Sample records for maximum temperature observed

  1. Daily mean temperature estimate at the US SUFRAD stations as an average of the maximum and minimum temperatures

    DOE PAGES

    Chylek, Petr; Augustine, John A.; Klett, James D.; ...

    2017-09-30

    At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less

  2. Daily mean temperature estimate at the US SUFRAD stations as an average of the maximum and minimum temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chylek, Petr; Augustine, John A.; Klett, James D.

    At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less

  3. Estimating missing daily temperature extremes in Jaffna, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Thevakaran, A.; Sonnadara, D. U. J.

    2018-04-01

    The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.

  4. Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities.

    PubMed

    Davis, Robert E; Hondula, David M; Patel, Anjali P

    2016-06-01

    Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat-mortality relationships. We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature-mortality relationships were associated with maximum temperature, although mean temperature results were comparable. There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature-mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality. Davis RE, Hondula DM, Patel AP. 2016. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795-804; http://dx.doi.org/10.1289/ehp.1509946.

  5. Fishing and bottom water temperature as drivers of change in maximum shell length in Atlantic surfclams (Spisula solidissima)

    NASA Astrophysics Data System (ADS)

    Munroe, D. M.; Narváez, D. A.; Hennen, D.; Jacobson, L.; Mann, R.; Hofmann, E. E.; Powell, E. N.; Klinck, J. M.

    2016-03-01

    Maximum shell length of Atlantic surfclams (Spisula solidissima) on the Middle Atlantic Bight (MAB) continental shelf, obtained from federal fishery survey data from 1982-present, has decreased by 15-20 mm. Two potential causes of this decreasing trend, fishery removal of large animals and stress due to warming bottom temperatures, were investigated using an individual-based model for post-settlement surfclams and a fifty-year hindcast of bottom water temperatures on the MAB. Simulations showed that fishing and/or warming bottom water temperature can cause decreases in maximum surfclam shell length (body size) equivalent to those observed in the fished stock. Independently, either localized fishing rates of 20% or sustained bottom temperatures that are 2 °C warmer than average conditions generate the observed decrease in maximum shell length. However, these independent conditions represent extremes and are not sustained in the MAB. The combined effects of fishing and warmer temperatures can generate simulated length decreases that are similar to observed decreases. Interannual variability in bottom water temperatures can also generate fluctuations in simulated shell length of up to 20 mm over a period of 10-15 years. If the change in maximum size is not genotypic, simulations also suggest that shell size composition of surfclam populations can recover if conditions change; however, that recovery could take a decade to become evident.

  6. Radiation-induced polymerization of glass-forming systems. IV. Effect of the homogeneity of polymerization phase and polymer concentration on temperature dependence of initial polymerization rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1973-06-01

    The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less

  7. Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities

    PubMed Central

    Davis, Robert E.; Hondula, David M.; Patel, Anjali P.

    2015-01-01

    Background: Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat–mortality relationships. Objectives: We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Methods: Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. Results: In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature–mortality relationships were associated with maximum temperature, although mean temperature results were comparable. Conclusions: There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature–mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality. Citation: Davis RE, Hondula DM, Patel AP. 2016. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795–804; http://dx.doi.org/10.1289/ehp.1509946 PMID:26636734

  8. Statistical downscaling of CMIP5 outputs for projecting future maximum and minimum temperature over the Haihe River Bain, China

    NASA Astrophysics Data System (ADS)

    Yan, Tiezhu; Shen, Zhenyao; Heng, Lee; Dercon, Gerd

    2016-04-01

    Future climate change information is important to formulate adaptation and mitigation strategies for climate change. In this study, a statistical downscaling model (SDSM) was established using both NCEP reanalysis data and ground observations (daily maximum and minimum temperature) during the period 1971-2010, and then calibrated model was applied to generate the future maximum and minimum temperature projections using predictors from the two CMIP5 models (MPI-ESM-LR and CNRM-CM5) under two Representative Concentration Pathway (RCP2.6 and RCP8.5) during the period 2011-2100 for the Haihe River Basin, China. Compared to the baseline period, future change in annual and seasonal maximum and minimum temperature was computed after bias correction. The spatial distribution and trend change of annual maximum and minimum temperature were also analyzed using ensemble projections. The results shows that: (1)The downscaling model had a good applicability on reproducing daily and monthly mean maximum and minimum temperature over the whole basin. (2) Bias was observed when using historical predictors from CMIP5 models and the performance of CNRM-CM5 was a little worse than that of MPI-ESM-LR. (3) The change in annual mean maximum and minimum temperature under the two scenarios in 2020s, 2050s and 2070s will increase and magnitude of maximum temperature will be higher than minimum temperature. (4) The increase in temperature in the mountains and along the coastline is remarkably high than the other parts of the studies basin. (5) For annual maximum and minimum temperature, the significant upward trend will be obtained under RCP 8.5 scenario and the magnitude will be 0.37 and 0.39 ℃ per decade, respectively; the increase in magnitude under RCP 2.6 scenario will be upward in 2020s and then decrease in 2050s and 2070s, and the magnitude will be 0.01 and 0.01℃ per decade, respectively.

  9. Global characteristics in the diurnal variations of the thermospheric temperature and composition

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Hedin, A. E.; Reber, C. A.; Carignan, G. R.

    1973-01-01

    Global characteristics in the diurnal components of OGO-6 neutral mass spectrometer measurements near 450 km are discussed qualitatively as well as quantitatively on the basis of a theoretical model. Observations and conclusion are summarized: (1) During equinox the temperature maximum occurs after 1600 LT at the equator and shifts toward 1500 LT at the poles, while the oxygen concentration at 450 km peaks about one hour earlier. (2) There is general agreement between the magnitudes and phases of the diurnal, semidiurnal and terdiuranal temperature components at 450 km from theory as well as OGO-6 and radar backscatter measurements. (3) The maximum in the diurnal variation of He is observed near 1030 LT consistent with theoretical results which further emphasize the importance of dynamics and diffusion. (4) During solstice conditions the diurnal temperature maximum shifts toward later local times, in substantial agreement with radar temperature measurements. (5) the temperature-oxygen density phase difference at 450 km is observed to decrease with latitude from the winter toward the summer hemisphere, where oxygen may even peak after the temperature at high latitudes.

  10. The coronal structure of active regions

    NASA Technical Reports Server (NTRS)

    Landini, M.; Monsignori Fossi, B. C.; Krieger, A.; Vaiana, G. S.

    1975-01-01

    A four-parameter model, which assumes a Gaussian dependence of both temperature and pressure on distance from center, is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature, the maximum pressure, the width of the pressure distribution, and the width of the temperature distribution. The maximum temperature ranges from 2.2 to 2.8 million K, and the maximum density from 2 to 9 by 10 to the 9th power per cu cm. The range of the pressure-distribution width is from 2 to 4 by 10 to the 9th power cm and that of the temperature-distribution width from 2 to 7.

  11. Resistivity of a simple metal from room temperature to 10 to the 6th K

    NASA Astrophysics Data System (ADS)

    Milchberg, H. M.; Freeman, R. R.; Davey, S. C.; More, R. M.

    1988-11-01

    The resistivity of nearly solid-density Al was measured as a function of temperature over 4 orders of magnitude above ambient by observing the self-reflection of an intense, less than 0.5 psec, 308-nm light pulse incident on a planar Al target. As an increasing function of electron temperature, the resistivity is observed initially to increase, reach a maximum which is relatively constant over an extended temperature range, and then decrease at the highest temperatures. The broad maximum is interpreted as resistivity saturation, a condition in which the mean free path of the conduction electrons reaches a minimum value as a function of temperature, regardless of the extent of any further disorder in the material.

  12. Torrejon AB, Madrid, Spain. revised uniform summary of surface weather observations (RUSSWO). parts a-f. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-03

    This report is a six-part statistical summary of surface weather observations for Torrejon AB, Madrid Spain. It contains the following parts: (A) Weather Conditions; Atmospheric Phenomena; (B) Precipitation, Snowfall and Snow Depth (daily amounts and extreme values); (C) Surface winds; (D) Ceiling Versus Visibility; Sky Cover; (E) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric summary of wet-bulb temperature depression versus dry-bulb temperature, means and standard deviations of dry-bulb, wet-bulb and dew-point temperatures and relative humidity); and (F) Pressure Summary (means, standard, deviations, and observation counts of station pressure and sea-level pressure). Data in thismore » report are presented in tabular form, in most cases in percentage frequency of occurrence or cumulative percentage frequency of occurrence tables.« less

  13. Observational analysis and large-scale pattern associated with cold events moving up the equator line over South America

    NASA Astrophysics Data System (ADS)

    Viana, Liviany; Herdies, Dirceu; Muller, Gabriela

    2017-04-01

    An observational study was carried out to quantify the events of cold air outbreak moving above the Equator from 1980 to 2013 during the austral winter period (May, June, July, August and September), and later analyzed the behavior of the circulation responsible for this displacement. The observational datasets from the Sector of Climatological studies of the Institute of Airspace Control of the city of Iauarete (0.61N, 69.0W; 120m), located at the extreme northern of the Brazilian Amazon Basin, were used for the analyzes. The meteorological variables used were the temperatures minimum, maximum and maximum atmospheric pressure. A new methodology was used to identify these events, calculated by the difference between the monthly average and 2 (two) standard deviations for the extremes of the air temperature, and the sum of 1 (one) standard deviation for the maximum atmospheric pressure. As a result, a total of 11 cold events were recorded that reached the extreme northern of the Brazilian Amazon Basin, with values recorded at a minimum temperature of 17.8 °C, at the maximum temperature of 21.0 °C and maximum atmospheric pressure reaching 1021.2 hPa. These reductions and augmentation are equivalent to the negative anomalies of 5.9 and 8.7 °C at the minimum and maximum temperatures, respectively, while a positive anomaly of 7.1 hPa was observed at the maximum pressure. In relation to the dynamic behavior of large-scale circulation, a Rossby wave-type configuration propagating from west to east over subtropical latitudes was observed from the European Center for Medium-Range Weather Forecast (ECMWF) since the days before the arrival of the event in the city of Iauarete. This behavior was observed both in the anomalies of the gepotencial (250 hPa and 850 hPa) and in the southern component of the wind (250 hPa and 850 hPa), both presenting statistical significance of 99 % (Student's T test). Therefore, a new criterion for the identification of "friagens" in the tropical latitude has been able to represent the effects of colds air outbreak and the advancement of the cold air mass, which are subsidized by the large-scale circulation, and consequently contribute to the modifications in the weather and the life of the population over this Equatorial region.

