Sample records for maximum temperature limit

  1. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  2. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  3. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  4. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  5. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  6. Estimating Long-Term Survival Temperatures at the Assemblage Level in the Marine Environment: Towards Macrophysiology

    PubMed Central

    Richard, Joëlle; Morley, Simon Anthony; Thorne, Michael A. S.; Peck, Lloyd Samuel

    2012-01-01

    Defining ecologically relevant upper temperature limits of species is important in the context of environmental change. The approach used in the present paper estimates the relationship between rates of temperature change and upper temperature limits for survival in order to evaluate the maximum long-term survival temperature (Ts). This new approach integrates both the exposure time and the exposure temperature in the evaluation of temperature limits. Using data previously published for different temperate and Antarctic marine environments, we calculated Ts in each environment, which allowed us to calculate a new index: the Warming Allowance (WA). This index is defined as the maximum environmental temperature increase which an ectotherm in a given environment can tolerate, possibly with a decrease in performance but without endangering survival over seasonal or lifetime time-scales. It is calculated as the difference between maximum long-term survival temperature (Ts) and mean maximum habitat temperature. It provides a measure of how close a species, assemblage or fauna are living to their temperature limits for long-term survival and hence their vulnerability to environmental warming. In contrast to data for terrestrial environments showing that warming tolerance increases with latitude, results here for marine environments show a less clear pattern as the smallest WA value was for the Peru upwelling system. The method applied here, relating upper temperature limits to rate of experimental warming, has potential for wide application in the identification of faunas with little capacity to survive environmental warming. PMID:22509340

  7. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  8. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  9. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  10. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  11. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  12. Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems

    NASA Technical Reports Server (NTRS)

    Lustig, P. H.; Holms, A. G.; Davison, H. W.

    1973-01-01

    The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.

  13. Surface temperatures and glassy state investigations in tribology, part 2

    NASA Technical Reports Server (NTRS)

    Bair, S. S.; Winer, W. O.

    1979-01-01

    Measurements of lubricant shear rheological behavior in the amorphous solid region and near the liquid solid transition are reported. Elastic, plastic and viscous behavior was observed. The maximum yield shear stress (limiting shear stress) is a function of temperature and pressure and is believed to be the property which determines the maximum traction in elastohydrodynamic contacts such as traction drives. A shear rheological model based on primary laboratory data is proposed for concentrated contact lubrication. The model is Maxwell model modified with a limiting shear stress. Three material properties are required: low shear stress viscosity, limiting elastic shear modulus, and the limiting shear stress the material can withstand. All three are functions of temperature and pressure.

  14. The ideal chip is not enough: Issues retarding the success of wide band-gap devices

    NASA Astrophysics Data System (ADS)

    Kaminski, Nando

    2017-04-01

    Semiconductor chips made from the wide band-gap (WBG) materials silicon carbide (SiC) or gallium nitride (GaN) are already approaching the theoretical limits given by the respective materials. Unfortunately, their advantages over silicon devices cannot be fully exploited due to limitations imposed by the device packaging or the circuitry around the semiconductors. Stray inductances slow down the switching speed and increase losses, packaging materials limit the maximum temperature and the maximum useful temperature swing, and passives limit the maximum switching frequency. All these issues have to be solved or at least minimised to make WBG attractive for a wider range of applications and, consequently, to profit from the economy of scale.

  15. RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus tissue temperature limits.

    PubMed

    Fiedler, Thomas M; Ladd, Mark E; Bitz, Andreas K

    2017-01-01

    The purpose of this work was to perform an RF safety evaluation for a bilateral four-channel transmit/receive breast coil and to determine the maximum permissible input power for which RF exposure of the subject stays within recommended limits. The safety evaluation was done based on SAR as well as on temperature simulations. In comparison to SAR, temperature is more directly correlated with tissue damage, which allows a more precise safety assessment. The temperature simulations were performed by applying three different blood perfusion models as well as two different ambient temperatures. The goal was to evaluate whether the SAR and temperature distributions correlate inside the human body and whether SAR or temperature is more conservative with respect to the limits specified by the IEC. A simulation model was constructed including coil housing and MR environment. Lumped elements and feed networks were modeled by a network co-simulation. The model was validated by comparison of S-parameters and B 1 + maps obtained in an anatomical phantom. Three numerical body models were generated based on 3 Tesla MRI images to conform to the coil housing. SAR calculations were performed and the maximal permissible input power was calculated based on IEC guidelines. Temperature simulations were performed based on the Pennes bioheat equation with the power absorption from the RF simulations as heat source. The blood perfusion was modeled as constant to reflect impaired patients as well as with a linear and exponential temperature-dependent increase to reflect two possible models for healthy subjects. Two ambient temperatures were considered to account for cooling effects from the environment. The simulation model was validated with a mean deviation of 3% between measurement and simulation results. The highest 10 g-averaged SAR was found in lung and muscle tissue on the right side of the upper torso. The maximum permissible input power was calculated to be 17 W. The temperature simulations showed that temperature maximums do not correlate well with the position of the SAR maximums in all considered cases. The body models with an exponential blood perfusion increase did not exceed the temperature limit when an RF power according to the SAR limit was applied; in this case, a higher input power level by up to 73% would be allowed. The models with a constant or linear perfusion exceeded the limit for the local temperature when the local SAR limit was adhered to and would require a decrease in the input power level by up to 62%. The maximum permissible input power was determined based on SAR simulations with three newly generated body models and compared with results from temperature simulations. While SAR calculations are state-of-the-art and well defined as they are based on more or less well-known material parameters, temperature simulations depend strongly on additional material, environmental and physiological parameters. The simulations demonstrated that more consideration needs be made by the MR community in defining the parameters for temperature simulations in order to apply temperature limits instead of SAR limits in the context of MR RF safety evaluations. © 2016 American Association of Physicists in Medicine.

  16. Thermal biology of the sub-polar–temperate estuarine crab Hemigrapsus crenulatus (Crustacea: Decapoda: Varunidae)

    PubMed Central

    Cumillaf, Juan P.; Blanc, Johnny; Paschke, Kurt; Gebauer, Paulina; Díaz, Fernando; Re, Denisse; Chimal, María E.; Vásquez, Jorge; Rosas, Carlos

    2016-01-01

    ABSTRACT Optimum temperatures can be measured through aerobic scope, preferred temperatures or growth. A complete thermal window, including optimum, transition (Pejus) and critical temperatures (CT), can be described if preferred temperatures and CT are defined. The crustacean Hemigrapsus crenulatus was used as a model species to evaluate the effect of acclimation temperature on: (i) thermal preference and width of thermal window, (ii) respiratory metabolism, and (iii) haemolymph proteins. Dependant on acclimation temperature, preferred temperature was between 11.8°C and 25.2°C while CT was found between a minimum of 2.7°C (CTmin) and a maximum of 35.9°C (CTmax). These data and data from tropical and temperate crustaceans were compared to examine the association between environmental temperature and thermal tolerance. Temperate species have a CTmax limit around 35°C that corresponded with the low CTmax limit of tropical species (34–36°C). Tropical species showed a CTmin limit around 9°C similar to the maximum CTmin of temperate species (5–6°C). The maximum CTmin of deep sea species that occur in cold environments (2.5°C) matched the low CTmin values (3.2°C) of temperate species. Results also indicate that the energy required to activate the enzyme complex (Ei) involved in respiratory metabolism of ectotherms changes along the latitudinal gradient of temperature. PMID:26879464

  17. Effects of fasting on maximum thermogenesis in temperature-acclimated rats

    NASA Astrophysics Data System (ADS)

    Wang, L. C. H.

    1981-09-01

    To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.

  18. Altitude-Test-Chamber Investigation of a Solar Afterburner on the 24C Engine I - Operational Characteristics and Altitude Limits

    NASA Technical Reports Server (NTRS)

    1948-01-01

    An altitude-test-chamber investigation was conducted to determine the operational characteristics and altitude blow-out limits of a Solar afterburner in a 24C engine. At rated engine speed and maximum permissible turbine-discharge temperature, the altitude limit as determined by combustion blow-out occurred as a band of unstable operation of about 8000 feet altitude in width with maximum altitude limits from 32,000 feet at a Mach number of 0.3 to about 42,000 feet at a Mach number of 1.0. The maximum fuel-air ratio of the afterburner, as limited by maximum permissible turbine-discharge gas temperatures at rated engine speed, varied between 0.0295 and 0.0380 over a range of flight Mach numbers from 0.25 to 1.0 and at altitudes of 20,000 and 30,000 feet. Over this range of operating conditions, the fuel-air ratio at which lean blow-out occurred was from 10 to 19 percent below these maximum fuel-air ratios. Combustion was very smooth and uniform during operation; however, ignition of the burner was very difficult throughout the investigation. A failure of the flame holder after 12 hours and 15 minutes of afterburner operation resulted in termination of the investigation.

  19. Thermal biology of the sub-polar-temperate estuarine crab Hemigrapsus crenulatus (Crustacea: Decapoda: Varunidae).

    PubMed

    Cumillaf, Juan P; Blanc, Johnny; Paschke, Kurt; Gebauer, Paulina; Díaz, Fernando; Re, Denisse; Chimal, María E; Vásquez, Jorge; Rosas, Carlos

    2016-02-15

    Optimum temperatures can be measured through aerobic scope, preferred temperatures or growth. A complete thermal window, including optimum, transition (Pejus) and critical temperatures (CT), can be described if preferred temperatures and CT are defined. The crustacean Hemigrapsus crenulatus was used as a model species to evaluate the effect of acclimation temperature on: (i) thermal preference and width of thermal window, (ii) respiratory metabolism, and (iii) haemolymph proteins. Dependant on acclimation temperature, preferred temperature was between 11.8°C and 25.2°C while CT was found between a minimum of 2.7°C (CTmin) and a maximum of 35.9°C (CTmax). These data and data from tropical and temperate crustaceans were compared to examine the association between environmental temperature and thermal tolerance. Temperate species have a CTmax limit around 35°C that corresponded with the low CTmax limit of tropical species (34-36°C). Tropical species showed a CTmin limit around 9°C similar to the maximum CTmin of temperate species (5-6°C). The maximum CTmin of deep sea species that occur in cold environments (2.5°C) matched the low CTmin values (3.2°C) of temperate species. Results also indicate that the energy required to activate the enzyme complex (Ei) involved in respiratory metabolism of ectotherms changes along the latitudinal gradient of temperature. © 2016. Published by The Company of Biologists Ltd.

  20. Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress.

    PubMed

    Coast, Onoriode; Murdoch, Alistair J; Ellis, Richard H; Hay, Fiona R; Jagadish, Krishna S V

    2016-01-01

    Resilience of rice cropping systems to potential global climate change will partly depend on the temperature tolerance of pollen germination (PG) and tube growth (PTG). Pollen germination of high temperature-susceptible Oryza glaberrima Steud. (cv. CG14) and Oryza sativa L. ssp. indica (cv. IR64) and high temperature-tolerant O. sativa ssp. aus (cv. N22), was assessed on a 5.6-45.4 °C temperature gradient system. Mean maximum PG was 85% at 27 °C with 1488 μm PTG at 25 °C. The hypothesis that in each pollen grain, the minimum temperature requirements (Tn ) and maximum temperature limits (Tx ) for germination operate independently was accepted by comparing multiplicative and subtractive probability models. The maximum temperature limit for PG in 50% of grains (Tx(50) ) was the lowest (29.8 °C) in IR64 compared with CG14 (34.3 °C) and N22 (35.6 °C). Standard deviation (sx ) of Tx was also low in IR64 (2.3 °C) suggesting that the mechanism of IR64's susceptibility to high temperatures may relate to PG. Optimum germination temperatures and thermal times for 1 mm PTG were not linked to tolerating high temperatures at anthesis. However, the parameters Tx(50) and sx in the germination model define new pragmatic criteria for successful and resilient PG, preferable to the more traditional cardinal (maximum and minimum) temperatures. © 2014 John Wiley & Sons Ltd.

  1. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    PubMed

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  2. 40 CFR Table 4 to Subpart Ffff of... - Emission Limits for Storage Tanks

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applies to your storage tanks: For each . . . For which . . . Then you must . . . 1. Group 1 storage tank a. The maximum true vapor pressure of total HAP at the storage temperature is ≥76.6 kilopascals i... maximum true vapor pressure of total HAP at the storage temperature is <76.6 kilopascals i. Comply with...

  3. 40 CFR Table 4 to Subpart Ffff of... - Emission Limits for Storage Tanks

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applies to your storage tanks: For each . . . For which . . . Then you must . . . 1. Group 1 storage tank a. The maximum true vapor pressure of total HAP at the storage temperature is ≥76.6 kilopascals i... maximum true vapor pressure of total HAP at the storage temperature is <76.6 kilopascals i. Comply with...

  4. Quantization Of Temperature

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul

    2017-01-01

    Max Plank did not quantize temperature. I will show that the Plank temperature violates the Plank scale. Plank stated that the Plank scale was Natures scale and independent of human construct. Also stating that even aliens would derive the same values. He made a huge mistake, because temperature is based on the Kelvin scale, which is man-made just like the meter and kilogram. He did not discover natures scale for the quantization of temperature. His formula is flawed, and his value is incorrect. Plank's calculation is Tp = c2Mp/Kb. The general form of this equation is T = E/Kb Why is this wrong? The temperature for a fixed amount of energy is dependent upon the volume it occupies. Using the correct formula involves specifying the radius of the volume in the form of (RE). This leads to an inequality and a limit that is equivalent to the Bekenstein Bound, but using temperature instead of entropy. Rewriting this equation as a limit defines both the maximum temperature and Boltzmann's constant. This will saturate any space-time boundary with maximum temperature and information density, also the minimum radius and entropy. The general form of the equation then becomes a limit in BH thermodynamics T <= (RE)/(λKb) .

  5. Development of a High Temperature Heater using an Yttria Stabilized Zirconia Cored Brick Matrix

    NASA Technical Reports Server (NTRS)

    Smith, K. W.; Decoursin, D. G.

    1971-01-01

    The Ames pilot heater is a ceramic regenerative heater that provides high temperature air for aerodynamic and combustion experiments. The development of this heater to provide a heat storage bed with temperature capability of about 4600 R is described. A bed was designed and installed having cored brick elements of yttria-stabilized zirconia. The bed dimensions were 14 inches in diameter by 10 feet high. The thermal stress limitations of the bed were studied and maximum air flow rates based upon these limits were established. A combustion reheat system was designed and installed to provide the necessary control over the bed temperature distribution. The revised heater system was successfully operated at a maximum bed temperature of 4600 R. The successful operation demonstrated that yttria-stabilized zirconia cored brick can satisfy the high temperature-long duration requirement for storage heater applications.

  6. Quantifying environmental limiting factors on tree cover using geospatial data.

    PubMed

    Greenberg, Jonathan A; Santos, Maria J; Dobrowski, Solomon Z; Vanderbilt, Vern C; Ustin, Susan L

    2015-01-01

    Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree cover across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree cover? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree cover. We found that the study area showed system-wide limitations on tree cover, and each of the factors showed evidence of being limiting on tree cover. However, only 1.2% of the total area appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree cover in the study area. Where sites were near their theoretical maximum, non-forest sites (tree cover < 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree cover between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range.

  7. On the location of the maximum homogeneous crystal nucleation temperature

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1986-01-01

    Detailed considerations are given to the location of the temperature of maximum homogeneous nucleation as predicted by classical nucleation theory. It is shown quite generally that this maximum temperature, T-asterisk, must occur above the Kauzmann temperature and that the T-asterisk is such that T-asterisk is greater than T(m)/3, where T(m) is the melting temperature. Also, it is demonstrated tha T-asterisk may be considered to be approximately dependent upon two parameters: gamma, the ratio of the difference in specific heat between the crystal and liquid divided by the entropy of fusion, and E, a reduced activation energy for viscous flow. The variation of T-asterisk with these parameters is described. The relationship of the relative location of T-asterisk to the glass transition temperature, is discussed too. This discussion is couched within the framework of the strong and fragile liquid notion introduced by Angell (1981) and coworkers. Finally, the question of the ultimate limits to the undercooling of liquid metals is considered and its relationhsip to computations of the maximum nucleation temperature in such systems.

  8. May–June Maximum Temperature Reconstruction from Mean Earlywood Density in North Central China and Its Linkages to the Summer Monsoon Activities

    PubMed Central

    Chen, Feng; Yuan, Yujiang

    2014-01-01

    Cores of Pinus tabulaformis from Tianshui were subjected to densitometric analysis to obtain mean earlywood density data. Climate response analysis indicates that May–June maximum temperature is the main factor limiting the mean earlywood density (EWD) of Chinese pine trees in the Shimen Mountains. Based on the EWD chronology, we have reconstructed May–June maximum temperature 1666 to 2008 for Tianshui, north central China. The reconstruction explains 40.1% of the actual temperature variance during the common period 1953–2008. The temperature reconstruction is representative of temperature conditions over a large area to the southeast and northwest of the sampling site. Preliminary analysis of links between large-scale climatic variation and the temperature reconstruction shows that there is a relationship between extremes in spring temperature and anomalous atmospheric circulation in the region. It is thus revealed that the mean earlywood density chronology of Pinus tabulaformis has enough potential to reconstruct the temperature variability further into the past. PMID:25207554

  9. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletti, Luigi, E-mail: luigi.barletti@unifi.it

    2014-08-15

    The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

  10. Studies of evolutionary temperature adaptation: muscle function and locomotor performance in Antarctic fish.

    PubMed

    Franklin, C E

    1998-09-01

    1. Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3. In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degree C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N. coriiceps at 0 degree C. 4. It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish. Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.

  11. Maximum performance of solar heat engines: Discussion of thermodynamic availability and other second law considerations and their implications

    NASA Astrophysics Data System (ADS)

    Boehm, R. F.

    1985-09-01

    A review of thermodynamic principles is given in an effort to see if these concepts may indicate possibilities for improvements in solar central receiver power plants. Aspects related to rate limitations in cycles, thermodynamic availability of solar radiation, and sink temperature considerations are noted. It appears that considerably higher instantaneous plant efficiencies are possible by raising the maximum temperature and lowering the minimum temperature of the cycles. Of course, many practical engineering problems will have to be solved to realize the promised benefits.

  12. The maximum growth rate of life on Earth

    NASA Astrophysics Data System (ADS)

    Corkrey, Ross; McMeekin, Tom A.; Bowman, John P.; Olley, June; Ratkowsky, David

    2018-01-01

    Life on Earth spans a range of temperatures and exhibits biological growth rates that are temperature dependent. While the observation that growth rates are temperature dependent is well known, we have recently shown that the statistical distribution of specific growth rates for life on Earth is a function of temperature (Corkrey et al., 2016). The maximum rates of growth of all life have a distinct limit, even when grown under optimal conditions, and which vary predictably with temperature. We term this distribution of growth rates the biokinetic spectrum for temperature (BKST). The BKST possibly arises from a trade-off between catalytic activity and stability of enzymes involved in a rate-limiting Master Reaction System (MRS) within the cell. We develop a method to extrapolate quantile curves for the BKST to obtain the posterior probability of the maximum rate of growth of any form of life on Earth. The maximum rate curve conforms to the observed data except below 0°C and above 100°C where the predicted value may be positively biased. The deviation below 0°C may arise from the bulk properties of water, while the degradation of biomolecules may be important above 100°C. The BKST has potential application in astrobiology by providing an estimate of the maximum possible growth rate attainable by terrestrial life and perhaps life elsewhere. We suggest that the area under the maximum growth rate curve and the peak rate may be useful characteristics in considerations of habitability. The BKST can serve as a diagnostic for unusual life, such as second biogenesis or non-terrestrial life. Since the MRS must have been heavily conserved the BKST may contain evolutionary relics. The BKST can serve as a signature summarizing the nature of life in environments beyond Earth, or to characterize species arising from a second biogenesis on Earth.

  13. The neotropical shrub Lupinus elegans, fromtemperate forests, may not adapt to climate change.

    PubMed

    Soto-Correa, J C; Sáenz-Romero, C; Lindig-Cisneros, R; de la Barrera, E

    2013-05-01

    Considering that their distribution is limited to altitudinal gradients along mountains that are likely to become warmer and drier, climate change poses an increased threat to temperate forest species from tropical regions. We studied whether the understorey shrub Lupinus elegans, endemic to temperate forests of west-central Mexico, will be able to withstand the projected temperature increase under seven climate change scenarios. Seeds were collected along an altitudinal gradient and grown in a shade-house over 7 months before determining their temperature tolerance as electrolyte leakage. The plants from colder sites tolerated lower temperatures, i.e. the temperature at which half of the maximum electrolyte leakage occurred (LT50), ranged from −6.4 ± 0.7 to −2.4 ± 0.3 °C. In contrast, no pattern was found for tolerance to high temperature (LT50 average 42.8 ± 0.3 °C). The climate change scenarios considered here consistently estimated an increase in air temperature during the present century that was higher for the maximum air temperature than for the mean or minimum. In particular, the anomaly from the normal maximum air temperature at the study region ranged from 2.8 °C by 2030 to 5.8 °C by 2090. In this respect, the inability of L. elegans to adapt to increasingly higher temperatures found here, in addition to a possible inhibition of reproduction caused by warmer winters, may limit its future distribution.

  14. A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101

    PubMed Central

    Lawson, Tracy; Geider, Richard J.

    2017-01-01

    Trichodesmium is a globally important marine diazotroph that accounts for approximately 60 − 80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt. PMID:28081236

  15. A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101.

    PubMed

    Boatman, Tobias G; Lawson, Tracy; Geider, Richard J

    2017-01-01

    Trichodesmium is a globally important marine diazotroph that accounts for approximately 60 - 80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt.

  16. Combustion synthesis of ceramic and metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Moore, John J.; Feng, Heng J.; Hunter, Kevin J.; Wirth, David G.

    1993-01-01

    Combustion synthesis or self-propagating high temperature synthesis (SHS) is effected by heating a reactant mixture, to above the ignition temperature (Tig) whereupon an exothermic reaction is initiated which produces a maximum or combustion temperature, Tc. These SHS reactions are being used to produce ceramics, intermetallics, and composite materials. One of the major limitations of this process is that relatively high levels of porosity, e.g., 50 percent, remain in the product. Conducting these SHS reactions under adiabatic conditions, the maximum temperature is the adiabatic temperature, Tad, and delta H (Tad) = 0, Tad = Tc. If the reactants or products go through a phase change, the latent heat of transformation needs to be taken into account.

  17. A pantropical analysis of the impacts of forest degradation and conversion on local temperature.

    PubMed

    Senior, Rebecca A; Hill, Jane K; González Del Pliego, Pamela; Goode, Laurel K; Edwards, David P

    2017-10-01

    Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site-level (<1 ha) temperature data from the literature to quantify impacts of land-use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human-impacted land-use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest-dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.

  18. Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator?

    PubMed

    Jacobsen, Svein; Stauffer, Paul R

    2007-02-21

    The total thermal dose that can be delivered during hyperthermia treatments is frequently limited by temperature heterogeneities in the heated tissue volume. Reliable temperature information on the heated area is thus vital for the optimization of clinical dosimetry. Microwave radiometry has been proposed as an accurate, quick and painless temperature sensing technique for biological tissue. Advantages include the ability to sense volume-averaged temperatures from subsurface tissue non-invasively, rather than with a limited set of point measurements typical of implanted temperature probes. We present a procedure to estimate the maximum tissue temperature from a single radiometric brightness temperature which is based on a numerical simulation of 3D tissue temperature distributions induced by microwave heating at 915 MHz. The temperature retrieval scheme is evaluated against errors arising from unknown variations in thermal, electromagnetic and design model parameters. Whereas realistic deviations from base values of dielectric and thermal parameters have only marginal impact on performance, pronounced deviations in estimated maximum tissue temperature are observed for unanticipated variations of the temperature or thickness of the bolus compartment. The need to pay particular attention to these latter applicator construction parameters in future clinical implementation of the thermometric method is emphasized.

  19. Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator?

    NASA Astrophysics Data System (ADS)

    Jacobsen, Svein; Stauffer, Paul R.

    2007-02-01

    The total thermal dose that can be delivered during hyperthermia treatments is frequently limited by temperature heterogeneities in the heated tissue volume. Reliable temperature information on the heated area is thus vital for the optimization of clinical dosimetry. Microwave radiometry has been proposed as an accurate, quick and painless temperature sensing technique for biological tissue. Advantages include the ability to sense volume-averaged temperatures from subsurface tissue non-invasively, rather than with a limited set of point measurements typical of implanted temperature probes. We present a procedure to estimate the maximum tissue temperature from a single radiometric brightness temperature which is based on a numerical simulation of 3D tissue temperature distributions induced by microwave heating at 915 MHz. The temperature retrieval scheme is evaluated against errors arising from unknown variations in thermal, electromagnetic and design model parameters. Whereas realistic deviations from base values of dielectric and thermal parameters have only marginal impact on performance, pronounced deviations in estimated maximum tissue temperature are observed for unanticipated variations of the temperature or thickness of the bolus compartment. The need to pay particular attention to these latter applicator construction parameters in future clinical implementation of the thermometric method is emphasized.

  20. Thermal design of composite material high temperature attachments

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.

  1. Are black holes springlike?

    NASA Astrophysics Data System (ADS)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  2. Advanced cooling techniques for high-pressure hydrocarbon-fueled engines

    NASA Technical Reports Server (NTRS)

    Cook, R. T.

    1979-01-01

    The regenerative cooling limits (maximum chamber pressure) for 02/hydrocarbon gas generator and staged combustion cycle rocket engines over a thrust range of 89,000 N (20,000lbf) to 2,669,000 N (600,000 lbf) for a reusable life of 250 missions were defined. Maximum chamber pressure limits were first determined for the three propellant combinations (O2/CH4, O2/C3H8, and O2/RP-1 without a carbon layer (unenhanced designs). Chamber pressure cooling enhancement limits were then established for seven thermal barriers. The thermal barriers evaluated for these designs were: carbon layer, ceramic coating, graphite liner, film cooling, transpiration cooling, zoned combustion, and a combination of two of the above. All fluid barriers were assessed a 3 percent performance loss. Sensitivity studies were then conducted to determine the influence of cycle life and RP-1 decomposition temperature on chamber pressure limits. Chamber and nozzle design parameters are presented for the unenahanced and enhanced designs. The maximum regenerative cooled chamber pressure limits were attained with the O2/CH4 propellant combination. The O2/RP-1 designs relied on a carbon layer and liquid gas injection chamber contours, short chamber, to be competitive with the other two propellant combinations. This was attributed to the low decomposition temperature of RP-1.

  3. Knock-Limited Performance of Triptane and Xylidines Blended with 28-R Aviation Fuel at High Compression Ratios and Maximum-Economy Spark Setting

    NASA Technical Reports Server (NTRS)

    Held, Louis F.; Pritchard, Ernest I.

    1946-01-01

    An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.

  4. 40 CFR 63.4966 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... capture system and add-on control device operating limits during the performance test? 63.4966 Section 63... system and add-on control device operating limits during the performance test? During the performance... outlet gas temperature is the maximum operating limit for your condenser. (e) Emission capture system...

  5. 40 CFR 63.4966 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capture system and add-on control device operating limits during the performance test? 63.4966 Section 63... system and add-on control device operating limits during the performance test? During the performance... outlet gas temperature is the maximum operating limit for your condenser. (e) Emission capture system...

  6. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions.

    PubMed

    Rosenthal, David M; Ruiz-Vera, Ursula M; Siebers, Matthew H; Gray, Sharon B; Bernacchi, Carl J; Ort, Donald R

    2014-09-01

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Controlling a rabbet load and air/oil seal temperatures in a turbine

    DOEpatents

    Schmidt, Mark Christopher

    2002-01-01

    During a standard fired shutdown of a turbine, a loaded rabbet joint between the fourth stage wheel and the aft shaft of the machine can become unloaded causing a gap to occur due to a thermal mismatch at the rabbet joint with the bearing blower turned on. An open or unloaded rabbet could cause the parts to move relative to each other and therefore cause the rotor to lose balance. If the bearing blower is turned off during a shutdown, the forward air/oil seal temperature may exceed maximum design practice criterion due to "soak-back." An air/oil seal temperature above the established maximum design limits could cause a bearing fire to occur, with catastrophic consequences to the machine. By controlling the bearing blower according to an optimized blower profile, the rabbet load can be maintained, and the air/oil seal temperature can be maintained below the established limits. A blower profile is determined according to a thermodynamic model of the system.

  8. Thermal Tolerance in Anuran Embryos with Different Reproductive Modes: Relationship to Altitude

    PubMed Central

    Lynch, John D.

    2013-01-01

    Anurans are ectothermic animals very sensitive to temperature, mainly during the embryonic stage. In addition, environmental temperature decreases with altitude, and the amphibian fauna changes. Therefore, we studied the relationship between the embryonic thermal tolerances of twelve species of anurans and the temperatures of their microhabitat along an altitudinal gradient from 430 m to 2600 m. We hypothesized that there is a strong thermal adjustment of embryos to their microhabitat and, consequently, that temperature could be a limiting factor of altitudinal distribution of the anurans. We also compared the embryonic thermal tolerances according to six postulated reproductive modes of the study species. We found a significant relationship between the maximum and minimum thermal tolerances of the anuran embryos and the maximum and minimum temperatures of their microhabitat and altitudinal distribution. We also found a wide range of embryonic thermal tolerances for aquatic breeding species and a narrower range for terrestrial breeding species. Particularly, embryos of direct development species were the most sensitive to temperature. These results show the strong thermal adjustment of anuran embryos to their microhabitat and elevation and do not reject the hypothesis that temperature can be a limiting factor of their altitudinal distribution. PMID:23766678

  9. Physical Limitations of Phosphor layer thickness and concentration for White LEDs.

    PubMed

    Tan, Cher Ming; Singh, Preetpal; Zhao, Wenyu; Kuo, Hao-Chung

    2018-02-05

    Increasing phosphor layer thickness and concentration can enhance the lumen flux of white LED (W-LED). In this work, we found that increasing the phosphor layer thickness and concentration can increase its temperature, and there is also a maximum thickness and concentration beyond which their increase will not lead to lumen increase, but only temperature increase. Higher thickness and higher concentration also results in warm light instead of White light. The maximum thickness and concentration are found to be limited by the scattering of light rays with higher % decrease of blue light rays than the yellow light rays. The results obtained in this work can also be used to compute the temperature and thermo-mechanical stress distribution of an encapsulated LED, demonstrating its usefulness to the design of encapsulated LED packages. Simulation software like ANSYS and TracePro are used extensively to verify the root cause mechanisms.

  10. 46 CFR 151.45-6 - Maximum amount of cargo.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Operations § 151.45-6 Maximum amount of cargo. (a) Tanks carrying liquids or liquefied gases at ambient temperatures regulated by this subchapter shall be limited in the amount of cargo loaded to that which will avoid the tank being liquid full at 105 °F if...

  11. 40 CFR 62.14455 - What if my HMIWI goes outside of a parameter limit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature (3-hour rolling average) simultaneously The PM, CO, and dioxin/furan emission limits. (c) Except..., daily average for batch HMIWI), and below the minimum dioxin/furan sorbent flow rate (3-hour rolling average) simultaneously The dioxin/furan emission limit. (3) Operates above the maximum charge rate (3...

  12. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles

    NASA Astrophysics Data System (ADS)

    Smith, Kandler; Wang, Chao-Yang

    A 1D electrochemical, lumped thermal model is used to explore pulse power limitations and thermal behavior of a 6 Ah, 72 cell, 276 V nominal Li-ion hybrid-electric vehicle (HEV) battery pack. Depleted/saturated active material Li surface concentrations in the negative/positive electrodes consistently cause end of high-rate (∼25 C) pulse discharge at the 2.7 V cell -1 minimum limit, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell -1 maximum limit, meant to protect the negative electrode from lithium deposition side reaction during charge, is overly conservative for high-rate (∼15 C) pulse charges initiated from states-of-charge (SOCs) less than 100%. Two-second maximum pulse charge rate from the 50% SOC initial condition can be increased by as much as 50% without risk of lithium deposition. Controlled to minimum/maximum voltage limits, the pack meets partnership for next generation vehicles (PNGV) power assist mode pulse power goals (at operating temperatures >16 °C), but falls short of the available energy goal. In a vehicle simulation, the pack generates heat at a 320 W rate on a US06 driving cycle at 25 °C, with more heat generated at lower temperatures. Less aggressive FUDS and HWFET cycles generate 6-12 times less heat. Contact resistance ohmic heating dominates all other mechanisms, followed by electrolyte phase ohmic heating. Reaction and electronic phase ohmic heats are negligible. A convective heat transfer coefficient of h = 10.1 W m -2 K -1 maintains cell temperature at or below the 52 °C PNGV operating limit under aggressive US06 driving.

  13. 40 CFR Table 2 to Subpart Sssss of... - Operating Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hour) at or below the maximum organic HAP processing rate established during the most recent... allowable operating temperature for the oxidizer established during the most recent performance test. 6... operating temperature for the oxidizer established during the most recent performance test; and b. Check the...

  14. 40 CFR Table 2 to Subpart Sssss of... - Operating Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hour) at or below the maximum organic HAP processing rate established during the most recent... allowable operating temperature for the oxidizer established during the most recent performance test. 6... operating temperature for the oxidizer established during the most recent performance test; and b. Check the...

  15. 40 CFR Table 2 to Subpart Sssss of... - Operating Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hour) at or below the maximum organic HAP processing rate established during the most recent... allowable operating temperature for the oxidizer established during the most recent performance test. 6... operating temperature for the oxidizer established during the most recent performance test; and b. Check the...

  16. The maximum efficiency of nano heat engines depends on more than temperature

    NASA Astrophysics Data System (ADS)

    Woods, Mischa; Ng, Nelly; Wehner, Stephanie

    Sadi Carnot's theorem regarding the maximum efficiency of heat engines is considered to be of fundamental importance in the theory of heat engines and thermodynamics. Here, we show that at the nano and quantum scale, this law needs to be revised in the sense that more information about the bath other than its temperature is required to decide whether maximum efficiency can be achieved. In particular, we derive new fundamental limitations of the efficiency of heat engines at the nano and quantum scale that show that the Carnot efficiency can only be achieved under special circumstances, and we derive a new maximum efficiency for others. A preprint can be found here arXiv:1506.02322 [quant-ph] Singapore's MOE Tier 3A Grant & STW, Netherlands.

  17. Variation in the daily rhythm of body temperature of free-living Arabian oryx (Oryx leucoryx): does water limitation drive heterothermy?

    PubMed

    Hetem, Robyn Sheila; Strauss, Willem Maartin; Fick, Linda Gayle; Maloney, Shane Kevin; Meyer, Leith Carl Rodney; Shobrak, Mohammed; Fuller, Andrea; Mitchell, Duncan

    2010-10-01

    Heterothermy, a variability in body temperature beyond the limits of homeothermy, has been advanced as a key adaptation of Arabian oryx (Oryx leucoryx) to their arid-zone life. We measured body temperature using implanted data loggers, for a 1-year period, in five oryx free-living in the deserts of Saudi Arabia. As predicted for adaptive heterothermy, during hot months compared to cooler months, not only were maximum daily body temperatures higher (41.1 ± 0.3 vs. 39.7 ± 0.1°C, P = 0.0002) but minimum daily body temperatures also were lower (36.1 ± 0.3 vs. 36.8 ± 0.2°C, P = 0.04), resulting in a larger daily amplitude of the body temperature rhythm (5.0 ± 0.5 vs. 2.9 ± 0.2°C, P = 0.0007), while mean daily body temperature rose by only 0.4°C. The maximum daily amplitude of the body temperature rhythm reached 7.7°C for two of our oryx during the hot-dry period, the largest amplitude ever recorded for a large mammal. Body temperature variability was influenced not only by ambient temperature but also water availability, with oryx displaying larger daily amplitudes of the body temperature rhythm during warm-dry months compared to warm-wet months (3.6 ± 0.6 vs. 2.3 ± 0.3°C, P = 0.005), even though ambient temperatures were the same. Free-living Arabian oryx therefore employ heterothermy greater than that recorded in any other large mammal, but water limitation, rather than high ambient temperature, seems to be the primary driver of this heterothermy.

  18. Effects of microclimatic variables on the symptoms and signs onset of Moniliophthora roreri, causal agent of Moniliophthora pod rot in cacao

    PubMed Central

    Tixier, Philippe; Germon, Amandine; Rakotobe, Veromanitra; Phillips-Mora, Wilbert; Maximova, Siela; Avelino, Jacques

    2017-01-01

    Moniliophthora Pod Rot (MPR) caused by the fungus Moniliophthora roreri (Cif.) Evans et al., is one of the main limiting factors of cocoa production in Latin America. Currently insufficient information on the biology and epidemiology of the pathogen limits the development of efficient management options to control MPR. This research aims to elucidate MPR development through the following daily microclimatic variables: minimum and maximum temperatures, wetness frequency, average temperature and relative humidity in the highly susceptible cacao clone Pound-7 (incidence = 86% 2008–2013 average). A total of 55 cohorts totaling 2,268 pods of 3–10 cm length, one to two months of age, were tagged weekly. Pods were assessed throughout their lifetime, every one or two weeks, and classified in 3 different categories: healthy, diseased with no sporulation, diseased with sporulating lesions. As a first step, we used Generalized Linear Mixed Models (GLMM) to determine with no a priori the period (when and for how long) each climatic variable was better related with the appearance of symptoms and sporulation. Then the significance of the candidate variables was tested in a complete GLMM. Daily average wetness frequency from day 14 to day 1, before tagging, and daily average maximum temperature from day 4 to day 21, after tagging, were the most explanatory variables of the symptoms appearance. The former was positively linked with the symptoms appearance when the latter exhibited a maximum at 30°C. The most important variables influencing sporulation were daily average minimum temperature from day 35 to day 58 and daily average maximum temperature from day 37 to day 48, both after tagging. Minimum temperature was negatively linked with the sporulation while maximum temperature was positively linked. Results indicated that the fungal microclimatic requirements vary from the early to the late cycle stages, possibly due to the pathogen’s long latent period. This information is valuable for development of new conceptual models for MPR and improvement of control methods. PMID:28972981

  19. Effects of microclimatic variables on the symptoms and signs onset of Moniliophthora roreri, causal agent of Moniliophthora pod rot in cacao.

    PubMed

    Leandro-Muñoz, Mariela E; Tixier, Philippe; Germon, Amandine; Rakotobe, Veromanitra; Phillips-Mora, Wilbert; Maximova, Siela; Avelino, Jacques

    2017-01-01

    Moniliophthora Pod Rot (MPR) caused by the fungus Moniliophthora roreri (Cif.) Evans et al., is one of the main limiting factors of cocoa production in Latin America. Currently insufficient information on the biology and epidemiology of the pathogen limits the development of efficient management options to control MPR. This research aims to elucidate MPR development through the following daily microclimatic variables: minimum and maximum temperatures, wetness frequency, average temperature and relative humidity in the highly susceptible cacao clone Pound-7 (incidence = 86% 2008-2013 average). A total of 55 cohorts totaling 2,268 pods of 3-10 cm length, one to two months of age, were tagged weekly. Pods were assessed throughout their lifetime, every one or two weeks, and classified in 3 different categories: healthy, diseased with no sporulation, diseased with sporulating lesions. As a first step, we used Generalized Linear Mixed Models (GLMM) to determine with no a priori the period (when and for how long) each climatic variable was better related with the appearance of symptoms and sporulation. Then the significance of the candidate variables was tested in a complete GLMM. Daily average wetness frequency from day 14 to day 1, before tagging, and daily average maximum temperature from day 4 to day 21, after tagging, were the most explanatory variables of the symptoms appearance. The former was positively linked with the symptoms appearance when the latter exhibited a maximum at 30°C. The most important variables influencing sporulation were daily average minimum temperature from day 35 to day 58 and daily average maximum temperature from day 37 to day 48, both after tagging. Minimum temperature was negatively linked with the sporulation while maximum temperature was positively linked. Results indicated that the fungal microclimatic requirements vary from the early to the late cycle stages, possibly due to the pathogen's long latent period. This information is valuable for development of new conceptual models for MPR and improvement of control methods.

  20. Evaluation of extreme temperature events in northern Spain based on process control charts

    NASA Astrophysics Data System (ADS)

    Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.

    2018-02-01

    Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.

  1. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA

    USGS Publications Warehouse

    Howell, P.J.; Dunham, J.B.; Sankovich, P.M.

    2010-01-01

    Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.

  2. Kinetic limitations on the diffusional control theory of the ablation rate of carbon.

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1971-01-01

    It is shown that the theoretical maximum oxidation rate is limited in many cases even at temperatures much higher than 1650 deg K, not by oxygen transport, but by the kinetics of the carbon-oxygen reaction itself. Mass-loss rates have been calculated at air pressures of 0.01 atm, 1 atm, and 100 atm. It is found that at high temperatures the rate of the oxidation reaction is much slower than has generally been assumed on the basis of a simple linear extrapolation of Scala's 'fast' and 'slow' rate expressions. Accordingly it cannot be assumed that a transport limitation inevitably must be reached at high temperatures.

  3. Configuration and Calibration of High Temperature Furnaces for Testing Ceramic Matrix Composites

    DTIC Science & Technology

    2014-10-01

    Actual Furnace Cavity Stainless Steel Mesh Cage For Electrical Connections (both sides) High Temperature Power Lead Clamp Furnace Control TC’s Power... tests generate the basic properties such as modulus (E), ultimate tensile strength (UTS), proportional limit (PL), strain at failure (f), as well as...stress- strain behavior. Each material was tested at room temperature, at the maximum use temperature for the CMC system (as determined by the CMC

  4. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures.

    PubMed

    Norin, Tommy; Malte, Hans; Clark, Timothy D

    2014-01-15

    Climate warming is predicted to negatively impact fish populations through impairment of oxygen transport systems when temperatures exceed those which are optimal for aerobic scope (AS). This concept of oxygen- and capacity-limited thermal tolerance (OCLTT) is rapidly gaining popularity within climate change research and has been applied to several fish species. Here, we evaluated the relevance of aerobic performance of juvenile barramundi (Lates calcarifer) in the context of thermal preference and tolerance by (1) measuring standard and maximum metabolic rates (SMR and MMR, respectively) and AS of fish acclimated to 29°C and acutely exposed to temperatures from 23 to 38°C, (2) allowing the fish to behaviourally select a preferred temperature between 29 and 38°C, and (3) quantifying alterations to AS after 5 weeks of acclimation to 29 and 38°C. SMR and MMR both increased continuously with temperature in acutely exposed fish, but the increase was greater for MMR such that AS was highest at 38°C, a temperature approaching the upper lethal limit (40-41°C). Despite 38°C eliciting maximum AS, when given the opportunity the fish selected a median temperature of 31.7 ± 0.5°C and spent only 10 ± 3% of their time at temperatures >36°C. Following acclimation to 38°C, AS measured at 38°C was decreased to the same level as 29°C-acclimated fish measured at 29°C, suggesting that AS may be dynamically modulated independent of temperature to accommodate the requirements of daily life. Together, these results reveal limited power of the OCLTT hypothesis in predicting optimal temperatures and effects of climate warming on juvenile barramundi.

  5. Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean.

    PubMed

    Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Wang, Tobias; Bayley, Mark

    2014-03-01

    In aquatic environments, rising water temperatures reduce water oxygen content while increasing oxygen demand, leading several authors to propose cardiorespiratory oxygen transport capacity as the main determinant of aquatic animal fitness. It has also been argued that tropical species, compared with temperate species, live very close to their upper thermal limit and hence are vulnerable to even small elevations in temperature. Little, however, is known about physiological responses to high temperatures in tropical species. Here we report that the tropical giant freshwater shrimp (Macrobrachium rosenbergii) maintains normal growth when challenged by a temperature rise of 6°C above the present day average (from 27°C to 33°C). Further, by measuring heart rate, gill ventilation rate, resting and maximum oxygen uptake, and hemolymph lactate, we show that oxygen transport capacity is maintained up to the critical maximum temperature around 41°C. In M. rosenbergii heart rate and gill ventilation rate increases exponentially until immediately below critical temperatures and at 38°C animals still retained more than 76% of aerobic scope measured at 30°C, and there was no indication of anaerobic metabolism at the high temperatures. Our study shows that the oxygen transport capacity is maintained at high temperatures, and that other mechanisms, such as protein dysfunction, are responsible for the loss of ecological performance at elevated temperatures.

  6. 40 CFR Table 5 to Subpart Hhhhhhh... - Operating Parameters, Operating Limits and Data Monitoring, Recording and Compliance Frequencies...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...

  7. 40 CFR Table 5 to Subpart Hhhhhhh... - Operating Parameters, Operating Limits and Data Monitoring, Recording and Compliance Frequencies...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...

  8. Quantitative Assessment of Temperature Sensitivity of the South Fork Nooksack River under Future Climates using QUAL2Kw

    EPA Science Inventory

    The Total Maximum Daily Load (TMDL) program, established by the Clean Water Act, is used to establish limits on loading of pollutants from point and nonpoint sources necessary to achieve water quality standards. One important use of a temperature TMDL is to allocate thermal loads...

  9. Flexible Cryogenic Heat Pipe Development Program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A heat pipe was designed for operation in the 100 - 200 K temperature range with maximum heat transport as a primary design goal; another designed for operation in the 15 - 100 K temperature range with maximum flexibility as a design goal. Optimum geometry and materials for the container and wicking systems were determined. The high power (100 - 200 K) heat pipe was tested with methane at 100 - 140 K, and test data indicated only partial priming with a performance limit of less than 50 percent of theoretical. A series of tests were conducted with ammonia at approximately 280 K to determine the performance under varying fluid charge and test conditions. The low temperature heat pipe was tested with oxygen at 85 - 95 K and with methanol at 295 - 315 K. Performance of the low temperature heat pipe was below theoretical predictions. Results of the completed testing are presented and possible performance limitation mechanisms are discussed. The lower-than-expected performance was felt to be due to small traces of non-condensible gases which prevented the composite wick from priming.

  10. Numerical simulation of quench protection for a 1.5 T persistent mode MgB2 conduction-cooled MRI magnet

    NASA Astrophysics Data System (ADS)

    Deissler, Robert J.; Baig, Tanvir; Poole, Charles; Amin, Abdullah; Doll, David; Tomsic, Michael; Martens, Michael

    2017-02-01

    The active quench protection of a 1.5 T MgB2 conduction-cooled MRI magnet operating in persistent current mode is considered. An active quench protection system relies on the detection of the resistive voltage developed in the magnet, which is used to trigger the external energizing of quench heaters located on the surfaces of all ten coil bundles. A numerical integration of the heat equation is used to determine the development of the temperature profile and the maximum temperature in the coil at the origin, or ‘hot spot’, of the quench. Both n-value of the superconductor and magnetoresistance of the wire are included in the simulations. An MgB2 wire manufactured by Hyper Tech Research, Inc. was used as the basis to model the wire for the simulations. With the proposed active quench protection system, the maximum temperature was limited to 200 K or less, which is considered low enough to prevent damage to the magnet. By substituting Glidcop for the Monel in the wire sheath or by increasing the thermal conductivity of the insulation, the margin for safe operation was further increased, the maximum temperature decreasing by more than 40 K. The strain on the MgB2 filaments is calculated using ANSYS, verifying that the stress and strain limits in the MgB2 superconductor and epoxy insulation are not exceeded.

  11. Maximum heart rate in brown trout (Salmo trutta fario) is not limited by firing rate of pacemaker cells.

    PubMed

    Haverinen, Jaakko; Abramochkin, Denis V; Kamkin, Andre; Vornanen, Matti

    2017-02-01

    Temperature-induced changes in cardiac output (Q̇) in fish are largely dependent on thermal modulation of heart rate (f H ), and at high temperatures Q̇ collapses due to heat-dependent depression of f H This study tests the hypothesis that firing rate of sinoatrial pacemaker cells sets the upper thermal limit of f H in vivo. To this end, temperature dependence of action potential (AP) frequency of enzymatically isolated pacemaker cells (pacemaker rate, f PM ), spontaneous beating rate of isolated sinoatrial preparations (f SA ), and in vivo f H of the cold-acclimated (4°C) brown trout (Salmo trutta fario) were compared under acute thermal challenges. With rising temperature, f PM steadily increased because of the acceleration of diastolic depolarization and shortening of AP duration up to the break point temperature (T BP ) of 24.0 ± 0.37°C, at which point the electrical activity abruptly ceased. The maximum f PM at T BP was much higher [193 ± 21.0 beats per minute (bpm)] than the peak f SA (94.3 ± 6.0 bpm at 24.1°C) or peak f H (76.7 ± 2.4 at 15.7 ± 0.82°C) (P < 0.05). These findings strongly suggest that the frequency generator of the sinoatrial pacemaker cells does not limit f H at high temperatures in the brown trout in vivo. Copyright © 2017 the American Physiological Society.

  12. Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps

    PubMed Central

    Wieser, Gerhard; Oberhuber, Walter; Walder, Lisa; Spieler, Daniela; Gruber, Andreas

    2011-01-01

    Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European Alps, where low temperatures limit carbon metabolism. We focused on the effects of air and soil temperature on net photosynthesis (Pn) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian Alps. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall. In general, Pn was significantly lower in fall as compared to summer. Nevertheless, independent from season mean Pn values tended to increase with elevation and were positively correlated with root zone temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement. Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime. PMID:21379394

  13. The two-box model of climate: limitations and applications to planetary habitability and maximum entropy production studies.

    PubMed

    Lorenz, Ralph D

    2010-05-12

    The 'two-box model' of planetary climate is discussed. This model has been used to demonstrate consistency of the equator-pole temperature gradient on Earth, Mars and Titan with what would be predicted from a principle of maximum entropy production (MEP). While useful for exposition and for generating first-order estimates of planetary heat transports, it has too low a resolution to investigate climate systems with strong feedbacks. A two-box MEP model agrees well with the observed day : night temperature contrast observed on the extrasolar planet HD 189733b.

  14. The two-box model of climate: limitations and applications to planetary habitability and maximum entropy production studies

    PubMed Central

    Lorenz, Ralph D.

    2010-01-01

    The ‘two-box model’ of planetary climate is discussed. This model has been used to demonstrate consistency of the equator–pole temperature gradient on Earth, Mars and Titan with what would be predicted from a principle of maximum entropy production (MEP). While useful for exposition and for generating first-order estimates of planetary heat transports, it has too low a resolution to investigate climate systems with strong feedbacks. A two-box MEP model agrees well with the observed day : night temperature contrast observed on the extrasolar planet HD 189733b. PMID:20368253

  15. Factors affecting the estimate of primary production from space

    NASA Technical Reports Server (NTRS)

    Balch, W. M.; Byrne, C. F.

