01-01

    Permalloy-based thin film structures are excellent materials for sensor applications. Temperature dependencies of the magnetic properties and giant magneto-impedance (GMI) were studied for Fe19Ni81-based multilayered structures obtained by the ion-plasma sputtering technique. Selected temperature interval of 25 °C to 50 °C corresponds to the temperature range of functionality of many devices, including magnetic biosensors. A (Cu/FeNi)5/Cu/(Cu/FeNi)5 multilayered structure with well-defined traverse magnetic anisotropy showed an increase in the GMI ratio for the total impedance and its real part with temperature increased. The maximum of the GMI of the total impedance ratio ΔZ/Z = 56% was observed at a frequency of 80 MHz, with a sensitivity of 18%/Oe, and the maximum GMI of the real part ΔR/R = 170% at a frequency of 10 MHz, with a sensitivity of 46%/Oe. As the magnetization and direct current electrical resistance vary very little with the temperature, the most probable mechanism of the unexpected increase of the GMI sensitivity is the stress relaxation mechanism associated with magnetoelastic anisotropy. PMID:28817084

  9. Recent increase in maximum temperature at the tropical treeline of North America

    NASA Astrophysics Data System (ADS)

    Biondi, F.

    2009-12-01

    There are only a handful of weather stations above 3000 m in the entire American Cordillera, from Alaska to Tierra del Fuego. I present a surface instrumental record of high elevation (treeline) ecoclimatic variables for the tropics of North America. Besides its high elevation (3760 m) and tropical (19.5°N) features, this site is also located in the North American Monsoon System, making the data relevant to a broad suite of environmental issues. Automated half-hour data collected on Nevado de Colima, Mexico, from 2001 to 2009 show an increase in maximum temperature during the dry winter season, while incoming solar radiation remained stationary. Since minimum temperature did not increase as much, the daily range of air temperature has expanded over time. At this elevation, with average daily barometric pressure of 655 ± 1.4 hPa, maximum temperatures reflect the annual and daily energy cycle because of the dominant role of ground heating caused by incoming shortwave radiation. In fact, spring is the warmest season in this area, as it is followed by pronounced cooling during the summer monsoon because of increased cloudiness. The observed warming is associated with reduced wind speed, especially around solar noon, and is therefore most likely driven by reduced atmospheric flow, suggesting that the energy and water balance of high elevation tropical ecosystems are changing in unexpected ways. Further measurements and regional modeling experiments are therefore needed, given the staggering consequences this could have for any resource managers and policy makers concerned with trans-boundary (Mexico-US) terrestrial, coastal, and oceanic issues.

  10. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  11. Anomalous maximum and minimum for the dissociation of a geminate pair in energetically disordered media

    NASA Astrophysics Data System (ADS)

    Govatski, J. A.; da Luz, M. G. E.; Koehler, M.

    2015-01-01

    We study the geminated pair dissociation probability φ as function of applied electric field and temperature in energetically disordered nD media. Regardless nD, for certain parameters regions φ versus the disorder degree (σ) displays anomalous minimum (maximum) at low (moderate) fields. This behavior is compatible with a transport energy which reaches a maximum and then decreases to negative values as σ increases. Our results explain the temperature dependence of the persistent photoconductivity in C60 single crystals going through order-disorder transitions. They also indicate how an energetic disorder spatial variation may contribute to higher exciton dissociation in multicomponent donor/acceptor systems.

  12. Body mass modulates huddling dynamics and body temperature profiles in rabbit pups.

    PubMed

    Bautista, Amando; Zepeda, José Alfredo; Reyes-Meza, Verónica; Féron, Christophe; Rödel, Heiko G; Hudson, Robyn

    2017-10-01

    Altricial mammals typically lack the physiological capacity to thermoregulate independently during the early postnatal period, and in litter-bearing species the young benefit strongly from huddling together with their litter siblings. Such litter huddles are highly dynamic systems, often characterized by competition for energetically favorable, central positions. In the present study, carried out in domestic rabbits Oryctolagus cuniculus, we asked whether individual differences in body mass affect changes in body temperature during changes in the position within the huddle. We predicted that pups with relatively lower body mass should be more affected by such changes arising from huddle dynamics in comparison to heavier ones. Changes in pups' maximum body surface temperature (determined by infrared thermography) were significantly affected by changes in the number of their neighbors in the litter huddle, and indeed these temperature changes largely depended on the pups' body mass relative to their litter siblings. Lighter pups showed significant increases in their maximum body surface temperature when their number of huddling partners increased by one or two siblings whereas pups with intermediate or heavier body mass did not show such significant increases in maximum body temperature when experiencing such changes. A similar pattern was found with respect to average body surface temperature. This strong link between changes in the number of huddling partners and body surface temperature in lighter pups might, on the one hand, arise from a higher vulnerability of such pups due to their less favorable body surface area-to-volume ratio. On the other hand, as lighter pups generally had fewer neighbors than heavier ones and thus typically a comparatively smaller body surface in contact with siblings, they potentially had more to gain from increasing their number of neighbors. The present findings might help to understand how individual differences in body mass within a litter lead to the emergence of individual differences in sibling interactions during early postnatal life in different species of altricial and litter-bearing mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Thermal boundary resistance between sapphire and aluminum monocrystals at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahling, S.; Engert, J.; Gladun, A.

    1981-12-01

    The thermal boundary resistance at boundaries between monocrystalline sapphire and monocrystalline aluminum and between monocrystalline sapphire and polycrystalline aluminum has been measured in the temperature range from 0.1 to 6 K with aluminum in the superconducting and normal states. The ratio of the thermal boundary resistance of the aluminum monocrystals in the superconducting state to that in the normal state increases as the temperature is lowered, reaches a maximum at about 0.13 K, and decreases at still lower temperatures. At the maximum, the thermal boundary resistance in the superconducting state is two orders of magnitude larger than the resistance inmore » the normal state.« less

  14. The Ultrachopper tip: a wound temperature study.

    PubMed

    Barlow, William R; Pettey, Jeff; Olson, Randall J

    2013-12-01

    To determine the thermal characteristics of the Ultrachopper and its thermal properties in varied viscosurgical substances. Experimental study. Not applicable. The Ultrachopper (Alcon, Inc) tip with the Infiniti (Alcon, Inc) handpiece was attached to a thermistor and placed in a test chamber filled with either an ophthalmic viscosurgical device (OVD) or balanced salt solution (BSS). The thermistor allowed for continuous monitoring of temperature from baseline and the change that occurred over 60 seconds of continuous run time. Mean maximum temperature in each OVD exceeded 50°C over the first 25 seconds of continuous run time. The mean maximum temperature was statistically significantly higher with all OVDs (p < 0.0001) when compared with BSS. A small but statistically significant difference in mean maximum temperature was shown between Healon 5 (AMO, Inc) and Viscoat (Alcon, Inc) (p < 0.05). The linear increase in temperature was statistically significantly different with all OVDs compared with BSS (p < 0.0001). The thermal properties of the Ultrachopper tip demonstrate a heat-generating capacity that achieves published thresholds for risk for wound burn. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  15. Effects of temperature, pH and NaCl on protease activity in digestive tract of young turbot, Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao

    2006-09-01

    The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.

  16. Global conditions in the solar corona from 2010 to 2017

    PubMed Central

    Morgan, Huw; Taroyan, Youra

    2017-01-01

    Through reduction of a huge data set spanning 2010–2017, we compare mean global changes in temperature, emission measure (EM), and underlying photospheric magnetic field of the solar corona over most of the last activity cycle. The quiet coronal mean temperature rises from 1.4 to 1.8 MK, whereas EM increases by almost a factor of 50% from solar minimum to maximum. An increased high-temperature component near 3 MK at solar maximum drives the increase in quiet coronal mean temperature, whereas the bulk of the plasma remains near 1.6 MK throughout the cycle. The mean, spatially smoothed magnitude of the quiet Sun magnetic field rises from 1.6 G in 2011 to peak at 2.0 G in 2015. Active region conditions are highly variable, but their mean remains approximately constant over the cycle, although there is a consistent decrease in active region high-temperature emission (near 3 MK) between the peak of solar maximum and present. Active region mean temperature, EM, and magnetic field magnitude are highly correlated. Correlation between sunspot/active region area and quiet coronal conditions shows the important influence of decaying sunspots in driving global changes, although we find no appreciable delay between changes in active region area and quiet Sun magnetic field strength. The hot coronal contribution to extreme ultraviolet (EUV) irradiance is dominated by the quiet corona throughout most of the cycle, whereas the high variability is driven by active regions. Solar EUV irradiance cannot be predicted accurately by sunspot index alone, highlighting the need for continued measurements. PMID:28740861

  17. Effect of elevated temperature on soil hydrothermal regimes and growth of wheat crop.

    PubMed

    Pramanik, P; Chakrabarti, Bidisha; Bhatia, Arti; Singh, S D; Maity, A; Aggarwal, P; Krishnan, P

    2018-03-14

    An attempt has been made to study the effect of elevated temperature on soil hydrothermal regimes and winter wheat growth under simulated warming in temperature gradient tunnel (TGT). Results showed that bulk density (BDs) of 0, 0.9, and 2.5 °C were significantly different whereas BDs of 2.8 and 3.5 °C were not significantly different. Water filled pore space (WFPS) was maximum at 3.5 °C temperature rise and varied between 43.80 and 98.55%. Soil surface temperature (ST) at different dates of sowing increased with rise in sensor temperature and highest ST was observed at S5 sensors (3.5 °C temperature rise). Temperature and its difference were high for the top soil, and were stable for the deep soil. Photosynthesis rate (μmol CO 2 m -2  s -1 ) of wheat was lower at higher temperature in different growth stages of wheat. In wheat, stomatal conductance declined from 0.67 to 0.44 mol m -2  s -1 with temperature rise. Stomatal conductance decreased with increase in soil temperature and gravimetric soil moisture content (SWC). In TGT, 0 °C temperature rise showed highest root weight density (RWD) (5.95 mg cm -3 ); whereas, 2.8 and 3.5 °C showed lowest RWD (4.90 mg cm -3 ). Harvest index was maximum (0.37) with 0 °C temperature rise, and it decreased with increase in temperature, which indicated that both grain and shoot biomass decreased with increase in temperature. Intensive studies are needed to quantify the soil hydrothermal regimes inside TGT along with the crop growth parameters.

  18. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi.

    PubMed

    Fitzgibbon, Quinn P; Simon, Cedric J; Smith, Gregory G; Carter, Chris G; Battaglene, Stephen C

    2017-05-01

    We examined the effects of temperature on the growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi, in order to determine if temperature acclimated aerobic scope correlates with optimum for growth and to establish the thermal tolerance window for this emerging aquaculture species. Juvenile lobsters (initial weight=10.95±0.47g) were reared (n=7) at temperatures from 11.0 to 28.5°C for 145days. All lobsters survived from 14.5 to 25.0°C while survival was reduced at 11.0°C (86%) and all lobsters died at 28.5°C. Lobster specific growth rate and specific feed consumption displayed a unimodal response with temperature, peaking at 21.5°C. Lobster standard, routine and maximum metabolic rates, and aerobic scope all increased exponentially up to maximum non-lethal temperature. Optimum temperature for growth did not correspond to that for maximum aerobic scope suggesting that aerobic scope is not an effective predictor of the thermal optimum of spiny lobsters. Plateauing of specific feed consumption beyond 21.5°C suggests that temperature dependent growth of lobsters is limited by capacity to ingest or digest sufficient food to meet increasing maintenance metabolic demands at high temperatures. The nutritional condition of lobsters was not influenced by temperature and feed conversion ratio was improved at lower temperatures. These findings add to a growing body of evidence questioning the generality of aerobic scope to describe the physiological thermal boundaries of aquatic ectotherms and suggest that feed intake plays a crucial role in regulating performance at thermal extremes. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression

    NASA Astrophysics Data System (ADS)

    Li, Jian; Li, Yunting; Zhang, Mingjiang; Liu, Yi; Zhang, Jianzhong; Yan, Baoqiang; Wang, Dong; Jin, Baoquan

    2018-06-01

    In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.

  20. Climate change and the impact of extreme temperatures on aviation

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R.

    2014-12-01

    Weather is the most significant factor affecting aircraft operations, accounting for 70-80% of passenger delays and costing airlines hundreds of millions of dollars per year in lost revenue. Temperature and airport elevation significantly influence the maximum allowable takeoff weight of an aircraft by changing the surface air density and thus the lift produced at a given speed. For a given runway length, airport elevation, and aircraft type there is a temperature threshold above which the airplane cannot take off at its maximum weight and thus must be weight restricted. The number of summer days necessitating weight restriction has increased since 1980 along with the observed increase in surface temperature. Climate change is projected to increase mean temperatures at all airports and significantly increase the frequency and severity of extreme heat events at some. These changes will negatively affect aircraft performance, leading to increased weight restrictions especially at airports with short runways and little room to expand. For a Boeing 737-800 aircraft, we find that the number of weight restriction days between May and September will increase by 50-100% at four major airports in the United States by 2050-2070 under the RCP8.5 high emissions scenario. These performance reductions may have a significant economic effect on the airline industry, leading to lower profits and higher passenger fares. Increased weight restrictions have previously been identified as potential impacts of climate change, but this study is the first to quantify the effect of higher temperatures on commercial aviation.

  1. Electrical conductivity of high-purity germanium crystals at low temperature

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming

    2018-05-01

    The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

  2. Optical and solid state characterizaion of chemically deposited CuO/PbS double layer thin film

    NASA Astrophysics Data System (ADS)

    Chukwuemeka, Augustine; Nnabuchi Mishark, Nnamdi

    2018-02-01

    Optical and solid state characteristics of novel CuO/PbS double layer thin films were studied. Rutherford backscattering (RBS) technique deciphered the thicknesses of the films as 650 nm, 471 nm and 482 nm for as-deposited, annealed at 473 K and 673 K respectively. The XRD analysis depicts increase in grain size and peak intensity as temperature increases. The results of optical characterization show that thermal annealing has profound effects on all the optical and solid state parameters investigated. The absorbance increased with increase in temperature exhibiting maximum for the film annealed at 673 K. The transmittance of the film samples showed a decreasing trend with increase in temperature exhibiting minimum for the film annealed at 673 K. The absorption coefficient increases from 0.001 × 106 m-1 to 0.006 × 106 m-1 for as-deposited, 0.0025 × 106 m-1 to 0.0175 × 106 m-1 for the annealed at 473 K and 0.003 × 106 m-1 to 0.020 × 106 m-1 for the annealed at 673 K. The extinction coefficient increased with increased in temperature exhibiting a maximum for the film annealed at 673 K. The refractive index, real and imaginary dielectric constant do not have a trend with increase in annealing temperature. Increase in annealing temperature lowers the band gap from 4.13 eV for the as-deposited to 4.05 eV and 3.90 eV for the annealed at 473 K and 673 K respectively. The wide- bandgap materials permits devices to operate at much higher voltages, frequencies and temperatures than convection semiconductor materials. Thus, this film could be used for high power applications, light-emitting diodes, transducers and window layers for solar cell fabrication.

  3. Modelling the occurrence of heat waves in maximum and minimum temperatures over Spain and projections for the period 2031-60

    NASA Astrophysics Data System (ADS)

    Abaurrea, J.; Asín, J.; Cebrián, A. C.

    2018-02-01

    The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.

  4. Thermal buffering of concrete by seaweeds during a prolonged summer heatwave

    NASA Astrophysics Data System (ADS)

    Naylor, Larissa; Coombes, Martin

    2014-05-01

    Hard coastal infrastructure is subject to aggressive environmental conditions, including a suite of weathering processes in the intertidal zone. These processes, along with waves, lead to costly deterioration of coastal structures. Existing methods (e.g. coatings, less porous concrete) to reduce the risk of concrete deterioration rapidly lose their effectiveness in the intertidal zone. Additionally, a changing climate will lead to increased frequency of storms, higher sea level and higher extreme temperatures - and therefore, pose an increased risk of deterioration. Might there be a biogenic solution? New research (Coombes et al. 2013) has shown that fucoid seaweeds reduce microclimatic extremes and variability under normal summer conditions. The results presented here supplement these findings in two ways. First, they demonstrate that fucoid seaweeds act as a thermal buffer during a prolonged summer heatwave in Britain (July 2013). Over 36 days of continuous monitoring at two sites in Cornwall, UK, 19 of which were during the official heatwave, there were statistically significant differences (p = 0.000) in the maximum temperatures between thick seaweed (7.5 - 9.5 cm thickness) and thin seaweed (2 - 2.5 cm thickness) plots. Maximum temperatures reached 22°C and 33°C, for thick seaweed and thin seaweed plots, respectively. Variations in maximum temperatures between the two sites appear to be related to aspect. Second, the significantly different maximum temperature results between plots also demonstrate that seaweed thickness is an important factor influencing thermal buffering capacity. These data clearly demonstrate that fucoid seaweeds buffer concrete seawalls against extreme temperature fluxes during a heatwave, probably limiting the efficiency of deteriorative processes such as thermal expansion and contraction and salt crystallisation.

  5. Instability of a shear layer between multicomponent fluids at supercritical pressure

    NASA Astrophysics Data System (ADS)

    Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun

    2018-04-01

    The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.

  6. Are black holes springlike?

    NASA Astrophysics Data System (ADS)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  7. Characteristics and interrelation of recovery stress and recovery strain of an ultrafine-grained Ni-50.2Ti alloy processed by high-ratio differential speed rolling

    NASA Astrophysics Data System (ADS)

    Lim, Y. G.; Kim, W. J.

    2017-03-01

    The characteristics of the recovery stress and strain of an ultrafine-grained Ni-50.2 at% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined, and the factors that influence the recovery stress and strain and the relation between the two were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The subsequent annealing treatment at 673 K, however, reduced the shape recovery properties. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed. The recovery strain increased as the yield stress increased. Thus, the maximum recovery stress increased with an increase in yield stress. The recovery stress measured at room temperature (i.e., residual recovery stress) was, on the other hand, affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased.

  8. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    NASA Astrophysics Data System (ADS)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  9. Analysis of Global Urban Temperature Trends and Urbanization Impacts

    NASA Astrophysics Data System (ADS)

    Lee, K. I.; Ryu, J.; Jeon, S. W.

    2018-04-01

    Due to urbanization, urban areas are shrinking green spaces and increasing concrete, asphalt pavement. So urban climates are different from non-urban areas. In addition, long-term macroscopic studies of urban climate change are becoming more important as global urbanization affects global warming. To do this, it is necessary to analyze the effect of urbanization on the temporal change in urban temperature with the same temperature data and standards for urban areas around the world. In this study, time series analysis was performed with the maximum, minimum, mean and standard values of surface temperature during the from 1980 to 2010 and analyzed the effect of urbanization through linear regression analysis with variables (population, night light, NDVI, urban area). As a result, the minimum value of the surface temperature of the urban area reflects an increase by a rate of 0.28K decade-1 over the past 31 years, the maximum value reflects an increase by a rate of 0.372K decade-1, the mean value reflects an increase by a rate of 0.208 decade-1, and the standard deviation reflects a decrease by rate of 0.023K decade-1. And the change of surface temperature in urban areas is affected by urbanization related to land cover such as decrease of greenery and increase of pavement area, but socioeconomic variables are less influential than NDVI in this study. This study are expected to provide an approach to future research and policy-planning for urban temperature change and urbanization impacts.

  10. Analysis of microfluidic flow driven by electrokinetic and pressure forces

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsin

    2011-12-01

    This work presents an analysis of microfluidic flow introduced by mixed electrokinetic force and pressure gradient. Analytical solutions are presented for the case of constant surface heat flux, taking the Joule heating effect into account. The present problem is governed by two scale ratios and the dimensionless source term. The two important ratios are the length scale ratio e (the ratio of Debye length to the tube radius R) and the velocity scale ratio Γ (the ratio of the pressuredriven velocity scale for Poiseuille flow to Helmholtz-Smoluchowski velocity for electroosmotic flow). For mixed electroosmotic and pressure-driven flow, the resulting velocity profile is the superimposed effect of both electroosmotic and Poiseuille flow phenomena. It is found that the velocity profile decreases as e increases and the normalized temperature profiles across the tube increases monotonously form the core to the wall. The maximum dimensionless temperature is observed at the wall and the wall temperature increases with increasing Joule heating. Also, the temperature is increased with increasing the value of ɛ . The fully developed Nusselt number takes the maximum value at the limiting case of ɛ --> 0 , and then decreases with increasing ɛ . Moreover, the Nusselt number decreases with Γ and then goes asymptotically to the limit of Poiseuille flow as Γ --> ∞ , where the flow is dominated by the pressure force.

  11. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a temperature-dependent quantum efficiency term, and is directly driven by bulk photocatalyst crystal parameters: maximum phonon energy and the number of phonons allowed per unit cell. This analysis extends to multiple photocatalysts and can explain experimental observations of photocatalytic oxidation rates with varied reactant concentrations. Lastly, this dissertation applies this knowledge to a thermo-catalytic reaction (CO-oxidation) using a Au/TiO 2 catalyst. The combined photo/thereto-catalytic reaction showed a 10-25% increase in CO conversion during a temperature programmed reaction experiment.

  12. Predicted time from fertilization to maximum wet weight for steelhead alevins based on incubation temperature and egg size (Study site: Western Fishery Research Center, Seattle; Stock: Dworshak hatchery; Year class: 1996): Chapter 4

    USGS Publications Warehouse

    Rubin, Stephen P.; Reisenbichler, Reginald R.; Slatton, Stacey L.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    The accuracy of a model that predicts time between fertilization and maximum alevin wet weight (MAWW) from incubation temperature was tested for steelhead Oncorhynchus mykiss from Dworshak National Fish Hatchery on the Clearwater River, Idaho. MAWW corresponds to the button-up fry stage of development. Embryos were incubated at warm (mean=11.6°C) or cold (mean=7.3°C) temperatures and time between fertilization and MAWW was measured for each temperature. Model predictions of time to MAWW were within 1% of measured time to MAWW. Mean egg weight ranged from 0.101-0.136 g among females (mean = 0.116). Time to MAWW was positively related to egg size for each temperature, but the increase in time to MAWW with increasing egg size was greater for embryos reared at the warm than at the cold temperature. We developed equations accounting for the effect of egg size on time to MAWW for each temperature, and also for the mean of those temperatures (9.3°C).

  13. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials.

    PubMed

    Janeczek, Maciej; Herman, Katarzyna; Fita, Katarzyna; Dudek, Krzysztof; Kowalczyk-Zając, Małgorzata; Czajczyńska-Waszkiewicz, Agnieszka; Piesiak-Pańczyszyn, Dagmara; Kosior, Piotr; Dobrzyński, Maciej

    2016-01-01

    Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved four composite restorative materials, one lining material and a dentine bonding agent. The polymerization was conducted with the use of a diode light-curing unit. The measurements of the external surface temperature of the samples were carried out using the Thermovision®550 thermal camera. Results. The examined materials significantly differed in terms of the maximum temperatures values they reached, as well as the time required for reaching the temperatures. A statistically significant positive correlation of the maximum temperature and the sample weight was observed. Conclusions. In clinical practice, it is crucial to bear in mind the risk of thermal damage involved in the application of light-cured materials. It can be reduced by using thin increments of composite materials.

  14. Accuracy of the Heidelberg Spectralis in the alignment between near-infrared image and tomographic scan in a model eye: a multicenter study.

    PubMed

    Barteselli, Giulio; Bartsch, Dirk-Uwe; Viola, Francesco; Mojana, Francesca; Pellegrini, Marco; Hartmann, Kathrin I; Benatti, Eleonora; Leicht, Simon; Ratiglia, Roberto; Staurenghi, Giovanni; Weinreb, Robert N; Freeman, William R

    2013-09-01

    To evaluate temporal changes and predictors of accuracy in the alignment between simultaneous near-infrared image and optical coherence tomography (OCT) scan on the Heidelberg Spectralis using a model eye. Laboratory investigation. After calibrating the device, 6 sites performed weekly testing of the alignment for 12 weeks using a model eye. The maximum error was compared with multiple variables to evaluate predictors of inaccurate alignment. Variables included the number of weekly scanned patients, total number of OCT scans and B-scans performed, room temperature and its variation, and working time of the scanning laser. A 4-week extension study was subsequently performed to analyze short-term changes in the alignment. The average maximum error in the alignment was 15 ± 6 μm; the greatest error was 35 μm. The error increased significantly at week 1 (P = .01), specifically after the second imaging study (P < .05); reached a maximum after the eighth patient (P < .001); and then varied randomly over time. Predictors for inaccurate alignment were temperature variation and scans per patient (P < .001). For each 1 unit of increase in temperature variation, the estimated increase in maximum error was 1.26 μm. For the average number of scans per patient, each increase of 1 unit increased the error by 0.34 μm. Overall, the accuracy of the Heidelberg Spectralis was excellent. The greatest error happened in the first week after calibration, and specifically after the second imaging study. To improve the accuracy, room temperature should be kept stable and unnecessary scans should be avoided. The alignment of the device does not need to be checked on a regular basis in the clinical setting, but it should be checked after every other patient for more precise research purposes. Published by Elsevier Inc.

  15. Infrared thermal imaging as a method to evaluate heat loss in newborn lambs.

    PubMed

    Labeur, L; Villiers, G; Small, A H; Hinch, G N; Schmoelzl, S

    2017-12-01

    Thermal imaging technology has been identified as a potential method for non-invasive study of thermogenesis in the neonatal lamb. In comparison to measurement of the core body temperature, infrared thermography may observe thermal loss and thermogenesis linked to subcutaneous brown fat depots. This study aimed to identify a suitable method to measure heat loss in the neonatal lamb under a cold challenge. During late pregnancy (day 125), ewes were subjected to either shearing (n=15) or mock handling (sham-shorn for 2min mimicking the shearing movements) (n=15). Previous studies have shown an increase in brown adipose tissue deposition in lambs born to ewes shorn during pregnancy and we hypothesized that the shearing treatment would impact thermoregulatory capacities in newborn lambs. Lambs born to control ewes (n=14; CONTROL) and shorn ewes (n=13; SHORN) were subjected to a cold challenge of 1h duration at 4h after birth. During the cold challenge, thermography images were taken every 10min, from above, at a fixed distance from the dorsal midline. On each image, four fixed-size areas were identified (shoulder, mid loin, hips and rump) and the average and maximum temperatures of each recorded. In all lambs, body surface temperature decreased over time. Overall the SHORN lambs appeared to maintain body surface temperature better than CONTROL lambs, while CONTROL lambs appeared to have higher core temperature. At 30min post cold challenge SHORN lambs tended to have higher body surface temperatures than lambs (P=0.0474). Both average and maximum temperatures were highest at the hips. Average temperature was lowest at the shoulder (P<0.05), while maximum temperatures were lowest at both shoulder and rump (P<0.005). These results indicate that lambs born to shorn ewes maintained their radiated body surface temperature better than CONTROL lambs. In conjunction with core temperature changes under cold challenge, this insight will allow us to understand whether increased body surface temperature contributes to increased overall heat loss or whether increased body surface temperature is indeed a mechanism contributing to maintenance of core body temperature under cold challenge conditions. This study has confirmed the utility of infrared thermography images to capture and identify different levels of thermoregulatory capacity in newborn lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation

    USGS Publications Warehouse

    Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.

  17. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Suhaila, Jamaludin; Yusop, Zulkifli

    2017-06-01

    Most of the trend analysis that has been conducted has not considered the existence of a change point in the time series analysis. If these occurred, then the trend analysis will not be able to detect an obvious increasing or decreasing trend over certain parts of the time series. Furthermore, the lack of discussion on the possible factors that influenced either the decreasing or the increasing trend in the series needs to be addressed in any trend analysis. Hence, this study proposes to investigate the trends, and change point detection of mean, maximum and minimum temperature series, both annually and seasonally in Peninsular Malaysia and determine the possible factors that could contribute to the significance trends. In this study, Pettitt and sequential Mann-Kendall (SQ-MK) tests were used to examine the occurrence of any abrupt climate changes in the independent series. The analyses of the abrupt changes in temperature series suggested that most of the change points in Peninsular Malaysia were detected during the years 1996, 1997 and 1998. These detection points captured by Pettitt and SQ-MK tests are possibly related to climatic factors, such as El Niño and La Niña events. The findings also showed that the majority of the significant change points that exist in the series are related to the significant trend of the stations. Significant increasing trends of annual and seasonal mean, maximum and minimum temperatures in Peninsular Malaysia were found with a range of 2-5 °C/100 years during the last 32 years. It was observed that the magnitudes of the increasing trend in minimum temperatures were larger than the maximum temperatures for most of the studied stations, particularly at the urban stations. These increases are suspected to be linked with the effect of urban heat island other than El Niño event.

  18. Does hot weather affect work-related injury? A case-crossover study in Guangzhou, China.

    PubMed

    Sheng, Rongrong; Li, Changchang; Wang, Qiong; Yang, Lianping; Bao, Junzhe; Wang, Kaiwen; Ma, Rui; Gao, Chuansi; Lin, Shao; Zhang, Ying; Bi, Peng; Fu, Chuandong; Huang, Cunrui

    2018-04-01

    Despite increasing concerns about the health effects of climate change, the extent to which workers are affected by hot weather is not well documented. This study aims to investigate the association between high temperatures and work-related injuries using data from a large subtropical city in China. We used workers' compensation claims to identify work-related injuries in Guangzhou, China during 2011-2012. To feature the heat effect, the study period was restricted to the warm seasons in Guangzhou (1 May-31 October). We conducted a time-stratified case-crossover study to examine the association between ambient outdoor temperatures, including daily maximum and minimum temperatures, and cases of work-related injury. The relationships were assessed using conditional Poisson regression models. Overall, a total of 5418 workers' compensation claims were included over the study period. Both maximum and minimum temperatures were significantly associated with work-related injuries, but associations varied by subgroup. One °C increase in maximum temperature was associated with a 1.4% (RR = 1.014, 95%CIs 1.012-1.017) increase in daily injury claims. Significant associations were seen for male and middle-aged workers, workers in small and medium-sized enterprises, and those working in manufacturing sector. And 1 °C increase in minimum temperature was associated with 1.7% (RR = 1.017, 95%CIs 1.012-1.021) increase in daily injury claims. Significant associations were observed for female and middle-aged workers, workers in large-sized enterprises, and those working in transport and construction sectors. We found a higher risk of work-related injuries due to hot weather in Guangzhou, China. This study provides important epidemiological evidence for policy-makers and industry that may assist in the formulation of occupational safety and climate adaptation strategies. Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. Increased Frequency of Large Blowdown Formation in Years With Hotter Dry Seasons in the Northwestern Amazon

    NASA Astrophysics Data System (ADS)

    Rifai, S. W.; Anderson, L. O.; Bohlman, S.

    2015-12-01

    Blowdowns, which are large tree mortality events caused by downbursts, create large pulses of carbon emissions in the short term and alter successional dynamics and species composition of forests, thus affecting long term biogeochemical cycling of tropical forests. Changing climate, especially increasing temperatures and frequency of extreme climate events, may cause changes in the frequency of blowdowns, but there has been little spatiotemporal analysis to associate the interannual variation in the frequency of blowdowns with annual climate parameters. We mapped blowdowns greater than 25 ha using a time series of Landsat images from 1984-2012 in the northwestern Amazon to estimate the annual size distribution of these blowdowns. The difference in forest area affected by blowdowns between the years with the highest and lowest blowdown activity were on the order of 10 - 30 times greater depending on location. Spatially, we found the probability of large blowdowns to be higher in regions with higher annual rainfall. Temporally, we found a positive correlation between the probability of large blowdown events and maximum dry season air temperature (R2 = 0.1-0.46). Mean and maximum blowdown size also increased with maximum dry season air temperature. The strength of these relationships varied between scene locations which may be related to cloud cover obscuring the land surface in the satellite images, or biophysical characteristics of the sites. Potentially, elevated dry season temperatures during the transition from the dry season to the wet season (October - December) may exacerbate atmospheric instabilities, which promote downburst occurrences. Most global circulation models predict dry season air temperatures to increase 2-5 ℃ in the northwestern Amazon by 2050. Should the blowdown disturbance regime continue increasing with elevated dry season temperatures, the northwestern Amazon is likely to experience more catastrophic tree mortality events which has direct consequences for both the carbon emissions and carbon storage capacity of the northwestern Amazon.

  20. The impact of sustained hot weather on risk of acute work-related injury in Melbourne, Australia.

    PubMed

    McInnes, Judith Anne; MacFarlane, Ewan M; Sim, Malcolm R; Smith, Peter

    2018-02-01

    It has been reported that weather-related high ambient temperature is associated with an increased risk of work-related injury. Understanding this relationship is important because work-related injuries are a major public health problem, and because projected climate changes will potentially expose workers to hot days, including consecutive hot days, more often. The aim of this study was to quantify the impact of exposure to sustained periods of hot weather on work-related injury risk for workers in Melbourne, Australia. A time-stratified case crossover study design was utilised to examine the association between two and three consecutive days and two and three consecutive nights of hot weather and the risk of work-related injury, using definitions of hot weather ranging from the 60th to the 95th percentile of daily maximum and minimum temperatures for the Melbourne metropolitan area, 2002-2012. Workers' compensation claim data was used to identify cases of acute work-related injury. Overall, two and three consecutive days of hot weather were associated with an increased risk of injury, with this effect becoming apparent at a daily maximum temperature of 27.6 °C (70th percentile). Three consecutive days of high but not extreme temperatures were associated with the strongest effect, with a 15% increased risk of injury (odds ratio 1.15, 95% confidence interval 1.01-1.30) observed when daily maximum temperature was ≥33.3 °C (90th percentile) for three consecutive days, compared to when it was not. At a threshold of 35.5 °C (95th percentile), there was no significant association between temperature and injury for either two or three consecutive days of heat. These findings suggest that warnings to minimise harm to workers from hot weather should be given, and prevention protocol initiated, when consecutive warm days of temperatures lower than extreme heat temperatures are forecast, and well before the upper ranges of ambient daytime temperatures are reached.

  1. The impact of sustained hot weather on risk of acute work-related injury in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    McInnes, Judith Anne; MacFarlane, Ewan M.; Sim, Malcolm R.; Smith, Peter

    2018-02-01

    It has been reported that weather-related high ambient temperature is associated with an increased risk of work-related injury. Understanding this relationship is important because work-related injuries are a major public health problem, and because projected climate changes will potentially expose workers to hot days, including consecutive hot days, more often. The aim of this study was to quantify the impact of exposure to sustained periods of hot weather on work-related injury risk for workers in Melbourne, Australia. A time-stratified case crossover study design was utilised to examine the association between two and three consecutive days and two and three consecutive nights of hot weather and the risk of work-related injury, using definitions of hot weather ranging from the 60th to the 95th percentile of daily maximum and minimum temperatures for the Melbourne metropolitan area, 2002-2012. Workers' compensation claim data was used to identify cases of acute work-related injury. Overall, two and three consecutive days of hot weather were associated with an increased risk of injury, with this effect becoming apparent at a daily maximum temperature of 27.6 °C (70th percentile). Three consecutive days of high but not extreme temperatures were associated with the strongest effect, with a 15% increased risk of injury (odds ratio 1.15, 95% confidence interval 1.01-1.30) observed when daily maximum temperature was ≥33.3 °C (90th percentile) for three consecutive days, compared to when it was not. At a threshold of 35.5 °C (95th percentile), there was no significant association between temperature and injury for either two or three consecutive days of heat. These findings suggest that warnings to minimise harm to workers from hot weather should be given, and prevention protocol initiated, when consecutive warm days of temperatures lower than extreme heat temperatures are forecast, and well before the upper ranges of ambient daytime temperatures are reached.

  2. Quasi-Biennial Oscillation and Solar Cycle Influences over the Winter Arctic Simulated by the WACCM4 Model

    NASA Astrophysics Data System (ADS)

    Li, K. F.; Limpasuvan, T. L.; Limpasuvan, V.; Tung, K. K.; Yung, Y. L.

    2017-12-01

    Observations show that the quasi-biennial oscillation (QBO) and the 11-year solar cycle perturb the polar vortex via planetary wave convergence at high latitudes, a mechanism first proposed by Holton and Tan in 1980. Their perturbations lead to increases of stratospheric sudden warming events, and hence observable increases in temperature and ozone abundance in the polar vortex, during the easterly phase of QBO and the solar maximum. Here we simulate the changes in the polar atmosphere using the Whole Atmosphere Community Climate Model 4 (WACCM4) with the prescribed QBO and 11-year solar cycle forcing. The simulation is diagnosed in four groups: westerly QBO phase and solar minimum, westerly QBO phase and solar maximum, easterly QBO phase and solar minimum, and easterly QBO phase and solar maximum. The simulated changes in temperature and ozone are compared with satellite observations.

  3. Reversion phenomena of Cu-Cr alloys

    NASA Technical Reports Server (NTRS)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  4. The Short-Term Effect of Ambient Temperature on Mortality in Wuhan, China: A Time-Series Study Using a Distributed Lag Non-Linear Model

    PubMed Central

    Zhang, Yunquan; Li, Cunlu; Feng, Renjie; Zhu, Yaohui; Wu, Kai; Tan, Xiaodong; Ma, Lu

    2016-01-01

    Less evidence concerning the association between ambient temperature and mortality is available in developing countries/regions, especially inland areas of China, and few previous studies have compared the predictive ability of different temperature indictors (minimum, mean, and maximum temperature) on mortality. We assessed the effects of temperature on daily mortality from 2003 to 2010 in Jiang’an District of Wuhan, the largest city in central China. Quasi-Poisson generalized linear models combined with both non-threshold and double-threshold distributed lag non-linear models (DLNM) were used to examine the associations between different temperature indictors and cause-specific mortality. We found a U-shaped relationship between temperature and mortality in Wuhan. Double-threshold DLNM with mean temperature performed best in predicting temperature-mortality relationship. Cold effect was delayed, whereas hot effect was acute, both of which lasted for several days. For cold effects over lag 0–21 days, a 1 °C decrease in mean temperature below the cold thresholds was associated with a 2.39% (95% CI: 1.71, 3.08) increase in non-accidental mortality, 3.65% (95% CI: 2.62, 4.69) increase in cardiovascular mortality, 3.87% (95% CI: 1.57, 6.22) increase in respiratory mortality, 3.13% (95% CI: 1.88, 4.38) increase in stroke mortality, and 21.57% (95% CI: 12.59, 31.26) increase in ischemic heart disease (IHD) mortality. For hot effects over lag 0–7 days, a 1 °C increase in mean temperature above the hot thresholds was associated with a 25.18% (95% CI: 18.74, 31.96) increase in non-accidental mortality, 34.10% (95% CI: 25.63, 43.16) increase in cardiovascular mortality, 24.27% (95% CI: 7.55, 43.59) increase in respiratory mortality, 59.1% (95% CI: 41.81, 78.5) increase in stroke mortality, and 17.00% (95% CI: 7.91, 26.87) increase in IHD mortality. This study suggested that both low and high temperature were associated with increased mortality in Wuhan, and that mean temperature had better predictive ability than minimum and maximum temperature in the association between temperature and mortality. PMID:27438847

  5. Influence of temperature on muscle recruitment and muscle function in vivo.

    PubMed

    Rome, L C

    1990-08-01

    Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.

  6. Experimental study on a prototype of heat pipe solar water heater using refrigerant R134a as a transfer fluid

    NASA Astrophysics Data System (ADS)

    Sitepu, T.; Sembiring, J.; Ambarita, H.

    2018-02-01

    A prototype of a solar water heater by using refrigerant as a heat transfer fluid is investigated experimentally. The objective is to explore the characteristics and the performance of the prototype. To make heat transfer from the collector to the heated fluid effectively, refrigerant R134a is used as a transfer. In the experiments, the initial pressure inside the heat pipe is varied. The prototype is exposed to solar irradiation in a location in Medan city for three days of the experiment. Solar collector temperatures, solar radiation, water temperature, and ambient temperature are measured. The efficiency of the system is analyzed. The results show that temperature of the hot water increases as the initial pressure of the working fluid increase. However, the increasing is not linear, and there must exist an optimum initial pressure. For the case with the refrigerant pressure of 110 psi, the maximum hot water temperature and maximum thermal efficiency are 45.36oC and 53.23%, respectively. The main conclusion can be drawn here is that solar water heater by using refrigerant R134a should be operated at initial pressure 110 psi.

  7. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    NASA Technical Reports Server (NTRS)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  8. Adaptive potential of a Pacific salmon challenged by climate change

    NASA Astrophysics Data System (ADS)

    Muñoz, Nicolas J.; Farrell, Anthony P.; Heath, John W.; Neff, Bryan D.

    2015-02-01

    Pacific salmon provide critical sustenance for millions of people worldwide and have far-reaching impacts on the productivity of ecosystems. Rising temperatures now threaten the persistence of these important fishes, yet it remains unknown whether populations can adapt. Here, we provide the first evidence that a Pacific salmon has both physiological and genetic capacities to increase its thermal tolerance in response to rising temperatures. In juvenile chinook salmon (Oncorhynchus tshawytscha), a 4 °C increase in developmental temperature was associated with a 2 °C increase in key measures of the thermal performance of cardiac function. Moreover, additive genetic effects significantly influenced several measures of cardiac capacity, indicative of heritable variation on which selection can act. However, a lack of both plasticity and genetic variation was found for the arrhythmic temperature of the heart, constraining this upper thermal limit to a maximum of 24.5 +/- 2.2 °C. Linking this constraint on thermal tolerance with present-day river temperatures and projected warming scenarios, we predict a 17% chance of catastrophic loss in the population by 2100 based on the average warming projection, with this chance increasing to 98% in the maximum warming scenario. Climate change mitigation is thus necessary to ensure the future viability of Pacific salmon populations.

  9. Uncertainties in observations and climate projections for the North East India

    NASA Astrophysics Data System (ADS)

    Soraisam, Bidyabati; Karumuri, Ashok; D. S., Pai

    2018-01-01

    The Northeast-India has undergone many changes in climatic-vegetation related issues in the last few decades due to increased human activities. However, lack of observations makes it difficult to ascertain the climate change. The study involves the mean, seasonal cycle, trend and extreme-month analysis for summer-monsoon and winter seasons of observed climate data from Indian Meteorological Department (1° × 1°) and Aphrodite & CRU-reanalysis (both 0.5° × 0.5°), and five regional-climate-model simulations (LMDZ, MPI, GFDL, CNRM and ACCESS) data from AR5/CORDEX-South-Asia (0.5° × 0.5°). Long-term (1970-2005) observed, minimum and maximum monthly temperature and precipitation, and the corresponding CORDEX-South-Asia data for historical (1970-2005) and future-projections of RCP4.5 (2011-2060) have been analyzed for long-term trends. A large spread is found across the models in spatial distributions of various mean maximum/minimum climate statistics, though models capture a similar trend in the corresponding area-averaged seasonal cycles qualitatively. Our observational analysis broadly suggests that there is no significant trend in rainfall. Significant trends are observed in the area-averaged minimum temperature during winter. All the CORDEX-South-Asia simulations for the future project either a decreasing insignificant trend in seasonal precipitation, but increasing trend for both seasonal maximum and minimum temperature over the northeast India. The frequency of extreme monthly maximum and minimum temperature are projected to increase. It is not clear from future projections how the extreme rainfall months during JJAS may change. The results show the uncertainty exists in the CORDEX-South-Asia model projections over the region in spite of the relatively high resolution.