  14. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  15. Elevated temperature mechanical properties of line pipe steels

    NASA Astrophysics Data System (ADS)

    Jacobs, Taylor Roth

    The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow strength and strain hardening occurred increased with increasing strain rate. Strain rate sensitivities were measured using flow stress data from multiple tensile tests and strain rate jump tests on single tensile samples. In flow stress strain rate sensitivity measurements, a transition from negative to positive strain rate sensitivity was observed in the X52 steel at approximately 275--300 °C, and negative strain rate sensitivity was observed at all elevated temperature testing conditions in the X70 steels. In jump test strain rate sensitivity measurements, all four steels exhibited a transition from negative to positive strain rate sensitivity at approximately 250--275 °C. Anisotropic deformation in the X70 steels was observed by measuring the geometry of the fracture surfaces of the tensile samples. The degree of anisotropy changed as a function of temperature and minima in the degree of anisotropy was observed at approximately 300 °C for all three X70 steels. DSA was verified as an active strengthening mechanism at elevated temperatures for all line pipe steels tested resulting in serrated yielding, a minimum in ductility as a function of temperature, a maximum in flow strength as a function of temperature, a maximum in average strain hardening rate as a function of temperature, and negative strain rate sensitivities. Mechanical properties of the X70 steels exhibited different functionality with respect to temperature compared to the X52 steels at temperatures greater than 250 ºC. Changes in the acicular ferrite microstructure during deformation such as precipitate coarsening, dynamic precipitation, tempering of martensite in martensite-austenite islands, or transformation of retained austenite could account for differences in tensile property functionality between the X52 and X70 steels. Long term aging under load (LTA) testing of the X70 steels resulted in increased yield strength compared to standard elevated temperature tensile tests at all temperatures as a result of static strain aging. LTA specimen ultimate tensile strengths (UTS) increased slightly at 200 °C, were comparable at 275 °C, and decreased significantly at 350 °C when compared to as-received (standard) tests at 350 °C. Observed reductions in UTS were a result of decreased strain hardening in the LTA specimens compared to standard tensile specimens. Ideal elevated temperature operating conditions (based on tensile properties) for the X70 line pipe steels in the temperature range relevant to the steam assisted gravity drainage process are around 275--325 °C at the strain rates tested. In the temperature range of 275--325 °C the X70 steels exhibited continuous plastic deformation, a maximum in ductility, a maximum in flow stress, improved strain hardening compared to intermediate temperatures, reduced anisotropic deformation, and after extended use at elevated temperatures, yield strength increases with little change in UTS.

  16. Changes in minimum and maximum temperatures at the Pic du Midi in relation with humidity and cloudiness, 1882-1984

    NASA Astrophysics Data System (ADS)

    Dessens, J.; Bücher, A.

    In an attempt to contribute to the investigation on a global climate change, a historical series of minimum and maximum temperature data at the Pic du Midi, a mountain observatory at 2862 m a.s.l. in the French Pyrenees, is updated after correction of a systematic deviation due to a relocation of the station in 1971. These data, which now cover the 1882-1984 period, are examined in parallel with humidity and cloud cover data for the same period. From the beginning to the end of this period, observations show that the mean night-time temperature has increased by 2.39° C/100 yr while the mean daytime temperature has decreased by 0.50° C/100 yr. In consequence, the mean annual diurnal temperature range has dropped by 36%/100 yr. The maximum seasonal decrease is 46%/100 yr in spring. Season-to-season and year-to-year inter-relationships between minimum temperature, maximum temperature, relative humidity and cloud cover suggest that the decrease in maximum temperature is related to a concomitant increase of 15%/100 yr in both relative humidity and cloud cover.

  17. On the impacts of computing daily temperatures as the average of the daily minimum and maximum temperatures

    NASA Astrophysics Data System (ADS)

    Villarini, Gabriele; Khouakhi, Abdou; Cunningham, Evan

    2017-12-01

    Daily temperature values are generally computed as the average of the daily minimum and maximum observations, which can lead to biases in the estimation of daily averaged values. This study examines the impacts of these biases on the calculation of climatology and trends in temperature extremes at 409 sites in North America with at least 25 years of complete hourly records. Our results show that the calculation of daily temperature based on the average of minimum and maximum daily readings leads to an overestimation of the daily values of 10+ % when focusing on extremes and values above (below) high (low) thresholds. Moreover, the effects of the data processing method on trend estimation are generally small, even though the use of the daily minimum and maximum readings reduces the power of trend detection ( 5-10% fewer trends detected in comparison with the reference data).

  18. Evaluation of temperature differences for paired stations of the U.S. Climate Reference Network

    USGS Publications Warehouse

    Gallo, K.P.

    2005-01-01

    Adjustments to data observed at pairs of climate stations have been recommended to remove the biases introduced by differences between the stations in time of observation, temperature instrumentatios, latitude, and elevation. A new network of climate stations, located in rural settings, permits comparisons of temperatures for several pairs of stations without two of the biases (time of observation and instrurtientation). The daily, monthly, and annual minimum, maximum, and mean temperatures were compared for five pairs of stations included in the U.S. Climate Reference Network. Significant differences were found between the paired stations in the annual minimum, maximum, and mean temperatures for all five pairs of stations. Adjustments for latitude and elevation differences contributed to greater differences in mean annual temperature for four of the five stations. Lapse rates computed from the mean annual temperature differences between station pairs differed from a constant value, whether or not latitude adjustments were made to the data. The results suggest that microclimate influences on temperatures observed at nearby (horizontally and vertically) stations are potentially much greater than influences that might be due to latitude or elevation differences between the stations. ?? 2005 American Meteorological Society.

  19. An Observational and Analytical Study of Marginal Ice Zone Atmospheric Jets

    DTIC Science & Technology

    2016-12-01

    layer or in the capping temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m...geostrophic wind due to horizontal temperature changes in the atmospheric boundary layer and capping inversion . The jets were detected using...temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m elevation; one of these jets had a

  20. Effects of radiofrequency probe application on irrigation fluid temperature in the wrist joint.

    PubMed

    Sotereanos, Dean G; Darlis, Nickolaos A; Kokkalis, Zinon T; Zanaros, George; Altman, Gregory T; Miller, Mark Carl

    2009-12-01

    Radiofrequency (RF) probes used in wrist arthroscopy may raise joint fluid temperature, increasing the risk of capsular and ligamentous damage. The purposes of the current study were to measure joint fluid temperature during wrist arthroscopy with the use of RF probes, and to determine whether using an outlet portal will reduce the maximum temperature. We performed wrist arthroscopy on 8 cadaveric arms. Ablation and coagulation cycles using RF probe were performed at documented locations within the joint. This was done for 60-second intervals on both the radial and ulnar side of the wrist, to mimic clinical practice. We used 4 fiberoptic phosphorescent probes to measure temperature (radial, ulnar, inflow-tube, and outflow-tube probes) and measured joint fluid temperature with and without outflow. There was a significant difference between wrists with and without outflow when examining maximum ablation temperatures (p < .002). All specimens showed higher maximum and average ablation temperatures without outflow. Maximum joint temperatures, greater than 60 degrees C, were observed in only no-outflow conditions. In performing RF ablation during wrist arthroscopy, the use of an outlet portal reduces the joint fluid temperature. Without an outlet portal, maximum temperatures can exceed desirable levels when using ablation; such temperatures have the potential to damage adjacent tissues. It is useful to maintain adequate outflow when using the radiofrequency probes during wrist arthroscopy.

  1. In situ study of annealing-induced strain relaxation in diamond nanoparticles using Bragg coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, S. O.; Cha, W.; Andrich, P.; Anderson, C. P.; Ulvestad, A.; Harder, R.; Fuoss, P. H.; Awschalom, D. D.; Heremans, F. J.

    2017-02-01

    We observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strain-sensitive images as a function of time/temperature. Up to temperatures of 800 °C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8 × 10 - 4 were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 °C that are consistent with graphitization of the surface, a result verified with ensemble Raman measurements.

  2. Uncertainties in observations and climate projections for the North East India

    NASA Astrophysics Data System (ADS)

    Soraisam, Bidyabati; Karumuri, Ashok; D. S., Pai

    2018-01-01

    The Northeast-India has undergone many changes in climatic-vegetation related issues in the last few decades due to increased human activities. However, lack of observations makes it difficult to ascertain the climate change. The study involves the mean, seasonal cycle, trend and extreme-month analysis for summer-monsoon and winter seasons of observed climate data from Indian Meteorological Department (1° × 1°) and Aphrodite & CRU-reanalysis (both 0.5° × 0.5°), and five regional-climate-model simulations (LMDZ, MPI, GFDL, CNRM and ACCESS) data from AR5/CORDEX-South-Asia (0.5° × 0.5°). Long-term (1970-2005) observed, minimum and maximum monthly temperature and precipitation, and the corresponding CORDEX-South-Asia data for historical (1970-2005) and future-projections of RCP4.5 (2011-2060) have been analyzed for long-term trends. A large spread is found across the models in spatial distributions of various mean maximum/minimum climate statistics, though models capture a similar trend in the corresponding area-averaged seasonal cycles qualitatively. Our observational analysis broadly suggests that there is no significant trend in rainfall. Significant trends are observed in the area-averaged minimum temperature during winter. All the CORDEX-South-Asia simulations for the future project either a decreasing insignificant trend in seasonal precipitation, but increasing trend for both seasonal maximum and minimum temperature over the northeast India. The frequency of extreme monthly maximum and minimum temperature are projected to increase. It is not clear from future projections how the extreme rainfall months during JJAS may change. The results show the uncertainty exists in the CORDEX-South-Asia model projections over the region in spite of the relatively high resolution.

  3. Influence of temperature on flavour compound production from citrate by Lactobacillus rhamnosus ATCC 7469.

    PubMed

    De Figueroa, R M; Oliver, G; Benito de Cárdenas, I L

    2001-03-01

    The citrate utilization by Lactobacillus rhamnosus ATCC 7469 was found to be temperature-dependent. The maximum citrate utilization and incorporation of [1,5-14C]citrate rate were observed at 37 degreesC. At this temperature, maximum citrate lyase activity and specific diacetyl and acetoin production (Y(DA%)) were observed. The high levels of alpha-acetolactate synthase and low levels of diacetyl reductase, acetoin reductase and L-lactate dehydrogenase found at 37 degreesC led to an accumulation of diacetyl and acetoin. Optimum lactic acid production was observed at 45 degreesC, according to the high lactate dehydrogenase activity. The NADH oxidase activity increased with increasing culture temperature from 22 degreesC to 37 degreesC. Thus there are greater quantities of pyruvate available for the production of alpha-acetolactate, diacetyl and aceotin, and less diacetyl and acetoin are reduced.

  4. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures

    PubMed Central

    Welch, Jarrod R.; Vincent, Jeffrey R.; Auffhammer, Maximilian; Moya, Piedad F.; Dobermann, Achim; Dawe, David

    2010-01-01

    Data from farmer-managed fields have not been used previously to disentangle the impacts of daily minimum and maximum temperatures and solar radiation on rice yields in tropical/subtropical Asia. We used a multiple regression model to analyze data from 227 intensively managed irrigated rice farms in six important rice-producing countries. The farm-level detail, observed over multiple growing seasons, enabled us to construct farm-specific weather variables, control for unobserved factors that either were unique to each farm but did not vary over time or were common to all farms at a given site but varied by season and year, and obtain more precise estimates by including farm- and site-specific economic variables. Temperature and radiation had statistically significant impacts during both the vegetative and ripening phases of the rice plant. Higher minimum temperature reduced yield, whereas higher maximum temperature raised it; radiation impact varied by growth phase. Combined, these effects imply that yield at most sites would have grown more rapidly during the high-yielding season but less rapidly during the low-yielding season if observed temperature and radiation trends at the end of the 20th century had not occurred, with temperature trends being more influential. Looking ahead, they imply a net negative impact on yield from moderate warming in coming decades. Beyond that, the impact would likely become more negative, because prior research indicates that the impact of maximum temperature becomes negative at higher levels. Diurnal temperature variation must be considered when investigating the impacts of climate change on irrigated rice in Asia. PMID:20696908

  5. Temperature effects on gallium arsenide 63Ni betavoltaic cell.

    PubMed

    Butera, S; Lioliou, G; Barnett, A M

    2017-07-01

    A GaAs 63 Ni radioisotope betavoltaic cell is reported over the temperature range 70°C to -20°C. The temperature effects on the key cell parameters were investigated. The saturation current decreased with decreased temperature; whilst the open circuit voltage, the short circuit current, the maximum power and the internal conversion efficiency values decreased with increased temperature. A maximum output power and an internal conversion efficiency of 1.8pW (corresponding to 0.3μW/Ci) and 7% were observed at -20°C, respectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Beale AFB, Marysville, California Revised Uniform Summary of Surface Weather Observations (RUSSWO) Parts A-F.