    1994-01-01

    Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface mixed layer, which is useful for predicting integral biomass and primary production.

  16. Is blue intensity ready to replace maximum latewood density as a strong temperature proxy? A tree-ring case study on Scots pine from northern Sweden

    NASA Astrophysics Data System (ADS)

    Björklund, J. A.; Gunnarson, B. E.; Seftigen, K.; Esper, J.; Linderholm, H. W.

    2013-09-01

    At high latitudes, where low temperatures mainly limit tree-growth, measurements of wood density (e.g. Maximum Latewood Density, MXD) using the X-Ray methodology provide a temperature proxy that is superior to that of TRW. Density measurements are however costly and time consuming and have lead to experimentation with optical flatbed scanners to produce Maximum Blue Intensity (BImax). BImax is an excellent proxy for density on annual scale but very limited in skill on centennial scale. Discolouration between samples is limiting BImax where specific brightnesses can have different densities. To overcome this, the new un-exploited parameter Δ blue intensity (ΔBI) was constructed by using the brightness in the earlywood (BIEW) as background, (BImax - BIEW = ΔBI). This parameter was tested on X-Ray material (MXD - earlywood density = ΔMXD) and showed great potential both as a quality control and as a booster of climate signals. Unfortunately since the relationship between grey scale and density is not linear, and between-sample brightness can differ tremendously for similar densities, ΔBI cannot fully match ΔMXD in skill as climate proxy on centennial scale. For ΔBI to stand alone, the range of brightness/density offset must be reduced. Further studies are needed to evaluate this possibility, and solutions might include heavier sample treatment (reflux with chemicals) or image-data treatment (digitally manipulating base-line levels of brightness).

  17. Gigantism, temperature and metabolic rate in terrestrial poikilotherms

    PubMed Central

    Makarieva, Anastassia M; Gorshkov, Victor G; Li, Bai-Lian

    2005-01-01

    The mechanisms dictating upper limits to animal body size are not well understood. We have analysed body length data for the largest representatives of 24 taxa of terrestrial poikilotherms from tropical, temperate and polar environments. We find that poikilothermic giants on land become two–three times shorter per each 10 degrees of decrease in ambient temperature. We quantify that this diminution of maximum body size accurately compensates the drop of metabolic rate dictated by lower temperature. This supports the idea that the upper limit to body size within each taxon can be set by a temperature-independent critical minimum value of mass-specific metabolic rate, a fall below which is not compatible with successful biological performance. PMID:16191647

  18. Design study of an advanced gas generator. [which can be ignited during start-up period of turbine engines

    NASA Technical Reports Server (NTRS)

    Kim, S.; Trinh, H. P.

    1993-01-01

    A gas generator which can be ignited reliably during the initial start-up period and offers fairly uniform gas temperature at the exit was studied numerically. Various sizes and shapes of the mixing enhancement devices and their positions were examined to evaluate the uniformity of the exit gas temperature and the change of internal pressure drop incurred by introducing the mixing enhancement devices. By introducing a turbulence ring and a splash plate with an appropriate size and position, it was possible to obtain fairly uniform gas temperature distributions and a maximum gas temperature that is within the design limit temperature of 1600 R at the generator exit. However, with the geometry studied, the pressure drop across the generator was great, approximately 1150 psi, to satisfy the assigned design limit temperature. If the design limit temperature is increased to 1650 R, the pressure drop across the generator could be lowered by as much as 350 psi.

  19. Corrected Implicit Monte Carlo

    DOE PAGES

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    2018-01-02

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  20. Corrected implicit Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cleveland, M. A.; Wollaber, A. B.

    2018-04-01

    In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  2. Radiance limits of ceramic phosphors under high excitation fluxes

    NASA Astrophysics Data System (ADS)

    Lenef, Alan; Kelso, John; Zheng, Yi; Tchoul, Maxim

    2013-09-01

    Ceramic phosphors, excited by high radiance pump sources, offer considerable potential for high radiance conversion. Interestingly, thermodynamic arguments suggest that the radiance of the luminescent spot can even exceed that of the incoming light source. In practice, however, thermal quenching and (non-thermal) optical saturation limit the maximum attainable radiance of the luminescent source. We present experimental data for Ce:YAG and Ce:GdYAG ceramics in which these limits have been investigated. High excitation fluxes are achieved using laser pumping. Optical pumping intensities exceeding 100W/mm2 have been shown to produce only modest efficiency depreciation at low overall pump powers because of the short Ce3+ lifetime, although additional limitations exist. When pump powers are higher, heat-transfer bottlenecks within the ceramic and heat-sink interfaces limit maximum pump intensities. We find that surface temperatures of these laser-pumped ceramics can reach well over 150°C, causing thermal-quenching losses. We also find that in some cases, the loss of quantum efficiency with increasing temperature can cause a thermal run-away effect, resulting in a rapid loss in converted light, possibly over-heating the sample or surrounding structures. While one can still obtain radiances on the order of many W/mm2/sr, temperature quenching effects ultimately limit converted light radiance. Finally, we use the diffusion-approximation radiation transport models and rate equation models to simulate some of these nonlinear optical pumping and heating effects in high-scattering ceramics.

  3. 40 CFR 63.4966 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system and add-on control device operating limits during the performance test? 63.4966 Section 63.4966... outlet gas temperature is the maximum operating limit for your condenser. (e) Emission capture system... Emission Rate with Add-on Controls Option § 63.4966 How do I establish the emission capture system and add...

  4. 40 CFR 63.4966 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system and add-on control device operating limits during the performance test? 63.4966 Section 63.4966... outlet gas temperature is the maximum operating limit for your condenser. (e) Emission capture system... with Add-on Controls Option § 63.4966 How do I establish the emission capture system and add-on control...

  5. 40 CFR 63.4966 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system and add-on control device operating limits during the performance test? 63.4966 Section 63.4966... outlet gas temperature is the maximum operating limit for your condenser. (e) Emission capture system... with Add-on Controls Option § 63.4966 How do I establish the emission capture system and add-on control...

  6. High-Field Quench Behavior and Protection of $$Bi_2 Sr_2 Ca Cu_2 O_x$$ Coils: Minimum and Maximum Quench Detection Voltages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Tengming; Ye, Liyang; Turrioni, Daniele

    Small insert coils have been built using a multifilamentary Bi2Sr2CaCu2Ox round wire, and characterized in background fields to explore the quench behaviors and limits of Bi2Sr2CaCu2Ox superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltagemore » shall be greater than 50 mV to not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increases from ~40 K to ~80 K with increasing the operating wire current density Jo from 89 A/mm2 to 354 A/mm2 whereas for the voltage to reach 1 V, it increases from ~60 K to ~140 K, showing the increasing negative impact of slow normal zone propagation on quench detection with increasing Jo and the need to limit the quench detection voltage to < 1 V. These measurements, coupled with an analytical quench model, were used to access the impact of the maximum allowable voltage and temperature upon quench detection on the quench protection, assuming to limit the hot spot temperature to <300 K.« less

  7. Thermoelectric Power Factor Limit of a 1D Nanowire

    NASA Astrophysics Data System (ADS)

    Chen, I.-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes

    2018-04-01

    In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I -V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW /m K2 ) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.

  8. Thermoelectric Power Factor Limit of a 1D Nanowire.

    PubMed

    Chen, I-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes

    2018-04-27

    In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I-V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW/m K^{2}) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.

  9. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds.

    PubMed

    Smith, Eric Krabbe; O'Neill, Jacqueline J; Gerson, Alexander R; McKechnie, Andrew E; Wolf, Blair O

    2017-09-15

    We examined thermoregulatory performance in seven Sonoran Desert passerine bird species varying in body mass from 10 to 70 g - lesser goldfinch, house finch, pyrrhuloxia, cactus wren, northern cardinal, Abert's towhee and curve-billed thrasher. Using flow-through respirometry, we measured daytime resting metabolism, evaporative water loss and body temperature at air temperatures ( T air ) between 30 and 52°C. We found marked increases in resting metabolism above the upper critical temperature ( T uc ), which for six of the seven species fell within a relatively narrow range (36.2-39.7°C), but which was considerably higher in the largest species, the curve-billed thrasher (42.6°C). Resting metabolism and evaporative water loss were minimal below the T uc and increased with T air and body mass to maximum values among species of 0.38-1.62 W and 0.87-4.02 g H 2 O h -1 , respectively. Body temperature reached maximum values ranging from 43.5 to 45.3°C. Evaporative cooling capacity, the ratio of evaporative heat loss to metabolic heat production, reached maximum values ranging from 1.39 to 2.06, consistent with known values for passeriforms and much lower than values in taxa such as columbiforms and caprimulgiforms. These maximum values occurred at heat tolerance limits that did not scale with body mass among species, but were ∼50°C for all species except the pyrrhuloxia and Abert's towhee (48°C). High metabolic costs associated with respiratory evaporation appeared to drive the limited heat tolerance in these desert passeriforms, compared with larger desert columbiforms and galliforms that use metabolically more efficient mechanisms of evaporative heat loss. © 2017. Published by The Company of Biologists Ltd.

  10. 46 CFR 56.60-2 - Limitations on materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... with a maximum design temperature of 150 °F. The material must not be used for salt water service or other fluids that may cause dezincification or stress corrosion cracking. 6 [Reserved] 7 An ammonia...

  11. 46 CFR 56.60-2 - Limitations on materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... with a maximum design temperature of 150 °F. The material must not be used for salt water service or other fluids that may cause dezincification or stress corrosion cracking. 6 [Reserved] 7 An ammonia...

  12. 46 CFR 56.60-2 - Limitations on materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... with a maximum design temperature of 150 °F. The material must not be used for salt water service or other fluids that may cause dezincification or stress corrosion cracking. 6 [Reserved] 7 An ammonia...

  13. Iridium/Rhenium Parts For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Harding, John T.; Wooten, John R.

    1991-01-01

    Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.

  14. Oxygen supply limits the heat tolerance of lizard embryos.

    PubMed

    Smith, Colton; Telemeco, Rory S; Angilletta, Michael J; VandenBrooks, John M

    2015-04-01

    The mechanisms that set the thermal limits to life remain uncertain. Classically, researchers thought that heating kills by disrupting the structures of proteins or membranes, but an alternative hypothesis focuses on the demand for oxygen relative to its supply. We evaluated this alternative hypothesis by comparing the lethal temperature for lizard embryos developing at oxygen concentrations of 10-30%. Embryos exposed to normoxia and hyperoxia survived to higher temperatures than those exposed to hypoxia, suggesting that oxygen limitation sets the thermal maximum. As all animals pass through an embryonic stage where respiratory and cardiovascular systems must develop, oxygen limitation may limit the thermal niches of terrestrial animals as well as aquatic ones. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection.

    PubMed

    DeWeber, Jefferson T; Wagner, Tyler

    2018-06-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects. © 2018 John Wiley & Sons Ltd.

  16. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection

    USGS Publications Warehouse

    DeWeber, Jefferson T.; Wagner, Tyler

    2018-01-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects.

  17. Low-temperature overpressurization protection system setpoint analysis using RETRAN-02/MOD5 for Salem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodson, R.J.; Feltus, M.A.

    The low-temperature overpressurization protection system (LTOPS) is designed to protect the reactor pressure vessel (RPV) from brittle failure during startup and cooldown maneuvers in Westinghouse pressurized water reactors. For the Salem power plants, the power-operated relief valves (PORVs) mitigate pressure increases above a setpoint where an operational startup transient may put the RPV in the embrittlement fracture zone. The Title 10, Part 50, Code of Federal Regulations Appendix G limit, given by plant technical specifications, conservatively bounds the maximum pressure allowed during those transients where the RPV can suffer brittle fracture (usually below 350{degrees}F). The Appendix G limit is amore » pressure versus temperature curve that is more restrictive at lower RPV temperatures and allows for higher pressures as the temperature approaches the upper bounding fracture temperature.« less

  18. Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps.

    PubMed

    Wieser, Gerhard; Oberhuber, Walter; Walder, Lisa; Spieler, Daniela; Gruber, Andreas

    2010-04-01

    Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European Alps, where low temperatures limit carbon metabolism.We focused on the effects of air and soil temperature on net photosynthesis (P(n)) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian Alps. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall.In general, P(n) was significantly lower in fall as compared to summer. Nevertheless, independent from season mean P(n) values tended to increase with elevation and were positively correlated with root zone temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement.Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime.

  19. Phase field modeling of rapid crystallization in the phase-change material AIST

    NASA Astrophysics Data System (ADS)

    Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus

    2017-07-01

    We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.

  20. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird.

    PubMed

    du Plessis, Katherine L; Martin, Rowan O; Hockey, Philip A R; Cunningham, Susan J; Ridley, Amanda R

    2012-10-01

    Recent mass mortalities of bats, birds and even humans highlight the substantial threats that rising global temperatures pose for endotherms. Although less dramatic, sublethal fitness costs of high temperatures may be considerable and result in changing population demographics. Endothermic animals exposed to high environmental temperatures can adjust their behaviour (e.g. reducing activity) or physiology (e.g. elevating rates of evaporative water loss) to maintain body temperatures within tolerable limits. The fitness consequences of these adjustments, in terms of the ability to balance water and energy budgets and therefore maintain body condition, are poorly known. We investigated the effects of daily maximum temperature on foraging and thermoregulatory behaviour as well as maintenance of body condition in a wild, habituated population of Southern Pied Babblers Turdoides bicolor. These birds inhabit a hot, arid area of southern Africa where they commonly experience environmental temperatures exceeding optimal body temperatures. Repeated measurements of individual behaviour and body mass were taken across days varying in maximum air temperature. Contrary to expectations, foraging effort was unaffected by daily maximum temperature. Foraging efficiency, however, was lower on hotter days and this was reflected in a drop in body mass on hotter days. When maximum air temperatures exceeded 35.5 °C, individuals no longer gained sufficient weight to counter typical overnight weight loss. This reduction in foraging efficiency is likely driven, in part, by a trade-off with the need to engage in heat-dissipation behaviours. When we controlled for temperature, individuals that actively dissipated heat while continuing to forage experienced a dramatic decrease in their foraging efficiency. This study demonstrates the value of investigations of temperature-dependent behaviour in the context of impacts on body condition, and suggests that increasingly high temperatures will have negative implications for the fitness of these arid-zone birds. © 2012 Blackwell Publishing Ltd.

  1. Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2007-01-01

    Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate to within about 0.005 degrees Celsius (?C). In addition to assessing the effects of point-source heat trades, the models were used to evaluate the temperature effects of several shade-restoration scenarios. Restoration of riparian shade along the entire Long Tom River, from its mouth to Fern Ridge Dam, was calculated to have a small but significant effect on daily maximum temperatures in the main-stem Willamette River, on the order of 0.03?C where the Long Tom River enters the Willamette River, and diminishing downstream. Model scenarios also were run to assess the effects of restoring selected 5-mile reaches of riparian vegetation along the main-stem Willamette River from river mile (RM) 176.80, just upstream of the point where the McKenzie River joins the Willamette River, to RM 116.87 near Albany, which is one location where cumulative point-source heating effects are at a maximum. Restoration of riparian vegetation along the main-stem Willamette River was shown by model runs to have a significant local effect on daily maximum river temperatures (0.046 to 0.194?C) at the site of restoration. The magnitude of the cooling depends on many factors including river width, flow, time of year, and the difference in vegetation characteristics between current and restored conditions. Downstream of the restored reach, the cooling effects are complex and have a nodal nature: at one-half day of travel time downstream, shade restoration has little effect on daily maximum temperature because water passes the restoration site at night; at 1 full day of travel time downstream, cooling effects increase to a second, diminished maximum. Such spatial complexities may complicate the trading of heat allocations between point and nonpoint sources. Upstream dams have an important effect on water temperature in the Willamette River system as a result of augmented flows as well as modified temperature releases over the course of the summer and autumn. The TMDL was formulated prior t

  2. Photosynthesis of young apple trees in response to low sink demand under different air temperatures.

    PubMed

    Fan, Pei G; Li, Lian S; Duan, Wei; Li, Wei D; Li, Shao H

    2010-03-01

    Gas exchange, chlorophyll fluorescence, photosynthetic end products and related enzymes in source leaves in response to low sink demand after girdling to remove the root sink were assessed in young apple trees (Malus pumila) grown in two greenhouses with different air temperatures for 5 days. Compared with the non-girdled control in the low-temperature greenhouse (diurnal maximum air temperature <32 degrees C), low sink demand resulted in lower net photosynthetic rate (P(n)), stomatal conductance (g(s)) and transpiration rate (E) but higher leaf temperature on Day 5, while in the high-temperature greenhouse (diurnal maximum air temperature >36 degrees C), P(n), g(s) and E declined from Day 3 onwards. Moreover, gas exchange responded more to low sink demand in the high-temperature greenhouse than in the low-temperature greenhouse. Decreased P(n) at low sink demand was accompanied by lower intercellular CO(2) concentrations in the low-temperature greenhouse. However, decreased maximal photochemical efficiency, potential activity, efficiency of excitation capture, actual efficiency and photochemical quenching, with increased minimal fluorescence and non-photochemical quenching of photosystem II (PSII), were observed in low sink demand leaves only in the high-temperature greenhouse. In addition, low sink demand increased leaf starch and soluble carbohydrate content in both greenhouses but did not result in lower activity of enzymes involved in metabolism. Thus, decreased P(n) under low sink demand was independent of a direct effect of end-product feedback but rather depended on a high temperature threshold. The lower P(n) was likely due to stomatal limitation in the low-temperature greenhouse, but mainly due to non-stomatal limitation in the high-temperature greenhouse.

  3. Attitude sensor alignment calibration for the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Pitone, Daniel S.; Shuster, Malcolm D.

    1990-01-01

    An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission (SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair of fixed-head star trackers relative to the fine pointing Sun sensor. Here, new sensor alignment algorithms which better quantify the dependence of the alignments on the temperature are developed and applied to the SMM data. Comparison with the results from the previous study reveals the limitations of the heuristic approach. In addition, some of the basic assumptions made in the prelaunch analysis of the alignments of the SMM are examined. The results of this work have important consequences for future missions with stringent attitude requirements and where misalignment variations due to variations in the temperature will be significant.

  4. Promising thermoelectric properties of phosphorenes.

    PubMed

    Sevik, Cem; Sevinçli, Hâldun

    2016-09-02

    Electronic, phononic, and thermoelectric transport properties of single layer black- and blue-phosphorene structures are investigated with first-principles based ballistic electron and phonon transport calculations employing hybrid functionals. The maximum values of room temperature thermoelectric figure of merit, ZT corresponding to armchair and zigzag directions of black-phosphorene, ∼0.5 and ∼0.25, are calculated as rather smaller than those obtained with first-principles based semiclassical Boltzmann transport theory calculations. On the other hand, the maximum value of room temperature ZT of blue-phosphorene is predicted to be substantially high and remarkable values as high as 2.5 are obtained for elevated temperatures. Besides the fact that these figures are obtained at the ballistic limit, our findings mark the strong possibility of high thermoelectric performance of blue-phosphorene in new generation thermoelectric applications.

  5. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  6. Room temperature microwave oscillations in GaN/AlN resonant tunneling diodes with peak current densities up to 220 kA/cm2

    NASA Astrophysics Data System (ADS)

    Encomendero, Jimy; Yan, Rusen; Verma, Amit; Islam, S. M.; Protasenko, Vladimir; Rouvimov, Sergei; Fay, Patrick; Jena, Debdeep; Xing, Huili Grace

    2018-03-01

    We report the generation of room temperature microwave oscillations from GaN/AlN resonant tunneling diodes, which exhibit record-high peak current densities. The tunneling heterostructure grown by molecular beam epitaxy on freestanding GaN substrates comprises a thin GaN quantum well embedded between two AlN tunneling barriers. The room temperature current-voltage characteristics exhibit a record-high maximum peak current density of ˜220 kA/cm2. When biased within the negative differential conductance region, microwave oscillations are measured with a fundamental frequency of ˜0.94 GHz, generating an output power of ˜3.0 μW. Both the fundamental frequency and the output power of the oscillator are limited by the external biasing circuit. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is predicted to be ˜200 GHz. This work represents a significant step towards microwave power generation enabled by resonant tunneling transport, an ultra-fast process that goes beyond the limitations of current III-Nitride high electron mobility transistors.

  7. Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis).

    PubMed

    Brown, Kelly J; Downs, Colleen T

    2006-01-01

    Rock hyrax (Procavia capensis) are faced with large daily fluctuations in ambient temperature during summer and winter. In this study, peritoneal body temperature of free-living rock hyrax was investigated. During winter, when low ambient temperatures and food supply prevail, rock hyrax maintained a lower core body temperature relative to summer. In winter body temperatures during the day were more variable than at night. This daytime variability is likely a result of body temperatures being raised from basking in the sun. Body temperatures recorded during winter never fell to low levels recorded in previous laboratory studies. During summer ambient temperatures exceeded the thermoneutral zone of the rock hyrax throughout most of the day, while crevice temperatures remained within the thermoneutral zone of rock hyrax. However, in summer variation in core body temperature was small. Minimum and maximum body temperatures did not coincide with minimum and maximum ambient temperatures. Constant body temperatures were also recorded when ambient temperatures reached lethal limits. During summer it is likely that rock hyrax select cooler refugia to escape lethal temperatures and to prevent excessive water loss. Body temperature of rock hyrax recorded in this study reflects the adaptability of this animal to the wide range of ambient temperatures experienced in its natural environment.

  8. Comparison of effects of elevated temperature versus temperature fluctuations on reef corals at Kahe Point, Oahu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coles, S.L.

    1975-01-01

    Bottom temperature and the condition of live corals in the vicinity of the discharge plume from the Hawaiian Electric Company Kahe Generating Station, Oahu, Hawaii, were monitored August--December 1973. Mortality to Pocillopora meandrina, the most thermally sensitive species of the area, was no greater under the conditions of maximum thermal enrichment near the living reef fringe in the discharge area (1--2 m depth) than in an area (4--5 m depth) more distant from the discharge. Sublethal coral damage was more pronounced near the discharge, but was mostly limited to loss of zooxanthellar pigment which was restored following yearly ambient temperaturemore » maxima. Although bottom temperatures in the discharge area continually varied 3$sup 0$--4$sup 0$C within minute periods during every low tide, live corals seldom encountered temperatures exceeding 31$sup 0$C. The limited damage that occurred to live corals indicates that upper absolute temperatures are more critical in producing coral damage than are short- term temperature shocks near upper lethal limits. (auth)« less

  9. Impact of Land Surface Initialization Approach on Subseasonal Forecast Skill: a Regional Analysis in the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Hirsch, Annette L.; Kala, Jatin; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Haverd, Vanessa; Mocko, David

    2014-01-01

    The authors use a sophisticated coupled land-atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%-20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.

  10. Causes and Control of Corrosion in Buried-Conduit Heat Distribution Systems

    DTIC Science & Technology

    1991-07-01

    rubber , and foamed plastics such as polyurethanic anld phenolic) nominally contain 10 to 500 ppmn soluble chloide.’ Further, insulation can also become...pressure ratings. A maximum P X T limitation exists for all gasket materials. For example, the maximum temperature and pressure ratings for an EPDM ...ethylene propylene diene monomer) rubber material are, respectively, 3() ’F and 150 psi. The material, however, cannot be expected to perform

  11. Evidence for Surface Water Ice in the Lunar Polar Regions Using Reflectance Measurements from the Lunar Orbiter Laser Altimeter and Temperature Measurements from the Diviner Lunar Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; hide

    2017-01-01

    We find that the reflectance of the lunar surface within 5 deg of latitude of theSouth Pole increases rapidly with decreasing temperature, near approximately 110K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5 deg from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10 deg to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al. 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200K and possibly at 300K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. 2015 based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

  12. Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment

    NASA Astrophysics Data System (ADS)

    Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; Paige, David A.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    We find that the reflectance of the lunar surface within 5° of latitude of the South Pole increases rapidly with decreasing temperature, near ∼110 K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5° from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10° to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110 K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al., 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200 K and possibly at 300 K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. (2015) based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

  13. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum.

    PubMed

    Frieling, Joost; Gebhardt, Holger; Huber, Matthew; Adekeye, Olabisi A; Akande, Samuel O; Reichart, Gert-Jan; Middelburg, Jack J; Schouten, Stefan; Sluijs, Appy

    2017-03-01

    Global ocean temperatures rapidly warmed by ~5°C during the Paleocene-Eocene Thermal Maximum (PETM; ~56 million years ago). Extratropical sea surface temperatures (SSTs) met or exceeded modern subtropical values. With these warm extratropical temperatures, climate models predict tropical SSTs >35°C-near upper physiological temperature limits for many organisms. However, few data are available to test these projected extreme tropical temperatures or their potential lethality. We identify the PETM in a shallow marine sedimentary section deposited in Nigeria. On the basis of planktonic foraminiferal Mg/Ca and oxygen isotope ratios and the molecular proxy [Formula: see text], latest Paleocene equatorial SSTs were ~33°C, and [Formula: see text] indicates that SSTs rose to >36°C during the PETM. This confirms model predictions on the magnitude of polar amplification and refutes the tropical thermostat theory. We attribute a massive drop in dinoflagellate abundance and diversity at peak warmth to thermal stress, showing that the base of tropical food webs is vulnerable to rapid warming.

  14. Atlantic salmon show capability for cardiac acclimation to warm temperatures.

    PubMed

    Anttila, Katja; Couturier, Christine S; Overli, Oyvind; Johnsen, Arild; Marthinsen, Gunnhild; Nilsson, Göran E; Farrell, Anthony P

    2014-06-24

    Increases in environmental temperature predicted to result from global warming have direct effects on performance of ectotherms. Moreover, cardiac function has been observed to limit the tolerance to high temperatures. Here we show that two wild populations of Atlantic salmon originating from northern and southern extremes of its European distribution have strikingly similar cardiac responses to acute warming when acclimated to common temperatures, despite different local environments. Although cardiac collapse starts at 21-23 °C with a maximum heart rate of ~150 beats per min (bpm) for 12 °C-acclimated fish, acclimation to 20 °C considerably raises this temperature (27.5 °C) and maximum heart rate (~200 bpm). Only minor population differences exist and these are consistent with the warmer habitat of the southern population. We demonstrate that the considerable cardiac plasticity discovered for Atlantic salmon is largely independent of natural habitat, and we propose that observed cardiac plasticity may aid salmon to cope with global warming.

  15. Orienting Arc Lamps for Longest Life

    NASA Technical Reports Server (NTRS)

    Kiss, J.

    1985-01-01

    Temperature distribution strongly affects performance. Tests on floodlights for Space Shuttle payload bay show useful life of metal halide dc arc lamp prolonged by mounting "anode down" and wiring for maximum heat conduction away from electrodes. Anode-down configuration, anode and cathode temperatures stabilize at 333 degrees and 313 degrees C, respectively, after 1 hour of operation. Temperatures both below limit for quartz-to-metal seals, and lamps able to withstand a 2,000-hour life test with satisfactory light output at end.

  16. Core power and decay time limits for a disabled LOFT ECCS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, S.A.

    1978-01-09

    An analysis was done to determine at what LOFT total core power (nuclear plus decay power) the ECCS could be inoperable. The criteria used for the analysis was that the maximum fuel clad temperature should not exceed 1650/sup 0/F given a loss of coolant. Calculations for natural convection cooling of the fuel by air with an inlet temperature of 580/sup 0/F determined that the limiting core power is 25 kW (discounted by 15 percent to 20 percent for potential uncertainties). Shutdown times are listed for when the LOFT ECCS can be safely bypassed or disabled.

  17. Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect

    NASA Astrophysics Data System (ADS)

    Feng, Yuanli; Chen, Lingen; Meng, Fankai; Sun, Fengrui

    2018-01-01

    A thermodynamic model of a thermoelectric cooler driven by thermoelectric generator (TEG-TEC) device is established considering Thomson effect. The performance is analyzed and optimized using numerical calculation based on non-equilibrium thermodynamic theory. The influence characteristics of Thomson effect on the optimal performance and variable selection are investigated by comparing the condition with and without Thomson effect. The results show that Thomson effect degrades the performance of TEG-TEC device, it decreases the cooling capacity by 27 %, decreases the coefficient of performance (COP) by 19 %, decreases the maximum cooling temperature difference by 11 % when the ratio of thermoelectric elements number is 0.6, the cold junction temperature of thermoelectric cooler (TEC) is 285 K and the hot junction temperature of thermoelectric generator (TEG) is 450 K. Thomson effect degrades the optimal performance of TEG-TEC device, it decreases the maximum cooling capacity by 28 % and decreases the maximum COP by 28 % under the same junction temperatures. Thomson effect narrows the optimal variable range and optimal working range. In the design of the devices, limited-number thermoelectric elements should be more allocated appropriately to TEG when consider Thomson effect. The results may provide some guidelines for the design of TEG-TEC devices.

  18. Structural Design Considerations for Tubular Power Tower Receivers Operating at 650 Degrees C: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, T. W.; Wagner, M. J.; Gray, A. K.

    Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditionalmore » boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.« less

  19. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors

    PubMed Central

    2014-01-01

    This paper studies the effect of atomic layer deposition (ALD) temperature on the performance of top-down ZnO nanowire transistors. Electrical characteristics are presented for 10-μm ZnO nanowire field-effect transistors (FETs) and for deposition temperatures in the range 120°C to 210°C. Well-behaved transistor output characteristics are obtained for all deposition temperatures. It is shown that the maximum field-effect mobility occurs for an ALD temperature of 190°C. This maximum field-effect mobility corresponds with a maximum Hall effect bulk mobility and with a ZnO film that is stoichiometric. The optimized transistors have a field-effect mobility of 10 cm2/V.s, which is approximately ten times higher than can typically be achieved in thin-film amorphous silicon transistors. Furthermore, simulations indicate that the drain current and field-effect mobility extraction are limited by the contact resistance. When the effects of contact resistance are de-embedded, a field-effect mobility of 129 cm2/V.s is obtained. This excellent result demonstrates the promise of top-down ZnO nanowire technology for a wide variety of applications such as high-performance thin-film electronics, flexible electronics, and biosensing. PMID:25276107

  20. MS212--A Homogeneous Sputtered Solid Lubricant Coating for Use to 800 C

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Waters, William J.; Soltis, Richard

    1997-01-01

    Composite coatings containing chromium carbide, stable fluorides and silver were prepared by magnetron sputtering. The microstructure of the coatings is very homogeneous compared to that of plasma sprayed and sintered versions of the same chemical composition. Friction and wear of MS212-coated and baseline uncoated aluminum and Inconel X-750 are compared. At room temperature, the friction and wear of coated aluminum is dramatically better compared to the baseline. The acceptable load is limited by deformation of the soft aluminum substrate. In the case of the nickel alloy, lower friction is observed for the coated alloy at all temperatures up to the maximum test temperature of 800 C. Pin wear factors for sliding against the coated alloy are lower than the baseline at room temperature and 350 C, and comparable to baseline wear at higher test temperatures. Low baseline wear at high temperatures is due to the lubricious nature of the natural oxides formed on nickel-chromium alloys in a hot, oxidizing atmosphere. No load limit was found for coated Inconel X-750 at loads up to five times the load limit for coated aluminum.

  1. Thermal Analysis of Iodine Satellite (iSAT) from Preliminary Design Review (PDR) to Critical Design Review (CDR)

    NASA Technical Reports Server (NTRS)

    Mauro, Stephanie

    2016-01-01

    The Iodine Satellite (iSAT) is a 12U cubesat with a primary mission to demonstrate the iodine fueled Hall Effect Thruster (HET) propulsion system. The spacecraft (SC) will operate throughout a one year mission in an effort to mature the propulsion system for use in future applications. The benefit of the HET is that it uses a propellant, iodine, which is easy to store and provides a high thrust-to-mass ratio. This paper will describe the thermal analysis and design of the SC between Preliminary Design Review (PDR) and Critical Design Review (CDR). The design of the satellite has undergone many changes due to a variety of challenges, both before PDR and during the time period discussed in this paper. Thermal challenges associated with the system include a high power density, small amounts of available radiative surface area, localized temperature requirements of the propulsion components, and unknown orbital parameters. The thermal control system is implemented to maintain component temperatures within their respective operational limits throughout the mission, while also maintaining propulsion components at the high temperatures needed to allow gaseous iodine propellant to flow. The design includes heaters, insulation, radiators, coatings, and thermal straps. Currently, the maximum temperatures for several components are near to their maximum operation limit, and the battery is close to its minimum operation limit. Mitigation strategies and planned work to solve these challenges will be discussed.

  2. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  3. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  4. Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Chen, Gang

    2014-03-01

    Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for 1 sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via the thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells across a broad range of bandgap energies, under low optical concentration (1-300 suns), operating temperatures in the range 900-1700 K, and in simple flat panel designs. We demonstrate maximum conversion efficiency of 73% under illumination by non-concentrated sunlight. A detailed analysis of non-ideal hybrid platforms that allows for up to 15% of absorption/re-emission losses yields limiting efficiency value of 45% for Si PV cells.

  5. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates.

    PubMed

    Marañón, Emilio; Lorenzo, María P; Cermeño, Pedro; Mouriño-Carballido, Beatriz

    2018-04-25

    Climate warming has the potential to alter ecosystem function through temperature-dependent changes in individual metabolic rates. The temperature sensitivity of phytoplankton metabolism is especially relevant, since these microorganisms sustain marine food webs and are major drivers of biogeochemical cycling. Phytoplankton metabolic rates increase with temperature when nutrients are abundant, but it is unknown if the same pattern applies under nutrient-limited growth conditions, which prevail over most of the ocean. Here we use continuous cultures of three cosmopolitan and biogeochemically relevant species (Synechococcus sp., Skeletonema costatum and Emiliania huxleyi) to determine the temperature dependence (activation energy, E a ) of metabolism under different degrees of nitrogen (N) limitation. We show that both CO 2 fixation and respiration rates increase with N supply but are largely insensitive to temperature. E a of photosynthesis (0.11 ± 0.06 eV, mean ± SE) and respiration (0.04 ± 0.17 eV) under N-limited growth is significantly smaller than E a of growth rate under nutrient-replete conditions (0.77 ± 0.06 eV). The reduced temperature dependence of metabolic rates under nutrient limitation can be explained in terms of enzyme kinetics, because both maximum reaction rates and half-saturation constants increase with temperature. Our results suggest that the direct, stimulating effect of rising temperatures upon phytoplankton metabolic rates will be circumscribed to ecosystems with high-nutrient availability.

  6. Analysis of microfluidic flow driven by electrokinetic and pressure forces

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsin

    2011-12-01

    This work presents an analysis of microfluidic flow introduced by mixed electrokinetic force and pressure gradient. Analytical solutions are presented for the case of constant surface heat flux, taking the Joule heating effect into account. The present problem is governed by two scale ratios and the dimensionless source term. The two important ratios are the length scale ratio e (the ratio of Debye length to the tube radius R) and the velocity scale ratio Γ (the ratio of the pressuredriven velocity scale for Poiseuille flow to Helmholtz-Smoluchowski velocity for electroosmotic flow). For mixed electroosmotic and pressure-driven flow, the resulting velocity profile is the superimposed effect of both electroosmotic and Poiseuille flow phenomena. It is found that the velocity profile decreases as e increases and the normalized temperature profiles across the tube increases monotonously form the core to the wall. The maximum dimensionless temperature is observed at the wall and the wall temperature increases with increasing Joule heating. Also, the temperature is increased with increasing the value of ɛ . The fully developed Nusselt number takes the maximum value at the limiting case of ɛ --> 0 , and then decreases with increasing ɛ . Moreover, the Nusselt number decreases with Γ and then goes asymptotically to the limit of Poiseuille flow as Γ --> ∞ , where the flow is dominated by the pressure force.

  7. Body temperatures in dinosaurs: what can growth curves tell us?

    PubMed

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited by overheating impossible.

  8. Body Temperatures in Dinosaurs: What Can Growth Curves Tell Us?

    PubMed Central

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today’s crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal’s core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited by overheating impossible. PMID:24204568

  9. Thermal Analysis of Iodine Satellite (iSAT)

    NASA Technical Reports Server (NTRS)

    Mauro, Stephanie

    2015-01-01

    This paper presents the progress of the thermal analysis and design of the Iodine Satellite (iSAT). The purpose of the iSAT spacecraft (SC) is to demonstrate the ability of the iodine Hall Thruster propulsion system throughout a one year mission in an effort to mature the system for use on future satellites. The benefit of this propulsion system is that it uses a propellant, iodine, that is easy to store and provides a high thrust-to-mass ratio. The spacecraft will also act as a bus for an earth observation payload, the Long Wave Infrared (LWIR) Camera. Four phases of the mission, determined to either be critical to achieving requirements or phases of thermal concern, are modeled. The phases are the Right Ascension of the Ascending Node (RAAN) Change, Altitude Reduction, De-Orbit, and Science Phases. Each phase was modeled in a worst case hot environment and the coldest phase, the Science Phase, was also modeled in a worst case cold environment. The thermal environments of the spacecraft are especially important to model because iSAT has a very high power density. The satellite is the size of a 12 unit cubesat, and dissipates slightly more than 75 Watts of power as heat at times. The maximum temperatures for several components are above their maximum operational limit for one or more cases. The analysis done for the first Design and Analysis Cycle (DAC1) showed that many components were above or within 5 degrees Centigrade of their maximum operation limit. The battery is a component of concern because although it is not over its operational temperature limit, efficiency greatly decreases if it operates at the currently predicted temperatures. In the second Design and Analysis Cycle (DAC2), many steps were taken to mitigate the overheating of components, including isolating several high temperature components, removal of components, and rearrangement of systems. These changes have greatly increased the thermal margin available.

  10. High heat-flux self-rotating plasma-facing component: Concept and loading test in TEXTOR

    NASA Astrophysics Data System (ADS)

    Terra, A.; Sergienko, G.; Hubeny, M.; Huber, A.; Mertens, Ph.; Philipps, V.; The Textor Team

    2015-08-01

    This contribution reports on the concept of a circular self-rotating and temperature self-stabilising plasma-facing component (PFC), and test of a related prototype in TEXTOR tokamak. This PFC uses the Lorentz force induced by plasma current and magnet field (J × B) to create a torque applied on metallic discs which produce a rotational movement. Additional thermionic current, present at high operation temperatures, brings additional temperature stabilisation ability. This self-rotating disk limiter was exposed to plasma in the TEXTOR tokamak under different radial positions to vary the heat flux. This disk structure shows the interesting ability to stabilise its maximum temperature through the fact that the self-induced rotation is modulated by the thermal emission current. It was observed that the rotation speed increased following both the current collected by the limiter, and the temperature of the tungsten disks.

  11. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  12. Progress with high-field superconducting magnets for high-energy colliders

    DOE PAGES

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nbmore » $$_3$$Sn superconductors. Nb$$_3$$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$$_3$$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  13. Efficiency at maximum power of low-dissipation Carnot engines.

    PubMed

    Esposito, Massimiliano; Kawai, Ryoichi; Lindenberg, Katja; Van den Broeck, Christian

    2010-10-08

    We study the efficiency at maximum power, η*, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For engines reaching Carnot efficiency ηC=1-Tc/Th in the reversible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that η* is bounded from above by ηC/(2-ηC) and from below by ηC/2. These bounds are reached when the ratio of the dissipation during the cold and hot isothermal phases tend, respectively, to zero or infinity. For symmetric dissipation (ratio one) the Curzon-Ahlborn efficiency ηCA=1-√Tc/Th] is recovered.

  14. Experimental study of the effect of cycle pressure on lean combustion emissions

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Venkataramani, K. S.

    1978-01-01

    Experiments were conducted in which a stream of premixed propane and air was burned under conditions representative of gas turbine operation. Emissions of NOx, CO, and unburned hydrocarbons (UHC) were measured over a range of combustor inlet temperature, pressure, and residence time at equivalence ratios from 0.7 down to the lean stability limit. At an inlet temperature of 600 K, observed NOx levels dropped markedly with decreasing pressure for pressures below 20 atm. The NOx levels are proportional to combustor residence time and formation rates were principally a function of adiabatic flame temperature. For adiabatic flame temperatures of 2050 K and higher, CO reached chemical equilibrium within 2 msec. Unburned hydrocarbon species dropped to a negligible level within 2 msec regardless of inlet temperature, pressure, or equivalence ratio. For a combustor residence time of 2.5 msec, combustion inefficiency became less than 0.01% at an adiabatic flame temperature of 2050 K. The maximum combustion inefficiency observed was on the order of 1% and corresponded to conditions near the lean stability limit. Using a perforated plate flameholder, this limit is well represented by the condition of 1800 K adiabatic flame temperature.

  15. Enhancing thermo-induced recombinant protein production in Escherichia coli by temperature oscillations and post-induction nutrient feeding strategies.

    PubMed

    Caspeta, Luis; Lara, Alvaro R; Pérez, Néstor O; Flores, Noemí; Bolívar, Francisco; Ramírez, Octavio T

    2013-08-10

    Traditional strategies for production of thermo-induced recombinant protein in Escherichia coli consist of a two-phase culture, with an initial growth stage at low temperature (commonly 30°C) followed by a production stage where temperature is increased stepwise (commonly up to 42°C). A disadvantage of such strategies is that growth is inhibited upon temperature increase, limiting the duration of the production stage and consequently limiting recombinant protein production. In this work, a novel oscillatory thermo-induction strategy, consisting on temperature fluctuations between 37 and 42°C or 30 and 42°C, was tested for improving recombinant protein production. In addition, the induction schemes were combined with one of three different nutrient feeding strategies: two exponential and one linear. Recombinant human preproinsulin (HPPI), produced under control of the λP(L)-cI857 system in the E. coli BL21 strain, was used as the model protein. Compared to the conventional induction scheme at constant temperature (42°C), longer productive times were attained under oscillatory induction, which resulted in a 1.3- to 1.7-fold increase in maximum HPPI concentration. Temperature oscillations led to a 2.3- to 4.0-fold increase in biomass accumulation and a decrease of 48-62% in the concentration of organic acids, compared to conventional induction. Under constant induction, growth ceased upon temperature increase and the maximum concentration of HPPI was 3.9 g/L, regardless of the post-induction feeding strategy used. In comparison, the combination of temperature oscillations and a high nutrient-feeding rate allowed sustained growth after induction and reaching up to 5.8 g/L of HPPI. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker, Gillichthys mirabilis.

    PubMed

    Jayasundara, Nishad; Somero, George N

    2013-06-01

    An insufficient supply of oxygen under thermal stress is thought to define thermal optima and tolerance limits in teleost fish. When under thermal stress, cardiac function plays a crucial role in sustaining adequate oxygen supply for respiring tissues. Thus, adaptive phenotypic plasticity of cardiac performance may be critical for modifying thermal limits during temperature acclimation. Here we investigated effects of temperature acclimation on oxygen consumption, cardiac function and blood oxygen carrying capacity of a eurythermal goby fish, Gillichthys mirabilis, acclimated to 9, 19 and 26°C for 4 weeks. Acclimation did not alter resting metabolic rates or heart rates; no compensation of rates was observed at acclimation temperatures. However, under an acute heat ramp, warm-acclimated fish exhibited greater heat tolerance (CTmax=33.3, 37.1 and 38.9°C for 9°C-, 19°C- and 26°C-acclimated fish, respectively) and higher cardiac arrhythmia temperatures compared with 9°C-acclimated fish. Heart rates measured under an acute heat stress every week during 28 days of acclimation suggested that both maximum heart rates and temperature at onset of maximum heart rates changed over time with acclimation. Hemoglobin levels increased with acclimation temperature, from 35 g l(-1) in 9°C-acclimated fish to 60-80 g l(-1) in 19°C- and 26°C-acclimated fish. Oxygen consumption rates during recovery from acute heat stress showed post-stress elevation in 26°C-acclimated fish. These data, coupled with elevated resting metabolic rates and heart rates at warm temperatures, suggest a high energetic cost associated with warm acclimation in G. mirabilis. Furthermore, acclimatory capacity appears to be optimized at 19°C, a temperature shown by behavioral studies to be close to the species' preferred temperature.

  17. RadioAstron Observations of the Quasar 3C273: A Challenge to the Brightness Temperature Limit

    NASA Astrophysics Data System (ADS)

    Kovalev, Y. Y.; Kardashev, N. S.; Kellermann, K. I.; Lobanov, A. P.; Johnson, M. D.; Gurvits, L. I.; Voitsik, P. A.; Zensus, J. A.; Anderson, J. M.; Bach, U.; Jauncey, D. L.; Ghigo, F.; Ghosh, T.; Kraus, A.; Kovalev, Yu. A.; Lisakov, M. M.; Petrov, L. Yu.; Romney, J. D.; Salter, C. J.; Sokolovsky, K. V.

    2016-03-01

    Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C 273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 μas (2.7 light months) and brightness temperature in excess of 1013 K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require a much higher Doppler factor than what is determined from jet apparent kinematics.

  18. Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012

    PubMed Central

    Chen, Tianqi; Sarnat, Stefanie E.; Grundstein, Andrew J.; Winquist, Andrea

    2017-01-01

    Background: Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves’ impact on population morbidity, such as emergency department (ED) visits. Objectives: We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993–2012. Methods: Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of ≥2 consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945–2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Results: Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03–1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02–1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00–1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Conclusions: Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44 PMID:28599264

  19. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi.

    PubMed

    Fitzgibbon, Quinn P; Simon, Cedric J; Smith, Gregory G; Carter, Chris G; Battaglene, Stephen C

    2017-05-01

    We examined the effects of temperature on the growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi, in order to determine if temperature acclimated aerobic scope correlates with optimum for growth and to establish the thermal tolerance window for this emerging aquaculture species. Juvenile lobsters (initial weight=10.95±0.47g) were reared (n=7) at temperatures from 11.0 to 28.5°C for 145days. All lobsters survived from 14.5 to 25.0°C while survival was reduced at 11.0°C (86%) and all lobsters died at 28.5°C. Lobster specific growth rate and specific feed consumption displayed a unimodal response with temperature, peaking at 21.5°C. Lobster standard, routine and maximum metabolic rates, and aerobic scope all increased exponentially up to maximum non-lethal temperature. Optimum temperature for growth did not correspond to that for maximum aerobic scope suggesting that aerobic scope is not an effective predictor of the thermal optimum of spiny lobsters. Plateauing of specific feed consumption beyond 21.5°C suggests that temperature dependent growth of lobsters is limited by capacity to ingest or digest sufficient food to meet increasing maintenance metabolic demands at high temperatures. The nutritional condition of lobsters was not influenced by temperature and feed conversion ratio was improved at lower temperatures. These findings add to a growing body of evidence questioning the generality of aerobic scope to describe the physiological thermal boundaries of aquatic ectotherms and suggest that feed intake plays a crucial role in regulating performance at thermal extremes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012.

    PubMed

    Chen, Tianqi; Sarnat, Stefanie E; Grundstein, Andrew J; Winquist, Andrea; Chang, Howard H

    2017-05-31

    Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves' impact on population morbidity, such as emergency department (ED) visits. We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993-2012. Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945-2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03-1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02-1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00-1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44.

  1. Frequency and temperature dependence of electrical breakdown at 21, 30, and 39 GHz.

    PubMed

    Braun, H H; Döbert, S; Wilson, I; Wuensch, W

    2003-06-06

    A TeV-range e(+)e(-) linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39 GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  2. Frequency and Temperature Dependence of Electrical Breakdown at 21, 30, and 39GHz

    NASA Astrophysics Data System (ADS)

    Braun, H. H.; Döbert, S.; Wilson, I.; Wuensch, W.

    2003-06-01

    A TeV-range e+e- linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  3. Photovoltaic array: Power conditioner interface characteristics

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  4. Thermal buffering of concrete by seaweeds during a prolonged summer heatwave

    NASA Astrophysics Data System (ADS)

    Naylor, Larissa; Coombes, Martin

    2014-05-01

    Hard coastal infrastructure is subject to aggressive environmental conditions, including a suite of weathering processes in the intertidal zone. These processes, along with waves, lead to costly deterioration of coastal structures. Existing methods (e.g. coatings, less porous concrete) to reduce the risk of concrete deterioration rapidly lose their effectiveness in the intertidal zone. Additionally, a changing climate will lead to increased frequency of storms, higher sea level and higher extreme temperatures - and therefore, pose an increased risk of deterioration. Might there be a biogenic solution? New research (Coombes et al. 2013) has shown that fucoid seaweeds reduce microclimatic extremes and variability under normal summer conditions. The results presented here supplement these findings in two ways. First, they demonstrate that fucoid seaweeds act as a thermal buffer during a prolonged summer heatwave in Britain (July 2013). Over 36 days of continuous monitoring at two sites in Cornwall, UK, 19 of which were during the official heatwave, there were statistically significant differences (p = 0.000) in the maximum temperatures between thick seaweed (7.5 - 9.5 cm thickness) and thin seaweed (2 - 2.5 cm thickness) plots. Maximum temperatures reached 22°C and 33°C, for thick seaweed and thin seaweed plots, respectively. Variations in maximum temperatures between the two sites appear to be related to aspect. Second, the significantly different maximum temperature results between plots also demonstrate that seaweed thickness is an important factor influencing thermal buffering capacity. These data clearly demonstrate that fucoid seaweeds buffer concrete seawalls against extreme temperature fluxes during a heatwave, probably limiting the efficiency of deteriorative processes such as thermal expansion and contraction and salt crystallisation.

  5. Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C.

    PubMed

    Fu, Qian; Fukushima, Naoya; Maeda, Haruo; Sato, Kozo; Kobayashi, Hajime

    2015-01-01

    We examined whether a hyperthermophilic microbial fuel cell (MFC) would be technically feasible. Two-chamber MFC reactors were inoculated with subsurface microorganisms indigenous to formation water from a petroleum reservoir and were started up at operating temperature 80 °C. The MFC generated a maximum current of 1.3 mA 45 h after the inoculation. Performance of the MFC improved with an increase in the operating temperature; the best performance was achieved at 95 °C with the maximum power density of 165 mWm(-2), which was approximately fourfold higher than that at 75 °C. Thus, to our knowledge, our study is the first to demonstrate generation of electricity in a hyperthermophilic MFC (operating temperature as high as 95 °C). Scanning electron microscopy showed that filamentous microbial cells were attached on the anode surface. The anodic microbial consortium showed limited phylogenetic diversity and primarily consisted of hyperthermophilic bacteria closely related to Caldanaerobacter subterraneus and Thermodesulfobacterium commune.