  10. Spatiotemporal extremes of temperature and precipitation during 1960-2015 in the Yangtze River Basin (China) and impacts on vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Cui, Lifang; Wang, Lunche; Qu, Sai; Singh, Ramesh P.; Lai, Zhongping; Yao, Rui

    2018-05-01

    Recently, extreme climate variation has been studied in different parts of the world, and the present study aims to study the impacts of climate extremes on vegetation. In this study, we analyzed the spatiotemporal variations of temperature and precipitation extremes during 1960-2015 in the Yangtze River Basin (YRB) using the Mann-Kendall (MK) test with Sen's slope estimator and kriging interpolation method based on daily precipitation (P), maximum temperature (T max), and minimum temperature (T min). We also analyzed the vegetation dynamics in the YRB during 1982-2015 using Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) datasets and investigated the relationship between temperature and precipitation extremes and NDVI using Pearson correlation coefficients. The results showed a pronounced increase in the annual mean maximum temperature (T nav) and mean minimum temperature (T xav) at the rate of 0.23 °C/10 years and 0.15 °C/10 years, respectively, during 1960-2015. In addition, the occurrence of warm days and warm nights shows increasing trends at the rate of 1.36 days/10 years and 1.70 days/10 years, respectively, while cold days and cold nights decreased at the rate of 1.09 days/10 years and 2.69 days/10 years, respectively, during 1960-2015. The precipitation extremes, such as very wet days (R95, the 95th percentile of daily precipitation events), very wet day precipitation (R95p, the number of days with rainfall above R95), rainstorm (R50, the number of days with rainfall above 50 mm), and maximum 1-day precipitation (RX1day), all show pronounced increasing trends during 1960-2015. In general, annual mean NDVI over the whole YRB increased at the rate of 0.01/10 years during 1982-2015, with an increasing transition around 1994. Spatially, annual mean NDVI increased in the northern, eastern, and parts of southwestern YRB, while it decreased in the YRD and parts of southern YRB during 1982-2015. The correlation coefficients showed that annual mean NDVI was closely correlated with temperature extremes during 1982-2015 and 1995-2015, but no significant correlation with precipitation extremes was observed. However, the decrease in NDVI was correlated with increasing R95p and R95 during 1982-1994.

  11. [Effect of addition of instant corn flour on rheological characteristics of wheat flour and breadmaking III].

    PubMed

    Martínez, F; el-Dahs, A A

    1993-12-01

    The instant corn flour prepared by the hydrothermal process using corn grits soaked in water at room temperature (28-30 degrees C) for 5 hours and steaming for 1 minute at 118 degrees C presented characteristics similar to that of flours prepared with grits soaked in water at temperature higher than room temperature and different steaming time (5 and 15 minutes). The addition of instant corn flour up of a 25% mixture with wheat flour reduced the peak of maximum viscosity during the heating cycle; however, the final viscosity during the cooling cycle was increased. The water absorption was increased with the increase of substitution in the level of wheat flour. Extensibility, maximum resistance and values of area were reduced with an increase in the level of instant corn flour in the mixture. However, extension resistance and proportional number were increased. Bread prepared from a mixture of instant corn flour and wheat flour showed higher weight with low loaf volume, color and texture of the crumb related to bread wheat.

  12. Magnetocaloric Effect in Ni50Mn36Sb14- x Z x (Z = Al, Ge; x = 0, 2) Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Emelyanova, S. M.; Bebenin, N. G.; Dyakina, V. P.; Chistyakov, V. V.; Dyachkova, T. V.; Tyutyunnik, A. P.; Wang, R. L.; Yang, C. P.; Sauerzopf, F.; Marchenkov, V. V.

    2018-02-01

    The temperature dependences of the electrical resistivity and magnetization of the Ni50Mn36Sb14- x Z x (Z = Al, Ge; x = 0; 2) alloys have been used to determine the characteristic phase transition temperatures. The isothermal entropy change Δ S was determined using Maxwell's equation and the field dependences of magnetization. The partial substitution of Ge for Sb has been shown to result in a slight increase in Δ S and a shift in the Δ S maximum to the low-temperature range. The substitution of Al for Sb leads to a decrease in the effect and shift in the Δ S maximum to the high-temperature range. It has been found that the maximum magnetocaloric effect has been observed for the Ni50Mn36Sb12Ge2 composition and is equal to Δ S = 1.3 J/(kg K) in a field change of 10 kOe.

  13. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration.

    PubMed

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Sauvala, Kari; Laitinen, Kaisa; Kellomäki, Seppo

    2003-09-01

    Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.

  14. Germination shifts of C3 and C4 species under simulated global warming scenario.

    PubMed

    Zhang, Hongxiang; Yu, Qiang; Huang, Yingxin; Zheng, Wei; Tian, Yu; Song, Yantao; Li, Guangdi; Zhou, Daowei

    2014-01-01

    Research efforts around the world have been increasingly devoted to investigating changes in C3 and C4 species' abundance or distribution with global warming, as they provide important insight into carbon fluxes and linked biogeochemical cycles. However, changes in the early life stage (e.g. germination) of C3 and C4 species in response to global warming, particularly with respect to asymmetric warming, have received less attention. We investigated germination percentage and rate of C3 and C4 species under asymmetric (+3/+6°C at day/night) and symmetric warming (+5/+5°C at day/night), simulated by alternating temperatures. A thermal time model was used to calculate germination base temperature and thermal time constant. Two additional alternating temperature regimes were used to test temperature metrics effect. The germination percentage and rate increased continuously for C4 species, but increased and then decreased with temperature for C3 species under both symmetric and asymmetric warming. Compared to asymmetric warming, symmetric warming significantly overestimated the speed of germination percentage change with temperature for C4 species. Among the temperature metrics (minimum, maximum, diurnal temperature range and average temperature), maximum temperature was most correlated with germination of C4 species. Our results indicate that global warming may favour germination of C4 species, at least for the C4 species studied in this work. The divergent effects of asymmetric and symmetric warming on plant germination also deserve more attention in future studies.

  15. [Experimental investigation on emission characteristic of NOx during micropulverized coal oxidation].

    PubMed

    Jiang, Xiu-Min; Wei, Li-Hong; Huang, Xiang-Yong; Zhang, Chao-Qun

    2008-03-01

    The combustion experiments of HG micronized coal have been conducted by combining DTG and GC-MS. The effects on NOx emission caused by particle size, oxygen concentration and heating rate were analyzed. The results show that under combustion condition that oxygen concentration is 20%, NOx precipitations of HG coal in difference sizes are single-peaked courses. Particle size impacts NOx emission from coal combustion significantly. Micro-pulverized coal reduces NOx emission. Under heating condition with 5 degrees C/min, 10 degrees C/min and 20 degrees C/min, precipitation of NO and NO2 is increased with heating rate rising, and temperature parallelized with maximum NO precipitation rate is increased with heating rate rising as well. With increasing of oxygen concentration in combustion, NOx precipitation increases correspondingly, and temperature parallelized with maximum NOx precipitation rate is reduced.

  16. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Qiu, Shipeng; Vaidyanathan, Raj; Gaydosh, Darrell; Garg, Anita

    2011-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 113 C, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 C. The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 290 C. In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  17. Skin temperature increase mediated by wearable, long duration, low-intensity therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Langer, Matthew D.; Huang, Wenyi; Ghanem, Angi; Guo, Yuan; Lewis, George K.

    2017-03-01

    One of the safety concerns with the delivery of therapeutic ultrasound is overheating of the transducer-skin interface due to poor or improper coupling. The objective of this research was to define a model that could be used to calculate the heating in the skin as a result of a novel, wearable long-duration ultrasound device. This model was used to determine that the maximum heating in the skin remained below the minimum threshold necessary to cause thermal injury over multiple hours of use. In addition to this model data, a human clinical study used wire thermocouples on the skin surface to measure heating characteristics during treatment with the sustained ultrasound system. Parametric analysis of the model determined that the maximum temperature increase is at the surface of the skin ranged from 40-41.8° C when perfusion was taken into account. The clinical data agreed well with the model predictions. The average steady state temperature observed across all 44 subjects was 40°C. The maximum temperature observed was less than 44° C, which is clinically safe for over 5 hours of human skin contact. The resultant clinical temperature data paired well with the model data suggesting the model can be used for future transducer and ultrasound system design simulation. As a result, the device was validated for thermal safety for typical users and use conditions.

  18. The effect of air temperature and human thermal indices on mortality in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Matzarakis, Andreas

    2012-05-01

    This paper investigates whether there is any association between the daily mortality for the wider region of Athens, Greece and the thermal conditions, for the 10-year period 1992-2001. The daily mortality datasets were acquired from the Hellenic Statistical Service and the daily meteorological datasets, concerning daily maximum and minimum air temperature, from the Hellinikon/Athens meteorological station, established at the headquarters of the Greek Meteorological Service. Besides, the daily values of the thermal indices Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) were evaluated in order to interpret the grade of physiological stress. The first step was the application of Pearson's χ 2 test to the compiled contingency tables, resulting in that the probability of independence is zero ( p = 0.000); namely, mortality is in close relation to the air temperature and PET/UTCI. Furthermore, the findings extracted by the generalized linear models showed that, statistically significant relationships ( p < 0.01) between air temperature, PET, UTCI and mortality exist on the same day. More concretely, on one hand during the cold period (October-March), a 10°C decrease in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 13%, 15%, 2%, 7% and 6% of the probability having a death, respectively. On the other hand, during the warm period (April-September), a 10°C increase in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 3%, 1%, 10%, 3% and 5% of the probability having a death, respectively. Taking into consideration the time lag effect of the examined parameters on mortality, it was found that significant effects of 3-day lag during the cold period appears against 1-day lag during the warm period. In spite of the general aspect that cold conditions seem to be favourable factors for daily mortality, the air temperature and PET/UTCI exceedances over specific thresholds depending on the distribution reveal that, very hot conditions are risk factors for the daily mortality.

  19. Interspecific variation in thermoregulation among three sympatric bats inhabiting a hot, semi-arid environment.

    PubMed

    Cory Toussaint, Dawn; McKechnie, Andrew E

    2012-12-01

    Bats in hot roosts experience some of the most thermally challenging environments of any endotherms, but little is known about how heat tolerance and evaporative cooling capacity vary among species. We investigated thermoregulation in three sympatric species (Nycteris thebaica, Taphozous mauritianus and Sauromys petrophilus) in a hot, semi-arid environment by measuring body temperature (T(b)), metabolic rate and evaporative water loss (EWL) at air temperatures (T(a)) of 10-42 °C. S. petrophilus was highly heterothermic with no clear thermoneutral zone, and exhibited rapid increases in EWL at high T(a) to a maximum of 23.7 ± 7.4 mg g⁻¹ h⁻¹ at T(a) ≈ 42 °C, with a concomitant maximum T(b) of 43.7 ± 1.0 °C. T. mauritianus remained largely normothermic at T(a)s below thermoneutrality and increased EWL to 14.7 ± 1.3 mg g⁻¹ h⁻¹ at T(a) ≈ 42 °C, with a maximum T(b) of 42.9 ± 1.6 °C. In N. thebaica, EWL began increasing at lower T (a) than in either of the other species and reached a maximum of 18.6 ± 2.1 mg g⁻¹ h⁻¹ at T(a) = 39.4 °C, with comparatively high maximum T(b) values of 45.0 ± 0.9 °C. Under the conditions of our study, N. thebaica was considerably less heat tolerant than the other two species. Among seven species of bats for which data on T(b) as well as roost temperatures in comparison to outside T(a) are available, we found limited evidence for a correlation between overall heat tolerance and the extent to which roosts are buffered from high T(a).

  20. Enhancing thermo-induced recombinant protein production in Escherichia coli by temperature oscillations and post-induction nutrient feeding strategies.

    PubMed

    Caspeta, Luis; Lara, Alvaro R; Pérez, Néstor O; Flores, Noemí; Bolívar, Francisco; Ramírez, Octavio T

    2013-08-10

    Traditional strategies for production of thermo-induced recombinant protein in Escherichia coli consist of a two-phase culture, with an initial growth stage at low temperature (commonly 30°C) followed by a production stage where temperature is increased stepwise (commonly up to 42°C). A disadvantage of such strategies is that growth is inhibited upon temperature increase, limiting the duration of the production stage and consequently limiting recombinant protein production. In this work, a novel oscillatory thermo-induction strategy, consisting on temperature fluctuations between 37 and 42°C or 30 and 42°C, was tested for improving recombinant protein production. In addition, the induction schemes were combined with one of three different nutrient feeding strategies: two exponential and one linear. Recombinant human preproinsulin (HPPI), produced under control of the λP(L)-cI857 system in the E. coli BL21 strain, was used as the model protein. Compared to the conventional induction scheme at constant temperature (42°C), longer productive times were attained under oscillatory induction, which resulted in a 1.3- to 1.7-fold increase in maximum HPPI concentration. Temperature oscillations led to a 2.3- to 4.0-fold increase in biomass accumulation and a decrease of 48-62% in the concentration of organic acids, compared to conventional induction. Under constant induction, growth ceased upon temperature increase and the maximum concentration of HPPI was 3.9 g/L, regardless of the post-induction feeding strategy used. In comparison, the combination of temperature oscillations and a high nutrient-feeding rate allowed sustained growth after induction and reaching up to 5.8 g/L of HPPI. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection.

    PubMed

    DeWeber, Jefferson T; Wagner, Tyler

    2018-06-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects. © 2018 John Wiley & Sons Ltd.

  2. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection

    USGS Publications Warehouse

    DeWeber, Jefferson T.; Wagner, Tyler

    2018-01-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects.

  3. Continuous Hydrogen Production from Agricultural Wastewaters at Thermophilic and Hyperthermophilic Temperatures.

    PubMed

    Ramos, Lucas Rodrigues; Silva, Edson Luiz

    2017-06-01

    The objective of this study was to investigate the effects of hydraulic retention time (HRT) (8 to 0.5 h) and temperature (55 to 75 °C) in two anaerobic fluidized bed reactors (AFBR) using cheese whey (AFBR-CW = 10,000 mg sugars L -1 ) and vinasse (AFBR-V = 10,000 mg COD L -1 ) as substrates. Decreasing the HRT to 0.5 h increased the hydrogen production rates in both reactors, with maximum values of 5.36 ± 0.81 L H 2 h -1 L -1 in AFBR-CW and 0.71 ± 0.16 L H 2 h -1 L -1 in AFBR-V. The optimal conditions for hydrogen production were the HRT of 4 h and temperature of 65 °C in AFBR-CW, observing maximum hydrogen yield (HY) of 5.51 ± 0.37 mmol H 2 g COD -1 . Still, the maximum HY in AFBR-V was 1.64 ± 0.22 mmol H 2 g COD -1 at 4 h and 55 °C. However, increasing the temperature to 75 °C reduced the hydrogen production in both reactors. Methanol and butyric, acetic, and lactic acids were the main metabolites at temperatures of 55 and 65 °C, favoring the butyric and acetic metabolic pathways of hydrogen production. The increased productions of lactate, propionate, and methanol at 75 °C indicate that the hydrogen-producing bacteria in the thermophilic inoculum were inhibited under hyperthermophilic conditions.

  4. Accelerated Testing Of Photothermal Degradation Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  5. Projected near-future levels of temperature and pCO2 reduce coral fertilization success.

    PubMed

    Albright, Rebecca; Mason, Benjamin

    2013-01-01

    Increases in atmospheric carbon dioxide (pCO2) are projected to contribute to a 1.1-6.4°C rise in global average surface temperatures and a 0.14-0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C) and pCO2 (+400 µatm) projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2) and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential.

  6. Projected Near-Future Levels of Temperature and pCO2 Reduce Coral Fertilization Success

    PubMed Central

    Albright, Rebecca; Mason, Benjamin

    2013-01-01

    Increases in atmospheric carbon dioxide (pCO2) are projected to contribute to a 1.1–6.4°C rise in global average surface temperatures and a 0.14–0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C) and pCO2 (+400 µatm) projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2) and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential. PMID:23457572

  7. Crops Models for Varying Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Cavazzoni, James; Keas, Paul

    2001-01-01

    New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allows changes in light energy but uses a less accurate linear approximation. The simulation outputs of the new MEC models for constant nominal environmental conditions are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have realistic exponential canopy growth, and have corrected harvest dates for potato and tomato. The new MEC models indicate that the maximum edible biomass per meter squared per day is produced at the maximum allowed carbon dioxide level, the nominal temperatures, and the maximum light input. Reducing the carbon dioxide level from the maximum to the minimum allowed in the model reduces crop production significantly. Increasing temperature decreases production more than it decreases the time to harvest, so productivity in edible biomass per meter squared per day is greater at nominal than maximum temperatures, The productivity in edible biomass per meter squared per day is greatest at the maximum light energy input allowed in the model, but the edible biomass produced per light energy input unit is lower than at nominal light levels. Reducing light levels increases light and power use efficiency. The MEC models suggest we can adjust the light energy day-to- day to accommodate power shortages or Lise excess power while monitoring and controlling edible biomass production.

  8. Effect of Vacuum Frying on Changes in Quality Attributes of Jackfruit (Artocarpus heterophyllus) Bulb Slices

    PubMed Central

    Bawa, A. S.; Raju, P. S.

    2014-01-01

    The effect of frying temperatures and durations on the quality of vacuum fried jackfruit (JF) chips was evaluated. Moisture content and breaking force of JF chips decreased with increase in frying temperature and time during vacuum frying whereas the oil content increased. The frying time for JF chips was found to be 30, 25, and 20 minutes at 80, 90, and 100°C, respectively. JF chips fried at higher temperature resulted in maximum shrinkage (48%). The lightness in terms of hunter L * value decreased significantly (P < 0.05) during frying. Sensory evaluation showed maximum acceptability for JF chips fried at 90°C for 25 min. Frying under vacuum at lower temperatures was found to retain bioactive compounds such as total phenolics, total flavonoids, and total carotenoids in JF chips. Almost 90% of carotenoids were lost from the samples after 30 min of frying at 100°C. PMID:26904648

  9. Mesospheric effects of solar ultraviolet variations - Further analysis of SME IR ozone and Nimbus 7 SAMS temperature data

    NASA Astrophysics Data System (ADS)

    Hood, L. L.; Huang, Z.; Bougher, S. W.

    1991-07-01

    In order to improve the constraints on models of the mesospheric response to solar UV variations, an analysis is conducted of the Solar Mesosphere Explorer (SME) IR ozone data and Nimbus 7 stratosphere and mesosphere sounder (SAMS) temperature data. Maximum low-altitude ozone and temperature-response amplitudes occur at about the same altitude, where a strong coupling between photochemical and thermal components of the mesospheric response is suggested by the simultaneous positive temperature and negative ozone response maxima. Increased Lyman-alpha dissociation of water vapor and temperature feedback are theorized to account for the negative ozone response. HO(x) chemical heating can increase as ozone destruction increases, and can therefore account for the positive temperature response.

  10. Mesospheric effects of solar ultraviolet variations - Further analysis of SME IR ozone and Nimbus 7 SAMS temperature data

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Huang, Z.; Bougher, S. W.

    1991-01-01

    In order to improve the constraints on models of the mesospheric response to solar UV variations, an analysis is conducted of the Solar Mesosphere Explorer (SME) IR ozone data and Nimbus 7 stratosphere and mesosphere sounder (SAMS) temperature data. Maximum low-altitude ozone and temperature-response amplitudes occur at about the same altitude, where a strong coupling between photochemical and thermal components of the mesospheric response is suggested by the simultaneous positive temperature and negative ozone response maxima. Increased Lyman-alpha dissociation of water vapor and temperature feedback are theorized to account for the negative ozone response. HO(x) chemical heating can increase as ozone destruction increases, and can therefore account for the positive temperature response.

  11. Effects of repeated bending load at room temperature for composite Nb3Sn wires

    NASA Astrophysics Data System (ADS)

    Awaji, Satoshi; Watanabe, Kazuo; Katagiri, Kazumune

    2003-09-01

    In order to realize a react and wind (R&W) method for Nb3Sn wires, the influences of a bending load at room temperature are investigated. Usually, the superconducting wires undergo bending loads at room temperature repeatedly during winding and insulation processes. We define these bending loads as 'pre-bending' treatments. We applied the pre-bending strain of 0 and 0.5% to the highly strengthened CuNb/(Nb, Ti)3Sn wires, and measured the stress/strain properties and critical currents. The improvements of stress dependence of normalized critical current and the increase of the maximum critical current by the pre-bending treatments were found. The model based on the distribution of the local tensile strain as a bending strain describes the experimental results well without the increase of the maximum critical current. When the pre-bending strain was applied, the calculated results indicate that the mechanical properties are improved due to the local work hardening, and hence the stress dependence of Ic increases.

  12. Investigations on cooling with forced flow of He II. Part 2

    NASA Astrophysics Data System (ADS)

    Srinivasan, R.; Hofmann, A.

    The measurements described in Part 1 of this Paper have been extended to a pressure of 7 bar . The value of the conductivity function, f( T), at a temperature greater than Tmax, at which it exhibits a maximum, drops rapidly with increasing pressure. Below Tmax the change in f( T) with pressure is less drastic. The Gorter-Mellink constant, AGM, increases linearly with pressure in the range 1.5-2 K and its pressure coefficient at 1 bar is 0.038 ± 0.01 per bar, independent of temperature. The superfilter is tested at 1.8 K. The flow through the superfilter is Gorter-Mellink flow. The maximum flow rate decreases as the pressure increases. The temperature distribution in the test section with and without flow is adequately described by the one-dimensional model discussed in Part 1. It is concluded that for heat transfer to He II in forced flow there is no advantage in working at pressures > 1 bar. 1 bar = 100 kPa

  13. Experimental and numerical investigations of heat transfer and thermal efficiency of an infrared gas stove

    NASA Astrophysics Data System (ADS)

    Charoenlerdchanya, A.; Rattanadecho, P.; Keangin, P.

    2018-01-01

    An infrared gas stove is a low-pressure gas stove type and it has higher thermal efficiency than the other domestic cooking stoves. This study considers the computationally determine water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The goal of this work is to investigate the effect of various pot diameters i.e. 220 mm, 240 mm and 260 mm on the water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The time-dependent heat transfer equation involving diffusion and convection coupled with the time-dependent fluid dynamic equation is implemented and is solved by using the finite element method (FEM). The computer simulation study is validated with an experimental study, which is use standard experiment by LPG test for low-pressure gas stove in households (TIS No. 2312-2549). The findings revealed that the water and air temperature distributions increase with greater heating time, which varies with the three different pot diameters (220 mm, 240 mm and 260 mm). Similarly, the greater heating time, the water and air velocity distributions increase that vary by pot diameters (220, 240 and 260 mm). The maximum water temperature in the case of pot diameter of 220 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 260 mm, respectively. However, the maximum air temperature in the case of pot diameter of 260 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 220 mm, respectively. The obtained results may provide a basis for improving the energy efficiency of infrared gas stoves and other equipment, including helping to reduce energy consumption.

  14. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  15. The association between temperature and mortality in tropical middle income Thailand from 1999 to 2008

    NASA Astrophysics Data System (ADS)

    Tawatsupa, Benjawan; Dear, Keith; Kjellstrom, Tord; Sleigh, Adrian

    2014-03-01

    We have investigated the association between tropical weather condition and age-sex adjusted death rates (ADR) in Thailand over a 10-year period from 1999 to 2008. Population, mortality, weather and air pollution data were obtained from four national databases. Alternating multivariable fractional polynomial (MFP) regression and stepwise multivariable linear regression analysis were used to sequentially build models of the associations between temperature variable and deaths, adjusted for the effects and interactions of age, sex, weather (6 variables), and air pollution (10 variables). The associations are explored and compared among three seasons (cold, hot and wet months) and four weather zones of Thailand (the North, Northeast, Central, and South regions). We found statistically significant associations between temperature and mortality in Thailand. The maximum temperature is the most important variable in predicting mortality. Overall, the association is nonlinear U-shape and 31 °C is the minimum-mortality temperature in Thailand. The death rates increase when maximum temperature increase with the highest rates in the North and Central during hot months. The final equation used in this study allowed estimation of the impact of a 4 °C increase in temperature as projected for Thailand by 2100; this analysis revealed that the heat-related deaths will increase more than the cold-related deaths avoided in the hot and wet months, and overall the net increase in expected mortality by region ranges from 5 to 13 % unless preventive measures were adopted. Overall, these results are useful for health impact assessment for the present situation and future public health implication of global climate change for tropical Thailand.

  16. Microwave absorption properties of flake-shaped Co particles composites at elevated temperature (293-673 K) in X band

    NASA Astrophysics Data System (ADS)

    Wang, Guowu; Li, Xiling; Wang, Peng; Zhang, Junming; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-06-01

    The complex permeability and permittivity of the easy-plane anisotropic Co/polyimide composite at high temperature (293-673 K) in X band were measured. The results show that both the complex permeability and permittivity increase with the increase of temperature in the measured temperature range. The calculated absorption properties display that the intensity of the reflection loss (RL) peak first increases and then decreases with the increase of temperature, and reaches the maximum (-52 dB) at 523 K. At each temperature, the composite can achieve the RL exceeding -10 dB in the whole X band. The composite can even work stably for more than 20 min with the excellent absorption performance under 673 K. In addition, the RL performance of the composite at high temperature is better than that at room temperature.

  17. Effect of various sintering temperature on resistivity behaviour and magnetoresistance of La{sub 0.67}Ba{sub 0.33}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratama, R.; Kurniawan, B., E-mail: bkuru07@gmail.com; Manaf, A.

    2016-04-19

    A detail work was conducted in order to investigate effect of various sintering temperature on resistivity behavior and its relation with the magneto-resistance effect of La{sub 0.67}Ba{sub 0.33}MnO{sub 3} (LBMO). The LBMO samples were synthesized using solid state reaction. Characterization using X-ray diffraction shows that all LBMO samples have a single phase for each variation. Variation of sintering temperature on the LBMO samples affects its lattice parameters. The resistivity measurement in an absence and under applied magnetic field resulted in a highly significant different values. In one of the sintering temperature variation of LBMO, an increasing resistivity had shown atmore » a low temperature and had reached its maximum value at a specific temperature, and then the resistivity decreases to the lowest value near the room temperature. Similar result observed at higher varieties of sintering temperature but with significant lower maximum resistivity.« less

  18. Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia

    NASA Astrophysics Data System (ADS)

    Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van

    2018-01-01

    Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.

  19. The impact of environmental factors on marine turtle stranding rates

    PubMed Central

    Flint, Mark; Limpus, Colin J.; Mills, Paul C.

    2017-01-01

    Globally, tropical and subtropical regions have experienced an increased frequency and intensity in extreme weather events, ranging from severe drought to protracted rain depressions and cyclones, these coincided with an increased number of marine turtles subsequently reported stranded. This study investigated the relationship between environmental variables and marine turtle stranding. The environmental variables examined in this study, in descending order of importance, were freshwater discharge, monthly mean maximum and minimum air temperatures, monthly average daily diurnal air temperature difference and rainfall for the latitudinal hotspots (-27°, -25°, -23°, -19°) along the Queensland coast as well as for major embayments within these blocks. This study found that marine turtle strandings can be linked to these environmental variables at different lag times (3–12 months), and that cumulative (months added together for maximum lag) and non-cumulative (single month only) effects cause different responses. Different latitudes also showed different responses of marine turtle strandings, both in response direction and timing.Cumulative effects of freshwater discharge in all latitudes resulted in increased strandings 10–12 months later. For latitudes -27°, -25° and -23° non-cumulative effects for discharge resulted in increased strandings 7–12 months later. Latitude -19° had different results for the non-cumulative bay with strandings reported earlier (3–6 months). Monthly mean maximum and minimum air temperatures, monthly average daily diurnal air temperature difference and rainfall had varying results for each examined latitude. This study will allow first responders and resource managers to be better equipped to deal with increased marine turtle stranding rates following extreme weather events. PMID:28771635

  20. High-Field Quench Behavior and Protection of $$Bi_2 Sr_2 Ca Cu_2 O_x$$ Coils: Minimum and Maximum Quench Detection Voltages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Tengming; Ye, Liyang; Turrioni, Daniele

    Small insert coils have been built using a multifilamentary Bi2Sr2CaCu2Ox round wire, and characterized in background fields to explore the quench behaviors and limits of Bi2Sr2CaCu2Ox superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltagemore » shall be greater than 50 mV to not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increases from ~40 K to ~80 K with increasing the operating wire current density Jo from 89 A/mm2 to 354 A/mm2 whereas for the voltage to reach 1 V, it increases from ~60 K to ~140 K, showing the increasing negative impact of slow normal zone propagation on quench detection with increasing Jo and the need to limit the quench detection voltage to < 1 V. These measurements, coupled with an analytical quench model, were used to access the impact of the maximum allowable voltage and temperature upon quench detection on the quench protection, assuming to limit the hot spot temperature to <300 K.« less

  1. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird.

    PubMed

    du Plessis, Katherine L; Martin, Rowan O; Hockey, Philip A R; Cunningham, Susan J; Ridley, Amanda R

    2012-10-01

    Recent mass mortalities of bats, birds and even humans highlight the substantial threats that rising global temperatures pose for endotherms. Although less dramatic, sublethal fitness costs of high temperatures may be considerable and result in changing population demographics. Endothermic animals exposed to high environmental temperatures can adjust their behaviour (e.g. reducing activity) or physiology (e.g. elevating rates of evaporative water loss) to maintain body temperatures within tolerable limits. The fitness consequences of these adjustments, in terms of the ability to balance water and energy budgets and therefore maintain body condition, are poorly known. We investigated the effects of daily maximum temperature on foraging and thermoregulatory behaviour as well as maintenance of body condition in a wild, habituated population of Southern Pied Babblers Turdoides bicolor. These birds inhabit a hot, arid area of southern Africa where they commonly experience environmental temperatures exceeding optimal body temperatures. Repeated measurements of individual behaviour and body mass were taken across days varying in maximum air temperature. Contrary to expectations, foraging effort was unaffected by daily maximum temperature. Foraging efficiency, however, was lower on hotter days and this was reflected in a drop in body mass on hotter days. When maximum air temperatures exceeded 35.5 °C, individuals no longer gained sufficient weight to counter typical overnight weight loss. This reduction in foraging efficiency is likely driven, in part, by a trade-off with the need to engage in heat-dissipation behaviours. When we controlled for temperature, individuals that actively dissipated heat while continuing to forage experienced a dramatic decrease in their foraging efficiency. This study demonstrates the value of investigations of temperature-dependent behaviour in the context of impacts on body condition, and suggests that increasingly high temperatures will have negative implications for the fitness of these arid-zone birds. © 2012 Blackwell Publishing Ltd.

  2. Equilibrium and kinetic modelling of chromium(III) sorption by animal bones.

    PubMed

    Chojnacka, Katarzyna

    2005-04-01

    The paper discusses sorption of Cr(III) ions from aqueous solutions by animal bones. Animal bones were found to be an efficient sorbent with the maximum experimentally determined sorption capacity in the range 29-194 mg g(-1) that depended on pH and temperature. The maximum experimentally determined sorption capacity was obtained at 50 degrees C, pH 5. Batch kinetics and equilibrium experiments were performed in order to investigate the influence of contact time, initial concentration of sorbate and sorbent, temperature and pH. It was found that sorption capacity increased with increase of Cr(III) concentration, temperature and initial pH of metal solution. Mathematical models describing kinetics and statics of sorption were proposed. It was found that process kinetics followed the pseudo-second-order pattern. The influence of sorbent concentration was described with Langmuir-type equation and the influence of sorbate concentration was described with empirical dependence. The models were positively verified.

  3. Changes in myosin S1 orientation and force induced by a temperature increase.

    PubMed

    Griffiths, Peter J; Bagni, Maria A; Colombini, Barbara; Amenitsch, Heinz; Bernstorff, Sigrid; Ashley, Christopher C; Cecchi, Giovanni; Ameritsch, Heinz

    2002-04-16

    Force generation in myosin-based motile systems is thought to result from an angular displacement of the myosin subfragment 1 (S1) tail domain with respect to the actin filament axis. In muscle, raised temperature increases the force generated by S1, implying a greater change in tail domain angular displacement. We used time-resolved x-ray diffraction to investigate the structural corollary of this force increase by measuring M3 meridional reflection intensity during sinusoidal length oscillations. This technique allows definition of S1 orientation with respect to the myofilament axis. M3 intensity changes were approximately sinusoid at low temperatures but became increasingly distorted as temperature was elevated, with the formation of a double intensity peak at maximum shortening. This increased distortion could be accounted for by assuming a shift in orientation of the tail domain of actin-bound S1 toward the orientation at which M3 intensity is maximal, which is consistent with a tail domain rotation model of force generation in which the tail approaches a more perpendicular projection from the thin filament axis at higher temperatures. In power stroke simulations, the angle between S1 tail mean position during oscillations and the position at maximum intensity decreased by 4.7 degrees, corresponding to a mean tail displacement toward the perpendicular of 0.73 nm for a temperature-induced force increase of 0.28 P(0) from 4 to 22 degrees C. Our findings suggest that at least 62% of crossbridge compliance is associated with the tail domain.

  4. Temperature and Precipitation trends in Kashmir valley, North Western Himalayas

    NASA Astrophysics Data System (ADS)

    Shafiq, Mifta Ul; Rasool, Rehana; Ahmed, Pervez; Dimri, A. P.

    2018-01-01

    Climate change has emerged as an important issue ever to confront mankind. This concern emerges from the fact that our day-to-day activities are leading to impacts on the Earth's atmosphere that has the potential to significantly alter the planet's shield and radiation balance. Developing countries particularly whose income is particularly derived from agricultural activities are at the forefront of bearing repercussions due to changing climate. The present study is an effort to analyze the changing trends of precipitation and temperature variables in Kashmir valley along different elevation zones in the north western part of India. As the Kashmir valley has a rich repository of glaciers with its annual share of precipitation, slight change in the temperature and precipitation regime has far reaching environmental and economic consequences. The results from Indian Meteorological Department (IMD) data of the period 1980-2014 reveals that the annual mean temperature of Kashmir valley has increased significantly. Accelerated warming has been observed during 1980-2014, with intense warming in the recent years (2001-2014). During the period 1980-2014, steeper increase, in annual mean maximum temperature than annual mean minimum temperature, has been observed. In addition, mean maximum temperature in plain regions has shown higher rate of increase when compared with mountainous areas. In case of mean minimum temperature, mountainous regions have shown higher rate of increase. Analysis of precipitation data for the same period shows a decreasing trend with mountainous regions having the highest rate of decrease which can be quite hazardous for the fragile mountain environment of the Kashmir valley housing a large number of glaciers.

  5. Spatio-temporal Trends of Climate Variability in North Carolina

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, Mohammad

    Climatic trends in spatial and temporal variability of maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean) and precipitation were evaluated for 249 ground-based stations in North Carolina for 1950-2009. The Mann-Kendall (MK), the Theil-Sen Approach (TSA) and the Sequential Mann-Kendall (SQMK) tests were applied to quantify the significance of trend, magnitude of trend and the trend shift, respectively. The lag-1 serial correlation and double mass curve techniques were used to address the data independency and homogeneity. The pre-whitening technique was used to eliminate the effect of auto correlation of the data series. The difference between minimum and maximum temperatures, and so the diurnal temperature range (DTR), at some stations was found to be decreasing on both an annual and a seasonal basis, with an overall increasing trend in the mean temperature. For precipitation, a statewide increasing trend in fall (highest in November) and decreasing trend in winter (highest in February) were detected. No pronounced increasing/decreasing trends were detected in annual, spring, and summer precipitation time series. Trend analysis on a spatial scale (for three physiographic regions: mountain, piedmont and coastal) revealed mixed results. Coastal zone exhibited increasing mean temperature (warming) trend as compared to other locations whereas mountain zone showed decreasing trend (cooling). Three main moisture components (precipitation, total cloud cover, and soil moisture) and the two major atmospheric circulation modes (North Atlantic Oscillation and Southern Oscillation) were used for correlative analysis purposes with the temperature (specifically with DTR) and precipitation trends. It appears that the moisture components are associated with DTR more than the circulation modes in North Carolina.

  6. Temperature excursions at the pulp-dentin junction during the curing of light-activated dental restorations.

    PubMed

    Jakubinek, Michael B; O'Neill, Catherine; Felix, Chris; Price, Richard B; White, Mary Anne

    2008-11-01

    Excessive heat produced during the curing of light-activated dental restorations may injure the dental pulp. The maximum temperature excursion at the pulp-dentin junction provides a means to assess the risk of thermal injury. In this investigation we develop and evaluate a model to simulate temperature increases during light-curing of dental restorations and use it to investigate the influence of several factors on the maximum temperature excursion along the pulp-dentin junction. Finite element method modeling, using COMSOL 3.3a, was employed to simulate temperature distributions in a 2D, axisymmetric model tooth. The necessary parameters were determined from a combination of literature reports and our measurements of enthalpy of polymerization, heat capacity, density, thermal conductivity and reflectance for several dental composites. Results of the model were validated using in vitro experiments. Comparisons with in vitro experiments indicate that the model provides a good approximation of the actual temperature increases. The intensity of the curing light, the curing time and the enthalpy of polymerization of the resin composite were the most important factors. The composite is a good insulator and the greatest risk occurs when using the light to cure the thin layer of bonding resin or in deep restorations that do not have a liner to act as a thermal barrier. The results show the importance of considering temperature increases when developing curing protocols. Furthermore, we suggest methods to minimize the temperature increase and hence the risk of thermal injury. The physical properties measured for several commercial composites may be useful in other studies.

  7. Influence of a MoOx interlayer on the open-circuit voltage in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell J.

    2013-07-01

    Metal-oxides have been used as interlayers at the anode-organic interface in organic photovoltaic cells (OPVs) to increase the open-circuit voltage (VOC). We examine the role of MoOx in determining the maximum VOC in a planar heterojunction OPV and find that the interlayer strongly affects the temperature dependence of VOC. Boron subphthalocyanine chloride (SubPc)-C60 OPVs that contain no interlayer show a maximum VOC of 1.2 V at low temperature, while those with MoOx show no saturation, reaching VOC > 1.4 V. We propose that the MoOx-SubPc interface forms a Schottky junction that provides an additional contribution to VOC at low temperature.

  8. Thermal hysteresis of the phase-transition temperature of single-crystal GdB6

    NASA Astrophysics Data System (ADS)

    Reiffers, M.; Ebek, J.; Antavá, E.; Pristá, G.; Kunii, S.

    2006-01-01

    The phase transition of a single-crystal sample of GdB6, oriented along the 111 axis using the temperature dependence of electrical resistivity (T ), susceptibility (T ) and heat capacity C (T ) under an applied magnetic field was studied. ρ (T ) has shown 2 anomalies - a sharp drop at T N1 = 15.4 K and a small maximum at T N2 = 9.1 K with thermal hysteresis effect. χ (T ) shows the anomalies at both transition temperatures. C (T ) shows similar thermal hysteresis effect at T N2. The small maximum at T N2 decreases its position to lower temperatures with increasing magnetic field. The peak at T N1 is practically unaffected by an applied magnetic field up to 9 T.

  9. Radiant energy receiver having improved coolant flow control means

    DOEpatents

    Hinterberger, H.

    1980-10-29

    An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

  10. The ideal chip is not enough: Issues retarding the success of wide band-gap devices

    NASA Astrophysics Data System (ADS)

    Kaminski, Nando

    2017-04-01

    Semiconductor chips made from the wide band-gap (WBG) materials silicon carbide (SiC) or gallium nitride (GaN) are already approaching the theoretical limits given by the respective materials. Unfortunately, their advantages over silicon devices cannot be fully exploited due to limitations imposed by the device packaging or the circuitry around the semiconductors. Stray inductances slow down the switching speed and increase losses, packaging materials limit the maximum temperature and the maximum useful temperature swing, and passives limit the maximum switching frequency. All these issues have to be solved or at least minimised to make WBG attractive for a wider range of applications and, consequently, to profit from the economy of scale.

  11. High-Temperature Treatments For Polyimide/Graphite Composite

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Lowell, Carl

    1992-01-01

    Combination of inert-gas heat treatment and coating with material impermeable by oxygen proposed to increase thermo-oxidative and high-temperature structural stabilities of composite materials made of graphite fibers in matrices of PMR-15 polyimide. Proposal directed toward development of lightweight matrix/fiber composites for use in aircraft engines, wherein composites exposed to maximum operating temperatures between 371 and 427 degrees C.

  12. Effects of wildfire on stream temperatures in the Bitterroot River basin, Montana

    Treesearch

    Shad K. Mahlum; Lisa A. Eby; Michael K. Young; Chris G. Clancy; Mike Jakober

    2011-01-01

    Wildfire is a common natural disturbance that can influence stream ecosystems. Of particular concern are increases in water temperature during and following fires, but studies of these phenomena are uncommon. We examined effects of wildfires in 2000 on maximum water temperature for a suite of second- to fourth-order streams with a range of burn severities in the...

  13. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  14. Thrust Augmentation of a Turbojet Engine at Simulated Flight Conditions by Introduction of a Water-Alcohol Mixture into the Compressor

    NASA Technical Reports Server (NTRS)

    Useller, James W.; Auble, Carmon M.; Harvey, Ray W., Sr.

    1952-01-01

    An investigation was conducted at simulated high-altitude flight conditions to evaluate the use of compressor evaporative cooling as a means of turbojet-engine thrust augmentation. Comparison of the performance of the engine with water-alcohol injection at the compressor inlet, at the sixth stage of the compressor, and at the sixth and ninth stages was made. From consideration of the thrust increases achieved, the interstage injection of the coolant was considered more desirable preferred over the combined sixth- and ninth-stage injection because of its relative simplicity. A maximum augmented net-thrust ratio of 1.106 and a maximum augmented jet-thrust ratio of 1.062 were obtained at an augmented liquid ratio of 2.98 and an engine-inlet temperature of 80 F. At lower inlet temperatures (-40 to 40 F), the maximum augmented net-thrust ratios ranged from 1.040 to 1.076 and the maximum augmented jet-thrust ratios ranged from 1.027 to 1.048, depending upon the inlet temperature. The relatively small increase in performance at the lower inlet-air temperatures can be partially attributed to the inadequate evaporation of the water-alcohol mixture, but the more significant limitation was believed to be caused by the negative influence of the liquid coolant on engine- component performance. In general, it is concluded that the effectiveness of the injection of a coolant into the compressor as a means of thrust augmentation is considerably influenced by the design characteristics of the components of the engine being used.

  15. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station-based daily maximum near-surface air temperature

    NASA Astrophysics Data System (ADS)

    Lian, Xu; Zeng, Zhenzhong; Yao, Yitong; Peng, Shushi; Wang, Kaicun; Piao, Shilong

    2017-02-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature (Tair). Using satellite observations and in situ station-based data sets, we conducted a global-scale assessment of the spatial and seasonal variations in the difference between daily maximum LST and daily maximum Tair (δT, LST - Tair) during 2003-2014. Spatially, LST is generally higher than Tair over arid and sparsely vegetated regions in the middle-low latitudes, but LST is lower than Tair in tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, δT is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the midlatitudes and boreal regions. The seasonality in the midlatitudes is a result of the asynchronous responses of LST and Tair to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. Our study identified substantial spatial heterogeneity and seasonality in δT, as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface air temperature changes using remote sensing, particularly in remote regions.

  16. Mid-latitude empirical model of the height distribution of atomic oxygen in the MLT region for different solar and geophysical conditions

    NASA Astrophysics Data System (ADS)

    Semenov, A.; Shefov, N.; Fadel, Kh.

    The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.

  17. Photothermal characterization of the gelation process in Gelidium robustum Agar

    NASA Astrophysics Data System (ADS)

    Freile-Pelegrín, Y.; Bante, J.; Alvarado-Gil, J. J.; Yánez-Limón, J. M.

    2005-06-01

    Agar is a hydrophilic colloid formed by polysaccharides, whose ability to form reversible gels simply by cooling hot aqueous solutions is the most important property and can be regarded as the prototype and model for all gelling systems. In this paper the evolution of the gelation process of agar obtained from algae of the species Gelidium robustum, using the photopyroelectric technique is reported. It is shown that thermal effusivity increase when the agar is cooled, reaching a maximum value around 37°C. The increase in thermal effusivity can be related to the increasing of the bondings in the gel as temperature decreases, reaching the maximum at the gelation point. The decrease of the thermal effusivity at lower temperature could be due to the syneresis process involving a gradual release of water after gelation.

  18. Climate change effects on livestock in the Northeast U.S. and strategies for adaptation

    USDA-ARS?s Scientific Manuscript database

    The livestock industries are a major contributor to the economy of the northeastern United States. Climate models predict increased average maximum temperatures, days with temperatures exceeding 25°C, and higher annual precipitation in the Northeast. These environmental changes combined with increas...

  19. Estimating cumulative effects of clearcutting on stream temperatures

    USGS Publications Warehouse

    Bartholow, J.M.

    2000-01-01

    The Stream Segment Temperature Model was used to estimate cumulative effects of large-scale timber harvest on stream temperature. Literature values were used to create parameters for the model for two hypothetical situations, one forested and the other extensively clearcut. Results compared favorably with field studies of extensive forest canopy removal. The model provided insight into the cumulative effects of clearcutting. Change in stream shading was, as expected, the most influential factor governing increases in maximum daily water temperature, accounting for 40% of the total increase. Altered stream width was found to be more influential than changes to air temperature. Although the net effect from clearcutting was a 4oC warming, increased wind and reduced humidity tended to cool the stream. Temperature increases due to clearcutting persisted 10 km downstream into an unimpacted forest segment of the hypothetical stream, but those increases were moderated by cooler equilibrium conditions downstream. The model revealed that it is a complex set of factors, not single factors such as shade or air temperature, that governs stream temperature dynamics.