    DTIC Science & Technology

    1981-08-19

    versus Visibility; Sky Cover; ( E ) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric...frequency of occurance or cumulative percentage frequency of occuring tables. UNCLASSIFIED SCUPU)?y CLASaIFICATION OF THIS PAGE(Waht Dat E moli A - I...i,. -t’ r .corvi or QL.;V.A I-)tic ai t r’& iolL; recUl’d Et. Lxki-dGiuI ii.Trly ii~tervais. DAILY OBSERVATIONS S- t tr’ o. re .;,:cLt e , !’ru: at

  8. Nonlogarithmic magnetization relaxation at the initial time intervals and magnetic field dependence of the flux creep rate in Bi2Sr2Ca(sub I)Cu2Ox single crystals

    NASA Technical Reports Server (NTRS)

    Moshchalcov, V. V.; Zhukov, A. A.; Kuznetzov, V. D.; Metlushko, V. V.; Leonyuk, L. I.

    1990-01-01

    At the initial time intervals, preceding the thermally activated flux creep regime, fast nonlogarithmic relaxation is found. The fully magnetic moment Pm(t) relaxation curve is shown. The magnetic measurements were made using SQUID-magnetometer. Two different relaxation regimes exist. The nonlogarithmic relaxation for the initial time intervals may be related to the viscous Abrikosov vortices flow with j is greater than j(sub c) for high enough temperature T and magnetic field induction B. This assumption correlates with Pm(t) measurements. The characteristic time t(sub O) separating two different relaxation regimes decreases as temperature and magnetic field are lowered. The logarithmic magnetization relaxation curves Pm(t) for fixed temperature and different external magnetic field inductions B are given. The relaxation rate dependence on magnetic field, R(B) = dPm(B, T sub O)/d(1nt) has a sharp maximum which is similar to that found for R(T) temperature dependences. The maximum shifts to lower fields as temperature goes up. The observed sharp maximum is related to a topological transition in shielding critical current distribution and, consequently, in Abrikosov vortices density. The nonlogarithmic magnetization relaxation for the initial time intervals is found. This fast relaxation has almost an exponentional character. The sharp relaxation rate R(B) maximum is observed. This maximum corresponds to a topological transition in Abrikosov vortices distribution.

  9. In situ study of annealing-induced strain relaxation in diamond nanoparticles using Bragg coherent diffraction imaging

    DOE PAGES

    Hruszkewycz, S. O.; Cha, W.; Andrich, P.; ...

    2017-02-14

    Here, we observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strain-sensitive images as a function of time/temperature. Up to temperatures of 800 °C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8 × 10 –4 were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 °C that are consistent with graphitization of the surface, a result verified withmore » ensemble Raman measurements.« less

  10. Extreme Maximum Land Surface Temperatures.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  11. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s

    PubMed Central

    Hawkins, Ed; Fricker, Thomas E; Challinor, Andrew J; Ferro, Christopher A T; Kit Ho, Chun; Osborne, Tom M

    2013-01-01

    Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target. PMID:23504849

  12. Secular Trend of Surface Temperature at an Elevated Observatory in the Pyrenees.

    NASA Astrophysics Data System (ADS)

    Bücher, A.; Dessens, J.

    1991-08-01

    Surface temperature was measured at the Pic du Midi de Bigorre, 2862 m MSL, from the foundation of the Observatory in 1878 until the closing of the meteorological station in 1984. After testing the homogeneity of the series with the annual mean temperatures in western Europe and in southwestern France, the period 1882-1970 was retained for trend analysis.The mean annual temperature increased 0.83°C during the 89-yr period. This increase is the sum of a very significant increase in the daily minimum temperature (+ 2.11°C) and a decrease in the maximum temperature ( 0.45°C). In consequence, the most dramatic change in the temperature regime was the difference between maximum and minimum; this decreased from 8.05°C in 1882 to 5.49°C in 1970. A mean increase is observed in all seasons, but, as for western Europe, it is stronger in spring and fall than in winter and summer.Analysis of cloudiness data for the same period shows a 15% increase in annual mean cloudiness and also significant year-to-year correlations between cloudiness and the maximum and minimum temperature. In consequence, the change in the temperature regime observed at the Pic du Midi since the end of last century is most probably the result of a climatic change involving an increase in cloud cover and, maybe, an increasing greenhouse effect.

  13. Laboratory Measured Emission Losses of Methyl Isothiocyanate at Pacific Northwest Soil Surface Fumigation Temperatures.

    PubMed

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2017-02-01

    Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.

  14. Quasi-Biennial Oscillation and Solar Cycle Influences over the Winter Arctic Simulated by the WACCM4 Model

    NASA Astrophysics Data System (ADS)

    Li, K. F.; Limpasuvan, T. L.; Limpasuvan, V.; Tung, K. K.; Yung, Y. L.

    2017-12-01

    Observations show that the quasi-biennial oscillation (QBO) and the 11-year solar cycle perturb the polar vortex via planetary wave convergence at high latitudes, a mechanism first proposed by Holton and Tan in 1980. Their perturbations lead to increases of stratospheric sudden warming events, and hence observable increases in temperature and ozone abundance in the polar vortex, during the easterly phase of QBO and the solar maximum. Here we simulate the changes in the polar atmosphere using the Whole Atmosphere Community Climate Model 4 (WACCM4) with the prescribed QBO and 11-year solar cycle forcing. The simulation is diagnosed in four groups: westerly QBO phase and solar minimum, westerly QBO phase and solar maximum, easterly QBO phase and solar minimum, and easterly QBO phase and solar maximum. The simulated changes in temperature and ozone are compared with satellite observations.

  15. Land use/land cover change effects on temperature trends at U.S. Climate Normals stations

    USGS Publications Warehouse

    Hale, R.C.; Gallo, K.P.; Owen, T.W.; Loveland, Thomas R.

    2006-01-01

    Alterations in land use/land cover (LULC) in areas near meteorological observation stations can influence the measurement of climatological variables such as temperature. Urbanization near climate stations has been the focus of considerable research attention, however conversions between non-urban LULC classes may also have an impact. In this study, trends of minimum, maximum, and average temperature at 366 U.S. Climate Normals stations are analyzed based on changes in LULC defined by the U.S. Land Cover Trends Project. Results indicate relatively few significant temperature trends before periods of greatest LULC change, and these are generally evenly divided between warming and cooling trends. In contrast, after the period of greatest LULC change was observed, 95% of the stations that exhibited significant trends (minimum, maximum, or mean temperature) displayed warming trends. Copyriht 2006 by the American Geophysical Union.

  16. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station-based daily maximum near-surface air temperature

    NASA Astrophysics Data System (ADS)

    Lian, Xu; Zeng, Zhenzhong; Yao, Yitong; Peng, Shushi; Wang, Kaicun; Piao, Shilong

    2017-02-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature (Tair). Using satellite observations and in situ station-based data sets, we conducted a global-scale assessment of the spatial and seasonal variations in the difference between daily maximum LST and daily maximum Tair (δT, LST - Tair) during 2003-2014. Spatially, LST is generally higher than Tair over arid and sparsely vegetated regions in the middle-low latitudes, but LST is lower than Tair in tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, δT is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the midlatitudes and boreal regions. The seasonality in the midlatitudes is a result of the asynchronous responses of LST and Tair to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. Our study identified substantial spatial heterogeneity and seasonality in δT, as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface air temperature changes using remote sensing, particularly in remote regions.

  17. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data

    NASA Technical Reports Server (NTRS)

    Munasinghe, L.; Jun, T.; Rind, D. H.

    2012-01-01

    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  18. Equatorial temperature anomaly during solar minimum

    NASA Astrophysics Data System (ADS)

    Suhasini, R.; Raghavarao, R.; Mayr, H. G.; Hoegy, W. R.; Wharton, L. E.

    2001-11-01

    We show evidence for the occurrence of the equatorial temperature anomaly (ETA) during solar minimum by analyzing the temperature and total ion density data from the Neutral Atmosphere Temperature Experiment (NATE) and the Cylindrical Electrostatic Probe (CEP), respectively, on board the Atmospheric Explorer-E satellite. The chosen data refer to a height of ~254 km in the African and Asian longitude sector (340.1°E-200°E) during a summer season in the Southern Hemisphere. As during the solar maximum period, the spatial characteristics of the ETA are similar to those of the equatorial ionization anomaly (EIA). A minimum in the gas temperature is collocated with the minimum in the ion density at the dip equator, and a temperature maximum on the south side of the equator is collocated with the density maximum of the EIA. The daytime behavior of ETA formation is about the same as that of EIA as both of them are clearly present at around 1300 and 1400 local solar time (LST) only. At 1400 LST the difference between the temperatures at the crest and the trough (ETA strength) reaches a maximum value of about 100°K which is ~14% of the temperature at the trough. Like the EIA, the ETA also suddenly disappears after 1400 LST. Thus the EIA appears to be a prerequisite for the ETA formation. During the premidnight time (2200 LST), however, while the EIA is nonexistent, the temperature distribution forms a pattern opposite to that at 1400 LST in the daytime. It shows a maximum around the dip equator and a broad minimum at the daytime crest region where the postsunset cooling also is faster and occurs earlier than at the dip equator. This nighttime maximum appears to be related to the signature of the midnight temperature maximum (MTM). Mass Spectrometer Incoherent Scatter (MSIS) model temperatures, in general, are higher than the observed average temperatures for the summer season and in particular for the region around the dip equator around noon hours.

  19. The two-box model of climate: limitations and applications to planetary habitability and maximum entropy production studies.

    PubMed

    Lorenz, Ralph D

    2010-05-12

    The 'two-box model' of planetary climate is discussed. This model has been used to demonstrate consistency of the equator-pole temperature gradient on Earth, Mars and Titan with what would be predicted from a principle of maximum entropy production (MEP). While useful for exposition and for generating first-order estimates of planetary heat transports, it has too low a resolution to investigate climate systems with strong feedbacks. A two-box MEP model agrees well with the observed day : night temperature contrast observed on the extrasolar planet HD 189733b.

  20. The two-box model of climate: limitations and applications to planetary habitability and maximum entropy production studies

    PubMed Central

    Lorenz, Ralph D.

    2010-01-01

    The ‘two-box model’ of planetary climate is discussed. This model has been used to demonstrate consistency of the equator–pole temperature gradient on Earth, Mars and Titan with what would be predicted from a principle of maximum entropy production (MEP). While useful for exposition and for generating first-order estimates of planetary heat transports, it has too low a resolution to investigate climate systems with strong feedbacks. A two-box MEP model agrees well with the observed day : night temperature contrast observed on the extrasolar planet HD 189733b. PMID:20368253

  1. Upper Stratospheric Temperature Climatology Derived from SAGE II Observations: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wang, P.-H.; Cunnold, D. M.; Wang, H. J.; Chu, W. P.; Thomason, L. W.

    2002-01-01

    This study shows that the temperature information in the upper stratosphere can be derived from the SAGE II 385-mn observations. The preliminary results indicate that the zonal mean temperature increases with altitude below 50 km and decreases above 50 km. At 50 km, a regional maximum of 263 K is located in the tropics, and a minimum of 261 K occurs in the subtropics in both hemispheres. The derived long-term temperature changes from 1985 to 1997 reveal a statistically significant negative trend of -2 to -2.5 K/decade in the tropical upper stratosphere and about -2 K/decade in the subtropics near the stratopause. At latitudes poleward of 50, the results show a statistically significant positive trend of about 1 K/decade in the upper stratosphere. The preliminary results also show large annual temperature oscillations in the extratropics with a maximum amplitude of approx. 8 K located at about 44 km near 50 in both hemispheres during local summer. In addition, the semiannual oscillation is found to be a maximum in the tropics with a peak amplitude of approx. 3.3 K located at about 42 km during the equinox.