  6. Jet impingement heat transfer enhancement for the GPU-3 Stirling engine

    NASA Technical Reports Server (NTRS)

    Johnson, D. C.; Congdon, C. W.; Begg, L. L.; Britt, E. J.; Thieme, L. G.

    1981-01-01

    A computer model of the combustion-gas-side heat transfer was developed to predict the effects of a jet impingement system and the possible range of improvements available. Using low temperature (315 C (600 F)) pretest data in an updated model, a high temperature silicon carbide jet impingement heat transfer system was designed and fabricated. The system model predicted that at the theoretical maximum limit, jet impingement enhanced heat transfer can: (1) reduce the flame temperature by 275 C (500 F); (2) reduce the exhaust temperature by 110 C (200 F); and (3) increase the overall heat into the working fluid by 10%, all for an increase in required pumping power of less than 0.5% of the engine power output. Initial tests on the GPU-3 Stirling engine at NASA-Lewis demonstrated that the jet impingement system increased the engine output power and efficiency by 5% - 8% with no measurable increase in pumping power. The overall heat transfer coefficient was increased by 65% for the maximum power point of the tests.

  7. Prey size and availability limits maximum size of rainbow trout in a large tailwater: insights from a drift-foraging bioenergetics model

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Kennedy, Theodore A.; Haye, John W

    2016-01-01

    The cold and clear water conditions present below many large dams create ideal conditions for the development of economically important salmonid fisheries. Many of these tailwater fisheries have experienced declines in the abundance and condition of large trout species, yet the causes of these declines remain uncertain. Here, we develop, assess, and apply a drift-foraging bioenergetics model to identify the factors limiting rainbow trout (Oncorhynchus mykiss) growth in a large tailwater. We explored the relative importance of temperature, prey quantity, and prey size by constructing scenarios where these variables, both singly and in combination, were altered. Predicted growth matched empirical mass-at-age estimates, particularly for younger ages, demonstrating that the model accurately describes how current temperature and prey conditions interact to determine rainbow trout growth. Modeling scenarios that artificially inflated prey size and abundance demonstrate that rainbow trout growth is limited by the scarcity of large prey items and overall prey availability. For example, shifting 10% of the prey biomass to the 13 mm (large) length class, without increasing overall prey biomass, increased lifetime maximum mass of rainbow trout by 88%. Additionally, warmer temperatures resulted in lower predicted growth at current and lower levels of prey availability; however, growth was similar across all temperatures at higher levels of prey availability. Climate change will likely alter flow and temperature regimes in large rivers with corresponding changes to invertebrate prey resources used by fish. Broader application of drift-foraging bioenergetics models to build a mechanistic understanding of how changes to habitat conditions and prey resources affect growth of salmonids will benefit management of tailwater fisheries.

  8. Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Turner, T. N.

    1979-01-01

    Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.

  9. Importance of limiting hohlraum leaks at cryogenic temperatures on NIF targets

    DOE PAGES

    Bhandarkar, Suhas; Teslich, Nick; Haid, Ben; ...

    2017-08-18

    Inertial confinement fusion targets are complex systems designed to allow fine control of temperature and pressure for making precise spherical ice layers of hydrogen isotopes at cryogenic temperatures. We discuss the various technical considerations for a maximum leak rate based on heat load considerations. This maximum flow rate turns out to bemore » $$5\\times 10^{-6}$$ standard cc per second, which can be caused by an orifice less than half a micron in diameter. This makes the identification of the location and resolution of the leak a significant challenge. To illustrate this, we showcase one example of a peculiar failure mode that appeared suddenly but persisted whereby target production yield was severely lowered. Identification of the leak source and the root cause requires very careful analysis of multiple thermomechanical aspects to ensure that the end solution is indeed the right remedy and is robust.« less

  10. Non-contact Creep Resistance Measurement for Ultra-High Temperature Materials

    NASA Technical Reports Server (NTRS)

    Lee, J.; Bradshaw, C.; Rogers, J. R.; Rathz, T. J.; Wall, J. J.; Choo, H.; Liaw, P. K.; Hyers, R. W.

    2005-01-01

    Conventional techniques for measuring creep are limited to about 1700 C, so a new technique is required for higher temperatures. This technique is based on electrostatic levitation (ESL) of a spherical sample, which is rotated quickly enough to cause creep deformation by centrifugal acceleration. Creep of samples has been demonstrated at up to 2300 C in the ESL facility at NASA MSFC, while ESL itself has been applied at over 3000 C, and has no theoretical maximum temperature. The preliminary results and future directions of this NASA-funded research collaboration will be presented.

  11. Temperature evolution during compaction of pharmaceutical powders.

    PubMed

    Zavaliangos, Antonios; Galen, Steve; Cunningham, John; Winstead, Denita

    2008-08-01

    A numerical approach to the prediction of temperature evolution in tablet compaction is presented here. It is based on a coupled thermomechanical finite element analysis and a calibrated Drucker-Prager Cap model. This approach is capable of predicting transient temperatures during compaction, which cannot be assessed by experimental techniques due to inherent test limitations. Model predictions are validated with infrared (IR) temperature measurements of the top tablet surface after ejection and match well with experiments. The dependence of temperature fields on speed and degree of compaction are naturally captured. The estimated transient temperatures are maximum at the end of compaction at the center of the tablet and close to the die wall next to the powder/die interface.

  12. Cabin air quality: indoor pollutants and climate during intercontinental flights with and without tobacco smoking.

    PubMed

    Lindgren, T; Norbäck, D

    2002-12-01

    The aim was to determine cabin air quality and in-flight exposure for cabin attendants of specific pollutants during intercontinental flights. Measurements of air humidity, temperature, carbon dioxide (CO2), respirable particles, ozone (O3), nitrogen dioxide (NO2) and formaldehyde were performed during 26 intercontinental flights with Boeing 767-300 with and without tobacco smoking onboard. The mean temperature in cabin was 22.2 degrees C (range 17.4-26.8 degrees C), and mean relative air humidity was 6% (range 1-27%). The CO2 concentration during cruises was below the recommended limit of 1000 ppm during 96% of measured time. Mean indoor concentration of NO2 and O3, were 14.1 and 19.2 micrograms/m3, with maximum values of 37 and 66 micrograms/m3, respectively. The concentration of formaldehyde was below the detection limit (< 5 micrograms/m3), in most samples (77%), and the maximum value was 15 micrograms/m3. The mean concentration of respirable particles in the rear part of the aircraft (AFT galley area) was much higher (49 micrograms/m3) during smoking as compared with non-smoking conditions (3 micrograms/m3) (P < 0.001), with maximum values of 253 and 7 micrograms/m3. In conclusion, air humidity is very low on intercontinental flights, and the large variation of temperature shows a need for better temperature control. Tobacco smoking onboard leads to a significant pollution of respirable particles, particularly in the rear part of the cabin. The result supports the view that despite the high air exchange rate and efficient air filtration, smoking in commercial aircraft leads to a significant pollution and should be prohibited.

  13. Thermodynamic limits for solar energy conversion by a quantum-thermal hybrid system

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1981-01-01

    The limits are presented fo air mass 1.5 conditions. A maximum conversion efficiency of 74 percent is thermodynamically achievable for the quantum device operating at 3500 K and the heat engine in contact with a reservoir at 0 K. The efficiency drops to 56 percent for a cold reservoir at approximately room temperature conditions. Hybrid system efficiencies exceed 50 percent over receiver temperatures ranging from 1400 K to 4000 K, suggesting little benefit is gained in operating the system above 1400 K. The results are applied to a system consisting of a photovoltaic solar cell in series with a heat engine.

  14. Maximum thermal limits of coral reef damselfishes are size dependent and resilient to near-future ocean acidification.

    PubMed

    Clark, Timothy D; Roche, Dominique G; Binning, Sandra A; Speers-Roesch, Ben; Sundin, Josefin

    2017-10-01

    Theoretical models predict that ocean acidification, caused by increased dissolved CO 2 , will reduce the maximum thermal limits of fishes, thereby increasing their vulnerability to rising ocean temperatures and transient heatwaves. Here, we tested this prediction in three species of damselfishes on the Great Barrier Reef, Australia. Maximum thermal limits were quantified using critical thermal maxima (CT max ) tests following acclimation to either present-day or end-of-century levels of CO 2 for coral reef environments (∼500 or ∼1000 µatm, respectively). While species differed significantly in their thermal limits, whereby Dischistodus perspicillatus exhibited greater CT max (37.88±0.03°C; N =47) than Dascyllus aruanus (37.68±0.02°C; N =85) and Acanthochromis polyacanthus (36.58±0.02°C; N =63), end-of-century CO 2 had no effect ( D. aruanus ) or a slightly positive effect (increase in CT max of 0.16°C in D. perspicillatus and 0.21°C in A. polyacanthus ) on CT max Contrary to expectations, early-stage juveniles were equally as resilient to CO 2 as larger conspecifics, and CT max was higher at smaller body sizes in two species. These findings suggest that ocean acidification will not impair the maximum thermal limits of reef fishes, and they highlight the critical role of experimental biology in testing predictions of theoretical models forecasting the consequences of environmental change. © 2017. Published by The Company of Biologists Ltd.

  15. Investigation of the processing conditions for the synthesis of rod-shaped LiCoO2

    NASA Astrophysics Data System (ADS)

    Kim, Taejoong; Kim, Yongseon

    2018-07-01

    We investigate the processing conditions for the synthesis of rod-shaped LiCoO2 (LCO) by a solid-state calcination of a precursor material which was prepared by a hydrothermal method. The rod-like morphology appeared to be easily broken due to the growth of primary crystals recrystallized during the calcination process. Therefore, it is crucial to maintain the temperature under a certain limit. However, the temperature must be high enough to obtain proper crystallinity of the LCO, ideally above 800 °C. Thus, we determined the optimal calcination temperature condition from the common range of temperatures that satisfies both these limiting conditions. The precursor with average diameter of 1 µm sustained the rod shape at calcination temperatures of up to 900 °C; therefore, the optimum calcination temperature could be determined between 800 and 900 °C. Whereas, a proper calcination temperature could not be found for the precursor with 500 nm of diameter because the rod shape did not maintain even at 700 °C. Thus, the maximum temperature at which the rod shape is retained decreases with smaller diameter of the precursor rods, indicating adjusting the diameter above a limiting value is necessary to prepare LCO rod by conventional solid state calcination.

  16. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (4535.9 kg) or more except for: (A) Hydrocarbon fuels used solely for workplace consumption as a fuel (e...) Thermal and chemical stability data; and (vii) Hazardous effects of inadvertent mixing of different...) Maximum intended inventory; (D) Safe upper and lower limits for such items as temperatures, pressures...

  17. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (4535.9 kg) or more except for: (A) Hydrocarbon fuels used solely for workplace consumption as a fuel (e...) Thermal and chemical stability data; and (vii) Hazardous effects of inadvertent mixing of different...) Maximum intended inventory; (D) Safe upper and lower limits for such items as temperatures, pressures...

  18. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (4535.9 kg) or more except for: (A) Hydrocarbon fuels used solely for workplace consumption as a fuel (e...) Thermal and chemical stability data; and (vii) Hazardous effects of inadvertent mixing of different...) Maximum intended inventory; (D) Safe upper and lower limits for such items as temperatures, pressures...

  19. Contingency power for small turboshaft engines using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.; Clark, David A.; Berger, Brett

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  20. Intra-Seasonal Variability of Climate and Peasant Perception of Climate Change in Massili Basin in Burkina Faso.

    NASA Astrophysics Data System (ADS)

    Kabore Bontogho, P. E.

    2014-12-01

    Knowledge of climate variability is relevant and challenging for farmers, decision makers and population in general. Ninety percent of Burkina Faso active population is engaged in agriculture and livestock, which accounts for 39% of gross domestic product. Located between the coordinates 1o15'-1o55' West and 12o17'- 12o50'North, Massili basin includes Ouagadougou the capital and has four dams, of which the most important dam, Loumbila is used for the capital water supply and irrigation. A change of climate may affect the water resources most likely limit the access to safe water. In order to characterize Massili basin climate variability, daily temperature and precipitation over 1960 to 2012 was analyzed using long-term records from the Ouagadougou synoptic station. By applying R-climdex and instat tools, indices were calculated by a consistent approach recommended by the World Meteorological Organization Expert Team on Climate Change Detection and Indices. The precipitation parameters computed were: the maximum 5-day precipitationamount; the number of days with precipitation amount ≥50 mm ; the maximum precipitation amount in consecutive wet days with RR≥ 1mm; the consecutives dry days;the extremely wet days ; the extreme precipitation in one day, the total precipitation in wet days; the temperature indices computed were : the maximum of the maximum daily temperature, the minimum of daily maximum temperature,the minimum of daily minimum temperature,the cold spell duration indices and the warm spell duration indicator. Results show a slight increase of the maximum 5-day precipitation, maximum precipitation amount in consecutive wet days with RR≥1mm, the onset delayed and the cessation is earlier meaning that the rainfall period is shortening. The total precipitationwas decreased in the basin but there is a slight increase in the occurrence of extremely wet days. CSDI is decreasing while warm spell duration indices are increasing. In parallel of the data analysis, a survey of 200 peasant spread within 20 villages was done to assess their perception on climate change. Farmers perception corroborate with the above results as their majority describes climate change as decrease of rainfall (79%) and increase of temperature (99%). In addition, all farmers agreed that more floods are occurring.

  1. Influence of temperature on the hydrolysis, acidogenesis and methanogenesis in mesophilic anaerobic digestion: parameter identification and modeling application.

    PubMed

    Donoso-Bravo, A; Retamal, C; Carballa, M; Ruiz-Filippi, G; Chamy, R

    2009-01-01

    The effect of temperature on the kinetic parameters involved in the main reactions of the anaerobic digestion process was studied. Batch tests with starch, glucose and acetic acid as substrates for hydrolysis, acidogenesis and methanogenesis, respectively, were performed in a temperature range between 15 and 45 degrees C. First order kinetics was assumed to determine the hydrolysis rate constant, while Monod and Haldane kinetics were considered for acidogenesis and methanogenesis, respectively. The results obtained showed that the anaerobic process is strongly influenced by temperature, with acidogenesis exerting the highest effect. The Cardinal Temperature Model 1 with an inflection point (CTM1) fitted properly the experimental data in the whole temperature range, except for the maximum degradation rate of acidogenesis. A simple case-study assessing the effect of temperature on an anaerobic CSTR performance indicated that with relatively simple substrates, like starch, the limiting reaction would change depending on temperature. However, when more complex substrates are used (e.g. sewage sludge), the hydrolysis might become more quickly into the limiting step.

  2. Influence of water activity and temperature on growth and mycotoxin production by Alternaria alternata on irradiated soya beans.

    PubMed

    Oviedo, Maria Silvina; Ramirez, Maria Laura; Barros, Germán Gustavo; Chulze, Sofia Noemi

    2011-09-15

    The aim of this study was to determine the effects of water activity (a(w)) (0.99-0.90), temperature (15, 25 and 30°C) and their interactions on growth and alternariol (AOH) and alternariol monomethyl ether (AME) production by Alternaria alternata on irradiated soya beans. Maximum growth rates were obtained at 0.980 a(w) and 25°C. Minimum a(w) level for growth was dependent on temperature. Both strains were able to grow at the lowest a(w) assayed (0.90). Maximum amount of AOH was produced at 0.98 a(w) but at different temperatures, 15 and 25°C, for the strains RC 21 and RC 39 respectively. Maximum AME production was obtained at 0.98 a(w) and 30°C for both strains. The concentration range of both toxins varied considerably depending on a(w) and temperature interactions. The two metabolites were produced over the temperature range 15 to 30°C and a(w) range 0.99 to 0.96. The limiting a(w) for detectable mycotoxin production is slightly greater than that for growth. Two-dimensional profiles of a(w)× temperature were developed from these data to identify areas where conditions indicate a significant risk from AOH and AME accumulation on soya bean. Knowledge of AOH and AME production under marginal or sub-optimal temperature and a(w) conditions for growth can be important since improper storage conditions accompanied by elevated temperature and moisture content in the grain can favour further mycotoxin production and lead to reduction in grain quality. This could present a hazard if the grain is used for human consumption or animal feedstuff. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. A Statistical Model-Based Decision Support System for Managing Summer Stream Temperatures with Quantified Confidence Analysis

    NASA Astrophysics Data System (ADS)

    Neumann, D. W.; Zagona, E. A.; Rajagopalan, B.

    2005-12-01

    Warm summer stream temperatures due to low flows and high air temperatures are a critical water quality problem in many western U.S. river basins because they impact threatened fish species' habitat. Releases from storage reservoirs and river diversions are typically driven by human demands such as irrigation, municipal and industrial uses and hydropower production. Historically, fish needs have not been formally incorporated in the operating procedures, which do not supply adequate flows for fish in the warmest, driest periods. One way to address this problem is for local and federal organizations to purchase water rights to be used to increase flows, hence decrease temperatures. A statistical model-predictive technique for efficient and effective use of a limited supply of fish water has been developed and incorporated in a Decision Support System (DSS) that can be used in an operations mode to effectively use water acquired to mitigate warm stream temperatures. The DSS is a rule-based system that uses the empirical, statistical predictive model to predict maximum daily stream temperatures based on flows that meet the non-fish operating criteria, and to compute reservoir releases of allocated fish water when predicted temperatures exceed fish habitat temperature targets with a user specified confidence of the temperature predictions. The empirical model is developed using a step-wise linear regression procedure to select significant predictors, and includes the computation of a prediction confidence interval to quantify the uncertainty of the prediction. The DSS also includes a strategy for managing a limited amount of water throughout the season based on degree-days in which temperatures are allowed to exceed the preferred targets for a limited number of days that can be tolerated by the fish. The DSS is demonstrated by an example application to the Truckee River near Reno, Nevada using historical flows from 1988 through 1994. In this case, the statistical model predicts maximum daily Truckee River stream temperatures in June, July, and August using predicted maximum daily air temperature and modeled average daily flow. The empirical relationship was created using a step-wise linear regression selection process using 1993 and 1994 data. The adjusted R2 value for this relationship is 0.91. The model is validated using historic data and demonstrated in a predictive mode with a prediction confidence interval to quantify the uncertainty. Results indicate that the DSS could substantially reduce the number of target temperature violations, i.e., stream temperatures exceeding the target temperature levels detrimental to fish habitat. The results show that large volumes of water are necessary to meet a temperature target with a high degree of certainty and violations may still occur if all of the stored water is depleted. A lower degree of certainty requires less water but there is a higher probability that the temperature targets will be exceeded. Addition of the rules that consider degree-days resulted in a reduction of the number of temperature violations without increasing the amount of water used. This work is described in detail in publications referenced in the URL below.

  4. A novel approach for detecting heat waves: the Standardized Heat-Wave Index.

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    Extreme temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. The ability to capture the occurrence of extreme temperature events is therefore an essential property of a multi-hazard extreme climate indicator. In this paper we introduce a new index for the detection of such extreme temperature events called SHI (Standardized Heat-Wave Index), developed in the context of XCF project for the construction of a multi-hazard extreme climate indicator (ECI). SHI is a probabilistic index based on the analysis of maximum daily temperatures time series; it is standardized, enabling comparisons overs space/time and with other indices, and it is capable of describing both extreme cold and hot events. Given a particular location, SHI is constructed using the time series of local maximum daily temperatures with the following procedure: three-days cumulated maximum daily temperatures are assigned to each day of the time series; probabilities of occurrence in the same months the reference days belong to are computed for each of the previous calculated values; such probability values are thus projected on a standard normal distribution, obtaining our standardized indices. In this work we present results obtained using NCEP Reanalysis dataset for air temperature at sigma 0.995 level, which timespan ranges from 1948 to 2014. Given the specific framework of this work, the geographical focus of this study is limited to the African continent. We present a validation of the index by showing its use for monitoring heat-waves under different climate regimes.

  5. Experimental results from a laboratory-scale molten salt thermocline storage

    NASA Astrophysics Data System (ADS)

    Seubert, Bernhard; Müller, Ralf; Willert, Daniel; Fluri, Thomas

    2017-06-01

    Single-tank storage presents a valid option for cost reduction in thermal energy storage systems. For low-temperature systems with water as storage medium this concept is widely implemented and tested. For high-temperature systems very limited experimental data are publicly available. To improve this situation a molten salt loop for experimental testing of a single-tank storage prototype was designed and built at Fraunhofer ISE. The storage tank has a volume of 0.4 m3 or a maximum capacity of 72 kWhth. The maximum charging and discharging power is 60 kW, however, a bypass flow control system enables to operate the system also at a very low power. The prototype was designed to withstand temperatures up to 550 °C. A cascaded insulation with embedded heating cables can be used to reduce the effect of heat loss on the storage which is susceptible to edge effects due to its small size. During the first tests the operating temperatures were adapted to the conditions in systems with thermal oil as heat transfer fluid and a smaller temperature difference. A good separation between cold and hot fluid was achieved with temperature gradients of 95 K within 16 cm.

  6. Limits to sustained energy intake. XIII. Recent progress and future perspectives.

    PubMed

    Speakman, John R; Król, Elżbieta

    2011-01-15

    Several theories have been proposed to explain limits on the maximum rate at which animals can ingest and expend energy. These limits are likely to be intrinsic to the animal, and potentially include the capacity of the alimentary tract to assimilate energy--the 'central limitation' hypothesis. Experimental evidence from lactating mice exposed to different ambient temperatures allows us to reject this and similar ideas. Two alternative ideas have been proposed. The 'peripheral limitation' hypothesis suggests that the maximal sustained energy intake reflects the summed demands of individual tissues, which have their own intrinsic limitations on capacity. In contrast, the 'heat dissipation limit' (HDL) theory suggests that animals are constrained by the maximal capacity to dissipate body heat. Abundant evidence in domesticated livestock supports the HDL theory, but data from smaller mammals are less conclusive. Here, we develop a novel framework showing how the HDL and peripheral limitations are likely to be important in all animals, but to different extents. The HDL theory makes a number of predictions--in particular that there is no fixed limit on sustained energy expenditure as a multiple of basal metabolic rate, but rather that the maximum sustained scope is positively correlated with the capacity to dissipate heat.

  7. Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal nacellid limpets to climate change.

    PubMed

    Morley, Simon A; Martin, Stephanie M; Day, Robert W; Ericson, Jess; Lai, Chien-Houng; Lamare, Miles; Tan, Koh-Siang; Thorne, Michael A S; Peck, Lloyd S

    2012-01-01

    The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of "duration tenacity", which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (T(opt)) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CT(max) and T(opt) over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions.

  8. Thermal Reaction Norms and the Scale of Temperature Variation: Latitudinal Vulnerability of Intertidal Nacellid Limpets to Climate Change

    PubMed Central

    Morley, Simon A.; Martin, Stephanie M.; Day, Robert W.; Ericson, Jess; Lai, Chien-Houng; Lamare, Miles; Tan, Koh-Siang; Thorne, Michael A. S.; Peck, Lloyd S.

    2012-01-01

    The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of “duration tenacity”, which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (Topt) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CTmax and Topt over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions. PMID:23285194

  9. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria.

    PubMed

    Shapiro, Lillian L M; Whitehead, Shelley A; Thomas, Matthew B

    2017-10-01

    Malaria transmission is known to be strongly impacted by temperature. The current understanding of how temperature affects mosquito and parasite life history traits derives from a limited number of empirical studies. These studies, some dating back to the early part of last century, are often poorly controlled, have limited replication, explore a narrow range of temperatures, and use a mixture of parasite and mosquito species. Here, we use a single pairing of the Asian mosquito vector, An. stephensi and the human malaria parasite, P. falciparum to conduct a comprehensive evaluation of the thermal performance curves of a range of mosquito and parasite traits relevant to transmission. We show that biting rate, adult mortality rate, parasite development rate, and vector competence are temperature sensitive. Importantly, we find qualitative and quantitative differences to the assumed temperature-dependent relationships. To explore the overall implications of temperature for transmission, we first use a standard model of relative vectorial capacity. This approach suggests a temperature optimum for transmission of 29°C, with minimum and maximum temperatures of 12°C and 38°C, respectively. However, the robustness of the vectorial capacity approach is challenged by the fact that the empirical data violate several of the model's simplifying assumptions. Accordingly, we present an alternative model of relative force of infection that better captures the observed biology of the vector-parasite interaction. This model suggests a temperature optimum for transmission of 26°C, with a minimum and maximum of 17°C and 35°C, respectively. The differences between the models lead to potentially divergent predictions for the potential impacts of current and future climate change on malaria transmission. The study provides a framework for more detailed, system-specific studies that are essential to develop an improved understanding on the effects of temperature on malaria transmission.

  10. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America

    PubMed Central

    Harsch, Melanie A.; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)–despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species’ elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834

  11. Validation of the Berlese-funnel technique for thrips extraction.

    PubMed

    Casteels, H; Witters, J; De Bondt, G; Desamblanx, J

    2009-01-01

    In order to get the accreditation EN ISO/IEC 17025 for Thrips palmi the Berlese-funnel technique, which is used for the isolation of quarantine insects out of plant material, was validated. Following parameters were investigated: cleaning of the funnel, temperature during isolation, detection limit and duration of the isolation period. Thrips fuscipennis was collected from heavily infected rosehip and used as target organism. Besides orchids, artificially contaminated maple leaves (Acer pseudoplatanus) were used for the validation. Results showed that thrips and other organisms can be present alive or dead in the funnel after removing the treated plants and can contaminate the next sample or isolate. Cleaning of the funnel with a vacuum cleaner and compressed-air apparatus is necessary before running a new extraction. Contamination of the recipient is also possible from the environment. This can be avoided by closing the opening between the funnel and the recipient. To reach an optimal temperature for isolation of the thrips a 60 Watt bulb is necessary. The results showed that the maximum temperature doesn't reach a temperature above 51 degrees C, the average temperatures were situated between 35, 74 degrees C and 39, 38 degrees C. A 40 Watt bulb doesn't create enough heat to guarantee an efficient isolation of the thrips; the average temperature was 34, 74 degrees C and the maximum temperature 36, 80 degrees C. Based on the results we can conclude that an isolation time of 20 hours is necessary to obtain accurate data. Dependent on the number of thrips in the artificially infected samples 87 to 95% is isolated after 20 hours. The detection limit is 1 thrips with a probability of 95% being isolated after 20 hours.

  12. Early warming of tropical South America at the last glacial-interglacial transition.

    PubMed

    Seltzer, G O; Rodbell, D T; Baker, P A; Fritz, S C; Tapia, P M; Rowe, H D; Dunbar, R B

    2002-05-31

    Glaciation in the humid tropical Andes is a sensitive indicator of mean annual temperature. Here, we present sedimentological data from lakes beyond the glacial limit in the tropical Andes indicating that deglaciation from the Last Glacial Maximum led substantial warming at high northern latitudes. Deglaciation from glacial maximum positions at Lake Titicaca, Peru/Bolivia (16 degrees S), and Lake Junin, Peru (11 degrees S), occurred 22,000 to 19,500 calendar years before the present, several thousand years before the Bølling-Allerød warming of the Northern Hemisphere and deglaciation of the Sierra Nevada, United States (36.5 degrees to 38 degrees N). The tropical Andes deglaciated while climatic conditions remained regionally wet, which reflects the dominant control of mean annual temperature on tropical glaciation.

  13. Efficiency at maximum power for an isothermal chemical engine with particle exchange at varying chemical potential

    NASA Astrophysics Data System (ADS)

    Koning, Jesper; Koga, Kenichiro; Indekeu, Joseph. O.

    2017-02-01

    We calculate the efficiency at maximum power (EMP) of an isothermal chemical cycle in which particle uptake occurs at a fixed chemical potential but particle release takes place at varying chemical potential. We obtain the EMP as a function of Δμ/ kT, where Δμ is the difference between the highest and lowest reservoir chemical potentials and T is the absolute temperature. In the linear response limit, Δμ ≪ kT, the EMP tends to the expected universal value 1/2.

  14. Spectral hole lifetimes and spin population relaxation dynamics in neodymium-doped yttrium orthosilicate

    NASA Astrophysics Data System (ADS)

    Cruzeiro, E. Zambrini; Tiranov, A.; Usmani, I.; Laplane, C.; Lavoie, J.; Ferrier, A.; Goldner, P.; Gisin, N.; Afzelius, M.

    2017-05-01

    We present a detailed study of the lifetime of optical spectral holes due to population storage in Zeeman sublevels of Nd3 +:Y2SiO5 . The lifetime is measured as a function of magnetic field strength and orientation, temperature, and Nd3 + doping concentration. At the lowest temperature of 3 K we find a general trend where the lifetime is short at low field strengths, then increases to a maximum lifetime at a few hundred mT, and then finally decays rapidly for high field strengths. This behavior can be modeled with a relaxation rate dominated by Nd3 +-Nd3 + cross relaxation at low fields and spin lattice relaxation at high magnetic fields. The maximum lifetime depends strongly on both the field strength and orientation, due to the competition between these processes and their different angular dependencies. The cross relaxation limits the maximum lifetime for concentrations as low as 30 ppm of Nd3 + ions. By decreasing the concentration to less than 1 ppm we could completely eliminate the cross relaxation, reaching a lifetime of 3.8 s at 3 K. At higher temperatures the spectral hole lifetime is limited by the magnetic-field-independent Raman and Orbach processes. In addition we show that the cross relaxation rate can be strongly reduced by creating spectrally large holes of the order of the optical inhomogeneous broadening. Our results are important for the development and design of new rare-earth-ion doped crystals for quantum information processing and narrow-band spectral filtering for biological tissue imaging.

  15. Thermal discharges from Paducah Gaseous Diffusion Plant outfalls: Impacts on stream temperatures and fauna of Little Bayou and Big Bayou Creeks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, W.K.; Ryon, M.G.; Hinzman, R.L.

    1996-03-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporationmore » (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.« less

  16. Thermal Discharges from Paducah Gaseous Diffusion Plant Outfalls: Impacts on Stream Temperatures and Fauna of Little Bayou and Big Bayou Creeks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, W.K.

    1999-01-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the United States Enrichmentmore » Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.« less

  17. Kinetic limit of heterogeneous melting in metals.

    PubMed

    Ivanov, Dmitriy S; Zhigilei, Leonid V

    2007-05-11

    The velocity and nanoscale shape of the melting front are investigated in a model that combines the molecular dynamics method with a continuum description of the electron heat conduction and electron-phonon coupling. The velocity of the melting front is strongly affected by the local drop of the lattice temperature, defined by the kinetic balance between the transfer of thermal energy to the latent heat of melting, the electron heat conduction from the overheated solid, and the electron-phonon coupling. The maximum velocity of the melting front is found to be below 3% of the room temperature speed of sound in the crystal, suggesting a limited contribution of heterogeneous melting under conditions of fast heating.

  18. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings.

    PubMed

    Sandblom, Erik; Clark, Timothy D; Gräns, Albin; Ekström, Andreas; Brijs, Jeroen; Sundström, L Fredrik; Odelström, Anne; Adill, Anders; Aho, Teija; Jutfelt, Fredrik

    2016-05-17

    Understanding the resilience of aquatic ectothermic animals to climate warming has been hindered by the absence of experimental systems experiencing warming across relevant timescales (for example, decades). Here, we examine European perch (Perca fluviatilis, L.) from the Biotest enclosure, a unique coastal ecosystem that maintains natural thermal fluctuations but has been warmed by 5-10 °C by a nuclear power plant for over three decades. We show that Biotest perch grow faster and display thermally compensated resting cardiorespiratory functions compared with reference perch living at natural temperatures in adjacent waters. However, maximum cardiorespiratory capacities and heat tolerance limits exhibit limited or no thermal compensation when compared with acutely heated reference perch. We propose that while basal energy requirements and resting cardiorespiratory functions (floors) are thermally plastic, maximum capacities and upper critical heat limits (ceilings) are much less flexible and thus will limit the adaptive capacity of fishes in a warming climate.

  19. Carbon Budgets as a Guide to Deep Decarbonisation

    NASA Astrophysics Data System (ADS)

    Rogelj, J.

    2017-12-01

    Halting global mean temperature rise requires a limit on the cumulative amount of net CO2 disposed of in the atmosphere. Remaining within the limits of such carbon budgets over the 21st century will require a profound transformation of how our societies use and produce energy, crops, and materials. To understand the options available to stay within stringent carbon budget constraints, global transformation pathways are being devised with integrated models of the energy-economy-land system. This presentation will look at how the latest insights of such pathways affect carbon budgets. Estimates of carbon budgets compatible with a given temperature limit depend on the anticipated temperature contribution at peak warming of non-CO2 forcers. Integrated transformation pathways allow to understand the projected extend of these contributions, as well as estimate the maximum conceivable rate of emissions reductions over the coming decades. The latter directly informs the lower end of future cumulative CO2 emissions and can thus provide an estimate for minimum peak warming over the 21st century - a measure which can be compared to the ambitious long-term temperature goal of the UNFCCC Paris Agreement.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blijderveen, Maarten van; University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede; Bramer, Eddy A.

    Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of themore » used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.« less

  1. Behavior of Shape Memory Epoxy Foams in Microgravity: Experimental Results of STS-134 Mission

    NASA Astrophysics Data System (ADS)

    Santo, Loredana; Quadrini, Fabrizio; Squeo, Erica Anna; Dolce, Ferdinando; Mascetti, Gabriele; Bertolotto, Delfina; Villadei, Walter; Ganga, Pier Luigi; Zolesi, Valfredo

    2012-09-01

    Shape memory epoxy foams were used for an experiment on the International Space Station to evaluate the feasibility of their use for building multi-functional composite structures. A small equipment was designed and built to simulate the actuation of simple devices in micro-gravity conditions: three different configurations (compression, bending and torsion) were chosen during the memory step of the foams so as to produce their recovery on ISS. Two systems were used for the experimentation to avoid damages of the flight model during laboratory tests; however a single ground experiment was performed also on the flight model before the mission. Micro-gravity does not affect the ability of the foams to recover their shape but it poses strong limits for the heating system design because of the difference in heat transfer on earth and in orbit. A full recovery of the foam samples was not achieved due to some limitations in the maximum allowable temperature on ISS for safety reasons: anyway a 70% recovery was also measured at a temperature of 110°C. Ground laboratory experiments showed that 100% recovery could be reached by increasing the maximum temperature to 120°C. Experiment results have provided many useful information for the designing of a new structural composite actuator by using shape memory foams.

  2. Speech Signal Processing Research. Appendices 1 thru 9

    DTIC Science & Technology

    1975-12-01

    is 2400 rpm for a maximum rotational latency of 25 ms and an average of 12.5 ms. The track to track access time is 12 ms, the average access time...in Table 1-3. Table 1-3. Capabilities and Limitations Description Characteristics Start-Up Time Operating Temperature Operating Humidity...Storage Conditions - - ■ ■ ■ -*****•******* ~40 seconds 0oC (320F) to +50oC (1220F) ambient 10% to 80% with no condensation Temperature =0oC(32oF) to

  3. Profile modifications in laser-driven temperature fronts using flux-limiters and delocalization models

    NASA Astrophysics Data System (ADS)

    Colombant, Denis; Manheimer, Wallace; Busquet, Michel

    2004-11-01

    A simple steady-state model using flux-limiters by Day et al [1] showed that temperature profiles could formally be double-valued. Stability of temperature profiles in laser-driven temperature fronts using delocalization models was also discussed by Prasad and Kershaw [2]. We have observed steepening of the front and flattening of the maximum temperature in laser-driven implosions [3]. Following the simple model first proposed in [1], we solve for a two-boundary value steady-state heat flow problem for various non-local heat transport models. For the more complicated models [4,5], we obtain the steady-state solution as the asymptotic limit of the time-dependent solution. Solutions will be shown and compared for these various models. 1.M.Day, B.Merriman, F.Najmabadi and R.W.Conn, Contrib. Plasma Phys. 36, 419 (1996) 2.M.K.Prasad and D.S.Kershaw, Phys. Fluids B3, 3087 (1991) 3.D.Colombant, W.Manheimer and M.Busquet, Bull. Amer. Phys. Soc. 48, 326 (2003) 4.E.M.Epperlein and R.W.Short, Phys. Fluids B3, 3092 (1991) 5.W.Manheimer and D.Colombant, Phys. Plasmas 11, 260 (2004)

  4. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.

    2018-02-01

    Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

  5. Thrust Augmentation of a Turbojet Engine at Simulated Flight Conditions by Introduction of a Water-Alcohol Mixture into the Compressor

    NASA Technical Reports Server (NTRS)

    Useller, James W.; Auble, Carmon M.; Harvey, Ray W., Sr.

    1952-01-01

    An investigation was conducted at simulated high-altitude flight conditions to evaluate the use of compressor evaporative cooling as a means of turbojet-engine thrust augmentation. Comparison of the performance of the engine with water-alcohol injection at the compressor inlet, at the sixth stage of the compressor, and at the sixth and ninth stages was made. From consideration of the thrust increases achieved, the interstage injection of the coolant was considered more desirable preferred over the combined sixth- and ninth-stage injection because of its relative simplicity. A maximum augmented net-thrust ratio of 1.106 and a maximum augmented jet-thrust ratio of 1.062 were obtained at an augmented liquid ratio of 2.98 and an engine-inlet temperature of 80 F. At lower inlet temperatures (-40 to 40 F), the maximum augmented net-thrust ratios ranged from 1.040 to 1.076 and the maximum augmented jet-thrust ratios ranged from 1.027 to 1.048, depending upon the inlet temperature. The relatively small increase in performance at the lower inlet-air temperatures can be partially attributed to the inadequate evaporation of the water-alcohol mixture, but the more significant limitation was believed to be caused by the negative influence of the liquid coolant on engine- component performance. In general, it is concluded that the effectiveness of the injection of a coolant into the compressor as a means of thrust augmentation is considerably influenced by the design characteristics of the components of the engine being used.

  6. Ozone and its projection in regard to climate change

    NASA Astrophysics Data System (ADS)

    Melkonyan, Ani; Wagner, Patrick

    2013-03-01

    In this paper, the dependence of ozone-forming potential on temperature was analysed based on data from two stations (with an industrial and rural background, respectively) in North Rhine-Westphalia, Germany, for the period of 1983-2007. After examining the interrelations between ozone, NOx and temperature, a projection of the days with ozone exceedance (over a limit value of a daily maximum 8-h average ≥ 120 μg m-3 for 25 days per year averaged for 3 years) in terms of global climate change was made using probability theory and an autoregression integrated moving average (ARIMA) model. The results show that with a temperature increase of 3 K, the frequency of days when ozone exceeds its limit value will increase by 135% at the industrial station and by 87% at the rural background station.

  7. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  8. Can uncertainties in sea ice albedo reconcile patterns of data-model discord for the Pliocene and 20th/21st centuries?

    USGS Publications Warehouse

    Howell, Fergus W.; Haywood, Alan M.; Dolan, Aisling M.; Dowsett, Harry J.; Francis, Jane E; Hill, Daniel J.; Pickering, Steven J.; Pope, James O.; Salzmann, Ulrich; Wade, Bidget S

    2014-01-01

    General Circulation Model simulations of the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Myr ago) currently underestimate the level of warming that proxy data suggest existed at high latitudes, with discrepancies of up to 11°C for sea surface temperature estimates and 17°C for surface air temperature estimates. Sea ice has a strong influence on high-latitude climates, partly due to the albedo feedback. We present results demonstrating the effects of reductions in minimum sea ice albedo limits in general circulation model simulations of the mPWP. While mean annual surface air temperature increases of up to 6°C are observed in the Arctic, the maximum decrease in model-data discrepancies is just 0.81°C. Mean annual sea surface temperatures increase by up to 2°C, with a maximum model-data discrepancy improvement of 1.31°C. It is also suggested that the simulation of observed 21st century sea ice decline could be influenced by the adjustment of the sea ice albedo parameterization.

  9. Measuring temperature rise during orthopaedic surgical procedures.

    PubMed

    Manoogian, Sarah; Lee, Adam K; Widmaier, James C

    2016-09-01

    A reliable means for measuring temperatures generated during surgical procedures is needed to recommend best practices for inserting fixation devices and minimizing the risk of osteonecrosis. Twenty four screw tests for three surgical procedures were conducted using the four thermocouples in the bone and one thermocouple in the screw. The maximum temperature rise recorded from the thermocouple in the screw (92.7±8.9°C, 158.7±20.9°C, 204.4±35.2°C) was consistently higher than the average temperature rise recorded in the bone (31.8±9.3°C, 44.9±12.4°C, 77.3±12.7°C). The same overall trend between the temperatures that resulted from three screw insertion procedures was recorded with significant statistical analyses using either the thermocouple in the screw or the average of several in-bone thermocouples. Placing a single thermocouple in the bone was determined to have limitations in accurately comparing temperatures from different external fixation screw insertion procedures. Using the preferred measurement techniques, a standard screw with a predrilled hole was found to have the lowest maximum temperatures for the shortest duration compared to the other two insertion procedures. Future studies evaluating bone temperature increase need to use reliable temperature measurements for recommending best practices to surgeons. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. High-Performance Bipropellant Engine

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.; Schneider, Steven J.

    1999-01-01

    TRW, under contract to the NASA Lewis Research Center, has successfully completed over 10 000 sec of testing of a rhenium thrust chamber manufactured via a new-generation powder metallurgy. High performance was achieved for two different propellants, N2O4- N2H4 and N2O4 -MMH. TRW conducted 44 tests with N2O4-N2H4, accumulating 5230 sec of operating time with maximum burn times of 600 sec and a specific impulse Isp of 333 sec. Seventeen tests were conducted with N2O4-MMH for an additional 4789 sec and a maximum Isp of 324 sec, with a maximum firing duration of 700 sec. Together, the 61 tests totalled 10 019 sec of operating time, with the chamber remaining in excellent condition. Of these tests, 11 lasted 600 to 700 sec. The performance of radiation-cooled rocket engines is limited by their operating temperature. For the past two to three decades, the majority of radiation-cooled rockets were composed of a high-temperature niobium alloy (C103) with a disilicide oxide coating (R512) for oxidation resistance. The R512 coating practically limits the operating temperature to 1370 C. For the Earth-storable bipropellants commonly used in satellite and spacecraft propulsion systems, a significant amount of fuel film cooling is needed. The large film-cooling requirement extracts a large penalty in performance from incomplete mixing and combustion. A material system with a higher temperature capability has been matured to the point where engines are being readied for flight, particularly the 100-lb-thrust class engine. This system has powder rhenium (Re) as a substrate material with an iridium (Ir) oxidation-resistant coating. Again, the operating temperature is limited by the coating; however, Ir is capable of long-life operation at 2200 C. For Earth-storable bipropellants, this allows for the virtual elimination of fuel film cooling (some film cooling is used for thermal control of the head end). This has resulted in significant increases in specific impulse performance (15 to 20 sec). To determine the merits of a powder rhenium thrust chamber, Lewis On-Board Propulsion Branch directed TRW (under the Space Storable Rocket Technology Program and the High Pressure Earth Storable Rocket Technology Program) to design, fabricate, and test an engineering model to serve as a technology demonstrator.

  11. Maximum Frictional Charge Generation on Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Calle, Carlos; Groop, Ellen; Mantovani, James; Buehler, Martin

    2001-03-01

    The maximum amount of charge that a given surface area can hold is limited by the surrounding environmental conditions such as the atmospheric composition, pressure, humidity, and temperature. Above this charge density limit, the surface will discharge to the atmosphere or to a nearby conductive surface that is at a different electric potential. We have performed experiments using the MECA Electrometer, a flight instrument developed jointly by the Jet Propulsion Laboratory and NASA Kennedy Space Center to study the electrostatic properties of the Martian soil. The electrometer contains five types of polymers: fiberglass/epoxy, polycarbonate (Lexan), polytetraflouroethylene (Teflon), Rulon J, and polymethylmethacrylate (PMMA, Lucite). We repeatedly rubbed the polymers with another material until each polymer's charge saturation was determined. We will discuss the correlation of our data with the triboelectric series.

  12. The development of a lower heat concrete mixture for mass concrete placement conditions

    NASA Astrophysics Data System (ADS)

    Crowley, Aaron Martin

    The hydration process of portland cement (PC) is exothermic; therefore, the thermal behavior of concrete has to be taken into consideration when placed in a large mass. The research presented involves a Tennessee Department of Transportation (TDOT) Class S (seal) portland cement concrete (PCC) which is used as a foundation seal during construction of bridge abutments and piers. A Class S PCC mixture meeting the 2006 TDOT specifications has the potential to generate excessive amounts of heat and induce thermal cracking in structural elements. The purpose of the study is to reduce the heat generation of a Class S PCC while maintaining adequate values of other engineering properties. Due to the possibility of underwater placement of a Class S PCC, reduction in the total cementing materials content were not considered in this study. Five candidate mixtures were used to compare against a typical TDOT Class S mixture. The five candidate Class S-LH (lower heat) mixtures were 45, 60, 70% Grade 120 slag substitutions for PC as well as two ternary mixtures containing Grade 120 slag and Class F fly ash. Ten batches of each mixture were produced. All plastic and hardened properties met TDOT 604.03 Class S requirements for analytical comparison. The 70% Grade 120 slag Class S-LH mixture was analytically superior for all hardened properties and at reducing heat generation. Since the 70% Grade 120 slag Class S-LH mixture proved to be superior in laboratory conditions; it was selected for further evaluation in the field testing portion of the research. The 70% Grade 120 slag mixture produced a significantly lower maximum temperature as well as a significantly lower maximum differential temperature than a TDOT Class S mixture with 20% Class C fly ash in side-by-side 18 cubic yard cube field placements. Research results and literature recommend that engineers should decide when mass concrete conditions are appropriate during construction practices. When mass concrete conditions are considered, contractors should be responsible for monitoring and limiting maximum internal temperature to 150°F and the maximum differential temperature to 35°F. A temperature control plan should be established using various methods, and not limited to only PCC mixture design.

  13. Transport properties of Y1-xNdxCo2 compounds

    NASA Astrophysics Data System (ADS)

    Uchima, K.; Takeda, M.; Zukeran, C.; Nakamura, A.; Arakaki, N.; Komesu, S.; Takaesu, Y.; Hedo, M.; Nakama, T.; Yagasaki, K.; Uwatoko, Y.; Burkov, A. T.

    2012-12-01

    Electrical resistivity ρ and thermopower S of light rare earth-based pseudo-binary Y1-xNdxCo2 alloys have been measured at temperatures from 2 K to 300 K and under pressures up to 3.5 GPa. The Curie temperature of the alloys, TC, determined from characteristic features in the temperature dependences of the transport properties, decreases with decreasing Nd concentration x and vanishes around xc = 0.3. The residual resistivity has a pronounced maximum at x = xc. The temperature coefficient of thermopower dS/dT at low temperature limit shows a complex dependence on alloy composition: it changes its sign from negative to positive at x ≍ 0.2, having a maximum at x = xc, and is nearly composition independent at x > 0.5. The pressure dependences of TC and ρ0 of Yo.6Ndo.4Co2 reveal the behavior similar to that observed in the Y1-xRxHCo2 (RH = heavy rare earth) alloy systems, which implies that the magnetic state of the Co-3d electron subsystem is responsible for the transport properties in the Y1-xNdxCo2 alloys.

  14. Efficiency of biochar produced from malt spent rootlets to remove mercury and dyes

    NASA Astrophysics Data System (ADS)

    Kamenidou, Charoula; Manariotis, Ioannis; Karapanagioti, Hrissi

    2017-04-01

    Considerable research effort has been focused on the production of biochar from carbon-rich biomass under oxygen-limited conditions as a mitigation measure for global warming once it is used as a soil amendment. Furthermore, the use of biochar as an added value product, such as sorbent or catalyst, is desirable and could be more profitable. Biochar is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. Various organic-rich wastes including wood chips, animal manure, and crop residues have been used for biochar production. The present study presents the findings of an experimental work, which investigated the use of biochar produced from malt spent rootlets (MSR), which is a beer production by-product, to remove Hg(II) and methylene blue (MB) from aqueous solutions. MSR was pyrolyzed at temperatures of 300, 400, 500, 600, 750, 850, and 900oC, under limited oxygen conditions. The increase of temperature resulted in significantly increased BET surface areas. The mercury sorption capacity was affected by pyrolysis temperature, and was increased by increasing the pyrolysis temperature. The maximum sorption capacity was 100-110 mg Hg(II)/g biochar at a temperature range of 750-850oC. The MB sorption capacity of biochar was also affected by pyrolysis temperature.

  15. Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes.

    PubMed

    Culumber, Zachary W; Tobler, Michael

    2018-05-01

    The role of ecology in phenotypic and species diversification is widely documented. Nonetheless, numerous nonadaptive processes can shape realized niches and phenotypic variation in natural populations, complicating inferences about adaptive evolution at macroevolutionary scales. We tested for evolved differences in thermal tolerances and their association with the realized thermal niche (including metrics describing diurnal and seasonal patterns of temperature extremes and variability) across a genus of tropical freshwater fishes reared in a standardized environment. There was limited evolution along the thermal niche axis associated with variation in maximum temperature and in upper thermal limits. In contrast, there was considerable diversification along the first major axis of the thermal niche associated with minimum temperatures and in lower thermal limits. Across our adaptive landscape analyses, 70% of species exhibited evidence of divergence in thermal niches. Most importantly, the first two major axes of thermal niche variation were significantly correlated with variation in lower thermal limits. Our results indicate adaptation to divergent thermal niches and adaptive evolution of related functional traits, and highlight the importance of divergence in lower thermal limits for the evolution of tropical biodiversity. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  16. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction.