  20. Effect of cyclic conditions on the dynamic oxidation of gas turbine superalloys

    NASA Technical Reports Server (NTRS)

    Johnston, J. R.; Ashbrook, R. L.

    1974-01-01

    The effects of operating parameters of a dynamic apparatus used to study oxidation and thermal fatigue of gas turbine materials were studied. IN-100, TD-NiCr, and WI-52 were tested at a maximum temperature of 1,090 deg C. Heating time per cycle was varied from 1/20 hr to 10 hr. Minimum temperatures between heating cycles were room temperature, 430 deg, and 650 deg C. Cooling air velocities were zero, Mach 0.7, and Mach 1. Increasing the number of cycles for a given time at temperature increased weight loss. Thermal fatigue was related to number of cycles more than to time at temperature.

  1. Do the western Himalayas defy global warming?

    NASA Astrophysics Data System (ADS)

    Yadav, Ram R.; Park, Won-Kyu; Singh, Jayendra; Dubey, Bhasha

    2004-09-01

    Observational records and reconstructions from tree rings reflect premonsoon (March to May) temperature cooling in the western Himalaya during the latter part of the 20th century. A rapid decrease of minimum temperatures at around three times higher rate, as compared to the rate of increase in maximum temperatures found in local climate records is responsible for the cooling trend in mean premonsoon temperature. The increase of the diurnal temperature range is attributed to large scale deforestation and land degradation in the area and shows the higher influence of local forcing factors on climate in contrast to the general trend found in higher latitudes of the northern Hemisphere.

  2. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  3. Relationship between Deck Level, Body Surface Temperature and Carcass Damages in Italian Heavy Pigs after Short Journeys at Different Unloading Environmental Conditions.

    PubMed

    Arduini, Agnese; Redaelli, Veronica; Luzi, Fabio; Dall'Olio, Stefania; Pace, Vincenzo; Nanni Costa, Leonardo

    2017-02-10

    In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min), 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI) was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score ( p < 0.05), which increased on quarters and whole carcasses with increasing THI class. The results of this study on short-distance transport of Italian heavy pigs highlighted the need to control and ameliorate the environmental conditions in the trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.

  4. Are winter-active species vulnerable to climate warming? A case study with the wintergreen terrestrial orchid, Tipularia discolor.

    PubMed

    Marchin, Renée M; Dunn, Robert R; Hoffmann, William A

    2014-12-01

    In the eastern United States, winter temperature has been increasing nearly twice as fast as summer temperature, but studies of warming effects on plants have focused on species that are photosynthetically active in summer. The terrestrial orchid Tipularia discolor is leafless in summer and acquires C primarily in winter. The optimum temperature for photosynthesis in T. discolor is higher than the maximum temperature throughout most of its growing season, and therefore growth can be expected to increase with warming. Contrary to this hypothesis, experimental warming negatively affected reproductive fitness (number of flowering stalks, flowers, fruits) and growth (change in leaf area from 2010 to 2012) in T. discolor. Temperature in June-July was critical for flowering, and mean July temperature greater than 29 °C (i.e., 2.5 °C above ambient) eliminated reproduction. Warming of 1.2 °C delayed flowering by an average of 10 days and fruiting by an average of 5 days. Warming of 4.4 °C reduced relative growth rates by about 60%, which may have been partially caused by the direct effects of temperature on photosynthesis and respiration. Warming indirectly increased vapor pressure deficit (VPD) by 0.2-0.5 kPa, and leaf-to-air VPD over 1.3 kPa restricted stomatal conductance of T. discolor to 10-40% of maximum conductance. These results highlight the need to account for changes in VPD when estimating temperature responses of plant species under future warming scenarios. Increasing temperature in the future will likely be an important limiting factor to the distribution of T. discolor, especially along the southern edge of its range.

  5. Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005-2014.

    PubMed

    Xiang, Jianjun; Hansen, Alana; Liu, Qiyong; Liu, Xiaobo; Tong, Michael Xiaoliang; Sun, Yehuan; Cameron, Scott; Hanson-Easey, Scott; Han, Gil-Soo; Williams, Craig; Weinstein, Philip; Bi, Peng

    2017-02-01

    This study aims to (1) investigate the associations between climatic factors and dengue; and (2) identify the susceptible subgroups. De-identified daily dengue cases in Guangzhou for 2005-2014 were obtained from the Chinese Center for Disease Control and Prevention. Weather data were downloaded from the China Meteorological Data Sharing Service System. Distributed lag non-linear models (DLNM) were used to graphically demonstrate the three-dimensional temperature-dengue association. Generalised estimating equation models (GEE) with piecewise linear spline functions were used to quantify the temperature-dengue associations. Threshold values were estimated using a broken-stick model. Middle-aged and older people, people undertaking household duties, retirees, and those unemployed were at high risk of dengue. Reversed U-shaped non-linear associations were found between ambient temperature, relative humidity, extreme wind velocity, and dengue. The optimal maximum temperature (T max ) range for dengue transmission in Guangzhou was 21.6-32.9°C, and 11.2-23.7°C for minimum temperature (T min ). A 1°C increase of T max and T min within these ranges was associated with 11.9% and 9.9% increase in dengue at lag0, respectively. Although lag effects of temperature were observed for up to 141 days for T max and 150 days for T min , the maximum lag effects were observed at 32 days and 39 days respectively. Average relative humidity was negatively associated with dengue when it exceeded 78.9%. Maximum wind velocity (>10.7m/s) inhibited dengue transmission. Climatic factors had significant impacts on dengue in Guangzhou. Lag effects of temperature on dengue lasted the local whole epidemic season. To reduce the likely increasing dengue burden, more efforts are needed to strengthen the capacity building of public health systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Local- and landscape-scale land cover affects microclimate and water use in urban gardens.

    PubMed

    Lin, Brenda B; Egerer, Monika H; Liere, Heidi; Jha, Shalene; Bichier, Peter; Philpott, Stacy M

    2018-01-01

    Urban gardens in Central California are highly vulnerable to the effects of climate change, experiencing both extended high heat periods as well as water restrictions because of severe drought conditions. This puts these critical community-based food production systems at risk as California is expected to experience increasing weather extremes. In agricultural systems, increased vegetation complexity, such as greater structure or biodiversity, can increase the resilience of food production systems from climate fluctuations. We test this theory in 15 urban gardens across California's Central Coast. Local- and landscape-scale measures of ground, vegetation, and land cover were collected in and around each garden, while climate loggers recorded temperatures in each garden in 30min increments. Multivariate analyses, using county as a random factor, show that both local- and landscape-scale factors were important. All factors were significant predictors of mean temperature. Tallest vegetation, tree/shrub species richness, grass cover, mulch cover, and landscape level agricultural cover were cooling factors; in contrast, garden size, garden age, rock cover, herbaceous species richness, and landscape level urban cover were warming factors. Results were similar for the maximum temperature analysis except that agriculture land cover and herbaceous species richness were not significant predictors of maximum temperature. Analysis of gardener watering behavior to observed temperatures shows that garden microclimate was significantly related to the number of minutes watered as well as the number of liters of water used per watering event. Thus gardeners seem to respond to garden microclimate in their watering behavior even though this behavior is most probably motivated by a range of other factors such as water regulations and time availability. This research shows that local management of ground cover and vegetation can reduce mean and maximum temperatures in gardens, and the reduced temperatures may influence watering behavior of gardeners. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Evidence for Surface Water Ice in the Lunar Polar Regions Using Reflectance Measurements from the Lunar Orbiter Laser Altimeter and Temperature Measurements from the Diviner Lunar Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; hide

    2017-01-01

    We find that the reflectance of the lunar surface within 5 deg of latitude of theSouth Pole increases rapidly with decreasing temperature, near approximately 110K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5 deg from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10 deg to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al. 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200K and possibly at 300K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. 2015 based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

  8. Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment

    NASA Astrophysics Data System (ADS)

    Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; Paige, David A.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    We find that the reflectance of the lunar surface within 5° of latitude of the South Pole increases rapidly with decreasing temperature, near ∼110 K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5° from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10° to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110 K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al., 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200 K and possibly at 300 K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. (2015) based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

  9. Impacts of Future Climate Change on Ukraine Transportation System

    NASA Astrophysics Data System (ADS)

    Khomenko, Inna

    2016-04-01

    Transportation not only affects climate, but are strongly influenced with the climate conditions, and key hubs of the transportation sector are cities. Transportation decision makers have an opportunity now to prepare for projected climate changes owing to development of emission scenarios. In the study impact of climate change on operation of road transport along highways are analyzed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean and maximum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 8 cities (Dnipropetrovsk, Khmelnytskyi, Kirovohrad, Kharkiv, Odesa, Ternopil, Vinnytsia and Voznesensk) situated down the highways. The highways of 'Odesa-Voznesensk-Dnipropetrovsk-Kharkiv' and 'Dnipropetrovsk-Kirovohrad-Vinnytsia-Khmelnytskyi-Ternopil' are considered. The first highway goes across the Black Sea Lowland, the Dnieper Upland and Dnieper Lowland, the other passes through the Dnieper and Volhynia-Podillia Uplands. The both highways are situated in steppe and forest-steppe native zones. For both scenarios, significant climate warming is registered; it is revealed in significant increase of average monthly and yearly temperature by 2-3°C in all cities in questions, and also, in considerable increment of frequency of days with maximum temperature higher than +30 and 35°C, except Kharkiv, where decrease number of days with such temperatures is observed. On the contrary, number of days with daily mean temperature being equal to or below 0°C decreases in the south of steppe, is constant in the north of steppe and increases in the forest-steppe native zone. Extreme negative temperatures don't occur in the steppe zone, but takes place in the forest-steppe zone. Results obtained shows that road surface must hold in extreme maximum temperature, and in the forest-steppe zone hazards of extreme negative temperatures must be considered. Frequency of winter events that make road surface worse such as glaze-clear ice, frozen snow that had initially melted on a warm road surface, ice and snow slippery coats etc., are high enough, especially in the forest-steppe zone. In the Black Sea Lowland among winter events the frozen snow that had initially melted on a warm road surface is most commonly observed, that is connected with high occurrence of the thaws. Because of increase in frequency of shower precipitation in all cities wet road surface is observed most frequently, especially in May and June; it must be taken into account for construction of roads, too. Monthly mean wind speed shows that in Odesa and Kharkiv significant increase in average monthly and yearly wind speeds are observed, by 0,5-1 m/s in comparison with the period of 1961 to 1990. On the contrary, in Dnipropetrovsk, wind speed decreases by 0,7 m/s. Frequency distribution of maximum wind speed shows that high wind speeds are more frequent in the winter months.

  10. Temperature dependent energy levels of methylammonium lead iodide perovskite

    NASA Astrophysics Data System (ADS)

    Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.

    2015-06-01

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  11. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].

    PubMed

    Schulze, E -D; Lange, O L; Koch, W

    1972-12-01

    The influence of climatic factors on net photosynthesis, dark respiration and transpiration was investigated in the Negev Desert at the end of the dry summer period when plant water stress was at a maximum. Species studied included: dominant species of the natural vegetation (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), cultivated plants receiving rainfall and run-off water during the winter season in the run-off farm Avdat (Prunus armeniaca, Vitis vinifera), and irrigated cultivated plants receiving additional water during the summer season (Citrullus colocynthis, Datura metel). 1. Light saturation of net photosynthesis was reached at 60-90 klx conforming to the high solar radiation intensities of the desert. 2. Maximum rates of CO 2 uptake per unit of dry weight for the irrigated mesomorphic plants was ten times that of the wild plants. However, in comparison to the other species, maximal rates of CO 2 uptake for wild plants were higher when calculated on a leaf area basis than when represented on a dry weight basis. Maximum rates of net photosynthesis per unit chlorophyll content for some of the wild plants (Salsola and Noaea) were comparable to those of the cultivated Vitis and irrigated Citrullus and Datura, Hammada exhibited even higher rates than Prunus. This demonstrates the great photosynthetic capacity of the wild plants even at the end of the dry season. 3. The upper temperature compensation point for net photosynthesis of the wild plants was unusually high as an adaptation to the temperatures of the habitat. Compensation points higher than 49°C exceed the maxima known so far for other flowering species. Maximum rates of net photosynthesis of Hammada were measured when the temperature of the photosynthetic organs was 37°C; at 49°C photosynthesis was only reduced by 50%. 4. Leaf temperature affects plant gas exchange by influencing stomatal aperture. Diffusion resistance of leaves to water vapour was reduced at low temperatures and increased at high temperatures. Reduction of net photosynthesis and transpiration of desert plants at midday may, therefore, be the result of temperature-induced stomatal closure. The possible influence of peristomatal transpiration on stomatal aperture is also discussed. Peristomatal transpiration is directly related to the vapour pressure gradient between the leaf mesophyll and the ambient air which increases with increasing temperatures. 5. Diffusion resistance to water vapour was reduced at high temperatures approaching the limits of heat resistance, due to increased stomatal aperture. This resulted in greater transpirational cooling. 6. Under conditions of increased leaf water stress, diffusion resistance increased, either by sudden stomatal closure at specific threshold values of water stress or through a continuous increase in resistance. This increased resistance is coupled with decreases in transpiration and photosynthesis. 7. In several plant species increased diffusion resistance during the course of the day caused decreased transpiration without a corresponding decrease in photosynthesis. Under these conditions, the ratio of CO 2 uptake to transpiration became more favourable as the day progressed. The possibility that this favourable gas exchange response is the result of an increased mesophyll resistance to water vapour loss is discussed.

  12. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.

    PubMed

    Duncan, John M A; Dash, Jadunandan; Atkinson, Peter M

    2015-04-01

    Remote sensing-derived wheat crop yield-climate models were developed to highlight the impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling; TSP) of wheat crop development. Specific questions addressed are: can the impact of temperature variation occurring during the TSP on wheat crop yield be detected using remote sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist in real world cropping landscapes? These questions are tested in one of the world's major wheat breadbaskets of Punjab and Haryana, north-west India. Warming average minimum temperatures during the TSP had a greater negative impact on wheat crop yield than warming maximum temperatures. Warming minimum and maximum temperatures during the TSP explain a greater amount of variation in wheat crop yield than average growing season temperature. In complex real world cereal croplands there was a variable yield response to critical temperature threshold exceedance, specifically a more pronounced negative impact on wheat yield with increased warming events above 35 °C. The negative impact of warming increases with a later start-of-season suggesting earlier sowing can reduce wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced temperature-induced yield losses, which, when viewed in the context of projected warming up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. This study shows it is possible to capture the impacts of temperature variation during the TSP on wheat crop yield in real world cropping landscapes using remote sensing data; this has important implications for monitoring the impact of climate change, variation and heat extremes on wheat croplands. © 2014 John Wiley & Sons Ltd.

  13. A comparison of the temperature and density structure in high and low speed thermal proton flows

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Schunk, R. W.; Banks, P. M.

    1975-01-01

    Steady-state altitude profiles of H(+) density, drift velocity, and temperature and O(+) density and temperature were deduced for a wide range of H(+) outflow velocities from subsonic to supersonic flow for plasma densities typical of both undisturbed and trough regions of the ionsophere. Allowance was made for the effects of inertia, parallel stress, and the velocity dependence of the H(+) collision frequencies. It was found that at supersonic outflow velocities there is a decrease in H(+) temperature with increasing outflow velocity. The H(+) temperatures are substantially increased above the O(+) temperatures when H(+) is flowing, with T(H+)/T(O+) reaching a maximum ratio of about 3:1.

  14. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Vaidyanathan, Raj; Gaydosh, Darrell; Noebe, Ronald; Bigelow, Glen; Garg, Anita

    2008-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. This investigation extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional improvement in the work output of the material, which has a stress-free Af of 113 oC, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted in the aforementioned alloy at various stress levels from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 oC. The data indicated that the amount of applied stress influenced the transformation strain available in the system, as would be expected. However, the maximum temperature reached during the thermal excursion also plays a role in determining the transformation strain, with the maximum transformation strain being developed by thermal cycling to 290 oC. In situ, neutron diffraction showed that the differences in transformation strain were related to differences in martensite texture within the microstructure when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  15. Laser pulse heating of steel mixing with WC particles in a irradiated region

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-12-01

    Laser pulse heating of steel mixing with tungsten carbide (WC) particles is carried out. Temperature field in the irradiated region is simulated in line with the experimental conditions. In the analysis, a laser pulse parameter is introduced, which defines the laser pulse intensity distribution at the irradiated surface. The influence of the laser parameter on the melt pool size and the maximum temperature increase in the irradiated region is examined. Surface temperature predictions are compared with the experimental data. In addition, the distribution of WC particles and their re-locations in the treated layer, due to combination of the natural convection and Marangoni currents, are predicted. The findings are compared to the experimental data. It is found that surface temperature predictions agree well with the experimental data. The dislocated WC particles form a streamlining in the near region of the melt pool wall, which agree with the experimental findings. The Gaussian distribution of the laser pulse intensity results in the maximum peak temperature and the maximum flow velocity inside the melt pool. In this case, the melt pool depth becomes the largest as compared to those corresponding to other laser pulse intensity distributions at the irradiated surface.

  16. Upper Stratospheric Temperature Climatology Derived from SAGE II Observations: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wang, P.-H.; Cunnold, D. M.; Wang, H. J.; Chu, W. P.; Thomason, L. W.

    2002-01-01

    This study shows that the temperature information in the upper stratosphere can be derived from the SAGE II 385-mn observations. The preliminary results indicate that the zonal mean temperature increases with altitude below 50 km and decreases above 50 km. At 50 km, a regional maximum of 263 K is located in the tropics, and a minimum of 261 K occurs in the subtropics in both hemispheres. The derived long-term temperature changes from 1985 to 1997 reveal a statistically significant negative trend of -2 to -2.5 K/decade in the tropical upper stratosphere and about -2 K/decade in the subtropics near the stratopause. At latitudes poleward of 50, the results show a statistically significant positive trend of about 1 K/decade in the upper stratosphere. The preliminary results also show large annual temperature oscillations in the extratropics with a maximum amplitude of approx. 8 K located at about 44 km near 50 in both hemispheres during local summer. In addition, the semiannual oscillation is found to be a maximum in the tropics with a peak amplitude of approx. 3.3 K located at about 42 km during the equinox.

  17. Modeling and optimization of an enhanced battery thermal management system in electric vehicles

    NASA Astrophysics Data System (ADS)

    Li, Mao; Liu, Yuanzhi; Wang, Xiaobang; Zhang, Jie

    2018-06-01

    This paper models and optimizes an air-based battery thermal management system (BTMS) in a battery module with 36 battery lithium-ion cells. A design of experiments is performed to study the effects of three key parameters (i.e., mass flow rate of cooling air, heat flux from the battery cell to the cooling air, and passage spacing size) on the battery thermal performance. Three metrics are used to evaluate the BTMS thermal performance, including (i) the maximum temperature in the battery module, (ii) the temperature uniformity in the battery module, and (iii) the pressure drop. It is found that (i) increasing the total mass flow rate may result in a more non-uniform distribution of the passage mass flow rate among passages, and (ii) a large passage spacing size may worsen the temperature uniformity on the battery walls. Optimization is also performed to optimize the passage spacing size. Results show that the maximum temperature difference of the cooling air in passages is reduced from 23.9 to 2.1 K by 91.2%, and the maximum temperature difference among the battery cells is reduced from 25.7 to 6.4 K by 75.1%.

  18. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.

    2018-02-01

    Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

  19. Middle Holocene thermal maximum in eastern Beringia

    NASA Astrophysics Data System (ADS)

    Kaufman, D. S.; Bartlein, P. J.

    2015-12-01

    A new systematic review of diverse Holocene paleoenvironmental records (Kaufman et al., Quat. Sci. Rev., in revision) has clarified the primary multi-centennial- to millennial-scale trends across eastern Beringia (Alaska, westernmost Canada and adjacent seas). Composite time series from midges, pollen, and biogeochemical indicators are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies. The paleo observations are also compared with recently published simulations (Bartlein et al., Clim. Past Discuss., 2015) that used a regional climate model to simulate the effects of global and regional-scale forcings at 11 and 6 ka. During the early Holocene (11.5-8 ka), rather than a prominent thermal maximum as suggested previously, the newly compiled paleo evidence (mostly sensitive to summer conditions) indicates that temperatures were highly variable, at times both higher and lower than present, although the overall lowest average temperatures occurred during the earliest Holocene. During the middle Holocene (8-4 ka), glaciers retreated as the regional average temperature increased to a maximum between 7 and 5 ka, as reflected in most proxy types. The paleo evidence for low and variable temperatures during the early Holocene contrasts with more uniformly high temperatures during the middle Holocene and agrees with the climate simulations, which show that temperature in eastern Beringia was on average lower at 11 ka and higher at 6 ka than at present (pre-industrial). Low temperatures during the early Holocene can be attributed in part to the summer chilling caused by flooding the continental shelves, whereas the mid-Holocene thermal maximum was likely driven by the loss of the Laurentide ice sheet, rise in greenhouse gases, higher-than-present summer insolation, and expansion of forest over tundra.

  20. Cardiorespiratory performance during prolonged swimming tests with salmonids: a perspective on temperature effects and potential analytical pitfalls.

    PubMed

    Farrell, A P

    2007-11-29

    A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.

  1. Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean.

    PubMed

    Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Wang, Tobias; Bayley, Mark

    2014-03-01

    In aquatic environments, rising water temperatures reduce water oxygen content while increasing oxygen demand, leading several authors to propose cardiorespiratory oxygen transport capacity as the main determinant of aquatic animal fitness. It has also been argued that tropical species, compared with temperate species, live very close to their upper thermal limit and hence are vulnerable to even small elevations in temperature. Little, however, is known about physiological responses to high temperatures in tropical species. Here we report that the tropical giant freshwater shrimp (Macrobrachium rosenbergii) maintains normal growth when challenged by a temperature rise of 6°C above the present day average (from 27°C to 33°C). Further, by measuring heart rate, gill ventilation rate, resting and maximum oxygen uptake, and hemolymph lactate, we show that oxygen transport capacity is maintained up to the critical maximum temperature around 41°C. In M. rosenbergii heart rate and gill ventilation rate increases exponentially until immediately below critical temperatures and at 38°C animals still retained more than 76% of aerobic scope measured at 30°C, and there was no indication of anaerobic metabolism at the high temperatures. Our study shows that the oxygen transport capacity is maintained at high temperatures, and that other mechanisms, such as protein dysfunction, are responsible for the loss of ecological performance at elevated temperatures.

  2. Spatial and temporal variation in daily temperature indices in summer and winter seasons over India (1969-2012)

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.

    2017-08-01

    Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.

  3. Activation of AMP-activated protein kinase in response to temperature elevation shows seasonal variation in the zebra mussel, Dreissena polymorpha.

    PubMed

    Jost, Jennifer A; Keshwani, Sarah S; Abou-Hanna, Jacob J

    2015-04-01

    Global climate change is affecting ectothermic species, and a variety of studies are needed on thermal tolerances, especially from cellular and physiological perspectives. This study utilized AMP-activated protein kinase (AMPK), a key regulator of cellular energy levels, to examine the effects of high water temperatures on zebra mussel (Dreissena polymorpha) physiology. During heating, AMPK activity increased as water temperature increased to a point, and maximum AMPK activity was detected at high, but sublethal, water temperatures. This pattern varied with season, suggesting that cellular mechanisms of seasonal thermal acclimatization affect basic metabolic processes during sublethal heat stress. There was a greater seasonal variation in the water temperature at which maximum AMPK activity was measured than in lethal water temperature. Furthermore, baseline AMPK activity varied significantly across seasons, most likely reflecting altered metabolic states during times of growth and reproduction. In addition, when summer-collected mussels were lab-acclimated to winter and spring water temperatures, patterns of heat stress mirrored those of field-collected animals. These data suggest that water temperature is the main driver of the seasonal variation in physiology. This study concluded that AMPK activity, which reflects changes in energy supply and demand during heat stress, can serve as a sensitive and early indicator of temperature stress in mussels. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Validation of mathematical models for Salmonella growth in raw ground beef under dynamic temperature conditions representing loss of refrigeration.

    PubMed

    McConnell, Jennifer A; Schaffner, Donald W

    2014-07-01

    Temperature is a primary factor in controlling the growth of microorganisms in food. The current U. S. Food and Drug Administration Model Food Code guidelines state that food can be kept out of temperature control for up to 4 h without qualifiers, or up to 6 h, if the food product starts at an initial 41 °F (5 °C) temperature and does not exceed 70 °F (21 °C) at 6 h. This project validates existing ComBase computer models for Salmonella growth under changing temperature conditions modeling scenarios using raw ground beef as a model system. A cocktail of Salmonella serovars isolated from different meat products ( Salmonella Copenhagen, Salmonella Montevideo, Salmonella Typhimurium, Salmonella Saintpaul, and Salmonella Heidelberg) was made rifampin resistant and used for all experiments. Inoculated samples were held in a programmable water bath at 4.4 °C (40 °F) and subjected to linear temperature changes to different final temperatures over various lengths of time and then returned to 4.4 °C (40 °F). Maximum temperatures reached were 15.6, 26.7, or 37.8 °C (60, 80, or 100 °F), and the temperature increases took place over 4, 6, and 8 h, with varying cooling times. Our experiments show that when maximum temperatures were lower (15.6 or 26.7 °C), there was generally good agreement between the ComBase models and experiments: when temperature increases of 15.6 or 26.7 °C occurred over 8 h, experimental data were within 0.13 log CFU of the model predictions. When maximum temperatures were 37 °C, predictive models were fail-safe. Overall bias of the models was 1.11. and accuracy was 2.11. Our experiments show the U.S. Food and Drug Administration Model Food Code guidelines for holding food out of temperature control are quite conservative. Our research also shows that the ComBase models for Salmonella growth are accurate or fail-safe for dynamic temperature conditions as might be observed due to power loss from natural disasters or during transport out of temperature control.

  5. Thyroid hormone fluctuations indicate a thermoregulatory function in both a tropical (Alouatta palliata) and seasonally cold-habitat (Macaca fuscata) primate.

    PubMed

    Thompson, Cynthia L; Powell, Brianna L; Williams, Susan H; Hanya, Goro; Glander, Kenneth E; Vinyard, Christopher J

    2017-11-01

    Thyroid hormones boost animals' basal metabolic rate and represent an important thermoregulatory pathway for mammals that face cold temperatures. Whereas the cold thermal pressures experienced by primates in seasonal habitats at high latitudes and elevations are often apparent, tropical habitats also display distinct wet and dry seasons with modest changes in thermal environment. We assessed seasonal and temperature-related changes in thyroid hormone levels for two primate species in disparate thermal environments, tropical mantled howlers (Alouatta palliata), and seasonally cold-habitat Japanese macaques (Macaca fuscata). We collected urine and feces from animals and used ELISA to quantify levels of the thyroid hormone triiodothyronine (fT 3 ). For both species, fT 3 levels were significantly higher during the cooler season (wet/winter), consistent with a thermoregulatory role. Likewise, both species displayed greater temperature deficits (i.e., the degree to which animals warm their body temperature relative to ambient) during the cooler season, indicating greater thermoregulatory pressures during this time. Independently of season, Japanese macaques displayed increasing fT 3 levels with decreasing recently experienced maximum temperatures, but no relationship between fT 3 and recently experienced minimum temperatures. Howlers increased fT 3 levels as recently experienced minimum temperatures decreased, although demonstrated the opposite relationship with maximum temperatures. This may reflect natural thermal variation in howlers' habitat: wet seasons had cooler minimum and mean temperatures than the dry season, but similar maximum temperatures. Overall, our findings support the hypothesis that both tropical howlers and seasonally cold-habitat Japanese macaques utilize thyroid hormones as a mechanism to boost metabolism in response to thermoregulatory pressures. This implies that cool thermal pressures faced by tropical primates are sufficient to invoke an energetically costly and relatively longer-term thermoregulatory pathway. The well-established relationship between thyroid hormones and energetics suggests that the seasonal hormonal changes we observed could influence many commonly studied behaviors including food choice, range use, and activity patterns. © 2017 Wiley Periodicals, Inc.

  6. Temperature and Leaf Osmotic Potential as Factors in the Acclimation of Photosynthesis to High Temperature in Desert Plants 1

    PubMed Central

    Seemann, Jeffrey R.; Downton, W. John S.; Berry, Joseph A.

    1986-01-01

    Seasonal changes in the high temperature limit for photosynthesis of desert winter annuals growing under natural conditions in Death Valley, California were studied using an assay based upon chlorophyll fluorescence. All species of this group were 6 to 9°C more tolerant of high temperature at the end of the growing season (May) than at its beginning (February). Over this same time period, the mean daily maximum air temperatures increased by 12°C. Laboratory studies have demonstrated that increases in thermal tolerance could be induced by increasing growth temperature alone. For plants growing under field conditions there was also a good correlation between the thermal tolerance of leaves and the osmotic potential of leaf water, indicating that increases in the concentrations of some small molecules might also confer increased thermal tolerance. Isolated chloroplast thylakoids subjected to increasing concentrations of sorbitol could be demonstrated to have increased thermal tolerance. PMID:16664743

  7. Adverse Climatic Conditions and Impact on Construction Scheduling and Cost

    DTIC Science & Technology

    1988-01-01

    ABBREVIATIONS ABS MAX MAX TEMP ...... Absolute maximum maximum temperature ABS MIN MIN TEMP ...... Absolute minimum minimum temperature BTU...o Degrees Farenheit MEAN MAX TEMP o.................... Mean maximum temperature MEAN MIN TEMP...temperatures available, a determination had to be made as to whether forecasts were based on absolute , mean, or statistically derived temperatures

  8. [Impacts of climate warming on growth period and yield of rice in Northeast China during recent two decades].

    PubMed

    Hou, Wen-jia; Geng, Ting; Chen, Qun; Chen, Chang-qing

    2015-01-01

    By using rice growth period, yield and climate observation data during the recent two decades, the impact of climate warming on rice in Northeast China was investigated by mathematical statistics methods. The results indicated that in the three provinces of Northeast China, the average, maximum and minimum temperatures in rice growing season were on the. rise, and the rainfall presented a downward trend during 1989-2009. Compared to 1990s, the rice whole growth periods of Heilongjiang, Jilin and Liaoning provinces in 2000s were prolonged 14 d, 4.5 d and 5.1 d, respectively. The increase of temperature in May, June and September could extend the rice growth period, while that in July would shorten the growth duration. The rice growth duration of registered varieties and experiment sites had a similar increasing trend in Northeast China except for the Heilongjiang Province, and the extension of registered varieties growth period was the main factor causing the prolonged growth period of rice at experiment sites. The change in daily average, minimum and maximum temperatures all could affect the rice yield in Northeast China. The increasing temperature significantly increased the rice yield in Heilongjiang Province, especially in the west region of Sanjiang Plain. Except for the south of Liaoning Province, rice yields in other regions of Northeast China were promoted by increasing temperature. Proper measures for breeding, cultivation and farming, could be adopted to fully improve the adaptation of rice to climate warming in Northeast China.

  9. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  10. A quantitative method for risk assessment of agriculture due to climate change

    NASA Astrophysics Data System (ADS)

    Dong, Zhiqiang; Pan, Zhihua; An, Pingli; Zhang, Jingting; Zhang, Jun; Pan, Yuying; Huang, Lei; Zhao, Hui; Han, Guolin; Wu, Dong; Wang, Jialin; Fan, Dongliang; Gao, Lin; Pan, Xuebiao

    2018-01-01

    Climate change has greatly affected agriculture. Agriculture is facing increasing risks as its sensitivity and vulnerability to climate change. Scientific assessment of climate change-induced agricultural risks could help to actively deal with climate change and ensure food security. However, quantitative assessment of risk is a difficult issue. Here, based on the IPCC assessment reports, a quantitative method for risk assessment of agriculture due to climate change is proposed. Risk is described as the product of the degree of loss and its probability of occurrence. The degree of loss can be expressed by the yield change amplitude. The probability of occurrence can be calculated by the new concept of climate change effect-accumulated frequency (CCEAF). Specific steps of this assessment method are suggested. This method is determined feasible and practical by using the spring wheat in Wuchuan County of Inner Mongolia as a test example. The results show that the fluctuation of spring wheat yield increased with the warming and drying climatic trend in Wuchuan County. The maximum yield decrease and its probability were 3.5 and 64.6%, respectively, for the temperature maximum increase 88.3%, and its risk was 2.2%. The maximum yield decrease and its probability were 14.1 and 56.1%, respectively, for the precipitation maximum decrease 35.2%, and its risk was 7.9%. For the comprehensive impacts of temperature and precipitation, the maximum yield decrease and its probability were 17.6 and 53.4%, respectively, and its risk increased to 9.4%. If we do not adopt appropriate adaptation strategies, the degree of loss from the negative impacts of multiclimatic factors and its probability of occurrence will both increase accordingly, and the risk will also grow obviously.

  11. Temperature dependence of electroresistance for La0.67Ba0.33MnO3 manganite

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Gupta, Ajai K.; Kumar, Vijay; Bhalla, G. L.; Khare, Neeraj

    2007-12-01

    The influence of dc biasing current on temperature dependence of resistance of La0.67Ba0.33MnO3 bulk sample is reported. A decrease in the resistance (electroresistance) on the application of higher bias current is observed. The electroresistance is maximum at metal insulator transition temperature (TMI) and decreases when the temperature is either increased or decreased from TMI. A two-phase model is proposed to explain the occurrence of electroresistance. The higher bias current leads to an increase in alignment of spins and thus, in turn, leads to an increase in spin stiffness coefficient and decrease in the resistance at TMI.

  12. Infectious Disease in a Warming World: How Weather Influenced West Nile Virus in the United States (2001–2005)

    PubMed Central

    Soverow, Jonathan E.; Wellenius, Gregory A.; Fisman, David N.; Mittleman, Murray A.

    2009-01-01

    Background The effects of weather on West Nile virus (WNV) mosquito populations in the United States have been widely reported, but few studies assess their overall impact on transmission to humans. Objectives We investigated meteorologic conditions associated with reported human WNV cases in the United States. Methods We conducted a case–crossover study to assess 16,298 human WNV cases reported to the Centers for Disease Control and Prevention from 2001 to 2005. The primary outcome measures were the incidence rate ratio of disease occurrence associated with mean weekly maximum temperature, cumulative weekly temperature, mean weekly dew point temperature, cumulative weekly precipitation, and the presence of ≥ 1 day of heavy rainfall (≥ 50 mm) during the month prior to symptom onset. Results Increasing weekly maximum temperature and weekly cumulative temperature were similarly and significantly associated with a 35–83% higher incidence of reported WNV infection over the next month. An increase in mean weekly dew point temperature was significantly associated with a 9–38% higher incidence over the subsequent 3 weeks. The presence of at least 1 day of heavy rainfall within a week was associated with a 29–66% higher incidence during the same week and over the subsequent 2 weeks. A 20-mm increase in cumulative weekly precipitation was significantly associated with a 4–8% increase in incidence of reported WNV infection over the subsequent 2 weeks. Conclusions Warmer temperatures, elevated humidity, and heavy precipitation increased the rate of human WNV infection in the United States independent of season and each others’ effects. PMID:19654911

  13. The association between temperature and mortality in tropical middle income Thailand from 1999 to 2008.

    PubMed

    Tawatsupa, Benjawan; Dear, Keith; Kjellstrom, Tord; Sleigh, Adrian

    2014-03-01

    We have investigated the association between tropical weather condition and age-sex adjusted death rates (ADR) in Thailand over a 10-year period from 1999 to 2008. Population, mortality, weather and air pollution data were obtained from four national databases. Alternating multivariable fractional polynomial (MFP) regression and stepwise multivariable linear regression analysis were used to sequentially build models of the associations between temperature variable and deaths, adjusted for the effects and interactions of age, sex, weather (6 variables), and air pollution (10 variables). The associations are explored and compared among three seasons (cold, hot and wet months) and four weather zones of Thailand (the North, Northeast, Central, and South regions). We found statistically significant associations between temperature and mortality in Thailand. The maximum temperature is the most important variable in predicting mortality. Overall, the association is nonlinear U-shape and 31 °C is the minimum-mortality temperature in Thailand. The death rates increase when maximum temperature increase with the highest rates in the North and Central during hot months. The final equation used in this study allowed estimation of the impact of a 4 °C increase in temperature as projected for Thailand by 2100; this analysis revealed that the heat-related deaths will increase more than the cold-related deaths avoided in the hot and wet months, and overall the net increase in expected mortality by region ranges from 5 to 13 % unless preventive measures were adopted. Overall, these results are useful for health impact assessment for the present situation and future public health implication of global climate change for tropical Thailand.

  14. Influence of body heat content on hand function during prolonged cold exposures.

    PubMed

    Flouris, A D; Cheung, S S; Fowles, J R; Kruisselbrink, L D; Westwood, D A; Carrillo, A E; Murphy, R J L

    2006-09-01

    We examined the influence of 1) prior increase [preheating (PHT)], 2) increase throughout [heating (HT)], and 3) no increase [control (Con)] of body heat content (H(b)) on neuromuscular function and manual dexterity of the hands during a 130-min exposure to -20 degrees C (coldEx). Ten volunteers randomly underwent three passive coldEx, incorporating a 10-min moderate-exercise period at the 65th min while wearing a liquid conditioning garment (LCG) and military arctic clothing. In PHT, 50 degrees C water was circulated in the LCG before coldEx until core temperature was increased by 0.5 degrees C. In HT, participants regulated the inlet LCG water temperature throughout coldEx to subjective comfort, while the LCG was not operating in Con. Thermal comfort, rectal temperature, mean skin temperature, mean finger temperature (T(fing)), change in H(b) (DeltaH(b)), rate of body heat storage, Purdue pegboard test, finger tapping, handgrip, maximum voluntary contraction, and evoked twitch force of the first dorsal interosseus muscle were recorded. Results demonstrated that, unlike in HT and PHT, thermal comfort, rectal temperature, mean skin temperature, twitch force, maximum voluntary contraction, and finger tapping declined significantly in Con. In contrast, T(fing) and Purdue pegboard test remained constant only in HT. Generalized estimating equations demonstrated that DeltaH(b) and T(fing) were associated over time with hand function, whereas no significant association was detected for rate of body heat storage. It is concluded that increasing H(b) not only throughout but also before a coldEx is effective in maintaining hand function. In addition, we found that the best indicator of hand function is DeltaH(b) followed by T(fing).

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinbeck, S.

    Meteorological data collected at SRS since the mid-1960’s have been analyzed for trends in minimum and maximum temperature, heating and cooling degree days, precipitation and relative humidity. The trends in meteorological data collected have been relatively small compared to the interannual variability that is observed. The observed increases, while small, appear to be real (statistically significant). Overnight low temperatures (3.1°F) have increased over twice as fast as the increases in daytime highs (1.4°F). Similarly, there are statistically significant increases in the number of cooling degree days as well. There has been a similar decrease in the number of HDD andmore » freezing days, consistent with the overall increase in overnight low temperatures.« less

  16. Identification of climate-resilient integrated nutrient management practices for rice-rice cropping system--an empirical approach to uphold food security.

    PubMed

    Subash, N; Gangwar, B; Singh, Rajbir; Sikka, A K

    2015-01-01

    Yield datasets of long-term experiments on integrated nutrient management in rice-rice cropping systems were used to investigate the relationship of variability in rainfall, temperature, and integrated nutrient management (INM) practices in rice-rice cropping system in three different agroecological regions of India. Twelve treatments with different combinations of inorganic (chemical fertilizer) and organic (farmyard manure, green manure, and paddy straw) were compared with farmer's conventional practice. The intraseasonal variations in rice yields are largely driven by rainfall during kharif rice and by temperature during rabi rice. Half of the standard deviation from the average monthly as well as seasonal rainfall during kharif rice and 1 °C increase or decrease from the average maximum and minimum temperature during rabi rice has been taken as the classification of yield groups. The trends in the date of effective onset of monsoon indicate a 36-day delay during the 30-year period at Rajendranagar, which is statistically significant at 95 % confidence level. The mean annual maximum temperature shows an increasing trend in all the study sites. The length of monsoon also showed a shrinking trend in the rate of 40 days during the 30-year study period at Rajendranagar representing a semiarid region. At Bhubaneshwar, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through green manure resulted in an overall average higher increase of 5.1 % in system productivity under both excess and deficit rainfall years and also during the years having seasonal mean maximum temperature ≥35 °C. However, at Jorhat, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through straw resulted in an overall average higher increase of 7.4 % in system productivity, while at Rajendranagar, the application of 75 % NPK through chemical fertilizers and 25 % N through green manusre resulted in an overall average higher increase of 8.8 % in system productivity. This study highlights the adaptive capacity of different integrated nutrient management practices to rainfall and temperature variability under a rice-rice cropping system in humid, subhumid, and semiarid ecosystems.

  17. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal

    NASA Astrophysics Data System (ADS)

    Cardoso, Rita M.; Soares, Pedro M. M.; Lima, Daniela C. A.; Miranda, Pedro M. A.

    2018-02-01

    Large temperature spatio-temporal gradients are a common feature of Mediterranean climates. The Portuguese complex topography and coastlines enhances such features, and in a small region large temperature gradients with high interannual variability is detected. In this study, the EURO-CORDEX high-resolution regional climate simulations (0.11° and 0.44° resolutions) are used to investigate the maximum and minimum temperature projections across the twenty-first century according to RCP4.5 and RCP8.5. An additional WRF simulation with even higher resolution (9 km) for RCP8.5 scenario is also examined. All simulations for the historical period (1971-2000) are evaluated against the available station observations and the EURO-CORDEX model results are ranked in order to build multi-model ensembles. In present climate models are able to reproduce the main topography/coast related temperature gradients. Although there are discernible differences between models, most present a cold bias. The multi-model ensembles improve the overall representation of the temperature. The ensembles project a significant increase of the maximum and minimum temperatures in all seasons and scenarios. Maximum increments of 8 °C in summer and autumn and between 2 and 4 °C in winter and spring are projected in RCP8.5. The temperature distributions for all models show a significant increase in the upper tails of the PDFs. In RCP8.5 more than half of the extended summer (MJJAS) has maximum temperatures exceeding the historical 90th percentile and, on average, 60 tropical nights are projected for the end of the century, whilst there are only 7 tropical nights in the historical period. Conversely, the number of cold days almost disappears. The yearly average number of heat waves increases by seven to ninefold by 2100 and the most frequent length rises from 5 to 22 days throughout the twenty-first century. 5% of the longest events will last for more than one month. The amplitude is overwhelming larger, reaching values which are not observed in the historical period. More than half of the heat waves will be stronger than the extreme heat wave of 2003 by the end of the century. The future heatwaves will also enclose larger areas, approximately 100 events in the 2071-2100 period (more than 3 per year) will cover the whole country. The RCP4.5 scenario has in general smaller magnitudes.

  18. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-12-01

    Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up-down-down-up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.

  19. Numerical simulation of quench protection for a 1.5 T persistent mode MgB2 conduction-cooled MRI magnet

    NASA Astrophysics Data System (ADS)

    Deissler, Robert J.; Baig, Tanvir; Poole, Charles; Amin, Abdullah; Doll, David; Tomsic, Michael; Martens, Michael

    2017-02-01

    The active quench protection of a 1.5 T MgB2 conduction-cooled MRI magnet operating in persistent current mode is considered. An active quench protection system relies on the detection of the resistive voltage developed in the magnet, which is used to trigger the external energizing of quench heaters located on the surfaces of all ten coil bundles. A numerical integration of the heat equation is used to determine the development of the temperature profile and the maximum temperature in the coil at the origin, or ‘hot spot’, of the quench. Both n-value of the superconductor and magnetoresistance of the wire are included in the simulations. An MgB2 wire manufactured by Hyper Tech Research, Inc. was used as the basis to model the wire for the simulations. With the proposed active quench protection system, the maximum temperature was limited to 200 K or less, which is considered low enough to prevent damage to the magnet. By substituting Glidcop for the Monel in the wire sheath or by increasing the thermal conductivity of the insulation, the margin for safe operation was further increased, the maximum temperature decreasing by more than 40 K. The strain on the MgB2 filaments is calculated using ANSYS, verifying that the stress and strain limits in the MgB2 superconductor and epoxy insulation are not exceeded.