  2. Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienold, M.; Humboldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin; Deutsches Zentrum für Luft und Raumfahrt, Rutherfordstr. 2, 12489 Berlin

    2015-11-16

    We report on the observation of an approximately linear reduction in the maximum operating temperature with an increasing emission frequency for terahertz quantum-cascade lasers between 4.2 and 5.4 THz. These lasers are based on the same design type, but vary in period length and barrier height for the cascade structure. The sample emitting at the highest frequency around 5.4 THz can be operated in pulsed mode up to 56 K. We identify an additional relaxation channel for electrons by longitudinal optical phonon scattering from the upper to the lower laser level and increasing optical losses toward higher frequencies as major processes,more » leading to the observed temperature behavior.« less

  3. The maximum growth rate of life on Earth

    NASA Astrophysics Data System (ADS)

    Corkrey, Ross; McMeekin, Tom A.; Bowman, John P.; Olley, June; Ratkowsky, David

    2018-01-01

    Life on Earth spans a range of temperatures and exhibits biological growth rates that are temperature dependent. While the observation that growth rates are temperature dependent is well known, we have recently shown that the statistical distribution of specific growth rates for life on Earth is a function of temperature (Corkrey et al., 2016). The maximum rates of growth of all life have a distinct limit, even when grown under optimal conditions, and which vary predictably with temperature. We term this distribution of growth rates the biokinetic spectrum for temperature (BKST). The BKST possibly arises from a trade-off between catalytic activity and stability of enzymes involved in a rate-limiting Master Reaction System (MRS) within the cell. We develop a method to extrapolate quantile curves for the BKST to obtain the posterior probability of the maximum rate of growth of any form of life on Earth. The maximum rate curve conforms to the observed data except below 0°C and above 100°C where the predicted value may be positively biased. The deviation below 0°C may arise from the bulk properties of water, while the degradation of biomolecules may be important above 100°C. The BKST has potential application in astrobiology by providing an estimate of the maximum possible growth rate attainable by terrestrial life and perhaps life elsewhere. We suggest that the area under the maximum growth rate curve and the peak rate may be useful characteristics in considerations of habitability. The BKST can serve as a diagnostic for unusual life, such as second biogenesis or non-terrestrial life. Since the MRS must have been heavily conserved the BKST may contain evolutionary relics. The BKST can serve as a signature summarizing the nature of life in environments beyond Earth, or to characterize species arising from a second biogenesis on Earth.

  4. Doping dependence of critical temperature for superconductivity induced by hole-phonon interaction

    NASA Astrophysics Data System (ADS)

    Durajski, A. P.; Szczȩśniak, R.

    2017-10-01

    To understand the nature of the high-temperature superconductors (cuprates) we have taken into consideration the interaction terms, which possess the structure of the hole-phonon (HP) and hole-hole-phonon (HHP) type. It was shown that for the high value of the HHP potential in comparison to HP, the superconducting critical temperature (TC) reaches the maximum value for the low concentration of holes, which fairly corresponds with the observed maximum of TC for hole-doped cuprates. The analysis was performed within the framework of the Eliashberg approach.

  5. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana

    NASA Astrophysics Data System (ADS)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.

    2018-03-01

    Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.

  6. Magnetization of Paraffin-Based Magnetic Nanocolloids

    NASA Astrophysics Data System (ADS)

    Dikanskii, Yu. I.; Ispiryan, A. G.; Kunikin, S. A.; Radionov, A. V.

    2018-01-01

    Using paraffin-based magnetic nanocolloids as an example, the reasons for maxima in the temperature dependence of the magnetic susceptibility of magnetic colloids have been discussed. The behavior of these dependences in a wide temperature interval has been analyzed for colloids in solid and liquid states. It has been concluded that the maximum observed at the melting point of paraffin can be attributed to freezing Brownian degrees of freedom in magnetite coarse particles, the magnetic moment of which is intimately related to the solid matrix. The second main maximum, which arises in the solid state, is explained by the superparamagnetic-magnetically hard transition of most fine particles at lower temperatures. It has been noted that the flatness of this maximum results from the polydispersity of the magnetic nanoparticle ensemble.

  7. Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    Griffiths, G. M.; Chambers, L. E.; Haylock, M. R.; Manton, M. J.; Nicholls, N.; Baek, H.-J.; Choi, Y.; della-Marta, P. M.; Gosai, A.; Iga, N.; Lata, R.; Laurent, V.; Maitrepierre, L.; Nakamigawa, H.; Ouprasitwong, N.; Solofa, D.; Tahani, L.; Thuy, D. T.; Tibig, L.; Trewin, B.; Vediapan, K.; Zhai, P.

    2005-08-01

    Trends (1961-2003) in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.

  8. Reversible voltage dependent transition of abnormal and normal bipolar resistive switching.

    PubMed

    Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu

    2016-11-14

    Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoO x layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoO x interface by the accumulation and depletion of oxygen vacancies.

  9. Role of Coulomb blockade and spin-flip scattering in tunneling magnetoresistance of FeCo-Si-O nanogranular films

    NASA Astrophysics Data System (ADS)

    Kumar, Hardeep; Ghosh, Santanu; Bürger, Danilo; Li, Lin; Zhou, Shengqiang; Kabiraj, Debdulal; Avasthi, Devesh Kumar; Grötzschel, Rainer; Schmidt, Heidemarie

    2011-04-01

    In this work, we report the effect of FeCo atomic fraction (0.33 < x < 0.54) and temperature on the electrical, magnetic, and tunneling magnetoresistance (TMR) properties of FeCo-Si-O granular films prepared by atom beam sputtering technique. Glancing angle x-ray diffraction and TEM studies reveal that films are amorphous in nature. The dipole-dipole interactions (particle-matrix mixing) is evident from zero-field cooled and field-cooled magnetic susceptibility measurements and the presence of oxides (mainly Fe-related) is observed by x-ray photoelectron spectroscopy analysis. The presence of Fe-oxides is responsible for the observed reduction of saturation magnetization and rapid increase in coercivity below 50 K. TMR has been observed in a wide temperature range, and a maximum TMR of -4.25% at 300 K is observed for x = 0.39 at a maximum applied field of 60 kOe. The fast decay of maximum TMR at high temperatures and lower TMR values at 300 K when compared to PFeCo2/(1+PFeCo2), where PFeCo is the spin polarization of FeCo are in accordance with a theoretical model that includes spin-flip scattering processes. The temperature dependent study of TMR effect reveals a remarkably enhanced TMR at low temperatures. The TMR value varies from -2.1% at 300 K to -14.5% at 5 K for x = 0.54 and a large MR value of -18.5% at 5 K for x = 0.39 is explained on the basis of theoretical models involving Coulomb blockade effects. Qualitatively particle-matrix mixing and the presence of Fe-oxides seems to be the source of spin-flip scattering, responsible for fast decay of TMR at high temperatures. A combination of higher order tunneling (in Coulomb blockade regime) and spin-flip scattering (high temperature regime) explains the temperature dependent TMR of these films.

  10. Effect of ceramic coating of JT8D combustor liner on maximum liner temperatures and other combustor performance parameters

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Liebert, C. H.

    1976-01-01

    The effect of ceramic coating of a JT8D combustor liner was investigated at simulated cruise and takeoff conditions with two fuels of widely different aromatic contents. Substantial decreases in maximum liner temperatures and flame radiation values were obtained with the ceramic-coated liner. Small reductions in exhaust gas smoke concentrations were observed with the ceramic-coated liner. Other performance parameters such as combustion efficiency and emissions of unburned hydrocarbons, CO, and NOx were not affected significantly. No deterioration of the ceramic coating was observed after about 6 hours of cyclic operation including several startups and shutdowns.

  11. The impact of summer rainfall on the temperature gradient along the United States-Mexico border

    NASA Technical Reports Server (NTRS)

    Balling, Robert C., Jr.

    1989-01-01

    The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.

  12. Low-temperature vibrational dynamics of fused silica and binary silicate glasses

    NASA Astrophysics Data System (ADS)

    Cai, Ling; Shi, Ying; Hrdina, Ken; Moore, Lisa; Wu, Jingshi; Daemen, Luke L.; Cheng, Yongqiang

    2018-02-01

    Inelastic neutron scattering was used to study the vibrational dynamics of fused silica and its mixed binary glasses that were doped with either TiO2 or K2O . The energy transfer was measured from zero to 180 meV where the so-called Boson peaks (BP) at low energy and molecular vibrations at high energy are included. Although most of the vibrational spectra at the high energy resemble those reported in earlier literature, a defect-mode-like peak is observed for the doped binary systems near 120 meV . At very low temperature, the BP intensity increases rapidly with temperature and then, at higher temperature, the peak intensity decreases. As a result, a maximum is observed in the temperature dependence of the BP intensity. This maximum was shown in all four samples, but the pure SiO2 sample shows the highest intensity peak and the lowest temperature for peak position. Broadband energy spectra reveal a shift of intensity from BP to the more localized modes at higher energy. Temperature evolution of BP and its relationship with heat conduction and thermal expansion are discussed.

  13. The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics

    NASA Astrophysics Data System (ADS)

    Garner, Grace; Malcolm, Iain A.; Sadler, Jonathan P.; Hannah, David M.

    2017-10-01

    A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ∼1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Data from nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model of the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥1.6 °C) and maximum (≥3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation, and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.

  14. Intrinsic Brightness Temperatures of AGN Jets

    NASA Astrophysics Data System (ADS)

    Homan, D. C.; Kovalev, Y. Y.; Lister, M. L.; Ros, E.; Kellermann, K. I.; Cohen, M. H.; Vermeulen, R. C.; Zensus, J. A.; Kadler, M.

    2006-05-01

    We present a new method for studying the intrinsic brightness temperatures of the parsec-scale jet cores of active galactic nuclei (AGNs). Our method uses observed superluminal motions and observed brightness temperatures for a large sample of AGNs to constrain the characteristic intrinsic brightness temperature of the sample as a whole. To study changes in intrinsic brightness temperature, we assume that the Doppler factors of individual jets are constant in time, as justified by their relatively small changes in observed flux density. We find that in their median-low brightness temperature state, the sources in our sample have a narrow range of intrinsic brightness temperatures centered on a characteristic temperature, Tint~=3×1010 K, which is close to the value expected for equipartition, when the energy in the radiating particles equals the energy stored in the magnetic fields. However, in their maximum brightness state, we find that sources in our sample have a characteristic intrinsic brightness temperature greater than 2×1011 K, which is well in excess of the equipartition temperature. In this state, we estimate that the energy in radiating particles exceeds the energy in the magnetic field by a factor of ~105. We suggest that the excess of particle energy when sources are in their maximum brightness state is due to injection or acceleration of particles at the base of the jet. Our results suggest that the common method of estimating jet Doppler factors by using a single measurement of observed brightness temperature, the assumption of equipartition, or both may lead to large scatter or systematic errors in the derived values.

  15. Geo-spatial analysis of temporal trends of temperature and its extremes over India using daily gridded (1°×1°) temperature data of 1969-2005

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Seshasai, M. V. R.; Rao, S. V. C. Kameswara; Dadhwal, V. K.

    2017-10-01

    Daily gridded (1°×1°) temperature data (1969-2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season ( kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann-Kendall statistics ( α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test ( α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02-0.04 °C year-1) were found to be higher than that of maximum temperature (0.01-0.02 °C year-1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.

  16. Temperature thresholds related to flight of Dendroctonus frontalis Zimm. (Col.: Scolytidae)

    Treesearch

    John C. Moser; William A. Thompson

    1986-01-01

    We have plotted the complete range of flight temperatures for the southern pine beele, the first such figures for any bark beetle.The optimum flight temperature was about 27oC.Observed minimum and maximum flight temperatures for southern pine beetle were 6.7oC and 36.7oC, respectively. Projected...