    PubMed

    Simon, Monique Nouailhetas; Ribeiro, Pedro Leite; Navas, Carlos Arturo

    2015-02-01

    Tropical ectothermic species are currently depicted as more vulnerable to increasing temperatures because of the proximity between their upper thermal limits and environmental temperatures. Yet, the acclimatory capacity of thermal limits has rarely been measured in tropical species, even though they are generally predicted to be smaller than in temperate species. We compared critical thermal maximum (CTmax) and warming tolerance (WT: the difference between CTmax and maximum temperature, Tmax), as well as CTmax acclimatory capacity of toad species from the Atlantic forest (AF) and the Brazilian Caatinga (CAA), a semi-arid habitat with high temperatures. Acclimation temperatures represented the mean temperatures of AF and CAA habitats, making estimates of CTmax and WT more ecologically realistic. CAA species mean CTmax was higher compared to AF species in both acclimation treatments. Clutches within species, as well as between AF and CAA species, differed in CTmax plasticity and we discuss the potential biological meaning of these findings. We did not find a trade-off between absolute CTmax and CTmax plasticity, indicating that species can have both high CTmax and high CTmax plasticity. Although CTmax was highly correlated to Tmax, CTmax plasticity was not related to Tmax or Tmax coefficients of variation. CAA species mean WT was lower than for AF species, but still very high for all species, diverging from other studies with tropical species. This might be partially related to over-estimation of vulnerability due to under-appreciation of realistic acclimation treatments in CTmax estimation. Thus, some tropical species might not be as vulnerable to warming as previously predicted if CTmax is considered as a shifting population parameter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A superconducting direct-current limiter with a power of up to 8 MVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, L. M.; Alferov, D. F., E-mail: DFAlferov@niitfa.ru; Akhmetgareev, M. R.

    2016-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel–series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current atmore » a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.« less

  18. A superconducting direct-current limiter with a power of up to 8 MVA

    NASA Astrophysics Data System (ADS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2016-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel-series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current at a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.

  19. Development of daily temperature scenarios and their impact on paddy crop evapotranspiration in Kangsabati command area

    NASA Astrophysics Data System (ADS)

    Dhage, P. M.; Raghuwanshi, N. S.; Singh, R.; Mishra, A.

    2017-05-01

    Production of the principal paddy crop in West Bengal state of India is vulnerable to climate change due to limited water resources and strong dependence on surface irrigation. Therefore, assessment of impact of temperature scenarios on crop evapotranspiration (ETc) is essential for irrigation management in Kangsabati command (West Bengal). In the present study, impact of the projected temperatures on ETc was studied under climate change scenarios. Further, the performance of the bias correction and spatial downscaling (BCSD) technique was compared with the two well-known downscaling techniques, namely, multiple linear regression (MLR) and Kernel regression (KR), for the projections of daily maximum and minimum air temperatures for four stations, namely, Purulia, Bankura, Jhargram, and Kharagpur. In National Centers for Environmental Prediction (NCEP) and General Circulation Model (GCM), 14 predictors were used in MLR and KR techniques, whereas maximum and minimum surface air temperature predictor of CanESM2 GCM was used in BCSD technique. The comparison results indicated that the performance of the BCSD technique was better than the MLR and KR techniques. Therefore, the BCSD technique was used to project the future temperatures of study locations with three Representative Concentration Pathway (RCP) scenarios for the period of 2006-2100. The warming tendencies of maximum and minimum temperatures over the Kangsabati command area were projected as 0.013 and 0.014 °C/year under RCP 2.6, 0.015 and 0.023 °C/year under RCP 4.5, and 0.056 and 0.061 °C/year under RCP 8.5 for 2011-2100 period, respectively. As a result, kharif (monsoon) crop evapotranspiration demand of Kangsabati reservoir command (project area) will increase by approximately 10, 8, and 18 % over historical demand under RCP 2.6, 4.5, and 8.5 scenarios, respectively.

  20. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  1. Mechanical attachments for flexible blanket TPS

    NASA Astrophysics Data System (ADS)

    Newquist, Charles W.; Anderson, David M.; Shorey, Mark W.; Preedy, Kristina S.

    1998-01-01

    The operability of a flexible blanket thermal protection system for a reusable launch vehicle can be improved by using mechanical attachments instead of adhesive bonding to fasten the thermal protection system to the vehicle structure. Mechanical attachments offer specific benefits by (1) permitting the use of composite or metal structures at or near their maximum temperatures (above the adhesive temperature limit) thereby reducing the required TPS thickness and weight, (2) significantly reducing both the frequency and time for TPS replacement, (3) providing easy access to hatches and the underlying structure, and (4) allowing the attachment of flexible TPS to integral cryotanks, where the TPS/structure interface temperature may fall below the lower temperature of the silicone adhesives.

  2. Irreversible Brownian Heat Engine

    NASA Astrophysics Data System (ADS)

    Taye, Mesfin Asfaw

    2017-10-01

    We model a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a linearly decreasing background temperature. We show that the efficiency of such Brownian heat engine approaches the efficiency of endoreversible engine η =1-√{{Tc/Th}} [23]. On the other hand, the maximum power efficiency of the engine approaches η ^{MAX}=1-({Tc/Th})^{1\\over 4}. It is shown that the optimized efficiency always lies between the efficiency at quasistatic limit and the efficiency at maximum power while the efficiency at maximum power is always less than the optimized efficiency since the fast motion of the particle comes at the expense of the energy cost. If the heat exchange at the boundary of the heat baths is included, we show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature. The role of time on the performance of the motor is also explored via numerical simulations. Our numerical results depict that the time t and the external load dictate the direction of the particle velocity. Moreover, the performance of the heat engine improves with time. At large t (steady state), the velocity, the efficiency and the coefficient of performance of the refrigerator attain their maximum value. Furthermore, we study the effect of temperature by considering a viscous friction that decreases exponentially as the background temperature increases. Our result depicts that the Brownian particle exhibits a fast unidirectional motion when the viscous friction is temperature dependent than that of constant viscous friction. Moreover, the efficiency of this motor is considerably enhanced when the viscous friction is temperature dependent. On the hand, the motor exhibits a higher performance of the refrigerator when the viscous friction is taken to be constant.

  3. Energetics of Intermediate Temperature Solid Oxide Fuel Cell Electrolytes: Singly and Doubly doped Ceria Systems

    NASA Astrophysics Data System (ADS)

    Buyukkilic, Salih

    Solid oxide fuel cells (SOFCs) have potential to convert chemical energy directly to electrical energy with high efficiency, with only water vapor as a by-product. However, the requirement of extremely high operating temperatures (~1000 °C) limits the use of SOFCs to only in large scale stationary applications. In order to make SOFCs a viable energy solution, enormous effort has been focused on lowering the operating temperatures below 700 °C. A low temperature operation would reduce manufacturing costs by slowing component degradation, lessening thermal mismatch problems, and sharply reducing costs of operation. In order to optimize SOFC applications, it is critical to understand the thermodynamic stabilities of electrolytes since they directly influence device stability, sustainability and performance. Rare-earth doped ceria electrolytes have emerged as promising materials for SOFC applications due to their high ionic conductivity at the intermediate temperatures (500--700 °C). However there is a fundamental lack of understanding regarding their structure, thermodynamic stability and properties. Therefore, the enthalpies of formation from constituent oxides and ionic conductivities were determined to investigate a relationship between the stability, composition, structural defects and ionic conductivity in rare earth doped ceria systems. For singly doped ceria electrolytes, we investigated the solid solution phase of bulk Ce1-xLnxO2-0.5x where Ln = Sm and Nd (0 ≤ x ≤ 0.30) and analyzed their enthalpies of formation, mixing and association, and bulk ionic conductivities while considering cation size mismatch and defect associations. It was shown that for ambient temperatures in the dilute dopant region, the positive heat of formation reaches a maximum as the system becomes increasingly less stable due to size mismatch. In concentrated region, stabilization to a certain solubility limit was observed probably due to the defect association of trivalent cations with charge-balancing oxygen vacancies. At higher temperatures near 700 °C, maximum enthalpy of formation shifts toward higher dopant concentrations, as a result of defect disordering. This concentration coincides with that of maximum ionic conductivity, extending the correlation seen previously near room temperature. It is also possible to co-dope these systems with Sm and Nd to further enhance ionic conductivity. For doubly doped ceria electrolytes, the solid solution phase of Ce1-xSm0.5xNd0.5xO2-0.5x (0 ≤ x ≤ 0.30) was investigated. It has been shown that for doubly doped ceria, the maximum enthalpy of formation occurs towards higher dopant concentration than that of singly doped counterparts, with less exothermic association enthalpies. These studies provide insight into the structure-composition-property-stability relations and aid in the rational design of the future SOFCs electrolytes.

  4. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA-457Mv2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    In order to further the design of future high-power Hall thrusters and provide experimental validation for ongoing modeling efforts, plasma potential and Langmuir probe measurements were performed on the 50-kW NASA-457Mv2. An electrostatic probe array comprised of a near-field Faraday probe, single Langmuir probe, and emissive probe was used to interrogate the near-field plume from approximately 0.1 - 2.0 mean thruster diameters downstream of the thruster exit plane at the following operating conditions: 300 V, 400 V and 500 V at 30 kW and 500 V at 50 kW. Results have shown that the acceleration zone is limited to within 0.4 mean thruster diameters of the exit plane while the high-temperature region is limited to 0.25 mean thruster diameters from the exit plane at all four operating conditions. Maximum plasma potentials in the near-field at 300 and 400 V were approximately 50 V with respect to cathode potential, while maximum electron temperatures varied from 24 - 32 eV, depending on operating condition. Isothermal lines at all operating conditions were found to strongly resemble the magnetic field topology in the high-temperature regions. This distribution was found to create regions of high temperature and low density near the magnetic poles, indicating strong, thick sheath formation along these surfaces. The data taken from this study are considered valuable for future design as well as modeling validation.

  5. Size limits for rounding of volcanic ash particles heated by lightning

    PubMed Central

    Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.

    2017-01-01

    Abstract Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high‐temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1‐D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension‐driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first‐order estimate of lightning conditions in volcanic plumes. PMID:28781929

  6. Size limits for rounding of volcanic ash particles heated by lightning.

    PubMed

    Wadsworth, Fabian B; Vasseur, Jérémie; Llewellin, Edward W; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters-capillary, Fourier, Stark, Biot, and Peclet numbers-to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  7. Size limits for rounding of volcanic ash particles heated by lightning

    NASA Astrophysics Data System (ADS)

    Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  8. Information flow in layered networks of non-monotonic units

    NASA Astrophysics Data System (ADS)

    Schittler Neves, Fabio; Martim Schubert, Benno; Erichsen, Rubem, Jr.

    2015-07-01

    Layered neural networks are feedforward structures that yield robust parallel and distributed pattern recognition. Even though much attention has been paid to pattern retrieval properties in such systems, many aspects of their dynamics are not yet well characterized or understood. In this work we study, at different temperatures, the memory activity and information flows through layered networks in which the elements are the simplest binary odd non-monotonic function. Our results show that, considering a standard Hebbian learning approach, the network information content has its maximum always at the monotonic limit, even though the maximum memory capacity can be found at non-monotonic values for small enough temperatures. Furthermore, we show that such systems exhibit rich macroscopic dynamics, including not only fixed point solutions of its iterative map, but also cyclic and chaotic attractors that also carry information.

  9. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  10. Competition between ionic adsorption and desorption on electrochemical double layer capacitor electrodes in acetonitrile solutions at different currents and temperatures

    NASA Astrophysics Data System (ADS)

    Park, Sieun; Kang, Seok-Won; Kim, Ketack

    2017-12-01

    The operation of electrochemical double layer capacitors at high currents and viscosities and at low temperatures is difficult. Under these conditions, ion transport is limited, and some of the electrode area is unavailable for adsorption, which results in a low capacitance. Increasing the temperature helps to increase the ionic movement, leading to enhanced adsorption and increased capacitance. In contrast, ion desorption (self-discharge) surpasses the capacitance improvement when ions gain a high amount of energy with increasing temperature. For example, temperatures as high as 70 °C cause a very high rate of ionic desorption in acetonitrile solutions in which the individual properties of the two electrolytes-tetraethylammonium tetrafluoroborate (TEA BF4) and ethylmethylimidazolium tetrafluoroborate (EMI BF4)-are not distinguishable. The capacitance improvement and self-discharge are balanced, resulting in a capacitance peak at mid-range temperatures, i.e., 35-45 °C, in the more viscous electrolyte, i.e., TEA BF4. The less viscous electrolyte, i.e., EMI BF4 has a wider capacitance peak from 25 to 45 °C and higher capacitance than that of TEA BF4. Because the maximum power is obtained in the mid-temperature range (35-45 °C), it is necessary to control the viscosity and temperature to obtain the maximum power in a given device.

  11. Station Blackout Analysis of HTGR-Type Experimental Power Reactor

    NASA Astrophysics Data System (ADS)

    Syarip; Zuhdi, Aliq; Falah, Sabilul

    2018-01-01

    The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.

  12. 75 FR 37311 - Airplane and Engine Certification Requirements in Supercooled Large Drop, Mixed Phase, and Ice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... maximum time interval between any engine run-ups from idle and the minimum ambient temperature associated with that run-up interval. This limitation is necessary because we do not currently have any specific requirements for run-up procedures for engine ground operation in icing conditions. The engine run-up procedure...

  13. Maximum drop radius and critical Weber number for splashing in the dynamical Leidenfrost regime

    NASA Astrophysics Data System (ADS)

    Riboux, Guillaume; Gordillo, Jose Manuel

    2015-11-01

    At room temperature, when a drop impacts against a smooth solid surface at a velocity above the so called critical velocity for splashing, the drop loses its integrity and fragments into tiny droplets violently ejected radially outwards. Below this critical velocity, the drop simply spreads over the substrate. Splashing is also reported to occur for solid substrate temperatures above the Leidenfrost temperature, T, for which a vapor layer prevents the drop from touching the substrate. In this case, the splashing morphology largely differs from the one reported at room temperature because, thanks to the presence of the gas layer, the shear stresses on the liquid do not decelerate the ejected lamella. Our purpose here is to predict, for wall temperatures above T, the dependence of the critical impact velocity on the temperature of the substrate as well as the maximum spreading radius for impacting velocities below the critical velocity for splashing. This is done making use of boundary integral simulations, where the velocity and the height of the liquid layer at the root of the ejected lamella are calculated numerically. This information constitutes the initial conditions for the one dimensional mass and momentum equations governing the dynamics of the toroidal rim limiting the edge of the lamella.

  14. Relevance of the correlation between precipitation and the 0 °C isothermal altitude for extreme flood estimation

    NASA Astrophysics Data System (ADS)

    Zeimetz, Fraenz; Schaefli, Bettina; Artigue, Guillaume; García Hernández, Javier; Schleiss, Anton J.

    2017-08-01

    Extreme floods are commonly estimated with the help of design storms and hydrological models. In this paper, we propose a new method to take into account the relationship between precipitation intensity (P) and air temperature (T) to account for potential snow accumulation and melt processes during the elaboration of design storms. The proposed method is based on a detailed analysis of this P-T relationship in the Swiss Alps. The region, no upper precipitation intensity limit is detectable for increasing temperature. However, a relationship between the highest measured temperature before a precipitation event and the duration of the subsequent event could be identified. An explanation for this relationship is proposed here based on the temperature gradient measured before the precipitation events. The relevance of these results is discussed for an example of Probable Maximum Precipitation-Probable Maximum Flood (PMP-PMF) estimation for the high mountainous Mattmark dam catchment in the Swiss Alps. The proposed method to associate a critical air temperature to a PMP is easily transposable to similar alpine settings where meteorological soundings as well as ground temperature and precipitation measurements are available. In the future, the analyses presented here might be further refined by distinguishing between precipitation event types (frontal versus orographic).

  15. viral abundance distribution in deep waters of the Northern of South China Sea

    NASA Astrophysics Data System (ADS)

    He, Lei; Yin, Kedong

    2017-04-01

    Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.

  16. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae

    PubMed Central

    Candebat, Caroline; Ruhbaum, Yannick; Álvarez-Fernández, Santiago; Claireaux, Guy; Zambonino-Infante, José-Luis; Peck, Myron A.

    2017-01-01

    Most of the thermal tolerance studies on fish have been performed on juveniles and adults, whereas limited information is available for larvae, a stage which may have a particularly narrow range in tolerable temperatures. Moreover, previous studies on thermal limits for marine and freshwater fish larvae (53 studies reviewed here) applied a wide range of methodologies (e.g. the static or dynamic method, different exposure times), making it challenging to compare across taxa. We measured the Critical Thermal Maximum (CTmax) of Atlantic herring (Clupea harengus) and European seabass (Dicentrarchus labrax) larvae using the dynamic method (ramping assay) and assessed the effect of warming rate (0.5 to 9°C h-1) and acclimation temperature. The larvae of herring had a lower CTmax (lowest and highest values among 222 individual larvae, 13.1–27.0°C) than seabass (lowest and highest values among 90 individual larvae, 24.2–34.3°C). At faster rates of warming, larval CTmax significantly increased in herring, whereas no effect was observed in seabass. Higher acclimation temperatures led to higher CTmax in herring larvae (2.7 ± 0.9°C increase) with increases more pronounced at lower warming rates. Pre-trials testing the effects of warming rate are recommended. Our results for these two temperate marine fishes suggest using a warming rate of 3–6°C h-1: CTmax is highest in trials of relatively short duration, as has been suggested for larger fish. Additionally, time-dependent thermal tolerance was observed in herring larvae, where a difference of up to 8°C was observed in the upper thermal limit between a 0.5- or 24-h exposure to temperatures >18°C. The present study constitutes a first step towards a standard protocol for measuring thermal tolerance in larval fish. PMID:28749960

  17. Systematic errors in temperature estimates from MODIS data covering the western Palearctic and their impact on a parasite development model.

    PubMed

    Alonso-Carné, Jorge; García-Martín, Alberto; Estrada-Peña, Agustin

    2013-11-01

    The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 °C. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44° N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycles.

  18. Electrical insulation design requirements and reliability goals

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    1983-11-01

    The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.

  19. Adverse Climatic Conditions and Impact on Construction Scheduling and Cost

    DTIC Science & Technology

    1988-01-01

    ABBREVIATIONS ABS MAX MAX TEMP ...... Absolute maximum maximum temperature ABS MIN MIN TEMP ...... Absolute minimum minimum temperature BTU...o Degrees Farenheit MEAN MAX TEMP o.................... Mean maximum temperature MEAN MIN TEMP...temperatures available, a determination had to be made as to whether forecasts were based on absolute , mean, or statistically derived temperatures

  20. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  1. Catalytic behavior of metal catalysts in high-temperature RWGS reaction: In-situ FT-IR experiments and first-principles calculations

    PubMed Central

    Choi, Sungjun; Sang, Byoung-In; Hong, Jongsup; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook; Kim, Hyoungchul

    2017-01-01

    High-temperature chemical reactions are ubiquitous in (electro) chemical applications designed to meet the growing demands of environmental and energy protection. However, the fundamental understanding and optimization of such reactions are great challenges because they are hampered by the spontaneous, dynamic, and high-temperature conditions. Here, we investigated the roles of metal catalysts (Pd, Ni, Cu, and Ag) in the high-temperature reverse water-gas shift (RWGS) reaction using in-situ surface analyses and density functional theory (DFT) calculations. Catalysts were prepared by the deposition-precipitation method with urea hydrolysis and freeze-drying. Most metals show a maximum catalytic activity during the RWGS reaction (reaching the thermodynamic conversion limit) with formate groups as an intermediate adsorbed species, while Ag metal has limited activity with the carbonate species on its surface. According to DFT calculations, such carbonate groups result from the suppressed dissociation and adsorption of hydrogen on the Ag surface, which is in good agreement with the experimental RWGS results. PMID:28120896

  2. Catalytic behavior of metal catalysts in high-temperature RWGS reaction: In-situ FT-IR experiments and first-principles calculations.

    PubMed

    Choi, Sungjun; Sang, Byoung-In; Hong, Jongsup; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook; Kim, Hyoungchul

    2017-01-25

    High-temperature chemical reactions are ubiquitous in (electro) chemical applications designed to meet the growing demands of environmental and energy protection. However, the fundamental understanding and optimization of such reactions are great challenges because they are hampered by the spontaneous, dynamic, and high-temperature conditions. Here, we investigated the roles of metal catalysts (Pd, Ni, Cu, and Ag) in the high-temperature reverse water-gas shift (RWGS) reaction using in-situ surface analyses and density functional theory (DFT) calculations. Catalysts were prepared by the deposition-precipitation method with urea hydrolysis and freeze-drying. Most metals show a maximum catalytic activity during the RWGS reaction (reaching the thermodynamic conversion limit) with formate groups as an intermediate adsorbed species, while Ag metal has limited activity with the carbonate species on its surface. According to DFT calculations, such carbonate groups result from the suppressed dissociation and adsorption of hydrogen on the Ag surface, which is in good agreement with the experimental RWGS results.

  3. High temperature tensile properties of V-4Cr-4Ti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Rowcliffe, A.F.; Stevens, C.O.

    Tensile tests have been performed on V-4Cr-4Ti at 750 and 800 C in order to extend the data base beyond the current limit of 700 C. From comparison with previous measurements, the yield strength is nearly constant and tensile elongations decrease slightly with increasing temperature between 300 and 800 C. The ultimate strength exhibits an apparent maximum near 600 C (attributable to dynamic strain aging) but adequate strength is maintained up to 800 C. The reduction in area measured on tensile specimens remained high ({approximately}80%) for test temperatures up to 800 C, in contrast to previous reported results.

  4. Optimization of waste heat utilization in cold end system of thermal power station based on neural network algorithm

    NASA Astrophysics Data System (ADS)

    Du, Zenghui

    2018-04-01

    At present, the flue gas waste heat utilization projects of coal-fired boilers are often limited by low temperature corrosion problems and conventional PID control. The flue gas temperature cannot be reduced to the best efficiency temperature of wet desulphurization, resulting in the failure of heat recovery to be the maximum. Therefore, this paper analyzes, researches and solves the remaining problems of the cold end system of thermal power station, so as to provide solutions and theoretical support for energy saving and emission reduction and upgrading and the improvement of the comprehensive efficiency of the units.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew A

    Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type ofmore » battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  6. Enabling fast charging - Battery thermal considerations

    NASA Astrophysics Data System (ADS)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  7. Influence of water mist on propagation and suppression of laminar premixed flame

    NASA Astrophysics Data System (ADS)

    Belyakov, Nikolay S.; Babushok, Valeri I.; Minaev, Sergei S.

    2018-03-01

    The combustion of premixed gas mixtures containing micro droplets of water was studied using one-dimensional approximation. The dependencies of the burning velocity and flammability limits on the initial conditions and on the properties of liquid droplets were analyzed. Effects of droplet size and concentration of added liquid were studied. It was demonstrated that the droplets with smaller diameters are more effective in reducing the flame velocity. For droplets vaporizing in the reaction zone, the burning velocity is independent of droplet size, and it depends only on the concentration of added liquid. With further increase of the droplet diameter the droplets are passing through the reaction zone with completion of vaporization in the combustion products. It was demonstrated that for droplets above a certain size there are two stable stationary modes of flame propagation with transition of hysteresis type. The critical conditions of the transition are due to the appearance of the temperature maximum at the flame front and the temperature gradient with heat losses from the reaction zone to the products, as a result of droplet vaporization passing through the reaction zone. The critical conditions are similar to the critical conditions of the classical flammability limits of flame with the thermal mechanism of flame propagation. The maximum decrease in the burning velocity and decrease in the combustion temperature at the critical turning point corresponds to predictions of the classical theories of flammability limits of Zel'dovich and Spalding. The stability analysis of stationary modes of flame propagation in the presence of water mist showed the lack of oscillatory processes in the frames of the assumed model.

  8. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    NASA Astrophysics Data System (ADS)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  9. Magnetic refrigeration using flux compression in superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Strayer, D. M.; Jackson, H. W.; Petrac, D.

    1990-01-01

    The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature supercoductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications.

  10. Third law of thermodynamics in the presence of a heat flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camacho, J.

    1995-01-01

    Following a maximum entropy formalism, we study a one-dimensional crystal under a heat flux. We obtain the phonon distribution function and evaluate the nonequilibrium temperature, the specific heat, and the entropy as functions of the internal energy and the heat flux, in both the quantum and the classical limits. Some analogies between the behavior of equilibrium systems at low absolute temperature and nonequilibrium steady states under high values of the heat flux are shown, which point to a possible generalization of the third law in nonequilibrium situations.

  11. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    PubMed

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  12. Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance.

    PubMed

    McKechnie, Andrew E; Gerson, Alexander R; McWhorter, Todd J; Smith, Eric Krabbe; Talbot, William A; Wolf, Blair O

    2017-07-01

    Evaporative heat loss pathways vary among avian orders, but the extent to which evaporative cooling capacity and heat tolerance vary within orders remains unclear. We quantified the upper limits to thermoregulation under extremely hot conditions in five Australian passerines: yellow-plumed honeyeater ( Lichenostomus ornatus ; ∼17 g), spiny-cheeked honeyeater ( Acanthagenys rufogularis ; ∼42 g), chestnut-crowned babbler ( Pomatostomus ruficeps ; ∼52 g), grey butcherbird ( Cracticus torquatus ; ∼86 g) and apostlebird ( Struthidea cinerea ; ∼118 g). At air temperatures ( T a ) exceeding body temperature ( T b ), all five species showed increases in T b to maximum values around 44-45°C, accompanied by rapid increases in resting metabolic rate above clearly defined upper critical limits of thermoneutrality and increases in evaporative water loss (EWL) to levels equivalent to 670-860% of baseline rates at thermoneutral T a Maximum cooling capacity, quantified as the fraction of metabolic heat production dissipated evaporatively, ranged from 1.20 to 2.17, consistent with the known range for passerines, and well below the corresponding ranges for columbids and caprimulgids. Heat tolerance limit (HTL, the maximum T a tolerated) scaled positively with body mass, varying from 46°C in yellow-plumed honeyeaters to 52°C in a single apostlebird, but was lower than that of three southern African ploceid passerines investigated previously. We argue this difference is functionally linked to a smaller scope for increases in EWL above baseline levels. Our data reiterate the reliance of passerines in general on respiratory evaporative heat loss via panting, but also reveal substantial within-order variation in heat tolerance and evaporative cooling capacity. © 2017. Published by The Company of Biologists Ltd.

  13. Development and Evaluation of High-Resolution Climate Simulations Over the Mountainous Northeastern United States

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Beckage, Brian; Bucini, Gabriela; Horton, Radley M.; Clemins, Patrick J.

    2016-01-01

    The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly approximately 1/ 8 deg) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30"), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (1/ 8 deg) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.

  14. Radiation-thermometric study of isolated hot molten metal spheres by containerless and contactless measurement techniques

    NASA Astrophysics Data System (ADS)

    Lee, G. W.; Jeon, S.; Park, C.; Kang, D. H.; Choi, B. I.; Park, S. N.

    2013-09-01

    An electrostatic levitation (ESL) device is developed to study the radiation-properties of liquid metals at high temperature. The technique provides good advantage, such as fast response of temperature change on a sample, clear features of recalescence and plateau during freezing, no contamination or no reaction with environment, easy control of supercooling deducing hypercooling limit, and relatively simple analysis of thermodynamic quantities because of only radiative cooling process under vacuum. In this study, we could obtain a hypercooling limit (i.e., maximum supercooling) of liquid Ti, 341 K using the ESL. An accurate ratio of the specific heat to total hemispherical emissivity of liquid Ti was obtained by Stefan-Boltzmann law. Then, the specific heat and total hemispherical emissivity of Ti liquid metal can be estimated with the hypercooling limit and known fusion enthalpy values of Ti, which has been rarely reported.

  15. Parallel transmission RF pulse design with strict temperature constraints.

    PubMed

    Deniz, Cem M; Carluccio, Giuseppe; Collins, Christopher

    2017-05-01

    RF safety in parallel transmission (pTx) is generally ensured by imposing specific absorption rate (SAR) limits during pTx RF pulse design. There is increasing interest in using temperature to ensure safety in MRI. In this work, we present a local temperature correlation matrix formalism and apply it to impose strict constraints on maximum absolute temperature in pTx RF pulse design for head and hip regions. Electromagnetic field simulations were performed on the head and hip of virtual body models. Temperature correlation matrices were calculated for four different exposure durations ranging between 6 and 24 min using simulated fields and body-specific constants. Parallel transmission RF pulses were designed using either SAR or temperature constraints, and compared with each other and unconstrained RF pulse design in terms of excitation fidelity and safety. The use of temperature correlation matrices resulted in better excitation fidelity compared with the use of SAR in parallel transmission RF pulse design (for the 6 min exposure period, 8.8% versus 21.0% for the head and 28.0% versus 32.2% for the hip region). As RF exposure duration increases (from 6 min to 24 min), the benefit of using temperature correlation matrices on RF pulse design diminishes. However, the safety of the subject is always guaranteed (the maximum temperature was equal to 39°C). This trend was observed in both head and hip regions, where the perfusion rates are very different. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Assessment of SAR and thermal changes near a cochlear implant system for mobile phone type exposures.

    PubMed

    McIntosh, Robert L; Iskra, Steve; McKenzie, Raymond J; Chambers, John; Metzenthen, Bill; Anderson, Vitas

    2008-01-01

    A cochlear implant system is a device used to enable hearing in people with severe hearing loss and consists of an internal implant and external speech processor. This study considers the effect of scattered radiofrequency fields when these persons are subject to mobile phone type exposure. A worst-case scenario is considered where the antenna is operating at nominal full power, the speech processor is situated behind the ear using a metallic hook, and the antenna is adjacent to the hook and the internal ball electrode. The resultant energy deposition and thermal changes were determined through numerical modelling. With a 900 MHz half-wave dipole antenna producing continuous-wave (CW) 250 mW power, the maximum 10 g averaged SAR was 1.31 W/kg which occurred in the vicinity of the hook and the ball electrode. The maximum temperature increase was 0.33 degrees C in skin adjacent to the hook. For the 1800 MHz antenna, operating at 125 mW, the maximum 10 g averaged SAR was 0.93 W/kg in the pinna whilst the maximum temperature change was 0.16 degrees C. The analysis predicts that the wearer complies with the radiofrequency safety limits specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the Institute of Electrical and Electronics Engineers (IEEE), and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for 900 and 1800 MHz mobile phone type exposure and thus raises no cause for concern. The resultant temperature increase is well below the maximum rise of 1 degrees C recommended by ICNIRP. Effects in the cochlea were insignificant. (c) 2007 Wiley-Liss, Inc.

  17. Interspecific variation in thermoregulation among three sympatric bats inhabiting a hot, semi-arid environment.

    PubMed

    Cory Toussaint, Dawn; McKechnie, Andrew E

    2012-12-01

    Bats in hot roosts experience some of the most thermally challenging environments of any endotherms, but little is known about how heat tolerance and evaporative cooling capacity vary among species. We investigated thermoregulation in three sympatric species (Nycteris thebaica, Taphozous mauritianus and Sauromys petrophilus) in a hot, semi-arid environment by measuring body temperature (T(b)), metabolic rate and evaporative water loss (EWL) at air temperatures (T(a)) of 10-42 °C. S. petrophilus was highly heterothermic with no clear thermoneutral zone, and exhibited rapid increases in EWL at high T(a) to a maximum of 23.7 ± 7.4 mg g⁻¹ h⁻¹ at T(a) ≈ 42 °C, with a concomitant maximum T(b) of 43.7 ± 1.0 °C. T. mauritianus remained largely normothermic at T(a)s below thermoneutrality and increased EWL to 14.7 ± 1.3 mg g⁻¹ h⁻¹ at T(a) ≈ 42 °C, with a maximum T(b) of 42.9 ± 1.6 °C. In N. thebaica, EWL began increasing at lower T (a) than in either of the other species and reached a maximum of 18.6 ± 2.1 mg g⁻¹ h⁻¹ at T(a) = 39.4 °C, with comparatively high maximum T(b) values of 45.0 ± 0.9 °C. Under the conditions of our study, N. thebaica was considerably less heat tolerant than the other two species. Among seven species of bats for which data on T(b) as well as roost temperatures in comparison to outside T(a) are available, we found limited evidence for a correlation between overall heat tolerance and the extent to which roosts are buffered from high T(a).

  18. Shape Memory Alloys for Monitoring Minor Over-Heating/Cooling Based on the Temperature Memory Effect via Differential Scanning Calorimetry: A Review of Recent Progress

    NASA Astrophysics Data System (ADS)

    Wang, T. X.; Huang, W. M.

    2017-12-01

    The recent development in the temperature memory effect (TME) via differential scanning calorimetry in shape memory alloys is briefly discussed. This phenomenon was also called the thermal arrest memory effect in the literature. However, these names do not explicitly reveal the potential application of this phenomenon in temperature monitoring. On the other hand, the standard testing process of the TME has great limitation. Hence, it cannot be directly applied for temperature monitoring in most of the real engineering applications in which temperature fluctuation occurs mostly in a random manner within a certain range. However, as shown here, after proper modification, we are able to monitor the maximum or minimum temperature in either over-heating or over-cooling with reasonable accuracy.

  19. Loss of thermal refugia near equatorial range limits.

    PubMed

    Lima, Fernando P; Gomes, Filipa; Seabra, Rui; Wethey, David S; Seabra, Maria I; Cruz, Teresa; Santos, António M; Hilbish, Thomas J

    2016-01-01

    This study examines the importance of thermal refugia along the majority of the geographical range of a key intertidal species (Patella vulgata Linnaeus, 1758) on the Atlantic coast of Europe. We asked whether differences between sun-exposed and shaded microhabitats were responsible for differences in physiological stress and ecological performance and examined the availability of refugia near equatorial range limits. Thermal differences between sun-exposed and shaded microhabitats are consistently associated with differences in physiological performance, and the frequency of occurrence of high temperatures is most probably limiting the maximum population densities supported at any given place. Topographical complexity provides thermal refugia throughout most of the distribution range, although towards the equatorial edges the magnitude of the amelioration provided by shaded microhabitats is largely reduced. Importantly, the limiting effects of temperature, rather than being related to latitude, seem to be tightly associated with microsite variability, which therefore is likely to have profound effects on the way local populations (and consequently species) respond to climatic changes. © 2015 John Wiley & Sons Ltd.

  20. Why Does the Human Body Maintain a Constant 37-Degree Temperature?: Thermodynamic Switch Controls Chemical Equilibrium in Biological Systems

    NASA Astrophysics Data System (ADS)

    Chun, Paul W.

    2005-01-01

    Applying the Planck-Benzinger methodology to biological systems, we have established that the negative Gibbs free energy minimum at a well-defined stable temperature, langTSrang, where the bound unavailable energy TΔS° = 0, has its origin in the sequence-specific hydrophobic interactions. Each such system we have examined confirms the existence of a thermodynamic molecular switch wherein a change of sign in [ΔCp°]reaction leads to a true negative minimum in the Gibbs free energy change of reaction, and hence a maximum in the related equilibrium constant, Keq. At this temperature, langTSrang, where ΔH°(TS)(-) = ΔG°(TS)(-)min, the maximum work can be accomplished in transpiration, digestion, reproduction or locomotion. In the human body, this temperature is 37°C. The langTSrang values may vary from one living organism to another, but the fact that the value of TΔS°(T) = 0 will not. There is a lower cutoff point, langThrang, where enthalpy is unfavorable but entropy is favorable, i.e. ΔH°(Th)(+) = TΔS°(Th)(+), and an upper limit, langTmrang, above which enthalpy is favorable but entropy is unfavorable, i.e. ΔH°(Tm)(-) = TΔS°(Tm)(-). Only between these two temperature limits, where ΔG°(T) = 0, is the net chemical driving force favorable for such biological processes as protein folding, protein-protein, protein-nucleic acid or protein-membrane interactions, and protein self-assembly. All interacting biological systems examined using the Planck-Benzinger methodology have shown such a thermodynamic switch at the molecular level, suggesting that its existence may be universal.

  1. Reduced oxygen at high altitude limits maximum size.

    PubMed

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  2. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-01-01

    The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Aerothermal performance and damage tolerance of a Rene 41 metallic standoff thermal protection system at Mach 6.7

    NASA Technical Reports Server (NTRS)

    Avery, D. E.

    1984-01-01

    A flight-weight, metallic thermal protection system (TPS) model applicable to Earth-entry and hypersonic-cruise vehicles was subjected to multiple cycles of both radiant and aerothermal heating in order to evaluate its aerothermal performance, structural integrity, and damage tolerance. The TPS was designed for a maximum operating temperature of 2060 R and featured a shingled, corrugation-stiffened corrugated-skin heat shield of Rene 41, a nickel-base alloy. The model was subjected to 10 radiant heating tests and to 3 radiant preheat/aerothermal tests. Under radiant-heating conditions with a maximum surface temperature of 2050 R, the TPS performed as designed and limited the primary structure away from the support ribs to temperatures below 780 R. During the first attempt at aerothermal exposure, a failure in the panel-holder test fixture severely damaged the model. However, two radiant preheat/aerothermal tests were made with the damaged model to test its damage tolerance. During these tests, the damaged area did not enlarge; however, the rapidly increasing structural temperature measuring during these tests indicates that had the damaged area been exposed to aerodynamic heating for the entire trajectory, an aluminum burn-through would have occurred.

  4. Evaluation of Ultra High Pressure (UHP) Firefighting in a Room-and-Contents Fire

    DTIC Science & Technology

    2017-03-15

    Burn Room and Hangar Temperature Prior to Ignition ............................................... 18 Figure 12. Effect of Temperature on Normalized...Figure 20. Maximum Average Temperature and Heat Flux ......................................................... 22 Figure 21. Effect of Maximum Average...Aspirated Ceiling Temperature .................................... 23 Figure 22. Effect of Maximum Average Floor Heat Flux on Extinguishment Quantity

  5. Evaluation of NLDAS 12-km and downscaled 1-km temperature products in New York State for potential use in health exposure response studies

    NASA Astrophysics Data System (ADS)

    Estes, M. G., Jr.; Insaf, T.; Crosson, W. L.; Al-Hamdan, M. Z.

    2017-12-01

    Heat exposure metrics (maximum and minimum daily temperatures,) have a close relationship with human health. While meteorological station data provide a good source of point measurements, temporal and spatially consistent temperature data are needed for health studies. Reanalysis data such as the North American Land Data Assimilation System's (NLDAS) 12-km gridded product are an effort to resolve spatio-temporal environmental data issues; the resolution may be too coarse to accurately capture the effects of elevation, mixed land/water areas, and urbanization. As part of this NASA Applied Sciences Program funded project, the NLDAS 12-km air temperature product has been downscaled to 1-km using MODIS Land Surface Temperature patterns. Limited validation of the native 12-km NLDAS reanalysis data has been undertaken. Our objective is to evaluate the accuracy of both the 12-km and 1-km downscaled products using the US Historical Climatology Network station data geographically dispersed across New York State. Statistical methods including correlation, scatterplots, time series and summary statistics were used to determine the accuracy of the remotely-sensed maximum and minimum temperature products. The specific effects of elevation and slope on remotely-sensed temperature product accuracy were determined with 10-m digital elevation data that were used to calculate percent slope and link with the temperature products at multiple scales. Preliminary results indicate the downscaled temperature product improves accuracy over the native 12-km temperature product with average correlation improvements from 0.81 to 0.85 for minimum and 0.71 to 0.79 for maximum temperatures in 2009. However, the benefits vary temporally and geographically. Our results will inform health studies using remotely-sensed temperature products to determine health risk from excessive heat by providing a more robust assessment of the accuracy of the 12-km NLDAS product and additional accuracy gained from the 1-km downscaled product. Also, the results will be shared with the National Weather Service to determine potential benefits to heat warning systems and evaluated for inclusion in the Centers of Disease Control and Prevention (CDC) Environmental Public Health Tracking Network as a resource for the health community.

  6. Static evaluation of surface coatings for compliant gas bearings in an oxidizing atmosphere to 650 C

    NASA Technical Reports Server (NTRS)

    Bhushan, B.; Gray, S.

    1978-01-01

    Hard wear-resistant coatings and soft low shear strength coatings were developed for an air-lubricated compliant journal bearing for a future automotive gas turbine engine. The coatings were expected to function in either 540 or 650 C ambient. Soft lubricant coatings were generally limited in temperature. Therefore emphasis was on the hard wear-resistant coatings. The coating materials covered were TiC, B4C, Cr3C2, WC, SiC, CrB2, TiB2, Cr2O3, Al2O3, Si3N4, Tribaloy 800, CaF2, CaF2-BaF2 eutectic, Ni-Co, silver, CdO-graphite and proprietary compounds. The coatings on test coupons were subjected to static oven screening tests. The test consisted of exposure of material samples in an oven for 300 h at the maximum temperature (540 or 650 C) and ten temperature cycles from room temperature to the maximum service temperature. On the basis of the specimen examinations the following coatings were recommended for future wear tests: TiC (sputtered), Cr2O3 (sputtered), Si3N4 (sputtered), CdO and graphite (fused), Kaman DES (a proprietary coating), CrB2 (plasma sprayed), Cr3C2 (detonation gun) and NASA PS-106 (plasma sprayed).

  7. Adaptive potential of a Pacific salmon challenged by climate change

    NASA Astrophysics Data System (ADS)

    Muñoz, Nicolas J.; Farrell, Anthony P.; Heath, John W.; Neff, Bryan D.

    2015-02-01

    Pacific salmon provide critical sustenance for millions of people worldwide and have far-reaching impacts on the productivity of ecosystems. Rising temperatures now threaten the persistence of these important fishes, yet it remains unknown whether populations can adapt. Here, we provide the first evidence that a Pacific salmon has both physiological and genetic capacities to increase its thermal tolerance in response to rising temperatures. In juvenile chinook salmon (Oncorhynchus tshawytscha), a 4 °C increase in developmental temperature was associated with a 2 °C increase in key measures of the thermal performance of cardiac function. Moreover, additive genetic effects significantly influenced several measures of cardiac capacity, indicative of heritable variation on which selection can act. However, a lack of both plasticity and genetic variation was found for the arrhythmic temperature of the heart, constraining this upper thermal limit to a maximum of 24.5 +/- 2.2 °C. Linking this constraint on thermal tolerance with present-day river temperatures and projected warming scenarios, we predict a 17% chance of catastrophic loss in the population by 2100 based on the average warming projection, with this chance increasing to 98% in the maximum warming scenario. Climate change mitigation is thus necessary to ensure the future viability of Pacific salmon populations.

  8. Surface temperatures and glassy state investigations in tribology, part 3. [limiting shear stress rheological model

    NASA Technical Reports Server (NTRS)

    Bair, S.; Winer, W. O.

    1980-01-01

    Research related to the development of the limiting shear stress rheological model is reported. Techniques were developed for subjecting lubricants to isothermal compression in order to obtain relevant determinations of the limiting shear stress and elastic shear modulus. The isothermal compression limiting shear stress was found to predict very well the maximum traction for a given lubricant. Small amounts of side slip and twist incorporated in the model were shown to have great influence on the rising portion of the traction curve at low slide-roll ratio. The shear rheological model was also applied to a Grubin-like elastohydrodynamic inlet analysis for predicting film thicknesses when employing the limiting shear stress model material behavior.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jincheng; Kim, Tong-Ho; Jiao, Wenyuan

    Recent work has shown that Bi incorporation increases during molecular beam epitaxy (MBE) when surface processes are kinetically limited through increased growth rate. Herein we explore how the structural and optical properties of GaAs{sub 1−x}Bi{sub x} films are modified when grown under conditions with varying degrees of kinetic limitations realized through growth temperature and growth rate changes. Within the typical window of MBE growth conditions for GaAs{sub 1−x}Bi{sub x}, we compare films with similar (∼3%) compositions grown under conditions of reduced kinetic limitations, i.e., relatively low gallium supersaturation achieved at higher temperatures (∼350 °C) and lower growth rates (∼0.5 μm/h), tomore » those grown farther from equilibrium, specifically, higher supersaturation achieved at lower growth temperatures (∼290 °C) and higher growth rates (∼1.4 μm/h). Both the x-ray diffraction full width at half maximum of the omega-2theta scan and the 300 K photoluminescence intensity increase when samples are grown under less kinetically limited conditions. We interpret these findings in relation to the incorporation of Bi-related microstructural defects that are more readily formed during less kinetically limited growth. These defects lead to enhanced luminescence efficiency due to the spatial localization of carriers.« less

  10. Return levels of temperature extremes in southern Pakistan

    NASA Astrophysics Data System (ADS)

    Zahid, Maida; Blender, Richard; Lucarini, Valerio; Caterina Bramati, Maria

    2017-12-01

    Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to temperature extremes. In order to improve rural and urban planning, it is useful to gather information about the recurrence of temperature extremes. In this work, return levels of the daily maximum temperature Tmax are estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. We adopt the peaks over threshold (POT) method, which has not yet been used for similar studies in this region. Two main datasets are analyzed: temperatures observed at nine meteorological stations in southern Pakistan from 1980 to 2013, and the ERA-Interim (ECMWF reanalysis) data for the nearest corresponding locations. The analysis provides the 2-, 5-, 10-, 25-, 50-, and 100-year return levels (RLs) of temperature extremes. The 90 % quantile is found to be a suitable threshold for all stations. We find that the RLs of the observed Tmax are above 50 °C at northern stations and above 45 °C at the southern stations. The RLs of the observed TWmax exceed 35 °C in the region, which is considered as a limit of survivability. The RLs estimated from the ERA-Interim data are lower by 3 to 5 °C than the RLs assessed for the nine meteorological stations. A simple bias correction applied to ERA-Interim data improves the RLs remarkably, yet discrepancies are still present. The results have potential implications for the risk assessment of extreme temperatures in Sindh.

  11. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.

    PubMed

    Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash

    2017-03-01

    High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.

  12. Towards bridging the gap between climate change projections and maize producers in South Africa

    NASA Astrophysics Data System (ADS)

    Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus

    2018-05-01

    Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.

  13. Considerations for Assessing Maximum Critical Temperatures in Small Ectothermic Animals: Insights from Leaf-Cutting Ants

    PubMed Central

    Ribeiro, Pedro Leite; Camacho, Agustín; Navas, Carlos Arturo

    2012-01-01

    The thermal limits of individual animals were originally proposed as a link between animal physiology and thermal ecology. Although this link is valid in theory, the evaluation of physiological tolerances involves some problems that are the focus of this study. One rationale was that heating rates shall influence upper critical limits, so that ecological thermal limits need to consider experimental heating rates. In addition, if thermal limits are not surpassed in experiments, subsequent tests of the same individual should yield similar results or produce evidence of hardening. Finally, several non-controlled variables such as time under experimental conditions and procedures may affect results. To analyze these issues we conducted an integrative study of upper critical temperatures in a single species, the ant Atta sexdens rubropiosa, an animal model providing large numbers of individuals of diverse sizes but similar genetic makeup. Our specific aims were to test the 1) influence of heating rates in the experimental evaluation of upper critical temperature, 2) assumptions of absence of physical damage and reproducibility, and 3) sources of variance often overlooked in the thermal-limits literature; and 4) to introduce some experimental approaches that may help researchers to separate physiological and methodological issues. The upper thermal limits were influenced by both heating rates and body mass. In the latter case, the effect was physiological rather than methodological. The critical temperature decreased during subsequent tests performed on the same individual ants, even one week after the initial test. Accordingly, upper thermal limits may have been overestimated by our (and typical) protocols. Heating rates, body mass, procedures independent of temperature and other variables may affect the estimation of upper critical temperatures. Therefore, based on our data, we offer suggestions to enhance the quality of measurements, and offer recommendations to authors aiming to compile and analyze databases from the literature. PMID:22384147

  14. Physiological responses to short-term thermal stress in mayfly (Neocloeon triangulifer) larvae in relation to upper thermal limits.

    PubMed

    Kim, Kyoung Sun; Chou, Hsuan; Funk, David H; Jackson, John K; Sweeney, Bernard W; Buchwalter, David B

    2017-07-15

    Understanding species' thermal limits and their physiological determinants is critical in light of climate change and other human activities that warm freshwater ecosystems. Here, we ask whether oxygen limitation determines the chronic upper thermal limits in larvae of the mayfly Neocloeon triangulifer , an emerging model for ecological and physiological studies. Our experiments are based on a robust understanding of the upper acute (∼40°C) and chronic thermal limits of this species (>28°C, ≤30°C) derived from full life cycle rearing experiments across temperatures. We tested two related predictions derived from the hypothesis that oxygen limitation sets the chronic upper thermal limits: (1) aerobic scope declines in mayfly larvae as they approach and exceed temperatures that are chronically lethal to larvae; and (2) genes indicative of hypoxia challenge are also responsive in larvae exposed to ecologically relevant thermal limits. Neither prediction held true. We estimated aerobic scope by subtracting measurements of standard oxygen consumption rates from measurements of maximum oxygen consumption rates, the latter of which was obtained by treating with the metabolic uncoupling agent carbonyl cyanide-4-(trifluoromethoxy) pheylhydrazone (FCCP). Aerobic scope was similar in larvae held below and above chronic thermal limits. Genes indicative of oxygen limitation (LDH, EGL-9) were only upregulated under hypoxia or during exposure to temperatures beyond the chronic (and more ecologically relevant) thermal limits of this species (LDH). Our results suggest that the chronic thermal limits of this species are likely not driven by oxygen limitation, but rather are determined by other factors, e.g. bioenergetics costs. We caution against the use of short-term thermal ramping approaches to estimate critical thermal limits (CT max ) in aquatic insects because those temperatures are typically higher than those that occur in nature. © 2017. Published by The Company of Biologists Ltd.

  15. Fabrication of setup for high temperature thermal conductivity measurement.

    PubMed

    Patel, Ashutosh; Pandey, Sudhir K

    2017-01-01

    In this work, we report the fabrication of an experimental setup for high temperature thermal conductivity (κ) measurement. It can characterize samples with various dimensions and shapes. Steady state based axial heat flow technique is used for κ measurement. Heat loss is measured using parallel thermal conductance technique. Simple design, lightweight, and small size sample holder is developed by using a thin heater and limited components. Low heat loss value is achieved by using very low thermal conductive insulator block with small cross-sectional area. Power delivered to the heater is measured accurately by using 4-wire technique and for this, the heater is developed with 4 wires. This setup is validated by using Bi 0.36 Sb 1.45 Te 3 , polycrystalline bismuth, gadolinium, and alumina samples. The data obtained for these samples are found to be in good agreement with the reported data. The maximum deviation of 6% in the value κ is observed. This maximum deviation is observed with the gadolinium sample. We also report the thermal conductivity of polycrystalline tellurium from 320 K to 550 K and the nonmonotonous behavior of κ with temperature is observed.

  16. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa

    PubMed Central

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-01-01

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO2 concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO2 concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO2 glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods. PMID:17535920

  17. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa.