  20. Energetic costs of pyrene metabolism in isolated hepatocytes of rainbow trout, Oncorhynchus mykiss.

    PubMed

    Bains, Onkar S; Kennedy, Christopher J

    2004-04-28

    The respiratory costs of pyrene exposure and biotransformation were examined in isolated hepatocytes of adult rainbow trout, Oncorhynchus mykiss. Baseline oxygen consumption rates measured at an acclimation temperature of 7.5 degrees C and during an acute temperature increase to 15 degrees C were 10.1 +/- 0.1 and 22.6 +/- 0.4 ng O(2)/min/mg cells, respectively. Hepatocytes exposed to pyrene at 1, 5 and 10 microg/ml exhibited concentration-dependent increases in oxygen consumption. Respiration rates of cells exposed to these concentrations at their acclimation temperature were 12.5 +/- 0.1, 14.7 +/- 0.1 and 17.1 +/- 0.2 ng O(2)/min/mg cells, respectively. Exposure of cells to pyrene at 15 degrees C also elevated oxygen consumption to a maximum of 34.4 +/- 0.3 ng O(2)/min/mg cells, however, the relationship with pyrene concentration was biphasic. The major metabolite identified through a series of solvent extractions, acid hydrolysis, and synchronous fluorometric spectroscopy was conjugated 1-hydroxypyrene. At 7.5 degrees C, increased pyrene metabolism correlated with increased hepatocyte respiration rates. At 15 degrees C, however, pyrene metabolism reached a maximum at 5 microg/ml, suggesting saturation of detoxification enzymes, which correlated with maximum respiration rates at this concentration. Measures of respiration by isolated mitochondria indicated that changes in hepatocyte oxygen consumption were not through direct effects of pyrene on mitochondria. This study indicates that significant respiratory costs may be accrued by teleost hepatocytes actively metabolizing and secreting xenobiotic compounds.

  1. gamma-Glutamyltranspeptidase from Escherichia coli K-12: formation and localization.

    PubMed

    Suzuki, H; Kumagai, H; Tochikura, T

    1986-12-01

    Escherichia coli cells showed maximum activity of gamma-glutamyltranspeptidase (EC 2.3.2.2) when they were grown at 20 degrees C, 14% of maximum activity at 37 degrees C, and none at 43 degrees C. The enzyme activity of intact cells grown at 20 degrees C was stably maintained after the temperature was changed to 45 degrees C. The activity increased during the exponential phase, and maximum activity was found at stationary phase. Its intracellular localization in the periplasmic space was confirmed.

  2. The impact of daily temperature on renal disease incidence: an ecological study.

    PubMed

    Borg, Matthew; Bi, Peng; Nitschke, Monika; Williams, Susan; McDonald, Stephen

    2017-10-27

    Extremely high temperatures over many consecutive days have been linked to an increase in renal disease in several cities. This is becoming increasingly relevant with heatwaves becoming longer, more intense, and more frequent with climate change. This study aimed to extend the known relationship between daily temperature and kidney disease to include the incidence of eight temperature-prone specific renal disease categories - total renal disease, urolithiasis, renal failure, acute kidney injury (AKI), chronic kidney disease (CKD), urinary tract infections (UTIs), lower urinary tract infections (LUTIs) and pyelonephritis. Daily data was acquired for maximum, minimum and average temperature over the period of 1 July 2003 to 31 March 2014 during the warm season (October to March) in Adelaide, South Australia. Data for daily admissions to all metropolitan hospitals for renal disease, including 83,519 emergency department admissions and 42,957 inpatient admissions, was also obtained. Renal outcomes were analyzed using time-stratified negative binomial regression models, with the results aggregated by day. Incidence rate ratios (IRR) and 95% confidence intervals (CI) were estimated for associations between the number of admissions and daily temperature. Increases in daily temperature per 1 °C were associated with an increased incidence for all renal disease categories except for pyelonephritis. Minimum temperature was associated with the greatest increase in renal disease followed by average temperature and then maximum temperature. A 1°C increase in daily minimum temperature was associated with an increase in daily emergency department admissions for AKI (IRR 1.037, 95% CI: 1.026-1.048), renal failure (IRR 1.030, 95% CI: 1.022-1.039), CKD (IRR 1.017, 95% CI: 1.001-1.033) urolithiasis (IRR 1.015, 95% CI: 1.010-1.020), total renal disease (IRR 1.009, 95% CI: 1.006-1.011), UTIs (IRR 1.004, 95% CI: 1.000-1.007) and LUTIs (IRR 1.003, 95% CI: 1.000-1.006). An increased frequency of renal disease, including urolithiasis, acute kidney injury and urinary tract infections, is predicted with increasing temperatures from climate change. These results have clinical and public health implications for the management of renal diseases and demand tailored health services. Future research is warranted to analyze individual renal diseases with more comprehensive information regarding renal risk factors, and studies examining mortality for specific renal diseases.

  3. Measurement of SAR-induced temperature increase in a phantom and in vivo with comparison to numerical simulation

    PubMed Central

    Oh, Sukhoon; Ryu, Yeun-Chul; Carluccio, Giuseppe; Sica, Christopher T.; Collins, Christopher M.

    2013-01-01

    Purpose Compare numerically-simulated and experimentally-measured temperature increase due to Specific energy Absorption Rate (SAR) from radiofrequency fields. Methods Temperature increase induced in both a phantom and in the human forearm when driving an adjacent circular surface coil was mapped using the proton resonance frequency shift technique of Magnetic Resonance (MR) thermography. The phantom and forearm were also modeled from MR image data, and both SAR and temperature change as induced by the same coil were simulated numerically. Results The simulated and measured temperature increase distributions were generally in good agreement for the phantom. The relative distributions for the human forearm were very similar, with the simulations giving maximum temperature increase about 25% higher than measured. Conclusion Although a number of parameters and uncertainties are involved, it should be possible to use numerical simulations to produce reasonably accurate and conservative estimates of temperature distribution to ensure safety in MR imaging. PMID:23804188

  4. Dielectric and AC conductivity studies of Nd substituted 0.8BaTiO{sub 3}-0.2(Bi{sub 0.5(1-x)}Nd{sub 0.5x}K{sub 0.5})TiO{sub 3} lead free ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramesh, M. N. V.; Ramesh, K. V., E-mail: kv-ramesh5@yahoo.co.in

    2016-05-23

    0.8BaTiO{sub 3} – 0.2(Bi{sub 0.5(1-x)}Nd{sub 0.5x}K{sub 0.5})TiO{sub 3} (0.01 ≤ x ≤ 0.06) lead free ceramic materials have been prepared by solid state reaction method and followed by high energy ball milling process. X-ray diffraction studies confirm the tetragonal structure of the materials at room temperature. Lattice parameters and density are decreasing with increase of Nd substitution. Microstructure studies were done by using Scanning electron microscope and it found that grain size is decreasing with increase of Nd substitution. Temperature and frequency dependent dielectric studies reveal relaxor behaviour of the materials. Dielectric constant, dielectric loss and Curie temperature are decreasingmore » with Nd substitution. Maximum Curie temperature of 195°C was observed at 1 MHz for x=0.01 Nd substituted sample. Degree of diffuseness was calculated from the modified Curie-Weiss law and it is increasing with Nd substitution. AC conductivity is increasing with increase of Nd substitution and observed maximum activation energy of 0.52 eV for x=0.02 Nd substituted sample.« less

  5. Effect of Synthesis Temperature and NaOH Concentration on Microstructural and Magnetic Properties of Mn0.5Zn0.5Fe2O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Siregar, N.; Indrayana, I. P. T.; Suharyadi, E.; Kato, T.; Iwata, S.

    2017-05-01

    Mn0.5Zn0.5Fe2O4 nanoparticles have been successfully synthesized through coprecipitation method by varying NaOH concentrations from 0.5 M to 6 M and synthesis temperatures from 30 to 120 °C. The X-ray diffraction (XRD) pattern indicates samples consisting of multiphase structures such as spinel of Mn0.5Zn0.5Fe2O4, α-MnO2, ZnO, λ-MnO2, and γ-Fe2O3. The crystallite size of Mn0.5Zn0.5Fe2O4 is in the range of 14.1 to 26.7 nm. The Transmission electron microscope (TEM) image shows that sample was agglomerate. The hysteresis loops confirm that nanoparticles are soft magnetic materials with low coercivity (H c) in the range of 45.9 to 68.5 Oe. Those values increased relatively with increasing particles size. For NaOH concentration variation, the maximum magnetization of the sample increased from 10.4 emu/g to 11.6 emu/g with increasing ferrite content. Meanwhile, the maximum magnetization increased from 7.9 to 15.7 emu/g for samples with various synthesis temperature. The highest coercivity of 68.5 Oe was attained for a sample of 6 M NaOH under 90 °C. The highest magnetization of 15.7 emu/g was achieved for a sample of 1.5 M NaOH under 120 °C caused by the maximum crystallinity of sample.

  6. Rated Temperature Of Silver/Zinc Batteries Is Increased

    NASA Technical Reports Server (NTRS)

    Hill, Derek P.

    1992-01-01

    Report shows silver-zinc batteries of specific commercial type (28 V, 20 A*h, Eagle-Picher Battery MAR 4546-5) operated safely at higher temperature than previously thought possible. Batteries operated to 239 degrees F (115 degrees C) without going into sustained thermal runaway. Operated 49 degrees F (27 degrees C) above previous maximum.

  7. Can uncertainties in sea ice albedo reconcile patterns of data-model discord for the Pliocene and 20th/21st centuries?

    USGS Publications Warehouse

    Howell, Fergus W.; Haywood, Alan M.; Dolan, Aisling M.; Dowsett, Harry J.; Francis, Jane E; Hill, Daniel J.; Pickering, Steven J.; Pope, James O.; Salzmann, Ulrich; Wade, Bidget S

    2014-01-01

    General Circulation Model simulations of the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Myr ago) currently underestimate the level of warming that proxy data suggest existed at high latitudes, with discrepancies of up to 11°C for sea surface temperature estimates and 17°C for surface air temperature estimates. Sea ice has a strong influence on high-latitude climates, partly due to the albedo feedback. We present results demonstrating the effects of reductions in minimum sea ice albedo limits in general circulation model simulations of the mPWP. While mean annual surface air temperature increases of up to 6°C are observed in the Arctic, the maximum decrease in model-data discrepancies is just 0.81°C. Mean annual sea surface temperatures increase by up to 2°C, with a maximum model-data discrepancy improvement of 1.31°C. It is also suggested that the simulation of observed 21st century sea ice decline could be influenced by the adjustment of the sea ice albedo parameterization.

  8. Influence of disorder on the superconducting critical temperature in indium-opal nanocomposites

    NASA Astrophysics Data System (ADS)

    Zakharchuk, I.; Januzaj, A.; Mikhailin, N. Yu.; Traito, K. B.; Chernyaev, A. V.; Romanov, S. G.; Safonchik, M.; Shamshur, D. V.; Lähderanta, E.

    2018-06-01

    Transport properties of bulk indium-opal and indium-porous glass superconducting nanocomposites possessing moderate and strong disorder are investigated. A strongly nonmonotonous dependence of the global critical temperature Tc versus normal state conductivity of samples is found. The maximum, which is observed at moderate disorder, has Tc higher than that of clean bulk indium. The increasing part can be explained by the Eliashberg equations with disorder and an additional mechanism of interaction between superconducting and dielectric granules. The descending part of the maximum at higher disorder can be explained by the increasing of long-range Coulomb repulsion due to diffusion of charges. Negative slope in magnetic field dependence of resistivity and a peak in the temperature dependence of resistivity, observed in the sample near the proximity to the disorder-induced superconductor-insulator transition (SIT). A large difference between the onset temperature of superconducting fluctuations, Tcon , and global critical temperature Tc is found and considered in the framework of the weak multifractal theory. Slow time-logarithmic relaxation of the resistivity between Tc and Tcon is observed, which assumes existence of the precursor state near the SIT. This unusual state is discussed in the scope of the many-body localization theory.

  9. Origin of two maxima in specific heat in enthalpy relaxation under thermal history composed of cooling, annealing, and heating.

    PubMed

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2016-12-01

    The origin of two maxima in specific heat observed at the higher and the lower temperatures in the glass-transition region in the heating process has been studied for polymethyl methacrylate and polyvinyl chloride using differential scanning calorimetry, and the calculation was done using the phenomenological model equation under a thermal history of the typical annealing experiment composed of cooling, annealing, and heating. The higher maximum is observed above the glass-transition temperature, and it remains almost unchanged independent of annealing time t_{a}, while the lower one is observed above an annealing temperature T_{a} and shifts toward the higher one, increasing its magnitude with t_{a}. The analysis by the phenomenological model equation proposed in order to interpret the memory effect in the glassy state clarifies that under a typical annealing history, two maxima in specific heat essentially appear. The shift of the lower maximum toward higher temperatures from above T_{a} is caused by an increase in the amount of relaxation during annealing with t_{a}. The annealing temperature and the amount of relaxation during annealing play a major role in the determination of the number of maxima in the specific heat.

  10. Station Blackout Analysis of HTGR-Type Experimental Power Reactor

    NASA Astrophysics Data System (ADS)

    Syarip; Zuhdi, Aliq; Falah, Sabilul

    2018-01-01

    The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.

  11. On the characterization of inhomogeneity of the density distribution in supercritical fluids via molecular dynamics simulation and data mining analysis.

    PubMed

    Idrissi, Abdenacer; Vyalov, Ivan; Georgi, Nikolaj; Kiselev, Michael

    2013-10-10

    We combined molecular dynamics simulation and DBSCAN algorithm (Density Based Spatial Clustering of Application with Noise) in order to characterize the local density inhomogeneity distribution in supercritical fluids. The DBSCAN is an algorithm that is capable of finding arbitrarily shaped density domains, where domains are defined as dense regions separated by low-density regions. The inhomogeneity of density domain distributions of Ar system in sub- and supercritical conditions along the 50 bar isobar is associated with the occurrence of a maximum in the fluctuation of number of particles of the density domains. This maximum coincides with the temperature, Tα, at which the thermal expansion occurs. Furthermore, using Voronoi polyhedral analysis, we characterized the structure of the density domains. The results show that with increasing temperature below Tα, the increase of the inhomogeneity is mainly associated with the density fluctuation of the border particles of the density domains, while with increasing temperature above Tα, the decrease of the inhomogeneity is associated with the core particles.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plucknett, K.P.; Becher, P.F.; Waters, S.B.

    TiC/Ni{sub 3}Al composites were prepared using a simple melt-infiltration process, performed at either 1300 or 1400 C, with the Ni{sub 3}Al content varied over the range of 8--25 vol%. Densities >96% of theoretical were obtained for all composites. Four-point flexure strengths at 22 C increased as the Ni{sub 3}Al content increased (i.e., {approximately}1,100 MPa at 20 vol% Ni{sub 3}Al), with the highest strengths being observed for composites processed at 1300 C, because of reduced TiC grain size. Strengths at elevated temperatures increased with test temperature, up to {approximately}1,000 C. As with the yielding behavior of the Ni{sub 3}Al alloy used,more » a maximum in composite strength ({approximately}1,350 MPa) versus temperature was observed; this occurred at 950 C, which is {approximately}300 C above the yield maximum for the alloy. Extensive plastic strain was achieved in the composites even at high loading rates at 1,135 C, and the yield stress was dependent on the applied loading rate.« less

  13. Thermal effects of diagnostic ultrasound in an anthropomorphic skull model.

    PubMed

    Vyskocil, E; Pfaffenberger, S; Kollmann, C; Gleiss, A; Nawratil, G; Kastl, S; Unger, E; Aumayr, K; Schuhfried, O; Huber, K; Wojta, J; Gottsauner-Wolf, M

    2012-12-01

    Exposure to diagnostic ultrasound (US) can significantly heat biological tissue although conventional routine examinations are regarded as safe. The risk of unwanted thermal effects increases with a high absorption coefficient and extended insonation time. Certain applications of transcranial diagnostic US (TC-US) require prolonged exposure. An anthropomorphic skull model (ASM) was developed to evaluate thermal effects induced by TC-US of different modalities. The objective was to determine whether prolonged continuous TC-US application results in potentially harmful temperature increases. The ASM consists of a human skull with tissue mimicking material and exhibits acoustic and anatomical characteristics of the human skull and brain. Experiments are performed with a diagnostic US device testing four different US modalities: Duplex PW (pulsed wave) Doppler, PW Doppler, color flow Doppler and B-mode. Temperature changes are recorded during 180 minutes of insonation. All measurements revealed significant temperature increases during insonation independent of the US modality. The maximum temperature elevation of + 5.25° C (p < 0.001) was observed on the surface of the skull exposed to duplex PW Doppler. At the bone-brain border a maximum temperature increae of + 2.01 °C (p < 0.001) was noted. Temperature increases within the brain were < 1.23 °C (p = 0.001). The highest values were registered using the duplex PW Doppler modality. TC-US induces significant local heating effects in an ASM. An application duration that extends routine clinical periods causes potentially harmful heating especially in tissue close to bone. TC-US elevates the temperature in the brain mimicking tissue but is not capable of producing harmful temperature increases during routine examinations. However, the risk of thermal injury in brain tissue increases significantly after an exposure time of > 2 hours. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Extreme heat in India and anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    van Oldenborgh, Geert Jan; Philip, Sjoukje; Kew, Sarah; van Weele, Michiel; Uhe, Peter; Otto, Friederike; Singh, Roop; Pai, Indrani; Cullen, Heidi; AchutaRao, Krishna

    2018-01-01

    On 19 May 2016 the afternoon temperature reached 51.0 °C in Phalodi in the northwest of India - a new record for the highest observed maximum temperature in India. The previous year, a widely reported very lethal heat wave occurred in the southeast, in Andhra Pradesh and Telangana, killing thousands of people. In both cases it was widely assumed that the probability and severity of heat waves in India are increasing due to global warming, as they do in other parts of the world. However, we do not find positive trends in the highest maximum temperature of the year in most of India since the 1970s (except spurious trends due to missing data). Decadal variability cannot explain this, but both increased air pollution with aerosols blocking sunlight and increased irrigation leading to evaporative cooling have counteracted the effect of greenhouse gases up to now. Current climate models do not represent these processes well and hence cannot be used to attribute heat waves in this area. The health effects of heat are often described better by a combination of temperature and humidity, such as a heat index or wet bulb temperature. Due to the increase in humidity from irrigation and higher sea surface temperatures (SSTs), these indices have increased over the last decades even when extreme temperatures have not. The extreme air pollution also exacerbates the health impacts of heat. From these factors it follows that, from a health impact point of view, the severity of heat waves has increased in India. For the next decades we expect the trend due to global warming to continue but the surface cooling effect of aerosols to diminish as air quality controls are implemented. The expansion of irrigation will likely continue, though at a slower pace, mitigating this trend somewhat. Humidity will probably continue to rise. The combination will result in a strong rise in the temperature of heat waves. The high humidity will make health effects worse, whereas decreased air pollution would decrease the impacts.

  15. Influence of Nanoinclusions on Thermoelectric Properties of n-Type Bi2Te3 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Fan, Shufen; Zhao, Junnan; Yan, Qingyu; Ma, Jan; Hng, Huey Hoon

    2011-05-01

    n-Type Bi2Te3 nanocomposites with enhanced figure of merit, ZT, were fabricated by a simple, high-throughput method of mixing nanostructured Bi2Te3 particles obtained through melt spinning with micron-sized particles. Moderately high power factors were retained, while the thermal conductivity of the nanocomposites was found to decrease with increasing weight percent of nanoinclusions. The peak ZT values for all the nanocomposites were above 1.1, and the maximum shifted to higher temperature with increasing amount of nanoinclusions. A maximum ZT of 1.18 at 42°C was obtained for the 10 wt.% nanocomposite, which is a 43% increase over the bulk sample at the same temperature. This is the highest ZT reported for n-type Bi2Te3 binary material, and higher ZT values are expected if state-of-the-art Bi2Te3- x Se x materials are used.

  16. Surface Temperatures on Titan During Northern Winter and Spring

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Flasar, F. M.; Kunde ,V. G.; Romani, P. N.; Samuelson, R. E.; Mamoutkine, A.; Gorius, N. J. P.; hide

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004-2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 plus or minus 0.3 to 89.7 plus or minus 0.5 K while at the north pole the temperature increased by 1 K from 90.7 plus or minus 0.5 to 91.5 plus or minus 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the subsolar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 plus or minus 0.15 K. In 2010 our temperatures repeated the north-south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation.

  17. Study on a neon cryogenic oscillating heat pipe with long heat transport distance

    NASA Astrophysics Data System (ADS)

    Liang, Qing; Li, Yi; Wang, Qiuliang

    2018-06-01

    An experimental study is carried out to study the heat transfer characteristics of a cryogenic oscillating heat pipe (OHP) with long heat transport distance. The OHP is made up of a capillary tube with an inner diameter of 1.0 mm and an outer diameter of 2.0 mm. The working fluid is neon, and the length of the adiabatic section is 480 mm. Tests are performed with the different heat inputs, liquid filling ratios and condenser temperature. For the cryogenic OHP with a liquid filling ratio of 30.7% at the condenser temperature of 28 K, the effective thermal conductivity is 3466-30,854 W/m K, and the maximum transfer power is 35.60 W. With the increment of the heat input, the effective thermal conductivity of the cryogenic OHP increases at the liquid filling ratios of 30.7% and 38.5%, while it first increases and then decreases at the liquid filling ratios of 15.2% and 23.3%. Moreover, the effective thermal conductivity increases with decreasing liquid filling ratio at the small heat input, and the maximum transfer power first increases and then decreases with increasing liquid filling ratio. Finally, it is found that the thermal performance of the cryogenic OHP can be improved by increasing the condenser temperature.

  18. A new experimental apparatus for emissivity measurements of steel and the application of multi-wavelength thermometry to continuous casting billets

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Hu, Zhenwei; Xie, Zhi; Yan, Ming

    2018-05-01

    An experimental apparatus has been designed for measuring the emissivity of a steel surface in both vacuum and oxidation atmosphere. The sample is heated with the method of electromagnetic induction in order to ensure the temperature uniformity. The radiance emitted from a sample is measured using a fiber-optic Fourier transform infrared spectrometer. Using this unique apparatus, we investigated the spectral (2-6 μm) and directional (0°-86°) emissivity of stainless steel 304 with different degrees of surface oxidation at temperatures ranging from 800 to 1100 °C. The experimental results show that the emissivity increases slightly with increasing temperature, which accords with the Hagen-Rubens relation. The emissivity increases rapidly at the initial stage of oxidation, but gradually reaches to a constant value after 20 min. In addition, the directional emissivity has a maximum value at the measuring angle of about 75°. The maximum uncertainty of emissivity is only 3.0% over all the measuring ranges, indicating that this experimental apparatus has a high reliability. In order to measure the surface temperature of casting billets based on multi-wavelength thermometry, the bivariate emissivity function with the two variables, wavelength and temperature, is determined. Temperature measurement results based on our technique are compared with those from common dual-wavelength radiation thermometry. Our approach reduces the measured temperature fluctuation from ±20.7 °C to ±2.8 °C and reflects the temperature variation with the changes of production parameters in real time.

  19. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    NASA Astrophysics Data System (ADS)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2017-12-01

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.

  20. Improvement of patient return electrodes in electrosurgery by experimental investigations and numerical field calculations.

    PubMed

    Golombeck, M A; Dössel, O; Raiser, J

    2003-09-01

    Numerical field calculations and experimental investigations were performed to examine the heating of the surface of human skin during the application of a new electrode design for the patient return electrode. The new electrode is characterised by an equipotential ring around the central electrode pads. A multi-layer thigh model was used, to which the patient return electrode and the active electrode were connected. The simulation geometry and the dielectric tissue parameters were set according to the frequency of the current. The temperature rise at the skin surface due to the flow of current was evaluated using a two-step numerical solving procedure. The results were compared with experimental thermographical measurements that yielded a mean value of maximum temperature increase of 3.4 degrees C and a maximum of 4.5 degrees C in one test case. The calculated heating patterns agreed closely with the experimental results. However, the calculated mean value in ten different numerical models of the maximum temperature increase of 12.5 K (using a thermodynamic solver) exceeded the experimental value owing to neglect of heat transport by blood flow and also because of the injection of a higher test current, as in the clinical tests. The implementation of a simple worst-case formula that could significantly simplify the numerical process led to a substantial overestimation of the mean value of the maximum skin temperature of 22.4 K and showed only restricted applicability. The application of numerical methods confirmed the experimental assertions and led to a general understanding of the observed heating effects and hotspots. Furthermore, it was possible to demonstrate the beneficial effects of the new electrode design with an equipotential ring. These include a balanced heating pattern and the absence of hotspots.

  1. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds.

    PubMed

    Smith, Eric Krabbe; O'Neill, Jacqueline J; Gerson, Alexander R; McKechnie, Andrew E; Wolf, Blair O

    2017-09-15

    We examined thermoregulatory performance in seven Sonoran Desert passerine bird species varying in body mass from 10 to 70 g - lesser goldfinch, house finch, pyrrhuloxia, cactus wren, northern cardinal, Abert's towhee and curve-billed thrasher. Using flow-through respirometry, we measured daytime resting metabolism, evaporative water loss and body temperature at air temperatures ( T air ) between 30 and 52°C. We found marked increases in resting metabolism above the upper critical temperature ( T uc ), which for six of the seven species fell within a relatively narrow range (36.2-39.7°C), but which was considerably higher in the largest species, the curve-billed thrasher (42.6°C). Resting metabolism and evaporative water loss were minimal below the T uc and increased with T air and body mass to maximum values among species of 0.38-1.62 W and 0.87-4.02 g H 2 O h -1 , respectively. Body temperature reached maximum values ranging from 43.5 to 45.3°C. Evaporative cooling capacity, the ratio of evaporative heat loss to metabolic heat production, reached maximum values ranging from 1.39 to 2.06, consistent with known values for passeriforms and much lower than values in taxa such as columbiforms and caprimulgiforms. These maximum values occurred at heat tolerance limits that did not scale with body mass among species, but were ∼50°C for all species except the pyrrhuloxia and Abert's towhee (48°C). High metabolic costs associated with respiratory evaporation appeared to drive the limited heat tolerance in these desert passeriforms, compared with larger desert columbiforms and galliforms that use metabolically more efficient mechanisms of evaporative heat loss. © 2017. Published by The Company of Biologists Ltd.

  2. Warming trumps CO2: future climate conditions suppress carbon fluxes in two dominant boreal tree species

    NASA Astrophysics Data System (ADS)

    Way, D.; Dusenge, M. E.; Madhavji, S.

    2017-12-01

    Increases in CO2 are expected to raise air temperatures in northern latitudes by up to 8 °C by the end of the century. Boreal forests in these regions play a large role in the global carbon cycle, and the responses of boreal tree species to climate drivers will thus have considerable impacts on the trajectory of future CO2 increases. We grew two dominant North American boreal tree species at a range of future climate conditions to assess how carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana) and tamarack (Larix laricina) were grown from seed under either ambient (400 ppm) or elevated CO2 concentrations (750 ppm) and either ambient temperatures, moderate warming (ambient +4 °C), or extreme warming (ambient +8 °C) for six months. We measured temperature responses of net photosynthesis, maximum rates of Rubisco carboxylation (Vcmax) and electron transport (Jmax) and dark respiration to determine acclimation to the climate treatments. Overall, growth temperature had a strong effect on carbon fluxes, while there were no significant effects of growth CO2. In both species, the photosynthetic thermal optimum increased and maximum photosynthetic rates were reduced in warm-grown seedlings, but the strength of these changes varied between species. Vcmax and Jmax were also reduced in warm-grown seedlings, and this correlated with reductions in leaf N concentrations. Warming increased the activation energy for Vcmax and the thermal optimum for Jmax in both species. Respiration acclimated to elevated growth temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10 °C increase in leaf temperature). Our results show that climate warming is likely to reduce carbon fluxes in these boreal conifers, and that photosynthetic parameters used to model photosynthesis in dynamic global vegetation models acclimate to increased temperatures, but show little response to elevated CO2.

  3. The effect of different temperature profiles upon the length and crystallinity of vertically-aligned multi-walled carbon nanotubes.

    PubMed

    Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun

    2012-08-01

    We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.

  4. The Effects of Temperature and Precipitation on the Yield of Zea Mays L. I the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Stooksbury, David Emory

    Three families of straightforward maize (Zea mays L.) yield/climate models using monthly temperature and precipitation terms are produced. One family of models uses USDA's Crop Reporting Districts (CRD) as its scale of aggregation. The other two families of models use three different district aggregates based on climate or yield patterns. The climate and yield districts are determined by using a two-stage cluster analysis. The CRD-based family of models perform as well as the climate and yield based models. All models explain between 80% and 90% of the variance in maize yield. The most important climate term affecting maize yield in the South is the daily maximum temperature at pollination time. The higher the maximum temperature, the lower the yield. Above normal minimum temperature during pollination increases yield in the Middle South. Weather that favors early planting and rapid vegetative growth increases yield. Ideal maize yield weather includes a dry period during planting followed by a warm period during vegetative growth. Moisture variables are important only during the planting and harvest periods when above normal precipitation delays field work and thereby reduces yield. The model results indicate that the dire predictions about the fate of Southern agriculture in a trace gas warmed world may not be true. This is due to the overwhelming influence of the daily maximum temperature on yield. An optimum aggregate for climate impact studies was not found. I postulate that this is due to the dynamic nature of the American maize production system. For most climate impact studies on a dynamic agricultural system, there does not need to be a concern about the model aggregation.

  5. Evaluation of Ultra High Pressure (UHP) Firefighting in a Room-and-Contents Fire

    DTIC Science & Technology

    2017-03-15

    Burn Room and Hangar Temperature Prior to Ignition ............................................... 18 Figure 12. Effect of Temperature on Normalized...Figure 20. Maximum Average Temperature and Heat Flux ......................................................... 22 Figure 21. Effect of Maximum Average...Aspirated Ceiling Temperature .................................... 23 Figure 22. Effect of Maximum Average Floor Heat Flux on Extinguishment Quantity

  6. The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics

    NASA Astrophysics Data System (ADS)

    Garner, Grace; Malcolm, Iain A.; Sadler, Jonathan P.; Hannah, David M.

    2017-10-01

    A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ∼1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Data from nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model of the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥1.6 °C) and maximum (≥3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation, and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.

  7. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users.

    PubMed

    Vierling, Kerri T; Lorenz, Teresa J; Cunningham, Patrick; Potterf, Kelsi

    2018-04-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and ~ 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  8. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    NASA Astrophysics Data System (ADS)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  9. Association between high temperature and mortality in metropolitan areas of four cities in various climatic zones in China: a time-series study

    PubMed Central

    2014-01-01

    Background Numerous studies have reported on the associations between ambient temperatures and mortality. However, few multi-city studies have been conducted in developing countries including China. This study aimed to examine the association between high temperature and mortality outcomes in four cities with different climatic characteristics in China to identify the most vulnerable population, detect the threshold temperatures, and provide scientific evidence for public health policy implementations to respond to challenges from extreme heat. Methods A semi-parametric generalized additive model (GAM) with a Poisson distribution was used to analyze the impacts of the daily maximum temperature over the threshold on mortality after controlling for covariates including time trends, day of the week (DOW), humidity, daily temperature range, and outdoor air pollution. Results The temperature thresholds for all-cause mortality were 29°C, 35°C, 33°C and 34°C for Harbin, Nanjing, Shenzhen and Chongqing, respectively. After adjusting for potential confounders including air pollution, strong associations between daily maximum temperature and daily mortality from all-cause, cardiovascular, endocrine and metabolic outcomes, and particularly diabetes, were observed in different geographical cities, with increases of 3.2-5.5%, 4.6-7.5% and 12.5-31.9% (with 14.7-29.2% in diabetes), respectively, with each 1°C increment in the daily maximum temperature over the threshold. A stronger temperature-associated mortality was detected in females compared to males. Additionally, both the population over 55 years and younger adults aged 30 to 54 years reported significant heat-mortality associations. Conclusions Extreme heat is becoming a huge threat to public health and human welfare due to the strong temperature-mortality associations in China. Climate change with increasing temperatures may make the situation worse. Relevant public health strategies and an early extreme weather and health warning system should be developed and improved at an early stage to prevent and reduce the health risks due to extreme weather and climate change in China, given its huge population, diverse geographic distribution and unbalanced socioeconomic status with various climatic characteristics. PMID:25103276

  10. Association between high temperature and mortality in metropolitan areas of four cities in various climatic zones in China: a time-series study.

    PubMed

    Li, Yonghong; Cheng, Yibin; Cui, Guoquan; Peng, Chaoqiong; Xu, Yan; Wang, Yulin; Liu, Yingchun; Liu, Jingyi; Li, Chengcheng; Wu, Zhen; Bi, Peng; Jin, Yinlong

    2014-08-07

    Numerous studies have reported on the associations between ambient temperatures and mortality. However, few multi-city studies have been conducted in developing countries including China. This study aimed to examine the association between high temperature and mortality outcomes in four cities with different climatic characteristics in China to identify the most vulnerable population, detect the threshold temperatures, and provide scientific evidence for public health policy implementations to respond to challenges from extreme heat. A semi-parametric generalized additive model (GAM) with a Poisson distribution was used to analyze the impacts of the daily maximum temperature over the threshold on mortality after controlling for covariates including time trends, day of the week (DOW), humidity, daily temperature range, and outdoor air pollution. The temperature thresholds for all-cause mortality were 29°C, 35°C, 33°C and 34°C for Harbin, Nanjing, Shenzhen and Chongqing, respectively. After adjusting for potential confounders including air pollution, strong associations between daily maximum temperature and daily mortality from all-cause, cardiovascular, endocrine and metabolic outcomes, and particularly diabetes, were observed in different geographical cities, with increases of 3.2-5.5%, 4.6-7.5% and 12.5-31.9% (with 14.7-29.2% in diabetes), respectively, with each 1°C increment in the daily maximum temperature over the threshold. A stronger temperature-associated mortality was detected in females compared to males. Additionally, both the population over 55 years and younger adults aged 30 to 54 years reported significant heat-mortality associations. Extreme heat is becoming a huge threat to public health and human welfare due to the strong temperature-mortality associations in China. Climate change with increasing temperatures may make the situation worse. Relevant public health strategies and an early extreme weather and health warning system should be developed and improved at an early stage to prevent and reduce the health risks due to extreme weather and climate change in China, given its huge population, diverse geographic distribution and unbalanced socioeconomic status with various climatic characteristics.

  11. Haze is an important medium for the spread of rotavirus.

    PubMed

    Ye, Qing; Fu, Jun-Feng; Mao, Jian-Hua; Shen, Hong-Qiang; Chen, Xue-Jun; Shao, Wen-Xia; Shang, Shi-Qiang; Wu, Yi-Feng

    2016-09-01

    This study investigated whether the rotavirus infection rate in children is associated with temperature and air pollutants in Hangzhou, China. This study applied a distributed lag non-linear model (DLNM) to assess the effects of daily meteorological data and air pollutants on the rotavirus positive rate among outpatient children. There was a negative correlation between temperature and the rotavirus infection rate. The impact of temperature on the detection rate of rotavirus presented an evident lag effect, the temperature change shows the greatest impact on the detection rate of rotavirus approximate at lag one day, and the maximum relative risk (RR) was approximately 1.3. In 2015, the maximum cumulative RR due to the cumulative effect caused by the temperature drop was 2.5. Particulate matter (PM) 2.5 and PM10 were the primary air pollutants in Hangzhou. The highest RR of rotavirus infection occurred at lag 1-1.5 days after the increase in the concentration of these pollutants, and the RR increased gradually with the increase in concentration. Based on the average concentrations of PM2.5 of 53.9 μg/m(3) and PM10 of 80.6 μg/m(3) in Hangzhou in 2015, the cumulative RR caused by the cumulative effect was 2.5 and 2.2, respectively. The current study suggests that temperature is an important factor impacting the rotavirus infection rate of children in Hangzhou. Air pollutants significantly increased the risk of rotavirus infection, and dosage, lag and cumulative effects were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Prevailing trends of climatic extremes across Indus-Delta of Sindh-Pakistan

    NASA Astrophysics Data System (ADS)

    Abbas, Farhat; Rehman, Iqra; Adrees, Muhammad; Ibrahim, Muhammad; Saleem, Farhan; Ali, Shafaqat; Rizwan, Muhammad; Salik, Muhammad Raza

    2018-02-01

    This study examines the variability and change in the patterns of climatic extremes experienced in Indus-Delta of Sindh province of Pakistan, comprising regions of Karachi, Badin, Mohenjodaro, and Rohri. The homogenized daily minimum and maximum temperature and precipitation data for a 36-year period were used to calculate 13 and 11 indices of temperature and precipitation extremes with the help of RClimDex, a program written in the statistical software package R. A non-parametric Mann-Kendall test and Sen's slope estimates were used to determine the statistical significance and magnitude of the calculated trend. Temperatures of summer days and tropical nights increased in the region with overall significant warming trends for monthly maximum temperature as well as for warm days and nights reflecting dry conditions in the study area. The warm extremes and nighttime temperature indices showed greater trends than cold extremes and daytime indices depicting an overall warming trends in the Delta. Historic decrease in the acreage of major crops and over 33% decrease in agriculture credit for Sindh are the indicators of adverse impacts of warmer and drier weather on Sindh agriculture. Trends reported for Karachi and Badin are expected to decrease rice cultivation, hatching of fisheries, and mangroves forest surrounding these cities. Increase in the prevailing temperature trends will lead to increasingly hotter and drier summers resulting to constraints on cotton, wheat, and rice yield in Rohri and Mohenjodaro areas due to increased crop water requirements that may be met with additional groundwater pumping; nonetheless, the depleted groundwater resources would have a direct impact on the region's economy.

  13. Knock-Limited Performance of Triptane and Xylidines Blended with 28-R Aviation Fuel at High Compression Ratios and Maximum-Economy Spark Setting

    NASA Technical Reports Server (NTRS)

    Held, Louis F.; Pritchard, Ernest I.

    1946-01-01

    An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.

  14. Assessment of SAR and thermal changes near a cochlear implant system for mobile phone type exposures.

    PubMed

    McIntosh, Robert L; Iskra, Steve; McKenzie, Raymond J; Chambers, John; Metzenthen, Bill; Anderson, Vitas

    2008-01-01

    A cochlear implant system is a device used to enable hearing in people with severe hearing loss and consists of an internal implant and external speech processor. This study considers the effect of scattered radiofrequency fields when these persons are subject to mobile phone type exposure. A worst-case scenario is considered where the antenna is operating at nominal full power, the speech processor is situated behind the ear using a metallic hook, and the antenna is adjacent to the hook and the internal ball electrode. The resultant energy deposition and thermal changes were determined through numerical modelling. With a 900 MHz half-wave dipole antenna producing continuous-wave (CW) 250 mW power, the maximum 10 g averaged SAR was 1.31 W/kg which occurred in the vicinity of the hook and the ball electrode. The maximum temperature increase was 0.33 degrees C in skin adjacent to the hook. For the 1800 MHz antenna, operating at 125 mW, the maximum 10 g averaged SAR was 0.93 W/kg in the pinna whilst the maximum temperature change was 0.16 degrees C. The analysis predicts that the wearer complies with the radiofrequency safety limits specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the Institute of Electrical and Electronics Engineers (IEEE), and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for 900 and 1800 MHz mobile phone type exposure and thus raises no cause for concern. The resultant temperature increase is well below the maximum rise of 1 degrees C recommended by ICNIRP. Effects in the cochlea were insignificant. (c) 2007 Wiley-Liss, Inc.

  15. Behavioural response of juvenile Chinook salmon Oncorhynchus tshawytscha during a sudden temperature increase and implications for survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellgraph, Brian J.; McMichael, Geoffrey A.; Mueller, Robert P.

    2010-01-01

    The behaviours of juvenile Chinook salmon Oncorhynchus tshawytscha were evaluated during a temperature increase from 8.8 to 23.2°C, which was designed to simulate unique thermal conditions present in a hydroelectric reservoir. The percent of fish with an active swimming behaviour increased from 26 to 93 % and mean opercular beat rates increased from 76 to 159 beats per minute between basal and maximum temperatures. Fish equilibrium did not change significantly throughout the experiment and relatively little mortality (12 %) occurred. Thermal stress is likely incurred by juvenile salmon experiencing a temperature change of this magnitude; however, stress induced in thismore » study was primarily sublethal. Behavioural changes accompanying thermal stress (e.g., erratic swimming) may increase predation potential in the wild despite being sublethal during laboratory experiments.« less

  16. Thermo-mechanical stress analysis of cryopreservation in cryobags and the potential benefit of nanowarming.

    PubMed

    Solanki, Prem K; Bischof, John C; Rabin, Yoed

    2017-06-01

    Cryopreservation by vitrification is the only promising solution for long-term organ preservation which can save tens of thousands of lives across the world every year. One of the challenges in cryopreservation of large-size tissues and organs is to prevent fracture formation due to the tendency of the material to contract with temperature. The current study focuses on a pillow-like shape of a cryobag, while exploring various strategies to reduce thermo-mechanical stress during the rewarming phase of the cryopreservation protocol, where maximum stresses are typically found. It is demonstrated in this study that while the level of stress may generally increase with the increasing amount of CPA filled in the cryobag, the ratio between width and length of the cryobag play a significant role. Counterintuitively, the overall maximum stress is not found when the bag is filled to its maximum capacity (when the filled cryobag resembles a sphere). Parametric investigation suggests that reducing the initial rewarming rate between the storage temperature and the glass transition temperature may dramatically decrease the thermo-mechanical stress. Adding a temperature hold during rewarming at the glass transition temperature may reduce the thermo-mechanical stress in some cases, but may have an adverse effect in other cases. Finally, it is demonstrated that careful incorporation of volumetric heating by means on nanoparticles in an alternating magnetic field, or nanowarming, can dramatically reduce the resulting thermo-mechanical stress. These observations display the potential benefit of a thermo-mechanical design of the cryopreservation protocols in order to prevent structural damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Development and Evaluation of High-Resolution Climate Simulations Over the Mountainous Northeastern United States

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Beckage, Brian; Bucini, Gabriela; Horton, Radley M.; Clemins, Patrick J.

    2016-01-01

    The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly approximately 1/ 8 deg) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30"), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (1/ 8 deg) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.

  18. Fretting wear of iron, nickel, and titanium under varied environmental conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1979-01-01

    Fretting wear experiments were conducted on high-purity iron, nickel and titanium in air under conditions of varied humidity and temperature, and in nitrogen. For iron and titanium, maximum fretting occurred at 10 and 30 percent relative humidity respectively. Nickel showed a minimum in fretting wear at about 10% relative humidity. With increasing temperature, all three metals initially showed reduced fretting wear, with increasing wear observed as temperatures increased beyond 200-300 C. For titanium, dramatically reduced fretting wear was observed at temperatures above 500 C, relatable to a change in oxidation kinetics. All three metals showed much less fretting wear in N2 with the presence of moisture in N2 having a proportionally stronger effect than in air.

  19. Fretting wear of iron, nickel, and titanium under varied environmental conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Fretting wear experiments were conducted on high purity iron, nickel and titanium in air under conditions of varied humidity and temperature, and in nitrogen. For iron and titanium, maximum fretting occurred at 10 and 30 percent relative humidity respectively. Nickel showed a minimum in fretting wear at about 10 percent relative humidity. With increasing temperature, all three metals initially showed reduced fretting wear, with increasing wear observed as temperatures increased beyond 200-300 C. For titanium, dramatically reduced fretting wear was observed at temperatures above 500 C, relatable to a change in oxidation kinetics. All three metals showed much less fretting wear in N2 with the presence of moisture in N2 having a proportionally stronger effect than in air.