  17. Beeswax as phase change material to improve solar panel’s performance

    NASA Astrophysics Data System (ADS)

    Thaib, R.; Rizal, S.; Riza, M.; Mahlia, T. M. I.; Rizal, T. A.

    2018-02-01

    One of the main obstacles faced during the operation of photovoltaic (PV) panels was overheating due to excessive solar radiation and high ambient temperatures. In this research, investigates the use of beeswax phase change materials (PCM) to maintain the temperature of the panels close to ambient. Solar panels used in this study has 839 mm length, 537 mm wide, and 50 mm thick, with maximum output power at 50 W. During the study, there were two solar panels was evaluated, one without phase change material while the other one was using beeswax phase change material. Solar panels were mounted at 15° slope. Variables observed was the temperature of solar panel’s surface, output voltage and current that produced by PV panels, wind speed around solar panels, and solar radiation. The observation was started at 07:00 am and ended at 06:00 pm. The research shows that maximum temperature of solar panels surface without phase change material is ranging between 46-49 °C, and electrical efficiency is about 7.2-8.8%. Meanwhile, for solar panels with beeswax phase change material, the maximum temperature solar panels surface is relatively low ranging between 33-34 °C, and its electrical efficiency seems to increase about 9.1-9.3%.

  18. Atlantic salmon show capability for cardiac acclimation to warm temperatures.

    PubMed

    Anttila, Katja; Couturier, Christine S; Overli, Oyvind; Johnsen, Arild; Marthinsen, Gunnhild; Nilsson, Göran E; Farrell, Anthony P

    2014-06-24

    Increases in environmental temperature predicted to result from global warming have direct effects on performance of ectotherms. Moreover, cardiac function has been observed to limit the tolerance to high temperatures. Here we show that two wild populations of Atlantic salmon originating from northern and southern extremes of its European distribution have strikingly similar cardiac responses to acute warming when acclimated to common temperatures, despite different local environments. Although cardiac collapse starts at 21-23 °C with a maximum heart rate of ~150 beats per min (bpm) for 12 °C-acclimated fish, acclimation to 20 °C considerably raises this temperature (27.5 °C) and maximum heart rate (~200 bpm). Only minor population differences exist and these are consistent with the warmer habitat of the southern population. We demonstrate that the considerable cardiac plasticity discovered for Atlantic salmon is largely independent of natural habitat, and we propose that observed cardiac plasticity may aid salmon to cope with global warming.

  19. Variability of temperature properties over Kenya based on observed and reanalyzed datasets

    NASA Astrophysics Data System (ADS)

    Ongoma, Victor; Chen, Haishan; Gao, Chujie; Sagero, Phillip Obaigwa

    2017-08-01

    Updated information on trends of climate extremes is central in the assessment of climate change impacts. This work examines the trends in mean, diurnal temperature range (DTR), maximum and minimum temperatures, 1951-2012 and the recent (1981-2010) extreme temperature events over Kenya. The study utilized daily observed and reanalyzed monthly mean, minimum, and maximum temperature datasets. The analysis was carried out based on a set of nine indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The trend of the mean and the extreme temperature was determined using Mann-Kendall rank test, linear regression analysis, and Sen's slope estimator. December-February (DJF) season records high temperature while June-August (JJA) experiences the least temperature. The observed rate of warming is + 0.15 °C/decade. However, DTR does not show notable annual trend. Both seasons show an overall warming trend since the early 1970s with abrupt and significant changes happening around the early 1990s. The warming is more significant in the highland regions as compared to their lowland counterparts. There is increase variance in temperature. The percentage of warm days and warm nights is observed to increase, a further affirmation of warming. This work is a synoptic scale study that exemplifies how seasonal and decadal analyses, together with the annual assessments, are important in the understanding of the temperature variability which is vital in vulnerability and adaptation studies at a local/regional scale. However, following the quality of observed data used herein, there remains need for further studies on the subject using longer and more data to avoid generalizations made in this study.

  20. Temperature evolution in silver nanoparticle doped PETN composite

    NASA Astrophysics Data System (ADS)

    Kameswari, D. P. S. L.; Kiran, P. Prem

    2018-04-01

    Optical absorption and the associated spatio-temporal evolution of temperature silver nanoparticles doped energetic material composite is presented. Silver nanoparticles of radii 10 - 150 nm are doped in Penta Erythrtol Tetra Nitrate (PETN), a secondary energetic material to form the composite materials. Of all the composites the ones doped with 35 nm sized nanoparticles have shown maximum absorption at excitation wavelength of 532 nm. The spatio-temporal evolution of temperature within these composites up on excitation with ns laser pulses of energy density 0.5 J/cm2 is studied. The role of particle sizes on the temperature of composites is studied and a maximum temperature of 2200 K at the nanoparticle interface is observed for 35 nm doped PETN composite.

  1. Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains

    Treesearch

    Paul V. Bolstad; Lloyd Swift; Fred Collins; Jacques Regniere

    1998-01-01

    Landscape and temporal patterns of temperature were observed for local (13 station) and regional (35 station) networks in the Southern Appalachian mountains of North America. Temperatures decreased with altitude at mean rates of 7EC/km (maximum temperature) and 3EC/km (minimum temperature). Daily lapse rates depended on the method and stations used in the calculations...

  2. Effects of temperature on the gas exchange of leaves in the light and dark.

    PubMed

    Hofstra, G; Hesketh, J D

    1969-09-01

    Evolution of CO2 into CO2-free air was measured in the light and in the dark over a range of temperatures from 15 to 50°. Photosynthetic rates were measured in air and O2-free air over the same range of temperatures. Respiration in the light had a different sensitivity to temperature compared with respiration in the dark. At the lower temperatures the rate of respiration in the light was higher than respiration in the dark, whereas at temperatures above 40° the reverse was observed. For any one species the maximum rates of photosynthesis and photorespiration occur at about the same temperature. The maximum rate for dark respiration generally is found at a temperature about 10° higher. Zea mays and Atriplex nummularia showed no enhancement of photosynthesis in O2-free air nor any evolution of CO2 in CO2-free air at any of the temperatures.

  3. Trends in seasonal warm anomalies across the contiguous United States: Contributions from natural climate variability

    Treesearch

    Lejiang Yu; Shiyuan Zhong; Warren E. Heilman; Xindi Bian

    2018-01-01

    Many studies have shown the importance of anthropogenic greenhouse gas emissions in contributing to observed upward trends in the occurrences of temperature extremes over the U.S. However, few studies have investigated the contributions of internal variability in the climate system to these observed trends. Here we use daily maximum temperature time series from the...

  4. Temperature induced changes in size dependent distributions of two boreal and three Lusitanian flatfish species: A comparative study

    NASA Astrophysics Data System (ADS)

    van Hal, Ralf; van Kooten, Tobias; Rijnsdorp, Adriaan D.

    2016-01-01

    Changes in spatial distribution in several fish species have been related to recent increase in global temperature. In the North Sea, both a poleward shift and a shift to deeper water have been observed. Here, we study the underlying mechanism of these shifts in a comparative study of the changes in distribution of two boreal flatfish species (plaice Pleuronectes platessa and dab Limanda limanda) and three Lusitanian flatfish species (sole Solea solea, solenette Buglossidium luteum, and scaldfish Arnoglossus laterna) as recorded in annual bottom trawl surveys carried out in the North Sea in late summer since 1985. The distribution is analysed in relation to the bottom temperature at the time of the survey as well as to the seasonal maximum bottom temperature earlier in the year. It is shown that the boreal species plaice and dab moved to deeper water and maintained the seasonal maximum temperature that they experienced in earlier periods, while the Lusitanian species sole, solenette, and scaldfish experienced an increase in the seasonal maximum temperature that they experienced while maintaining their depth distribution. This overall response varied between length classes, reflecting a preference for higher temperature of the smaller length classes. The results lend support to the hypothesis that the fish displayed a direct response to the maximum temperature that occurred during the growth season before the time of sampling.

  5. Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1995-01-01

    New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.

  6. Trends and variability of daily temperature extremes during 1960-2012 in the Yangtze River Basin, China

    USDA-ARS?s Scientific Manuscript database

    The variability of temperature extremes has been the focus of attention during the past few decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Based on daily minimum and maximum temperature observed by the China Meteorological Administ...

  7. Influence of disorder on the superconducting critical temperature in indium-opal nanocomposites

    NASA Astrophysics Data System (ADS)

    Zakharchuk, I.; Januzaj, A.; Mikhailin, N. Yu.; Traito, K. B.; Chernyaev, A. V.; Romanov, S. G.; Safonchik, M.; Shamshur, D. V.; Lähderanta, E.

    2018-06-01

    Transport properties of bulk indium-opal and indium-porous glass superconducting nanocomposites possessing moderate and strong disorder are investigated. A strongly nonmonotonous dependence of the global critical temperature Tc versus normal state conductivity of samples is found. The maximum, which is observed at moderate disorder, has Tc higher than that of clean bulk indium. The increasing part can be explained by the Eliashberg equations with disorder and an additional mechanism of interaction between superconducting and dielectric granules. The descending part of the maximum at higher disorder can be explained by the increasing of long-range Coulomb repulsion due to diffusion of charges. Negative slope in magnetic field dependence of resistivity and a peak in the temperature dependence of resistivity, observed in the sample near the proximity to the disorder-induced superconductor-insulator transition (SIT). A large difference between the onset temperature of superconducting fluctuations, Tcon , and global critical temperature Tc is found and considered in the framework of the weak multifractal theory. Slow time-logarithmic relaxation of the resistivity between Tc and Tcon is observed, which assumes existence of the precursor state near the SIT. This unusual state is discussed in the scope of the many-body localization theory.

  8. Origin of two maxima in specific heat in enthalpy relaxation under thermal history composed of cooling, annealing, and heating.

    PubMed

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2016-12-01

    The origin of two maxima in specific heat observed at the higher and the lower temperatures in the glass-transition region in the heating process has been studied for polymethyl methacrylate and polyvinyl chloride using differential scanning calorimetry, and the calculation was done using the phenomenological model equation under a thermal history of the typical annealing experiment composed of cooling, annealing, and heating. The higher maximum is observed above the glass-transition temperature, and it remains almost unchanged independent of annealing time t_{a}, while the lower one is observed above an annealing temperature T_{a} and shifts toward the higher one, increasing its magnitude with t_{a}. The analysis by the phenomenological model equation proposed in order to interpret the memory effect in the glassy state clarifies that under a typical annealing history, two maxima in specific heat essentially appear. The shift of the lower maximum toward higher temperatures from above T_{a} is caused by an increase in the amount of relaxation during annealing with t_{a}. The annealing temperature and the amount of relaxation during annealing play a major role in the determination of the number of maxima in the specific heat.

  9. Semidiurnal tidal activity of the middle atmosphere at mid-latitudes derived from O2 atmospheric and OH(6-2) airglow SATI observations

    NASA Astrophysics Data System (ADS)

    López-González, M. J.; Rodríguez, E.; García-Comas, M.; López-Puertas, M.; Olivares, I.; Ruiz-Bueno, J. A.; Shepherd, M. G.; Shepherd, G. G.; Sargoytchev, S.