    PubMed

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-06-05

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO(2) concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO(2) concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO(2) glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods.

  18. Surface temperatures and glassy state investigations in tribology, part 1

    NASA Technical Reports Server (NTRS)

    Winer, W. O.; Sanborn, D. M.

    1978-01-01

    The research in this report is divided into two categories: (1) lubricant rheological behavior, and (2) thermal behavior of a simulated elastohydrodynamic contact. The studies of the lubricant rheological behavior consists of high pressure, low shear rate viscosity measurements, viscoelastic transition measurements, by volume dilatometry, dielectric transitions at atmospheric pressure and light scattering transitions. Lubricant shear stress-strain behavior in the amorphous glassy state was measured on several fluids. It appears clear from these investigations that many lubricants undergo viscoplastic transitions in typical EHD contacts and that the lubricant has a limiting maximum shear stress it can support which in turn will determine the traction in the contact except in cases of very low slide-roll ratio. Surface temperature measurements were made for a naphthenic mineral oil and a polyphenyl ether. The maximum surface temperature in these experiments was approximately symmetrical about the zero slide-roll ration except for absolute values of slide-roll ratio greater than about 0.9. Additional surface temperature measurements were made in contacts with rough surfaces where the composite surface roughness was approximately equal to the EHD film thickness. A regression analysis was done to obtain a predictive equation for surface temperatures as a function of pressure, sliding speed, and surface roughness. A correction factor for surface roughness effects to the typical flash temperature analysis was found.

  19. Reassessment of ice-age cooling of the tropical ocean and atmosphere

    USGS Publications Warehouse

    Hostetler, S.W.; Mix, A.C.

    1999-01-01

    The CLIMAP project's reconstruction of past sea surface temperature inferred limited ice-age cooling in the tropical oceans. This conclusion has been controversial, however, because of the greater cooling indicated by other terrestrial and ocean proxy data. A new faunal sea surface temperature reconstruction, calibrated using the variation of foraminiferal species through time, better represents ice-age faunal assemblages and so reveals greater cooling than CLIMAP in the equatorial current systems of the eastern Pacific and tropical Atlantic oceans. Here we explore the climatic implications of this revised sea surface temperature field for the Last Glacial Maximum using an atmospheric general circulation model. Relative to model results obtained using CLIMAP sea surface temperatures, the cooler equatorial oceans modify seasonal air temperatures by 1-2??C or more across parts of South America, Africa and southeast Asia and cause attendant changes in regional moisture patterns. In our simulation of the Last Glacial Maximum, the Amazon lowlands, for example, are cooler and drier, whereas the Andean highlands are cooler and wetter than the control simulation. Our results may help to resolve some of the apparent disagreements between oceanic and continental proxy climate data. Moreover, they suggest a wind-related mechanism for enhancing the export of water vapour from the Atlantic to the Indo-Pacific oceans, which may link variations in deep-water production and high-latitude climate changes to equatorial sea surface temperatures.

  20. Temperature and oxygen in Missouri reservoirs

    USGS Publications Warehouse

    Jones, John R.; Knowlton, Matthew F.; Obrecht, Daniel V.; Graham, Jennifer L.

    2011-01-01

    Vertical profiles of water temperature (n = 7193) and dissolved oxygen (n = 6516) were collected from 235 Missouri reservoirs during 1989–2007; most data were collected during May–August and provide a regional summary of summer conditions. Collectively, surface water temperature ranged from a mean of ~22 C in May to 28 C in July, and individual summer maxima typically were 28–32 C. Most (~95%) reservoirs stably stratify by mid-May, but few are deep enough to have hypolimnia with near-uniform temperatures. Among stratified reservoirs, maximum effective length and maximum depth accounted for 75% of the variation in mixed depth and thermocline depth. Ephemeral, near-surface thermoclines occurred in 39% of summer profiles and were most frequent in small, turbid reservoirs. Isotherms below the mixed layer deepen during stratification, and the water column is >20 C by August in all but the deepest reservoirs. Most reservoirs showed incipient dissolved oxygen (DO) depletion by mid-May, and by August, 80% of profiles had DO minima of 50% of variation in DO below the mixed layer during summer. Warm summer temperatures and widespread low DO often limit available fish habitat in Missouri reservoirs and compress warm-water fish communities into subsurface layers that exceed their thermal preferences. This study provides a regional baseline of reservoir temperature and oxygen conditions useful for future evaluations of eutrophication and the effects of a warming climate.

  1. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  2. Statistical downscaling of CMIP5 outputs for projecting future maximum and minimum temperature over the Haihe River Bain, China

    NASA Astrophysics Data System (ADS)

    Yan, Tiezhu; Shen, Zhenyao; Heng, Lee; Dercon, Gerd

    2016-04-01

    Future climate change information is important to formulate adaptation and mitigation strategies for climate change. In this study, a statistical downscaling model (SDSM) was established using both NCEP reanalysis data and ground observations (daily maximum and minimum temperature) during the period 1971-2010, and then calibrated model was applied to generate the future maximum and minimum temperature projections using predictors from the two CMIP5 models (MPI-ESM-LR and CNRM-CM5) under two Representative Concentration Pathway (RCP2.6 and RCP8.5) during the period 2011-2100 for the Haihe River Basin, China. Compared to the baseline period, future change in annual and seasonal maximum and minimum temperature was computed after bias correction. The spatial distribution and trend change of annual maximum and minimum temperature were also analyzed using ensemble projections. The results shows that: (1)The downscaling model had a good applicability on reproducing daily and monthly mean maximum and minimum temperature over the whole basin. (2) Bias was observed when using historical predictors from CMIP5 models and the performance of CNRM-CM5 was a little worse than that of MPI-ESM-LR. (3) The change in annual mean maximum and minimum temperature under the two scenarios in 2020s, 2050s and 2070s will increase and magnitude of maximum temperature will be higher than minimum temperature. (4) The increase in temperature in the mountains and along the coastline is remarkably high than the other parts of the studies basin. (5) For annual maximum and minimum temperature, the significant upward trend will be obtained under RCP 8.5 scenario and the magnitude will be 0.37 and 0.39 ℃ per decade, respectively; the increase in magnitude under RCP 2.6 scenario will be upward in 2020s and then decrease in 2050s and 2070s, and the magnitude will be 0.01 and 0.01℃ per decade, respectively.

  3. Meissner motor using high-Tc ceramic superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, A.; Ishikawa, A.; Suzuki, M.

    1989-03-01

    The authors developed a brand new superconducting motor using high-Tc ceramic superconductors for the first time. This motor utilizes the repulsive force caused by the Meissner effect, which appears below Tc and disappears above that, and is therefore referred to as the Meissner Motor. The motor rotated at a maximum speed of 40 rpm. Though the repulsive force to drive the motor increased with the decrease of temperature or the increase of the gradient magnetic field, it was only about 1.1 gf/g at 77 K in 3500 G/cm. The motor has a maximum torque of 5.0 gf-cm theoretically, but actuallymore » had a torque below 0.66 gf-cm, because it took some time to be cooled below Tc. The rotating speed of the motor was limited by heating ability and its torque was limited by cooling ability.« less

  4. Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1995-01-01

    New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.

  5. Chemical Diversity as a Function of Temperature in Six Northern Diatom Species

    PubMed Central

    Huseby, Siv; Degerlund, Maria; Eriksen, Gunilla K.; Ingebrigtsen, Richard A.; Eilertsen, Hans Chr.; Hansen, Espen

    2013-01-01

    In this study, we investigate how metabolic fingerprints are related to temperature. Six common northern temperate diatoms (Attheya longicornis, Chaetoceros socialis, Chaetoceros furcellatus, Porosira glacialis, Skeletonema marinoi, and Thalassiosira gravida) were cultivated at two different temperatures, 0.5 and 8.5 °C. To exclude metabolic variations due to differences in growth rates, the growth rates were kept similar by performing the experiments under light limited conditions but in exponential growth phase. Growth rates and maximum quantum yield of photosynthesis were measured and interpreted as physiological variables, and metabolic fingerprints were acquired by high-resolution mass spectrometry. The chemical diversity varied substantially between the two temperatures for the tested species, ranging from 31% similarity for C. furcellatus and P. glacialis to 81% similarity for A. longicornis. The chemical diversity was generally highest at the lowest temperature. PMID:24177671

  6. The Impacts of Heating Strategy on Soil Moisture Estimation Using Actively Heated Fiber Optics.

    PubMed

    Dong, Jianzhi; Agliata, Rosa; Steele-Dunne, Susan; Hoes, Olivier; Bogaard, Thom; Greco, Roberto; van de Giesen, Nick

    2017-09-13

    Several recent studies have highlighted the potential of Actively Heated Fiber Optics (AHFO) for high resolution soil moisture mapping. In AHFO, the soil moisture can be calculated from the cumulative temperature ( T cum ), the maximum temperature ( T max ), or the soil thermal conductivity determined from the cooling phase after heating ( λ ). This study investigates the performance of the T cum , T max and λ methods for different heating strategies, i.e., differences in the duration and input power of the applied heat pulse. The aim is to compare the three approaches and to determine which is best suited to field applications where the power supply is limited. Results show that increasing the input power of the heat pulses makes it easier to differentiate between dry and wet soil conditions, which leads to an improved accuracy. Results suggest that if the power supply is limited, the heating strength is insufficient for the λ method to yield accurate estimates. Generally, the T cum and T max methods have similar accuracy. If the input power is limited, increasing the heat pulse duration can improve the accuracy of the AHFO method for both of these techniques. In particular, extending the heating duration can significantly increase the sensitivity of T cum to soil moisture. Hence, the T cum method is recommended when the input power is limited. Finally, results also show that up to 50% of the cable temperature change during the heat pulse can be attributed to soil background temperature, i.e., soil temperature changed by the net solar radiation. A method is proposed to correct this background temperature change. Without correction, soil moisture information can be completely masked by the background temperature error.

  7. The Impacts of Heating Strategy on Soil Moisture Estimation Using Actively Heated Fiber Optics

    PubMed Central

    Dong, Jianzhi; Agliata, Rosa; Steele-Dunne, Susan; Hoes, Olivier; Bogaard, Thom; Greco, Roberto; van de Giesen, Nick

    2017-01-01

    Several recent studies have highlighted the potential of Actively Heated Fiber Optics (AHFO) for high resolution soil moisture mapping. In AHFO, the soil moisture can be calculated from the cumulative temperature (Tcum), the maximum temperature (Tmax), or the soil thermal conductivity determined from the cooling phase after heating (λ). This study investigates the performance of the Tcum, Tmax and λ methods for different heating strategies, i.e., differences in the duration and input power of the applied heat pulse. The aim is to compare the three approaches and to determine which is best suited to field applications where the power supply is limited. Results show that increasing the input power of the heat pulses makes it easier to differentiate between dry and wet soil conditions, which leads to an improved accuracy. Results suggest that if the power supply is limited, the heating strength is insufficient for the λ method to yield accurate estimates. Generally, the Tcum and Tmax methods have similar accuracy. If the input power is limited, increasing the heat pulse duration can improve the accuracy of the AHFO method for both of these techniques. In particular, extending the heating duration can significantly increase the sensitivity of Tcum to soil moisture. Hence, the Tcum method is recommended when the input power is limited. Finally, results also show that up to 50% of the cable temperature change during the heat pulse can be attributed to soil background temperature, i.e., soil temperature changed by the net solar radiation. A method is proposed to correct this background temperature change. Without correction, soil moisture information can be completely masked by the background temperature error. PMID:28902141

  8. Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K

    NASA Technical Reports Server (NTRS)

    Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.

    2014-01-01

    Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.

  9. Impacts of climate extremes on gross primary production under global warming

    DOE PAGES

    Williams, I. N.; Torn, M. S.; Riley, W. J.; ...

    2014-09-24

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.« less

  10. Impacts of climate extremes on gross primary production under global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, I. N.; Torn, M. S.; Riley, W. J.

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.« less

  11. Superconductivity from strong repulsive interactions in the two-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Sarasua, L. G.

    2011-10-01

    In this work, we study superconductivity in the strong coupling limit of the two-dimensional Hubbard model using a generalization of the Hubbard-I approximation. The results are compared with those obtained by Beenen and Edwards with the two-pole method of Roth, revealing a qualitative agreement between the two approaches. The effect of the hopping parameter t' between next-nearest neighbour sites on the critical temperature is considered. It is shown that the present approach reproduces the relation between t' and the maximum Tc in high temperature superconductors reported by Pavarini et al (2001 Phys. Rev. Lett. 87 047003).

  12. Efficiency optimization in a correlation ratchet with asymmetric unbiased fluctuations

    NASA Astrophysics Data System (ADS)

    Ai, Bao-Quan; Wang, Xian-Ju; Liu, Guo-Tao; Wen, De-Hua; Xie, Hui-Zhang; Chen, Wei; Liu, Liang-Gang

    2003-12-01

    The efficiency of a Brownian particle moving in a periodic potential in the presence of asymmetric unbiased fluctuations is investigated. We found that even on the quasistatic limit there is a regime where the efficiency can be a peaked function of temperature, which proves that thermal fluctuations facilitate the efficiency of energy transformation, contradicting the earlier findings [H. Kamegawa et al., Phys. Rev. Lett. 80, 5251 (1998)]. It is also found that the mutual interplay between temporal asymmetry and spatial asymmetry may induce optimized efficiency at finite temperatures. The ratchet is not most efficient when it gives maximum current.

  13. Spectral ratio method for measuring emissivity

    USGS Publications Warehouse

    Watson, K.

    1992-01-01

    The spectral ratio method is based on the concept that although the spectral radiances are very sensitive to small changes in temperature the ratios are not. Only an approximate estimate of temperature is required thus, for example, we can determine the emissivity ratio to an accuracy of 1% with a temperature estimate that is only accurate to 12.5 K. Selecting the maximum value of the channel brightness temperatures is an unbiased estimate. Laboratory and field spectral data are easily converted into spectral ratio plots. The ratio method is limited by system signal:noise and spectral band-width. The images can appear quite noisy because ratios enhance high frequencies and may require spatial filtering. Atmospheric effects tend to rescale the ratios and require using an atmospheric model or a calibration site. ?? 1992.

  14. Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines

    PubMed Central

    Rogiers, Suzy Y.; Clarke, Simon J.

    2013-01-01

    Background and Aims Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Methods Here nocturnal and daytime leaf gas exchange was quantified in ‘Shiraz’ grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Key Results Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO2 response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. Conclusions In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable. PMID:23293018

  15. Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines.

    PubMed

    Rogiers, Suzy Y; Clarke, Simon J

    2013-03-01

    Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Here nocturnal and daytime leaf gas exchange was quantified in 'Shiraz' grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO(2) response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable.

  16. A Compact, Continuous Adiabatic Demagnetization Refrigerator with High Heat Sink Temperature

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Tuttle, J. G.

    2003-01-01

    In the continuous adiabatic demagnetization refrigerator (ADR), the existence of a constant temperature stage attached to the load breaks the link between the requirements of the load (usually a detector array) and the operation of the ADR. This allows the ADR to be cycled much faster, which yields more than an order of magnitude improvement in cooling power density over single-shot ADRs. Recent effort has focused on developing compact, efficient higher temperature stages. An important part of this work has been the development of passive gas-gap heat switches that transition (from conductive to insulating) at temperatures around 1 K and 4 K without the use of an actively heated getter. We have found that by carefully adjusting available surface area and the number of He-3 monolayers, gas-gap switches can be made to operate passively. Passive operation greatly reduces switching time and eliminates an important parasitic heat load. The current four stage ADR provides 6 micro W of cooling at 50 mK (21 micro W at 100 mK) and weighs less than 8 kg. It operates from a 4.2 K heat sink, which can be provided by an unpumped He bath or many commercially available mechanical cryocoolers. Reduction in critical current with temperature in our fourth stage NbTi magnet presently limits the maximum temperature of our system to approx. 5 K. We are developing compact, low-current Nb3Sn magnets that will raise the maximum heat sink temperature to over 10 K.

  17. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.

    PubMed

    Kubisch, Erika Leticia; Fernández, Jimena Beatriz; Ibargüengoytía, Nora Ruth

    2016-02-01

    The vulnerability of populations and species to global warming depends not only on the environmental temperatures, but also on the behavioral and physiological abilities to respond to these changes. In this sense, the knowledge of an organism's sensitivity to temperature variation is essential to predict potential responses to climate warming. In particular, it is interesting to know how close species are to their thermal limits in nature and whether physiological plasticity is a potential short-term response to warming climates. We exposed Liolaemus pictus lizards, from northern Patagonia, to either 21 or 31 °C for 30 days to compare the effects of these treatments on thermal sensitivity in 1 and 0.2 m runs, preferred body temperature (T pref), panting threshold (T pant), and critical minimum temperature (CTMin). Furthermore, we measured the availability of thermal microenvironments (operative temperatures; T e) to measure how close L. pictus is, in nature, to its optimal locomotor performance (T o) and thermal limits. L. pictus showed limited physiological plasticity, since the acclimation temperature (21 and 31 °C) did not affect the locomotor performance nor did it affect T pref, the T pant, or the CTMin. The mean T e was close to T o and was 17 °C lower than the CTMax. The results suggest that L. pictus, in a climate change scenario, could be vulnerable to the predicted temperature increment, as this species currently lives in an environment with temperatures close to their highest locomotor temperature threshold, and because they showed limited acclimation capacity to adjust to new thermal conditions by physiological plasticity. Nevertheless, L. pictus can run at 80 % or faster of its maximum speed across a wide range of temperatures near T o, an ability which would attenuate the impact of global warming.

  18. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  19. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  20. Estimating missing daily temperature extremes in Jaffna, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Thevakaran, A.; Sonnadara, D. U. J.

    2018-04-01

    The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.

  1. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...

  2. Solar geoengineering to limit the rate of temperature change.

    PubMed

    MacMartin, Douglas G; Caldeira, Ken; Keith, David W

    2014-12-28

    Solar geoengineering has been suggested as a tool that might reduce damage from anthropogenic climate change. Analysis often assumes that geoengineering would be used to maintain a constant global mean temperature. Under this scenario, geoengineering would be required either indefinitely (on societal time scales) or until atmospheric CO2 concentrations were sufficiently reduced. Impacts of climate change, however, are related to the rate of change as well as its magnitude. We thus describe an alternative scenario in which solar geoengineering is used only to constrain the rate of change of global mean temperature; this leads to a finite deployment period for any emissions pathway that stabilizes global mean temperature. The length of deployment and amount of geoengineering required depends on the emissions pathway and allowable rate of change, e.g. in our simulations, reducing the maximum approximately 0.3°C per decade rate of change in an RCP 4.5 pathway to 0.1°C per decade would require geoengineering for 160 years; under RCP 6.0, the required time nearly doubles. We demonstrate that feedback control can limit rates of change in a climate model. Finally, we note that a decision to terminate use of solar geoengineering does not automatically imply rapid temperature increases: feedback could be used to limit rates of change in a gradual phase-out. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Thermal and energy battery management optimization in electric vehicles using Pontryagin's maximum principle

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Suchaneck, Andre; Puente León, Fernando

    2014-01-01

    Depending on the actual battery temperature, electrical power demands in general have a varying impact on the life span of a battery. As electrical energy provided by the battery is needed to temper it, the question arises at which temperature which amount of energy optimally should be utilized for tempering. Therefore, the objective function that has to be optimized contains both the goal to maximize life expectancy and to minimize the amount of energy used for obtaining the first goal. In this paper, Pontryagin's maximum principle is used to derive a causal control strategy from such an objective function. The derivation of the causal strategy includes the determination of major factors that rule the optimal solution calculated with the maximum principle. The optimization is calculated offline on a desktop computer for all possible vehicle parameters and major factors. For the practical implementation in the vehicle, it is sufficient to have the values of the major factors determined only roughly in advance and the offline calculation results available. This feature sidesteps the drawback of several optimization strategies that require the exact knowledge of the future power demand. The resulting strategy's application is not limited to batteries in electric vehicles.

  4. Noise induced oscillations and coherence resonance in a generic model of the nonisothermal chemical oscillator

    PubMed Central

    Simakov, David S. A.; Pérez-Mercader, Juan

    2013-01-01

    Oscillating chemical reactions are common in biological systems and they also occur in artificial non-biological systems. Generally, these reactions are subject to random fluctuations in environmental conditions which translate into fluctuations in the values of physical variables, for example, temperature. We formulate a mathematical model for a nonisothermal minimal chemical oscillator containing a single negative feedback loop and study numerically the effects of stochastic fluctuations in temperature in the absence of any deterministic limit cycle or periodic forcing. We show that noise in temperature can induce sustained limit cycle oscillations with a relatively narrow frequency distribution and some characteristic frequency. These properties differ significantly depending on the noise correlation. Here, we have explored white and colored (correlated) noise. A plot of the characteristic frequency of the noise induced oscillations as a function of the correlation exponent shows a maximum, therefore indicating the existence of autonomous stochastic resonance, i.e. coherence resonance. PMID:23929212

  5. Enabling fast charging – Battery thermal considerations

    DOE PAGES

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; ...

    2017-10-23

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  6. Second law analysis of advanced power generation systems using variable temperature heat sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliem, C.J.; Mines, G.L.

    1990-01-01

    Many systems produce power using variable temperature (sensible) heat sources. The Heat Cycle Research Program is currently investigating the potential improvements to such power cycles utilizing moderate temperature geothermal resources to produce electrical power. It has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over boiling Rankine cycles with the pure working fluids for typical applications. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasible plant and discussesmore » the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to fine the best plant for a given service. These results would apply to power systems in other services as well as to geothermal power plants. 17 refs., 15 figs.« less

  7. Enabling fast charging – Battery thermal considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  8. Autonomous Aerobraking Using Thermal Response Surface Analysis

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Dec, John A.; Tolson, Robert H.

    2007-01-01

    Aerobraking is a proven method of significantly increasing the science payload that can be placed into low Mars orbits when compared to an all propulsive capture. However, the aerobraking phase is long and has mission cost and risk implications. The main cost benefit is that aerobraking permits the use of a smaller and cheaper launch vehicle, but additional operational costs are incurred during the long aerobraking phase. Risk is increased due to the repeated thermal loading of spacecraft components and the multiple attitude and propulsive maneuvers required for successful aerobraking. Both the cost and risk burdens can be significantly reduced by automating the aerobraking operations phase. All of the previous Mars orbiter missions that have utilized aerobraking have increasingly relied on onboard calculations during aerobraking. Even though the temperature of spacecraft components has been the limiting factor, operational methods have relied on using a surrogate variable for mission control. This paper describes several methods, based directly on spacecraft component maximum temperature, for autonomously predicting the subsequent aerobraking orbits and prescribing apoapsis propulsive maneuvers to maintain the spacecraft within specified temperature limits. Specifically, this paper describes the use of thermal response surface analysis in predicting the temperature of the spacecraft components and the corresponding uncertainty in this temperature prediction.

  9. Highs and lows, ups and downs: Meteorology and mood in bipolar disorder.

    PubMed

    Bullock, Ben; Murray, Greg; Meyer, Denny

    2017-01-01

    Seasonal variation of manic and depressive symptoms is a controversial topic in bipolar disorder research. Several studies report seasonal patterns of hospital admissions for depression and mania and variation in symptoms that appear to follow a seasonal pattern, whereas others fail to report such patterns. Differences in research methodologies, data analysis strategies, and temporal resolution of data may partly explain the variation in findings between studies. The current study adds a novel perspective to the literature by investigating specific meteorological factors such as atmospheric pressure, hours of sunshine, relative humidity, and daily maximum and minimum temperatures as more proximal predictors of self-reported daily mood change in people diagnosed with bipolar disorder. The results showed that daily maximum temperature was the only meteorological variable to predict clinically-relevant mood change, with increases in temperature associated with greater odds of a transition into manic mood states. The mediating effects of sleep and activity were also investigated and suggest at least partial influence on the prospective relationship between maximum temperature and mood. Limitations include the small sample size and the fact that the number and valence of social interactions and exposure to natural light were not investigated as potentially important mediators of relationships between meteorological factors and mood. The current data make an important contribution to the literature, serving to clarify the specific meteorological factors that influence mood change in bipolar disorder. From a clinical perspective, greater understanding of seasonal patterns of symptoms in bipolar disorder will help mood episode prophylaxis in vulnerable individuals.

  10. Development of a bioenergetics model for the threespine stickleback Gasterosteus aculeatus

    USGS Publications Warehouse

    Hovel, Rachel A.; Beauchamp, David A.; Hansen, Adam G.; Sorel, Mark H.

    2016-01-01

    The Threespine Stickleback Gasterosteus aculeatus is widely distributed across northern hemisphere ecosystems, has ecological influence as an abundant planktivore, and is commonly used as a model organism, but the species lacks a comprehensive model to describe bioenergetic performance in response to varying environmental or ecological conditions. This study parameterized a bioenergetics model for the Threespine Stickleback using laboratory measurements to determine mass- and temperature-dependent functions for maximum consumption and routine respiration costs. Maximum consumption experiments were conducted across a range of temperatures from 7.5°C to 23.0°C and a range of fish weights from 0.5 to 4.5 g. Respiration experiments were conducted across a range of temperatures from 8°C to 28°C. Model sensitivity was consistent with other comparable models in that the mass-dependent parameters for maximum consumption were the most sensitive. Growth estimates based on the Threespine Stickleback bioenergetics model suggested that 22°C is the optimal temperature for growth when food is not limiting. The bioenergetics model performed well when used to predict independent, paired measures of consumption and growth observed from a separate wild population of Threespine Sticklebacks. Predicted values for consumption and growth (expressed as percent body weight per day) only deviated from observed values by 2.0%. Our model should provide insight into the physiological performance of this species across a range of environmental conditions and be useful for quantifying the trophic impact of this species in food webs containing other ecologically or economically important species.

  11. Thermal margin protection system for a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musick, C.R.

    1974-02-12

    A thermal margin protection system for a nuclear reactor is described where the coolant flow flow trip point and the calculated thermal margin trip point are switched simultaneously and the thermal limit locus is made more restrictive as the allowable flow rate is decreased. The invention is characterized by calculation of the thermal limit Locus in response to applied signals which accurately represent reactor cold leg temperature and core power; cold leg temperature being corrected for stratification before being utilized and reactor power signals commensurate with power as a function of measured neutron flux and thermal energy added to themore » coolant being auctioneered to select the more conservative measure of power. The invention further comprises the compensation of the selected core power signal for the effects of core radial peaking factor under maximum coolant flow conditions. (Official Oazette)« less

  12. Analytical Investigation of the Limits for the In-Plane Thermal Conductivity Measurement Using a Suspended Membrane Setup

    NASA Astrophysics Data System (ADS)

    Linseis, V.; Völklein, F.; Reith, H.; Woias, P.; Nielsch, K.

    2018-06-01

    An analytical study has been performed on the measurement capabilities of a 100-nm thin suspended membrane setup for the in-plane thermal conductivity measurements of thin film samples using the 3 ω measurement technique, utilizing a COSMOL Multiphysics simulation. The maximum measurement range under observance of given boundary conditions has been studied. Three different exemplary sample materials, with a thickness from the nanometer to the micrometer range and a thermal conductivity from 0.4 W/mK up to 100 W/mK have been investigated as showcase studies. The results of the simulations have been compared to a previously published evaluation model, in order to determine the deviation between both and thereby the measurement limit. As thermal transport properties are temperature dependent, all calculations refer to constant room temperature conditions.

  13. On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.

  14. The P-T-fO 2 stability of deerite, Fe{12/2+}Fe{6/3+}[Si12O40](OH)10

    NASA Astrophysics Data System (ADS)

    Lattard, Dominique; Le Breton, Nicole

    1994-02-01

    New equilibrium experiments have been performed in the 20 27 kbar range to determine the upper thermal stability limit of endmember deerite, Fe{12/2+}Fe{6/3+}[Si12O40](OH)10. In this pressure range, the maximum thermal stability limit is represented by the oxygen-conserving reaction: deerite(De)=9 ferrosilite(Fs)+3 magnetite(Mag)+3 quartz(Qtz)+5 H2O(W) (1). Under the oxygen fugacities of the Ni-NiO buffer the breakdown-reduction reaction: De=12 Fs+2 Mag+5 W+1/2 O2 (10) takes place at lower temperatures (e.g. ΔT=63° at 27 kbar). The experimental brackets can be fitted using thermodynamic data for ferrosilite, magnetite and quartz from Berman (1988) and the following 1 bar, 298 K data for deerite (per gfw): Vo=55.74 J.bar-1, So=1670 J.K-1, ΔH{f/o}=-18334 kJ, α=2.5x10-5K-1, β=-0.18x10-5 bar-1. Using these data in conjunction with literature data on coesite, grunerite, minnesotaite, and greenalite, the P-T stability field of endmember deerite has been calculated for P s= P H 2O. This field is limited by 6 univariant oxygenconserving dehydration curves, from which three have positive d P/d T slopes, the other three negative slopes. The lower pressure end of the stability field of endmember deerite is thus located at an invariant point at 250±70°C and 10+-1.5 kbar. Deerite rich in the endmember can thus appear only in environments with geothermal gradients lower than 10°C/km and at pressures higher than about 10 kbar, which is in agreement with 4 out of 5 independent P-T estimates for known occurrences. The presence of such deerite places good constraints on minimum pressure and maximum temperature conditions. From log f O 2- T diagrams constructed with the same data base at different pressures, it appears that endmember deerite is, at temperatures near those of its upper stability limit, stable only over a narrow range of oxygen fugacities within the magnetite field. With decreasing temperatures, deerite becomes stable towards slightly higher oxygen fugacities but reaches the hematite field only at temperatures more than 200°C lower than the upper stability limit. This practically precludes the coexistence deerite-hematite with near-endmember deerite in natural environments.

  15. The range of medication storage temperatures in aeromedical emergency medical services.

    PubMed

    Madden, J F; O'Connor, R E; Evans, J

    1999-01-01

    The United States Pharmacopoeia (USP) recommends that medication storage temperatures should be maintained between 15 degrees C and 30 degrees C (59 degrees F to 86 degrees F). Concerns have been raised that storage temperatures in EMS may deviate from this optimal range, predisposing drugs to degradation. This study was conducted to determine whether temperatures inside the drug box carried by paramedics aboard a helicopter remained within the range. The Aviation Section, with a paramedic on board, utilizes two helicopters and conducts approximately 80 patient care flights per month. A dual-display indoor/outdoor thermometer with memory was used to measure the highest and lowest temperatures during each shift. The thermometer was kept with medications in a nylon drug bag, which remained on the helicopter except when needed for patient care. Ambient temperature measurements at the location of the helicopter base were obtained from the National Climatic Data Center. Temperature ranges were recorded during day shift (8 AM to 4 PM) and night shift (4 PM to 12 AM) during the winter from December 1, 1995, to March 13, 1996, and summer from June 17, 1996, to September 14, 1996. Statistical analysis was performed using chi-square and the Bonferroni-adjusted t-test. Compared with the winter day period, the winter night period had lower minimum (13.2 degrees C vs 14.7 degrees C, p = 0.003) and maximum (20.3 degrees C vs 21.2 degrees C, p = 0.02) temperatures. Both were below the USP minimum. The summer day period had higher maximum temperatures than the summer night period (31.2 degrees C vs 27.6 degrees C, p = 5 x 10(-9)). The mean daytime summer maximum exceeded the USP upper limit. Storage temperatures outside of the USP range were observed during 49% of winter days, 62% of winter nights, 56% of summer days, and 27% of summer nights. There was a significant tendency for summer days (p = 8 x 10(-8)) and winter nights (p = 0.009) to be outside of the acceptable range. There was moderate correlation between ambient and drug box temperatures (r2 = 0.49). Medications stored aboard an EMS helicopter are exposed to extremes of temperature, even inside a drug bag. Measures are needed to attenuate storage temperature fluctuations aboard aeromedical helicopters.

  16. Exhaust-Gas Pressure and Temperature Survey of F404-GE-400 Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Walton, James T.; Burcham, Frank W., Jr.

    1986-01-01

    An exhaust-gas pressure and temperature survey of the General Electric F404-GE-400 turbofan engine was conducted in the altitude test facility of the NASA Lewis Propulsion System Laboratory. Traversals by a survey rake were made across the exhaust-nozzle exit to measure the pitot pressure and total temperature. Tests were performed at Mach 0.87 and a 24,000-ft altitude and at Mach 0.30 and a 30,000-ft altitude with various power settings from intermediate to maximum afterburning. Data yielded smooth pressure and temperature profiles with maximum jet temperatures approximately 1.4 in. inside the nozzle edge and maximum jet temperatures from 1 to 3 in. inside the edge. A low-pressure region located exactly at engine center was noted. The maximum temperature encountered was 3800 R.

  17. Soil heating and impact of prescribed burning

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne

    2016-04-01

    Prescribed burning is highly uncommon in the Netherlands, where wildfire awareness is increasing but its risk management does not yet include fuel management strategies. A major exception is on two military bases, that need to burn their fields in winter and spring to prevent wildfires during summer shooting practice. Research on these very frequent burns has so far been limited to effects on biodiversity, yet site managers and policy makers have questions regarding the soil temperatures reached during these burns because of potential impact on soil properties and soil dwelling fauna. In March 2015, I therefore measured soil and litter temperatures under heath and grass vegetation during a prescribed burn on military terrain in the Netherlands. Soil and litter moisture were sampled pre- and post-fire, ash was collected, and fireline intensity was estimated from flame length. While standing vegetation was dry (0.13 g water/g biomass for grass and 0.6 g/g for heather), soil and litter were moist (0.21 cm3/cm3 and 1.6 g/g, respectively). Soil heating was therefore very limited, with maximum soil temperature at the soil-litter interface remaining being as low as 6.5 to 11.5°C, and litter temperatures reaching a maximum of 77.5°C at the top of the litter layer. As a result, any changes in physical properties like soil organic matter content and bulk density were not significant. These results are a first step towards a database of soil heating in relation to fuel load and fire intensity in this temperate country, which is not only valuable to increase understanding of the relationships between fire intensity and severity, but also instrumental in the policy debate regarding the sustainability of prescribed burns.

  18. 14 CFR 25.1505 - Maximum operating limit speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum operating limit speed. 25.1505... Operating Limitations § 25.1505 Maximum operating limit speed. The maximum operating limit speed (V MO/M MO airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not be...

  19. 14 CFR 25.1505 - Maximum operating limit speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum operating limit speed. 25.1505... Operating Limitations § 25.1505 Maximum operating limit speed. The maximum operating limit speed (V MO/M MO airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not be...

  20. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax).

    PubMed

    Claireaux, Guy; Couturier, Christine; Groison, Anne-Laure

    2006-09-01

    This study is an attempt to gain an integrated understanding of the interactions between temperature, locomotion activity and metabolism in the European sea bass (Dicentrarchus labrax). To our knowledge this study is among the few that have investigated the influence of the seasonal changes in water temperature on swimming performance in fish. Using a Brett-type swim-tunnel respirometer the relationship between oxygen consumption and swimming speed was determined in fish acclimatised to 7, 11, 14, 18, 22, 26 and 30 degrees C. The corresponding maximum swimming speed (U(max)), optimal swimming speed (U(opt)), active (AMR) and standard (SMR) metabolic rates as well as aerobic metabolic scope (MS) were calculated. Using simple mathematical functions, these parameters were modelled as a function of water temperature and swimming speed. Both SMR and AMR were positively related to water temperature up to 24 degrees C. Above 24 degrees C SMR and AMR levelled off and MS tended to decrease. We found a tight relationship between AMR and U(max) and observed that raising the temperature increased AMR and increased swimming ability. However, although fish swam faster at high temperature, the net cost of transport (COT(net)) at a given speed was not influence by the elevation of the water temperature. Although U(opt) doubled between 7 degrees C and 30 degrees C (from 0.3 to 0.6 m s(-1)), metabolic rate at U(opt) represented a relatively constant fraction of the animal active metabolic rate (40-45%). A proposed model integrates the effects of water temperature on the interaction between metabolism and swimming performance. In particular the controlling effect of temperature on AMR is shown to be the key factor limiting maximal swimming speed of sea bass.

  1. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  2. Lattice NRQCD study of S- and P-wave bottomonium states in a thermal medium with Nf=2 +1 light flavors

    NASA Astrophysics Data System (ADS)

    Kim, Seyong; Petreczky, Peter; Rothkopf, Alexander

    2015-03-01

    We investigate the properties of S - and P -wave bottomonium states in the vicinity of the deconfinement transition temperature. The light degrees of freedom are represented by dynamical lattice quantum chromodynamics (QCD) configurations of the HotQCD collaboration with Nf=2 +1 flavors. Bottomonium correlators are obtained from bottom quark propagators, computed in nonrelativistic QCD under the background of these gauge field configurations. The spectral functions for the 3S1 (ϒ ) and 3P1 (χb 1) channel are extracted from the Euclidean time correlators using a novel Bayesian approach in the temperature region 140 MeV ≤T ≤249 MeV and the results are contrasted to those from the standard maximum entropy method. We find that the new Bayesian approach is far superior to the maximum entropy method. It enables us to study reliably the presence or absence of the lowest state signal in the spectral function of a certain channel, even under the limitations present in the finite temperature setup. We find that χb 1 survives up to T =249 MeV , the highest temperature considered in our study, and put stringent constraints on the size of the medium modification of ϒ and χb 1 states.

  3. Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation.

    PubMed

    Liu, Jian; Miller, William H

    2008-09-28

    The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. LSC-IVR provides a very effective "prior" for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25 and 14 K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T=25 K, but the MEAC procedure produces a significant correction at the lower temperature (T=14 K). Comparisons are also made as to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.

  4. Step-by-step design of a single phase 3.3 kV/200 a resistive type superconducting fault current limiter (R-SFCL) and cryostat

    NASA Astrophysics Data System (ADS)

    Kar, Soumen; Rao, V. V.

    2018-07-01

    In our first attempt to design a single phase R-SFCL in India, we have chosen the typical rating of a medium voltage level (3.3 kVrms, 200 Arms, 1Φ) R-SFCL. The step-by-step design procedure for the R-SFCL involves conductor selection, time dependent electro-thermal simulations and recovery time optimization after fault removal. In the numerical analysis, effective fault limitation for a fault current of 5 kA for the medium voltage level R-SFCL are simulated. Maximum normal state resistance and maximum temperature rise in the SFCL coil during current limitation are estimated using one-dimensional energy balance equation. Further, a cryogenic system is conceptually designed for aforesaid MV level R-SFCL by considering inner and outer vessel materials, wall-thickness and thermal insulation which can be used for R-SFCL system. Finally, the total thermal load is calculated for the designed R-SFCL cryostat to select a suitable cryo-refrigerator for LN2 re-condensation.

  5. Water quality management using statistical analysis and time-series prediction model

    NASA Astrophysics Data System (ADS)

    Parmar, Kulwinder Singh; Bhardwaj, Rashmi

    2014-12-01

    This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.

  6. Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature

    NASA Astrophysics Data System (ADS)

    Nguyen, Dac-Trung; Lombez, Laurent; Gibelli, François; Boyer-Richard, Soline; Le Corre, Alain; Durand, Olivier; Guillemoles, Jean-François

    2018-03-01

    In common photovoltaic devices, the part of the incident energy above the absorption threshold quickly ends up as heat, which limits their maximum achievable efficiency to far below the thermodynamic limit for solar energy conversion. Conversely, the conversion of the excess kinetic energy of the photogenerated carriers into additional free energy would be sufficient to approach the thermodynamic limit. This is the principle of hot carrier devices. Unfortunately, such device operation in conditions relevant for utilization has never been evidenced. Here, we show that the quantitative thermodynamic study of the hot carrier population, with luminance measurements, allows us to discuss the hot carrier contribution to the solar cell performance. We demonstrate that the voltage and current can be enhanced in a semiconductor heterostructure due to the presence of the hot carrier population in a single InGaAsP quantum well at room temperature. These experimental results substantiate the potential of increasing photovoltaic performances in the hot carrier regime.

  7. Stability of Nonstationary Cooling of Pure Hydrogen Gas with Respect to the Number of Discrete Levels Taken into Account

    NASA Astrophysics Data System (ADS)

    Belova, O. M.; Bychkov, K. V.

    2018-03-01

    The effect of the number K of atomic hydrogen levels taken into account on the cooling of the gas behind a shock front is studied. The calculations are done for the conditions in the atmospheres of long-period Mira Ceti type variables. K ranges from 2 to 25. The electron temperature Te(t; K) and ionization state x(r,K) asymptotically approach limiting functions Te(t) and x(t) that are independent of K. After the maximum electron temperature is reached, a partial equilibrium phase sets in, during which the populations of the highly excited discrete levels with principal quantum numbers ≥ 8 obey the Saha equation for the instantaneous electron temperature and density.

  8. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species

    PubMed Central

    Collier, Catherine J.; Ow, Yan X.; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L.; O'Brien, Katherine R.; Hrebien, Victoria; Adams, Matthew P.

    2017-01-01

    Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt) for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature). The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis (33°C), but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum for plant net productivity was lower than ambient summer water temperature in Z. muelleri, indicating likely contemporary heat stress. In contrast, thermal optima of H. uninervis and C. serrulata exceeded ambient water temperature. This study found limited capacity to acclimate: thus the thermal optima can forewarn of both the present and future vulnerability to ocean warming during periods of elevated water temperature. PMID:28878790

  9. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species.

    PubMed

    Collier, Catherine J; Ow, Yan X; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L; O'Brien, Katherine R; Hrebien, Victoria; Adams, Matthew P

    2017-01-01

    Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species ( Cymodocea serrulata, Halodule uninervis , and Zostera muelleri ). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum ( T opt ) for gross photosynthesis of Z. muelleri , which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The T opt for photosynthesis of the tropical species, H. uninervis and C. serrulata , was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature ( T opt varied by 1°C in C. serrulata and 2°C in H. uninervis , and the variation did not follow changes in ambient water temperature). The T opt for gross photosynthesis were higher than T opt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis ( 33°C), but remained unchanged at 35°C in C. serrulata . Both estimated plant net productivity and T opt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum for plant net productivity was lower than ambient summer water temperature in Z. muelleri , indicating likely contemporary heat stress. In contrast, thermal optima of H. uninervis and C. serrulata exceeded ambient water temperature. This study found limited capacity to acclimate: thus the thermal optima can forewarn of both the present and future vulnerability to ocean warming during periods of elevated water temperature.

  10. Flexible Dielectric Nanocomposites with Ultrawide Zero-Temperature Coefficient Windows for Electrical Energy Storage and Conversion under Extreme Conditions.

    PubMed

    Shehzad, Khurram; Xu, Yang; Gao, Chao; Li, Hanying; Dang, Zhi-Min; Hasan, Tawfique; Luo, Jack; Duan, Xiangfeng

    2017-03-01

    Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.

  11. Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles.

    PubMed

    Djanaguiraman, M; Boyle, D L; Welti, R; Jagadish, S V K; Prasad, P V V

    2018-04-05

    High temperature is a major abiotic stress that limits wheat (Triticum aestivum L.) productivity. Variation in levels of a wide range of lipids, including stress-related molecular species, oxidative damage, cellular organization and ultrastructural changes were analyzed to provide an integrated view of the factors that underlie decreased photosynthetic rate under high temperature stress. Wheat plants of cultivar Chinese Spring were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of the booting stage. Thereafter, plants were exposed to high temperature (35/25 °C) for 16 d. Compared with optimum temperature, a lower photosynthetic rate was observed at high temperature which is an interplay between thylakoid membrane damage, thylakoid membrane lipid composition, oxidative damage of cell organelle, and stomatal and non-stomatal limitations. Triacylglycerol levels were higher under high temperature stress. Polar lipid fatty acyl unsaturation was lower at high temperature, while triacylglycerol unsaturation was the same at high temperature and optimum temperature. The changes in lipid species indicates increases in activities of desaturating, oxidizing, glycosylating and acylating enzymes under high temperature stress. Cumulative effect of high temperature stress led to generation of reactive oxygen species, cell organelle and membrane damage, and reduced antioxidant enzyme activity, and imbalance between reactive oxygen species and antioxidant defense system. Taken together with recent findings demonstrating that reactive oxygen species are formed from and are removed by thylakoid lipids, the data suggest that reactive oxygen species production, reactive oxygen species removal, and changes in lipid metabolism contribute to decreased photosynthetic rate under high temperature stress.

  12. Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains.

    PubMed

    Sun, Changfeng; Liu, Yu

    2016-01-01

    The analysis of the tree radial growth response to climate is crucial for dendroclimatological research. However, the response relationships between tree-ring indices and climatic factors at different timescales are not yet clear. In this study, the tree-ring width of Huashan pine (Pinus armandii) from Huashan in the Qinling Mountains, north-central China, was used to explore the response differences of tree growth to climatic factors at daily, pentad (5 days), dekad (10 days) and monthly timescales. Correlation function and linear regression analysis were applied in this paper. The tree-ring width showed a more sensitive response to daily and pentad climatic factors. With the timescale decreasing, the absolute value of the maximum correlation coefficient between the tree-ring data and precipitation increases as well as temperature (mean, minimum and maximum temperature). Compared to the other three timescales, pentad was more suitable for analysing the response of tree growth to climate. Relative to the monthly climate data, the association between the tree-ring data and the pentad climate data was more remarkable and accurate, and the reconstruction function based on the pentad climate was also more reliable and stable. We found that the major climatic factor limiting Huashan pine growth was the precipitation of pentads 20-35 (from April 6 to June 24) rather than the well-known April-June precipitation. The pentad was also proved to be a better timescale for analysing the climate and tree growth in the western and eastern Qinling Mountains. The formation of the earlywood density of Chinese pine (Pinus tabulaeformis) from Shimenshan in western Qinling was mainly affected by the maximum temperature of pentads 28-32 (from May 16 to June 9). The maximum temperature of pentads 28-33 (from May 16 to June 14) was the major factor affecting the ring width of Chinese pine from Shirenshan in eastern Qinling.

  13. Limits to anaerobic energy and cytosolic concentration in the living cell.

    PubMed

    Paglietti, A

    2015-01-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  14. Limits to anaerobic energy and cytosolic concentration in the living cell

    NASA Astrophysics Data System (ADS)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  15. Statistical downscaling of mean temperature, maximum temperature, and minimum temperature on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Jiang, L.

    2017-12-01

    Climate change is considered to be one of the greatest environmental threats. Global climate models (GCMs) are the primary tool used for studying climate change. However, GCMs are limited because of their coarse spatial resolution and inability to resolve important sub-grid scale features such as terrain and clouds. Statistical downscaling methods can be used to downscale large-scale variables to local-scale. In this study, we assess the applicability of the Statistical Downscaling Model (SDSM) in downscaling the outputs from Beijing Normal University Earth System Model (BNU-ESM). The study focus on the the Loess Plateau, China, and the variables for downscaling include daily mean temperature (TMEAN), maximum temperature (TMAX) and minimum temperature (TMIN). The results show that SDSM performs well for these three climatic variables on the Loess Plateau. After downscaling, the root mean square errors for TMEAN, TMAX, TMIN for BNU-ESM were reduced by 70.9%, 75.1%, and 67.2%, respectively. All the rates of change in TMEAN, TMAX and TMIN during the 21st century decreased after SDSM downscaling. We also show that SDSM can effectively reduce uncertainty, compared with the raw model outputs. TMEAN uncertainty was reduced by 27.1%, 26.8%, and 16.3% for the future scenarios of RCP 2.6, RCP 4.5 and RCP 8.5, respectively. The corresponding reductions in uncertainty were 23.6%, 30.7%, and 18.7% for TMAX; 37.6%, 31.8%, and 23.2% for TMIN.

  16. Projected near-future levels of temperature and pCO2 reduce coral fertilization success.

    PubMed

    Albright, Rebecca; Mason, Benjamin

    2013-01-01

    Increases in atmospheric carbon dioxide (pCO2) are projected to contribute to a 1.1-6.4°C rise in global average surface temperatures and a 0.14-0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C) and pCO2 (+400 µatm) projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2) and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential.

  17. Projected Near-Future Levels of Temperature and pCO2 Reduce Coral Fertilization Success

    PubMed Central

    Albright, Rebecca; Mason, Benjamin

    2013-01-01

    Increases in atmospheric carbon dioxide (pCO2) are projected to contribute to a 1.1–6.4°C rise in global average surface temperatures and a 0.14–0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C) and pCO2 (+400 µatm) projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2) and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential. PMID:23457572

  18. The Effects of Metabolic Work Rate and Ambient Environment on Physiological Tolerance Times While Wearing Explosive and Chemical Personal Protective Equipment

    PubMed Central

    Costello, Joseph T.; Stewart, Kelly L.; Stewart, Ian B.

    2015-01-01

    This study evaluated the physiological tolerance times when wearing explosive and chemical (>35 kg) personal protective equipment (PPE) in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4, and 5.5 km·h−1 in the following environmental conditions, 21, 30, and 37°C wet bulb globe temperature (WBGT). Participants exercised for 60 min or until volitional fatigue, core temperature reached 39°C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate, and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37 < WBGT30 < WBGT21; P < 0.05) and work intensities (5.5 < 4 < 2.5 km·h−1; P < 0.001). The majority of trials (85/108; 78.7%) were terminated due to participant's heart rate exceeding 90% of their maximum. A total of eight trials (7.4%) lasted the full duration. Only nine (8.3%) trials were terminated due to volitional fatigue and six (5.6%) due to core temperatures in excess of 39°C. These results demonstrate that physiological tolerance times are influenced by the external environment and workload and that cardiovascular strain is the limiting factor to work tolerance when wearing this heavy multilayered PPE. PMID:25866818

  19. Effects of radiofrequency probe application on irrigation fluid temperature in the wrist joint.

    PubMed

    Sotereanos, Dean G; Darlis, Nickolaos A; Kokkalis, Zinon T; Zanaros, George; Altman, Gregory T; Miller, Mark Carl

    2009-12-01

    Radiofrequency (RF) probes used in wrist arthroscopy may raise joint fluid temperature, increasing the risk of capsular and ligamentous damage. The purposes of the current study were to measure joint fluid temperature during wrist arthroscopy with the use of RF probes, and to determine whether using an outlet portal will reduce the maximum temperature. We performed wrist arthroscopy on 8 cadaveric arms. Ablation and coagulation cycles using RF probe were performed at documented locations within the joint. This was done for 60-second intervals on both the radial and ulnar side of the wrist, to mimic clinical practice. We used 4 fiberoptic phosphorescent probes to measure temperature (radial, ulnar, inflow-tube, and outflow-tube probes) and measured joint fluid temperature with and without outflow. There was a significant difference between wrists with and without outflow when examining maximum ablation temperatures (p < .002). All specimens showed higher maximum and average ablation temperatures without outflow. Maximum joint temperatures, greater than 60 degrees C, were observed in only no-outflow conditions. In performing RF ablation during wrist arthroscopy, the use of an outlet portal reduces the joint fluid temperature. Without an outlet portal, maximum temperatures can exceed desirable levels when using ablation; such temperatures have the potential to damage adjacent tissues. It is useful to maintain adequate outflow when using the radiofrequency probes during wrist arthroscopy.