  20. Contention between supply of hydrothermal fluid and conduit obstruction: inferences from numerical simulations

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryo; Hashimoto, Takeshi; Matsushima, Nobuo; Ishido, Tsuneo

    2018-05-01

    We investigate a volcanic hydrothermal system using numerical simulations, focusing on change in crater temperature. Both increases and decreases in crater temperature have been observed before phreatic eruptions. We follow the system's response for up to a decade after hydrothermal fluid flux from the deep part of the system is increased and permeability is reduced at a certain depth in a conduit. Our numerical simulations demonstrate that: (1) changes in crater temperature are controlled by the magnitude of the increase in hydrothermal fluid flux and the degree of permeability reduction; (2) significant increases in hydrothermal flux with decreases in permeability induce substantial pressure changes in shallow depths in the edifice and decreases in crater temperature; (3) the location of maximum pressure change differs between the mechanisms. The results of this study imply that it is difficult to predict eruptions by crater temperature change alone. One should be as wary of large eruptions when crater temperature decreases as when crater temperature increases. It is possible to clarify the implications of changes in crater temperature with simultaneous observation of ground deformation.[Figure not available: see fulltext.

  1. Performance seeking control: Program overview and future directions

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1993-01-01

    A flight test evaluation of the performance-seeking control (PSC) algorithm on the NASA F-15 highly integrated digital electronic control research aircraft was conducted for single-engine operation at subsonic and supersonic speeds. The model-based PSC system was developed with three optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, and maximum thrust at maximum dry and full afterburner throttle settings. Subsonic and supersonic flight testing were conducted at the NASA Dryden Flight Research Facility covering the three PSC optimization modes and over the full throttle range. Flight results show substantial benefits. In the maximum thrust mode, thrust increased up to 15 percent at subsonic and 10 percent at supersonic flight conditions. The minimum fan turbine inlet temperature mode reduced temperatures by more than 100 F at high altitudes. The minimum fuel flow mode results decreased fuel consumption up to 2 percent in the subsonic regime and almost 10 percent supersonically. These results demonstrate that PSC technology can benefit the next generation of fighter or transport aircraft. NASA Dryden is developing an adaptive aircraft performance technology system that is measurement based and uses feedback to ensure optimality. This program will address the technical weaknesses identified in the PSC program and will increase performance gains.

  2. Reversible voltage dependent transition of abnormal and normal bipolar resistive switching.

    PubMed

    Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu

    2016-11-14

    Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoO x layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoO x interface by the accumulation and depletion of oxygen vacancies.

  3. Temperature Effects on Development and Phenotype in a Free-Living Population of Western Pond Turtles (Emys marmorata).

    PubMed

    Christie, Nicole E; Geist, Nicholas R

    Changes in temperature regimes are occurring globally due to climate change as well as habitat alterations. Temperatures are expected to continue to rise in the future, along with a greater degree of climatic instability. Such changes could have potentially serious consequences for oviparous ectotherms, especially those with temperature-dependent sex determination. To investigate the effects of temperature on a range of developmental phenomena in a population of western pond turtles (Emys marmorata), we placed temperature sensors on top of each layer of eggs within nests and recorded temperatures hourly through the first 2-3 mo of incubation. These methods allowed us to look at in situ nest temperatures with high resolution. We found that mean incubation temperatures were similar between different nests and at different levels within nests but that incubation temperature fluctuations and maximum incubation temperatures differed greatly in both cases. The hatchling turtles were more likely to be female if they spent 30% or more of their sex-determining period of incubation above 29°C. Hatching success was best predicted by the maximum incubation temperature. We also found that incubation duration tended to be shorter as the mean temperature increased. However, exposure to either extremely high or low temperatures extended incubation times.

  4. Factorial aerobic scope is independent of temperature and primarily modulated by heart rate in exercising Murray cod (Maccullochella peelii peelii).

    PubMed

    Clark, T D; Ryan, T; Ingram, B A; Woakes, A J; Butler, P J; Frappell, P B

    2005-01-01

    Several previous reports, often from studies utilising heavily instrumented animals, have indicated that for teleosts, the increase in cardiac output (Vb) during exercise is mainly the result of an increase in cardiac stroke volume (V(S)) rather than in heart rate (fH). More recently, this contention has been questioned following studies on animals carrying less instrumentation, though the debate continues. In an attempt to shed more light on the situation, we examined the heart rates and oxygen consumption rates (Mo2; normalised to a mass of 1 kg, given as Mo2kg) of six Murray cod (Maccullochella peelii peelii; mean mass+/-SE = 1.81+/-0.14 kg) equipped with implanted fH and body temperature data loggers. Data were determined during exposure to varying temperatures and swimming speeds to encompass the majority of the biological scope of this species. An increase in body temperature (Tb) from 14 degrees C to 29 degrees C resulted in linear increases in Mo2kg (26.67-41.78 micromol min(-1) kg(-1)) and fH (22.3-60.8 beats min(-1)) during routine exercise but a decrease in the oxygen pulse (the amount of oxygen extracted per heartbeat; 1.28-0.74 micromol beat(-1) kg(-1)). During maximum exercise, the factorial increase in Mo2kg was calculated to be 3.7 at all temperatures and was the result of temperature-independent 2.2- and 1.7-fold increases in fH and oxygen pulse, respectively. The constant factorial increases in fH and oxygen pulse suggest that the cardiovascular variables of the Murray cod have temperature-independent maximum gains that contribute to maximal oxygen transport during exercise. At the expense of a larger factorial aerobic scope at an optimal temperature, as has been reported for species of salmon and trout, it is possible that the Murray cod has evolved a lower, but temperature-independent, factorial aerobic scope as an adaptation to the largely fluctuating and unpredictable thermal climate of southeastern Australia.

  5. Future changes over the Himalayas: Maximum and minimum temperature

    NASA Astrophysics Data System (ADS)

    Dimri, A. P.; Kumar, D.; Choudhary, A.; Maharana, P.

    2018-03-01

    An assessment of the projection of minimum and maximum air temperature over the Indian Himalayan region (IHR) from the COordinated Regional Climate Downscaling EXperiment- South Asia (hereafter, CORDEX-SA) regional climate model (RCM) experiments have been carried out under two different Representative Concentration Pathway (RCP) scenarios. The major aim of this study is to assess the probable future changes in the minimum and maximum climatology and its long-term trend under different RCPs along with the elevation dependent warming over the IHR. A number of statistical analysis such as changes in mean climatology, long-term spatial trend and probability distribution function are carried out to detect the signals of changes in climate. The study also tries to quantify the uncertainties associated with different model experiments and their ensemble in space, time and for different seasons. The model experiments and their ensemble show prominent cold bias over Himalayas for present climate. However, statistically significant higher warming rate (0.23-0.52 °C/decade) for both minimum and maximum air temperature (Tmin and Tmax) is observed for all the seasons under both RCPs. The rate of warming intensifies with the increase in the radiative forcing under a range of greenhouse gas scenarios starting from RCP4.5 to RCP8.5. In addition to this, a wide range of spatial variability and disagreements in the magnitude of trend between different models describes the uncertainty associated with the model projections and scenarios. The projected rate of increase of Tmin may destabilize the snow formation at the higher altitudes in the northern and western parts of Himalayan region, while rising trend of Tmax over southern flank may effectively melt more snow cover. Such combined effect of rising trend of Tmin and Tmax may pose a potential threat to the glacial deposits. The overall trend of Diurnal temperature range (DTR) portrays increasing trend across entire area with highest magnitude under RCP8.5. This higher rate of increase is imparted from the predominant rise of Tmax as compared to Tmin.

  6. Analysis of near-surface biases in ERA-Interim over the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Betts, Alan K.; Beljaars, Anton C. M.

    2017-09-01

    We quantify the biases in the diurnal cycle of temperature in ERA-Interim for both warm and cold season using hourly climate station data for four stations in Saskatchewan from 1979 to 2006. The warm season biases increase as opaque cloud cover decreases, and change substantially from April to October. The bias in mean temperature increases almost monotonically from small negative values in April to small positive values in the fall. Under clear skies, the bias in maximum temperature is of the order of -1°C in June and July, and -2°C in spring and fall; while the bias in minimum temperature increases almost monotonically from +1°C in spring to +2.5°C in October. The bias in the diurnal temperature range falls under clear skies from -2.5°C in spring to -5°C in fall. The cold season biases with surface snow have a different structure. The biases in maximum, mean and minimum temperature with a stable BL reach +1°C, +2.6°C and +3°C respectively in January under clear skies. The cold season bias in diurnal range increases from about -1.8°C in the fall to positive values in March. These diurnal biases in 2 m temperature and their seasonal trends are consistent with a high bias in both the diurnal and seasonal amplitude of the model ground heat flux, and a warm season daytime bias resulting from the model fixed leaf area index. Our results can be used as bias corrections in agricultural modeling that use these reanalysis data, and also as a framework for understanding model biases.

  7. Modeling of the thermal physical process and study on the reliability of linear energy density for selective laser melting

    NASA Astrophysics Data System (ADS)

    Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu

    2018-06-01

    A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.

  8. The Shifting Climate Portfolio of the Greater Yellowstone Area

    PubMed Central

    Sepulveda, Adam J.; Tercek, Michael T.; Al-Chokhachy, Robert; Ray, Andrew M.; Thoma, David P.; Hossack, Blake R.; Pederson, Gregory T.; Rodman, Ann W.; Olliff, Tom

    2015-01-01

    Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world’s most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948–2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA’s physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change. PMID:26674185

  9. Parallel transmission RF pulse design with strict temperature constraints.

    PubMed

    Deniz, Cem M; Carluccio, Giuseppe; Collins, Christopher

    2017-05-01

    RF safety in parallel transmission (pTx) is generally ensured by imposing specific absorption rate (SAR) limits during pTx RF pulse design. There is increasing interest in using temperature to ensure safety in MRI. In this work, we present a local temperature correlation matrix formalism and apply it to impose strict constraints on maximum absolute temperature in pTx RF pulse design for head and hip regions. Electromagnetic field simulations were performed on the head and hip of virtual body models. Temperature correlation matrices were calculated for four different exposure durations ranging between 6 and 24 min using simulated fields and body-specific constants. Parallel transmission RF pulses were designed using either SAR or temperature constraints, and compared with each other and unconstrained RF pulse design in terms of excitation fidelity and safety. The use of temperature correlation matrices resulted in better excitation fidelity compared with the use of SAR in parallel transmission RF pulse design (for the 6 min exposure period, 8.8% versus 21.0% for the head and 28.0% versus 32.2% for the hip region). As RF exposure duration increases (from 6 min to 24 min), the benefit of using temperature correlation matrices on RF pulse design diminishes. However, the safety of the subject is always guaranteed (the maximum temperature was equal to 39°C). This trend was observed in both head and hip regions, where the perfusion rates are very different. Copyright © 2017 John Wiley & Sons, Ltd.

  10. The shifting climate portfolio of the Greater Yellowstone Area

    USGS Publications Warehouse

    Sepulveda, Adam; Tercek, Mike T; Al-Chokhachy, Robert K.; Ray, Andrew; Thoma, David P.; Hossack, Blake R.; Pederson, Gregory T.; Rodman, Ann; Olliff, Tom

    2015-01-01

    Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world’s most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948–2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA’s physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change.

  11. Comparison of infrared canopy temperature in a rubber plantation and tropical rain forest

    NASA Astrophysics Data System (ADS)

    Song, Qing-Hai; Deng, Yun; Zhang, Yi-Ping; Deng, Xiao-Bao; Lin, You-Xing; Zhou, Li-Guo; Fei, Xue-Hai; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Gao, Jin-Bo

    2017-10-01

    Canopy temperature is a result of the canopy energy balance and is driven by climate conditions, plant architecture, and plant-controlled transpiration. Here, we evaluated canopy temperature in a rubber plantation (RP) and tropical rainforest (TR) in Xishuangbanna, southwestern China. An infrared temperature sensor was installed at each site to measure canopy temperature. In the dry season, the maximum differences (Tc - Ta) between canopy temperature (Tc) and air temperature (Ta) in the RP and TR were 2.6 and 0.1 K, respectively. In the rainy season, the maximum (Tc - Ta) values in the RP and TR were 1.0 and -1.1 K, respectively. There were consistent differences between the two forests, with the RP having higher (Tc - Ta) than the TR throughout the entire year. Infrared measurements of Tc can be used to calculate canopy stomatal conductance in both forests. The difference in (Tc - Ta) at three gc levels with increasing direct radiation in the RP was larger than in the TR, indicating that change in (Tc - Ta) in the RP was relatively sensitive to the degree of stomatal closure.

  12. The impact of summer rainfall on the temperature gradient along the United States-Mexico border

    NASA Technical Reports Server (NTRS)

    Balling, Robert C., Jr.

    1989-01-01

    The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.

  13. Low-temperature vibrational dynamics of fused silica and binary silicate glasses

    NASA Astrophysics Data System (ADS)

    Cai, Ling; Shi, Ying; Hrdina, Ken; Moore, Lisa; Wu, Jingshi; Daemen, Luke L.; Cheng, Yongqiang

    2018-02-01

    Inelastic neutron scattering was used to study the vibrational dynamics of fused silica and its mixed binary glasses that were doped with either TiO2 or K2O . The energy transfer was measured from zero to 180 meV where the so-called Boson peaks (BP) at low energy and molecular vibrations at high energy are included. Although most of the vibrational spectra at the high energy resemble those reported in earlier literature, a defect-mode-like peak is observed for the doped binary systems near 120 meV . At very low temperature, the BP intensity increases rapidly with temperature and then, at higher temperature, the peak intensity decreases. As a result, a maximum is observed in the temperature dependence of the BP intensity. This maximum was shown in all four samples, but the pure SiO2 sample shows the highest intensity peak and the lowest temperature for peak position. Broadband energy spectra reveal a shift of intensity from BP to the more localized modes at higher energy. Temperature evolution of BP and its relationship with heat conduction and thermal expansion are discussed.

  14. Strength of initially virgin martensites at - 196 °C after aging and tempering

    NASA Astrophysics Data System (ADS)

    Eldis, George T.; Cohen, Morris

    1983-06-01

    The compressive strength at -196°C of martensites in Fe-0.26 pct C-24 pct Ni, Fe-0.4 pct C-21 pct Ni, and Fe-0.4 pct C-18 pct Ni-3 pct Mo alloys, all with subzero M temperatures, has been determined in the virgin condition and after one hour at temperatures from -80 to +400 °C. The effects of ausforming (20 pct reduction in area of the austenite by swaging at room temperature prior to the martensitic transformation) were also investigated. For the unausformed martensites, aging at temperatures up to 0 °C results in relatively small increases in strength. Above 0 °C, the age hardening increment increases rapidly, reaching a maximum at 100 °C. Above 100 °C, the strength decreases continuously with increasing tempering temperature except for the molybdenum-containing alloy, which exhibits secondary hardening on tempering at 400 °C. For the ausformed martensites, the response to aging at subzero temperatures is greater than for unausformed material. Strength again passes through a maximum on aging at 100 °C. However, on tempering just above 100 °C, the ausformed materials show a slower rate of softening than the unausformed martensites. The strengthening produced by the ausforming treatment is largest for the Fe-0.4 pct C-18 pct Ni-3 pct Mo alloy, but there is no evidence of carbide precipitation in the deformed austenite to a°Count for this effect of molybdenum.

  15. Dynamics of upper mantle rocks decompression melting above hot spots under continental plates

    NASA Astrophysics Data System (ADS)

    Perepechko, Yury; Sorokin, Konstantin; Sharapov, Victor

    2014-05-01

    Numeric 2D simulation of the decompression melting above the hot spots (HS) was accomplished under the following conditions: initial temperature within crust mantle section was postulated; thickness of the metasomatized lithospheric mantle is determined by the mantle rheology and position of upper asthenosphere boundary; upper and lower boundaries were postulated to be not permeable and the condition for adhesion and the distribution of temperature (1400-2050°C); lateral boundaries imitated infinity of layer. Sizes and distribution of lateral points, their symmetry, and maximum temperature varied between the thermodynamic condition for existences of perovskite - majorite transition and its excess above transition temperature. Problem was solved numerically a cell-vertex finite volume method for thermo hydrodynamic problems. For increasing convergence of iterative process the method of lower relaxation with different value of relaxation parameter for each equation was used. The method of through calculation was used for the increase in the computing rate for the two-layered upper mantle - lithosphere system. Calculated region was selected as 700 x (2100-4900) km. The time step for the study of the asthenosphere dynamics composed 0.15-0.65 Ma. The following factors controlling the sizes and melting degree of the convective upper mantle, are shown: a) the initial temperature distribution along the section of upper mantleb) sizes and the symmetry of HS, c) temperature excess within the HS above the temperature on the upper and lower mantle border TB=1500-2000oC with 5-15% deviation but not exceed 2350oC. It is found, that appearance of decompression melting with HS presence initiate primitive mantle melting at TB > of 1600oC. Initial upper mantle heating influence on asthenolens dimensions with a constant HS size is controlled mainly by decompression melting degree. Thus, with lateral sizes of HS = 400 km the decompression melting appears at TB > 1600oC and HS temperature (THS) > 1900oC asthenolens size ~700 km. When THS = of 2000oC the maximum melting degree of the primitive mantle is near 40%. An increase in the TB > 1900oC the maximum degree of melting could rich 100% with the same size of decompression melting zone (700 km). We examined decompression melting above the HS having LHS = 100 km - 780 km at a TB 1850- 2100oC with the thickness of lithosphere = 100 km.It is shown that asthenolens size (Lln) does not change substantially: Lln=700 km at LHS = of 100 km; Lln= 800 km at LHS = of 780 km. In presence of asymmetry of large HS the region of advection is developed above the HS maximum with the formation of asymmetrical cell. Influence of lithospheric plate thicknesses on appearance and evolution of asthenolens above the HS were investigated for the model stepped profile for the TB ≤ of 1750oS with Lhs = 100km and maximum of THS =2350oC. With an increase of TB the Lln difference beneath lithospheric steps is leveled with retention of a certain difference to melting degrees and time of the melting appearance a top of the HS. RFBR grant 12-05-00625.

  16. The effect of future reduction in aerosol emissions on climate extremes in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Lin, Lei; Yang, Meilin; Xu, Yangyang

    2016-11-01

    This study investigates the effect of reduced aerosol emissions on projected temperature and precipitation extremes in China during 2031-2050 and 2081-2100 relative to present-day conditions using the daily data output from the Community Earth System Model ensemble simulations under the Representative Concentration Pathway (RCP) 8.5 with an applied aerosol reduction and RCP8.5 with fixed 2005 aerosol emissions (RCP8.5_FixA) scenarios. The reduced aerosol emissions of RCP8.5 magnify the warming effect due to greenhouse gases (GHG) and lead to significant increases in temperature extremes, such as the maximum of daily maximum temperature (TXx), minimum of daily minimum temperature (TNn), and tropical nights (TR), and precipitation extremes, such as the maximum 5-day precipitation amount, number of heavy precipitation days, and annual total precipitation from days ˃95th percentile, in China. The projected TXx, TNn, and TR averaged over China increase by 1.2 ± 0.2 °C (4.4 ± 0.2 °C), 1.3 ± 0.2 °C (4.8 ± 0.2 °C), and 8.2 ± 1.2 (30.9 ± 1.4) days, respectively, during 2031-2050 (2081-2100) under the RCP8.5_FixA scenario, whereas the corresponding values are 1.6 ± 0.1 °C (5.3 ± 0.2 °C), 1.8 ± 0.2 °C (5.6 ± 0.2 °C), and 11.9 ± 0.9 (38.4 ± 1.0) days under the RCP8.5 scenario. Nationally averaged increases in all of those extreme precipitation indices above due to the aerosol reduction account for more than 30 % of the extreme precipitation increases under the RCP8.5 scenario. Moreover, the aerosol reduction leads to decreases in frost days and consecutive dry days averaged over China. There are great regional differences in changes of climate extremes caused by the aerosol reduction. When normalized by global mean surface temperature changes, aerosols have larger effects on temperature and precipitation extremes over China than GHG.

  17. Synthesis and characterization of nickel oxide particulate annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Sharma, Khem Raj; Thakur, Shilpa; Negi, N. S.

    2018-04-01

    Nickel oxide has been synthesized by solution combustion technique. The nickel oxide ceramic was annealed at 600°C and 1000°C for 2 hours. Structural, electrical, dielectric and magnetic properties were analyzed which are strongly dependent upon the synthesis method. Structural properties were examined by X-ray diffractometer (XRD), which confirmed the purity and cubic phase of nickel oxide. XRD data reveals the increase in crystallite size and decrease in full width half maximum (FWHM) as the annealing temperature increases. Electrical conductivity is found to increase from 10-6 to 10-5 (Ω-1cm-1) after annealing. Dielectric constant is observed to increase from 26 to 175 when the annealing temperature is increased from 600°C to 1000°C. Low value of coercive field is found which shows weak ferromagnetic behavior of NiO. It is observed that all the properties of NiO particulate improve with increasing annealing temperature.

  18. Artificial Neural Network with Regular Graph for Maximum Air Temperature Forecasting:. the Effect of Decrease in Nodes Degree on Learning

    NASA Astrophysics Data System (ADS)

    Ghaderi, A. H.; Darooneh, A. H.

    The behavior of nonlinear systems can be analyzed by artificial neural networks. Air temperature change is one example of the nonlinear systems. In this work, a new neural network method is proposed for forecasting maximum air temperature in two cities. In this method, the regular graph concept is used to construct some partially connected neural networks that have regular structures. The learning results of fully connected ANN and networks with proposed method are compared. In some case, the proposed method has the better result than conventional ANN. After specifying the best network, the effect of input pattern numbers on the prediction is studied and the results show that the increase of input patterns has a direct effect on the prediction accuracy.

  19. Climate models predict increasing temperature variability in poor countries.

    PubMed

    Bathiany, Sebastian; Dakos, Vasilis; Scheffer, Marten; Lenton, Timothy M

    2018-05-01

    Extreme events such as heat waves are among the most challenging aspects of climate change for societies. We show that climate models consistently project increases in temperature variability in tropical countries over the coming decades, with the Amazon as a particular hotspot of concern. During the season with maximum insolation, temperature variability increases by ~15% per degree of global warming in Amazonia and Southern Africa and by up to 10%°C -1 in the Sahel, India, and Southeast Asia. Mechanisms include drying soils and shifts in atmospheric structure. Outside the tropics, temperature variability is projected to decrease on average because of a reduced meridional temperature gradient and sea-ice loss. The countries that have contributed least to climate change, and are most vulnerable to extreme events, are projected to experience the strongest increase in variability. These changes would therefore amplify the inequality associated with the impacts of a changing climate.

  20. Climate models predict increasing temperature variability in poor countries

    PubMed Central

    Dakos, Vasilis; Scheffer, Marten

    2018-01-01

    Extreme events such as heat waves are among the most challenging aspects of climate change for societies. We show that climate models consistently project increases in temperature variability in tropical countries over the coming decades, with the Amazon as a particular hotspot of concern. During the season with maximum insolation, temperature variability increases by ~15% per degree of global warming in Amazonia and Southern Africa and by up to 10%°C−1 in the Sahel, India, and Southeast Asia. Mechanisms include drying soils and shifts in atmospheric structure. Outside the tropics, temperature variability is projected to decrease on average because of a reduced meridional temperature gradient and sea-ice loss. The countries that have contributed least to climate change, and are most vulnerable to extreme events, are projected to experience the strongest increase in variability. These changes would therefore amplify the inequality associated with the impacts of a changing climate. PMID:29732409

  1. Effect of Quenching Process on the Microstructure and Hardness of High-Carbon Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The microstructure and hardness of high-carbon martensitic stainless steel (HMSS) were investigated using thermal expansion analyzer, Thermo-calc, scanning electron microscope, x-ray diffraction, and Ultra-high temperature confocal microscope. The results indicate that the experimental steel should be austenitized in the temperature range of 1025-1075 °C, which can give a maximum hardness of 62 HRc with the microstructure consisting of martensite, retained austenite, and some undissolved carbides. With increasing austenitizing temperature, the amount of retained austenite increases, while the volume fraction of carbides increases first and then decreases. The starting temperature and finish temperature of martensite formation decrease with increasing cooling rates. Air-quenched samples can obtain less retained austenite, more compact microstructure, and higher hardness, compared with that of oil-quenched samples. For HMSS, the martensitic transformation takes place at some isolated areas with a slow nucleation rate.

  2. Beeswax as phase change material to improve solar panel’s performance

    NASA Astrophysics Data System (ADS)

    Thaib, R.; Rizal, S.; Riza, M.; Mahlia, T. M. I.; Rizal, T. A.

    2018-02-01

    One of the main obstacles faced during the operation of photovoltaic (PV) panels was overheating due to excessive solar radiation and high ambient temperatures. In this research, investigates the use of beeswax phase change materials (PCM) to maintain the temperature of the panels close to ambient. Solar panels used in this study has 839 mm length, 537 mm wide, and 50 mm thick, with maximum output power at 50 W. During the study, there were two solar panels was evaluated, one without phase change material while the other one was using beeswax phase change material. Solar panels were mounted at 15° slope. Variables observed was the temperature of solar panel’s surface, output voltage and current that produced by PV panels, wind speed around solar panels, and solar radiation. The observation was started at 07:00 am and ended at 06:00 pm. The research shows that maximum temperature of solar panels surface without phase change material is ranging between 46-49 °C, and electrical efficiency is about 7.2-8.8%. Meanwhile, for solar panels with beeswax phase change material, the maximum temperature solar panels surface is relatively low ranging between 33-34 °C, and its electrical efficiency seems to increase about 9.1-9.3%.

  3. Thermodynamics Analysis of Binary Plant Generating Power from Low-Temperature Geothermal Resource

    NASA Astrophysics Data System (ADS)

    Maksuwan, A.

    2018-05-01

    The purpose in this research was to predict tendency of increase Carnot efficiency of the binary plant generating power from low-temperature geothermal resource. Low-temperature geothermal resources or less, are usually exploited by means of binary-type energy conversion systems. The maximum efficiency is analyzed for electricity production of the binary plant generating power from low-temperature geothermal resource becomes important. By using model of the heat exchanger equivalent to a power plant together with the calculation of the combined heat and power (CHP) generation. The CHP was solved in detail with appropriate boundary originating an idea from the effect of temperature of source fluid inlet-outlet and cooling fluid supply. The Carnot efficiency from the CHP calculation was compared between condition of increase temperature of source fluid inlet-outlet and decrease temperature of cooling fluid supply. Result in this research show that the Carnot efficiency for binary plant generating power from low-temperature geothermal resource has tendency increase by decrease temperature of cooling fluid supply.

  4. Innovative trend analysis of annual and seasonal air temperature and rainfall in the Yangtze River Basin, China during 1960-2015

    NASA Astrophysics Data System (ADS)

    Cui, Lifang; Wang, Lunche; Lai, Zhongping; Tian, Qing; Liu, Wen; Li, Jun

    2017-11-01

    The variation characteristics of air temperature and precipitation in the Yangtze River Basin (YRB), China during 1960-2015 were analysed using a linear regression (LR) analysis, a Mann-Kendall (MK) test with Sen's slope estimator and Sen's innovative trend analysis (ITA). The results showed that the annual maximum, minimum and mean temperature significantly increased at the rate of 0.15°C/10yr, 0.23°C/10yr and 0.19°C/10yr, respectively, over the whole study area during 1960-2015. The warming magnitudes for the above variables during 1980-2015 were much higher than those during 1960-2015:0.38°C/10yr, 0.35°C/10yr and 0.36°C/10yr, respectively. The seasonal maximum, minimum and mean temperature significantly increased in the spring, autumn and winter seasons during 1960-2015. Although the summer temperatures also increased at some extent, only the minimum temperature showed a significant increasing trend. Meanwhile, the highest rate of increase of seasonal mean temperature occurred in winter (0.24°C/10yr) during 1960-2015 and spring (0.50°C/10yr) during 1980-2015, which indicated that the significant warming trend for the whole YRB could be attributed to the remarkable temperature increases in winter and spring months. However, both the annual and seasonal warming magnitudes showed large regional differences, and a higher warming rate was detected in the eastern YRB and the western source region of the Yangtze River on the Qinghai-Tibetan Plateau (QTP). Additionally, annual precipitation increased by approximately 12.02 mm/10yr during 1960-2015 but decreased at the rate of 19.63 mm/10yr during 1980-2015. There were decreasing trends for precipitation in all four seasons since 1980 in the YRB, and a significant increasing trend was only detected in summer since 1960 (12.37 mm/10yr). Overall, a warming-wetting trend was detected in the south-eastern and north-western YRB, while there was a warming-drying trend in middle regions.

  5. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Jansen, Malte F.

    2017-01-01

    Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  6. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    PubMed Central

    Jansen, Malte F.

    2017-01-01

    Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5–10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage. PMID:27994158

  7. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    PubMed

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, M.A.; Kueppers, L.M.; Sloan, L.C.

    In the western United States, more than 30,500 square miles has been converted to irrigated agriculture and urban areas. This study compares the climate responses of four regional climate models (RCMs) to these past land-use changes. The RCMs used two contrasting land cover distributions: potential natural vegetation, and modern land cover that includes agriculture and urban areas. Three of the RCMs represented irrigation by supplementing soil moisture, producing large decreases in August mean (-2.5 F to -5.6 F) and maximum (-5.2 F to -10.1 F) 2-meter temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture alsomore » resulted in large increases in relative humidity (9 percent 36 percent absolute change). Only one of the RCMs produced increases in summer minimum temperature. Converting natural vegetation to urban land cover produced modest but discernable climate effects in all models, with the magnitude of the effects dependent upon the preexisting vegetation type. Overall, the RCM results indicate that land use change impacts are most pronounced during the summer months, when surface heating is strongest and differences in surface moisture between irrigated land and natural vegetation are largest. The irrigation effect on summer maximum temperatures is comparable in magnitude (but opposite in sign) to predicted future temperature change due to increasing greenhouse gas concentrations.« less

  9. Modification of the acid/base properties of γ-Al2O3 by oxide additives: An ethanol TPD investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Lee, Jaekyoung; Szanyi, Janos

    2016-02-26

    The electronic properties of oxide-modified γ Al2O3 surfaces were investigated by using ethanol TPD. Ethanol TPD showed remarkable sensitivity toward the surface structures and electronic properties of the aluminas modified by various transition metal oxides. Maximum desorption rates for the primary product of ethanol adsorption, ethylene, were observed at 225 °C on non-modified γ-Al2O3. Desorption temperature of ethanol over a γ Al2O3 samples with different amounts of BaO linearly increased with increasing loading. On the contrary, ethanol desorption temperature on Pt modified γ-Al2O3 after calcined at 500 oC linearly decreased with increasing Pt loading. These results clearly suggested that themore » acid/base properties of the γ-Al2O3 surface can be strongly affected by ad-atoms. For confirming these arguments, we performed ethanol TPD experiments on various oxide modified γ-Al2O3 and normalized the maximum desorption temperatures based on the same number of oxide dopants. These normalized ethanol desorption temperatures linearly correlate with the electronegativity of the metal atom in the oxide. This linear relationship clearly demonstrates that the acidic properties of alumina surfaces can be systematically changed by ad-atoms.« less

  10. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)

    1996-01-01

    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  11. Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA

    USGS Publications Warehouse

    Burns, Douglas A.; Klaus, Julian; McHale, Michael R.

    2007-01-01

    Climate scientists have concluded that the earth’s surface air temperature warmed by 0.6 °C during the 20th century, and that warming induced by increasing concentrations of greenhouse gases is likely to continue in the 21st century, accompanied by changes in the hydrologic cycle. Climate change has important implications in the Catskill region of southeastern New York State, because the region is a source of water supply for New York City. We used the non-parametric Mann–Kendall test to evaluate annual, monthly, and multi-month trends in air temperature, precipitation amount, stream runoff, and potential evapotranspiration (PET) in the region during 1952–2005 based on data from 9 temperature sites, 12 precipitation sites, and 8 stream gages. A general pattern of warming temperatures and increased precipitation, runoff, and PET is evident in the region. Regional annual mean air temperature increased significantly by 0.6 °C per 50 years during the period; the greatest increases and largest number of significant upward trends were in daily minimum air temperature. Daily maximum air temperature showed the greatest increase during February through April, whereas minimum air temperature showed the greatest increase during May through September. Regional mean precipitation increased significantly by 136 mm per 50 years, nearly double that of the regional mean increase in runoff, which was not significant. Regional mean PET increased significantly by 19 mm per 50 years, about one-seventh that of the increase in precipitation amount, and broadly consistent with increased runoff during 1952–2005, despite the lack of significance in the mean regional runoff trend. Peak snowmelt as approximated by the winter–spring center of volume of stream runoff generally shifted from early April at the beginning of the record to late March at the end of the record, consistent with a decreasing trend in April runoff and an increasing trend in maximum March air temperature. This change indicates an increased supply of water to reservoirs earlier in the year. Additionally, the supply of water to reservoirs at the beginning of winter is greater as indicated by the timing of the greatest increases in precipitation and runoff—both occurred during summer and fall. The future balance between changes in air temperature and changes in the timing and amount of precipitation in the region will have important implications for the available water supply in the region.

  12. Performance of fuel system at different diesel temperature

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyong; Li, Xiaolu; Sun, Zai

    2010-08-01

    This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.

  13. Method and apparatus for determining peak temperature along an optical fiber

    DOEpatents

    Fox, R.J.

    1982-07-29

    The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light fraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.

  14. Method and apparatus for determining peak temperature along an optical fiber

    DOEpatents

    Fox, Richard J.

    1985-01-01

    The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light refraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.

  15. Relationship between input power and power density of SMA spring

    NASA Astrophysics Data System (ADS)

    Park, Cheol Hoon; Ham, Sang Yong; Son, Young Su

    2016-04-01

    The important required characteristics of an artificial muscle for a human arm-like manipulator are high strain and high power density. From this viewpoint, an SMA (shape memory alloy) spring is a good candidate for the actuator of a robotic manipulator that utilizes an artificial muscle. In this study, the maximum power density of an SMA spring was evaluated with respect to the input power. The spring samples were fabricated from SMA wires of different diameters ranging between 0.1 and 0.3 mm. For each diameter, two types of wires with different transition temperatures were used. The relationship between the transition temperature and maximum power density was also evaluated. Each SMA spring was stretched downward by an attached weight and the temperature was increased through the application of an electric current. The displacement, velocity, and temperature of the SMA spring were measured by laser displacement sensors and a thermocouple. Based on the experimental data, it was determined that the maximum power densities of the different SMA springs ranged between 1,300 and 5,500 W/kg. This confirmed the applicability of an SMA spring to human arm-like robotic manipulators. The results of this study can be used as reference for design.

  16. Structural Design Considerations for Tubular Power Tower Receivers Operating at 650 Degrees C: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, T. W.; Wagner, M. J.; Gray, A. K.

    Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditionalmore » boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.« less

  17. Regimes of an atmospheric pressure nanosecond repetitively pulsed discharge for methane partial oxidation

    NASA Astrophysics Data System (ADS)

    Maqueo, P. D. G.; Maier, M.; Evans, M. D. G.; Coulombe, S.; Bergthorson, J. M.

    2018-04-01

    The operation of a nanosecond repetitively pulsed discharge for partial oxidation of CH4 is characterized at atmospheric pressure and room temperature. Two regimes are observed: diffuse and filamentary. The first is a low power regime, characterized by low rotational temperatures around 400 K. The second is much more energetic with rotational temperatures close to 600 K. Both have vibrational temperatures of at least 10 times their rotational temperatures. The average electron number density was determined to be 8.9×1015 and 4.0×1017 cm-3, respectively, showing an increase in the ionization fraction in the more powerful filamentary regime. Results of CH4 conversion to H2, CO, CO2 and C2H6 are presented for the filamentary regime, while the diffuse regime shows no measurable conversion ability. As expected, oxidative mixtures show higher conversion ability than pure CH4. A maximum conversion efficiency of 26.3% and a maximum energy efficiency of 19.7% were reached for the oxidative mixtures.

  18. Prediction based proactive thermal virtual machine scheduling in green clouds.

    PubMed

    Kinger, Supriya; Kumar, Rajesh; Sharma, Anju

    2014-01-01

    Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated.

  19. Performance calculations for 200-1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.

    1981-01-01

    The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.

  20. Atlantic salmon show capability for cardiac acclimation to warm temperatures.

    PubMed

    Anttila, Katja; Couturier, Christine S; Overli, Oyvind; Johnsen, Arild; Marthinsen, Gunnhild; Nilsson, Göran E; Farrell, Anthony P

    2014-06-24

    Increases in environmental temperature predicted to result from global warming have direct effects on performance of ectotherms. Moreover, cardiac function has been observed to limit the tolerance to high temperatures. Here we show that two wild populations of Atlantic salmon originating from northern and southern extremes of its European distribution have strikingly similar cardiac responses to acute warming when acclimated to common temperatures, despite different local environments. Although cardiac collapse starts at 21-23 °C with a maximum heart rate of ~150 beats per min (bpm) for 12 °C-acclimated fish, acclimation to 20 °C considerably raises this temperature (27.5 °C) and maximum heart rate (~200 bpm). Only minor population differences exist and these are consistent with the warmer habitat of the southern population. We demonstrate that the considerable cardiac plasticity discovered for Atlantic salmon is largely independent of natural habitat, and we propose that observed cardiac plasticity may aid salmon to cope with global warming.

  1. Investigation of Changes in Extreme Temperature and Humidity Over China Through a Dynamical Downscaling Approach

    NASA Astrophysics Data System (ADS)

    Zhu, Jinxin; Huang, Gordon; Wang, Xiuquan; Cheng, Guanhui

    2017-11-01

    Impacts of climate change relating to public health are often determined by multiple climate variables. The health-related metrics combining high-temperature and relative humidity are most concerned. Temperatures, relative humidity and relationship among them are investigated here for a comprehensive assessment of climate change impacts over China. A projection of combined temperatures and humidity through the PRECIS model is addressed. The PRECIS model's skill in reproducing the historical climate over China was first gauged through validating its historical simulation with the observation data set in terms of the two contributing variables. With good results of validation, a plausible range of combined temperatures and relative humidity were generated under RCPs. The results suggested that the annual mean temperature of China will increase up to 6°C at the end of 21st century. Opposite to the significantly change in the temperature, the maximum magnitude of changes in relative humidity is only 8% from the value in the baseline period. The dew point temperature is projected to be 14.9°C (within the comfortable interval) over the whole nation under high radiative forcing scenario at the end of this century. Therefore, the combination effects of high temperatures and relative humidity are substantially smaller than generally anticipated for China. Even though the impact-relevant metric like the dew point temperature is not projected as bad as the generally anticipated, we found that the frequency of high-temperature extremes increases up to 40% and the duration increases up to 150% in China. China is still expected to have more number of extremely hot days, more frequent high-temperature extremes, and longer duration of warm spell than before. Regionally, South China has the smallest changes in the mean, maximum and minimum temperatures while the largest increases in all five high-temperature indices. Consequently, the climate over South China for two future periods will be changing more drastically than the baseline period. Extra cautions need to be given to South China in the future.

  2. [Thermal tolerance, diel variation of body temperature, and thermal dependence of locomotor performance of hatchling soft-shelled turtles, Trionyx sinensis].

    PubMed

    Sun, Pingyue; Xu, Xiaoyin; Chen, Huili; Ji, Xiang

    2002-09-01

    The thermal tolerance, body temperature, and influence of temperature on locomotor performance of hatchling soft-shelled turtles (Trionyx sinensis) were studied under dry and wet conditions, and the selected body temperature of hatchlings was 28.0 and 30.3 degrees C, respectively. Under wet condition, the critical thermal maximum and minimum averaged 40.9 and 7.8 degrees C, respectively. In the environments without thermal gradients, the diel variation of body temperature was highly consistent with the variation of both air and water temperatures, and the body temperature was more directly affected by water temperature than by air temperature, which implied that the physiological thermoregulation of hatchling T. sinensis was very weak. In the environments with thermal gradients, hatchling turtles could maintain relatively high and constant body temperatures, primarily through behavioral thermoregulation. The locomotor performance of hatchling turtles was highly dependent on their body temperature. Within a certain range, the locomotor performance increased with increasing body temperature. In our study, the optimal body temperature for locomotor performance was 31.5 degrees C, under which, the maximum continuous running distance, running distance per minute, and number of stops per minute averaged 1.87 m, 4.92 m.min-1, and 6.2 times.min-1, respectively. The correspondent values at 33.0 degrees C averaged 1.30 m, 4.28 m.min-1, and 7.7 times.min-1, respectively, which indicated that the locomotor performance of hatchling turtles was impaired at 33.0 degrees C. Therefore, extremely high body temperatures might have an adverse effect on locomotor performance of hatchling turtles.

  3. Photosynthesis of young apple trees in response to low sink demand under different air temperatures.

    PubMed

    Fan, Pei G; Li, Lian S; Duan, Wei; Li, Wei D; Li, Shao H

    2010-03-01

    Gas exchange, chlorophyll fluorescence, photosynthetic end products and related enzymes in source leaves in response to low sink demand after girdling to remove the root sink were assessed in young apple trees (Malus pumila) grown in two greenhouses with different air temperatures for 5 days. Compared with the non-girdled control in the low-temperature greenhouse (diurnal maximum air temperature <32 degrees C), low sink demand resulted in lower net photosynthetic rate (P(n)), stomatal conductance (g(s)) and transpiration rate (E) but higher leaf temperature on Day 5, while in the high-temperature greenhouse (diurnal maximum air temperature >36 degrees C), P(n), g(s) and E declined from Day 3 onwards. Moreover, gas exchange responded more to low sink demand in the high-temperature greenhouse than in the low-temperature greenhouse. Decreased P(n) at low sink demand was accompanied by lower intercellular CO(2) concentrations in the low-temperature greenhouse. However, decreased maximal photochemical efficiency, potential activity, efficiency of excitation capture, actual efficiency and photochemical quenching, with increased minimal fluorescence and non-photochemical quenching of photosystem II (PSII), were observed in low sink demand leaves only in the high-temperature greenhouse. In addition, low sink demand increased leaf starch and soluble carbohydrate content in both greenhouses but did not result in lower activity of enzymes involved in metabolism. Thus, decreased P(n) under low sink demand was independent of a direct effect of end-product feedback but rather depended on a high temperature threshold. The lower P(n) was likely due to stomatal limitation in the low-temperature greenhouse, but mainly due to non-stomatal limitation in the high-temperature greenhouse.

  4. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China

    PubMed Central

    Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981–2014 and detailed observed data of spring wheat from 1981–2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological factors that affected in the eastern and western Inner Mongolia. Furthermore, the effect of the average minimum temperature on yield was greater than that of the average maximum temperature. The increase of temperature in the western and middle regions would reduce the spring wheat yield, while in the eastern region due to the rising temperature, the spring wheat yield increased. The increase of solar radiation in the eastern and central regions would increase the yield of spring wheat. The increased air relative humidity would make the western spring wheat yield increased and the eastern spring wheat yield decreased. Finally, the models describing combined effects of these dominant climatic factors on the maturity and yield in different regions of Inner Mongolia were used to establish geographical differences. Our findings have important implications for improving climate change impact studies and for local agricultural production to cope with ongoing climate change. PMID:29099842

  5. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    PubMed

    Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981-2014 and detailed observed data of spring wheat from 1981-2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological factors that affected in the eastern and western Inner Mongolia. Furthermore, the effect of the average minimum temperature on yield was greater than that of the average maximum temperature. The increase of temperature in the western and middle regions would reduce the spring wheat yield, while in the eastern region due to the rising temperature, the spring wheat yield increased. The increase of solar radiation in the eastern and central regions would increase the yield of spring wheat. The increased air relative humidity would make the western spring wheat yield increased and the eastern spring wheat yield decreased. Finally, the models describing combined effects of these dominant climatic factors on the maturity and yield in different regions of Inner Mongolia were used to establish geographical differences. Our findings have important implications for improving climate change impact studies and for local agricultural production to cope with ongoing climate change.

  6. Utilizing Crochet to Showcase Temporal Patterns in Temperature Records from One Location and to Spark a Climate Conversation

    NASA Astrophysics Data System (ADS)

    Guertin, L. A.

    2017-12-01

    Scientists that seek to show temperature changes over time will typically select a line graph as the tool for data communication. However, one non-traditional way to showcase variations in data can be through an artistic visualization created with yarn. For several years, amateur and professional artisans have been using needlework (crocheting/knitting) to represent weather/climate records in scarves and blankets, sharing their work in online communities. Since the Sky Scarf project in 2011, a temporal record of data represented in yarn can include precipitation/snowfall to the air quality index. Here is an example of how crochet is being utilized to show maximum air temperature records over time for one location. Maximum daily temperature values have been collected for January through April in Philadelphia in fifty-year intervals (1917, 1967, 2017). This four-month interval was selected to match with the location and timing of a university's spring semester, as the target audience for this particular visualization is undergraduate students. Instead of trying to read differences in temperature across line graphs plotted for each year, three mini-temperature tapestries have been crocheted. A temperature scale has been developed with rainbow colors of yarn, where the purple and blue represent the coldest temperatures, and the orange and red represent the warmest temperatures. By using the same yarn temperature scale across the three mini-tapestries, the increase in daily maximum temperature in Philadelphia for a set time period can quickly and easily be observed. This form of science art, when presented to students, generates a series of questions, stories and predictions of a scientific and personal nature that are not typically part of a climate science instructional unit.