    2017-11-01

    In this paper, we investigate the tidal activity in the mesosphere and lower thermosphere region at 370N using OH Meinel and O2 atmospheric airglow observations from 1998 to 2015. The observations were taken with a Spectral Airglow Temperature Imager (SATI) installed at Sierra Nevada Observatory (SNO) (37.060N, 3.380W) at 2900 m height. From these observations a seasonal dependence of the amplitudes of the semidiurnal tide is inferred. The maximum tidal amplitude occurs in winter and the minimum in summer. The vertically averaged rotational temperatures and vertically integrated volume emission rate (rotational temperatures and intensities here in after), from the O2 atmospheric band measurements and the rotational temperature derived from OH Meinel band measurements reach the maximum amplitude about 1-4 h after midnight during almost all the year except in August-September where the maximum is found 2-4 h earlier. The amplitude of the tide in the OH intensity reaches the minimum near midnight in midwinter, then it is progressively delayed until 4:00 LT in August-September, and from there on it moves again forward towards midnight. The mean Krassovsky numbers for OH and O2 emissions are 5.9 ±1.8 and 5.6 ±1.0, respectively, with negative Krassovsky phases for almost all the year, indicating an upward energy transport. The mean vertical wavelengths for the vertical tidal propagation derived from OH and O2 emissions are 35 ±20 km and 33 ±18 km, respectively. The vertical wavelengths together with the phase shift in the temperature derived from both airglow emissions indicate that these airglow emission layers are separated by 7 ±3 km, on average.

  10. Quantifying Observed Temperature Extremes in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Sura, P.; Stefanova, L. B.; Griffin, M.; Worsnop, R.

    2011-12-01

    There is broad consensus that the most hazardous effects of climate change are related to a potential increase (in frequency and/or intensity) of extreme weather and climate events. In particular, the statistics of regional daily temperature extremes are of practical interest for the agricultural community and energy suppliers. This is notably true for the Southeastern United States where winter hard freezes are a relatively rare and potentially catastrophic event. Here we use a long record of quality-controlled observations collected from 272 National Weather Service (NWS) Cooperative Observing Network (COOP) stations throughout Florida, Georgia, Alabama, and South and North Carolina to provide a detailed climatology of temperature extremes in the Southeastern United States. We employ two complementary approaches. First, we analyze the effect of El Nino-Southern Oscillation (ENSO) and the Arctic Oscillation (AO) on the non-Gaussian (i.e. higher order) statistics of wintertime daily minimum and maximum temperatures. We find a significant and spatially varying impact of ENSO and AO on the non-Gaussian statistics of daily maximum and minimum temperatures throughout the domain. Second, the extremes of the temperature distributions are studied by calculating the 1st and 99th percentiles, and then analyzing the number of days with record low/high temperatures per season. This analysis of daily temperature extremes reveals oscillating, multi-decadal patterns with spatially varying centers of action.

  11. Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate.

    PubMed

    Omumbo, Judith A; Lyon, Bradfield; Waweru, Samuel M; Connor, Stephen J; Thomson, Madeleine C

    2011-01-17

    Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard.

  12. The effects of elevated temperatures on the structural properties of fiber composite materials suitable for use in space shuttle and other space vehicles

    NASA Technical Reports Server (NTRS)

    Wright, M. A.

    1972-01-01

    The effects of high temperatures on the structural properties of fiber composite materials for use in spacecraft structures are investigated. Various mechanical properties of boron reinforced aluminum alloys were measured. It was observed that cycling these materials through temperatures that varied from room temperature to 425 C could seriously degrade the properties. The extent of the observed effects depended on alloy type and the maximum cyclic temperature used. Results are discussed in terms of upper and lower strength bonds calculated from the strengths of individual fibers.

  13. Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985-2014

    NASA Astrophysics Data System (ADS)

    Raggad, Bechir

    2018-05-01

    In this study, two statistical approaches were adopted in the analysis of observed maximum temperature data collected from fifteen stations over Saudi Arabia during the period 1985-2014. In the first step, the behavior of extreme temperatures was analyzed and their changes were quantified with respect to the Expert Team on Climate Change Detection Monitoring indices. The results showed a general warming trend over most stations, in maximum temperature-related indices, during the period of analysis. In the second step, stationary and non-stationary extreme-value analyses were conducted for the temperature data. The results revealed that the non-stationary model with increasing linear trend in its location parameter outperforms the other models for two-thirds of the stations. Additionally, the 10-, 50-, and 100-year return levels were found to change with time considerably and that the maximum temperature could start to reappear in the different T-year return period for most stations. This analysis shows the importance of taking account the change over time in the estimation of return levels and therefore justifies the use of the non-stationary generalized extreme value distribution model to describe most of the data. Furthermore, these last findings are in line with the result of significant warming trends found in climate indices analyses.

  14. Temperature influence on the fast pyrolysis of manure samples: char, bio-oil and gases production

    NASA Astrophysics Data System (ADS)

    Fernandez-Lopez, Maria; Anastasakis, Kostas; De Jong, Wiebren; Valverde, Jose Luis; Sanchez-Silva, Luz

    2017-11-01

    Fast pyrolysis characterization of three dry manure samples was studied using a pyrolyzer. A heating rate of 600°C/s and a holding time of 10 s were selected to reproduce industrial conditions. The effect of the peak pyrolysis temperature (600, 800 and 1000°C) on the pyrolysis product yield and composition was evaluated. Char and bio-oil were gravimetrically quantified. Scanning electron microscopy (SEM) was used to analyse the char structure. H2, CH4, CO and CO2 were measured by means of gas chromatography (GC). A decrease in the char yield and an increase of the gas yield were observed when temperature increased. From 800°C on, it was observed that the char yield of samples Dig R and SW were constant, which indicated that the primary devolatilization reactions stopped. This fact was also corroborated by GC analysis. The bio-oil yield slightly increased with temperature, showing a maximum of 20.7 and 27.8 wt.% for samples Pre and SW, respectively, whereas sample Dig R showed a maximum yield of 16.5 wt.% at 800°C. CO2 and CO were the main released gases whereas H2 and CH4 production increased with temperature. Finally, an increase of char porosity was observed with temperature.

  15. Latitudinal patterns in the life-history traits of three isolated Atlantic populations of the deep-water shrimp Plesionika edwardsii (Decapoda, Pandalidae)

    NASA Astrophysics Data System (ADS)

    González, José A.; Pajuelo, José G.; Triay-Portella, Raül; Ruiz-Díaz, Raquel; Delgado, João; Góis, Ana R.; Martins, Albertino

    2016-11-01

    Patterns in the life-history traits of the pandalid shrimp Plesionika edwardsii are studied for the first time in three isolated Atlantic populations (Madeira, Canaries and Cape Verde Islands) to gain an understanding of their latitudinal variations. The maximum carapace size of the populations studied, as well as the maximum weight, showed clear latitudinal patterns. The patterns observed may be a consequence of the temperature experienced by shrimps during development, 1.37 ° C higher in the Canaries and 5.96 ° C higher in the Cape Verde Islands than in Madeira. These temperature differences among populations may have induced phenotypic plasticity because the observed final body size decreased as the temperature increased. A latitudinal north-south pattern was also observed in the maximum size of ovigerous females, with larger sizes found in the Madeira area and lower sizes observed in the Cape Verde Islands. A similar pattern was observed in the brood size and maximum egg size. Females of P. edwardsii produced smaller eggs in the Cape Verde Islands than did those at the higher latitude in Madeira. P. edwardsii was larger at sexual maturity in Madeira than in the Cape Verde Islands. The relative size at sexual maturity is not affected by latitude or environmental factors and is the same in the three areas studied, varying slightly between 0.568 and 0.585. P. edwardsii had a long reproductive season with ovigerous females observed all year round, although latitudinal variations were observed. Seasonally, there were more ovigerous females in spring and summer in Madeira and from winter to summer in the Cape Verde Islands. P. edwardsii showed a latitudinal pattern in size, with asymptotic size and growth rate showing a latitudinal compensation gradient as a result of an increased growth performance in the Madeira population compared to that of the Cape Verde Islands.

  16. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Liu, Huixin; Le, Huijun; Chen, Yiding; Sun, Yang-Yi; Ning, Baiqi; Hu, Lianhuan; Wan, Weixing; Li, Na; Xiong, Jiangang

    2017-02-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5°N, 122.3°E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Second, the full width at half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM as a function of TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2°S, 58.8°E) station.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Zhang, Xingyi, E-mail: zhangxingyi@lzu.edu.cn; Liu, Cong

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strandmore » is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.« less

  18. Maximum Langmuir Fields in Planetary Foreshocks Determined from the Electrostatic Decay Threshold

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, Iver H.

    1995-01-01

    Maximum electric fields of Langmuir waves at planetary foreshocks are estimated from the threshold for electrostatic decay, assuming it saturates beam driven growth, and incorporating heliospheric variation of plasma density and temperature. Comparisons with spacecraft observations yields good quantitative agreement. Observations in type 3 radio sources are also in accord with this interpretation. A single mechanism can thus account for the highest fields of beam driven waves in both contexts.

  19. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA

    USGS Publications Warehouse

    Howell, P.J.; Dunham, J.B.; Sankovich, P.M.

    2010-01-01

    Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.

  20. Development and Evaluation of High-Resolution Climate Simulations Over the Mountainous Northeastern United States

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Beckage, Brian; Bucini, Gabriela; Horton, Radley M.; Clemins, Patrick J.

    2016-01-01

    The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly approximately 1/ 8 deg) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30"), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (1/ 8 deg) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.

  1. The Effects of Data Gaps on the Calculated Monthly Mean Maximum and Minimum Temperatures in the Continental United States: A Spatial and Temporal Study.

    NASA Astrophysics Data System (ADS)

    Stooksbury, David E.; Idso, Craig D.; Hubbard, Kenneth G.

    1999-05-01

    Gaps in otherwise regularly scheduled observations are often referred to as missing data. This paper explores the spatial and temporal impacts that data gaps in the recorded daily maximum and minimum temperatures have on the calculated monthly mean maximum and minimum temperatures. For this analysis 138 climate stations from the United States Historical Climatology Network Daily Temperature and Precipitation Data set were selected. The selected stations had no missing maximum or minimum temperature values during the period 1951-80. The monthly mean maximum and minimum temperatures were calculated for each station for each month. For each month 1-10 consecutive days of data from each station were randomly removed. This was performed 30 times for each simulated gap period. The spatial and temporal impact of the 1-10-day data gaps were compared. The influence of data gaps is most pronounced in the continental regions during the winter and least pronounced in the southeast during the summer. In the north central plains, 10-day data gaps during January produce a standard deviation value greater than 2°C about the `true' mean. In the southeast, 10-day data gaps in July produce a standard deviation value less than 0.5°C about the mean. The results of this study will be of value in climate variability and climate trend research as well as climate assessment and impact studies.

  2. Negative to positive magnetoresistance and magnetocaloric effect in Pr 0.6Er 0.4Al 2

    DOE PAGES

    Pathak, Arjun K.; Gschneidner, Jr., K. A.; Pecharsky, V. K.

    2014-10-13

    We report on the magnetic, magnetocaloric and magnetotransport properties of Pr 0.6Er 0.4Al 2. The title compound exhibits a large positive magnetoresistance (MR) for H ≥ 40 kOe and a small but non negligible negative MR for H ≤ 30 kOe. The maximum positive MR reaches 13% at H = 80 kOe. The magnetic entropy and adiabatic temperature changes as functions of temperature each show two anomalies: a broad dome-like maximum below 20 K and a relatively sharp peak at higher temperature. As a result, observed behaviors are unique among other binary and mixed lanthanide compounds.

  3. Overstory removal and residue treatments affect soil surface, air, and soil temperature: implications for seedling survival

    Treesearch

    Roger D. Hungerford; Ronald E. Babbitt

    1987-01-01

    Potentially lethal ground surface temperatures were measured at three locations in the Northern Rocky Mountains but occurred more frequently under treatments with greater overstory removal. Observed maximum and minimum temperatures of exposed surfaces are directly related to the thermal properties of the surface materials. Survival of planted seedlings was consistent...

  4. Skin temperature increase mediated by wearable, long duration, low-intensity therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Langer, Matthew D.; Huang, Wenyi; Ghanem, Angi; Guo, Yuan; Lewis, George K.