  20. 31 CFR 149.3 - Maximum obligation limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Maximum obligation limitation. 149.3 Section 149.3 Money and Finance: Treasury Regulations Relating to Money and Finance MONETARY OFFICES, DEPARTMENT OF THE TREASURY CALCULATION OF MAXIMUM OBLIGATION LIMITATION § 149.3 Maximum obligation limitation...

  1. 24 CFR 232.903 - Maximum mortgage limitations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Maximum mortgage limitations. 232... ASSISTED LIVING FACILITIES Insurance of Mortgages Covering Existing Projects § 232.903 Maximum mortgage limitations. Notwithstanding the maximum mortgage limitations set forth in § 232.30, a mortgage within the...

  2. 5 CFR 582.402 - Maximum garnishment limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Maximum garnishment limitations. 582.402... Maximum garnishment limitations. Pursuant to section 1673(a)(1) of title 15 of the United States Code (the... Federal Regulations, part 870, the following limitations are applicable: (a) Unless a lower maximum...

  3. 5 CFR 581.402 - Maximum garnishment limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Maximum garnishment limitations. 581.402... § 581.402 Maximum garnishment limitations. (a) Except as provided in paragraph (b) of this section... Protection Act, as amended), unless a lower maximum garnishment limitation is provided by applicable State or...

  4. Shearing at the end of summer affects body temperature of free-living Angora goats ( Capra aegagrus) more than does shearing at the end of winter.

    PubMed

    Hetem, R S; de Witt, B A; Fick, L G; Fuller, A; Kerley, G I H; Maloney, S K; Meyer, L C R; Mitchell, D

    2009-07-01

    Angora goats are known to be vulnerable to cold stress, especially after shearing, but their thermoregulatory responses to shearing have not been measured. We recorded activity, and abdominal and subcutaneous temperatures, for 10 days pre-shearing and post-shearing, in 10 Angora goats inhabiting the succulent thicket of the Eastern Cape, South Africa, in both March (late summer) and September (late winter). Within each season, environmental conditions were similar pre-shearing and post-shearing, but September was an average 5°C colder than March. Shearing resulted in a decreased mean (P < 0.0001), minimum (P < 0.0001) and maximum daily abdominal temperature (P < 0.0001). Paradoxically, the decrease in daily mean (P = 0.03) and maximum (P = 0.01) abdominal temperatures, from pre-shearing to post-shearing, was greater in March than in September. Daily amplitude of body temperature rhythm (P < 0.0001) and the maximum rate of abdominal temperature rise (P < 0.0001) increased from pre-shearing to post-shearing, resulting in an earlier diurnal peak in abdominal temperature (P = 0.001) post-shearing. These changes in amplitude, rate of abdominal temperature rise and time of diurnal peak in abdominal temperature suggest that the goats' thermoregulatory system was more labile after shearing. Mean daily subcutaneous temperatures also decreased post-shearing (P < 0.0001), despite our index goat selecting more stable microclimates after shearing in March (P = 0.03). Following shearing, there was an increased difference between abdominal and subcutaneous temperatures (P < 0.0001) at night, suggesting that the goats used peripheral vasoconstriction to limit heat loss. In addition to these temperature changes, mean daily activity increased nearly two-fold after March shearing, but not September shearing. This increased activity after March shearing was likely the result of an increased foraging time, food intake and metabolic rate, as suggested by the increased water influx (P = 0.0008). Thus, Angora goats entered a heat conservation mode after shearing in both March and September. That the transition from the fleeced to the shorn state had greater thermoregulatory consequences in March than in September may provide a mechanistic explanation for Angora goats' vulnerability to cold in summer.

  5. Magnetic hyperthermia in water based ferrofluids: Effects of initial susceptibility and size polydispersity on heating efficiency

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Ranoo, Surojit; Muthukumaran, T.; Philip, John

    2018-04-01

    The effects of initial susceptibility and size polydispersity on magnetic hyperthermia efficiency in two water based ferrofluids containing phosphate and TMAOH coated superparamagnetic Fe3O4 nanoparticles were studied. Experiments were performed at a fixed frequency of 126 kHz on four different concentrations of both samples and under different external field amplitudes. It was observed that for field amplitudes beyond 45.0 kAm-1, the maximum temperature rise was in the vicinity of 42°C (hyperthermia limit) which indicated the suitability of the water based ferrofluids for hyperthermia applications. The maximum temperature rise and specific absorption rate were found to vary linearly with square of the applied field amplitudes, in accordance with theoretical predictions. It was further observed that for a fixed sample concentration, specific absorption rate was higher for the phosphate coated samples which was attributed to the higher initial static susceptibility and lower size polydispersity of phosphate coated Fe3O4.

  6. Effects of Doubled CO2 on Tropical Sea-Surface Temperature (SSTs) for Onset of Deep Convection and Maximum SST-GCM Simulations Based Inferences

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Zhou, Y. P.; Schmidt, Gavin A.; Lau, K. M.; Cahalan, R. F.

    2008-01-01

    A primary concern of CO2-induced warming is the associated rise of tropical (10S-10N) seasurface temperatures (SSTs). GISS Model-E was used to produce two sets of simulations-one with the present-day and one with doubled CO2 in the atmosphere. The intrinsic usefulness of model guidance in the tropics was confirmed when the model simulated realistic convective coupling between SSTs and atmospheric soundings and that the simulated-data correlations between SSTs and 300 hPa moiststatic energies were found to be similar to the observed. Model predicted SST limits: (i) one for the onset of deep convection and (ii) one for maximum SST, increased in the doubled C02 case. Changes in cloud heights, cloud frequencies, and cloud mass-fractions showed that convective-cloud changes increased the SSTs, while warmer mixed-layer of the doubled CO2 contained approximately 10% more water vapor; clearly that would be conducive to more intense storms and hurricanes.

  7. Reduced oxygen at high altitude limits maximum size.

    PubMed Central

    Peck, L S; Chapelle, G

    2003-01-01

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal). PMID:14667371

  8. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Treesearch

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  9. Statistical Modeling of Daily Stream Temperature for Mitigating Fish Mortality

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Rajagopalan, B.

    2011-12-01

    Water allocations in the Central Valley Project (CVP) of California require the consideration of short- and long-term needs of many socioeconomic factors including, but not limited to, agriculture, urban use, flood mitigation/control, and environmental concerns. The Endangered Species Act (ESA) ensures that the decision-making process provides sufficient water to limit the impact on protected species, such as salmon, in the Sacramento River Valley. Current decision support tools in the CVP were deemed inadequate by the National Marine Fisheries Service due to the limited temporal resolution of forecasts for monthly stream temperature and fish mortality. Finer scale temporal resolution is necessary to account for the stream temperature variations critical to salmon survival and reproduction. In addition, complementary, long-range tools are needed for monthly and seasonal management of water resources. We will present a Generalized Linear Model (GLM) framework of maximum daily stream temperatures and related attributes, such as: daily stream temperature range, exceedance/non-exceedance of critical threshold temperatures, and the number of hours of exceedance. A suite of predictors that impact stream temperatures are included in the models, including current and prior day values of streamflow, water temperatures of upstream releases from Shasta Dam, air temperature, and precipitation. Monthly models are developed for each stream temperature attribute at the Balls Ferry gauge, an EPA compliance point for meeting temperature criteria. The statistical framework is also coupled with seasonal climate forecasts using a stochastic weather generator to provide ensembles of stream temperature scenarios that can be used for seasonal scale water allocation planning and decisions. Short-term weather forecasts can also be used in the framework to provide near-term scenarios useful for making water release decisions on a daily basis. The framework can be easily translated to other locations and is intended to be a complement to the physical stream temperature modeling efforts that are underway on the river.

  10. Equatorial temperature anomaly during solar minimum

    NASA Astrophysics Data System (ADS)

    Suhasini, R.; Raghavarao, R.; Mayr, H. G.; Hoegy, W. R.; Wharton, L. E.

    2001-11-01

    We show evidence for the occurrence of the equatorial temperature anomaly (ETA) during solar minimum by analyzing the temperature and total ion density data from the Neutral Atmosphere Temperature Experiment (NATE) and the Cylindrical Electrostatic Probe (CEP), respectively, on board the Atmospheric Explorer-E satellite. The chosen data refer to a height of ~254 km in the African and Asian longitude sector (340.1°E-200°E) during a summer season in the Southern Hemisphere. As during the solar maximum period, the spatial characteristics of the ETA are similar to those of the equatorial ionization anomaly (EIA). A minimum in the gas temperature is collocated with the minimum in the ion density at the dip equator, and a temperature maximum on the south side of the equator is collocated with the density maximum of the EIA. The daytime behavior of ETA formation is about the same as that of EIA as both of them are clearly present at around 1300 and 1400 local solar time (LST) only. At 1400 LST the difference between the temperatures at the crest and the trough (ETA strength) reaches a maximum value of about 100°K which is ~14% of the temperature at the trough. Like the EIA, the ETA also suddenly disappears after 1400 LST. Thus the EIA appears to be a prerequisite for the ETA formation. During the premidnight time (2200 LST), however, while the EIA is nonexistent, the temperature distribution forms a pattern opposite to that at 1400 LST in the daytime. It shows a maximum around the dip equator and a broad minimum at the daytime crest region where the postsunset cooling also is faster and occurs earlier than at the dip equator. This nighttime maximum appears to be related to the signature of the midnight temperature maximum (MTM). Mass Spectrometer Incoherent Scatter (MSIS) model temperatures, in general, are higher than the observed average temperatures for the summer season and in particular for the region around the dip equator around noon hours.

  11. Vegetation placement for summer built surface temperature moderation in an urban microclimate.

    PubMed

    Millward, Andrew A; Torchia, Melissa; Laursen, Andrew E; Rothman, Lorne D

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  12. Vegetation Placement for Summer Built Surface Temperature Moderation in an Urban Microclimate

    NASA Astrophysics Data System (ADS)

    Millward, Andrew A.; Torchia, Melissa; Laursen, Andrew E.; Rothman, Lorne D.

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  13. Ecological traps in shallow coastal waters-Potential effect of heat-waves in tropical and temperate organisms.

    PubMed

    Vinagre, Catarina; Mendonça, Vanessa; Cereja, Rui; Abreu-Afonso, Francisca; Dias, Marta; Mizrahi, Damián; Flores, Augusto A V

    2018-01-01

    Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total) were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species' acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1) tide pools could be considered ecological traps and 2) if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools.

  14. The coronal structure of active regions

    NASA Technical Reports Server (NTRS)

    Landini, M.; Monsignori Fossi, B. C.; Krieger, A.; Vaiana, G. S.

    1975-01-01

    A four-parameter model, which assumes a Gaussian dependence of both temperature and pressure on distance from center, is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature, the maximum pressure, the width of the pressure distribution, and the width of the temperature distribution. The maximum temperature ranges from 2.2 to 2.8 million K, and the maximum density from 2 to 9 by 10 to the 9th power per cu cm. The range of the pressure-distribution width is from 2 to 4 by 10 to the 9th power cm and that of the temperature-distribution width from 2 to 7.

  15. Changes in minimum and maximum temperatures at the Pic du Midi in relation with humidity and cloudiness, 1882-1984

    NASA Astrophysics Data System (ADS)

    Dessens, J.; Bücher, A.

    In an attempt to contribute to the investigation on a global climate change, a historical series of minimum and maximum temperature data at the Pic du Midi, a mountain observatory at 2862 m a.s.l. in the French Pyrenees, is updated after correction of a systematic deviation due to a relocation of the station in 1971. These data, which now cover the 1882-1984 period, are examined in parallel with humidity and cloud cover data for the same period. From the beginning to the end of this period, observations show that the mean night-time temperature has increased by 2.39° C/100 yr while the mean daytime temperature has decreased by 0.50° C/100 yr. In consequence, the mean annual diurnal temperature range has dropped by 36%/100 yr. The maximum seasonal decrease is 46%/100 yr in spring. Season-to-season and year-to-year inter-relationships between minimum temperature, maximum temperature, relative humidity and cloud cover suggest that the decrease in maximum temperature is related to a concomitant increase of 15%/100 yr in both relative humidity and cloud cover.

  16. 5 CFR 550.105 - Biweekly maximum earnings limitation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Biweekly maximum earnings limitation. 550... PAY ADMINISTRATION (GENERAL) Premium Pay Maximum Earnings Limitations § 550.105 Biweekly maximum... basic pay and premium pay for any biweekly pay period to exceed the greater of— (1) The maximum biweekly...

  17. 5 CFR 550.106 - Annual maximum earnings limitation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Annual maximum earnings limitation. 550... PAY ADMINISTRATION (GENERAL) Premium Pay Maximum Earnings Limitations § 550.106 Annual maximum... and premium pay for the calendar year to exceed the greater of— (1) The maximum annual rate of basic...

  18. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data

    NASA Astrophysics Data System (ADS)

    Yoo, Cheolhee; Im, Jungho; Park, Seonyoung; Quackenbush, Lindi J.

    2018-03-01

    Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the spatial patterns of air temperature is important for urban planning and management. However, insufficient weather stations limit accurate spatial representation of temperature within a heterogeneous city. This study used a random forest machine learning approach to estimate daily maximum and minimum air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles, USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin for the two cities, and designed eight schemes with different input LST variables. The schemes were evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 °C and 1.2 °C for Tmax and Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 °C and 1.2 °C for Tmax and Tmin in Seoul, respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature. Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors (e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differences between built-up and vegetated areas in the two cities.

  19. Are winter-active species vulnerable to climate warming? A case study with the wintergreen terrestrial orchid, Tipularia discolor.

    PubMed

    Marchin, Renée M; Dunn, Robert R; Hoffmann, William A

    2014-12-01

    In the eastern United States, winter temperature has been increasing nearly twice as fast as summer temperature, but studies of warming effects on plants have focused on species that are photosynthetically active in summer. The terrestrial orchid Tipularia discolor is leafless in summer and acquires C primarily in winter. The optimum temperature for photosynthesis in T. discolor is higher than the maximum temperature throughout most of its growing season, and therefore growth can be expected to increase with warming. Contrary to this hypothesis, experimental warming negatively affected reproductive fitness (number of flowering stalks, flowers, fruits) and growth (change in leaf area from 2010 to 2012) in T. discolor. Temperature in June-July was critical for flowering, and mean July temperature greater than 29 °C (i.e., 2.5 °C above ambient) eliminated reproduction. Warming of 1.2 °C delayed flowering by an average of 10 days and fruiting by an average of 5 days. Warming of 4.4 °C reduced relative growth rates by about 60%, which may have been partially caused by the direct effects of temperature on photosynthesis and respiration. Warming indirectly increased vapor pressure deficit (VPD) by 0.2-0.5 kPa, and leaf-to-air VPD over 1.3 kPa restricted stomatal conductance of T. discolor to 10-40% of maximum conductance. These results highlight the need to account for changes in VPD when estimating temperature responses of plant species under future warming scenarios. Increasing temperature in the future will likely be an important limiting factor to the distribution of T. discolor, especially along the southern edge of its range.

  20. Thermoregulatory and Orthostatic Responses to Wearing the Advanced Crew Escape Suit

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Jacobs, Tamara N.; McDaniel, Angela; Schneider, Suzanne M.

    2006-01-01

    Current NASA flight rules limit the maximum cabin temperature (23.9 C) during re-entry and landing to protect crewmembers from heat stress while wearing the Advanced Crew Escape Suit (ACES) and Liquid Cooling Garment (LCG). The primary purpose of this ground-based project was to determine whether the LCG could provide adequate cooling if ambient temperature reached 26.7 "C. The secondary objective was to determine whether there would be a graded effect of ambient temperature profiles with maximum temperatures of 23.9 (LO), 26.7 (MPD), and 29.4 C (HI). METHODS: Eight subjects underwent a 5-h temperature profile (22.8,26.7 C) in an environmental chamber while wearing the ACES and LCG. Subjects controlled the amount of cooling provided by the LCG. Core (T(sub core)),skin temperatures (T(sub sk)) and heart rate (HR) were measured every 15-min. A 10-minute stand test was administered pre- and post-chamber. Additionally, 4 subjects underwent the three 5-h temperature profiles (LO, MID, and HI) with the same measurements. RESULTS: In the 8 subjects completing the MID profile, T(sub core), and T(sub sk) decreased from the start' to the end of the chamber stay. Subjects completed the stand test without signs of orthostatic intolerance. In the 4 subjects who underwent all 3 profiles, there was no discernible pattern in T(sub core), T(sub sk), and HR responses across the temperature profiles. CONCLUSIONS: In the range of temperatures tested, subjects were able to sufficiently utilize the self-selected cooling to avoid any potential deleterious effects of wearing the ACES. However, these subjects were not microgravity exposed, which has been suggested to impair thermoregulation.

  1. Increases in maximum stream temperatures after slash burning in a small experimental watershed.

    Treesearch

    Al Levno; Jack Rothacher

    1969-01-01

    The first year after slash was burned on a 237-acre clearcut watershed in the Cascade Range of Oregon, average maximum water temperatures increased 13°, 14°, and 12°F, during June, July, and August. A maximum stream temperature of 75°F. persisted for 3 hours on a day in July.

  2. Efficiency at maximum power output of quantum heat engines under finite-time operation.

    PubMed

    Wang, Jianhui; He, Jizhou; Wu, Zhaoqi

    2012-03-01

    We study the efficiency at maximum power, η(m), of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures T(h) and T(c), respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), η(m) becomes identical to the Carnot efficiency η(C)=1-T(c)/T(h). For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency η(m) at maximum power output is bounded from above by η(C)/(2-η(C)) and from below by η(C)/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency η(CA)=1-√(T(c)/T(h)) is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.

  3. Determination of the Maximum Temperature in a Non-Uniform Hot Zone by Line-of-Site Absorption Spectroscopy with a Single Diode Laser.

    PubMed

    Liger, Vladimir V; Mironenko, Vladimir R; Kuritsyn, Yurii A; Bolshov, Mikhail A

    2018-05-17

    A new algorithm for the estimation of the maximum temperature in a non-uniform hot zone by a sensor based on absorption spectrometry with a diode laser is developed. The algorithm is based on the fitting of the absorption spectrum with a test molecule in a non-uniform zone by linear combination of two single temperature spectra simulated using spectroscopic databases. The proposed algorithm allows one to better estimate the maximum temperature of a non-uniform zone and can be useful if only the maximum temperature rather than a precise temperature profile is of primary interest. The efficiency and specificity of the algorithm are demonstrated in numerical experiments and experimentally proven using an optical cell with two sections. Temperatures and water vapor concentrations could be independently regulated in both sections. The best fitting was found using a correlation technique. A distributed feedback (DFB) diode laser in the spectral range around 1.343 µm was used in the experiments. Because of the significant differences between the temperature dependences of the experimental and theoretical absorption spectra in the temperature range 300⁻1200 K, a database was constructed using experimentally detected single temperature spectra. Using the developed algorithm the maximum temperature in the two-section cell was estimated with accuracy better than 30 K.

  4. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, James; Aldrich, Robb

    2015-08-01

    CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10°F. The reasons for the wide range in heating performance likely include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistancemore » systems.« less

  5. EXPERIMENTAL STUDIES OF TRANSIENT EFFECTS IN FAST REACTOR FUELS. SERIES I. UO$sub 2$ IRRADIATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, J.H.

    1962-11-15

    An experimental program to evaluate the performance of FCR and EFCR fuel during transient operation is outlined, and the initial series of tests are described in some detail. Test results from five experiments in the TREAT reactor, using 1-in. OD SS-clad UO/sub 2/ fuel specimens, are compared with regard to fuel temperatures, mechanical integrity, and post-irradiation appearance. Incipient fuel pin failure limits for transients are identified with maximum fuel temperatures in the range of 7000 deg F. Multiple transient damage to the cladding is likely for transients above the melting point of the fuel. (auth)

  6. Precipitation and Temperature Effects on Populations of Aedes albopictus (Diptera: Culicidae): Implications for Range Expansion

    PubMed Central

    ALTO, BARRY W.; JULIANO, STEVEN A.

    2008-01-01

    We investigated how temperature and precipitation regime encountered over the life cycle of Aedes albopictus (Skuse) affects populations. Caged populations of A. albopictus were maintained at 22, 26, and 30°C. Cages were equipped with containers that served as sites for oviposition and larval development. All cages were assigned to one of three simulated precipitation regimes: (1) low fluctuation regime - water within the containers was allowed to evaporate to 90% of its maximum before being refilled, (2) high fluctuation regime - water was allowed to evaporate to 25% of its maximum before being refilled, and (3) drying regime - water was allowed to evaporate to complete container dryness before being refilled. Greater temperature and the absence of drying resulted in greater production of adults. Greater temperature in combination with drying were detrimental to adult production. These precipitation effects on adult production were absent at 22°C. Greater temperatures and drying treatments yielded higher and lower eclosion rates, respectively and, both yielded greater mortality. Development time and size of adults decreased with increased temperatures, and drying produced larger adults. Greater temperatures resulted in greater egg mortality. These results suggest that populations occurring in warmer regions are likely to produce more adults as long as containers do not dry completely. Populations in cooler regions are likely to produce fewer adults with the variability of precipitation contributing less to variation in adult production. Predicted climate change in North America is likely to extend the northern distribution of A. albopictus and to limit further its establishment in arid regions. PMID:11580037

  7. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  8. Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures.

    PubMed

    Head, Jason J; Bloch, Jonathan I; Hastings, Alexander K; Bourque, Jason R; Cadena, Edwin A; Herrera, Fabiany A; Polly, P David; Jaramillo, Carlos A

    2009-02-05

    The largest extant snakes live in the tropics of South America and southeast Asia where high temperatures facilitate the evolution of large body sizes among air-breathing animals whose body temperatures are dependant on ambient environmental temperatures (poikilothermy). Very little is known about ancient tropical terrestrial ecosystems, limiting our understanding of the evolution of giant snakes and their relationship to climate in the past. Here we describe a boid snake from the oldest known neotropical rainforest fauna from the Cerrejón Formation (58-60 Myr ago) in northeastern Colombia. We estimate a body length of 13 m and a mass of 1,135 kg, making it the largest known snake. The maximum size of poikilothermic animals at a given temperature is limited by metabolic rate, and a snake of this size would require a minimum mean annual temperature of 30-34 degrees C to survive. This estimate is consistent with hypotheses of hot Palaeocene neotropics with high concentrations of atmospheric CO(2) based on climate models. Comparison of palaeotemperature estimates from the equator to those from South American mid-latitudes indicates a relatively steep temperature gradient during the early Palaeogene greenhouse, similar to that of today. Depositional environments and faunal composition of the Cerrejón Formation indicate an anaconda-like ecology for the giant snake, and an earliest Cenozoic origin of neotropical vertebrate faunas.

  9. Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines

    NASA Astrophysics Data System (ADS)

    Diego Galván, J.; Büntgen, Ulf; Ginzler, Christian; Grudd, Håkan; Gutiérrez, Emilia; Labuhn, Inga; Julio Camarero, J.

    2015-01-01

    The growth/climate relationship of theoretically temperature-controlled high-elevation forests has been demonstrated to weaken over recent decades. This is likely due to new tree growth limiting factors, such as an increasing drought risk for ecosystem functioning and productivity across the Mediterranean Basin. In addition, declining tree growth sensitivity to spring temperature may emerge in response to increasing drought stress. Here, we evaluate these ideas by assessing the growth/climate sensitivity of 1500 tree-ring width (TRW) and 102 maximum density (MXD) measurement series from 711 and 74 Pinus uncinata trees, respectively, sampled at 28 high-elevation forest sites across the Pyrenees and two relict populations of the Iberian System. Different dendroclimatological standardization and split period approaches were used to assess the high- to low-frequency behavior of 20th century tree growth in response to temperature means, precipitation totals and drought indices. Long-term variations in TRW track summer temperatures until about 1970 but diverge afterwards, whereas MXD captures the recent temperature increase in the low-frequency domain fairly well. On the other hand summer drought has increasingly driven TRW along the 20th century. Our results suggest fading temperature sensitivity of Iberian high-elevation P. uncinata forest growth, and reveal the importance of summer drought that is becoming the emergent limiting factor of tree ring width formation in many parts of the Mediterranean Basin.

  10. Thermal tolerance and climate warming sensitivity in tropical snails.

    PubMed

    Marshall, David J; Rezende, Enrico L; Baharuddin, Nursalwa; Choi, Francis; Helmuth, Brian

    2015-12-01

    Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions, and behavioral responses may alter predictions of studies that ignore these biological details.

  11. Climate sensitivity of Tibetan Plateau glaciers - past and future implications

    NASA Astrophysics Data System (ADS)

    Heyman, Jakob; Hubbard, Alun; Stroeven, Arjen P.; Harbor, Jonathan M.

    2013-04-01

    The Tibetan Plateau is one of the most extensively glaciated, non-Polar regions of the world, and its mountain glaciers are the primary source of melt water for several of the largest Asian rivers. During glacial cycles, Tibetan Plateau glaciers advanced and retreated multiple times, but remained restricted to the highest mountain areas as valley glaciers and ice caps. Because glacier extent is dominantly controlled by climate, the past extent of Tibetan glaciers provide information on regional climate. Here we present a study analyzing the past maximum extents of glaciers on the Tibetan Plateau with the output of a 3D glacier model, in an effort to quantify Tibetan Plateau climate. We have mapped present-day glaciers and glacial landforms deposited by formerly more extensive glaciers in eight mountain regions across the Tibetan Plateau, allowing us to define present-day and past maximum glacier outlines. Using a high-resolution (250 m) higher-order glacier model calibrated against present-day glacier extents, we have quantified the climate perturbations required to expand present-day glaciers to their past maximum extents. We find that a modest cooling of at most 6°C for a few thousand years is enough to attain past maximum extents, even with 25-75% precipitation reduction. This evidence for limited cooling indicates that the temperature of the Tibetan Plateau remained relatively stable over Quaternary glacial cycles. Given the significant sensitivity to temperature change, the expectation is perhaps that a future warmer climate might result in intense glacier reduction. We have tested this hypothesis and modeled the future glacier development for the three mountain regions with the largest present-day glacier cover using a projected warming of 2.8 to 6.2°C within 100 years (envelope limits from IPCC). These scenarios result in dramatic glacier reductions, including 24-100% ice volume loss after 100 years and 77-100% ice volume loss after 300 years.

  12. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species.

    PubMed

    Slot, Martijn; Winter, Klaus

    2017-12-01

    Net photosynthetic carbon uptake of Panamanian lowland tropical forest species is typically optimal at 30-32 °C. The processes responsible for the decrease in photosynthesis at higher temperatures are not fully understood for tropical trees. We determined temperature responses of maximum rates of RuBP-carboxylation (V CMax ) and RuBP-regeneration (J Max ), stomatal conductance (G s ), and respiration in the light (R Light ) in situ for 4 lowland tropical tree species in Panama. G s had the lowest temperature optimum (T Opt ), similar to that of net photosynthesis, and photosynthesis became increasingly limited by stomatal conductance as temperature increased. J Max peaked at 34-37 °C and V CMax ~2 °C above that, except in the late-successional species Calophyllum longifolium, in which both peaked at ~33 °C. R Light significantly increased with increasing temperature, but simulations with a photosynthesis model indicated that this had only a small effect on net photosynthesis. We found no evidence for Rubisco-activase limitation of photosynthesis. T Opt of V CMax and J Max fell within the observed in situ leaf temperature range, but our study nonetheless suggests that net photosynthesis of tropical trees is more strongly influenced by the indirect effects of high temperature-for example, through elevated vapour pressure deficit and resulting decreases in stomatal conductance-than by direct temperature effects on photosynthetic biochemistry and respiration. © 2017 John Wiley & Sons Ltd.

  13. Precooking as a Control for Histamine Formation during the Processing of Tuna: An Industrial Process Validation.

    PubMed

    Adams, Farzana; Nolte, Fred; Colton, James; De Beer, John; Weddig, Lisa

    2018-02-23

    An experiment to validate the precooking of tuna as a control for histamine formation was carried out at a commercial tuna factory in Fiji. Albacore tuna ( Thunnus alalunga) were brought on board long-line catcher vessels alive, immediately chilled but never frozen, and delivered to an on-shore facility within 3 to 13 days. These fish were then allowed to spoil at 25 to 30°C for 21 to 25 h to induce high levels of histamine (>50 ppm), as a simulation of "worst-case" postharvest conditions, and subsequently frozen. These spoiled fish later were thawed normally and then precooked at a commercial tuna processing facility to a target maximum core temperature of 60°C. These tuna were then held at ambient temperatures of 19 to 37°C for up to 30 h, and samples were collected every 6 h for histamine analysis. After precooking, no further histamine formation was observed for 12 to 18 h, indicating that a conservative minimum core temperature of 60°C pauses subsequent histamine formation for 12 to 18 h. Using the maximum core temperature of 60°C provided a challenge study to validate a recommended minimum core temperature of 60°C, and 12 to 18 h was sufficient to convert precooked tuna into frozen loins or canned tuna. This industrial-scale process validation study provides support at a high confidence level for the preventive histamine control associated with precooking. This study was conducted with tuna deliberately allowed to spoil to induce high concentrations of histamine and histamine-forming capacity and to fail standard organoleptic evaluations, and the critical limits for precooking were validated. Thus, these limits can be used in a hazard analysis critical control point plan in which precooking is identified as a critical control point.

  14. X-ray bursts: Observation versus theory

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1981-01-01

    Results of various observations of common type I X-ray bursts are discussed with respect to the theory of thermonuclear flashes in the surface layers of accreting neutron stars. Topics covered include burst profiles; irregular burst intervals; rise and decay times and the role of hydrogen; the accuracy of source distances; accuracy in radii determination; radius increase early in the burst; the super Eddington limit; temperatures at burst maximum; and the role of the magnetic field.

  15. Corona evaluation for 270 volt dc systems

    NASA Astrophysics Data System (ADS)

    Dunbar, William G.

    When designing 270 V dc power system electronics and wiring systems, it is essential to evaluate such corona-initiation-prone parts with bare electrodes as terminations and leads, and to take into account spacings, gas pressures (as a function of maximum altitude), temperature, voltage transients, and insulation coating thickness. Both persistent and intermittent transients are important. Filters and transient suppressors are excellent methods for limiting overvoltage transients in order to prevent corona initiation within a module.

  16. Suitable Environmental Ranges for Potential Coral Reef Habitats in the Tropical Ocean

    PubMed Central

    Guan, Yi; Hohn, Sönke; Merico, Agostino

    2015-01-01

    Coral reefs are found within a limited range of environmental conditions or tolerance limits. Estimating these limits is a critical prerequisite for understanding the impacts of climate change on the biogeography of coral reefs. Here we used the diagnostic model ReefHab to determine the current environmental tolerance limits for coral reefs and the global distribution of potential coral reef habitats as a function of six factors: temperature, salinity, nitrate, phosphate, aragonite saturation state, and light. To determine these tolerance limits, we extracted maximum and minimum values of all environmental variables in corresponding locations where coral reefs are present. We found that the global, annually averaged tolerance limits for coral reefs are 21.7—29.6 °C for temperature, 28.7—40.4 psu for salinity, 4.51 μmol L-1 for nitrate, 0.63 μmol L-1 for phosphate, and 2.82 for aragonite saturation state. The averaged minimum light intensity in coral reefs is 450 μmol photons m-2 s-1. The global area of potential reef habitats calculated by the model is 330.5 × 103 km2. Compared with previous studies, the tolerance limits for temperature, salinity, and nutrients have not changed much, whereas the minimum value of aragonite saturation in coral reef waters has decreased from 3.28 to 2.82. The potential reef habitat area calculated with ReefHab is about 121×103 km2 larger than the area estimated from the charted reefs, suggesting that the growth potential of coral reefs is higher than currently observed. PMID:26030287

  17. Suitable environmental ranges for potential coral reef habitats in the tropical ocean.

    PubMed

    Guan, Yi; Hohn, Sönke; Merico, Agostino

    2015-01-01

    Coral reefs are found within a limited range of environmental conditions or tolerance limits. Estimating these limits is a critical prerequisite for understanding the impacts of climate change on the biogeography of coral reefs. Here we used the diagnostic model ReefHab to determine the current environmental tolerance limits for coral reefs and the global distribution of potential coral reef habitats as a function of six factors: temperature, salinity, nitrate, phosphate, aragonite saturation state, and light. To determine these tolerance limits, we extracted maximum and minimum values of all environmental variables in corresponding locations where coral reefs are present. We found that the global, annually averaged tolerance limits for coral reefs are 21.7-29.6 °C for temperature, 28.7-40.4 psu for salinity, 4.51 μmol L-1 for nitrate, 0.63 μmol L-1 for phosphate, and 2.82 for aragonite saturation state. The averaged minimum light intensity in coral reefs is 450 μmol photons m-2 s-1. The global area of potential reef habitats calculated by the model is 330.5 × 103 km2. Compared with previous studies, the tolerance limits for temperature, salinity, and nutrients have not changed much, whereas the minimum value of aragonite saturation in coral reef waters has decreased from 3.28 to 2.82. The potential reef habitat area calculated with ReefHab is about 121×103 km2 larger than the area estimated from the charted reefs, suggesting that the growth potential of coral reefs is higher than currently observed.

  18. Analysis of temperature trends in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Tosic, Ivana; Gavrilov, Milivoj; Unkašević, Miroslava; Marković, Slobodan; Petrović, Predrag

    2017-04-01

    An analysis of air temperature trends in Northern Serbia for the annual and seasonal time series is performed for two periods: 1949-2013 and 1979-2013. Three data sets of surface air temperatures: monthly mean temperatures, monthly maximum temperatures, and monthly minimum temperatures are analyzed at 9 stations that have altitudes varying between 75 m and 102 m. Monthly mean temperatures are obtained as the average of the daily mean temperatures, while monthly maximum (minimum) temperatures are the maximum (minimum) values of daily temperatures in corresponding month. Positive trends were found in 29 out of 30 time series, and the negative trend was found only in winter during the period 1979-2013. Applying the Mann-Kendall test, significant positive trends were found in 15 series; 7 in the period 1949-2013 and 8 in the period 1979-2013; and no significant trend was found in 15 series. Significant positive trends are dominated during the year, spring, and summer, where it was found in 14 out of 18 cases. Significant positive trends were found 7, 5, and 3 times in mean, maximum and minimum temperatures, respectively. It was found that the positive temperature trends are dominant in Northern Serbia.

  19. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  20. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  1. Effects of warming on groundwater flow in mountainous snowmelt-dominated catchments

    NASA Astrophysics Data System (ADS)

    Evans, S. G.; Ge, S.; Molotch, N. P.

    2015-12-01

    In mountainous regions, warmer air temperatures have led to an earlier onset of spring snowmelt and lower snowmelt rates; i.e. because snowmelt has shifted earlier when energy availability is lower. These changes to snowmelt will likely affect the partitioning of snowmelt water between surface runoff and groundwater flow, and therefore, the lag time between snowmelt and streamflow. While the connection between snowmelt and surface runoff has been well-studied, the impact of snowmelt variability on groundwater flow processes has received limited attention, especially in mountainous catchments. We construct a two-dimensional, finite element, coupled flow and heat transport hydrogeologic model to evaluate how changes in snowmelt onset and rate may alter groundwater discharge to streams in mountainous catchments. The coupled hydrogeologic model simulates seasonally frozen ground by incorporating permeability variation as a function of temperature and allows for modeling of pore water freeze and thaw. We apply the model to the Green Lakes Valley (GLV) watershed in the Rocky Mountains of Colorado, a representative snowmelt-dominated catchment. Snowmelt for the GLV catchment is reconstructed from a 12 year (1996-2007) dataset of hydrometeorological records and satellite-derived snow covered area. Modeling results suggest that on a yearly cycle, groundwater infiltration and discharge is limited by the seasonally frozen subsurface. Under average conditions from 1996 to 2007, maximum groundwater discharge to the surface lags maximum snowmelt by approximately two months. Ongoing modeling is exploring how increasing air temperatures affect lag times between snowmelt and groundwater discharge to streams. This study has implications for water resource availability and its temporal variability in a warming global climate.

  2. CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?

    PubMed

    van Rhoon, Gerard C; Samaras, Theodoros; Yarmolenko, Pavel S; Dewhirst, Mark W; Neufeld, Esra; Kuster, Niels

    2013-08-01

    To define thresholds of safe local temperature increases for MR equipment that exposes patients to radiofrequency fields of high intensities for long duration. These MR systems induce heterogeneous energy absorption patterns inside the body and can create localised hotspots with a risk of overheating. The MRI + EUREKA research consortium organised a "Thermal Workshop on RF Hotspots". The available literature on thresholds for thermal damage and the validity of the thermal dose (TD) model were discussed. The following global TD threshold guidelines for safe use of MR are proposed: 1. All persons: maximum local temperature of any tissue limited to 39 °C 2. Persons with compromised thermoregulation AND (a) Uncontrolled conditions: maximum local temperature limited to 39 °C (b) Controlled conditions: TD < 2 CEM43°C 3. Persons with uncompromised thermoregulation AND (a) Uncontrolled conditions: TD < 2 CEM43°C (b) Controlled conditions: TD < 9 CEM43°C The following definitions are applied: Controlled conditions A medical doctor or a dedicated trained person can respond instantly to heat-induced physiological stress Compromised thermoregulation All persons with impaired systemic or reduced local thermoregulation • Standard MRI can cause local heating by radiofrequency absorption. • Monitoring thermal dose (in units of CEM43°C) can control risk during MRI. • 9 CEM43°C seems an acceptable thermal dose threshold for most patients. • For skin, muscle, fat and bone,16 CEM43°C is likely acceptable.

  3. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  4. Temperature and Leaf Osmotic Potential as Factors in the Acclimation of Photosynthesis to High Temperature in Desert Plants 1

    PubMed Central

    Seemann, Jeffrey R.; Downton, W. John S.; Berry, Joseph A.

    1986-01-01

    Seasonal changes in the high temperature limit for photosynthesis of desert winter annuals growing under natural conditions in Death Valley, California were studied using an assay based upon chlorophyll fluorescence. All species of this group were 6 to 9°C more tolerant of high temperature at the end of the growing season (May) than at its beginning (February). Over this same time period, the mean daily maximum air temperatures increased by 12°C. Laboratory studies have demonstrated that increases in thermal tolerance could be induced by increasing growth temperature alone. For plants growing under field conditions there was also a good correlation between the thermal tolerance of leaves and the osmotic potential of leaf water, indicating that increases in the concentrations of some small molecules might also confer increased thermal tolerance. Isolated chloroplast thylakoids subjected to increasing concentrations of sorbitol could be demonstrated to have increased thermal tolerance. PMID:16664743

  5. Water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the lower White River and the Puyallup River estuary, Washington, August-October 2002

    USGS Publications Warehouse

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1°C (degrees Celsius) at river mile 4.9 and 19.6°C at river mile 1.8 exceeded the water-quality standard of 18°C at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River.Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The lower limit allowed by the water-quality standard is 8 mg/L. Concentrations of dissolved oxygen measured in a cross section of the Puyallup River estuary at high tide on September 12, 2002, ranged from 9.9 to 10.2 mg/L in fresh water at the surface and from 8.1 to 8.4 mg/L in salt water near the riverbed. These values were within limits set by Washington State water-quality standards for dissolved oxygen of 8 mg/L in fresh water and 6 mg/L in marine water.

  6. Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling

    PubMed Central

    Wang, Kai; Li, Liwei; Yin, Huaixian; Zhang, Tiezhu; Wan, Wubo

    2015-01-01

    A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it’s up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process. PMID:26444687

  7. Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hao; Mey, Antonia S. J. S.; Noé, Frank

    2014-12-07

    We propose a discrete transition-based reweighting analysis method (dTRAM) for analyzing configuration-space-discretized simulation trajectories produced at different thermodynamic states (temperatures, Hamiltonians, etc.) dTRAM provides maximum-likelihood estimates of stationary quantities (probabilities, free energies, expectation values) at any thermodynamic state. In contrast to the weighted histogram analysis method (WHAM), dTRAM does not require data to be sampled from global equilibrium, and can thus produce superior estimates for enhanced sampling data such as parallel/simulated tempering, replica exchange, umbrella sampling, or metadynamics. In addition, dTRAM provides optimal estimates of Markov state models (MSMs) from the discretized state-space trajectories at all thermodynamic states. Under suitablemore » conditions, these MSMs can be used to calculate kinetic quantities (e.g., rates, timescales). In the limit of a single thermodynamic state, dTRAM estimates a maximum likelihood reversible MSM, while in the limit of uncorrelated sampling data, dTRAM is identical to WHAM. dTRAM is thus a generalization to both estimators.« less

  8. Effects of Pouring Temperature and Electromagnetic Stirring on Porosity and Mechanical Properties of A357 Aluminum Alloy Rheo-Diecasting

    NASA Astrophysics Data System (ADS)

    Guo, An; Zhao, Junwen; Xu, Chao; Li, Hu; Han, Jing; Zhang, Xu

    2018-05-01

    Semisolid slurry of A357 aluminum alloy was prepared using a temperature-controllable electromagnetic stirrer and rheo-diecast at different temperatures. The effects of pouring temperature and electromagnetic stirring (EMS) on the porosity in rheo-diecast samples, as well as the relation between porosity and mechanical properties, were investigated. The results show that pouring temperature and EMS had minor influences on rheo-diecast microstructure but marked influence on the porosity. With decreasing slurry pouring temperature, the porosity decreased first and then increased, whereas the maximum pore ratio (ratio of shape factor to diameter of the largest pore) increased first and then decreased. The maximum pore ratio determines the level of tensile strength and elongation, and higher mechanical properties can be obtained with smaller and rounder pores in samples. The mechanical properties of the rheo-diecast samples increased linearly with increasing maximum pore ratio. The maximum pore ratio was 1.43 µm-1, and the minimum porosity level was 0.37% under EMS condition for the rheo-diecast samples obtained at a pouring temperature of 608 °C. With this porosity condition, the maximum tensile strength and elongation were achieved at 274 MPa and 4.9%, respectively. It was also revealed that EMS improves mechanical properties by reduction in porosity and an increase in maximum pore ratio.

  9. Impact of global warming at the range margins: phenotypic plasticity and behavioral thermoregulation will buffer an endemic amphibian.

    PubMed

    Ruiz-Aravena, Manuel; Gonzalez-Mendez, Avia; Estay, Sergio A; Gaitán-Espitia, Juan D; Barria-Oyarzo, Ismael; Bartheld, José L; Bacigalupe, Leonardo D

    2014-12-01

    When dispersal is not an option to evade warming temperatures, compensation through behavior, plasticity, or evolutionary adaptation is essential to prevent extinction. In this work, we evaluated whether there is physiological plasticity in the thermal performance curve (TPC) of maximum jumping speed in individuals acclimated to current and projected temperatures and whether there is an opportunity for behavioral thermoregulation in the desert landscape where inhabits the northernmost population of the endemic frog Pleurodema thaul. Our results indicate that individuals acclimated to 20°C and 25°C increased the breath of their TPCs by shifting their upper limits with respect to when they were acclimated at 10°C. In addition, even when dispersal is not possible for this population, the landscape is heterogeneous enough to offer opportunities for behavioral thermoregulation. In particular, under current climatic conditions, behavioral thermoregulation is not compulsory as available operative temperatures are encompassed within the population TPC limits. However, for severe projected temperatures under climate change, behavioral thermoregulation will be required in the sunny patches. In overall, our results suggest that this population of Pleurodema thaul will be able to endure the worst projected scenario of climate warming as it has not only the physiological capacities but also the environmental opportunities to regulate its body temperature behaviorally.

  10. Dynamical generation of a repulsive vector contribution to the quark pressure

    NASA Astrophysics Data System (ADS)

    Restrepo, Tulio E.; Macias, Juan Camilo; Pinto, Marcus Benghi; Ferrari, Gabriel N.

    2015-03-01

    Lattice QCD results for the coefficient c2 appearing in the Taylor expansion of the pressure show that this quantity increases with the temperature towards the Stefan-Boltzmann limit. On the other hand, model approximations predict that when a vector repulsion, parametrized by GV, is present this coefficient reaches a maximum just after Tc and then deviates from the lattice predictions. Recently, this discrepancy has been used as a guide to constrain the (presently unknown) value of GV within the framework of effective models at large Nc (LN). In the present investigation we show that, due to finite Nc effects, c2 may also develop a maximum even when GV=0 since a vector repulsive term can be dynamically generated by exchange-type radiative corrections. Here we apply the optimized perturbation theory (OPT) method to the two-flavor Polyakov-Nambu-Jona-Lasinio model (at GV=0 ) and compare the results with those furnished by lattice simulations and by the LN approximation at GV=0 and also at GV≠0 . The OPT numerical results for c2 are impressively accurate for T ≲1.2 Tc but, as expected, they predict that this quantity develops a maximum at high T . After identifying the mathematical origin of this extremum we argue that such a discrepant behavior may naturally arise within this type of effective quark theories (at GV=0 ) whenever the first 1 /Nc corrections are taken into account. We then interpret this hypothesis as an indication that beyond the large-Nc limit the correct high-temperature (perturbative) behavior of c2 will be faithfully described by effective models only if they also mimic the asymptotic freedom phenomenon.

  11. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Target Housing Material Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert

    2016-02-11

    With gas cooling, heat transfer coefficients are low compared to water. The benefit of gas from a heat transfer point of view is that there is really no upper temperature limit for the coolant, as compared to water, which is limited ultimately by the critical point, and in practice the critical heat flux. In our case with parallel flow channels, water is limited to even lower operating limits by nucleate boiling. So gas can get as hot as the containment material will allow, but to get the density and heat transfer up to something reasonable, we must also increase pressure,more » thus increasing stress on the containment, namely the front and back faces. We are designing to ASME BPVC, which, for most materials allows a maximum stress of UTS/3. So we want the highest possible UTS. For reference, the front face stress in the 12 mm target at 300 psi was about 90 MPa. The inconel 718 allowable stress at 900°C is 1/3 of 517 or 172 MPa. So we are in a very safe place, but the uTS is dropping rapidly with temperature above 900°C. As we increase target diameter, the challenge will be to keep the stress down. We are probably looking at keeping the allowable at or above the present value, and at as high a temperature as possible.« less

  13. Quantum point contact displacement transducer for a mechanical resonator at sub-Kelvin temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji

    Highly sensitive displacement transduction of a 1.67 MHz mechanical resonator with a quantum point contact (QPC) formed in a GaAs heterostructure is demonstrated. By positioning the QPC at the point of maximum mechanical strain on the resonator and operating at 80 mK, a displacement responsivity of 3.81 A/m is measured, which represents a two order of magnitude improvement on the previous QPC based devices. By further analyzing the QPC transport characteristics, a sub-Poisson-noise-limited displacement sensitivity of 25 fm/Hz{sup 1/2} is determined which corresponds to a position resolution that is 23 times the standard quantum limit.

  14. Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    Griffiths, G. M.; Chambers, L. E.; Haylock, M. R.; Manton, M. J.; Nicholls, N.; Baek, H.-J.; Choi, Y.; della-Marta, P. M.; Gosai, A.; Iga, N.; Lata, R.; Laurent, V.; Maitrepierre, L.; Nakamigawa, H.; Ouprasitwong, N.; Solofa, D.; Tahani, L.; Thuy, D. T.; Tibig, L.; Trewin, B.; Vediapan, K.; Zhai, P.

    2005-08-01

    Trends (1961-2003) in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.

  15. Analysis of condensation on a horizontal cylinder with unknown wall temperature and comparison with the Nusselt model of film condensation

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    1996-01-01

    Theoretical analysis and numerical computations are performed to set forth a new model of film condensation on a horizontal cylinder. The model is more general than the well-known Nusselt model of film condensation and is designed to encompass all essential features of the Nusselt model. It is shown that a single parameter, constructed explicitly and without specification of the cylinder wall temperature, determines the degree of departure from the Nusselt model, which assumes a known and uniform wall temperature. It is also known that the Nusselt model is reached for very small, as well as very large, values of this parameter. In both limiting cases the cylinder wall temperature assumes a uniform distribution and the Nusselt model is approached. The maximum deviations between the two models is rather small for cases which are representative of cylinder dimensions, materials and conditions encountered in practice.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    New inverter-driven ASHPs are gaining ground in colder climates. These systems operate at sub-zero temperatures without the use of electric resistance backup. There are still uncertainties, however, about cold-climate capacity and efficiency in cold weather and questions such as measuring: power consumption, supply, return, and outdoor air temperatures, and air flow through the indoor fan coil. CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10 degrees F. The reasons for the wide range in heating performance likelymore » include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.« less

  17. Investigation on the two-stage active magnetic regenerative refrigerator for liquefaction of hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Inmyong; Park, Jiho; Jeong, Sangkwon

    2014-01-29

    An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure andmore » the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi{sub 2}, Gd{sub 0.1}Dy{sub 0.9}Ni{sub 2}, Dy{sub 0.85}Er{sub 0.15}Al{sub 2}, Dy{sub 0.5}Er{sub 0.5}Al{sub 2}) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper.« less

  18. Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakker, Akke, E-mail: akke.bakker@amc.uva.nl; Kolff, M. Willemijn; Holman, Rebecca

    Purpose: To investigate the relationship of thermal skin damage (TSD) to time–temperature isoeffect levels for patients with breast cancer recurrence treated with reirradiation plus hyperthermia (reRT + HT), and to investigate whether the treatment history of previous treatments (scar tissue) is a risk factor for TSD. Methods and Materials: In this observational study, temperature characteristics of hyperthermia sessions were analyzed in 262 patients with recurrent breast cancer treated in the AMC between 2010 and 2014 with reirradiation and weekly hyperthermia for 1 hour. Skin temperature was measured using a median of 42 (range, 29-82) measurement points per hyperthermia session. Results: Sixty-eight patients (26%) developed 79more » sites of TSD, after the first (n=26), second (n=17), third (n=27), and fourth (n=9) hyperthermia session. Seventy percent of TSD occurred on or near scar tissue. Scar tissue reached higher temperatures than other skin tissue (0.4°C, P<.001). A total of 102 measurement points corresponded to actual TSD sites in 35 of 79 sessions in which TSD developed. Thermal skin damage sites had much higher maximum temperatures than non-TSD sites (2.8°C, P<.001). Generalized linear mixed models showed that the probability of TSD is related to temperature and thermal dose values (P<.001) and that scar tissue is more at risk (odds ratio 0.4, P<.001). Limiting the maximum temperature of a measurement point to 43.7°C would mean that the probability of observing TSD was at most 5%. Conclusion: Thermal skin damage during reRT + HT for recurrent breast cancer was related to higher local temperatures and time–temperature isoeffect levels. Scar tissue reached higher temperatures than other skin tissue, and TSD occurred at lower temperatures and thermal dose values in scar tissue compared with other skin tissue. Indeed, TSD developed often on and around scar tissue from previous surgical procedures.« less

  19. Temperature controlled formation of lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bungardt, M.

    At present, standard formation programs have to accommodate the worst case. This is important, especially in respect of variations in climatic conditions. The standard must be set so that during the hottest weather periods the maximum electrolyte temperature is not exceeded. As this value is defined not only by the desired properties and the recipe of the active mass, but also by type and size of the separators and by the dimensions of the plates, general rules cannot be formulated. It is considered to be advantageous to introduce limiting data for the maximum temperature into a general formation program. The latter is defined so that under normal to good ambient conditions the shortest formation time is achieved. If required, the temperature control will reduce the currents employed in the different steps, according to need, and will extend the formation time accordingly. With computer-controlled formation, these parameters can be readily adjusted to suit each type of battery and can also be reset according to modifications in the preceding processing steps. Such a procedure ensures that: (i) the formation time is minimum under the given ambient conditions; (ii) in the event of malpractice ( e.g. actual program not fitting to size) the batteries will not be destroyed; (iii) the energy consumption is minimized (note, high electrolyte temperature leads to excess gassing). These features are incorporated in the BA/FOS-500 battery formation system developed by Digatron. The operational characteristics of this system are listed in Table 1.