  7. Mechanical Properties and Plasma Erosion Resistance of ZrO2p(3Y)/BN-SiO2 Ceramic Composites under Different Sintering Temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Duan1, Xiaoming; Jia, Dechang; Yang, Zhihua; Meng, Qingchang; Yu, Yang; Yu, Daren; Ding, Yongjie

    2011-10-01

    ZrO2p(3Y)/BN-SiO2 ceramic composites were hot pressed under different sintering temperature. The ceramic composites were composed by BN, m-ZrO2, t-ZrO2 and SiO2. The relative density, bending strength, elastic modulus and fracture toughness increase with the sintering temperature increasing, the maximum value of which at the sintering temperature of 1800°C are 97.5%, 229.9MPa, 60.8GPa and 3.55MPam1/2, respectively. The erosion resistance ability of ZrO2p(3Y)/BN-SiO2 ceramic composites rise gradually with the sintering temperature increasing, and the erosion rate of the ceramic composite sintered at 1800°C is 8.03×10-3mm/h.

  8. RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus tissue temperature limits.

    PubMed

    Fiedler, Thomas M; Ladd, Mark E; Bitz, Andreas K

    2017-01-01

    The purpose of this work was to perform an RF safety evaluation for a bilateral four-channel transmit/receive breast coil and to determine the maximum permissible input power for which RF exposure of the subject stays within recommended limits. The safety evaluation was done based on SAR as well as on temperature simulations. In comparison to SAR, temperature is more directly correlated with tissue damage, which allows a more precise safety assessment. The temperature simulations were performed by applying three different blood perfusion models as well as two different ambient temperatures. The goal was to evaluate whether the SAR and temperature distributions correlate inside the human body and whether SAR or temperature is more conservative with respect to the limits specified by the IEC. A simulation model was constructed including coil housing and MR environment. Lumped elements and feed networks were modeled by a network co-simulation. The model was validated by comparison of S-parameters and B 1 + maps obtained in an anatomical phantom. Three numerical body models were generated based on 3 Tesla MRI images to conform to the coil housing. SAR calculations were performed and the maximal permissible input power was calculated based on IEC guidelines. Temperature simulations were performed based on the Pennes bioheat equation with the power absorption from the RF simulations as heat source. The blood perfusion was modeled as constant to reflect impaired patients as well as with a linear and exponential temperature-dependent increase to reflect two possible models for healthy subjects. Two ambient temperatures were considered to account for cooling effects from the environment. The simulation model was validated with a mean deviation of 3% between measurement and simulation results. The highest 10 g-averaged SAR was found in lung and muscle tissue on the right side of the upper torso. The maximum permissible input power was calculated to be 17 W. The temperature simulations showed that temperature maximums do not correlate well with the position of the SAR maximums in all considered cases. The body models with an exponential blood perfusion increase did not exceed the temperature limit when an RF power according to the SAR limit was applied; in this case, a higher input power level by up to 73% would be allowed. The models with a constant or linear perfusion exceeded the limit for the local temperature when the local SAR limit was adhered to and would require a decrease in the input power level by up to 62%. The maximum permissible input power was determined based on SAR simulations with three newly generated body models and compared with results from temperature simulations. While SAR calculations are state-of-the-art and well defined as they are based on more or less well-known material parameters, temperature simulations depend strongly on additional material, environmental and physiological parameters. The simulations demonstrated that more consideration needs be made by the MR community in defining the parameters for temperature simulations in order to apply temperature limits instead of SAR limits in the context of MR RF safety evaluations. © 2016 American Association of Physicists in Medicine.

  9. Physiological responses to nitrogen and sulphur addition and raised temperature in Sphagnum balticum.

    PubMed

    Granath, Gustaf; Wiedermann, Magdalena M; Strengbom, Joachim

    2009-09-01

    Sphagnum, the main genus which forms boreal peat, is strongly affected by N and S deposition and raised temperature, but the physiological mechanisms behind the responses are largely unknown. We measured maximum photosynthetic rate (NP(max)), maximum efficiency of photosystem II [variable fluorescence (F (v))/maximum fluorescence yield (F (m))] and concentrations of N, C, chlorophyll and carotenoids as responses to N and S addition and increased temperature in Sphagnum balticum (a widespread species in the northern peatlands) in a 12-year factorial experiment. NP(max) did not differ between control (0.2 g N m(-2) year(-1)) and high N (3.0 g N m(-2) year(-1)), but was higher in the mid N treatment (1.5 g N m(-2) year(-1)). N, C, carotenoids and chlorophyll concentration increased in shoot apices after N addition. F (v)/F (m) did not differ between N treatments. Increased temperature (+3.6 degrees C) had a small negative effect on N concentration, but had no significant effect on NP(max) or F (v)/F (m). Addition of 2 g S m(-2) year(-1) showed a weak negative effect on NP(max) and F (v)/F (m). Our results suggest a unimodal response of NP(max) to N addition and tissue N concentration in S. balticum, with an optimum N concentration for photosynthetic rate of ~13 mg N g(-1). In conclusion, high S deposition may reduce photosynthetic capacity in Sphagnum, but the negative effects may be relaxed under high N availability. We suggest that previously reported negative effects on Sphagnum productivity under high N deposition are not related to negative effects on the photosynthetic apparatus, but differences in optimum N concentration among Sphagnum species may affect their competitive ability under different N deposition regimes.

  10. Manifestations of Surface States in the Longitudinal Magnetoresistance of an Array of Bi Nanowires

    NASA Astrophysics Data System (ADS)

    Latyshev, Yu. I.; Frolov, A. V.; Volkov, V. A.; Wade, T.; Prudkoglyad, V. A.; Orlov, A. P.; Pudalov, V. M.; Konczykowski, M.

    2018-04-01

    The longitudinal magnetoresistance of the array of parallel-oriented bismuth nanowires each 100 nm in diameter grown by electrochemical deposition in nanopores of an Al2O3 membrane has been studied in magnetic fields up to 14 T and at temperatures down to 0.3 K. The resistance increases with the field and reaches a broad maximum in fields about 10 T. An anomalous increase in the resistance in weak fields is qualitatively consistent with the suppression of the antilocalization correction to the resistance, and the maximum is qualitatively associated with the classical size effect. Near the maximum at temperatures below 0.8 K, manifestations of reproducible magneto-oscillations of the resistance, which are periodic in field, have been detected. The period of these oscillations is close to a value corresponding to the passage of the flux quantum hc/ e through the section of a nanowire. The Fourier analysis also confirms that the oscillations are periodic. This result is similar to the manifestation the Aharonov-Bohm effect caused by conducting surface states of Dirac fermions occupying L-valleys of bismuth.

  11. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less

  12. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model

    DOE PAGES

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.; ...

    2016-05-10

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less

  13. Current and Projected Heat-Related Morbidity and Mortality in Rhode Island.

    PubMed

    Kingsley, Samantha L; Eliot, Melissa N; Gold, Julia; Vanderslice, Robert R; Wellenius, Gregory A

    2016-04-01

    Climate change is expected to cause increases in heat-related mortality, especially among the elderly and very young. However, additional studies are needed to clarify the effects of heat on morbidity across all age groups and across a wider range of temperatures. We aimed to estimate the impact of current and projected future temperatures on morbidity and mortality in Rhode Island. We used Poisson regression models to estimate the association between daily maximum temperature and rates of all-cause and heat-related emergency department (ED) admissions and all-cause mortality. We then used downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5; a standardized set of climate change model simulations) projections to estimate the excess morbidity and mortality that would be observed if this population were exposed to the temperatures projected for 2046-2053 and 2092-2099 under two representative concentration pathways (RCP): RCP 8.5 and 4.5. Between 2005 and 2012, an increase in maximum daily temperature from 75 to 85°F was associated with 1.3% and 23.9% higher rates of all-cause and heat-related ED visits, respectively. The corresponding effect estimate for all-cause mortality from 1999 through 2011 was 4.0%. The association with all-cause ED admissions was strongest for those < 18 or ≥ 65 years of age, whereas the association with heat-related ED admissions was most pronounced among 18- to 64-year-olds. If this Rhode Island population were exposed to temperatures projected under RCP 8.5 for 2092-2099, we estimate that there would be 1.2% (range, 0.6-1.6%) and 24.4% (range, 6.9-41.8%) more all-cause and heat-related ED admissions, respectively, and 1.6% (range, 0.8-2.1%) more deaths annually between April and October. With all other factors held constant, our findings suggest that the current population of Rhode Island would experience substantially higher morbidity and mortality if maximum daily temperatures increase further as projected. Kingsley SL, Eliot MN, Gold J, Vanderslice RR, Wellenius GA. 2016. Current and projected heat-related morbidity and mortality in Rhode Island. Environ Health Perspect 124:460-467; http://dx.doi.org/10.1289/ehp.1408826.

  14. Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate.

    PubMed

    Omumbo, Judith A; Lyon, Bradfield; Waweru, Samuel M; Connor, Stephen J; Thomson, Madeleine C

    2011-01-17

    Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard.

  15. Transient heat transfer behavior of water spray evaporative cooling on a stainless steel cylinder with structured surface for safety design application in high temperature scenario

    NASA Astrophysics Data System (ADS)

    Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad

    2017-02-01

    High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.

  16. Early-Holocene decoupled summer temperature and monsoon precipitation in southwest China

    NASA Astrophysics Data System (ADS)

    Wu, D.; Chen, F.; Chen, X.; Lv, F.; Zhou, A.; Chen, J.; Abbott, M. B.; Yu, J.

    2017-12-01

    Proxy based reconstructions of Holocene temperature have shown that both the timing and magnitude of the thermal maximum vary substantially between different regions; the simulations results from climate models also show that summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet during the early Holocene, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. However, for lack of summer temperature reconstruction in the low latitude regions like southwestern China dominated by the Indian summer monsoon, the Holocene summer temperature variations and it underlying forcing mechanism are ambiguous. Here we present a well-dated record of pollen-based quantitative summer temperature (mean July; MJT) over the last 14000 years from Xingyun Lake, Yunnan Province, southwest China. It was found that MJT decreased during the YD event, then increased slowly until 7400 yr BP, and decreased thereafter. The MJT shows a pattern with middle Holocene maximum of MJT, indicating a different changing pattern with the carbonate oxygen isotope record (d18O) from the same core during the early Holocene (11500-7400 yr BP), which has the similar variation with speleothem d18O record from Dongge cave, both indicate the variation of monsoon precipitation with the highest precipitation occurred during the early Holocene. Therefore, we propose that the variation of summer temperature and precipitation in southwest China was decoupled during the early Holocene. However, both MJT and monsoon precipitation decreased after the middle Holocene following the boreal summer insolation. We suggest that the high precipitation with strong summer monsoon and hence higher cloud cover may depress the temperature increasing forced by increasing summer insolation during the early Holocene; while melting ice-sheet in the high latitude regions had strongly influenced the summer temperature increase during the deglacial period, which weakened northward heat transport by the ocean. In addition, the high concentration of atmospheric aerosol during the early Holocene may also have partly contribution to the cool summer temperature by weakening solar insolation.

  17. Flexible, multi-measurement guided wave damage detection under varying temperatures

    NASA Astrophysics Data System (ADS)

    Douglass, Alexander C. S.; Harley, Joel B.

    2018-04-01

    Temperature compensation in structural health monitoring helps identify damage in a structure by removing data variations due to environmental conditions, such as temperature. Stretch-based methods are one of the most commonly used temperature compensation methods. To account for variations in temperature, stretch-based methods optimally stretch signals in time to optimally match a measurement to a baseline. All of the data is then compared with the single baseline to determine the presence of damage. Yet, for these methods to be effective, the measurement and the baseline must satisfy the inherent assumptions of the temperature compensation method. In many scenarios, these assumptions are wrong, the methods generate error, and damage detection fails. To improve damage detection, a multi-measurement damage detection method is introduced. By using each measurement in the dataset as a baseline, error caused by imperfect temperature compensation is reduced. The multi-measurement method increases the detection effectiveness of our damage metric, or damage indicator, over time and reduces the presence of additional peaks caused by temperature that could be mistaken for damage. By using many baselines, the variance of the damage indicator is reduced and the effects from damage are amplified. Notably, the multi-measurement improves damage detection over single-measurement methods. This is demonstrated through an increase in the maximum of our damage signature from 0.55 to 0.95 (where large values, up to a maximum of one, represent a statistically significant change in the data due to damage).

  18. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary con- ditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045–2054 and 2085–2094) are compared with a historical decade (1995–2004). Probabilitymore » density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Finally, using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5–10 times per year in most CONUS and ≥ 95°F days will increase by 1–2 months by the end of the century.« less

  19. Electron-Transfer Ion/Ion Reactions of Doubly Protonated Peptides: Effect of Elevated Bath Gas Temperature

    PubMed Central

    Pitteri, Sharon J.; Chrisman, Paul A.; McLuckey, Scott A.

    2005-01-01

    In this study, the electron-transfer dissociation (ETD) behavior of cations derived from 27 different peptides (22 of which are tryptic peptides) has been studied in a 3D quadrupole ion trap mass spectrometer. Ion/ion reactions between peptide cations and nitrobenzene anions have been examined at both room temperature and in an elevated temperature bath gas environment to form ETD product ions. From the peptides studied, the ETD sequence coverage tends to be inversely related to peptide size. At room temperature, very high sequence coverage (~100%) was observed for small peptides (≤7 amino acids). For medium-sized peptides composed of 8–11 amino acids, the average sequence coverage was 46%. Larger peptides with 14 or more amino acids yielded an average sequence coverage of 23%. Elevated-temperature ETD provided increased sequence coverage over room-temperature experiments for the peptides of greater than 7 residues, giving an average of 67% for medium-sized peptides and 63% for larger peptides. Percent ETD, a measure of the extent of electron transfer, has also been calculated for the peptides and also shows an inverse relation with peptide size. Bath gas temperature does not have a consistent effect on percent ETD, however. For the tryptic peptides, fragmentation is localized at the ends of the peptides suggesting that the distribution of charge within the peptide may play an important role in determining fragmentation sites. A triply protonated peptide has also been studied and shows behavior similar to the doubly charged peptides. These preliminary results suggest that for a given charge state there is a maximum size for which high sequence coverage is obtained and that increasing the bath gas temperature can increase this maximum. PMID:16131079

  20. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    DOE PAGES

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; ...

    2017-11-20

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary con- ditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045–2054 and 2085–2094) are compared with a historical decade (1995–2004). Probabilitymore » density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Finally, using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5–10 times per year in most CONUS and ≥ 95°F days will increase by 1–2 months by the end of the century.« less

  1. Climate Variability and Impact at NASA's Marshal Space Flight Center

    NASA Technical Reports Server (NTRS)

    Smoot, James L.; Jedlovec, Gary; Williams, Brett

    2013-01-01

    Climate analysis for the Southeast U. S. has indicated that inland regions have experienced an average temperature increase of 2F since 1970. This trend is generally characterized by warmer winters with an indication of increased precipitation in the Fall season. Extended periods of limited rainfall in the Spring and Summer periods have had greater areal coverage and, at other times the number of precipitation events has been increasing. Climate model projections for the next 10-70 years indicate warmer temperatures for the Southeast U.S., particularly in the Spring and Summer, with some indication of more extremes in temperature and precipitation as shown in the table below. The realization of these types of regional climate changes in the form of extended heat waves and droughts and their subsequent stress on facilities, infrastructure, and workforce could have substantial impact on the activities and functions of NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This presentation will present the results of an examination of the 100 year temperature and precipitation record for MSFC. Local warming has cause an increase in daily maximum and minimum temperatures by nearly 3F, with a substantial increase in the number of maximum temperatures exceeding 90F and a decrease in the number of days with minimum temperatures below freezing. These trends have substantial impact of the number of heating / cooling degree days for the area. Yearly precipitation totals are inversely correlated with the change in mean temperature and the frequency of heavy rain events has remain consistent with the changes in yearly totals. An extended heat wave index was developed which shows an increase in frequency of heat waves over the last 35 years and a subsequent reduction in precipitation during the heat waves. This trend will contribute to more intense drought conditions over the northern Alabama region, increasing the potential of destructive wildfires in and around the Center. MSFC has begun using this climate change information to adapt short-term and long-term plans for Center operations.

  2. Noninvasive inductive stent heating: alternative approach to prevent instent restenosis?

    PubMed

    Floren, Michael G; Günther, Rolf W; Schmitz-Rode, Thomas

    2004-05-01

    To test noninvasive inductive heating of implanted vascular stents as an alternative approach for reduction or prevention of neointimal hyperplasia. Calorimetric pretests were performed to get an orientation on the different parameters of influence for inductive heating of stents. The field strength was set to a maximum of 90 kA/m within a frequency range from 80 kHz to 320 kHz. The electromagnetic field was emitted by a custom-made water-cooled copper winding antenna. A flow model for stent heating was set up to assess the increase in temperature of an expanded 316L stainless steel stent with typical coronary stent dimensions of 3.5 mm diameter and 14.5 mm in length, and in a second setup with 4.5 mm diameter and 13 mm in length, respectively. The stent was located in a bioartificial artery, simulated by a fibrinogen matrix with a defined number of vital cells. The system was exposed to a pulsating perfusion and to an electromagnetic field of 200 kHz over a period of 20 minutes and in a second setup to an electromagnetic field of 300 kHz and increasing intensity up to maximum power-output. Afterward, the artificial vessel was sliced and examined by fluorescence microscopy to evaluate the number and location of damaged cells. The calorimetric tests show an exponential correlation of energy uptake in the stent with an increase in frequency and a constant generator output. At a frequency of 80 kHz, the power uptake accounts for 0.1 W (250 kHz 1.0 W; 320 kHz 1.9 W, respectively). The flow tests confirmed feasibility to elevate the stent temperature from 37 degrees C body temperature to 44 degrees C at 200 kHz within 55 seconds. The temperature increase of the fluid passing the heated vessel region was only marginal (maximum of 0.5 degrees C). Cell necrosis after 20 minutes of treatment was not observed. In a second set-up with 4.5 mm stent diameter, a frequency of 300 kHz and with maximum power output, the stent temperature was increased to 80 degrees C and there was extensive necrosis area around the stent. Treatment time and stent temperature were optimized in further tests. Selective noninvasive energy transfer to coronary stainless steel stents by inductive heating is possible within a wide range of power. By thermal conduction, vital cells close to the stent struts can be affected. The frequency of 200 kHz turned out to be favorable. There is still room for further optimization of energy dosage with regard to material and stent design, to induce controlled cell death. The method has potential to serve as an alternative approach for prevention of instent restenosis.

  3. Problems in evaluating regional and local trends in temperature: An example from eastern Colorado, USA

    USGS Publications Warehouse

    Pielke, R.A.; Stohlgren, T.; Schell, L.; Parton, W.; Doesken, N.; Redmond, K.; Moeny, J.; McKee, T.; Kittel, T.G.F.

    2002-01-01

    We evaluated long-term trends in average maximum and minimum temperatures, threshold temperatures, and growing season in eastern Colorado, USA, to explore the potential shortcomings of many climate-change studies that either: (1) generalize regional patterns from single stations, single seasons, or a few parameters over short duration from averaging dissimilar stations: or (2) generalize an average regional pattern from coarse-scale general circulation models. Based on 11 weather stations, some trends were weakly regionally consistent with previous studies of night-time temperature warming. Long-term (80 + years) mean minimum temperatures increased significantly (P < 0.2) in about half the stations in winter, spring, and autumn and six stations had significant decreases in the number of days per year with temperatures ??? - 17.8 ??C (???0??F). However, spatial and temporal variation in the direction of change was enormous for all the other weather parameters tested, and, in the majority of tests, few stations showed significant trends (even at P < 0.2). In summer, four stations had significant increases and three stations had significant decreases in minimum temperatures, producing a strongly mixed regional signal. Trends in maximum temperature varied seasonally and geographically, as did trends in threshold temperature days ???32.2??C (???90??F) or days ???37.8??C (???100??F). There was evidence of a subregional cooling in autumn's maximum temperatures, with five stations showing significant decreasing trends. There were many geographic anomalies where neighbouring weather stations differed greatly in the magnitude of change or where they had significant and opposite trends. We conclude that sub-regional spatial and seasonal variation cannot be ignored when evaluating the direction and magnitude of climate change. It is unlikely that one or a few weather stations are representative of regional climate trends, and equally unlikely that regionally projected climate change from coarse-scale general circulation models will accurately portray trends at sub-regional scales. However, the assessment of a group of stations for consistent more qualitative trends (such as the number of days less than - 17.8??C, such as we found) provides a reasonably robust procedure to evaluate climate trends and variability. Copyright ?? 2002 Royal Meteorological Society.

  4. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.

    PubMed

    Caldwell, Amanda J; While, Geoffrey M; Beeton, Nicholas J; Wapstra, Erik

    2015-08-01

    Climatic changes are predicted to be greater in higher latitude and mountainous regions but species specific impacts are difficult to predict. This is partly due to inter-specific variance in the physiological traits which mediate environmental temperature effects at the organismal level. We examined variation in the critical thermal minimum (CTmin), critical thermal maximum (CTmax) and evaporative water loss rates (EWL) of a widespread lowland (Niveoscincus ocellatus) and two range restricted highland (N. microlepidotus and N. greeni) members of a cool temperate Tasmanian lizard genus. The widespread lowland species had significantly higher CTmin and CTmax and significantly lower EWL than both highland species. Implications of inter-specific variation in thermal tolerance for activity were examined under contemporary and future climate change scenarios. Instances of air temperatures below CTmin were predicted to decline in frequency for the widespread lowland and both highland species. Air temperatures of high altitude sites were not predicted to exceed the CTmax of either highland species throughout the 21st century. In contrast, the widespread lowland species is predicted to experience air temperatures in excess of CTmax on 1 or 2 days by three of six global circulation models from 2068-2096. To estimate climate change effects on activity we reran the thermal tolerance models using minimum and maximum temperatures selected for activity. A net gain in available activity time was predicted under climate change for all three species; while air temperatures were predicted to exceed maximum temperatures selected for activity with increasing frequency, the change was not as great as the predicted decline in air temperatures below minimum temperatures selected for activity. We hypothesise that the major effect of rising air temperatures under climate change is an increase in available activity period for both the widespread lowland and highland species. The consequences of a greater available activity period will depend on the extent to which changes in climate alters other related factors, such as the nature and level of competition between the respective species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    DOE PAGES

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flowmore » perturbations caused by a 30 MW/m 2 off-normal heat flux applied over a 25 mm 2 area in addition to the nominal 5 MW/m 2 applied over a 75 mm 2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm 2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.« less

  6. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  7. Estimating missing daily temperature extremes in Jaffna, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Thevakaran, A.; Sonnadara, D. U. J.

    2018-04-01

    The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.

  8. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...

  9. SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004–2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two-year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 ± 0.3 to 89.7 ± 0.5 K while at the north pole the temperature increased by 1 K from 90.7 ± 0.5 to 91.5 ± 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the sub-solar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 ± 0.15more » K. In 2010 our temperatures repeated the north–south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation.« less

  10. Influence of alkyl sulfates on waste activated sludge fermentation at ambient temperature.

    PubMed

    Jiang, Su; Chen, Yinguang; Zhou, Qi

    2007-09-05

    Alkyl sulfates (AS), such as sodium dodecyl sulfate (SDS), are widely used in household and industrial products, and can be found in some wastewater and waste activated sludge (WAS). The effect of SDS on the fermentation of WAS at ambient temperature was investigated in this paper. Experimental results showed that the concentrations of protein and carbohydrate in aqueous phase increased with the amount of SDS. The concentrations of both NH(4)(+)-N and PO(4)(3-)-P in fermentation liquor also increased in the presence of SDS. In addition, it was observed that the fermentative short-chain fatty acids (SCFAs) concentration was affected by SDS. With the increase of SDS dosage, the maximum SCFAs concentration increased, and the fermentation time before reaching the maximum SCFAs concentration also increased. Further investigation showed that the produced SCFAs consisted of acetic, propionic, n-butyric, iso-butyric, n-valeric and iso-valeric acids, and acetic, iso-valeric and propionic acids were the three main products. The influence of SDS on methanogenesis was also investigated, and the inhibitory effect of SDS on methanogens activity was observed.

  11. Thermal characteristics of wild and captive Micronesian Kingfisher nesting habitats

    USGS Publications Warehouse

    Kesler, Dylan C.; Haig, Susan M.

    2004-01-01

    To provide information for managing the captive population of endangered Guam Micronesian kingfishers (Halcyon cinnamomina cinnamomina), four biologically relevant thermal metrics were compared among captive facilities on the United States mainland and habitats used by wild Micronesian kingfishers on the island of Pohnpei (H. c. reichenbachii), Federated States of Micronesia. Additionally, aviaries where kingfishers laid eggs were compared to those in which birds did not attempt to breed. Compared to aviaries, habitats used by wild Pohnpei kingfishers had 3.2A?C higher daily maximum and minimum temperatures and the proportion of time when temperatures were in the birds' thermoneutral zone was 45% greater. No differences were found in the magnitude of temperature fluctuation in captive and wild environments. In captive environments in which birds bred, daily maximum temperatures were 2.1A?C higher and temperatures were within the thermoneutral zone 25% more often than in the aviaries where the kingfishers did not breed. No differences were found in the magnitude of temperature fluctuation or the daily minimum temperature. Results suggest that the thermal environment has the potential to influence reproduction, and that consideration should be given to increasing temperatures in captive breeding facilities to improve propagation of the endangered Micronesian kingfisher.

  12. Mapping Topoclimate and Microclimate in the Monarch Butterfly Biosphere Reserve, Mexico

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2006-12-01

    Overwintering monarch butterflies in Mexico select areas of the high elevation Oyamel fir -pine forest providing a canopy that protects them from extremes of cold, heat, sun, and wind. These exacting microclimatic conditions are found in relatively small areas of forest with appropriate topography and canopy cover. The major goal of this investigation is to map topoclimatic and microclimatic conditions within the Monarch Butterfly Biosphere Reserve by combining temperature monitoring (iButton Thermochrons), hemispherical canopy photography, multiple regression, and GIS modeling. Temperature measurements included base weather stations and arrays of Thermochrons (on the north-side of trees at 2m height) across local topographic and canopy cover gradients. Topoclimatic models of minimum temperatures included topographic position, slope, and elevation, and predicted that thermal belts on slopes and cold air drainage into canyons create local minimum temperature gradients of 2°C. Topoclimatic models of maximum temperatures models included elevation, topographic position, and relative solar exposure, with local gradients of 3°C. These models, which are independent of forest canopy structure, were then projected across the entire region. Forest canopy structure, including direct and diffuse solar radiation, was assessed with hemispherical photography at each Thermochron site. Canopy cover affected minimum temperatures primarily on the calmest, coldest nights. Maximum temperatures were predicted by direct radiation below the canopy. Fine- scale grids (25 m spacing) at three overwintering sites characterized effects of canopy gaps and edges on temperature and wind exposure. The effects of temperature variation were considered for lipid loss rates, ability to take flight, and freezing mortality. Lipid loss rates were estimated by measured hourly temperatures. Many of the closed canopy sites allowed for substantial lipid reserves at the end of the season (March 15), but increases in average temperature could effectively deplete lipids by that time. The large influence of canopy cover on daytime maximum temperatures demonstrates that forest thinning directly reduces habitat suitability. Monarchs' flight behavior under warmer conditions suggests that daytime temperatures drive the dynamics of monarch distribution within colonies. Thinning also decreases nighttime minimum temperatures, and increases wind exposure. These results create a basis for quantitative understanding of the combinations of topography and forest structure that provide high quality overwintering habitat.

  13. Historical Changes in Water Quality, Temperature Regimes, and Cyanobacteria Densities of 20 Midwestern USA Reservoirs

    EPA Science Inventory

    Water quality and cyanobacteria densities from 1989-2015 were compiled for 20 Midwestern USA reservoirs. Maximum summer cyanobacteria densities increased over the last 7-15 years of the record, with greatest increases typically observed in reservoirs with low watershed forest cov...

  14. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  15. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  16. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  17. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  18. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  19. Greenhouse effect of trace gases, 1970-1980

    NASA Technical Reports Server (NTRS)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  20. Tensile properties of V-Cr-Ti alloys after exposure in oxygen-containing environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Soppet, W.K.

    A systematic study was conducted to evaluate the oxidation kinetics of V-4Cr-4Ti (44 alloy) and V-5Cr-5Ti alloys (55 alloy) and to establish the role of oxygen ingress on the tensile behavior of the alloys at room temperature and at 500 C. The oxidation rate of the 44 alloy is slightly higher than that of the 55 alloy. The oxidation process followed parabolic kinetics. Maximum engineering stress for 55 alloy increased with an increase in oxidation time at 500 C. The maximum stress values for 55 alloy were higher at room temperature than ta 500 C for the same oxidation treatment.more » Maximum engineering stresses for 44 alloy were substantially lower than those for 55 alloy in the same oxidation {approx}500 h exposure in air at 500 C; the same values were 4.8 and 6.1%, respectively, at 500 C after {approx}2060 h oxidation in air at 500 C. Maximum engineering stress for 44 alloy at room temperature was 421.6--440.6 MPa after {approx}250 h exposure at 500 C in environments with a pO{sub 2} range of 1 {times} 10{sup {minus}6} to 760 torr. The corresponding uniform and total elongation values were 11--14.4% and 14.5--21.7%, respectively. Measurements of crack depths in various specimens showed that depth is independent of pO{sub 2} in the preexposure environment and was of 70--95 {micro}m after 250--275 h exposure at 500 C.« less

  1. Thermal distribution of microwave antenna for atrial fibrillation catheter ablation.

    PubMed

    Zhang, Huijuan; Nan, Qun; Liu, Youjun

    2013-09-01

    The aim of this study is to investigate the effects of ablation parameters on thermal distribution during microwave atrial fibrillation catheter ablation, such as ablation time, ablation power, blood condition and antenna placement, and give proper ablative parameters to realise transmural ablation. In this paper, simplified 3D antenna-myocardium-blood finite element method models were built to simulate the endocardial ablation operation. Thermal distribution was obtained based on the coupled electromagnetic-thermal analysis. Under different antenna placement conditions and different microwave power inputs within 60 s, the lesion dimensions (maximum depth, maximum width) of the ablation zones were analysed. The ablation width and depth increased with the ablation time. The increase rate significantly slowed down after 10 s. The maximum temperature was located in 1 mm under the antenna tip when perpendicular to the endocardium, while 1.5 mm away from the antenna axis and 26 mm along the antenna (with antenna length about 30 mm) in the myocardium when parallel to the endocardium. The maximum temperature in the ablated area decreased and the effective ablation area (with the temperature raised to 50°C) shifted deeper into the myocardium due to the blood cooling. The research validated that the microwave antenna can provide continuous long and linear lesions for the treatment of atrial fibrillation. The dimensions of the created lesion widths were all larger than those of the depths. It is easy for the microwave antenna to produce transmural lesions for an atrial wall thickness of 2-6 mm by adjusting the applied power and ablation time.

  2. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-01-01

    The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Enhancing Thermoelectric Performance Using Nonlinear Transport Effects

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Hua; Imry, Yoseph

    2017-06-01

    We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.

  4. Simultaneous measurement of pressure evolution of crystal structure and superconductivity in FeSe[subscript 0.92] using designer diamonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh

    Simultaneous high-pressure X-ray diffraction and electrical resistance measurements have been carried out on a PbO-type {alpha}-FeSe{sub 0.92} compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source. A ambient temperature, a structural phase transition from a tetragonal (P4/nmm) phase to an orthorhombic (Pbnm) phase is observed at 11 GPa and the Pbnm phase persists up to 74 GPa. The superconducting transition temperature (T{sub c}) increases rapidly with pressure reaching a maximum of {approx}28 K at {approx}6 GPa and decreases at higher pressures, disappearing completely at 14.6 GPa. Simultaneous pressure-dependent X-raymore » diffraction and resistance measurements at low temperatures show superconductivity only in a low-pressure orthorhombic (Cmma) phase of the {alpha}-FeSe{sub 0.92}. Upon increasing pressure at 10 K near T{sub c}, crystalline phases change from a mixture of orthorhombic (Cmma) and hexagonal (P63/mmc) phases to a high-pressure orthorhombic (Pbnm) phase near 6.4 GPa where T{sub c} is maximum.« less

  5. Thermal analysis of a multi-layer microchannel heat sink for cooling concentrator photovoltaic (CPV) cells

    NASA Astrophysics Data System (ADS)

    Siyabi, Idris Al; Shanks, Katie; Mallick, Tapas; Sundaram, Senthilarasu

    2017-09-01

    Concentrator Photovoltaic (CPV) technology is increasingly being considered as an alternative option for solar electricity generation. However, increasing the light concentration ratio could decrease the system output power due to the increase in the temperature of the cells. The performance of a multi-layer microchannel heat sink configuration was evaluated using numerical analysis. In this analysis, three dimensional incompressible laminar steady flow model was solved numerically. An electrical and thermal solar cell model was coupled for solar cell temperature and efficiency calculations. Thermal resistance, solar cell temperature and pumping power were used for the system efficiency evaluation. An increase in the number of microchannel layers exhibited the best overall performance in terms of the thermal resistance, solar cell temperature uniformity and pressure drop. The channel height and width has no effect on the solar cell maximum temperature. However, increasing channel height leads to a reduction in the pressure drop and hence less fluid pumping power.

  6. Exposure of trees to drought-induced die-off is defined by a common climatic threshold across different vegetation types

    PubMed Central

    Mitchell, Patrick J; O'Grady, Anthony P; Hayes, Keith R; Pinkard, Elizabeth A

    2014-01-01

    Increases in drought and temperature stress in forest and woodland ecosystems are thought to be responsible for the rise in episodic mortality events observed globally. However, key climatic drivers common to mortality events and the impacts of future extreme droughts on tree survival have not been evaluated. Here, we characterize climatic drivers associated with documented tree die-off events across Australia using standardized climatic indices to represent the key dimensions of drought stress for a range of vegetation types. We identify a common probabilistic threshold associated with an increased risk of die-off across all the sites that we examined. We show that observed die-off events occur when water deficits and maximum temperatures are high and exist outside 98% of the observed range in drought intensity; this threshold was evident at all sites regardless of vegetation type and climate. The observed die-off events also coincided with at least one heat wave (three consecutive days above the 90th percentile for maximum temperature), emphasizing a pivotal role of heat stress in amplifying tree die-off and mortality processes. The joint drought intensity and maximum temperature distributions were modeled for each site to describe the co-occurrence of both hot and dry conditions and evaluate future shifts in climatic thresholds associated with the die-off events. Under a relatively dry and moderate warming scenario, the frequency of droughts capable of inducing significant tree die-off across Australia could increase from 1 in 24 years to 1 in 15 years by 2050, accompanied by a doubling in the occurrence of associated heat waves. By defining commonalities in drought conditions capable of inducing tree die-off, we show a strong interactive effect of water and high temperature stress and provide a consistent approach for assessing changes in the exposure of ecosystems to extreme drought events. PMID:24772285

  7. A size dependent dynamic model for piezoelectric nanogenerators: effects of geometry, structural and environmental parameters

    NASA Astrophysics Data System (ADS)

    Sadeghzadeh, Sadegh; Farshad Mir Saeed Ghazi, Seyyed

    2018-03-01

    Piezoelectric Nanogenerator (PENG) is one of the novel energy harvester systems that recently, has been a subject of interest for researchers. By the use of nanogenerators, it’s possible to harvest different forms of energy in the environment like mechanical vibrations and generate electricity. The structure of a PENG consists of vertical arrays of nanowires between two electrodes. In this paper, dynamic analysis of a PENG is studied numerically. The modified couple stress theory which includes one length scale material parameter is used to study the size-dependent behavior of PENGs. Then, by application of a complete form of linear hybrid piezoelectric—pyroelectric equations, and using the Euler-Bernoulli beam model, the equations of motion has been derived. Generalized Differential Quadrature (GDQ) method was employed to solve the equations of motion. The effect of damping ratio, temperature rise, excitation frequency and length scale parameter was studied. It was found that the PENG voltage maximizes at the resonant frequency of nanowire. The temperature rise has a significant effect on PENG’s efficiency. When temperature increases about 10 {{K}}, the maximum voltage increases about 26%. Increasing the damping ratio, the maximum voltage decreases gradually.

  8. Isolation and identification of Trichoderma harzianum from groundwater: An effective biosorbent for defluoridation of groundwater.

    PubMed

    Koshle, Shalini; Mahesh, S; Swamy, S Nanjunda

    2016-01-01

    The ability of non-viable form of Trichoderma harzianum, isolated from fluoride rich groundwater, was investigated as biosorbent for defluoridation of groundwater. Biosorption experiments were carried out at laboratory scale for removal of fluoride from groundwater. Significant effect of operational parameters on fluoride biosorption using Trichoderma harzianum as biosorbent was evaluated by varying operational parameters such as: initial fluoride concentration (2-8 mgl(-1)), biosorbent dose (0.4-1.6g/100ml), groundwater pH (6-10), temperature (30-50 degrees C) and biosorption time (30-120 min). The fluoride adsorption isotherms were modeled by Langmuir and Freundlich isotherms. Our result showed that fluoride biosorption, significantly increased with increase in groundwater pH, biosorbent dose, temperature and biosorption time, whereas increase in initial fluoride concentration reduced fluoride removal. The fluoride biosorption was rapid and maximum fluoride uptake was attained with 1.6g 100ml(-1) biosorbent within 60 min. Optimal pH 10 and temperature 50 degrees C gave maximum defluoridation efficiency. Freundlich isotherm fits well for defluoridation of groundwater using Trichoderma harzianum as biosorbent which indicated that biosorbent surface sites were heterogeneous in nature and fitted into heterogeneous site binding model.

  9. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  10. Modeling The Urban Impact On Semiarid Surface Climate: A Case Study In Marrakesh, Morocco

    NASA Technical Reports Server (NTRS)

    Lachir, Asia; Bounoua, Lahouari; Zhang, Ping; Thome, Kurtis; Messouli, Mohamed

    2016-01-01

    We combine Landsat and MODIS data in the Simple Biosphere Model to assess the impact of urbanization on surface climate in a semiarid city in North Africa. The model simulates highest temperatures in urban class, with spring average maximum temperature differences to other land cover classes ranging between 1.6 C and 6.0 C. During summer, these maximum temperature differences are smallest (0.5 C) with barelands and highest (8.3 C) with irrigated lawns. This excess heating is simulated above and beyond a seasonal temperature average of about 30 C during spring and 44 C during summer. On annual mean, a full urbanization scenario decreases the carbon fixation by 0.13 MtC and increases the daytime mean surface temperature by 1.3 C. This may boost the city energy consumption by 5.72%. Under a 'smart growth' scenario, whereby the city expands on barelands to cover 50% of the study region and all remaining barelands converted to orchards, the carbon fixation is enhanced by 0.04 MtC with a small daytime temperature increase of 0.2 C. Our results indicate that vegetation can mitigate the urban heating. The hydrological cycle indicates that highest ratio of surface runoff to precipitation (43.8%) occurs in urban areas, versus only 16.7 % for all cover types combined.

  11. Modeling the Urban Impact on Semiarid Surface Climate: A Case Study in Marrakech, Morocco

    NASA Technical Reports Server (NTRS)

    Lachir, Asia; Bounoua, Lahouari; Zhang, Ping; Thome, Kurtis; Moussouli, Mohamed

    2016-01-01

    We combine Landsat and MODIS data in the Simple Biosphere Model to assess the impact of urbanization on surface climate in a semiarid city in North Africa. The model simulates highest temperatures in urban class, with spring average maximum temperature differences to other land cover classes ranging between 1.6 C and 6.0 C. During summer, these maximum temperature differences are smallest (0.5 C) with barelands and highest (8.3 C) with irrigated lawns. This excess heating is simulated above and beyond a seasonal temperature average of about 30 C during spring and 44 C during summer. On annual mean, a full urbanization scenario decreases the carbon fixation by 0.13 MtC and increases the daytime mean surface temperature by 1.3 C. This may boost the city energy consumption by 5.72%. Under a 'smart growth' scenario, whereby the city expands on barelands to cover 50% of the study region and all remaining barelands converted to orchards, the carbon fixation is enhanced by 0.04 MtC with a small daytime temperature increase of 0.2 C. Our results indicate that vegetation can mitigate the urban heating. The hydrological cycle indicates that highest ratio of surface runoff to precipitation (43.8%) occurs in urban areas, versus only 16.7 % for all cover types combined.

  12. Turning up the heat: increasing temperature and coral bleaching at the high latitude coral reefs of the Houtman Abrolhos Islands.

    PubMed

    Abdo, David A; Bellchambers, Lynda M; Evans, Scott N

    2012-01-01

    Coral reefs face increasing pressures particularly when on the edge of their distributions. The Houtman Abrolhos Islands (Abrolhos) are the southernmost coral reef system in the Indian Ocean, and one of the highest latitude reefs in the world. These reefs have a unique mix of tropical and temperate marine fauna and flora and support 184 species of coral, dominated by Acropora species. A significant La Niña event during 2011 produced anomalous conditions of increased temperature along the whole Western Australian coastline, producing the first-recorded widespread bleaching of corals at the Abrolhos. We examined long term trends in the marine climate at the Abrolhos using historical sea surface temperature data (HadISST data set) from 1900-2011. In addition in situ water temperature data for the Abrolhos (from data loggers installed in 2008, across four island groups) were used to determine temperature exposure profiles. Coupled with the results of coral cover surveys conducted annually since 2007; we calculated bleaching thresholds for monitoring sites across the four Abrolhos groups. In situ temperature data revealed maximum daily water temperatures reached 29.54°C in March 2011 which is 4.2°C above mean maximum daily temperatures (2008-2010). The level of bleaching varied across sites with an average of ∼12% of corals bleached. Mortality was high, with a mean ∼50% following the 2011 bleaching event. Prior to 2011, summer temperatures reached a mean (across all monitoring sites) of 25.1°C for 2.5 days. However, in 2011 temperatures reached a mean of 28.1°C for 3.3 days. Longer term trends (1900-2011) showed mean annual sea surface temperatures increase by 0.01°C per annum. Long-term temperature data along with short-term peaks in 2011, outline the potential for corals to be exposed to more frequent bleaching risk with consequences for this high latitude coral reef system at the edge of its distribution.

  13. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron.

    PubMed

    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao

    Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.

  14. Optimization Research on Ampacity of Underground High Voltage Cable Based on Interior Point Method

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Li, Jing

    2017-12-01

    The conservative operation method which takes unified current-carrying capacity as maximum load current can’t make full use of the overall power transmission capacity of the cable. It’s not the optimal operation state for the cable cluster. In order to improve the transmission capacity of underground cables in cluster, this paper regards the maximum overall load current as the objective function and the temperature of any cables lower than maximum permissible temperature as constraint condition. The interior point method which is very effective for nonlinear problem is put forward to solve the extreme value of the problem and determine the optimal operating current of each loop. The results show that the optimal solutions obtained with the purposed method is able to increase the total load current about 5%. It greatly improves the economic performance of the cable cluster.

  15. Climate change in Lagos state, Nigeria: what really changed?

    PubMed

    Sojobi, Adebayo Olatunbosun; Balogun, Isaac Idowu; Salami, Adebayo Wahab

    2015-10-01

    Our study revealed periodicities of 2.3 and 2.25 years in wet and dry seasons and periodicities of 2 to 5 years on seasonal and annual timescales. Minimum temperature (Tmin), maximum temperature (Tmax) and evaporation recorded increases of 2.47, 1.37 and 28.37 %, respectively, but a reduction of 19.58 % in rainfall on decadal timescale. Periodicity of 8 to 12 years was also observed in annual Tmax. Cramer's test indicated a warming trend with significant Tmax increase in February, April, July, August, October and November during 2000-2009 on decadal monthly timescale, a significant decline in Summer rainfall but significant Tmax increase in Spring, Autumn and Winter on decadal seasonal timescale. The low correlation of rainfall with temperature parameters and evaporation indicates that advection of moisture into Lagos State seems to be the dominant mechanism controlling rainfall within the State alongside other tropical and extra-tropical factors. In addition, our study revealed that the persistent state of minimum temperature often precedes the arrival and reversal of the phase of maximum temperature. Furthermore, our study also revealed that extreme and high variable rainfalls, which are associated with the increased warming trend, had periodicities of 1 to 3 years with a probability of 86.45 % of occurring every 3 years between April and September. It is recommended that government and private sector should give financial and technical supports to climate researches in order to appropriately inform policy making to improve the adaptive capacity and resilience of Lagos State against climate change impacts and guard against maladaptation.