    2017-03-01

    One of the safety concerns with the delivery of therapeutic ultrasound is overheating of the transducer-skin interface due to poor or improper coupling. The objective of this research was to define a model that could be used to calculate the heating in the skin as a result of a novel, wearable long-duration ultrasound device. This model was used to determine that the maximum heating in the skin remained below the minimum threshold necessary to cause thermal injury over multiple hours of use. In addition to this model data, a human clinical study used wire thermocouples on the skin surface to measure heating characteristics during treatment with the sustained ultrasound system. Parametric analysis of the model determined that the maximum temperature increase is at the surface of the skin ranged from 40-41.8° C when perfusion was taken into account. The clinical data agreed well with the model predictions. The average steady state temperature observed across all 44 subjects was 40°C. The maximum temperature observed was less than 44° C, which is clinically safe for over 5 hours of human skin contact. The resultant clinical temperature data paired well with the model data suggesting the model can be used for future transducer and ultrasound system design simulation. As a result, the device was validated for thermal safety for typical users and use conditions.

  5. Doping reaction of PH3 and B2H6 with Si(100)

    NASA Astrophysics Data System (ADS)

    Yu, Ming L.; Vitkavage, D. J.; Meyerson, B. S.

    1986-06-01

    The reaction of phosphine PH3 and diborane B2H6 on Si(100) surfaces was studied by surface analytical techniques in relation to the in situ doping process in the chemical vapor deposition of silicon. Phosphine chemisorbs readily either nondissociatively at room temperature or dissociatively with the formation of silicon-hydrogen bonds at higher temperatures. Hydrogen can be desorbed at temperatures above 400 °C to generate a phosphorus layer. Phosphorus is not effective in shifting the Fermi level until the coverage reaches 2×1014/cm2. A maximum shift of 0.45 eV toward the conduction band was observed. In contrast, diborane has a very small sticking coefficient and the way to deposit boron is to decompose diborane directly on the silicon surface at temperatures above 600 °C. Boron at coverages less than 2×1014/cm2 is very effective in shifting the Fermi level toward the valence band and a maximum change of 0.4 eV was observed.

  6. Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Cammas, J.-P.; Smit, H. G. J.; Heise, S.; Wickert, J.; Haser, A.

    2010-12-01

    In this study we discuss characteristics of the Northern Hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two data sets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause, and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum, and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08 ± 0.35) km, (0.52 ± 0.10) km and (2.10 ± 0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements on board commercial aircrafts (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum, and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure.

  7. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Qiu, Shipeng; Vaidyanathan, Raj; Gaydosh, Darrell; Garg, Anita

    2011-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 113 C, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 C. The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 290 C. In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  8. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe

    2016-07-01

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.

  9. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields.

    PubMed

    Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe

    2016-07-01

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.

  10. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials.

    PubMed

    Janeczek, Maciej; Herman, Katarzyna; Fita, Katarzyna; Dudek, Krzysztof; Kowalczyk-Zając, Małgorzata; Czajczyńska-Waszkiewicz, Agnieszka; Piesiak-Pańczyszyn, Dagmara; Kosior, Piotr; Dobrzyński, Maciej

    2016-01-01

    Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved four composite restorative materials, one lining material and a dentine bonding agent. The polymerization was conducted with the use of a diode light-curing unit. The measurements of the external surface temperature of the samples were carried out using the Thermovision®550 thermal camera. Results. The examined materials significantly differed in terms of the maximum temperatures values they reached, as well as the time required for reaching the temperatures. A statistically significant positive correlation of the maximum temperature and the sample weight was observed. Conclusions. In clinical practice, it is crucial to bear in mind the risk of thermal damage involved in the application of light-cured materials. It can be reduced by using thin increments of composite materials.

  11. Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.

    NASA Astrophysics Data System (ADS)

    Yang, H. W.; Ouarda, T.

    2015-12-01

    This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.

  12. Clostridium tyrobutyricum strains show wide variation in growth at different NaCl, pH, and temperature conditions.

    PubMed

    Ruusunen, Marjo; Surakka, Anu; Korkeala, Hannu; Lindström, Miia

    2012-10-01

    Outgrowth from Clostridium tyrobutyricum spores in milk can lead to butyric acid fermentation in cheeses, causing spoilage and economical loss to the dairy industry. The aim of this study was to investigate the growth of 10 C. tyrobutyricum strains at different NaCl, pH, and temperature conditions. Up to 7.5-fold differences among the maximum growth rates of different strains in the presence of 2.0% NaCl were observed. Five of 10 strains were able to grow in the presence of 3.0% NaCl, while a NaCl concentration of 3.5% was completely inhibitory to all strains. Seven of 10 strains were able to grow at pH 5.0, and up to 4- and 12.5-fold differences were observed among the maximum growth rates of different strains at pH 5.5 and 7.5, respectively. The maximum growth temperatures varied from 40.2 to 43.3°C. The temperature of 10°C inhibited the growth of all strains, while 8 of 10 strains grew at 12 and 15°C. Despite showing no growth, all strains were able to survive at 10°C. In conclusion, wide variation was observed among different C. tyrobutyricum strains in their ability to grow at different stressful conditions. Understanding the physiological diversity among the strains is important when designing food control measures and predictive models for the growth of spoilage organisms in cheese.

  13. Magnetocaloric Effect in Ni50Mn36Sb14- x Z x (Z = Al, Ge; x = 0, 2) Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Emelyanova, S. M.; Bebenin, N. G.; Dyakina, V. P.; Chistyakov, V. V.; Dyachkova, T. V.; Tyutyunnik, A. P.; Wang, R. L.; Yang, C. P.; Sauerzopf, F.; Marchenkov, V. V.

    2018-02-01

    The temperature dependences of the electrical resistivity and magnetization of the Ni50Mn36Sb14- x Z x (Z = Al, Ge; x = 0; 2) alloys have been used to determine the characteristic phase transition temperatures. The isothermal entropy change Δ S was determined using Maxwell's equation and the field dependences of magnetization. The partial substitution of Ge for Sb has been shown to result in a slight increase in Δ S and a shift in the Δ S maximum to the low-temperature range. The substitution of Al for Sb leads to a decrease in the effect and shift in the Δ S maximum to the high-temperature range. It has been found that the maximum magnetocaloric effect has been observed for the Ni50Mn36Sb12Ge2 composition and is equal to Δ S = 1.3 J/(kg K) in a field change of 10 kOe.

  14. Evaluation of T-111 forced-convection loop tested with lithium at 1370 C. [free convection

    NASA Technical Reports Server (NTRS)

    Devan, J. H.; Long, E. L., Jr.

    1975-01-01

    A T-111 alloy (Ta-8% W-2% Hf) forced-convection loop containing molten lithium was operated 3000 hr at a maximum temperature of 1370 C. Flow velocities up to 6.3 m/sec were used, and the results of this forced-convection loop are very similar to those observed in lower velocity thermal-convection loops of T-111 containing lithium. Weight changes were determined at 93 positions around the loop. The maximum dissolution rate occurred at the maximum wall temperature of the loop and was less than 1.3 microns/year. Mass transfer of hafnium, nitrogen, and, to a lesser extent, carbon occurred from the hotter to cooler regions. Exposed surfaces in the highest temperature region were found to be depleted in hafnium to a depth of 60 microns with no detectable change in tungsten content. There was some loss in room-temperature tensile strength for specimens exposed to lithium at 1370 C, attributable to depletion of hafnium and nitrogen and to attendant grain growth.

  15. Return levels of temperature extremes in southern Pakistan

    NASA Astrophysics Data System (ADS)

    Zahid, Maida; Blender, Richard; Lucarini, Valerio; Caterina Bramati, Maria

    2017-12-01

    Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to temperature extremes. In order to improve rural and urban planning, it is useful to gather information about the recurrence of temperature extremes. In this work, return levels of the daily maximum temperature Tmax are estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. We adopt the peaks over threshold (POT) method, which has not yet been used for similar studies in this region. Two main datasets are analyzed: temperatures observed at nine meteorological stations in southern Pakistan from 1980 to 2013, and the ERA-Interim (ECMWF reanalysis) data for the nearest corresponding locations. The analysis provides the 2-, 5-, 10-, 25-, 50-, and 100-year return levels (RLs) of temperature extremes. The 90 % quantile is found to be a suitable threshold for all stations. We find that the RLs of the observed Tmax are above 50 °C at northern stations and above 45 °C at the southern stations. The RLs of the observed TWmax exceed 35 °C in the region, which is considered as a limit of survivability. The RLs estimated from the ERA-Interim data are lower by 3 to 5 °C than the RLs assessed for the nine meteorological stations. A simple bias correction applied to ERA-Interim data improves the RLs remarkably, yet discrepancies are still present. The results have potential implications for the risk assessment of extreme temperatures in Sindh.

  16. Hot and Cold

    NASA Image and Video Library

    2015-03-16

    This view shows Mercury's north polar region, colored by the maximum biannual surface temperature, which ranges from >400 K (red) to 50 K (purple). As expected for the Solar System's innermost planet, areas of Mercury's surface that are sunlit reach high temperatures, and hence most of this image is colored red! In contrast, some craters near Mercury's poles have regions that remain permanently in shadow, and in these regions even the maximum temperatures can be extremely low. Evidence from MESSENGER and Earth-based observations indicate that water ice deposits are present in these cold craters. The craters nearest Mercury' poles have surface temperatures less than 100 K (-173°C, -280°F), and water ice is stable on the surface, such as in Prokofiev. However, many craters near but somewhat farther from Mercury's poles have cold, permanently shadowed interiors, but the maximum temperature is too high for water ice to persist at the surface. In these craters, water ice is present but is buried beneath a thin, low-reflectance volatile layer likely consisting of organic-rich material, such as in Berlioz crater. http://photojournal.jpl.nasa.gov/catalog/PIA19247

  17. Spatial distribution of temperature trends and extremes over Maharashtra and Karnataka States of India

    NASA Astrophysics Data System (ADS)

    Dhorde, Amit G.; Korade, Mahendra S.; Dhorde, Anargha A.

    2017-10-01

    Earth surface temperatures are changing worldwide together with the changes in the extreme temperatures. The present study investigates trends and variations of monthly maximum and minimum temperatures and their effects on seasonal fluctuations at different climatological stations of Maharashtra and Karnataka states of India. Trend analysis was performed on annual and seasonal mean maximum temperature (TMAX) and mean minimum temperature (TMIN) for the period 1969 to 2006. During the last 38 years, an increase in annual TMAX and TMIN has occurred. At most of the locations, the increase in TMAX was faster than the TMIN, resulting in an increase in diurnal temperature range. At the same time, annual mean temperature (TM) showed a significant increase over the study area. Percentiles were used to identify extreme temperature indices. An increase in occurrence of warm extremes was observed at southern locations, and cold extremes increased over the central and northeastern part of the study area. Occurrences of cold wave conditions have decreased rapidly compared to heat wave conditions.

  18. Climate Change and Simulation of Cardiovascular Disease Mortality: A Case Study of Mashhad, Iran.

    PubMed

    Baaghideh, Mohammad; Mayvaneh, Fatemeh

    2017-03-01

    Weather and climate play a significant role in human health. We are accustomed to affects the weather conditions. By increasing or decreasing the environment temperature or change of seasons, some diseases become prevalent or remove. This study investigated the role of temperature in cardiovascular disease mortality of city of Mashhad in the current decade and its simulation in the future decades under conditions of climate change. Cardiovascular disease mortality data and the daily temperatures data were used during (2004-2013) period. First, the correlation between cardiovascular disease mortality and maximum and minimum temperatures were calculated then by using General Circulation Model, Emissions Scenarios, and temperature data were extracted for the next five decades and finally, mortality was simulated. There is a strong positive association between maximum temperature and mortality (r= 0.83, P -value<0.01), also observed a negative and weak but significant association between minimum temperatures and mortality. The results obtained from simulation show increased temperature in the next decades in Mashhad and a 1 °C increase in maximum temperature is associated with a 4.27% (95%CI: 0.91, 7.00) increase in Cardiovascular disease mortality. By increasing temperature and the number of hot days the cardiovascular disease mortality increases and these increases will be intensified in the future decades. Therefore, necessary preventive measures are required to mitigate temperature effects with greater attention to vulnerable group.