  20. Influence of stream characteristics and grazing intensity on stream temperatures in eastern Oregon.

    Treesearch

    S.B. Maloney; A.R. Tiedemann; D.A. Higgins; T.M. Quigley; D.B. Marx

    1999-01-01

    Stream temperatures were measured during summer months, 1978 to 1984, at 12 forested watersheds near John Day, Oregon, to determine temperature characteristics and assess effects of three range management strategies of increasing intensity. Maximum temperatures in streams of the 12 watersheds ranged from 12.5 to 27.8 oC. Maximum stream temperatures on four watersheds...

  1. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    PubMed

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  2. Advanced Power Conditioning System

    NASA Technical Reports Server (NTRS)

    Johnson, N. L.

    1971-01-01

    The second portion of the advanced power conditioning system development program is reported. Five 100-watt parallel power stages with majority-vote-logic feedback-regulator were breadboarded and tested to the design goals. The input voltage range was 22.1 to 57.4 volts at loads from zero to 500 watts. The maximum input ripple current was 200 mA pk-pk (not including spikes) at 511 watts load; the output voltage was 56V dc with a maximum change of 0.89 volts for all variations of line, load, and temperature; the maximum output ripple was 320 mV pk-pk at 512 watts load (dependent on filter capacitance value); the maximum efficiency was 93.9% at 212 watts and 50V dc input; the minimum efficiency was 87.2% at 80-watt load and 50V dc input; the efficiency was above 90% from 102 watts to 372 watts; the maximum excursion for an 80-watt load change was 2.1 volts with a recovery time of 7 milliseconds; and the unit performed within regulation limits from -20 C to +85 C. During the test sequence, margin tests and failure mode tests were run with no resulting degradation in performance.

  3. In vitro infrared thermography assessment of temperature peaks during the intra-oral welding of titanium abutments

    NASA Astrophysics Data System (ADS)

    Degidi, Marco; Nardi, Diego; Sighinolfi, Gianluca; Merla, Arcangelo; Piattelli, Adriano

    2012-07-01

    Control of heat dissipation and transmission to the peri-implant area during intra-oral welding is very important to limit potential damage to the surrounding tissue. The aim of this in vitro study was to assess, by means of thermal infrared imaging, the tissue temperature peaks associated with the thermal propagation pathway through the implants, the abutments and the walls of the slot of the scaffold, generated during the welding process, in three different implant systems. An in vitro polyurethane mandible model was prepared with a 7.0 mm v-shape slot. Effects on the maximum temperature by a single welding procedure were studied using different power supplies and abutments. A total of 36 welding procedures were tested on three different implant systems. The lowest peak temperature along the walls of the 7.0 mm v-shaped groove (31.6 ± 2 °C) was assessed in the specimens irrigated with sterile saline solution. The highest peak temperature (42.8 ± 2 °C) was assessed in the samples with a contemporaneous power overflow and premature pincers removal. The results of our study suggest that the procedures used until now appear to be effective to avoid thermal bone injuries. The peak tissue temperature of the in vitro model did not surpass the threshold limits above which tissue injury could occur.

  4. Effects of Gas-Phase Radiation and Detailed Kinetics on the Burning and Extinction of a Solid Fuel

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    2001-01-01

    This is the first attempt to analyze both radiation and detailed kinetics on the burning and extinction of a solid fuel in a stagnation-point diffusion flame. We present a detailed and comparatively accurate computational model of a solid fuel flame along with a quantitative study of the kinetics mechanism, radiation interactions, and the extinction limits of the flame. A detailed kinetics model for the burning of solid trioxane (a trimer of formaldehyde) is coupled with a narrowband radiation model, with carbon dioxide, carbon monoxide, and water vapor as the gas-phase participating media. The solution of the solid trioxane diffusion flame over the flammable regime is presented in some detail, as this is the first solution of a heterogeneous trioxane flame. We identify high-temperature and low-temperature reaction paths for the heterogeneous trioxane flame. We then compare the adiabatic solution to solutions that include Surface radiation only and gas-phase and surface radiation using a black surface model. The analysis includes discussion of detailed flame chemistry over the flammable regime and, in particular, at the low stretch extinction limit. We emphasize the low stretch regime of the radiatively participating flame, since this is the region representative of microgravity flames. When only surface radiation is included, two extinction limits exist (the blow-off limit, and the low stretch radiative limit), and the burning rate and maximum flame temperatures are lower, as expected. With the inclusion of surface and gas-phase radiation, results show that, while flame temperatures are lower, the burning rate of the trioxane diffusion flame may actually increase at low stretch rate due to radiative feedback from the flame to the surface.

  5. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)

    1996-01-01

    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  6. High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle.

    PubMed

    Eagle, Robert A; Risi, Camille; Mitchell, Jonathan L; Eiler, John M; Seibt, Ulrike; Neelin, J David; Li, Gaojun; Tripati, Aradhna K

    2013-05-28

    The East Asian monsoon is one of Earth's most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6-7 °C that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation.

  7. Prediction of the Maximum Temperature for Life Based on the Stability of Metabolites to Decomposition in Water

    PubMed Central

    Bains, William; Xiao, Yao; Yu, Changyong

    2015-01-01

    The components of life must survive in a cell long enough to perform their function in that cell. Because the rate of attack by water increases with temperature, we can, in principle, predict a maximum temperature above which an active terrestrial metabolism cannot function by analysis of the decomposition rates of the components of life, and comparison of those rates with the metabolites’ minimum metabolic half-lives. The present study is a first step in this direction, providing an analytical framework and method, and analyzing the stability of 63 small molecule metabolites based on literature data. Assuming that attack by water follows a first order rate equation, we extracted decomposition rate constants from literature data and estimated their statistical reliability. The resulting rate equations were then used to give a measure of confidence in the half-life of the metabolite concerned at different temperatures. There is little reliable data on metabolite decomposition or hydrolysis rates in the literature, the data is mostly confined to a small number of classes of chemicals, and the data available are sometimes mutually contradictory because of varying reaction conditions. However, a preliminary analysis suggests that terrestrial biochemistry is limited to environments below ~150–180 °C. We comment briefly on why pressure is likely to have a small effect on this. PMID:25821932

  8. The effects of hot nights on mortality in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Royé, D.

    2017-12-01

    Heat-related effects on mortality have been widely analyzed using maximum and minimum temperatures as exposure variables. Nevertheless, the main focus is usually on the former with the minimum temperature being limited in use as far as human health effects are concerned. Therefore, new thermal indices were used in this research to describe the duration of night hours with air temperatures higher than the 95% percentile of the minimum temperature (hot night hours) and intensity as the summation of these air temperatures in degrees (hot night degrees). An exposure-response relationship between mortality due to natural, respiratory, and cardiovascular causes and summer night temperatures was assessed using data from the Barcelona region between 2003 and 2013. The non-linear relationship between the exposure and response variables was modeled using a distributed lag non-linear model. The estimated associations for both exposure variables and mortality shows a relationship with high and medium values that persist significantly up to a lag of 1-2 days. In mortality due to natural causes, an increase of 1.1% per 10% (CI95% 0.6-1.5) for hot night hours and 5.8% per each 10° (CI95% 3.5-8.2%) for hot night degrees is observed. The effects of hot night hours reach their maximum with 100% and lead to an increase by 9.2% (CI95% 5.3-13.1%). The hourly description of night heat effects reduced to a single indicator in duration and intensity is a new approach and shows a different perspective and significant heat-related effects on human health.

  9. Temperature changes in dental implants following exposure to hot substances in an ex vivo model.

    PubMed

    Feuerstein, Osnat; Zeichner, Kobi; Imbari, Chen; Ormianer, Zeev; Samet, Nachum; Weiss, Ervin I

    2008-06-01

    The habitual consumption of extremely hot foods and beverages may affect implant treatment modality. Our objectives were to: (i) establish the maximum temperature produced intra-orally while consuming very hot substances and (ii) use these values in an ex vivo model to assess the temperature changes along the implant-bone interface. Temperatures were measured using thermocouples linked to a computer. The thermocouple electrodes were attached to the tooth-gum interface of the interproximal areas in 14 volunteers during consumption of extremely hot foods and beverages. The in vivo measured temperature values obtained were used in an ex vivo model of a bovine mandible block with an implant and with an assembled abutment. Temperatures were measured by thermocouple electrodes attached to five locations, three of them along the implant-bone interface. During consumption of a hot beverage, a maximum temperature of up to 76.3 degrees C was recorded, and a calculated extreme intra-oral temperature of 61.4 degrees C was established. The ex vivo model showed a high correlation between the temperature measured at the abutment and that measured at the abutment-implant interface and inside the implant, reaching maximum temperatures close to 60 degrees C. At the mid-implant-bone and apical implant-bone interfaces, the maximum temperatures measured were 43.3 and 42 degrees C, respectively. The maximum temperatures measured at the implant-bone interfaces reached the temperature threshold of transient changes in bone (42 degrees C). The results of this study support the notion that intra-oral temperatures, developed during the consumption of very hot substances, may be capable of damaging peri-implant tissues.

  10. Aspects of Hydrological Modelling In The Punjab Himalayan and Karakoram Ranges, Pakistan

    NASA Astrophysics Data System (ADS)

    Loukas, A.; Khan, M. I.; Quick, M. C.

    Various aspects of hydrologic modelling of high mountainous basins in the Punjab Hi- malayan and Karakoram ranges of Northern Pakistan were studied. The runoff from three basins in this region was simulated using the U.B.C. watershed model, which re- quires limited meteorological data of minimum and maximum daily temperature and precipitation. The structure of the model is based on the concept that the hydrolog- ical behavior is a function of elevation and thus, a watershed is conceptualized as a number of elevational zones. A simplified energy budget approach, which is based on daily maximum and minimum temperature and can account for forested and open areas, and aspect and latitude, is used in the U.B.C. model for the estimation of the snowmelt and glacier melt. The studied basins have different hydrological responses and limited data. The runoff from the first basin, the Astore basin, is mainly gener- ated by snowmelt. In the second basin, the Kunhar basin, the runoff is generated by snowmelt but significant redistribution of snow, caused by snow avalanches, affect the runoff generation. The third basin, the Hunza basin, is a highly glacierized basin and its runoff is mainly generated by glacier melt. The application of the U.B.C. watershed model to these three basins showed that the model could estimate reasonably well the runoff generated by the different components.

  11. Determination of the combustion behavior for pure components and mixtures using a 20-liter sphere

    NASA Astrophysics Data System (ADS)

    Mashuga, Chad Victor

    1999-11-01

    The safest method to prevent fires and explosions of flammable vapors is to prevent the existence of flammable mixtures in the first place. This methodology requires detailed knowledge of the flammability region as a function of the fuel, oxygen, and nitrogen concentrations. A triangular flammability diagram is the most useful tool to display the flammability region, and to determine if a flammable mixture is present during plant operations. An automated apparatus for assessing the flammability region and for determining the potential effect of confined fuel-air explosions is described. Data derived from the apparatus included the limits of combustion, maximum combustion pressure, and the deflagration index, or KG. Accurate measurement of these parameters can be influenced by numerous experimental conditions, including igniter energy, humidity and gas composition. Gas humidity had a substantial effect on the deflagration index, but had little effect on the maximum combustion pressure. Small changes in gas compositions had a greater effect on the deflagration index than the maximum combustion pressure. Both the deflagration indices and the maximum combustion pressure proved insensitive to the range of igniter energies examined. Estimation of flammability limits using a calculated adiabatic flame temperature (CAFT) method is demonstrated. The CAFT model is compared with the extensive experimental data from this work for methane, ethylene and a 50/50 mixture of methane and ethylene. The CAFT model compares well to methane and ethylene throughout the flammability zone when using a 1200K threshold temperature. Deviations between the method and the experimental data occurs in the fuel rich region. For the 50/50 fuel mixture the CAFT deviates only in the fuel rich region---the inclusion of carbonaceous soot as one of the equilibrium products improved the fit. Determination of burning velocities from a spherical flame model utilizing the extensive pressure---time data was also completed. The burning velocities determined compare well to other investigators using this method. The data collected for the methane/ethylene mixture was used to evaluate mixing rules for the flammability limits, maximum combustion pressure, deflagration index, and burning velocity. These rules attempt to predict the behavior of fuel mixtures from pure component data. Le Chatelier's law and averaging both work well for predicting the flammability boundary in the fuel lean region and for mixtures of inerted fuel and air. Both methods underestimate the flammability boundary in the fuel rich region. For a mixture of methane and ethylene, we were unable to identify mixing rules for estimating the maximum combustion pressure and the burning velocity from pure component data. Averaging the deflagration indices for fuel air mixtures did provide a adequate estimation of the mixture behavior. Le Chatelier's method overestimated the maximum deflagration index in air but provided a satisfactory estimation in the extreme fuel lean and rich regions.

  12. Non-trivial behavior of the low temperature maximum of dielectric constant and location of the end critical point in Na0.5Bi0.5TiO3-0.06BaTiO3 lead free relaxor ferroelectrics crystals detected by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, Evgeniy; Tiagunova, Jenia; Mojaev, Evgeny; Roth, Michael

    2018-01-01

    [001] lead free relaxor ferroelectrics crystals of Na0.5Bi0.5TiO3-0.06BaTiO3 were studied by means of dielectric and acoustic emission methods in the temperature range of 25-240 °C and under a dc bias electric field up to 0.4 kV/cm. A temperature maximum of the dielectric constant was found near 170 °C, as well as the acoustic emission bursts pointed out to both the depolarization temperature near 120 °C and the temperature, corresponding to the maximum of dielectric constant, near 170 °C. While the depolarization temperature increased linearly, the temperature of the dielectric constant maximum was shown to exhibit a V-shape behavior under an electric field: it initially decreases, reaches a sharp minimum at some small threshold electric field of 0.15 kV/cm, and then starts to increase similar to the Curie temperature of the normal ferroelectrics, as the field enhances. Acoustic emission bursts, accompanying the depolarization temperature, weakened with the enhancing field, whereas the ones accompanying the temperature of the dielectric constant maximum exhibited two maxima: near 0.1 kV/cm and near 0.3 kV/cm. The meaning of these two acoustic emission maxima is discussed.

  13. Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy.

    PubMed

    Falciglia, Pietro P; Maddalena, Riccardo; Mancuso, Giuseppe; Messina, Valeria; Vagliasindi, Federico G A

    2016-02-01

    Aquifer contamination with diesel fuel is a worldwide environmental problem, and related available remediation technologies may not be adequately efficient, especially for the simultaneous treatment of both solid and water phases. In this paper, a lab-scale 2.45 GHz microwave (MW) treatment of an artificially diesel-contaminated aquifer was applied to investigate the effects of operating power (160, 350 and 500 W) and time on temperature profiles and contaminant removal from both solid and water phases. Results suggest that in diesel-contaminated aquifer MW remediation, power significantly influences the final reachable temperature and, consequently, contaminant removal kinetics. A maximum temperature of about 120 °C was reached at 500 W. Observed temperature values depended on the simultaneous irradiation of both aquifer grains and groundwater. In this case, solid phase heating is limited by the maximum temperature that interstitial water can reach before evaporation. A minimal residual diesel concentration of about 100 mg kg(-1) or 100 mg L(-1) was achieved by applying a power of 500 W for a time of 60 min for the solid or water phase, respectively. Measured residual TPH fractions showed that MW heating resulted in preferential effects of the removal of different TPH molecular weight fractions and that the evaporation-stripping phenomena plays a major role in final contaminant removal processes. The power low kinetic equation shows an excellent fit (r(2) > 0.993) with the solid phase residual concentration observed for all the powers investigated. A maximum diesel removal of 88 or 80% was observed for the MW treatment of the solid or water phase, respectively, highlighting the possibility to successfully and simultaneously remediate both the aquifer phases. Consequently, MW, compared to other biological or chemical-physical treatments, appears to be a better choice for the fast remediation of diesel-contaminated aquifers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pneumatic testing in 45-degree-inclined boreholes in ash-flow tuff near Superior, Arizona

    USGS Publications Warehouse

    LeCain, G.D.

    1995-01-01

    Matrix permeability values determined by single-hole pneumatic testing in nonfractured ash-flow tuff ranged from 5.1 to 20.3 * 1046 m2 (meters squared), depending on the gas-injection rate and analysis method used. Results from the single-hole tests showed several significant correlations between permeability and injection rate and between permeability and test order. Fracture permeability values determined by cross-hole pneumatic testing in fractured ash-flow tuff ranged from 0.81 to 3.49 * 1044 m2, depending on injection rate and analysis method used. Results from the cross-hole tests monitor intervals showed no significant correlation between permeability and injection rate; however, results from the injection interval showed a significant correlation between injection rate and permeability. Porosity estimates from the 'cross-hole testing range from 0.8 to 2.0 percent. The maximum temperature change associated with the pneumatic testing was 1.2'(2 measured in the injection interval during cross-hole testing. The maximum temperature change in the guard and monitor intervals was O.Ip C. The maximum error introduced into the permeability values due to temperature fluctuations is approximately 4 percent. Data from temperature monitoring in the borehole indicated a positive correlation between the temperature decrease in the injection interval during recovery testing and the gas-injection rate. The thermocouple psychrometers indicated that water vapor was condensing in the boreholes during testing. The psychrometers in the guard and monitor intervals detected the drier injected gas as an increase in the dry bulb reading. The relative humidity in the test intervals was always higher than the upper measurement limit of the psychrometers. Although the installation of the packer system may have altered the water balance of the borehole, the gas-injection testing resulted in minimal or no changes in the borehole relative humidity.

  15. Brownian motion surviving in the unstable cubic potential and the role of Maxwell's demon

    NASA Astrophysics Data System (ADS)

    Ornigotti, Luca; Ryabov, Artem; Holubec, Viktor; Filip, Radim

    2018-03-01

    The trajectories of an overdamped particle in a highly unstable potential diverge so rapidly, that the variance of position grows much faster than its mean. A description of the dynamics by moments is therefore not informative. Instead, we propose and analyze local directly measurable characteristics, which overcome this limitation. We discuss the most probable particle position (position of the maximum of the probability density) and the local uncertainty in an unstable cubic potential, V (x ) ˜x3 , both in the transient regime and in the long-time limit. The maximum shifts against the acting force as a function of time and temperature. Simultaneously, the local uncertainty does not increase faster than the observable shift. In the long-time limit, the probability density naturally attains a quasistationary form. We interpret this process as a stabilization via the measurement-feedback mechanism, the Maxwell demon, which works as an entropy pump. The rules for measurement and feedback naturally arise from the basic properties of the unstable dynamics. All reported effects are inherent in any unstable system. Their detailed understanding will stimulate the development of stochastic engines and amplifiers and, later, their quantum counterparts.

  16. 20 CFR 228.14 - Family maximum.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family maximum...

  17. 20 CFR 228.14 - Family maximum.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family maximum...

  18. Improvement of small to large grain A15 ratio in Nb3Sn PIT wires by inverted multistage heat treatments

    NASA Astrophysics Data System (ADS)

    Segal, Christopher; Tarantini, Chiara; Lee, Peter J.; Larbalestier, David C.

    2017-12-01

    The next generation of superconducting accelerator magnets for the Large Hadron Collider at CERN will require large amounts of Nb3Sn superconducting wires and the Powder-In-Tube (PIT) process, which utilizes a NbSn2-rich powder core within tubes of Nb(7.5wt%Ta) contained in a stabilizing Cu matrix, is a potential candidate. However, the critical current density, J c , is limited by the formation of a large grain (LG) A15 layer which does not contribute to transport current, but occupies 25-30% of the total A15 area. Thus it is important to understand how this layer forms, and if it can be minimized in favor of the beneficial small grain (SG) A15 morphology which carries the supercurrent. The ratio of SG/LG A15 is our metric here, where an increase signals improvement in the wires A15 morphology distribution. We have made a critical new observation that the initiation of the LG A15 formation can be controlled at a wide range of temperatures relative to the formation of the small grain (SG) A15. The LG A15 can be uniquely identified as a decomposition product of the Nb6Sn5(Cu x ), surrounded by a layer of rejected Cu, thus the LG A15 is not only of low pin density, but is not continuous grain to grain. We have found that in single stage reactions limited to 630 °C - 690 °C, the maximum SG A15 layer thickness prior to LG A15 formation is very sensitive to temperature, with a maximum around 670 °C. This result led to the design of four novel heat treatments which all included a short, high temperature stage early in the reaction, followed by a slow cooling to a more typical reaction temperature of 630 °C. We found that this heat treatment (HT) modification increased the SG A15 layer thickness while simultaneously suppressing LG A15 morphology, with no additional consumption of the diffusion barrier. In the best heat treatment the SG/LG A15 ratio improved by 30%. Unfortunately, J c values suffered slightly, however further exploration of this high temperature reaction region is required to understand the limits to A15 formation in Nb3Sn PIT conductors.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Bivas; Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; Lawrence, Samantha K.

    High hardness TiAlN alloys for wear-resistant coatings exhibit limited lifetimes at elevated temperatures due to a cubic-AlN to hexagonal-AlN phase transformation that leads to decreasing hardness. We enhance the hardness (up to 46 GPa) and maximum operating temperature (up to 1050 °C) of TiAlN-based coatings by alloying with scandium nitride to form both an epitaxial TiAlScN alloy film and epitaxial rocksalt TiN/(Al,Sc)N superlattices on MgO substrates. The superlattice hardness increases with decreasing period thickness, which is understood by the Orowan bowing mechanism of the confined layer slip model. These results make them worthy of additional research for industrial coating applications.

  20. Effect of calcination temperature on the lithiation capacities of carbon-coated titania nanotubes synthesized by anodization

    NASA Astrophysics Data System (ADS)

    Seo, Min-Su; Lee, Hyukjae

    2012-06-01

    Carbon-coated titania nanotubes are synthesized via anodization in perchlorate containing electrolyte and subsequent hydrothermal reaction with glucose. Carbon coating improves the lithiation capacity of the titania nanotubes only when calcined at temperatures above 600°C, and the maximum capacity is ˜162 mAhg-1 at the 50th cycle from the titania nanotubes calcined at 700°C. The improved capacity of carbon-coated titania nanotubes is caused by the enhanced conductivity from the carbon. This is different from the role of the carbon coating in the hydrothermally prepared carbon-coated titania nanotubes, in which the coated carbon limits severe agglomeration.

  1. Further Investigations of Control Surface Seals for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; Newquist, Charles W.; Verzemnieks, Juris

    2001-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a potential crew return vehicle (CRV) for the International Space Station. This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. Control surfaces on the X-38 (body flaps and rudder/fin assemblies) require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. NASAs Johnson Space Center (JSC) and Glenn Research Center (GRC) are working together to develop and evaluate seals for these control surfaces. This paper presents results for compression. flow, scrub, and arc jet tests conducted on the baseline X-38 rudder/fin seal design. Room temperature seal compression tests were performed at low compression levels to determine load versus linear compression, preload. contact area, stiffness. and resiliency characteristics under low load conditions. For all compression levels that were tested, unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits required to limit the loads on the adjoining Shuttle thermal tiles that the seals will contact. Flow rates through an unloaded (i.e. 0% compression) double arrangement were twice those of a double seal compressed to the 20% design compression level. The seals survived an ambient temperature 1000 cycle scrub test over relatively rough Shuttle tile surfaces. The seals were able to disengage and re-engage the edges of the rub surface tiles while being scrubbed over them. Arc jet tests were performed to experimentally determine anticipated seal temperatures for representative flow boundary conditions (pressures and temperatures) under simulated vehicle re-entry conditions. Installation of a single seat in the gap of the test fixture caused a large temperature drop (1710 F) across the seal location as compared to an open gap condition (140 F) confirming the need for seals in the rudder/fin gap location. The seal acted as an effective thermal barrier limiting heat convection through the seal gap and minimizing temperature increases downstream of the seal during maximum heating conditions.

  2. Effect of summer outdoor temperatures on work-related injuries in Quebec (Canada).

    PubMed

    Adam-Poupart, Ariane; Smargiassi, Audrey; Busque, Marc-Antoine; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Labrèche, France

    2015-05-01

    To quantify the associations between occupational injury compensations and exposure to summer outdoor temperatures in Quebec (Canada). The relationship between 374,078 injuries compensated by the Workers' Compensation Board (WCB) (between May and September, 2003-2010) and maximum daily outdoor temperatures was modelled using generalised linear models with negative binomial distributions. Pooled effect sizes for all 16 health regions of Quebec were estimated with random-effect models for meta-analyses for all compensations and by sex, age group, mechanism of injury, industrial sector and occupations (manual vs other) within each sector. Time lags and cumulative effect of temperatures were also explored. The relationship between daily counts of compensations and maximum daily temperatures reached statistical significance for three health regions. The incidence rate ratio (IRR) of daily compensations per 1°C increase was 1.002 (95% CI 1.002 to 1.003) for all health regions combined. Statistically significant positive associations were observed for men, workers aged less than 45 years, various industrial sectors with both indoor and outdoor activities, and for slips/trips/falls, contact with object/equipment and exposure to harmful substances/environment. Manual occupations were not systematically at higher risk than non-manual and mixed ones. This study is the first to quantify the association between work-related injury compensations and exposure to summer temperatures according to physical demands of the occupation and this warrants further investigations. In the context of global warming, results can be used to estimate future impacts of summer outdoor temperatures on workers, as well as to plan preventive interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Field test studies of our infrared-based human temperature screening system embedded with a parallel measurement approach

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun; Chaitavon, Kosom

    2009-07-01

    This paper introduces a parallel measurement approach for fast infrared-based human temperature screening suitable for use in a large public area. Our key idea is based on the combination of simple image processing algorithms, infrared technology, and human flow management. With this multidisciplinary concept, we arrange as many people as possible in a two-dimensional space in front of a thermal imaging camera and then highlight all human facial areas through simple image filtering, image morphological, and particle analysis processes. In this way, an individual's face in live thermal image can be located and the maximum facial skin temperature can be monitored and displayed. Our experiment shows a measured 1 ms processing time in highlighting all human face areas. With a thermal imaging camera having an FOV lens of 24° × 18° and 320 × 240 active pixels, the maximum facial skin temperatures from three people's faces located at 1.3 m from the camera can also be simultaneously monitored and displayed in a measured rate of 31 fps, limited by the looping process in determining coordinates of all faces. For our 3-day test under the ambient temperature of 24-30 °C, 57-72% relative humidity, and weak wind from the outside hospital building, hyperthermic patients can be identified with 100% sensitivity and 36.4% specificity when the temperature threshold level and the offset temperature value are appropriately chosen. Appropriately locating our system away from the building doors, air conditioners and electric fans in order to eliminate wind blow coming toward the camera lens can significantly help improve our system specificity.

  4. [Difference in responses of major tree species growth to climate in the Miyaluo Mountains, western Sichuan, China].

    PubMed

    Guo, Ming-ming; Zhang, Yuan-dong; Wang, Xiao-chun; Liu, Shi-rong

    2015-08-01

    To explore the responses of different tree species growth to climate change in the semi-humid region of the eastern Tibetan Plateau, we investigated climate-growth relationships of Tsuga chinensis, Abies faxoniana, Picea purpurea at an altitude of 3000 m (low altitude) and A. faxoniana and Larix mastersiana at an altitude of 4000 m (high altitude) using tree ring-width chronologies (total of 182 cores) developed from Miyaluo, western Sichuan, China. Five residual chronologies were developed from the cross-dated ring width series using the program ARSTAN, and the relationships between monthly climate variables and tree-ring index were analyzed. Results showed that the chronologies of trees at low altitudes were negatively correlated with air temperature but positively with precipitation in April and May. This indicated that drought stress limited tree growth at low altitude, but different tree species showed significant variations. T. chinensis was most severely affected by drought stress, followed by A. faxoniana and P. purpurea. Trees at high altitude were mainly affected by growing season temperature. Tree-ring index of A. faxoniana was positively correlated with monthly minimum temperature in February and July of the current year and monthly maximum temperature in October of the previous year. Radial growth of L. mastersiana was positively correlated with monthly maximum temperature in May, and negatively with monthly mean temperature in February and monthly minimum temperature in March. In recent decadal years, the climate in northeast Tibetan Plateau had a warming and drying trend. If this trend continues, we could deduce that P. purpurea should grow faster than T. chinensis and A. faxoniana at low altitudes, while A. faxoniana would benefit more from global warming at high altitudes.

  5. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.

    PubMed

    Shakouri, Ehsan; Haghighi Hassanalideh, Hossein; Gholampour, Seifollah

    2018-01-01

    Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO 2 and N 2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.

  6. Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer

    USGS Publications Warehouse

    Barker, C.E.; Goldstein, R.H.

    1990-01-01

    The hypothesis that aqueous fluid inclusions in calcite can be used to establish maximum temperature (Tpeak) is tested. Fluid inclusion Th, mean random vitrinite reflectance (Rm), and present-day Tpeak from 46 diverse geologic systems that have been at Tpeak from 104 to 106 yr have been compiled. Present Tpeak ranged from 65 to 345??C, Th modes and means ranged from 59 to 350??C, and Rm data ranged from 0.4% to 4.6%, spanning the temperature and thermal maturity range associated with burial diagenesis, hydrothermal alteration, and low-grade metamorphism. Plots of Th and Tpeak data for systems thought to be currently at maximum temperature demonstrate close agreement between Th and present Tpeak in sedimentary basins. The relation suggests that Th of aqueous fluid inclusions in calcite may be a useful measure of maximum temperature. This study also compared Th to mean random vitrinite reflectance (Rm). Th correlates well with Rm and results in a curve similar to Rm vs. Tpeak calibrations determined by other workers. Strong correlation between Tpeak and Rm in these systems suggests that maximum temperature is the major control on thermal maturation. -after Authors

  7. Modeling maximum daily temperature using a varying coefficient regression model

    Treesearch

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  8. A method for safety testing of radiofrequency/microwave-emitting devices using MRI.

    PubMed

    Alon, Leeor; Cho, Gene Y; Yang, Xing; Sodickson, Daniel K; Deniz, Cem M

    2015-11-01

    Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non-MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83°C and 12.4 W/kg, respectively, for simulations and 1.73°C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15°C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7°C and 0.54 W/kg, respectively. Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. © 2014 Wiley Periodicals, Inc.

  9. A Method for Safety Testing of Radiofrequency/Microwave-Emitting Devices Using MRI

    PubMed Central

    Alon, Leeor; Cho, Gene Y.; Yang, Xing; Sodickson, Daniel K.; Deniz, Cem M.

    2015-01-01

    Purpose Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Methods Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non–MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. Results The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83° C and 12.4 W/kg, respectively, for simulations and 1.73° C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15° C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7° C and 0.54 W/kg, respectively. Conclusion Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. PMID:25424724

  10. Performance Charts for a Turbojet System

    NASA Technical Reports Server (NTRS)

    Karp, Irving M.

    1947-01-01

    Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.

  11. Energy-filtered cold electron transport at room temperature.

    PubMed

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  12. Analysis of trends in climate, streamflow, and stream temperature in north coastal California

    USGS Publications Warehouse

    Madej, Mary Ann; Medley, C. Nicholas; Patterson, Glenn; Parker, Melanie J.

    2011-01-01

    As part of a broader project analyzing trends in climate, streamflow, vegetation, salmon, and ocean conditions in northern California national park units, we compiled average monthly air temperature and precipitation data from 73 climate stations, streamflow data from 21 river gaging stations, and limited stream temperature data from salmon-bearing rivers in north coastal California. Many climate stations show a statistically significant increase in both average maximum and average minimum air temperature in early fall and midwinter during the last century. Concurrently, average September precipitation has decreased. In many coastal rivers, summer low flow has decreased and summer stream temperatures have increased, which affects summer rearing habitat for salmonids. Nevertheless, because vegetative cover has also changed during this time period, we cannot ascribe streamflow changes to climate change without first assessing water budgets. Although shifts in the timing of the centroid of runoff have been documented in snowmelt-dominated watersheds in the western United States, this was not the case in lower elevation coastal rivers analyzed in this study.

  13. In orbit adiabatic demagnetization refrigeration for bolometric and microcalorimetric detectors

    NASA Astrophysics Data System (ADS)

    Hepburn, I. D.; Ade, P. A. R.; Davenport, I.; Smith, A.; Sumner, T. J.

    1992-12-01

    The new generation of photon detectors for satellite based mm/submm and X-ray astronomical observations require cooling to temperatures in the range 60 to 300 mK. At present Adiabatic Demagnetization Refrigeration (ADR) is the best proposed technique for producing these temperatures in orbit due to its inherent simplicity and gravity independent operation. For the efficient utilization of an ADR it is important to realize long operational times at base temperature with short recycle times. These criteria are dependent on several parameters; the required operating temperature, the cryogen bath temperature, the amount of heat leakage to the paramagnetic salt, the volume and type of salt and the maximum obtainable magnetic field. For space application these parameters are restricted by the limitations imposed on the physical size, the mass, the available electrical power and the cooling power available. The design considerations required in order to match these parameters are described and test data from a working laboratory system is presented.

  14. Comparison of high temperature, high frequency core loss and dynamic B-H loops of a 2V-49Fe-49Co and a grain oriented 3Si-Fe alloy

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1992-01-01

    The design of power magnetic components such as transformers, inductors, motors, and generators, requires specific knowledge about the magnetic and electrical characteristics of the magnetic materials used in these components. Limited experimental data exists that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency over a wide flux density range. An experimental investigation of a 2V-49-Fe-49Co (Supermendur) and a grain oriented 3 Si-Fe (Magnesil) alloy was conducted over the temperature range of 23 to 300 C and frequency range of 0.1 to 10 kHz. The effects of temperature, frequency, and maximum flux density on the core loss and dynamic B-H loops for sinusoidal voltage excitation conditions are examined for each of these materials. A comparison of the core loss of these two materials is also made over the temperature and frequency range investigated.

  15. On the impacts of computing daily temperatures as the average of the daily minimum and maximum temperatures

    NASA Astrophysics Data System (ADS)

    Villarini, Gabriele; Khouakhi, Abdou; Cunningham, Evan

    2017-12-01

    Daily temperature values are generally computed as the average of the daily minimum and maximum observations, which can lead to biases in the estimation of daily averaged values. This study examines the impacts of these biases on the calculation of climatology and trends in temperature extremes at 409 sites in North America with at least 25 years of complete hourly records. Our results show that the calculation of daily temperature based on the average of minimum and maximum daily readings leads to an overestimation of the daily values of 10+ % when focusing on extremes and values above (below) high (low) thresholds. Moreover, the effects of the data processing method on trend estimation are generally small, even though the use of the daily minimum and maximum readings reduces the power of trend detection ( 5-10% fewer trends detected in comparison with the reference data).

  16. Calculation of change in brain temperatures due to exposure to a mobile phone

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, G. M. J.; Lagendijk, J. J. W.; Van Leersum, B. J. A. M.; Zwamborn, A. P. M.; Hornsleth, S. N.; Kotte, A. N. T. J.

    1999-10-01

    In this study we evaluated for a realistic head model the 3D temperature rise induced by a mobile phone. This was done numerically with the consecutive use of an FDTD model to predict the absorbed electromagnetic power distribution, and a thermal model describing bioheat transfer both by conduction and by blood flow. We calculated a maximum rise in brain temperature of 0.11 °C for an antenna with an average emitted power of 0.25 W, the maximum value in common mobile phones, and indefinite exposure. Maximum temperature rise is at the skin. The power distributions were characterized by a maximum averaged SAR over an arbitrarily shaped 10 g volume of approximately 1.6 W kg-1. Although these power distributions are not in compliance with all proposed safety standards, temperature rises are far too small to have lasting effects. We verified our simulations by measuring the skin temperature rise experimentally. Our simulation method can be instrumental in further development of safety standards.

  17. Carbon isotopes from fossil packrat pellets and elevational movements of Utah agave plants reveal the Younger Dryas cold period in Grand Canyon, Arizona

    USGS Publications Warehouse

    Cole, K.L.; Arundel, S.T.

    2005-01-01

    Carbon isotopes in rodent fecal pellets were measured on packrat (Neotoma spp.) middens from the Grand Canyon, Arizona. The pellet samples reflect the abundance of cold-intolerant C4 and Crassulacean acid metabolism (CAM) plant species relative to the predominant C3 vegetation in the packrat diet. The temporal sequence of isotopic results suggests a temperature decline followed by a sharp increase corresponding to the B??lling/Aller??d-Younger Dryas - early Holocene sequence. This pattern was then tested using the past distribution of Utah agave (Agave utahensis). Spatial analyses of the range of this temperature-sensitive CAM species demonstrate that its upper elevational limit is controlled by winter minimum temperature. Applying this paleotemperature proxy to the past elevational limits of Utah agave suggests that minimum winter temperatures were ???8??C below modern values during the Last Glacial Maximum, 4.5-6.5 ??C below modern during the B??lling/Aller??d, and 7.5-8.7 ??C below modern during the early Younger Dryas. As the Younger Dryas terminated, temperatures warmed ???4 ??C between ca. 11.8 ka and 11.5 ka. These extreme fluctuations in winter minimum temperature have not been generally accepted for terrestrial paleoecological records from the arid southwestern United States, likely because of large statistical uncertainties of older radiocarbon results and reliance on proxies for summer temperatures, which were less affected. ?? 2005 Geological Society of America.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingham, J.G.

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33%more » of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.« less

  19. Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America.

    PubMed

    DE LA Vega, G J; Schilman, P E

    2018-03-01

    In order to assess how triatomines (Hemiptera, Reduviidae), Chagas disease vectors, are distributed through Latin America, we analysed the relationship between the ecological niche and the limits of the physiological thermal niche in seven species of triatomines. We combined two methodological approaches: species distribution models, and physiological tolerances. First, we modelled the ecological niche and identified the most important abiotic factor for their distribution. Then, thermal tolerance limits were analysed by measuring maximum and minimum critical temperatures, upper lethal temperature, and 'chill-coma recovery time'. Finally, we used phylogenetic independent contrasts to analyse the link between limiting factors and the thermal tolerance range for the assessment of ecological hypotheses that provide a different outlook for the geo-epidemiology of Chagas disease. In triatomines, thermo-tolerance range increases with increasing latitude mainly due to better cold tolerances, suggesting an effect of thermal selection. In turn, physiological analyses show that species reaching southernmost areas have a higher thermo-tolerance than those with tropical distributions, denoting that thermo-tolerance is limiting the southern distribution. Understanding the latitudinal range along its physiological limits of disease vectors may prove useful to test ecological hypotheses and improve strategies and efficiency of vector control at the local and regional levels. © 2017 The Royal Entomological Society.

  20. Developing a diagnostic tool for measuring maximum effective temperature within high pressure electrodeless discharges

    NASA Astrophysics Data System (ADS)

    Whiting, Michael; Preston, Barry; Mucklejohn, Stuart; Santos, Monica; Lister, Graeme

    2016-09-01

    Here we present an investigation into the feasibility of creating a diagnostic tool for obtaining maximum arc temperature measurements within a high pressure electrodeless discharge; utilizing integrating sphere measurements of optically thin lines emitted from mercury atoms within commercially available high pressure mercury lamp arc tubes. The optically thin lines chosen were 577 nm and 1014 nm from a 250 W high pressure mercury lamp operated at various powers. The effective temperature could be calculated by considering the relative intensities of the two optically thin lines and comparison with the theoretical ratio of the temperature dependent power emitted from the lines derived from the atomic spectral data provided by NIST. The calculations gave effective arc temperatures of 5755, 5804 and 5820 K at 200, 225, 250 W respectively. This method was subsequently used as a basis for determining maximum effective arc temperature within microwave-driven electrodeless discharge capsules, with varying mercury content of 6.07, 9.4 and 12.95 mg within 1 × 10-6 m3 giving maximum effective temperatures of 5163, 4768 and 4715 K respectively at 240 W.

  1. Possible combined influences of absorbing aerosols and anomalous atmospheric circulation on summertime diurnal temperature range variation over the middle and lower reaches of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Cai, Jiaxi; Guan, Zhaoyong; Ma, Fenhua

    2016-12-01

    Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.

  2. What Limits the Distribution of Liriomyza huidobrensis and Its Congener Liriomyza sativae in Their Native Niche: When Temperature and Competition Affect Species' Distribution Range in Guatemala.

    PubMed

    Rodríguez-Castañeda, G; MacVean, C; Cardona, C; Hof, A R

    2017-07-01

    Factors limiting distribution range for most species are generally unknown regardless of whether they are native or invasive. We studied factors that could enable or restrict the distribution of two cosmopolitan invasive leafminer fly species, Liriomyza huidobrensis (Blanchard) and Liriomyza sativae (Blanchard) in their native niche. In order to test which ecological and environmental factors affect leafminer distribution we conducted thermal tolerance assays, sampled along elevation gradients and modeled species distribution. Findings from the field and rearing chambers showed a physiological restriction due to high temperatures for L. huidobrensis at 28-29 °C, above which adult emergence is compromised. We also found that maximum temperatures below 22 °C, typical of tropical highlands, favored L. huidobrensis. L. sativae was found across a wider temperature range (i.e., from 21 to 36 °C) in Guatemala. Our finding of a physiological threshold in temperature for L. huidobrensis may enable us to predict its invasive risk when combined with the environmental conditions at horticultural ports of entry and the global agricultural landscape. Further, it strengthens our predictions on shifts in distribution of the leafminer fly under future climate. We also found a temperature mediated competitive exclusion interaction between the two herbivore species, where L. sativae occurred at temperatures < 22 °C only in the absence of L. huidobrensis. We show that parasitoids had a negative effect on the leafminer flies, which varied with host plant. Finally, we show the importance of taking a multiaspect approach when investigating what limits distribution and invasiveness of a species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  3. A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance.

    PubMed

    Liu, Yao; Yang, Bingchang; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2017-12-22

    Lithium-ion batteries (LIBs) are being used to power the commercial electric vehicles (EVs). However, the charge/discharge rate and life of current LIBs still cannot satisfy the further development of EVs. Furthermore, the poor low-temperature performance of LIBs limits their application in cold climates and high altitude areas. Herein, a simple prelithiation method is developed to fabricate a new LIB. In this strategy, a Li 3 V 2 (PO 4 ) 3 cathode and a pristine hard carbon anode are used to form a primary cell, and the initial Li + extraction from Li 3 V 2 (PO 4 ) 3 is used to prelithiate the hard carbon. Then, the self-formed Li 2 V 2 (PO 4 ) 3 cathode and prelithiated hard carbon anode are used to form a 4 V LIB. The LIB exhibits a maximum energy density of 208.3 Wh kg -1 , a maximum power density of 8291 W kg -1 and a long life of 2000 cycles. When operated at -40 °C, the LIB can keep 67 % capacity of room temperature, which is much better than conventional LIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rotating protoneutron stars: Spin evolution, maximum mass, and I-Love-Q relations

    NASA Astrophysics Data System (ADS)

    Martinon, Grégoire; Maselli, Andrea; Gualtieri, Leonardo; Ferrari, Valeria

    2014-09-01

    Shortly after its birth in a gravitational collapse, a protoneutron star enters in a phase of quasistationary evolution characterized by large gradients of the thermodynamical variables and intense neutrino emission. In a few tens of seconds, the gradients smooth out while the star contracts and cools down, until it becomes a neutron star. In this paper we study this phase of the protoneutron star life including rotation, and employing finite-temperature equations of state. We model the evolution of the rotation rate, and determine the relevant quantities characterizing the star. Our results show that an isolated neutron star cannot reach, at the end of the evolution, the maximum values of mass and rotation rate allowed by the zero-temperature equation of state. Moreover, a mature neutron star evolved in isolation cannot rotate too rapidly, even if it is born from a protoneutron star rotating at the mass-shedding limit. We also show that the I-Love-Q relations are violated in the first second of life, but they are satisfied as soon as the entropy gradients smooth out.

  5. A high-temperature furnace for applications in microgravity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Technology in the area of material processing and crystal growth has been greatly furthered by research in microgravity environments. The role of efficient, lightweight furnaces with reliable performance is crucial in these experiments. A need exists for the development of a readily duplicated, high-temperature furnace satisfying stringent weight, volume, and power constraints. A furnace was designed and is referred to as the UAH SHIELD. Stringent physical and operating characteristics for the system were specified, including a maximum weight of 20 kg, a maximum power requirement of 60 W, and a volume of the furnace assembly, excluding the batteries, limited to half a Get-Away-Special canister. The UAH SHIELD furnace uses radiation shield and vacuum technology applied in the form of a series of concentric cylinders enclosed on either end with disks. Thermal testing of a furnace prototype was performed in addition to some thermal and structural analysis. Results indicate the need for spacing of the shields to accommodate the thermal expansion during furnace operation. In addition, a power dissipation of approximately 100 W and system weight of approximately 30 kg was found for the current design.

  6. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  7. 40 CFR 60.37e - Compliance, performance testing, and monitoring guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements: (1) Establish maximum charge rate and minimum secondary chamber temperature as site-specific... above the maximum charge rate or below the minimum secondary chamber temperature measured as 3-hour... below the minimum secondary chamber temperature shall constitute a violation of the established...

  8. Thermal infrared remote sensing of water temperature in riverine landscapes

    USGS Publications Warehouse

    Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.

  9. Thermal infrared remote sensing of water temperature in riverine landscapes: Chapter 5

    USGS Publications Warehouse

    Carbonneau, Rebecca N.; Piégay, Hervé; Handcock, R.N; Torgersen, Christian E.; Cherkauer, K.A; Gillespie, A.R; Tockner, K; Faux, R. N.; Tan, Jing

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001). Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature (Cherkauer et al., 2005).

  10. Geothermal system at 21°N, East Pacific Rise: physical limits on geothermal fluid and role of adiabatic expansion

    USGS Publications Warehouse

    Bischoff, J.L.

    1980-01-01

    Pressure-volume-temperature relations for water at the depth of the magma chamber at 21°N on the East Pacific Rise suggest that the maximum subsurface temperature of the geothermal fluid is about 420°C. Both the chemistry of the discharging fluid and thermal balance considerations indicate that the effective water/rock ratios in the geothermal system are between 7 and 16. Such low ratios preclude effective metal transport at temperatures below 350°C, but metal solubilization at 400°C and above is effective even at such low ratios. It is proposed that the 420°C fluid ascends essentially adiabatically and in the process expands, cools, and precipitates metal sulfides within the upper few hundred meters of the sea floor and on the sea floor itself.

  11. 40 CFR 432.42 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... at any time. 4 No maximum monthly average limitation. 5 May be measured as hexane extractable... limitations: (1) All facilities must achieve the following effluent limitations for ammonia (as N): Effluent Limitations [BPT] Regulated parameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L...

  12. 40 CFR 432.42 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... at any time. 4 No maximum monthly average limitation. 5 May be measured as hexane extractable... limitations: (1) All facilities must achieve the following effluent limitations for ammonia (as N): Effluent Limitations [BPT] Regulated parameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L...

  13. 40 CFR 432.42 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... at any time. 4 No maximum monthly average limitation. 5 May be measured as hexane extractable... limitations: (1) All facilities must achieve the following effluent limitations for ammonia (as N): Effluent Limitations [BPT] Regulated parameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L...

  14. 40 CFR 432.42 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... at any time. 4 No maximum monthly average limitation. 5 May be measured as hexane extractable... limitations: (1) All facilities must achieve the following effluent limitations for ammonia (as N): Effluent Limitations [BPT] Regulated parameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L...

  15. 40 CFR 432.42 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... at any time. 4 No maximum monthly average limitation. 5 May be measured as hexane extractable... limitations: (1) All facilities must achieve the following effluent limitations for ammonia (as N): Effluent Limitations [BPT] Regulated parameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L...