  16. Time and temperature dependent breakdown characteristics of ZnS:Mn films obtained by rf-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhigal'Skii, A. A.; Mukhachev, V. A.; Troyan, P. E.

    1994-04-01

    Breakdown delay times (tdel) for films of managanese-doped zinc sulfide (ZnS:Mn) were measured in the range 10-6-10-1 s. The maximum value was tdel=10-3-10-2 s. The electrical strength (Ebr) was found to increase as the voltage pulse duration was reduced, the more so the thinner the ZnS:Mn film. The temperature dependence of Ebr exhibited a weak reduction in Ebr as the temperature was raised to roughly 80°C and a sharp reduction in Ebr for T>130°C. A maximum in Ebr was observed at T≈130°C which is presumably explained by a structural modification of the ZnS:Mn film. The experimental results obtained are explained in terms of a combined electronic and thermal breakdown mechanism.

  17. Associations between Temperature and Hospital Admissions for Subarachnoid Hemorrhage in Korea

    PubMed Central

    Lee, Suji; Guth, Matthias

    2017-01-01

    The relationship between temperature and subarachnoid hemorrhage (SAH) is less studied than that between temperature and myocardial infarction or other cardiovascular diseases. This study investigated the association between daily temperature and risk of SAH by analyzing the hospital admission records of 111,316 SAH patients from 2004 to 2012 in Korea. A Poisson regression model was used to examine the association between temperature and daily SAH hospital admissions. To analyze data and identify vulnerable groups, we used the following subgroups: sex, age, insurance type, area (rural or urban), and different climate zones. We confirmed a markedly higher SAH risk only for people of low socioeconomic status in both hot and cold temperatures; the relative risk (RR) in the Medicaid group was significantly increased and ranged from 1.04 to 1.11 for cold temperatures and 1.10 to 1.11 for hot temperatures. For the National Health Insurance group, the RR was increased to 1.02 for the maximum temperature only. The increased risk for SAH was highest in the temperate zone. An increase above the heat threshold temperature and a decrease below the cold threshold temperature were correlated with an increased risk of SAH in susceptible populations and were associated with different lag effects and RRs. PMID:28430143

  18. Rare earths recovery and gypsum upgrade from Florida phosphogypsum

    DOE PAGES

    Liang, Haijun; Zhang, Patrick; Jin, Zhen; ...

    2017-11-01

    Phosphogypsum is a byproduct created during the production of industrial wet-process phosphoric acid. This study focused on recovering rare earth elements (REEs) from a Florida phosphogypsum sample and investigated the effects of removing detrimental impurities such as phosphorus pentoxide (P 2O 5), uranium (U) and fluorine (F) during the leaching process. Experimental results indicated that REE leaching efficiency increased rapidly, reached a maximum and then began to decrease with sulfuric acid concentrations ranging from 0 to 10 percent and temperatures ranging from 20 to 70 °C. At a sulfuric acid concentration of 5 percent and leaching temperature of 50 °C,more » REE leaching efficiency obtained a maximum value of approximately 43 percent. Increasing the leaching time or liquid/solid ratio increased the leaching efficiency. The leaching efficiencies of P 2O 5, U and F consistently increased with sulfuric acid concentration, temperature, leaching time and liquid/solid ratio within the testing ranges. A fine-grain gypsum concentrate, sized smaller than 40 μm, was separated from leached phosphogypsum through elutriation, in which the P 2O 5, U and F content levels were reduced by 99, 70 and 83 percent, respectively, from their content levels in fresh phosphogypsum.« less

  19. Rare earths recovery and gypsum upgrade from Florida phosphogypsum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Haijun; Zhang, Patrick; Jin, Zhen

    Phosphogypsum is a byproduct created during the production of industrial wet-process phosphoric acid. This study focused on recovering rare earth elements (REEs) from a Florida phosphogypsum sample and investigated the effects of removing detrimental impurities such as phosphorus pentoxide (P 2O 5), uranium (U) and fluorine (F) during the leaching process. Experimental results indicated that REE leaching efficiency increased rapidly, reached a maximum and then began to decrease with sulfuric acid concentrations ranging from 0 to 10 percent and temperatures ranging from 20 to 70 °C. At a sulfuric acid concentration of 5 percent and leaching temperature of 50 °C,more » REE leaching efficiency obtained a maximum value of approximately 43 percent. Increasing the leaching time or liquid/solid ratio increased the leaching efficiency. The leaching efficiencies of P 2O 5, U and F consistently increased with sulfuric acid concentration, temperature, leaching time and liquid/solid ratio within the testing ranges. A fine-grain gypsum concentrate, sized smaller than 40 μm, was separated from leached phosphogypsum through elutriation, in which the P 2O 5, U and F content levels were reduced by 99, 70 and 83 percent, respectively, from their content levels in fresh phosphogypsum.« less

  20. Device and method for determining freezing points

    NASA Technical Reports Server (NTRS)

    Mathiprakasam, Balakrishnan (Inventor)

    1986-01-01

    A freezing point method and device (10) are disclosed. The method and device pertain to an inflection point technique for determining the freezing points of mixtures. In both the method and device (10), the mixture is cooled to a point below its anticipated freezing point and then warmed at a substantially linear rate. During the warming process, the rate of increase of temperature of the mixture is monitored by, for example, thermocouple (28) with the thermocouple output signal being amplified and differentiated by a differentiator (42). The rate of increase of temperature data are analyzed and a peak rate of increase of temperature is identified. In the preferred device (10) a computer (22) is utilized to analyze the rate of increase of temperature data following the warming process. Once the maximum rate of increase of temperature is identified, the corresponding temperature of the mixture is located and earmarked as being substantially equal to the freezing point of the mixture. In a preferred device (10), the computer (22), in addition to collecting the temperature and rate of change of temperature data, controls a programmable power supply (14) to provide a predetermined amount of cooling and warming current to thermoelectric modules (56).

  1. Features of the low-frequency polarization response in the region of the ferroelectric phase transition in multiferroic TbMnO 3

    DOE PAGES

    Trepakov, V. A.; Kvyatkovskii, O. E.; Savinov, M. E.; ...

    2016-10-01

    The unusual behavior of the low-frequency (10 Hz–1 MHz) permittivity in single crystals of ferroelectric multiferroic TbMnO3 has been experimentally and theoretically studied in detail in the region of the narrow temperature peak of the permittivity, associated with the ferroelectric phase transition (T C ~ 27.4 K). It has been found that the ε c(ω, T) maximum sharply decreases with increasing measured field frequency, while the temperature position of the maximum is independent of frequency. It has been shown that the observed features of the polarization response can be satisfactorily described within the Landau–Khalatnikov polarization relaxation theory.

  2. On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.

  3. Light-scattering study of the glass transition in lubricants

    NASA Technical Reports Server (NTRS)

    Alsaad, M. A.; Winer, W. O.; Medina, F. D.; Oshea, D. C.

    1977-01-01

    The sound velocity of four lubricants has been measured as a function of temperature and pressure using Brillouin scattering. A change in slope of the velocity as a function of temperature or pressure allowed the determination of the glass transition temperature and pressure. The glass transition data were used to construct a phase diagram for each lubricant. The data indicate that the glass transition temperature increased with pressure at a rate which ranged from 120 to 200 C/GPa. The maximum pressure attained was 0.69 GPa and the temperature range was from 25 to 100 C.

  4. Combustion in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  5. Thermoelectric Properties of the Perovskite-Type Oxide SrTi1-xNbxO3 Synthesized by Solid-State Reaction Method

    NASA Astrophysics Data System (ADS)

    Khan, Tamal Tahsin; Ur, Soon-Chul

    2018-05-01

    The perovskite-type oxide materials SrTi1-xNbxO3 (X = .02, 0.03, 0.04, 0.05 and 0.06) were synthesized by the conventional solid-state reaction method and the thermoelectric properties in terms of Nb doping at the B-site in the oxides were investigated in this study. The formation of single phase cubic perovskite structure was confirmed by the powder X-ray diffraction analysis. Negative conduction is shown in this materials system. The absolute value of Seebeck coefficient increased with increasing temperature over the measured temperature. The electrical conductivity decreased monotonically with increasing temperature, showing degenerating conduction behavior. The thermal conductivity, k, generally decreased with increasing temperature. The power factor increased with increasing Nb-doping level up to 5.0 mol% and hence the dimensionless figure of merit ZT, increased up to 5.0 mol%. The maximum ZT value was observed for SrTi0.95Nb0.05O3 at 873 K.

  6. Electronic Equipment Proposal to Improve the Photovoltaic Systems Efficiency

    NASA Astrophysics Data System (ADS)

    Flores-Mena, J. E.; Juárez Morán, L. A.; Díaz Reyes, J.

    2011-05-01

    This paper reports a new technique proposal to improve the photovoltaic systems. It was made to design and implement an electronic system that will detect, capture, and transfer the maximum power of the photovoltaic (PV) panel to optimize the supplied power of a solar panel. The electronic system works on base technical proposal of electrical sweeping of electric characteristics using capacitive impedance. The maximum power is transformed and the solar panel energy is sent to an automotive battery. This electronic system reduces the energy lost originated when the solar radiation level decreases or the PV panel temperature is increased. This electronic system tracks, captures, and stores the PV module's maximum power into a capacitor. After, a higher voltage level step-up circuit was designed to increase the voltage of the PV module's maximum power and then its current can be sent to a battery. The experimental results show that the developed electronic system has 95% efficiency. The measurement was made to 50 W, the electronic system works rightly with solar radiation rate from 100 to 1,000 W m - 2 and the PV panel temperature rate changed from 1 to 75°C. The main advantage of this electronic system compared with conventional methods is the elimination of microprocessors, computers, and sophisticated numerical approximations, and it does not need any small electrical signals to track the maximum power. The proposed method is simple, fast, and it is also cheaper.

  7. Displacement damage dose and implantation temperature effects on the trapping and release of deuterium implanted into SiC

    NASA Astrophysics Data System (ADS)

    Muñoz, P.; García-Cortés, I.; Sánchez, F. J.; Moroño, A.; Malo, M.; Hodgson, E. R.

    2017-09-01

    Radiation damage to flow channel insert (FCI) materials is an important issue for the concept of dual-coolant blanket development in future fusion devices. Silicon Carbide (SiC) is one of the most suitable materials for FCI. Because of the severe radiation environment and exposure to tritium during operation it is of fundamental importance to study hydrogen isotope trapping and release in these materials. Here the trapping, detrapping, and diffusion of deuterium implanted into SiC is studied in correlation with pre- and post-damage induced under different conditions. For this, SiC samples are pre-damaged with 50 keV Ne+ ions at different temperatures (20, 200, 450, 700 °C) to different damage doses (1, 3.6, 7 dpa). Next, deuterium is introduced into the samples at 450 °C by ion implantation at 7 keV. The implanted deuterium retained in the sample is analysed using secondary ion mass spectrometry (SIMS) and thermo-stimulated desorption (TSD) measurements. The results indicate that with increasing neon damage dose, the maximum deuterium desorption occurs at higher temperatures. In contrast, when increasing neon implantation temperature for a fixed dose, the maximum deuterium desorption release temperature decreases. It is interpreted that the neon bombardment produces thermally stable traps for hydrogen isotopes and the stability of this damage increases with neon pre-implantation dose. A decrease of the trapping of implanted deuterium is also observed to occur due to damage recovery by thermal annealing during pre-implantation at the higher temperatures. Finally, direct particle bombardment induced deuterium release is also observed.

  8. Thermal effects on an embedded grating sensor in an FRP structure

    NASA Astrophysics Data System (ADS)

    Lau, Kin-tak; Yuan, Libo; Zhou, Li-min

    2001-08-01

    Much research has been carried out in the field of using optical fibre sensors as internal strain and temperature measuring devices for advanced composite structures in recent years. The specific application is the use of embedded optical fibre sensors for smart composite reinforcement for strain monitoring in an innovative civil engineering structure, particularly for the structure after rehabilitation. Researchers have also paid attention to using the optical fibre sensor for monitoring the condition of composite materials during manufacturing and curing processes. However, heat induced in the curing process may influence the accuracy of measurement and eventuate in causing damage at the bond interface between the optical fibre and the surrounding matrix material because of the different thermal properties of silica fibre and composite materials. In this paper, a simple theoretical model is introduced to determine the interfacial properties of the embedded optical fibre system in composite laminates with different values of the coefficient of thermal expansion under different temperature environments. A finite-element method is used to compare the result from the theoretical prediction. The results show that the maximum shear stress in the coating layer decreases with increasing surrounding temperature when the optical fibre is embedded into carbon and Kevlar fibre composites. In contrast, increasing the temperature when the optical fibre is embedded into glass fibre composite results in the increase of maximum shear stress of the material. The compaction pressure distribution along the circumference of the coating layer also varies with temperature.

  9. Numerical Simulation of the Thermal Process in a W-Shape Radiant Tube Burner

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Li, Jiyong; Zhang, Lifeng; Ling, Haitao; Li, Yanlong

    2014-07-01

    In the current work, three-dimensional mathematical models were developed for the heat transfer and combustion in a W-shape radiant tube burner (RTB) and were solved using Fluent software (ANSYS Inc., Canonsburg, PA). The standard k- ɛ model, nonpremixed combustion model, and the discrete ordinate model were used for the modeling of turbulence, combustion, and radiant heat transfer, respectively. In addition, the NO x postprocessor was used for the prediction of the NO emission. A corresponding experiment was performed for the validation of mathematical models. The details of fluid flow, heat transfer, and combustion in the RTB were investigated. Moreover, the effect of the air/fuel ratio (A/F) and air staging on the performance of RTB was studied with the reference indexes including heat efficiency, maximum temperature difference on shell wall, and NO emission at the outlet. The results indicated that a low speed zone formed in the vicinity of the combustion chamber outlet, and there were two relative high-temperature zones in the RTB, one in combustion chamber that favored the flame stability and the other from the main flame in the RTB. The maximum temperature difference was 95.48 K. As the A/F increased, the temperature increased first and then decreased. As the ratio of the primary to secondary air increased, the recirculation zone at the outlet of combustion chamber shrank gradually to disappear, and the flame length was longer and the temperature in flame decreased correspondingly.

  10. Fabrication of Titanium Oxide-Based Composites by Reactive SPS Sintering and Their Thermoelectric Properties

    NASA Astrophysics Data System (ADS)

    Fuda, K.; Shoji, T.; Kikuchi, S.; Kunihiro, Y.; Sugiyama, S.

    2013-07-01

    Titanium oxide-based composites containing (1) Nb, (2) Nb and Sr, and (3) Sr and La were fabricated by a combination of wet processing and reactive spark plasma sintering in which the metal oxide components were reduced by reaction with titanium nitride. If only TiO2 was used as the starting material, several Magneli-type phases of oxygen-deficient titanium oxides were obtained. When mixed with Nb ions with Ti:Nb = 0.9:0.1, microsegregation of Nb ions was observed (case 1). If Sr was added, a perovskite, SrTiO3 (STO) phase occurred (case 2), which contained La ions in the case of La addition (case 3). The sintered compacts consisted largely of grains of about 1 μm in size. In the case of Ti-Nb combination (case 1), a unique stripe pattern also appeared inside the grains. The electrical conductivity increased monotonically with increasing temperature in the case of the pure Magneli phases and the Nb-containing composite, whereas bow-shaped temperature dependences with a maximum were observed in the case of the composites containing STO phases. The Seebeck coefficients were commonly negative, and the absolute values increased with temperature. The thermal conductivity was between 2 W m-1 K-1 and 4 W m-1 K-1 in the temperature range from room temperature to 800°C. A maximum ZT of 0.34 was achieved at 800°C (case 2).

  11. Modeling the contributions of global air temperature, synoptic-scale phenomena and soil moisture to near-surface static energy variability using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Pryor, Sara C.; Sullivan, Ryan C.; Schoof, Justin T.

    2017-12-01

    The static energy content of the atmosphere is increasing on a global scale, but exhibits important subglobal and subregional scales of variability and is a useful parameter for integrating the net effect of changes in the partitioning of energy at the surface and for improving understanding of the causes of so-called warming holes (i.e., locations with decreasing daily maximum air temperatures (T) or increasing trends of lower magnitude than the global mean). Further, measures of the static energy content (herein the equivalent potential temperature, θe) are more strongly linked to excess human mortality and morbidity than air temperature alone, and have great relevance in understanding causes of past heat-related excess mortality and making projections of possible future events that are likely to be associated with negative human health and economic consequences. New nonlinear statistical models for summertime daily maximum and minimum θe are developed and used to advance understanding of drivers of historical change and variability over the eastern USA. The predictor variables are an index of the daily global mean temperature, daily indices of the synoptic-scale meteorology derived from T and specific humidity (Q) at 850 and 500 hPa geopotential heights (Z), and spatiotemporally averaged soil moisture (SM). SM is particularly important in determining the magnitude of θe over regions that have previously been identified as exhibiting warming holes, confirming the key importance of SM in dictating the partitioning of net radiation into sensible and latent heat and dictating trends in near-surface T and θe. Consistent with our a priori expectations, models built using artificial neural networks (ANNs) out-perform linear models that do not permit interaction of the predictor variables (global T, synoptic-scale meteorological conditions and SM). This is particularly marked in regions with high variability in minimum and maximum θe, where more complex models built using ANN with multiple hidden layers are better able to capture the day-to-day variability in θe and the occurrence of extreme maximum θe. Over the entire domain, the ANN with three hidden layers exhibits high accuracy in predicting maximum θe > 347 K. The median hit rate for maximum θe > 347 K is > 0.60, while the median false alarm rate is ≈ 0.08.

  12. Near-surface Salinity and Temperature Structure Observed with Dual-Sensor Drifters in the Subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, Shenfu; Goni, Gustavo; Volkov, Denis; Lumpkin, Rick; Foltz, Gregory

    2017-04-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific Ocean with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of the differences. Measurements from these drifters indicate that, on average, water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths often occur when surface winds are weak. In addition to the expected surface freshening and cooling during rainfall events, surface salinification occurs under weak wind conditions when there is strong surface warming that enhances evaporation and upper ocean stratification. Further examination of the drifter measurements demonstrate that (i) the amount of surface freshening and vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 4 m/s. Its phase is consistent with diurnal changes in surface temperature-induced evaporation. Below a wind speed of 6 m/s, the amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. Wind speed also affects the phasing of the diurnal cycle of T5m with the time of maximum T5m increasing gradually with decreasing wind speed. Wind speed does not affect the phasing of the diurnal cycle of T0.2m. At 0.2 m and 5 m, the diurnal cycle of temperature also depends on surface solar radiation, with the amplitude and time of diurnal maximum increasing as solar radiation increases.

  13. The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Lavender, Sally L.; Hoeke, Ron K.; Abbs, Deborah J.

    2018-03-01

    Tropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1-2 °C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple idealised sensitivity analysis is performed using a high-resolution regional model to gain insight into the influence of SST on the track, size, intensity and associated rainfall of TC Yasi. A set of nine simulations with uniform SST anomalies of between -4 and 4 °C applied to the observed SSTs are analysed. The resulting surface winds and pressure are used to force a barotropic storm surge model to examine the influence of SST on the associated storm surge of TC Yasi. An increase in SST results in an increase in intensity, precipitation and integrated kinetic energy of the storm; however, there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SSTs lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 °C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temperatures. A large decrease in maximum storm surge height occurs when a negative SST anomaly is applied, suggesting if TC Yasi had occurred during non-La Niña conditions the associated storm surge may have been greatly diminished, with a decrease in storm surge height of over 3 m when the SST is reduced by 2 °C. In summary, increases in SST lead to an increase in the potential destructiveness of TCs with regard to intensity, precipitation and storm surge, although this relationship is not linear.

  14. Exhaust-Gas Pressure and Temperature Survey of F404-GE-400 Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Walton, James T.; Burcham, Frank W., Jr.

    1986-01-01

    An exhaust-gas pressure and temperature survey of the General Electric F404-GE-400 turbofan engine was conducted in the altitude test facility of the NASA Lewis Propulsion System Laboratory. Traversals by a survey rake were made across the exhaust-nozzle exit to measure the pitot pressure and total temperature. Tests were performed at Mach 0.87 and a 24,000-ft altitude and at Mach 0.30 and a 30,000-ft altitude with various power settings from intermediate to maximum afterburning. Data yielded smooth pressure and temperature profiles with maximum jet temperatures approximately 1.4 in. inside the nozzle edge and maximum jet temperatures from 1 to 3 in. inside the edge. A low-pressure region located exactly at engine center was noted. The maximum temperature encountered was 3800 R.

  15. Modeling the Growth of Epiphytic Bacteria on Kale Treated by Thermosonication Combined with Slightly Acidic Electrolyzed Water and Stored under Dynamic Temperature Conditions.

    PubMed

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2016-08-01

    The growth of epiphytic bacteria (aerobic mesophilic bacteria or Pseudomonas spp.) on kale was modeled isothermally and validated under dynamic storage temperatures. Each bacterial count on kale stored at isothermal conditions (4 to 25 °C) was recorded. The results show that maximum growth rate (μmax ) of both epiphytic bacteria increased and lag time (λ) decreased with increasing temperature (P < 0.05). The maximum population density (Nmax ) of Pseudomonas spp. was significantly greater than that of aerobic mesophilic bacteria, particularly in treated samples and/or at 4 and 10 °C (P < 0.05). The relationship between μmax of both epiphytic bacteria and temperature was linear (R(2) > 0.97), whereas lower R(2) > 0.86 and R(2) > 0.87 was observed for the λ and Nmax , respectively. The overall predictions of both epiphytic bacterial growths under nonisothermal conditions with temperature abuse of 15 °C agreed with the observed data, whereas those with temperature abuse of 25 °C were greatly overestimated. The appropriate parameter q0 (physiological state of cells), therefore, was adjusted by a trial and error to fit the model. This study demonstrates that the developed model was able to predict accurately epiphytic bacterial growth on kale stored under nonisothermal conditions particularly those with low temperature abuse of 15 °C. © 2016 Institute of Food Technologists®

  16. Screening procedure to assess the impact of urban stormwater temperature to populations of brown trout in receiving water.

    PubMed

    Rossi, Luca; Hari, Renata E

    2007-07-01

    The discharge of urban stormwater may cause a sudden temperature increase in receiving waters that may be harmful to fish and other aquatic organisms. A screening procedure is proposed with temperature thresholds for the runoff from roofs and roads as well as for the receiving water system to protect brown trout from thermal damage. The stormwater temperature is calculated on the basis of a simple thermodynamic estimate for different latitudes. Only receiving waters with maximum daily mean temperatures of 22 degrees C (T1) are considered potential habitats for brown trout. The maximum temperature for a 1-h exposure time with a safety margin for 100% survival is 25 degrees C (T2), the sudden temperature change at the beginning of a rain event must not exceed 7 degrees C (T3), and fish-egg development requires the daily maximum temperature in winter to be below 12 degrees C (T4). Examples of stormwater runoff from roof or road surfaces from Switzerland validate our approach within +/-0.5 degrees C. Effects of runoff into receiving waters without detailed data can be predicted within +/-0.8 degrees C. With the restriction by T1, T2 seems not to be an acute problem at Swiss latitudes. T3 could play a role, especially if a large amount of runoff is discharged in small and rather cool rivers and streams. Finally, T4 deserves more attention than hitherto given. The proposed procedure may be a useful tool for assessing the influence of urban stormwater on the temperature of the receiving waters, particularly with regard to predicting the thermal impacts of urban or suburban runoff to populations of brown trout.

  17. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.

    PubMed

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.

  18. Climate change and health: Indoor heat exposure in vulnerable populations☆

    PubMed Central

    White-Newsome, Jalonne L.; Sánchez, Brisa N.; Jolliet, Olivier; Zhang, Zhenzhen; Parker, Edith A.; Dvonch, J. Timothy; O'Neill, Marie S.

    2015-01-01

    Introduction Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures’ responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results Average maximum indoor temperature for all locations was 34.85 °C, 13.8 °C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings PMID:22071034

  19. Simulation of the impact of refractive surgery ablative laser pulses with a flying-spot laser beam on intrasurgery corneal temperature.

    PubMed

    Shraiki, Mario; Arba-Mosquera, Samuel

    2011-06-01

    To evaluate ablation algorithms and temperature changes in laser refractive surgery. The model (virtual laser system [VLS]) simulates different physical effects of an entire surgical process, simulating the shot-by-shot ablation process based on a modeled beam profile. The model is comprehensive and directly considers applied correction; corneal geometry, including astigmatism; laser beam characteristics; and ablative spot properties. Pulse lists collected from actual treatments were used to simulate the temperature increase during the ablation process. Ablation efficiency reduction in the periphery resulted in a lower peripheral temperature increase. Steep corneas had lesser temperature increases than flat ones. The maximum rise in temperature depends on the spatial density of the ablation pulses. For the same number of ablative pulses, myopic corrections showed the highest temperature increase, followed by myopic astigmatism, mixed astigmatism, phototherapeutic keratectomy (PTK), hyperopic astigmatism, and hyperopic treatments. The proposed model can be used, at relatively low cost, for calibration, verification, and validation of the laser systems used for ablation processes and would directly improve the quality of the results.

  20. [In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].

    PubMed

    Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei

    2015-08-01

    In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.

  1. Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Jin, Jiming

    2017-11-01

    Projected hydrological variability is important for future resource and hazard management of water supplies because changes in hydrological variability can cause more disasters than changes in the mean state. However, climate change scenarios downscaled from Earth System Models (ESMs) at single sites cannot meet the requirements of distributed hydrologic models for simulating hydrological variability. This study developed multisite multivariate climate change scenarios via three steps: (i) spatial downscaling of ESMs using a transfer function method, (ii) temporal downscaling of ESMs using a single-site weather generator, and (iii) reconstruction of spatiotemporal correlations using a distribution-free shuffle procedure. Multisite precipitation and temperature change scenarios for 2011-2040 were generated from five ESMs under four representative concentration pathways to project changes in streamflow variability using the Soil and Water Assessment Tool (SWAT) for the Jing River, China. The correlation reconstruction method performed realistically for intersite and intervariable correlation reproduction and hydrological modeling. The SWAT model was found to be well calibrated with monthly streamflow with a model efficiency coefficient of 0.78. It was projected that the annual mean precipitation would not change, while the mean maximum and minimum temperatures would increase significantly by 1.6 ± 0.3 and 1.3 ± 0.2 °C; the variance ratios of 2011-2040 to 1961-2005 were 1.15 ± 0.13 for precipitation, 1.15 ± 0.14 for mean maximum temperature, and 1.04 ± 0.10 for mean minimum temperature. A warmer climate was predicted for the flood season, while the dry season was projected to become wetter and warmer; the findings indicated that the intra-annual and interannual variations in the future climate would be greater than in the current climate. The total annual streamflow was found to change insignificantly but its variance ratios of 2011-2040 to 1961-2005 increased by 1.25 ± 0.55. Streamflow variability was predicted to become greater over most months on the seasonal scale because of the increased monthly maximum streamflow and decreased monthly minimum streamflow. The increase in streamflow variability was attributed mainly to larger positive contributions from increased precipitation variances rather than negative contributions from increased mean temperatures.

  2. Vulnerability to the impact of temperature variability on mortality in 31 major Chinese cities.

    PubMed

    Yang, Jun; Zhou, Maigeng; Li, Mengmeng; Liu, Xiaobo; Yin, Peng; Sun, Qinghua; Wang, Jun; Wu, Haixia; Wang, Boguang; Liu, Qiyong

    2018-08-01

    Few studies have analyzed the health effects of temperature variability (TV) accounting for both interday and intraday variations in ambient temperature. In this study, TV was defined as the standard deviations of the daily minimum and maximum temperature during different exposure days. Distributed lag non-linear Poisson regression model was used to examine the city-specific effect of TV on mortality in 31 Chinese municipalities and provincial capital cities. The national estimate was pooled through a meta-analysis based on the restricted maximum likelihood estimation. To assess effect modification on TV-mortality association by individual characteristics, stratified analyses were further fitted. Potential effect modification by city characteristics was performed through a meta-regression analysis. In total, 259 million permanent residents and 4,481,090 non-accidental deaths were covered in this study. The effect estimates of TV on mortality were generally increased by longer exposure days. A 1 °C increase in TV at 0-7 days' exposure was associated with a 0.60% (95% CI: 0.25-0.94%), 0.65% (0.24-1.05%), 0.82% (0.29-1.36%), 0.86% (0.42-1.31%), 0.98% (0.57-1.39%) and 0.54% (-0.11-1.20%) increase in non-accidental, cardiovascular, IHD, stroke, respiratory and COPD mortalities, respectively. Those with lower levels of educational attainment were significantly susceptible to TV. Cities with dense population, higher mean temperatures, and relative humidity and lower diurnal temperature ranges also had higher mortality risks caused by TV. This study demonstrated that TV had considerable health effects. An early warning system to alert residents about large temperature variations is recommended, which may have a significant impact on the community awareness and public health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.

    PubMed

    Shakouri, Ehsan; Haghighi Hassanalideh, Hossein; Gholampour, Seifollah

    2018-01-01

    Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO 2 and N 2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.

  4. Bio-energy generation in an affordable, single-chamber microbial fuel cell integrated with adsorption hybrid system: effects of temperature and comparison study.

    PubMed

    Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy A W; Amin, Mohamed A M; Nolasco-Hipolito, Cirilo; Bujang, Kopli

    2018-04-01

    A microbial fuel cell (MFC) integrated with adsorption system (MFC-AHS) is tested under various operating temperatures with palm oil mill effluent as the substrate. The optimum operating temperature for such system is found to be at ∼35°C with current, power density, internal resistance (R in ), Coulombic efficiency (CE) and maximum chemical oxygen demand (COD) removal of 2.51 ± 0.2 mA, 74 ± 6 mW m -3 , 25.4 Ω, 10.65 ± 0.5% and 93.57 ± 1.2%, respectively. Maximum current density increases linearly with temperature at a rate of 0.1772 mA m -2  °C -1 , whereas maximum power density was in a polynomial function. The temperature coefficient (Q 10 ) is found to be 1.20 between 15°C and 35°C. Present studies have demonstrated better CE performance when compared to other MFC-AHSs. Generally, MFC-AHS has demonstrated higher COD removals when compared to standalone MFC regardless of operating temperatures. ACFF: activated carbon fiber felt; APHA: American Public Health Association; CE: Coulombic efficiency; COD: chemical oxygen demand; ECG: electrocardiogram; GAC: granular activated carbon; GFB: graphite fiber brush; MFC: microbial fuel cell; MFC-AHS: microbial fuel cell integrated with adsorption hybrid system; MFC-GG: microbial fuel cell integrated with graphite granules; POME: palm oil mill effluent; PTFE: polytetrafluoroethylene; SEM: scanning electron microscope.

  5. Orientational ordering of lamellar structures on closed surfaces

    NASA Astrophysics Data System (ADS)

    Pȩkalski, J.; Ciach, A.

    2018-05-01

    Self-assembly of particles with short-range attraction and long-range repulsion interactions on a flat and on a spherical surface is compared. Molecular dynamics simulations are performed for the two systems having the same area and the density optimal for formation of stripes of particles. Structural characteristics, e.g., a cluster size distribution, a number of defects, and an orientational order parameter (OP), as well as the specific heat, are obtained for a range of temperatures. In both cases, the cluster size distribution becomes bimodal and elongated clusters appear at the temperature corresponding to the maximum of the specific heat. When the temperature decreases, orientational ordering of the stripes takes place and the number of particles per cluster or stripe increases in both cases. However, only on the flat surface, the specific heat has another maximum at the temperature corresponding to a rapid change of the OP. On the sphere, the crossover between the isotropic and anisotropic structures occur in a much broader temperature interval; the orientational order is weaker and occurs at significantly lower temperature. At low temperature, the stripes on the sphere form spirals and the defects resemble defects in the nematic phase of rods adsorbed at a sphere.

  6. The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment

    NASA Astrophysics Data System (ADS)

    Williams, J.-P.; Paige, D. A.; Greenhagen, B. T.; Sefton-Nash, E.

    2017-02-01

    The Diviner Lunar Radiometer Experiment onboard the Lunar Reconnaissance Orbiter (LRO) has been acquiring solar reflectance and mid-infrared radiance measurements nearly continuously since July of 2009. Diviner is providing the most comprehensive view of how regoliths on airless bodies store and exchange thermal energy with the space environment. Approximately a quarter trillion calibrated radiance measurements of the Moon, acquired over 5.5 years by Diviner, have been compiled into a 0.5° resolution global dataset with a 0.25 h local time resolution. Maps generated with this dataset provide a global perspective of the surface energy balance of the Moon and reveal the complex and extreme nature of the lunar surface thermal environment. Our achievable map resolution, both spatially and temporally, will continue to improve with further data acquisition. Daytime maximum temperatures are sensitive to the albedo of the surface and are ∼387-397 K at the equator, dropping to ∼95 K just before sunrise, though anomalously warm areas characterized by high rock abundances can be > 50 K warmer than the zonal average nighttime temperatures. An asymmetry is observed between the morning and afternoon temperatures due to the thermal inertia of the lunar regolith with the dusk terminator ∼30 K warmer than the dawn terminator at the equator. An increase in albedo with incidence angle is required to explain the observed decrease in temperatures with latitude. At incidence angles exceeding ∼40°, topography and surface roughness influence temperatures resulting in increasing scatter in temperatures and anisothermality between Diviner channels. Nighttime temperatures are sensitive to the thermophysical properties of the regolith. High thermal inertia (TI) materials such as large rocks, remain warmer during the long lunar night and result in anomalously warm nighttime temperatures and anisothermality in the Diviner channels. Anomalous maximum and minimum temperatures are highlighted by subtracting the zonal mean temperatures from maps. Terrains can be characterized as low or high reflectance and low or high TI. Low maximum temperatures result from high reflectance surfaces while low minimum temperatures from low-TI material. Conversely, high maximum temperatures result from dark surface, and high minimum temperatures from high-TI materials. Impact craters are found to modify regolith properties over large distances. The thermal signature of Tycho is asymmetric, consistent with an oblique impact coming from the west. Some prominent crater rays are visible in the thermal data and require material with a higher thermal inertial than nominal regolith. The influence of the formation of the Orientale basin on the regolith properties is observable over a substantial portion of the western hemisphere despite its age (∼3.8 Gyr), and may have contributed to mixing of highland and mare material on the southwest margin of Oceanus Procellarum where the gradient in radiative properties at the mare-highland contact is broad (∼200 km).

  7. Heat waves and heat days in an arid city in the northwest of México: current trends and in climate change scenarios.

    PubMed

    Cueto, Rafael O García; Martínez, Adalberto Tejeda; Ostos, Ernesto Jáuregui

    2010-07-01

    The aim of this work is to study heat waves (HWs) in Mexicali, Mexico, because numerous deaths have been reported in this city, caused by heatstroke. This research acquires relevancy because several studies have projected that the health impacts of HWs could increase under various climate change scenarios, especially in countries with low adaptive capacity, as is our case. This paper has three objectives: first, to analyze the observed change in the summer (1 June to 15 September) daily maximum temperature during the period from 1951 to 2006; secondly, to characterize the annual and monthly evolution of frequency, duration and intensity of HWs; and finally, to generate scenarios of heat days (HDs) by means of a statistical downscaling model, in combination with a global climate model (HadCM3), for the 2020 s, 2050 s, and 2080 s. The results show summer maximum temperatures featured warming and cooling periods from 1951 until the mid-1980s and, later, a rising tendency, which prevailed until 2006. The duration and intensity of HWs have increased for all summer months, which is an indicator of the severity of the problem; in fact, there are 2.3 times more HWs now than in the decade of the 1970s. The most appropriate distribution for modeling the occurrence of HDs was the Weibull, with the maximum temperature as co-variable. For the 2020 s, 2050 s, and 2080 s, HDs under a medium-high emissions scenario (A2) could increase relative to 1961-1990, by 2.1, 3.6, and 5.1 times, respectively, whereas under a medium-low emissions scenario (B2), HDs could increase by 2.4, 3.4, and 4.0, for the same projections of time.

  8. Heat waves and heat days in an arid city in the northwest of México: current trends and in climate change scenarios

    NASA Astrophysics Data System (ADS)

    Cueto, Rafael O. García; Martínez, Adalberto Tejeda; Ostos, Ernesto Jáuregui

    2010-07-01

    The aim of this work is to study heat waves (HWs) in Mexicali, Mexico, because numerous deaths have been reported in this city, caused by heatstroke. This research acquires relevancy because several studies have projected that the health impacts of HWs could increase under various climate change scenarios, especially in countries with low adaptive capacity, as is our case. This paper has three objectives: first, to analyze the observed change in the summer (1 June to 15 September) daily maximum temperature during the period from 1951 to 2006; secondly, to characterize the annual and monthly evolution of frequency, duration and intensity of HWs; and finally, to generate scenarios of heat days (HDs) by means of a statistical downscaling model, in combination with a global climate model (HadCM3), for the 2020s, 2050s, and 2080s. The results show summer maximum temperatures featured warming and cooling periods from 1951 until the mid-1980s and, later, a rising tendency, which prevailed until 2006. The duration and intensity of HWs have increased for all summer months, which is an indicator of the severity of the problem; in fact, there are 2.3 times more HWs now than in the decade of the 1970s. The most appropriate distribution for modeling the occurrence of HDs was the Weibull, with the maximum temperature as co-variable. For the 2020s, 2050s, and 2080s, HDs under a medium-high emissions scenario (A2) could increase relative to 1961-1990, by 2.1, 3.6, and 5.1 times, respectively, whereas under a medium-low emissions scenario (B2), HDs could increase by 2.4, 3.4, and 4.0, for the same projections of time.

  9. Thermolysis of scrap tire and rubber in sub/super-critical water.

    PubMed

    Li, Qinghai; Li, Fuxin; Meng, Aihong; Tan, Zhongchao; Zhang, Yanguo

    2018-01-01

    The rapid growth of waste tires has become a serious environmental issue. Energy and material recovery is regarded as a promising use for waste tires. Thermolysis of scrap tire (ST), natural rubber (NR), and styrene-butadiene rubber (SBR) was carried out in subcritical and supercritical water using a temperature-pressure independent adjustable batch tubular reactor. As a result, oil yields increased as temperature and pressure increased, and they reached maximum values as the state of water was near the critical point. However, further increases in water temperature and pressure reduced the oil yields. The maximum oil yield of 21.21% was obtained at 420 °C and 18 MPa with a reaction time of 40 min. The relative molecular weights of the chemicals in the oil products were in the range of 70-140 g/mole. The oil produced from ST, NR, and SBR contained similar chemical compounds, but the oil yield of SR was between those of NR and SBR. The oil yield from thermolysis of subcritical or supercritical water should be further improved. The main gaseous products, including CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , and C 3 H 8 , increased with reaction time, temperature, and pressure, whereas the solid residues, including carbon black and impurities, decreased. These results provide useful information to develop a sub/super-critical water thermolysis process for energy and material regeneration from waste tires. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Thermally modulated biomolecule transport through nanoconfined channels

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhu, Lizhong

    2015-04-01

    In this work, a nanofluidic device containing both a feed cell and a permeation cell linked by nanopore arrays has been fabricated, which is employed to investigate thermally controlled biomolecular transporting properties through confined nanochannels. The ionic currents modulated by the translocations of goat antibody to human immunoglobulin G (IgG) or bovine serum albumin (BSA) are recorded and analyzed. The results suggest that the modulation effect decreases with the electrolyte concentration increasing, while the effects generated by IgG translocation are more significant than that generated by BSA translocation. More importantly, there is a maximum decreasing value in each modulated current curve with biomolecule concentration increasing for thermally induced intermolecular collision. Furthermore, the turning point for the maximum shifts to lower biomolecule concentrations with the system temperature rising (from 4°C to 45°C), and it is mainly determined by the temperature in the feed cell if the temperature difference exists in the two separated cells. These findings are expected to be valuable for the future design of novel sensing device based on nanopore and/or nanopore arrays.

  11. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity.

    PubMed

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products.

  12. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity

    PubMed Central

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products. PMID:26885394

  13. Outbursts in Symbiotic Binaries

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Kenyon, Scott J.

    2004-01-01

    Two models have been proposed for the outbursts of symbiotic stars. In the thermonuclear model, outbursts begin when the hydrogen burning shell of a hot white dwarf reaches a critical mass. After a rapid increase in the luminosity and effective temperature, the white dwarf evolves at constant luminosity to lower effective temperatures, remains at optical maximum for several years, and then returns to quiescence along a white dwarf cooling curve. In disk instability models, the brightness rises when the accretion rate from the disk onto the central white dwarf abruptly increases by factors of 5-20. After a few month to several year period at maximum, both the luminosity and the effective temperature of the disk decline as the system returns to quiescence. If most symbiotic stars undergo thermonuclear eruptions, then symbiotics are probably poor candidates for type I supernovae. However, they can then provide approx. 10% of the material which stars recycle back into the interstellar medium. If disk instabilities are the dominant eruption mechanism, symbiotics are promising type Ia candidates but recycle less material into the interstellar medium.

  14. Impact of increasing heat waves on U.S. ozone episodes in the 2050s: Results from a multimodel analysis using extreme value theory

    NASA Astrophysics Data System (ADS)

    Shen, L.; Mickley, L. J.; Gilleland, E.

    2016-04-01

    We develop a statistical model using extreme value theory to estimate the 2000-2050 changes in ozone episodes across the United States. We model the relationships between daily maximum temperature (Tmax) and maximum daily 8 h average (MDA8) ozone in May-September over 2003-2012 using a Point Process (PP) model. At ~20% of the sites, a marked decrease in the ozone-temperature slope occurs at high temperatures, defined as ozone suppression. The PP model sometimes fails to capture ozone-Tmax relationships, so we refit the ozone-Tmax slope using logistic regression and a generalized Pareto distribution model. We then apply the resulting hybrid-extreme value theory model to projections of Tmax from an ensemble of downscaled climate models. Assuming constant anthropogenic emissions at the present level, we find an average increase of 2.3 d a-1 in ozone episodes (>75 ppbv) across the United States by the 2050s, with a change of +3-9 d a-1 at many sites.

  15. Non-Contact Acousto-Thermal Signatures of Plastic Deformation in TI-6AL-4V

    NASA Astrophysics Data System (ADS)

    Welter, J. T.; Malott, G.; Schehl, N.; Sathish, S.; Jata, K. V.; Blodgett, M. P.

    2010-02-01

    Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.

  16. Increasing the thermopower of crown-ether-bridged anthraquinones.

    PubMed

    Ismael, Ali K; Grace, Iain; Lambert, Colin J

    2015-11-07

    We investigate strategies for increasing the thermopower of crown-ether-bridged anthraquinones. The novel design feature of these molecules is the presence of either () crown-ether or () diaza-crown-ether bridges attached to the side of the current-carrying anthraquinone wire. The crown-ether side groups selectively bind alkali-metal cations and when combined with TCNE or TTF dopants, provide a large phase-space for optimising thermoelectric properties. We find that the optimum combination of cations and dopants depends on the temperature range of interest. The thermopowers of both and are negative and at room temperature are optimised by binding with TTF alone, achieving thermpowers of -600 μV K(-1) and -285 μV K(-1) respectively. At much lower temperatures, which are relevant to cascade coolers, we find that for , a combination of TTF and Na(+) yields a maximum thermopower of -710 μV K(-1) at 70 K, whereas a combination of TTF and Li(+) yields a maximum thermopower of -600 μV K(-1) at 90 K. For , we find that TTF doping yields a maximum thermopower of -800 μV K(-1) at 90 K, whereas at 50 K, the largest thermopower (of -600 μV K(-1)) is obtain by a combination TTF and K(+) doping. At room temperature, we obtain power factors of 73 μW m(-1) K(-2) for (in combination with TTF and Na(+)) and 90 μW m(-1) K(-2) for (with TTF). These are higher or comparable with reported power factors of other organic materials.