  16. Kinetic aspects of chain growth in Fischer-Tropsch synthesis.

    PubMed

    Filot, Ivo A W; Zijlstra, Bart; Broos, Robin J P; Chen, Wei; Pestman, Robert; Hensen, Emiel J M

    2017-04-28

    Microkinetics simulations are used to investigate the elementary reaction steps that control chain growth in the Fischer-Tropsch reaction. Chain growth in the FT reaction on stepped Ru surfaces proceeds via coupling of CH and CR surface intermediates. Essential to the growth mechanism are C-H dehydrogenation and C hydrogenation steps, whose kinetic consequences have been examined by formulating two novel kinetic concepts, the degree of chain-growth probability control and the thermodynamic degree of chain-growth probability control. For Ru the CO conversion rate is controlled by the removal of O atoms from the catalytic surface. The temperature of maximum CO conversion rate is higher than the temperature to obtain maximum chain-growth probability. Both maxima are determined by Sabatier behavior, but the steps that control chain-growth probability are different from those that control the overall rate. Below the optimum for obtaining long hydrocarbon chains, the reaction is limited by the high total surface coverage: in the absence of sufficient vacancies the CHCHR → CCHR + H reaction is slowed down. Beyond the optimum in chain-growth probability, CHCR + H → CHCHR and OH + H → H 2 O limit the chain-growth process. The thermodynamic degree of chain-growth probability control emphasizes the critical role of the H and free-site coverage and shows that at high temperature, chain depolymerization contributes to the decreased chain-growth probability. That is to say, during the FT reaction chain growth is much faster than chain depolymerization, which ensures high chain-growth probability. The chain-growth rate is also fast compared to chain-growth termination and the steps that control the overall CO conversion rate, which are O removal steps for Ru.

  17. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  18. System for Repairing Cracks in Structures

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W. (Inventor); Newman, John A. (Inventor); Piascik, Robert S. (Inventor); Glaessgen, Edward H. (Inventor)

    2014-01-01

    A first material with a known maximum temperature of operation is coated with a second material on at least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.

  19. Principle of maximum entanglement entropy and local physics of strongly correlated materials.

    PubMed

    Lanatà, Nicola; Strand, Hugo U R; Yao, Yongxin; Kotliar, Gabriel

    2014-07-18

    We argue that, because of quantum entanglement, the local physics of strongly correlated materials at zero temperature is described in a very good approximation by a simple generalized Gibbs distribution, which depends on a relatively small number of local quantum thermodynamical potentials. We demonstrate that our statement is exact in certain limits and present numerical calculations of the iron compounds FeSe and FeTe and of the elemental cerium by employing the Gutzwiller approximation that strongly support our theory in general.

  20. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    2015-11-01

    Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.

  1. Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities.

    PubMed

    Davis, Robert E; Hondula, David M; Patel, Anjali P

    2016-06-01

    Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat-mortality relationships. We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature-mortality relationships were associated with maximum temperature, although mean temperature results were comparable. There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature-mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality. Davis RE, Hondula DM, Patel AP. 2016. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795-804; http://dx.doi.org/10.1289/ehp.1509946.

  2. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...

  3. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...

  4. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...

  5. Energetic constraints, size gradients, and size limits in benthic marine invertebrates.

    PubMed

    Sebens, Kenneth P

    2002-08-01

    Populations of marine benthic organisms occupy habitats with a range of physical and biological characteristics. In the intertidal zone, energetic costs increase with temperature and aerial exposure, and prey intake increases with immersion time, generating size gradients with small individuals often found at upper limits of distribution. Wave action can have similar effects, limiting feeding time or success, although certain species benefit from wave dislodgment of their prey; this also results in gradients of size and morphology. The difference between energy intake and metabolic (and/or behavioral) costs can be used to determine an energetic optimal size for individuals in such populations. Comparisons of the energetic optimal size to the maximum predicted size based on mechanical constraints, and the ensuing mortality schedule, provides a mechanism to study and explain organism size gradients in intertidal and subtidal habitats. For species where the energetic optimal size is well below the maximum size that could persist under a certain set of wave/flow conditions, it is probable that energetic constraints dominate. When the opposite is true, populations of small individuals can dominate habitats with strong dislodgment or damage probability. When the maximum size of individuals is far below either energetic optima or mechanical limits, other sources of mortality (e.g., predation) may favor energy allocation to early reproduction rather than to continued growth. Predictions based on optimal size models have been tested for a variety of intertidal and subtidal invertebrates including sea anemones, corals, and octocorals. This paper provides a review of the optimal size concept, and employs a combination of the optimal energetic size model and life history modeling approach to explore energy allocation to growth or reproduction as the optimal size is approached.

  6. Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rothbrock, A M; Biermann, Arnold E

    1938-01-01

    Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.

  7. Indirectly pumped 3.7 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy.

    PubMed

    Fujita, Kazuue; Yamanishi, Masamichi; Furuta, Shinichi; Tanaka, Kazunori; Edamura, Tadataka; Kubis, Tillmann; Klimeck, Gerhard

    2012-08-27

    Device-performances of 3.7 THz indirect-pumping quantum-cascade lasers are demonstrated in an InGaAs/InAlAs material system grown by metal-organic vapor-phase epitaxy. The lasers show a low threshold-current-density of ~420 A/cm2 and a peak output power of ~8 mW at 7 K, no sign of parasitic currents with recourse to well-designed coupled-well injectors in the indirect pump scheme, and a maximum operating temperature of Tmax ~100 K. The observed roll-over of output intensities in current ranges below maximum currents and limitation of Tmax are discussed with a model for electron-gas heating in injectors. Possible ways toward elevation of Tmax are suggested.

  8. Aging properties of Kodak type 101 emulsions

    NASA Technical Reports Server (NTRS)

    Dohne, B.; Feldman, U.; Neupert, W.

    1984-01-01

    Aging tests for several batches of Kodak type 101 emulsion show that storage conditions significantly influence how well the film will maintain its sensitometric properties, with sensitivity and density increasing to a maximum during this period. Any further aging may result in higher fog levels and sensitivity loss. It is noted that storage in an environment free of photographically active compounds allows film property optimization, and that film batches with different sensitivities age differently. Emulsions with maximum 1700-A sensitivity are 2.5 times faster than those at the low end of the sensitivity scale. These sensitive emulsions exhibit significantly accelerated changes in aging properties. Their use in space applications requires careful consideration of time and temperature profiles, encouraging the use of less sensitive emulsions when the controllability of these factors is limited.

  9. The Sensitivity of Earth's Climate History To Changes In The Rates of Biological And Geological Evolution

    NASA Astrophysics Data System (ADS)

    Waltham, D.

    2014-12-01

    The faint young Sun paradox (early Earth had surface liquid water despite solar luminosity 70% of the modern value) implies that our planet's albedo has increased through time and/or greenhouse warming has fallen. The obvious explanation is that negative feedback processes stabilized temperatures. However, the limited temperature data available does not exhibit the expected residual temperature rise and, at least for the Phanerozoic, estimates of climate sensitivity exceed the Planck sensitivity (the zero net-feedback value). The alternate explanation is that biological and geological evolution have tended to cool Earth through time hence countering solar-driven warming. The coincidence that Earth-evolution has roughly cancelled Solar-evolution can then be explained as an emergent property of a complex system (the Gaia hypothesis) or the result of the unavoidable observational bias that Earth's climate history must be compatible with our existence (the anthropic principle). Here, I use a simple climate model to investigate the sensitivity of Earth's climate to changes in the rate of Earth-evolution. Earth-evolution is represented by an effective emissivity which has an intrinsic variation through time (due to continental growth, the evolution of cyanobacteria, orbital fluctuations etc) plus a linear feedback term which enhances emissivity variations. An important feature of this model is a predicted maximum in the radiated-flux versus temperature function. If the increasing solar flux through time had exceeded this value then runaway warming would have occurred. For the best-guess temperature history and climate sensitivity, the Earth has always been within a few percent of this maximum. There is no obvious Gaian explanation for this flux-coincidence but the anthropic principle naturally explains it: If the rate of biological/geological evolution is naturally slow then Earth is a fortunate outlier which evolved just fast enough to avoid solar-induced over-heating. However, there are large uncertainties concerning the temperature history of our planet and concerning climate sensitivity in the Archean and Proterozoic. When these are included, the solar-flux through time might have been as little as 70-90 % of the maximum thus reducing the significance of the flux-coincidence.

  10. Generating daily weather data for ecosystem modelling in the Congo River Basin

    NASA Astrophysics Data System (ADS)

    Petritsch, Richard; Pietsch, Stephan A.

    2010-05-01

    Daily weather data are an important constraint for diverse applications in ecosystem research. In particular, temperature and precipitation are the main drivers for forest ecosystem productivity. Mechanistic modelling theory heavily relies on daily values for minimum and maximum temperatures, precipitation, incident solar radiation and vapour pressure deficit. Although the number of climate measurement stations increased during the last centuries, there are still regions with limited climate data. For example, in the WMO database there are only 16 stations located in Gabon with daily weather measurements. Additionally, the available time series are heavily affected by measurement errors or missing values. In the WMO record for Gabon, on average every second day is missing. Monthly means are more robust and may be estimated over larger areas. Therefore, a good alternative is to interpolate monthly mean values using a sparse network of measurement stations, and based on these monthly data generate daily weather data with defined characteristics. The weather generator MarkSim was developed to produce climatological time series for crop modelling in the tropics. It provides daily values for maximum and minimum temperature, precipitation and solar radiation. The monthly means can either be derived from the internal climate surfaces or prescribed as additional inputs. We compared the generated outputs observations from three climate stations in Gabon (Lastourville, Moanda and Mouilla) and found that maximum temperature and solar radiation were heavily overestimated during the long dry season. This is due to the internal dependency of the solar radiation estimates to precipitation. With no precipitation a cloudless sky is assumed and thus high incident solar radiation and a large diurnal temperature range. However, in reality it is cloudy in the Congo River Basin during the long dry season. Therefore, we applied a correction factor to solar radiation and temperature range based on the ratio of values on rainy days and days without rain, respectively. For assessing the impact of our correction, we simulated the ecosystem behaviour using the climate data from Lastourville, Moanda and Mouilla with the mechanistic ecosystem model Biome-BGC. Differences in terms of the carbon, nitrogen and water cycle were subsequently analysed and discussed.

  11. Direct cooling of the catheter tip increases safety for CMR-guided electrophysiological procedures

    PubMed Central

    2012-01-01

    Background One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating. Methods A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip. Results A maximum temperature rise of 22.4°C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2°C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8°C. Conclusion Up to a maximum of 22.4°C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner. PMID:22296883

  12. Temperature responses of tropical to warm temperate Cladophora species in relation to their distribution in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cambridge, M. L.; Breeman, A. M.; Kraak, S.; van den Hoek, C.

    1987-09-01

    The relationship between distribution boundaries and temperature responses of some North Atlantic Cladophora species (Chlorophyta) was experimentally examined under various regimes of temperature, light and daylength. Experimentally determined critical temperature intervals, in which survival, growth or reproduction was limited, were compared with annual temperature regimes (monthly means and extremes) at sites inside and outside distribution boundaries. The species tested belonged to two phytogeographic groups: (1) the tropical West Atlantic group ( C. submarina: isolate from Curaçao) and (2) the amphiatlantic tropical to warm temperate group ( C. prolifera: isolate from Corsica; C. coelothrix: isolates from Brittany and Curaçao; and C. laetevirens: isolates from deep and shallow water in Corsica and from Brittany). In accordance with distribution from tropical to warm temperate regions, each of the species grew well between 20 30°C and reproduction and growth were limited at and below 15°C. The upper survival limit in long days was <35°C in all species but high or maximum growth rates occurred at 30°C. C. prolifera, restricted to the tropical margins, had the most limited survival at 35°C. Experimental evidence suggests that C. submarina is restricted to the Caribbean and excluded from the more northerly American mainland and Gulf of Mexico coasts by sporadic low winter temperatures in the nearshore waters, when cold northerly weather penetrates far south every few years. Experimental evidence suggests that C. prolifera, C. coelothrix and C. laetevirens are restricted to their northern European boundaries by summer temperatures too low for sufficient growth and/or reproduction. Their progressively more northerly located boundaries were accounted for by differences in growth rates over the critical 10 15°C interval. C. prolifera and C. coelothrix are excluded or restricted in distribution on North Sea coasts by lethal winter temperatures, again differences in cold tolerance accounting for differences in their distribution patterns. On the American coast, species were probably restricted by lethal winter temperatures in the nearshore and, in some cases, by the absence of suitable hard substrates in the more equable offshore waters. Isolates from two points along the European coast (Brittany, Corsica) of C. laetevirens showed no marked differences in their temperature tolerance but the Caribbean and European isolates of C. coelothrix differed markedly in their tolerance to low temperatures, the lethal limit of the Caribbean isolate lying more than 5°C higher (at ca 5°C).

  13. Oxygen dependence of upper thermal limits in fishes.

    PubMed

    Ern, Rasmus; Norin, Tommy; Gamperl, A Kurt; Esbaugh, Andrew J

    2016-11-01

    Temperature-induced limitations on the capacity of the cardiorespiratory system to transport oxygen from the environment to the tissues, manifested as a reduced aerobic scope (maximum minus standard metabolic rate), have been proposed as the principal determinant of the upper thermal limits of fishes and other water-breathing ectotherms. Consequently, the upper thermal niche boundaries of these animals are expected to be highly sensitive to aquatic hypoxia and other environmental stressors that constrain their cardiorespiratory performance. However, the generality of this dogma has recently been questioned, as some species have been shown to maintain aerobic scope at thermal extremes. Here, we experimentally tested whether reduced oxygen availability due to aquatic hypoxia would decrease the upper thermal limits (i.e. the critical thermal maximum, CT max ) of the estuarine red drum (Sciaenops ocellatus) and the marine lumpfish (Cyclopterus lumpus). In both species, CT max was independent of oxygen availability over a wide range of oxygen levels despite substantial (>72%) reductions in aerobic scope. These data show that the upper thermal limits of water-breathing ectotherms are not always linked to the capacity for oxygen transport. Consequently, we propose a novel metric for classifying the oxygen dependence of thermal tolerance; the oxygen limit for thermal tolerance (P CT max ), which is the water oxygen tension (Pw O 2 ) where an organism's CT max starts to decline. We suggest that this metric can be used for assessing the oxygen sensitivity of upper thermal limits in water-breathing ectotherms, and the susceptibility of their upper thermal niche boundaries to environmental hypoxia. © 2016. Published by The Company of Biologists Ltd.

  14. Fishing and bottom water temperature as drivers of change in maximum shell length in Atlantic surfclams (Spisula solidissima)

    NASA Astrophysics Data System (ADS)

    Munroe, D. M.; Narváez, D. A.; Hennen, D.; Jacobson, L.; Mann, R.; Hofmann, E. E.; Powell, E. N.; Klinck, J. M.

    2016-03-01

    Maximum shell length of Atlantic surfclams (Spisula solidissima) on the Middle Atlantic Bight (MAB) continental shelf, obtained from federal fishery survey data from 1982-present, has decreased by 15-20 mm. Two potential causes of this decreasing trend, fishery removal of large animals and stress due to warming bottom temperatures, were investigated using an individual-based model for post-settlement surfclams and a fifty-year hindcast of bottom water temperatures on the MAB. Simulations showed that fishing and/or warming bottom water temperature can cause decreases in maximum surfclam shell length (body size) equivalent to those observed in the fished stock. Independently, either localized fishing rates of 20% or sustained bottom temperatures that are 2 °C warmer than average conditions generate the observed decrease in maximum shell length. However, these independent conditions represent extremes and are not sustained in the MAB. The combined effects of fishing and warmer temperatures can generate simulated length decreases that are similar to observed decreases. Interannual variability in bottom water temperatures can also generate fluctuations in simulated shell length of up to 20 mm over a period of 10-15 years. If the change in maximum size is not genotypic, simulations also suggest that shell size composition of surfclam populations can recover if conditions change; however, that recovery could take a decade to become evident.

  15. Rate limits in silicon sheet growth - The connections between vertical and horizontal methods

    NASA Technical Reports Server (NTRS)

    Thomas, Paul D.; Brown, Robert A.

    1987-01-01

    Meniscus-defined techniques for the growth of thin silicon sheets fall into two categories: vertical and horizontal growth. The interactions of the temperature field and the crystal shape are analyzed for both methods using two-dimensional finite-element models which include heat transfer and capillarity. Heat transfer in vertical growth systems is dominated by conduction in the melt and the crystal, with almost flat melt/crystal interfaces that are perpendicular to the direction of growth. The high axial temperature gradients characteristic of vertical growth lead to high thermal stresses. The maximum growth rate is also limited by capillarity which can restrict the conduction of heat from the melt into the crystal. In horizontal growth the melt/crystal interface stretches across the surface of the melt pool many times the crystal thickness, and low growth rates are achievable with careful temperature control. With a moderate axial temperature gradient in the sheet a substantial portion of the latent heat conducts along the sheet and the surface of the melt pool becomes supercooled, leading to dendritic growth. The thermal supercooling is surpressed by lowering the axial gradient in the crystal; this configuration is the most desirable for the growth of high quality crystals. An expression derived from scaling analysis relating the growth rate and the crucible temperature is shown to be reliable for horizontal growth.

  16. Ecological traps in shallow coastal waters—Potential effect of heat-waves in tropical and temperate organisms

    PubMed Central

    Mendonça, Vanessa; Cereja, Rui; Abreu-Afonso, Francisca; Dias, Marta; Mizrahi, Damián; Flores, Augusto A. V.

    2018-01-01

    Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total) were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species’ acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1) tide pools could be considered ecological traps and 2) if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools. PMID:29420657

  17. The temperature dependence of the characteristics of crystalline-silicon-based heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Sachenko, A. V.; Kryuchenko, Yu. V.; Kostylyov, V. P.; Korkishko, R. M.; Sokolovskyi, I. O.; Abramov, A. S.; Abolmasov, S. N.; Andronikov, D. A.; Bobyl', A. V.; Panaiotti, I. E.; Terukov, E. I.; Titov, A. S.; Shvarts, M. Z.

    2016-03-01

    Temperature dependences of the photovoltaic characteristics of ( p)a-Si/( i)a-Si:H/( n)c-Si singlecrystalline- silicon based heterojunction-with-intrinsic-thin-layer (HIT) solar cells have been measured in a temperature range of 80-420 K. The open-circuit voltage ( V OC), fill factor ( FF) of the current-voltage ( I-U) characteristic, and maximum output power ( P max) reach limiting values in the interval of 200-250 K on the background of monotonic growth in the short-circuit current ( I SC) in a temperature range of 80-400 K. At temperatures below this interval, the V OC, FF, and P max values exhibit a decrease. It is theoretically justified that a decrease in the photovoltaic energy conversion characteristics of solar cells observed on heating from 250 to 400 K is related to exponential growth in the intrinsic conductivity. At temperatures below 200 K, the I-U curve shape exhibits a change that is accompanied by a drop in V OC. Possible factors that account for the decrease in V OC, FF, and P max are considered.

  18. Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities

    PubMed Central

    Davis, Robert E.; Hondula, David M.; Patel, Anjali P.

    2015-01-01

    Background: Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat–mortality relationships. Objectives: We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Methods: Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. Results: In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature–mortality relationships were associated with maximum temperature, although mean temperature results were comparable. Conclusions: There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature–mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality. Citation: Davis RE, Hondula DM, Patel AP. 2016. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795–804; http://dx.doi.org/10.1289/ehp.1509946 PMID:26636734

  19. The trade-off characteristics of acoustic and pressure sensors for the NASP

    NASA Technical Reports Server (NTRS)

    Winkler, Martin; Bush, Chuck

    1992-01-01

    Results of a trade study for the development of pressure and acoustic sensors for use on the National Aerospace Plane (NASP) are summarized. Pressure sensors are needed to operate to 100 psia; acoustic sensors are needed that can give meaningful information about a 200 dB sound pressure level (SPL) environment. Both sensors will have to operate from a high temperature of 2000 F down to absolute zero. The main conclusions of the study are the following: (1) Diaphragm materials limit minimum size and maximum frequency response attainable. (2) No transduction is available to meet all the NASP requirements with existing technology. (3) Capacitive sensors are large relative to the requirement, have limited resolution and frequency response due to noise, and cable length is limited to approximately 20 feet. (4) Eddy current sensors are large relative to the requirement and have limited cable lengths. (5) Fiber optic sensors provide the possibility for a small sensor, even though present developments do not exhibit that characteristic. The need to use sapphire at high temperature complicates the design. Present high temperature research sensors suffer from poor resolution. A significant development effort will be required to realize the potential of fiber optics. (6) Short-term development seems to favor eddy current techniques with the penalty of larger size and reduced dynamic range for acoustic sensors. (7) Long-term development may favor fiber optics with the penalties of cost, schedule, and uncertainty.

  20. Transient heat transfer behavior of water spray evaporative cooling on a stainless steel cylinder with structured surface for safety design application in high temperature scenario

    NASA Astrophysics Data System (ADS)

    Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad

    2017-02-01

    High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.

  1. Does size matter? Comparison of body temperature and activity of free-living Arabian oryx (Oryx leucoryx) and the smaller Arabian sand gazelle (Gazella subgutturosa marica) in the Saudi desert.

    PubMed

    Hetem, Robyn Sheila; Strauss, Willem Maartin; Fick, Linda Gayle; Maloney, Shane Kevin; Meyer, Leith Carl Rodney; Shobrak, Mohammed; Fuller, Andrea; Mitchell, Duncan

    2012-04-01

    Heterothermy, a variability in body temperature beyond the normal limits of homeothermy, is widely viewed as a key adaptation of arid-adapted ungulates. However, desert ungulates with a small body mass, i.e. a relatively large surface area-to-volume ratio and a small thermal inertia, are theoretically less likely to employ adaptive heterothermy than are larger ungulates. We measured body temperature and activity patterns, using implanted data loggers, in free-ranging Arabian oryx (Oryx leucoryx, ±70 kg) and the smaller Arabian sand gazelle (Gazella subgutturosa marica, ±15 kg) inhabiting the same Arabian desert environment, at the same time. Compared to oryx, sand gazelle had higher mean daily body temperatures (F(1,6) = 47.3, P = 0.0005), higher minimum daily body temperatures (F(1,6) = 42.6, P = 0.0006) and higher maximum daily body temperatures (F(1,6) = 11.0, P = 0.02). Despite these differences, both species responded similarly to changes in environmental conditions. As predicted for adaptive heterothermy, maximum daily body temperature increased (F(1,6) = 84.0, P < 0.0001), minimum daily body temperature decreased (F(1,6) = 92.2, P < 0.0001), and daily body temperature amplitude increased (F(1,6) = 97.6, P < 0.0001) as conditions got progressively hotter and drier. There were no species differences in activity levels, however, both gazelle and oryx showed a biphasic or crepuscular rhythm during the warm wet season but shifted to a more nocturnal rhythm during the hot dry season. Activity was attenuated during the heat of the day at times when both species selected cool microclimates. These two species of Arabian ungulates employ heterothermy, cathemerality and shade seeking very similarly to survive the extreme, arid conditions of Arabian deserts, despite their size difference.

  2. Thermal tolerance of meltwater stonefly Lednia tumana nymphs from an alpine stream in Waterton–Glacier International Peace Park, Montana, USA

    USGS Publications Warehouse

    Billman, Hilary G.; Giersch, J. Joseph; Kappenman, K.M.; Muhlfeld, Clint C.; Webb, Molly A. H.

    2013-01-01

    Global climate change threatens to affect negatively the structure, function, and diversity of aquatic ecosystems worldwide. In alpine systems, the thermal tolerances of stream invertebrates can be assessed to understand better the potential effects of rising ambient temperatures and continued loss of glaciers and snowpack on alpine stream ecosystems. We measured the critical thermal maximum (CTM) and lethal temperature maximum (LTM) of the meltwater stonefly (Lednia tumana), a species limited to glacial and snowmelt-driven alpine streams in the Waterton–Glacier International Peace Park area and a candidate for listing under the US Endangered Species Act. We collected L. tumana nymphs from Lunch Creek in Glacier National Park, Montana (USA) and transported them to a laboratory at the University of Montana Flathead Lake Biological Station, Polson, Montana. We placed nymphs in a controlled water bath at 1 of 2 acclimation temperatures, 8.5 and 15°C. We increased water temperature at a constant rate of 0.3°C/min. We calculated the average CTM and LTM (± SD) for each acclimation temperature and compared them with Student’s t-tests. Predicted chronic temperature maxima were determined using the ⅓ rule. Mean LTMs were 32.3 ± 0.28°C and 31.05 ± 0.78°C in the 8.5 and 15°C acclimation treatments, respectively. CTM and LTM metrics were lower in the 15 than in the 8.5°C acclimation treatment, but these differences were not statistically significant (p > 0.05). The predicted chronic temperature maxima were 20.6 and 20.2°C for the 8.5 and 15°C acclimation treatments, respectively. More research is needed on the effects of chronic exposures to rising stream temperatures, but our results can be used to assess the potential effects of warming water temperatures on L. tumana and other aquatic macroinvertebrates in alpine ecosystems.

  3. Internal variability in European summer temperatures at 1.5 °C and 2 °C of global warming

    NASA Astrophysics Data System (ADS)

    Suarez-Gutierrez, Laura; Li, Chao; Müller, Wolfgang A.; Marotzke, Jochem

    2018-06-01

    We use the 100-member Grand Ensemble with the climate model MPI-ESM to evaluate the controllability of mean and extreme European summer temperatures with the global mean temperature targets in the Paris Agreement. We find that European summer temperatures at 2 °C of global warming are on average 1 °C higher than at 1.5 °C of global warming with respect to pre-industrial levels. In a 2 °C warmer world, one out of every two European summer months would be warmer than ever observed in our current climate. Daily maximum temperature anomalies for extreme events with return periods of up to 500 years reach return levels of 7 °C at 2 °C of global warming and 5.5 °C at 1.5 °C of global warming. The largest differences in return levels for shorter return periods of 20 years are over southern Europe, where we find the highest mean temperature increase. In contrast, for events with return periods of over 100 years these differences are largest over central Europe, where we find the largest changes in temperature variability. However, due to the large effect of internal variability, only four out of every ten summer months in a 2 °C warmer world present mean temperatures that could be distinguishable from those in a 1.5 °C world. The distinguishability between the two climates is largest over southern Europe, while decreasing to around 10% distinguishable months over eastern Europe. Furthermore, we find that 10% of the most extreme and severe summer maximum temperatures in a 2 °C world could be avoided by limiting global warming to 1.5 °C.

  4. 8800 years of high-altitude vegetation and climate history at the Rutor Glacier forefield, Italian Alps. Evidence of middle Holocene timberline rise and glacier contraction

    NASA Astrophysics Data System (ADS)

    Badino, Federica; Ravazzi, Cesare; Vallè, Francesca; Pini, Roberta; Aceti, Amelia; Brunetti, Michele; Champvillair, Elena; Maggi, Valter; Maspero, Francesco; Perego, Renata; Orombelli, Giuseppe

    2018-04-01

    Sedimentary archives at or near the timberline ecotone in Alpine glaciated areas contain records to study Holocene climate change and the interplay between climate, ecosystems, and humans. We focused on records of timberline and glacier oscillations in the Rutor Glacier forefield (Western Italian Alps) in the last 8800 years. Human activity in this area was negligible for most of the Holocene. We adopted an integrative stratigraphic approach including proxies for glacier advance and timberline estimation, sedimentary events, and reconstructed temperatures. Changes in timberline ecotone correlate to climate until the Middle Ages. Pollen-stratigraphic evidence of a primary plant succession highlights a lag beween local deglaciation and the first reliable 14C age. The radiocarbon chronology points to a prolonged phase of glacier contraction between 8.8 and 3.7 ka cal BP. Even later the glacier remained within its LIA limits. Between 8.4 and 4 ka cal BP MAT-inferred TJuly fluctuated near 12.4 °C, ca. 3.1 °C higher than today. During this period, a Pinus cembra forest belt grew at 2600 m asl with an upper limit of tree groves placed 434 ± 310 m above the current open forest limit. This Holocene phase of thermal maximum ended between 3.98 and 3.51 ± 70 ka cal BP and with a substantial rearrangement of forest composition; temperature reconstruction shows a decrease of 1.8 °C. This climate deterioration concluded the Subboreal thermal optimum, mirroring glacial advances widely documented in the Alps. The Rutor Glacier advanced at ca. AD 1093 ± 65, and remained inside the LIA maximum extent. The LIA started since AD 1594, and culminated between AD 1751 and 1864.

  5. 40 CFR 432.22 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of process...

  6. 40 CFR 432.22 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of process...

  7. 40 CFR 432.22 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of process...

  8. 40 CFR 432.22 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of process...

  9. 40 CFR 432.22 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of process...

  10. Statistical downscaling of mean temperature, maximum temperature, and minimum temperature on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Lin, Jiang; Miao, Chiyuan

    2017-04-01

    Climate change is considered to be one of the greatest environmental threats. This has urged scientific communities to focus on the hot topic. Global climate models (GCMs) are the primary tool used for studying climate change. However, GCMs are limited because of their coarse spatial resolution and inability to resolve important sub-grid scale features such as terrain and clouds. Statistical downscaling methods can be used to downscale large-scale variables to local-scale. In this study, we assess the applicability of the widely used Statistical Downscaling Model (SDSM) for the Loess Plateau, China. The observed variables included daily mean temperature (TMEAN), maximum temperature (TMAX) and minimum temperature (TMIN) from 1961 to 2005. The and the daily atmospheric data were taken from reanalysis data from 1961 to 2005, and global climate model outputs from Beijing Normal University Earth System Model (BNU-ESM) from 1961 to 2099 and from observations . The results show that SDSM performs well for these three climatic variables on the Loess Plateau. After downscaling, the root mean square errors for TMEAN, TMAX, TMIN for BNU-ESM were reduced by 70.9%, 75.1%, and 67.2%, respectively. All the rates of change in TMEAN, TMAX and TMIN during the 21st century decreased after SDSM downscaling. We also show that SDSM can effectively reduce uncertainty, compared with the raw model outputs. TMEAN uncertainty was reduced by 27.1%, 26.8%, and 16.3% for the future scenarios of RCP 2.6, RCP 4.5 and RCP 8.5, respectively. The corresponding reductions in uncertainty were 23.6%, 30.7%, and 18.7% for TMAX, ; and 37.6%, 31.8%, and 23.2% for TMIN.

  11. Improved Algorithms for Blending Dam Releases to Meet Downstream Water-Temperature Targets in the CE-QUAL-W2 Water-Quality Model

    NASA Astrophysics Data System (ADS)

    Rounds, S. A.; Buccola, N. L.

    2014-12-01

    The two-dimensional (longitudinal, vertical) water-quality model CE-QUAL-W2, version 3.7, was enhanced with new features to help dam operators and managers efficiently explore and optimize potential solutions for temperature management downstream of thermally stratified reservoirs. Such temperature management often is accomplished by blending releases from multiple dam outlets that access water of different temperatures at different depths in the reservoir. The original blending algorithm in this version of the model was limited to mixing releases from two outlets at a time, and few constraints could be imposed. The new enhanced blending algorithm allows the user to (1) specify a time-series of target release temperatures, (2) designate from 2 to 10 floating or fixed-elevation outlets for blending, (3) impose maximum head constraints as well as minimum and maximum flow constraints for any blended outlet, and (4) set a priority designation for each outlet that allows the model to choose which outlets to use and how to balance releases among them. The modified model was tested against a previously calibrated model of Detroit Lake on the North Santiam River in northwestern Oregon, and the results compared well. The enhanced model code is being used to evaluate operational and structural scenarios at multiple dam/reservoir systems in the Willamette River basin in Oregon, where downstream temperature management for endangered fish is a high priority for resource managers and dam operators. These updates to the CE-QUAL-W2 blending algorithm allow scenarios involving complicated dam operations and/or hypothetical outlet structures to be evaluated more efficiently with the model, with decreased need for multiple/iterative model runs or preprocessing of model inputs to fully characterize the operational constraints.

  12. A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.

  13. Temperature issues with white laser diodes, calculation and approach for new packages

    NASA Astrophysics Data System (ADS)

    Lachmayer, Roland; Kloppenburg, Gerolf; Stephan, Serge

    2015-01-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class systems mainly use HID or LED light sources. As a further step laser diode based systems offer a high luminance, efficiency and allow the realization of new dynamic and adaptive light functions and styling concepts. The use of white laser diode systems in automotive applications is still limited to laboratories and prototypes even though announcements of laser based front lighting systems have been made. But the environment conditions for vehicles and other industry sectors differ from laboratory conditions. Therefor a model of the system's thermal behavior is set up. The power loss of a laser diode is transported as thermal flux from the junction layer to the diode's case and on to the environment. Therefor its optical power is limited by the maximum junction temperature (for blue diodes typically 125 - 150 °C), the environment temperature and the diode's packaging with its thermal resistances. In a car's headlamp the environment temperature can reach up to 80 °C. While the difference between allowed case temperature and environment temperature is getting small or negative the relevant heat flux also becomes small or negative. In early stages of LED development similar challenges had to be solved. Adapting LED packages to the conditions in a vehicle environment lead to today's efficient and bright headlights. In this paper the need to transfer these results to laser diodes is shown by calculating the diodes lifetimes based on the presented model.

  14. Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom

    1998-01-01

    Refractory-composite/heat-pipe-cooled wing an tail leading edges are being considered for use on hypersonic vehicles to limit maximum temperatures to values below material reuse limits and to eliminate the need to actively cool the leading edges. The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of heat pipes embedded in carbon/carbon (C/C). A three-foot-long, molybdenum-rhenium heat pipe with a lithium working fluid was fabricated and tested at an operating temperature of 2460 F to verify the individual heat-pipe design. Following the fabrication of this heat pipe, three additional heat pipes were fabricated and embedded in C/C. The C/C heat-pipe test article was successfully tested using quartz lamps in a vacuum chamber in both a horizontal and vertical orientation. Start up and steady state data are presented for the C/C heat-pipe test article. Radiography and eddy current evaluations were performed on the test article.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Ritu; Ghosh, Joydeep; Chowdhuri, M. B.

    Neutral particle behavior in Aditya tokamak, which has a circular poloidal ring limiter at one particular toroidal location, has been investigated using DEGAS2 code. The code is based on the calculation using Monte Carlo algorithms and is mainly used in tokamaks with divertor configuration. This code has been successfully implemented in Aditya tokamak with limiter configuration. The penetration of neutral hydrogen atom is studied with various atomic and molecular contributions and it is found that the maximum contribution comes from the dissociation processes. For the same, H α spectrum is also simulated which was matched with the experimental one. Themore » dominant contribution around 64% comes from molecular dissociation processes and neutral particle is generated by those processes have energy of ~ 2.0 eV. Furthermore, the variation of neutral hydrogen density and H α emissivity profile are analysed for various edge temperature profiles and found that there is not much changes in H α emission at the plasma edge with the variation of edge temperature (7 to 40 eV).« less

  16. Power enhancement of piezoelectric transformers by adding heat transfer equipment.

    PubMed

    Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Wu, Wen-Jong; Costa, François; Lee, Chih-Kung

    2012-10-01

    It is known that piezoelectric transformers have several inherent advantages compared with conventional electromagnetic transformers. However, the maximum power capacity of piezoelectric transformers is not as large as electromagnetic transformers in practice, especially in the case of high output current. The theoretical power density of piezoelectric transformers calculated by stress boundary can reach 330 W/cm(3), but no piezoelectric transformer has ever reached such a high power density in practice. The power density of piezoelectric transformers is limited to 33 W/cm(3) in practical applications. The underlying reason is that the maximum passing current of the piezoelectric material (mechanical current) is limited by the temperature rise caused by heat generation. To increase this current and the power capacity, we proposed to add a thermal pad to the piezoelectric transformer to dissipate heat. The experimental results showed that the proposed techniques can increase by 3 times the output current of the piezoelectric transformer. A theoretical-phenomenological model which explains the relationship between vibration velocity and generated heat is also established to verify the experimental results.

  17. A room-temperature phase transition in maximum microcline - Heat capacity measurements

    USGS Publications Warehouse

    Openshaw, R.E.; Hemingway, B.S.; Robie, R.A.; Krupka, K.M.

    1979-01-01

    The thermal hysteresis in heat capacity measurements recently reported (Openshaw et al., 1976) for a maximum microcline prepared from Amelia albite by fused-salt ion-exchange is described in detail. The hysteresis is characterized by two limiting and reproducible curves which differ by 1% of the measured heat capacities. The lower curve, denoted curve B, represents the values obtained before the sample had been cooled below 300 K. Measurements made immediately after cooling the sample below 250 K followed a second parallel curve, curve A, to at least 370 K. Values intermediate to the two limiting curves were also obtained. The transitions from the B to the A curve were rapid and observed to occur three times. The time required to complete the transition from the A to the B curve increased from 39 h to 102 h in the two times it was observed to occur. The hysteresis is interpreted as evidence of a phase change in microcline at 300??10 K The heat effect associated with the phase change has not been evaluated. ?? 1979 Springer-Verlag.

  18. Determining the maximum charging currents of lithium-ion cells for small charge quantities

    NASA Astrophysics Data System (ADS)

    Grimsmann, F.; Gerbert, T.; Brauchle, F.; Gruhle, A.; Parisi, J.; Knipper, M.

    2017-10-01

    In order to optimize the operating parameters of battery management systems for electric and hybrid vehicles, great interest has been shown in achieving the maximum permissible charging currents during recuperation, without causing a cell damage due to lithium plating, in relation to the temperature, charge quantity and state of charge. One method for determining these recuperation currents is measuring the cell thickness, where excessively high charging currents can be detected by an irreversible increase in thickness. It is not possible to measure particularly small charge quantities by employing mechanic dial indicators, which have a limited resolution of 1 μm. This is why we developed a measuring setup that has a resolution limit of less than 10 nm using a high-resolution contactless inductance sensor. Our results show that the permissible charging current I can be approximated in relation to the charge quantity x by a correlating function I =a /√{(x) } which is compliant with the Arrhenius law. Small charge quantities therefore have an optimization potential for energy recovery during recuperation.

  19. Fatigue behavior of ultrafine grained medium Carbon steel processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Ruffing, C.; Ivanisenko, Yu; Kerscher, E.

    2014-08-01

    The endurance limit of materials has been observed to be significantly increased in materials with an ultrafine grained microstructure [1, 2]. As this effect, however, has not yet been investigated in steels, fatigue experiments of an unalloyed medium carbon steel with a carbon content of 0.45 wt.-%, which was treated by high pressure torsion (HPT) [3-5] at elevated temperature were carried out. The treatments were applied to discs which had different initial carbide morphologies and showed an increase of hardness after HPT by a factor of 1.75 - 3.2 compared to the initial states, whereby the amount of increase depends on the initial carbide morphology. The maximum hardness achieved was 810 HV. The discs were cut into fatigue specimens in the form of bars of the size of 4 mm x 1 mm x 600 gm. Until a hardness of 500 HV the endurance limits correspond linearly with the hardness. This is no longer the case at higher hardness values, where inherent and process-initiated flaws lead to lower fatigue limits. The maximum endurance limit exceeded 1050 MPa in 4-point-micro-bending and at a load ratio of R = 0.1. Fractography revealed different crack initiation sites like pre cracks and shear bands [6, 7] resulting from HPT or fisheye fractures initiated from non-metallic inclusions.

  20. Distribution of bacterioplankton with active metabolism in waters of the St. Anna Trough, Kara Sea, in autumn 2011

    NASA Astrophysics Data System (ADS)

    Mosharova, I. V.; Mosharov, S. A.; Ilinskiy, V. V.

    2017-01-01

    The distribution of bacterioplankton with active electron transport chains, as well as bacteria with intact cell membranes, was investigated for the first time in the region of St. Anna Trough in the Kara Sea. The average number of bacteria with active electron transport chains in the waters of the St. Anna Trough was 15.55 × 103 cells mL-1 (the limits of variation were 1.06-92.17 × 103 cells mL-1). The average number of bacteria with intact membranes was 33.46 × 103 cells mL-1 (the limits of variation were 6.78 to 103.18 × 103 cells mL-1). Almost all bacterioplankton microorganisms in the studied area were potentially viable, and the average share of bacteria with intact membranes was 92.1% of the total number of bacterioplankton (TNB) (the limits of variation were 76.2 to 98.4%). The share of bacteria with active metabolisms was 38.2% of the TNB (the limits of variation were 5.6-93.4%). The shares of the bacteria with active metabolisms were maximum in areas with the most stable environmental conditions (on the shelf and in deep water), whereas on the slope, where the gradients of water temperature and salinity were maximum, these values were lower.

  1. Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain, Northeastern China

    PubMed Central

    Wu, Jing; Liu, Qiang; Wang, Luo; Chu, Guo-qiang; Liu, Jia-qi

    2016-01-01

    The Great Khingan Mountain range, Northeast China, is located on the northern limit of modern East Asian Summer Monsoon (EASM) and thus highly sensitive to the extension of the EASM from glacial to interglacial modes. Here, we present a high-resolution pollen record covering the last glacial maximum and the early Holocene from a closed crater Lake Moon to reconstruct vegetation history during the glacial-interglacial transition and thus register the evolution of the EASM during the last deglaciation. The vegetation history has gone through distinct changes from subalpine meadow in the last glacial maximum to dry steppe dominated by Artemisia from 20.3 to 17.4 ka BP, subalpine meadow dominated by Cyperaceae and Artemisia between 17.4 and 14.4 ka BP, and forest steppe dominated by Betula and Artemisia after 14.4 ka BP. The pollen-based temperature index demonstrates a gradual warming trend started at around 20.3 ka BP with interruptions of several brief events. Two cold conditions occurred around at 17.2–16.6 ka BP and 12.8–11.8 ka BP, temporally correlating to the Henrich 1 and the Younger Dryas events respectively, 1and abrupt warming events occurred around at 14.4 ka BP and 11.8 ka BP, probably relevant to the beginning of the Bølling-Allerød stages and the Holocene. The pollen-based moisture proxy shows distinct drought condition during the last glacial maximum (20.3–18.0 ka BP) and the Younger Dryas. The climate history based on pollen record of Lake Moon suggests that the regional temperature variability was coherent with the classical climate in the North Atlantic, implying the dominance of the high latitude processes on the EASM evolution from the Last Glacial Maximum (LGM) to early Holocene. The local humidity variability was influenced by the EASM limitedly before the Bølling-Allerød warming, which is mainly controlled by the summer rainfall due to the EASM front covering the Northeast China after that. PMID:26730966

  2. Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain, Northeastern China.

    PubMed

    Wu, Jing; Liu, Qiang; Wang, Luo; Chu, Guo-qiang; Liu, Jia-qi

    2016-01-01

    The Great Khingan Mountain range, Northeast China, is located on the northern limit of modern East Asian Summer Monsoon (EASM) and thus highly sensitive to the extension of the EASM from glacial to interglacial modes. Here, we present a high-resolution pollen record covering the last glacial maximum and the early Holocene from a closed crater Lake Moon to reconstruct vegetation history during the glacial-interglacial transition and thus register the evolution of the EASM during the last deglaciation. The vegetation history has gone through distinct changes from subalpine meadow in the last glacial maximum to dry steppe dominated by Artemisia from 20.3 to 17.4 ka BP, subalpine meadow dominated by Cyperaceae and Artemisia between 17.4 and 14.4 ka BP, and forest steppe dominated by Betula and Artemisia after 14.4 ka BP. The pollen-based temperature index demonstrates a gradual warming trend started at around 20.3 ka BP with interruptions of several brief events. Two cold conditions occurred around at 17.2-16.6 ka BP and 12.8-11.8 ka BP, temporally correlating to the Henrich 1 and the Younger Dryas events respectively, 1and abrupt warming events occurred around at 14.4 ka BP and 11.8 ka BP, probably relevant to the beginning of the Bølling-Allerød stages and the Holocene. The pollen-based moisture proxy shows distinct drought condition during the last glacial maximum (20.3-18.0 ka BP) and the Younger Dryas. The climate history based on pollen record of Lake Moon suggests that the regional temperature variability was coherent with the classical climate in the North Atlantic, implying the dominance of the high latitude processes on the EASM evolution from the Last Glacial Maximum (LGM) to early Holocene. The local humidity variability was influenced by the EASM limitedly before the Bølling-Allerød warming, which is mainly controlled by the summer rainfall due to the EASM front covering the Northeast China after that.

  3. A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors

    PubMed Central

    Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia

    2018-01-01

    A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink. PMID:29351248

  4. A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors.

    PubMed

    Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia

    2018-01-19

    A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink.

  5. Conceptual Trade Study of General Purpose Heat Source Powered Stirling Converter Configurations

    NASA Technical Reports Server (NTRS)

    Turpin, J. B.

    2007-01-01

    This Technical Manual describes a parametric study of general purpose heat source (GPHS) powered Stirling converter configurations. This study was performed in support of MSFC s efforts to establish the capability to perform non-nuclear system level testing and integration of radioisotope power systems. Six different GPHS stack configurations at a total of three different power levels (80, 250, and 500 W(sub e) were analyzed. The thermal profiles of the integrated GPHS modules (for each configuration) were calculated to determine maximum temperatures for comparison to allowable material limits. Temperature profiles for off-nominal power conditions were also assessed in order to better understand how power demands from the Stirling engine impact the performance of a given configuration.

  6. Predicting tropical cyclone intensity using satellite measured equivalent blackbody temperatures of cloud tops. [regression analysis

    NASA Technical Reports Server (NTRS)

    Gentry, R. C.; Rodgers, E.; Steranka, J.; Shenk, W. E.

    1978-01-01

    A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques.

  7. 23 CFR 661.37 - What are the funding limitations on individual IRRBP projects?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ENGINEERING AND TRAFFIC OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.37 What are the funding..., with a $150,000 maximum limit for PE. (b) An IRRBP eligible non-BIA owned IRR bridge is eligible for up to 80 percent IRRBP funding, with a $150,000 maximum limit for PE and $1,000,000 maximum limit for...

  8. 23 CFR 661.37 - What are the funding limitations on individual IRRBP projects?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ENGINEERING AND TRAFFIC OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.37 What are the funding..., with a $150,000 maximum limit for PE. (b) An IRRBP eligible non-BIA owned IRR bridge is eligible for up to 80 percent IRRBP funding, with a $150,000 maximum limit for PE and $1,000,000 maximum limit for...

  9. 23 CFR 661.37 - What are the funding limitations on individual IRRBP projects?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ENGINEERING AND TRAFFIC OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.37 What are the funding..., with a $150,000 maximum limit for PE. (b) An IRRBP eligible non-BIA owned IRR bridge is eligible for up to 80 percent IRRBP funding, with a $150,000 maximum limit for PE and $1,000,000 maximum limit for...

  10. 23 CFR 661.37 - What are the funding limitations on individual IRRBP projects?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ENGINEERING AND TRAFFIC OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.37 What are the funding..., with a $150,000 maximum limit for PE. (b) An IRRBP eligible non-BIA owned IRR bridge is eligible for up to 80 percent IRRBP funding, with a $150,000 maximum limit for PE and $1,000,000 maximum limit for...

  11. 23 CFR 661.37 - What are the funding limitations on individual IRRBP projects?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ENGINEERING AND TRAFFIC OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.37 What are the funding..., with a $150,000 maximum limit for PE. (b) An IRRBP eligible non-BIA owned IRR bridge is eligible for up to 80 percent IRRBP funding, with a $150,000 maximum limit for PE and $1,000,000 maximum limit for...

  12. 40 CFR 432.32 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... facilities must achieve the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of...

  13. 40 CFR 432.32 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... facilities must achieve the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of...

  14. 40 CFR 432.32 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... facilities must achieve the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of...

  15. 40 CFR 432.32 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... facilities must achieve the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of...

  16. 40 CFR 432.32 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... facilities must achieve the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of...

  17. Critical Concentration Ratio for Solar Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    ur Rehman, Naveed; Siddiqui, Mubashir Ali

    2016-10-01

    A correlation for determining the critical concentration ratio (CCR) of solar concentrated thermoelectric generators (SCTEGs) has been established, and the significance of the contributing parameters is discussed in detail. For any SCTEG, higher concentration ratio leads to higher temperatures at the hot side of modules. However, the maximum value of this temperature for safe operation is limited by the material properties of the modules and should be considered as an important design constraint. Taking into account this limitation, the CCR can be defined as the maximum concentration ratio usable for a particular SCTEG. The established correlation is based on factors associated with the material and geometric properties of modules, thermal characteristics of the receiver, installation site attributes, and thermal and electrical operating conditions. To reduce the number of terms in the correlation, these factors are combined to form dimensionless groups by applying the Buckingham Pi theorem. A correlation model containing these groups is proposed and fit to a dataset obtained by simulating a thermodynamic (physical) model over sampled values acquired by applying the Latin hypercube sampling (LHS) technique over a realistic distribution of factors. The coefficient of determination and relative error are found to be 97% and ±20%, respectively. The correlation is validated by comparing the predicted results with literature values. In addition, the significance and effects of the Pi groups on the CCR are evaluated and thoroughly discussed. This study will lead to a wide range of opportunities regarding design and optimization of SCTEGs.

  18. Plasma diagnosis from thermal noise and limits on dust flux or mass in comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Meyer-Vernet, N.; Couturier, P.; Hoang, S.; Perche, C.; Steinberg, J. L.; Fainberg, J.

    1986-01-01

    Thermal noise spectroscopy was used to measure the density and temperature of the main (cold) electron plasma population during two hours around the point of closest approach of the International Cometary Explorer (ICE) to comet Giacobini-Zinner. The time resolution was 18 seconds in the plasma tail and 54 seconds elsewhere. Near the tail axis, the maximum plasma density was 670/cu cm and the temperature slightly above one volt. Away from the axis, the plasma density dropped to 100/cu cm over 2000 km, then decreased to 10/cu cm over 15,000 km; at the plasma tail, the density fluctuated between 10 and 30/cu cm, and the temperature, between 100,000 and 400,000 K. No evidence was found of grain impact on the spacecraft or antennas in the plasma tail. This yields an upper limit for the dust flux or particle mass, indicating either fluxes or masses in the tail smaller than those implied by models or an anomalous grain structure. Outside the tail, and particularly near 100,000 km from its axis, impulsive noises indicating plasma turbulence were observed.

  19. Know your limits? Climate extremes impact the range of Scots pine in unexpected places

    PubMed Central

    Julio Camarero, J.; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel

    2015-01-01

    Background and Aims Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin (‘rear edge’) of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species’ European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). Methods A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. Key Results The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. Conclusions The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern ‘rear edge’, in order to avoid biased predictions based solely on warmer climatic scenarios. PMID:26292992

  20. 22 CFR 192.44 - Maximum limitation on benefits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Maximum limitation on benefits. 192.44 Section 192.44 Foreign Relations DEPARTMENT OF STATE HOSTAGE RELIEF VICTIMS OF TERRORISM COMPENSATION Educational Benefits for Captive Situations § 192.44 Maximum limitation on benefits. (a) In no event may...

Top