  17. Impact of rock mass temperature on potential power and electricity generation in the ORC installation

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, Michał

    2017-11-01

    The basic source of information for determining the temperature distribution in the rock mass and thus the potential for thermal energy contained in geothermal water conversion to electricity, are: temperature measurements in stable geothermic conditions, temperature measurements in unstable conditions, measurements of maximum temperatures at the bottom of the well. Incorrect temperature estimation can lead to errors during thermodynamic parameters calculation and consequently economic viability of the project. The analysis was performed for the geothermal water temperature range of 86-100°C, for dry working fluid R245fa. As a result of the calculations, the data indicate an increase in geothermal power as the geothermal water temperature increases. At 86°C, the potential power is 817.48 kW, increases to 912.20 kW at 88°C and consequently to 1 493.34 kW at 100°C. These results are not surprising, but show a scale of error in assessing the potential that can result improper interpretation of the rock mass and geothermal waters temperature.

  18. Exploring the association between heat and mortality in Switzerland between 1995 and 2013.

    PubMed

    Ragettli, Martina S; Vicedo-Cabrera, Ana M; Schindler, Christian; Röösli, Martin

    2017-10-01

    Designing effective public health strategies to prevent adverse health effect of hot weather is crucial in the context of global warming. In Switzerland, the 2003 heat have caused an estimated 7% increase in all-cause mortality. As a consequence, the Swiss Federal Office of Public Health developed an information campaign to raise public awareness on heat threats. For a better understanding on how hot weather affects daily mortality in Switzerland, we assessed the effect of heat on daily mortality in eight Swiss cities and population subgroups from 1995 to 2013 using different temperature metrics (daily mean (Tmean), maximum (Tmax), minimum (Tmin) and maximum apparent temperature (Tappmax)), and aimed to evaluate variations of the heat effect after 2003 (1995-2002 versus 2004-2013). We applied conditional quasi-Poisson regression models with non-linear distributed lag functions to estimate temperature-mortality associations over all cities (1995-2013) and separately for two time periods (1995-2002, 2004-2013). Relative risks (RR) of daily mortality were estimated for increases in temperature from the median to the 98th percentile of the warm season temperature distribution. Over the whole time period, significant temperature-mortality relationships were found for all temperature indicators (RR (95% confidence interval): Tappmax: 1.12 (1.05; 1.18); Tmax: 1.15 (1.08-1.22); Tmean: 1.16 (1.09-1.23); Tmin 1.23 (1.15-1.32)). Mortality risks were higher at the beginning of the summer, especially for Tmin. In the more recent time period, we observed a non-significant reduction in the effect of high temperatures on mortality, with the age group > 74 years remaining the population at highest risk. High temperatures continue to be a considerable risk factor for human health in Switzerland after 2003. More effective public health measures targeting the elderly should be promoted with increased attention to the first heat events in summer and considering both high day-time and night-time temperatures. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effect of Synthesis Parameter on Crystal Structures and Magnetic Properties of Magnesium Nickel Ferrite (Mg0.5Ni0.5Fe2O4) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Maulia, R.; Putra, R. A.; Suharyadi, E.

    2017-05-01

    Mg0.5Ni0.5Fe2O4 nanoparticles have been successfully synthesized by using co-precipitation method and varying the synthesis parameter, i.e. synthesis temperature and NaOH concentration. X-ray Diffraction (XRD) pattern showed that nanoparticles have cubic spinel structures with an additional phase of γ-Fe2O3 and particle size varies within the range of 4.3 - 6.7 nm. This variation is due to the effect of various synthesis parameters. Transmission Electron Microscopy (TEM) image showed that the nanoparticles exhibited agglomeration. The observed diffraction ring from selected area electron diffraction showed that the sample was polycrystalline and confirmed the peak appearing in XRD. The coercivities showed an increasing trend with an increase in particle size from 44.7 Oe to 49.6 Oe for variation of NaOH concentration, and a decreasing trend with an increase in particle size from 46.8 to 45.1 Oe for variation of synthesis temperature. The maximum magnetization showed an increasing trend with an increase in the ferrite phase from 3.7 emu/g to 5.4 emu/g possessed in the sample with variations on NaOH concentration. The maximum magnetization for the sample with variations on synthesis temperature varied from 4.4 emu/g to 5.7 emu/g due to its crystal structures.

  20. High methane natural gas/air explosion characteristics in confined vessel.

    PubMed

    Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing

    2014-08-15

    The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Enhanced exchange bias in MnN/CoFe bilayers after high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Dunz, M.; Schmalhorst, J.; Meinert, M.

    2018-05-01

    We report an exchange bias of more than 2700 Oe at room temperature in MnN/CoFe bilayers after high-temperature annealing. We studied the dependence of exchange bias on the annealing temperature for different MnN thicknesses in detail and found that samples with tMnN > 32nm show an increase of exchange bias for annealing temperatures higher than TA = 400 °C. Maximum exchange bias values exceeding 2000 Oe with reasonably small coercive fields around 600 Oe are achieved for tMnN = 42, 48 nm. The median blocking temperature of those systems is determined to be 180 °C after initial annealing at TA = 525 °C. X-ray diffraction measurements and Auger depth profiling show that the large increase of exchange bias after high-temperature annealing is accompanied by strong nitrogen diffusion into the Ta buffer layer of the stacks.

  2. Magnetic cluster expansion simulation and experimental study of high temperature magnetic properties of Fe-Cr alloys.

    PubMed

    Lavrentiev, M Yu; Mergia, K; Gjoka, M; Nguyen-Manh, D; Apostolopoulos, G; Dudarev, S L

    2012-08-15

    We present a combined experimental and computational study of high temperature magnetic properties of Fe-Cr alloys with chromium content up to about 20 at.%. The magnetic cluster expansion method is applied to model the magnetic properties of random Fe-Cr alloys, and in particular the Curie transition temperature, as a function of alloy composition. We find that at low (3-6 at.%) Cr content the Curie temperature increases with the increase of Cr concentration. It is maximum at approximately 6 at.% Cr and then decreases for higher Cr content. The same feature is found in thermo-magnetic measurements performed on model Fe-Cr alloys, where a 5 at.% Cr alloy has a higher Curie temperature than pure Fe. The Curie temperatures of 10 and 15 at.% Cr alloys are found to be lower than the Curie temperature of pure Fe.

  3. Thermally enhanced signal strength and SNR improvement of photoacoustic radar module

    PubMed Central

    Wang, Wei; Mandelis, Andreas

    2014-01-01

    A thermally enhanced method for improving photoacoustic imaging depth and signal-to-noise (SNR) ratio is presented in this paper. Experimental results showed that the maximum imaging depth increased by 20% through raising the temperature of absorbing biotissues (ex-vivo beef muscle) uniformly from 37 to 43°C, and the SNR was increased by 8%. The parameters making up the Gruneisen constant were investigated experimentally and theoretically. The studies showed that the Gruneisen constant of biotissues increases with temperature, and the results were found to be consistent with the photoacousitc radar theory. PMID:25136501

  4. Thermoelectric Behavior of PbSe Single Crystals

    DOE PAGES

    Kogo, Gilbert; Pradhan, Aswini K.; Roy, Utpal N.

    2016-12-05

    The electrical conductivity and Seebeck coefficient of PbSe single crystals grown by the Bridgman technique display metallic behavior. The Seebeck coefficient increases linearly with increasing temperature and showed positive Seebeck values, typically valid for a p-type PbSe crystal. The electronic thermal conductivity decreases with increase in temperature. The power factor increases gradually with temperature until the maximum value of 6.51 × 10 -3 W/mK2 at 260 K, other values are 5.95 × 10 -3 W/mK 2 at 300 K, and 5.40 × 10 -3 W/mK 2 at 320 K. Our results demonstrate that as-grown PbSe crystal is generically p-type duemore » to excess in Pb and can be a potential candidate for thermoelectric power generation.« less

  5. Theoretical analysis for condensation heat transfer of binary refrigerant mixtures with annular flow in horizontal mini-tubes

    NASA Astrophysics Data System (ADS)

    Zhang, Hui-Yong; Li, Jun-Ming; Sun, Ji-Liang; Wang, Bu-Xuan

    2016-01-01

    A theoretical model is developed for condensation heat transfer of binary refrigerant mixtures in mini-tubes with diameter about 1.0 mm. Condensation heat transfer of R410A and R32/R134a mixtures at different mass fluxes and saturated temperatures are analyzed, assuming that the phase flow pattern is annular flow. The results indicate that there exists a maximum interface temperature at the beginning of condensation process for azeotropic and zeotropic mixtures and the corresponding vapor quality to the maximum value increases with mass flux. The effects of mass flux, heat flux, surface tension and tube diameter are analyzed. As expected, the condensation heat transfer coefficients increase with mass flux and vapor quality, and increase faster in high vapor quality region. It is found that the effects of heat flux and surface tension are not so obvious as that of tube diameter. The characteristics of condensation heat transfer of zeotropic mixtures are consistent to those of azeotropic refrigerant mixtures. The condensation heat transfer coefficients increase with the concentration of the less volatile component in binary mixtures.

  6. The effect of dry spots on heat transfer in a locally heated liquid film moving under the action of gas flow in a channel

    NASA Astrophysics Data System (ADS)

    Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.

    2017-11-01

    Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.

  7. Thermoelectric properties of fully hydrogenated graphene: Semi-classical Boltzmann theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk; Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis

    2015-06-14

    Based on the calculated band structure, the electronic transport coefficients of chair-/boat-like graphane were evaluated by using the semi-classical Boltzmann theory and rigid band model. The maximum value of electrical conductivity for chair (boat)-like graphane of about 1.4 (0.6) × 10{sup 19} (Ωms){sup −1} is achieved at 600 K. The charge carrier concentration and the electrical conductivity linearly increase with increasing the temperature in agreement with the experimental work for graphene. The investigated materials exhibit the highest value of Seebeck coefficient at 300 K. We should emphasize that in the chemical potential between ∓0.125 μ(eV) the investigated materials exhibit minimum value of electronic thermalmore » conductivity, therefore, maximum efficiency. As the temperature increases, the electronic thermal conductivity increases exponentially, in agreement with the experimental data of graphene. We also calculated the power factor of chair-/boat-like graphane at 300 and 600 K as a function of chemical potential between ∓0.25 μ(eV)« less

  8. Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viayan, B.; Dimitrijevic, N. M.; Rajh, T.

    Titania nanotubes having diameters 8 to 12 nm and lengths of 50-300 nm were prepared using a hydrothermal method. Further, the titania nanotubes were calcined over the temperature range 200-800 C in order to enhance their photocatalytic properties by altering their morphology. The calcined titania nanotubes were characterized by using X-ray diffraction and surface area analysis and their morphological features were studied by scanning and transmission electron microscopy. Nanotubes calcined at 400 C showed the maximum extent of photocatalyitc reduction of carbon dioxide to methane, whereas samples calcined at 600 C produced maximum photocatalytic oxidation of acetaldehyde. Electron paramagnetic resonancemore » (EPR) spectroscopy was used to interrogate the effects of nanotube structure on the charge separation and trapping as a function of calcination temperature. EPR results indicated that undercoordinated titania sites are associated with maximum CO{sub 2} reduction occurring in nanotubes calcined at 400 C. Despite the collapse of the nantube structure to form nanorods and the concomitant loss of surface area, the enhanced charge separation associated with increased crystallinity promoted high rates of oxidation of acetaldehyde in titania materials calcined at 600 C. These results illustrate that calcination temperature allows us to tune the morphological and surface features of the titania nanostructures for particular photocatalytic reactions.« less

  9. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif

    2016-02-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.

  10. Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C.

    PubMed

    Fu, Qian; Fukushima, Naoya; Maeda, Haruo; Sato, Kozo; Kobayashi, Hajime

    2015-01-01

    We examined whether a hyperthermophilic microbial fuel cell (MFC) would be technically feasible. Two-chamber MFC reactors were inoculated with subsurface microorganisms indigenous to formation water from a petroleum reservoir and were started up at operating temperature 80 °C. The MFC generated a maximum current of 1.3 mA 45 h after the inoculation. Performance of the MFC improved with an increase in the operating temperature; the best performance was achieved at 95 °C with the maximum power density of 165 mWm(-2), which was approximately fourfold higher than that at 75 °C. Thus, to our knowledge, our study is the first to demonstrate generation of electricity in a hyperthermophilic MFC (operating temperature as high as 95 °C). Scanning electron microscopy showed that filamentous microbial cells were attached on the anode surface. The anodic microbial consortium showed limited phylogenetic diversity and primarily consisted of hyperthermophilic bacteria closely related to Caldanaerobacter subterraneus and Thermodesulfobacterium commune.

  11. Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.

  12. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Treesearch

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  13. The effect of temperature on ferroelectric properties of CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Ahlawat, Neetu; Punia, Suman

    2014-04-01

    CaCu3Ti4O12 (CCTO) ceramic was synthesized by conventional solid-state reaction technique and sintered at 1353K for 10 hours. The dielectric properties of CCTO were analyzed in 1Hz-5 MHz frequency range, from room temperature to 413K. The ferroelectric properties of CCTO were analyzed at various frequencies viz. 50 Hz, 100 Hz and 200 Hz at temperatures (298K to 413K). Result of these investigation points that with increasing temperature the values of coercive field (Ec) and remnant polarization (Pr) decrease while maximum polarization (Pmax) increases non-linearly. P-E hysteresis loop of CCTO goes to slimed and a ferroelectric to Para-electric phase transition is observed at 403K.

  14. Variability of tropical days over Greece within the second half of the twentieth century

    NASA Astrophysics Data System (ADS)

    Nastos, P. T.; Matzarakis, A. P.

    2008-06-01

    Tropical days (TD) are defined as the days with a maximum air temperature greater than 30.0 °C. It is clear that the study of TD includes also the absolute maximum temperatures, which are of great interest for the description of a region’s climate. These days are considered as very hot, and they particularly are of great importance not only for bioclimatology and applied sciences, but also for the individuals who are sensitive in the heat-stress. The regime of the TD in Greece is the focus of this study. The aim is to demonstrate their changes from decade to decade, for the time period 1960-2000. For this study, the Annual Number of Tropical Days (ANTD) recorded by each of the 26 meteorological stations of National Meteorological Service, which are uniformly distributed in the Hellenic peninsula, was calculated and analysed. In terms of quantifying the conditions in a humanbiometeorological manner, the thermal index Physiological Equivalent Temperature (PET) and the consecutive days for Athens have been included in this study. The trends of the TD for each station were analysed through the Mann-Kendall technique, while the spatial distribution per decade reveals the regions with change (increase or decrease) in the ANTD during the examined period. Two characteristic periods of change for the ANTD appear in the majority of the meteorological stations in Greece. The first period (1955-1976) is determined by a negative trend, which is statistically significant (c.l. 95%), for adequate stations. In the period between 1976 and 2000, the increase in the ANTD and the maximum temperature exceed the corresponding maximum that appeared in the beginning of the 1950s for several of the examined meteorological stations. The human-biometeorological analysis shows that the consecutive days of PET > 35 °C have had a positive trend in the last two decades of the last century.

  15. The Effect of Artificial Aging on the Tensile Properties of Alclad 24S-T and 24S-T Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Kotanchik, Joseph N.; Woods, Walter; Zender, George W.

    1943-01-01

    An experimental study was made to determine the effect of artificial aging on the tensile properties of alclad 24S-T and 24S-T aluminum-alloy sheet material. The results of the tests show that certain combinations of aging time and temperature cause a marked increase in the yield strength and a small increase in the ultimate strength; these increases are accompanied by a very large decrease in elongation. A curve is presented that shows the maximum yield strengths that can be obtained by aging this material at various combinations of time and temperature. The higher values of yield stress are obtained in material aged at relatively longer times and lower temperatures.

  16. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures.

    PubMed

    Norin, Tommy; Malte, Hans; Clark, Timothy D

    2014-01-15

    Climate warming is predicted to negatively impact fish populations through impairment of oxygen transport systems when temperatures exceed those which are optimal for aerobic scope (AS). This concept of oxygen- and capacity-limited thermal tolerance (OCLTT) is rapidly gaining popularity within climate change research and has been applied to several fish species. Here, we evaluated the relevance of aerobic performance of juvenile barramundi (Lates calcarifer) in the context of thermal preference and tolerance by (1) measuring standard and maximum metabolic rates (SMR and MMR, respectively) and AS of fish acclimated to 29°C and acutely exposed to temperatures from 23 to 38°C, (2) allowing the fish to behaviourally select a preferred temperature between 29 and 38°C, and (3) quantifying alterations to AS after 5 weeks of acclimation to 29 and 38°C. SMR and MMR both increased continuously with temperature in acutely exposed fish, but the increase was greater for MMR such that AS was highest at 38°C, a temperature approaching the upper lethal limit (40-41°C). Despite 38°C eliciting maximum AS, when given the opportunity the fish selected a median temperature of 31.7 ± 0.5°C and spent only 10 ± 3% of their time at temperatures >36°C. Following acclimation to 38°C, AS measured at 38°C was decreased to the same level as 29°C-acclimated fish measured at 29°C, suggesting that AS may be dynamically modulated independent of temperature to accommodate the requirements of daily life. Together, these results reveal limited power of the OCLTT hypothesis in predicting optimal temperatures and effects of climate warming on juvenile barramundi.

  17. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax).

    PubMed

    Claireaux, Guy; Couturier, Christine; Groison, Anne-Laure

    2006-09-01

    This study is an attempt to gain an integrated understanding of the interactions between temperature, locomotion activity and metabolism in the European sea bass (Dicentrarchus labrax). To our knowledge this study is among the few that have investigated the influence of the seasonal changes in water temperature on swimming performance in fish. Using a Brett-type swim-tunnel respirometer the relationship between oxygen consumption and swimming speed was determined in fish acclimatised to 7, 11, 14, 18, 22, 26 and 30 degrees C. The corresponding maximum swimming speed (U(max)), optimal swimming speed (U(opt)), active (AMR) and standard (SMR) metabolic rates as well as aerobic metabolic scope (MS) were calculated. Using simple mathematical functions, these parameters were modelled as a function of water temperature and swimming speed. Both SMR and AMR were positively related to water temperature up to 24 degrees C. Above 24 degrees C SMR and AMR levelled off and MS tended to decrease. We found a tight relationship between AMR and U(max) and observed that raising the temperature increased AMR and increased swimming ability. However, although fish swam faster at high temperature, the net cost of transport (COT(net)) at a given speed was not influence by the elevation of the water temperature. Although U(opt) doubled between 7 degrees C and 30 degrees C (from 0.3 to 0.6 m s(-1)), metabolic rate at U(opt) represented a relatively constant fraction of the animal active metabolic rate (40-45%). A proposed model integrates the effects of water temperature on the interaction between metabolism and swimming performance. In particular the controlling effect of temperature on AMR is shown to be the key factor limiting maximal swimming speed of sea bass.

  18. Variability of temperature properties over Kenya based on observed and reanalyzed datasets

    NASA Astrophysics Data System (ADS)

    Ongoma, Victor; Chen, Haishan; Gao, Chujie; Sagero, Phillip Obaigwa

    2017-08-01

    Updated information on trends of climate extremes is central in the assessment of climate change impacts. This work examines the trends in mean, diurnal temperature range (DTR), maximum and minimum temperatures, 1951-2012 and the recent (1981-2010) extreme temperature events over Kenya. The study utilized daily observed and reanalyzed monthly mean, minimum, and maximum temperature datasets. The analysis was carried out based on a set of nine indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The trend of the mean and the extreme temperature was determined using Mann-Kendall rank test, linear regression analysis, and Sen's slope estimator. December-February (DJF) season records high temperature while June-August (JJA) experiences the least temperature. The observed rate of warming is + 0.15 °C/decade. However, DTR does not show notable annual trend. Both seasons show an overall warming trend since the early 1970s with abrupt and significant changes happening around the early 1990s. The warming is more significant in the highland regions as compared to their lowland counterparts. There is increase variance in temperature. The percentage of warm days and warm nights is observed to increase, a further affirmation of warming. This work is a synoptic scale study that exemplifies how seasonal and decadal analyses, together with the annual assessments, are important in the understanding of the temperature variability which is vital in vulnerability and adaptation studies at a local/regional scale. However, following the quality of observed data used herein, there remains need for further studies on the subject using longer and more data to avoid generalizations made in this study.

  19. Reliability analysis of dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  20. Body temperature, activity patterns, and hunting in free-living cheetah: biologging reveals new insights.

    PubMed

    Hetem, Robyn S; Mitchell, Duncan; de Witt, Brenda A; Fick, Linda G; Maloney, Shane K; Meyer, Leith C R; Fuller, Andrea

    2018-05-31

    As one of the few felids that is predominantly diurnal, cheetahs (Acinonyx jubatus Von Schreber, 1775) can be exposed to high heat loads in their natural habitat. Little is known about long-term patterns of body temperature and activity (including hunting) in cheetahs because long-term concurrent measurements of body temperature and activity never have been reported for cheetahs, or indeed for any free-living felid. We report here body temperature and locomotor activity measured with implanted data loggers over seven months in five free-living cheetahs in Namibia. Air temperature ranged from a maximum of 39ºC in summer to -2ºC in winter. Cheetahs had higher (∼0.4 ºC) maximum 24h body temperatures, later acrophase (∼1 h), with larger fluctuations in the range of the 24h body temperature rhythm (∼0.4 ºC) during a hot-dry period than during a cool-dry period, but maintained homeothermy irrespective of the climatic conditions. As ambient temperatures increased, the cheetahs shifted from a diurnal to a crepuscular activity pattern, with reduced activity between 9:00 and 15:00 and increased nocturnal activity. The timing of hunts followed the general pattern of activity; the cheetahs hunted when they were on the move. Cheetahs hunted if an opportunity presented itself, on occasion they hunted in the midday heat or in total darkness (new moon). Biologging revealed insights into cheetah biology that are not accessible by traditional observer-based techniques. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Climate trends of the North American prairie pothole region 1906-2000

    USGS Publications Warehouse

    Millett, B.; Johnson, W.C.; Guntenspergen, G.

    2009-01-01

    The Prairie Pothole Region (PPR) is unique to North America. Its millions of wetlands and abundant ecosystem goods and services are highly sensitive to wide variations of temperature and precipitation in time and space characteristic of a strongly continental climate. Precipitation and temperature gradients across the PPR are orthogonal to each other. Precipitation nearly triples from west to east from approximately 300 mm/year to 900 mm/year, while mean annual temperature ranges from approximately 1°C in the north to nearly 10°C in the south. Twentieth-century weather records for 18 PPR weather stations representing 6 ecoregions revealed several trends. The climate generally has been getting warmer and wetter and the diurnal temperature range has decreased. Minimum daily temperatures warmed by 1.0°C, while maximum daily temperatures cooled by 0.15°C. Minimum temperature warmed more in winter than in summer, while maximum temperature cooled in summer and warmed in winter. Average annual precipitation increased by 49 mm or 9%. Palmer Drought Severity Index (PDSI) trends reflected increasing moisture availability for most weather stations; however, several stations in the western Canadian Prairies recorded effectively drier conditions. The east-west moisture gradient steepened during the twentieth century with stations in the west becoming drier and stations in the east becoming wetter. If the moisture gradient continues to steepen, the area of productive wetland ecosystems will shrink. Consequences for wetlands would be especially severe if the future climate does not provide supplemental moisture to offset higher evaporative demand.

  2. Equatorial temperature anomaly during solar minimum

    NASA Astrophysics Data System (ADS)

    Suhasini, R.; Raghavarao, R.; Mayr, H. G.; Hoegy, W. R.; Wharton, L. E.

    2001-11-01

    We show evidence for the occurrence of the equatorial temperature anomaly (ETA) during solar minimum by analyzing the temperature and total ion density data from the Neutral Atmosphere Temperature Experiment (NATE) and the Cylindrical Electrostatic Probe (CEP), respectively, on board the Atmospheric Explorer-E satellite. The chosen data refer to a height of ~254 km in the African and Asian longitude sector (340.1°E-200°E) during a summer season in the Southern Hemisphere. As during the solar maximum period, the spatial characteristics of the ETA are similar to those of the equatorial ionization anomaly (EIA). A minimum in the gas temperature is collocated with the minimum in the ion density at the dip equator, and a temperature maximum on the south side of the equator is collocated with the density maximum of the EIA. The daytime behavior of ETA formation is about the same as that of EIA as both of them are clearly present at around 1300 and 1400 local solar time (LST) only. At 1400 LST the difference between the temperatures at the crest and the trough (ETA strength) reaches a maximum value of about 100°K which is ~14% of the temperature at the trough. Like the EIA, the ETA also suddenly disappears after 1400 LST. Thus the EIA appears to be a prerequisite for the ETA formation. During the premidnight time (2200 LST), however, while the EIA is nonexistent, the temperature distribution forms a pattern opposite to that at 1400 LST in the daytime. It shows a maximum around the dip equator and a broad minimum at the daytime crest region where the postsunset cooling also is faster and occurs earlier than at the dip equator. This nighttime maximum appears to be related to the signature of the midnight temperature maximum (MTM). Mass Spectrometer Incoherent Scatter (MSIS) model temperatures, in general, are higher than the observed average temperatures for the summer season and in particular for the region around the dip equator around noon hours.

  3. Winter frost resistance of Pinus cembra measured in situ at the alpine timberline as affected by temperature conditions.

    PubMed

    Buchner, Othmar; Neuner, Gilbert

    2011-11-01

    Winter frost resistance (WFR), midwinter frost hardening and frost dehardening potential of Pinus cembra L. were determined in situ by means of a novel low-temperature freezing system at the alpine timberline ecotone (1950 m a.s.l., Mt Patscherkofel, Innsbruck, Austria). In situ liquid nitrogen (LN₂)-quenching experiments should check whether maximum WFR of P. cembra belonging to the frost hardiest conifer group, being classified in US Department of Agriculture climatic zone 1, suffices to survive dipping into LN₂ (-196 °C). Viability was assessed in a field re-growth test. Maximum in situ WFR (LT₅₀) of leaves was <- 75 °C and that of buds was less (-70.3 °C), matching the lowest water contents. In midwinter, in situ freezing exotherms of leaves, buds and the xylem were often not detectable. Ice formed in the xylem at a mean of -2.8 °C and in leaves at -3.3 °C. In situ WFR of P. cembra was higher than that obtained on detached twigs, as reported earlier. In situ LN₂-quenching experiments were lethal in all cases even when twigs of P. cembra were exposed to an in situ frost hardening treatment (12 days at -20 °C followed by 3 days at -50 °C) to induce maximum WFR. Temperature treatments applied in the field significantly affected the actual WFR. In January a frost hardening treatment (21 days at -20 °C) led to a significant increase of WFR (buds: -62 °C to <- 70 °C; leaves: -59.6 °C to -65.2 °C), showing that P. cembra was not at its specific maximum WFR. In contrast, simulated warm spells in late winter led to premature frost dehardening (buds: -32.6 °C to -10.2 °C; leaves: -32.7 to -16.4 °C) followed by significantly earlier bud swelling and burst in late winter. Strikingly, both temperature treatments, either increased air temperature (+10.1 °C) or increased soil temperature (+6.5 °C), were similarly effective. This high readiness to frost harden and deharden in winter in the field must be considered to be of great significance for future winter survival of P. cembra. Determination of WFR in field re-growth tests appears to be a valuable tool for critically judging estimates of WFR obtained on detached twigs in an ecological context.

  4. Parametric Investigation of the Kinetics of Growth of Carbon-Nanotube Arrays on Iron Nanoparticles in the Process of Chemical Vapor Deposition of Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Shulitski, B. G.; Labunov, V. A.; Ermolaevaa, E. M.

    2015-03-01

    On the basis of the kinetic model of synthesis of carbon nanotubes on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons, the parametric dependences of characteristics of arrays of vertically oriented nanotubes on the temperature of their synthesis, the concentration of acetylene in a reactor, and the diameter of the catalyst nanoparticles were investigated. It is shown that the maximum on the temperature dependence of the rate of growth of carbon nanotubes, detected in experiments at a temperature of ~700oC is due to the competing processes of increasing the catalytic activity of iron nanoparticles and decreasing the acetylene concentration because of the signifi cant gas-phase decomposition of acetylene in the reactor before it enters the substrate with the catalyst. Our calculations have shown that the indicated maximum arises near the transition point separating the low-temperature region where multiwall nanotubes are predominantly synthesized from the higher-temperature region of generation of single-wall nanotubes in the process of chemical vapor deposition of hydrocarbons.

  5. Prediction Based Proactive Thermal Virtual Machine Scheduling in Green Clouds

    PubMed Central

    Kinger, Supriya; Kumar, Rajesh; Sharma, Anju

    2014-01-01

    Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated. PMID:24737962

  6. The coronal structure of active regions

    NASA Technical Reports Server (NTRS)

    Landini, M.; Monsignori Fossi, B. C.; Krieger, A.; Vaiana, G. S.

    1975-01-01

    A four-parameter model, which assumes a Gaussian dependence of both temperature and pressure on distance from center, is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature, the maximum pressure, the width of the pressure distribution, and the width of the temperature distribution. The maximum temperature ranges from 2.2 to 2.8 million K, and the maximum density from 2 to 9 by 10 to the 9th power per cu cm. The range of the pressure-distribution width is from 2 to 4 by 10 to the 9th power cm and that of the temperature-distribution width from 2 to 7.

  7. Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate

    PubMed Central

    2011-01-01

    Background Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. Methods Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. Results An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. Conclusion This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard. PMID:21241505

  8. Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2007-01-01

    Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate to within about 0.005 degrees Celsius (?C). In addition to assessing the effects of point-source heat trades, the models were used to evaluate the temperature effects of several shade-restoration scenarios. Restoration of riparian shade along the entire Long Tom River, from its mouth to Fern Ridge Dam, was calculated to have a small but significant effect on daily maximum temperatures in the main-stem Willamette River, on the order of 0.03?C where the Long Tom River enters the Willamette River, and diminishing downstream. Model scenarios also were run to assess the effects of restoring selected 5-mile reaches of riparian vegetation along the main-stem Willamette River from river mile (RM) 176.80, just upstream of the point where the McKenzie River joins the Willamette River, to RM 116.87 near Albany, which is one location where cumulative point-source heating effects are at a maximum. Restoration of riparian vegetation along the main-stem Willamette River was shown by model runs to have a significant local effect on daily maximum river temperatures (0.046 to 0.194?C) at the site of restoration. The magnitude of the cooling depends on many factors including river width, flow, time of year, and the difference in vegetation characteristics between current and restored conditions. Downstream of the restored reach, the cooling effects are complex and have a nodal nature: at one-half day of travel time downstream, shade restoration has little effect on daily maximum temperature because water passes the restoration site at night; at 1 full day of travel time downstream, cooling effects increase to a second, diminished maximum. Such spatial complexities may complicate the trading of heat allocations between point and nonpoint sources. Upstream dams have an important effect on water temperature in the Willamette River system as a result of augmented flows as well as modified temperature releases over the course of the summer and autumn. The TMDL was formulated prior t

  9. Determination of the Maximum Temperature in a Non-Uniform Hot Zone by Line-of-Site Absorption Spectroscopy with a Single Diode Laser.

    PubMed

    Liger, Vladimir V; Mironenko, Vladimir R; Kuritsyn, Yurii A; Bolshov, Mikhail A

    2018-05-17

    A new algorithm for the estimation of the maximum temperature in a non-uniform hot zone by a sensor based on absorption spectrometry with a diode laser is developed. The algorithm is based on the fitting of the absorption spectrum with a test molecule in a non-uniform zone by linear combination of two single temperature spectra simulated using spectroscopic databases. The proposed algorithm allows one to better estimate the maximum temperature of a non-uniform zone and can be useful if only the maximum temperature rather than a precise temperature profile is of primary interest. The efficiency and specificity of the algorithm are demonstrated in numerical experiments and experimentally proven using an optical cell with two sections. Temperatures and water vapor concentrations could be independently regulated in both sections. The best fitting was found using a correlation technique. A distributed feedback (DFB) diode laser in the spectral range around 1.343 µm was used in the experiments. Because of the significant differences between the temperature dependences of the experimental and theoretical absorption spectra in the temperature range 300⁻1200 K, a database was constructed using experimentally detected single temperature spectra. Using the developed algorithm the maximum temperature in the two-section cell was estimated with accuracy better than 30 K.

  10. AlGaAs 55Fe X-ray radioisotope microbattery

    PubMed Central

    Butera, S.; Whitaker, M. D. C.; Lioliou, G.; Barnett, A. M.

    2016-01-01

    This paper describes the performance of a fabricated prototype Al0.2Ga0.8As 55Fe radioisotope microbattery photovoltaic cells over the temperature range −20 °C to 50 °C. Two 400 μm diameter p+-i-n+ (3 μm i-layer) Al0.2Ga0.8As mesa photodiodes were used as conversion devices in a novel X-ray microbattery prototype. The changes of the key microbattery parameters were analysed in response to temperature: the open circuit voltage, the maximum output power and the internal conversion efficiency decreased when the temperature was increased. At −20 °C, an open circuit voltage and a maximum output power of 0.2 V and 0.04 pW, respectively, were measured per photodiode. The best internal conversion efficiency achieved for the fabricated prototype was only 0.95% at −20 °C. PMID:27922093

  11. Climate specific thermomechanical fatigue of flat plate photovoltaic module solder joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosco, Nick; Silverman, Timothy J.; Kurtz, Sarah

    FEM simulations of PbSn solder fatigue damage are used to evaluate seven cities that represent a variety of climatic zones. It is shown that the rate of solder fatigue damage is not ranked with the cities' climate designations. For an accurate ranking, the mean maximum daily temperature, daily temperature change and a characteristic of clouding events are all required. A physics-based empirical equation is presented that accurately calculates solder fatigue damage according to these three factors. An FEM comparison of solder damage accumulated through service and thermal cycling demonstrates the number of cycles required for an equivalent exposure. For anmore » equivalent 25-year exposure, the number of thermal cycles (-40 degrees C to 85 degrees C) required ranged from roughly 100 to 630 for the cities examined. It is demonstrated that increasing the maximum cycle temperature may significantly reduce the number of thermal cycles required for an equivalent exposure.« less

  12. A new model to predict diffusive self-heating during composting incorporating the reaction engineering approach (REA) framework.

    PubMed

    Putranto, Aditya; Chen, Xiao Dong

    2017-05-01

    During composting, self-heating may occur due to the exothermicities of the chemical and biological reactions. An accurate model for predicting maximum temperature is useful in predicting whether the phenomena would occur and to what extent it would have undergone. Elevated temperatures would lead to undesirable situations such as the release of large amount of toxic gases or sometimes would even lead to spontaneous combustion. In this paper, we report a new model for predicting the profiles of temperature, concentration of oxygen, moisture content and concentration of water vapor during composting. The model, which consists of a set of equations of conservation of heat and mass transfer as well as biological heating term, employs the reaction engineering approach (REA) framework to describe the local evaporation/condensation rate quantitatively. A good agreement between the predicted and experimental data of temperature during composting of sewage sludge is observed. The modeling indicates that the maximum temperature is achieved after some 46weeks of composting. Following this period, the temperature decreases in line with a significant decrease in moisture content and a tremendous increase in concentration of water vapor, indicating the massive cooling effect due to water evaporation. The spatial profiles indicate that the maximum temperature is approximately located at the middle-bottom of the compost piles. Towards the upper surface of the piles, the moisture content and concentration of water vapor decreases due to the moisture transfer to the surrounding. The newly proposed model can be used as reliable simulation tool to explore several geometry configurations and operating conditions for avoiding elevated temperature build-up and self-heating during industrial composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Note on the Spatio Temporal Variations in the Temperature and Relative Humidity over Akure, Ondo State, Nigeria

    NASA Astrophysics Data System (ADS)

    Eludoyin, A. O.; Akinbode, O. M.; Archibong, E. O.

    2007-07-01

    This study was carried out in one of the Administrative State Capitals in the southwestern part of Nigeria. Its aim is to serve as a baseline data for highlighting the effect of spatial distribution of settlements, population, and socioeconomic activities on urban air temperature and relative humidity. The main objective of the study is to assess the impact of urban growth on the microclimate of the administrative city. Temperature and relative humidity data from 1992 to 2001 were obtained from the three existing meteorological stations in Akure, the Administrative Capital of Ondo State, Nigeria, namely the Federal Ministry of Aviation, Akure Airport station (FMA), Federal University of Technology, Akure (FUTA) and the Federal School of Agriculture (SOA). Air temperature and relative humidity measurements along primary roads and in the built up areas were obtained from seventeen stations, using sling psychrometer. The data were subsequently analysed for spatial and temporal variations. The results obtained indicated that while the maximum, average and minimum temperatures showed significant annual variations, the spatial variations among the existing meteorological stations were not significant. The city is characterized by increasing annual mean temperatures whose maximum was significantly higher than that of Ondo town — another important town within the state. The annual mean temperatures ranged between 26.2°C and 30.4°C. Minimum and maximum temperatures varied from 12.3°C to 26°C and 22.5°C to 39.6°C, respectively while the relative humidity ranged between 27.5% and 98.2%. Urban `heat island' intensity was exhibited around central business district of the Oba market. 2007 American Institute of Physics

  14. Effect of thermal fatigue on the structure and properties of Ni3Al-based alloy single crystals

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Drozdov, A. A.; Bazyleva, O. A.; Bulakhtina, M. A.; Alad'ev, N. A.; Antonova, A. V.; Arginbaeva, E. G.; Morozov, A. E.

    2014-05-01

    The effect of thermal fatigue during tests of <001> and <111> single crystals according to the schedules 100 ai 850°C, 100 ai 1050°C, 100 ai 1100°C at a peak-to-peak stress Δσtc = 700-1000 MPa (sum of the maximum tensile and compressive stresses in a thermal cycle) on the structure, the fracture, and the fatigue life of an Ni3Al-based VKNA-1V alloy is studied. It is found that, at 103 thermal cycles, the <111> single crystals have the maximum thermal fatigue resistance at the maximum cycle temperature of 850 and 1050°C, and the properties of the <001> and <111> samples are almost the same at the maximum thermal cycle temperature of 1100°C. After thermal cycling at the maximum temperature of 850°C, the γ layers in the two-phase γ' + γ region in dendrites remain a single-phase structure, as in the as-cast material, and the layer thickness is 100-150 nm. When the maximum thermal cycle temperature increases to 1050 or 1100°C, the discontinuous γ-phase layers in the γ'(Ni3Al) matrix change their morphology and become shorter and wider (their thickness is 300-700 nm). The nickel-based supersaturated solid solution in these layers decomposes with the formation of secondary γ'(Ni3Al)-phase (γ'sec) precipitates in the form of cuboids 50 and 100 nm in size at the maximum cycle temperature of 1050 and 1100°C, respectively. The alternating stresses that appear during thermal cycling cause plastic deformation. As in nickel superalloys, this deformation at the first stage proceeds via the slip of screw dislocations along octahedral {111} planes. Networks of 60° dislocation segments form at γ'/γ interfaces in this case. Fracture begins at the lines of intersection of the slip planes of the {111} octahedron with the sample surface. During fractional, a crack passes from one octahedral plane to another and forms terraces and steps (crystallographic fracture); as a result, the fracture surface bends and becomes curved. In all cases, the fracture surfaces have a mixed brittle-ductile character with a combination of crystallographic and ductile (dimple) fracture elements.

  15. Design of Kinetic Energy Projectiles for Structural Integrity

    DTIC Science & Technology

    1981-09-01

    wear, and good pressure sealing experience. Unfortunately, the constitutive relations for these materials are highly temperature and rate of loading...41’ M IA 0 41 Lii uci a.O 49= z 445 Before any grooves are dimensioned, the maximum shear stress at the interface must be determined from a finite...concentrations in these sensitive materials. Filet radii at the root of the tooth should be increased to the maximum size consistent with good fit between

  16. Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves

    NASA Astrophysics Data System (ADS)

    Ghebreegziabher, Amanuel T.

    Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.

  17. Comparison between fluorimetry and oximetry techniques to measure photosynthesis in the diatom Skeletonema costatum cultivated under simulated seasonal conditions.

    PubMed

    Lefebvre, Sébastien; Mouget, Jean-Luc; Loret, Pascale; Rosa, Philippe; Tremblin, Gérard

    2007-02-01

    This study reports comparison of two techniques measuring photosynthesis in the ubiquitous diatom Skeletonema costatum, i.e., the classical oximetry and the recent modulated fluorimetry. Microalgae in semi-continuous cultures were exposed to five different environmental conditions simulating a seasonal effect with co-varying temperature, photoperiod and incident light. Photosynthesis was assessed by gross rate of oxygen evolution (P(B)) and the electron transport rate (ETR) measurements. The two techniques were linearly related within seasonal treatments along the course of the P/E curves. The light saturation intensity parameters (Ek and Ek(ETR)), and the maximum electron transport rate increased significantly with the progression of the season while the maximum light utilization efficiency for ETR (alpha(ETR)) was constant. By contrast, the maximum gross oxygen photosynthetic capacity (Pmax(B)) and the maximum light utilization efficiency for P(B) (alpha(B)) increased from December to May treatment but decreased from May to July treatment. Both techniques showed clear photoacclimation in microalgae with the progression of the season, as illustrated by changes in photosynthetic parameters. The relationship between the two techniques changed when high temperature, photoperiod and incident light were combined, possibly due to an overestimation of the PAR--averaged chlorophyll-specific absorption cross-section. Despite this change, our results illustrate the strong suitability of in vivo chlorophyll fluorimetry to estimate primary production in the field.

  18. Immobilization of pectin depolymerising polygalacturonase using different polymers.

    PubMed

    Ur Rehman, Haneef; Aman, Afsheen; Nawaz, Muhammad Asif; Karim, Asad; Ghani, Maria; Baloch, Abdul Hameed; Ul Qader, Shah Ali

    2016-01-01

    Polygalacturonase catalyses the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, different polymers such as calcium alginate beads, polyacrylamide gel and agar-agar matrix were screened for the immobilization of polygalacturonase through entrapment technique. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield as compared to agar-agar (80%) and calcium alginate beads (46%). The polymers increased the reaction time of polygalacturonase and polymers entrapped polygalacturonases showed maximum pectinolytic activity after 10 min of reaction as compared to free polygalacturonase which performed maximum activity after 5.0 min of reaction time. The temperature of polygalacturonase for maximum enzymatic activity was increased from 45°C to 50°C and 55°C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH (pH 10) of polygalacturonase was remained same when it was immobilized within polyacrylamide gel and calcium alginate beads, but changed from pH 10 to pH 9.0 after entrapment within agar-agar. Thermal stability of polygalacturonase was improved after immobilization and immobilized polygalacturonases showed higher tolerance against different temperatures as compared to free enzyme. Polymers entrapped polygalacturonases showed good reusability and retained more than 80% of their initial activity during 2nd cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Projected Changes in Temperature and Precipitation Extremes over China as Measured by 50-yr Return Values and Periods Based on a CMIP5 Ensemble

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Gao, Xuejie; Giorgi, Filippo; Zhou, Botao; Shi, Ying; Wu, Jie; Zhang, Yongxiang

    2018-04-01

    Future changes in the 50-yr return level for temperature and precipitation extremes over mainland China are investigated based on a CMIP5 multi-model ensemble for RCP2.6, RCP4.5 and RCP8.5 scenarios. The following indices are analyzed: TXx and TNn (the annual maximum and minimum of daily maximum and minimum surface temperature), RX5day (the annual maximum consecutive 5-day precipitation) and CDD (maximum annual number of consecutive dry days). After first validating the model performance, future changes in the 50-yr return values and return periods for these indices are investigated along with the inter-model spread. Multi-model median changes show an increase in the 50-yr return values of TXx and a decrease for TNn, more specifically, by the end of the 21st century under RCP8.5, the present day 50-yr return period of warm events is reduced to 1.2 yr, while extreme cold events over the country are projected to essentially disappear. A general increase in RX5day 50-yr return values is found in the future. By the end of the 21st century under RCP8.5, events of the present RX5day 50-yr return period are projected to reduce to < 10 yr over most of China. Changes in CDD-50 show a dipole pattern over China, with a decrease in the values and longer return periods in the north, and vice versa in the south. Our study also highlights the need for further improvements in the representation of extreme events in climate models to assess the future risks and engineering design related to large-scale infrastructure in China.

  20. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

Top