  19. Analysis of the ENSO temperature and specific humidity signals in the troposphere and lower stratosphere with global COSMIC GPS RO observations from June 2006 to June 2014

    NASA Astrophysics Data System (ADS)

    Chen, Zhiping; Luo, Jia

    2017-04-01

    The specific humidity and the temperature response of El Niño-Southern Oscillation in the troposphere and lower stratosphere (TLS) over different areas i.e., Niño 3.4 (N3.4); -5˚ S-5˚ N, 180˚ W-180˚ E (G5); -30˚ S-30˚ N, 180˚ W-180˚ E (G30); -60˚ S-60˚ N, 180˚ W-180˚ E (G60); -90˚ S-90˚ N, 180˚ W-180˚ E (G90) were investigated using Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) data from June 2006 to June 2014. The empirical orthogonal functions (EOFs) and band-pass filtering with different filtering ranges at different altitudes were used to extract the ENSO-related signals of the specific humidity and the temperature over different altitude levels in the TLS. The time series that has the maximum correlation coefficient between the ENSO-related signals and the ONI were regarded as the strongest response to ENSO. The results confirmed that the ENSO was originated from tropical Pacific Ocean. The lag time and the phase of the maximum specific humidity or temperature response to ENSO event does not show a uniform patern at different altitudes in the troposphere over different areas, but the 1-2 seasons lag ONI was found and consistent with previous study results. The maximum correlation coefficient between the specific humidity and the ONI was about 0.94 at a lag time of 3 months at about 225 hpa altitude over the statistical areas while the maximum correlation coefficients (0.91) between the temperature and the ONI was found at ˜325 hpa altitude level at a lag time of 1 month in the TLS. The well agreement between the ENSO-related signals in the troposphere and the ONI indicates that the specific humidity and temperature derived from COSMIC GPS RO observations are significant for monitoring the ENSO events.

  20. Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate

    PubMed Central

    2011-01-01

    Background Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. Methods Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. Results An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. Conclusion This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard. PMID:21241505

  1. Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous nitromethane/air mixtures.

    PubMed

    Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun

    2011-01-30

    The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Effect of temperature and humidity on pathogenicity of native Beauveria bassiana isolate against Musca domestica L.

    PubMed

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree

    2015-12-01

    Beauveria bassiana HQ917687 virulence to housefly larvae and adult was assessed at different relative humidity, RH (50, 75, 90, and 100 %) and temperature (15, 20, 25, 30, 35, 40, 45 °C) conditions at the fungal dose of 10(8) conidia/ml. Depending on the temperature and RH regime tested, difference in mortality rates of housefly adult and larvae were detected. During assay on adult housefly, 100 % mortality was achieved at RH, 90 and 100 % while the temperature of 30 °C showed maximum mortality at all the tested humidity conditions. Lethal time, LT50 was 2.9 days at 100 % RH. Larval mortality at different humidity conditions varied between 30 and 74 %, with maximum mortality at 100 % RH and 30 °C. Optimum temperature for B. bassiana virulence to housefly larvae was also found to be 30 °C. The interaction between temperature and RH revealed significant effect of RH at moderate temperature range (20-35 °C), while such an interaction was not observed at extreme temperatures. The results obtained in this study have useful implications in understanding the pathogen behavior under actual field conditions. This in turn may help devising suitable entomopathogen release schedules for maximum fungal infection.

  3. Summer temperature metrics for predicting brook trout (Salvelinus fontinalis) distribution in streams

    USGS Publications Warehouse

    Parrish, Donna; Butryn, Ryan S.; Rizzo, Donna M.

    2012-01-01

    We developed a methodology to predict brook trout (Salvelinus fontinalis) distribution using summer temperature metrics as predictor variables. Our analysis used long-term fish and hourly water temperature data from the Dog River, Vermont (USA). Commonly used metrics (e.g., mean, maximum, maximum 7-day maximum) tend to smooth the data so information on temperature variation is lost. Therefore, we developed a new set of metrics (called event metrics) to capture temperature variation by describing the frequency, area, duration, and magnitude of events that exceeded a user-defined temperature threshold. We used 16, 18, 20, and 22°C. We built linear discriminant models and tested and compared the event metrics against the commonly used metrics. Correct classification of the observations was 66% with event metrics and 87% with commonly used metrics. However, combined event and commonly used metrics correctly classified 92%. Of the four individual temperature thresholds, it was difficult to assess which threshold had the “best” accuracy. The 16°C threshold had slightly fewer misclassifications; however, the 20°C threshold had the fewest extreme misclassifications. Our method leveraged the volumes of existing long-term data and provided a simple, systematic, and adaptable framework for monitoring changes in fish distribution, specifically in the case of irregular, extreme temperature events.

  4. A three-stage hybrid model for regionalization, trends and sensitivity analyses of temperature anomalies in China from 1966 to 2015

    NASA Astrophysics Data System (ADS)

    Wu, Feifei; Yang, XiaoHua; Shen, Zhenyao

    2018-06-01

    Temperature anomalies have received increasing attention due to their potentially severe impacts on ecosystems, economy and human health. To facilitate objective regionalization and examine regional temperature anomalies, a three-stage hybrid model with stages of regionalization, trends and sensitivity analyses was developed. Annual mean and extreme temperatures were analyzed using the daily data collected from 537 stations in China from 1966 to 2015, including the annual mean, minimum and maximum temperatures (Tm, TNm and TXm) as well as the extreme minimum and maximum temperatures (TNe and TXe). The results showed the following: (1) subregions with coherent temperature changes were identified using the rotated empirical orthogonal function analysis and K-means clustering algorithm. The numbers of subregions were 6, 7, 8, 9 and 8 for Tm, TNm, TXm, TNe and TXe, respectively. (2) Significant increases in temperature were observed in most regions of China from 1966 to 2015, although warming slowed down over the last decade. This warming primarily featured a remarkable increase in its minimum temperature. For Tm and TNm, 95% of the stations showed a significant upward trend at the 99% confidence level. TNe increased the fastest, at a rate of 0.56 °C/decade, whereas 21% of the stations in TXe showed a downward trend. (3) The mean temperatures (Tm, TNm and TXm) in the high-latitude regions increased more quickly than those in the low-latitude regions. The maximum temperature increased significantly at high elevations, whereas the minimum temperature increased greatly at middle-low elevations. The most pronounced warming occurred in eastern China in TNe and northwestern China in TXe, with mean elevations of 51 m and 2098 m, respectively. A cooling trend in TXe was observed at the northwestern end of China. The warming rate in TNe varied the most among the subregions (0.63 °C/decade).

  5. Lidar measurements of mesospheric temperature inversion at a low latitude

    NASA Astrophysics Data System (ADS)

    Siva Kumar, V.; Bhavani Kumar, Y.; Raghunath, K.; Rao, P. B.; Krishnaiah, M.; Mizutani, K.; Aoki, T.; Yasui, M.; Itabe, T.

    2001-08-01

    The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5° N, 79.2° E), India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms.

  6. Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales.

    PubMed

    Gilman, Sarah E; Wethey, David S; Helmuth, Brian

    2006-06-20

    Global climate change is expected to have broad ecological consequences for species and communities. Attempts to forecast these consequences usually assume that changes in air or water temperature will translate into equivalent changes in a species' organismal body temperature. This simple change is unlikely because an organism's body temperature is determined by a complex series of interactions between the organism and its environment. Using a biophysical model, validated with 5 years of field observations, we examined the relationship between environmental temperature change and body temperature of the intertidal mussel Mytilus californianus over 1,600 km of its geographic distribution. We found that at all locations examined simulated changes in air or water temperature always produced less than equivalent changes in the daily maximum mussel body temperature. Moreover, the magnitude of body temperature change was highly variable, both within and among locations. A simulated 1 degrees C increase in air or water temperature raised the maximum monthly average of daily body temperature maxima by 0.07-0.92 degrees C, depending on the geographic location, vertical position, and temperature variable. We combined these sensitivities with predicted climate change for 2100 and calculated increases in monthly average maximum body temperature of 0.97-4.12 degrees C, depending on location and climate change scenario. Thus geographic variation in body temperature sensitivity can modulate species' experiences of climate change and must be considered when predicting the biological consequences of climate change.

  7. Surface temperatures and glassy state investigations in tribology, part 2

    NASA Technical Reports Server (NTRS)

    Bair, S. S.; Winer, W. O.

    1979-01-01

    Measurements of lubricant shear rheological behavior in the amorphous solid region and near the liquid solid transition are reported. Elastic, plastic and viscous behavior was observed. The maximum yield shear stress (limiting shear stress) is a function of temperature and pressure and is believed to be the property which determines the maximum traction in elastohydrodynamic contacts such as traction drives. A shear rheological model based on primary laboratory data is proposed for concentrated contact lubrication. The model is Maxwell model modified with a limiting shear stress. Three material properties are required: low shear stress viscosity, limiting elastic shear modulus, and the limiting shear stress the material can withstand. All three are functions of temperature and pressure.

  8. Recurrence quantification analysis of extremes of maximum and minimum temperature patterns for different climate scenarios in the Mesochora catchment in Central-Western Greece

    NASA Astrophysics Data System (ADS)

    Panagoulia, Dionysia; Vlahogianni, Eleni I.

    2018-06-01

    A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to effective proactive management of extreme phenomena. The impacts of the findings on the predictability of the extreme daily mean areal temperature patterns are also commented.

  9. Operational forecasting of daily temperatures in the Valencia Region. Part I: maximum temperatures in summer.

    NASA Astrophysics Data System (ADS)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).

  10. 3D thermal model of laser surface glazing for H13 tool steel

    NASA Astrophysics Data System (ADS)

    Kabir, I. R.; Yin, D.; Naher, S.

    2017-10-01

    In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.

  11. Impacts of Future Climate Change on Ukraine Transportation System

    NASA Astrophysics Data System (ADS)

    Khomenko, Inna

    2016-04-01

    Transportation not only affects climate, but are strongly influenced with the climate conditions, and key hubs of the transportation sector are cities. Transportation decision makers have an opportunity now to prepare for projected climate changes owing to development of emission scenarios. In the study impact of climate change on operation of road transport along highways are analyzed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean and maximum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 8 cities (Dnipropetrovsk, Khmelnytskyi, Kirovohrad, Kharkiv, Odesa, Ternopil, Vinnytsia and Voznesensk) situated down the highways. The highways of 'Odesa-Voznesensk-Dnipropetrovsk-Kharkiv' and 'Dnipropetrovsk-Kirovohrad-Vinnytsia-Khmelnytskyi-Ternopil' are considered. The first highway goes across the Black Sea Lowland, the Dnieper Upland and Dnieper Lowland, the other passes through the Dnieper and Volhynia-Podillia Uplands. The both highways are situated in steppe and forest-steppe native zones. For both scenarios, significant climate warming is registered; it is revealed in significant increase of average monthly and yearly temperature by 2-3°C in all cities in questions, and also, in considerable increment of frequency of days with maximum temperature higher than +30 and 35°C, except Kharkiv, where decrease number of days with such temperatures is observed. On the contrary, number of days with daily mean temperature being equal to or below 0°C decreases in the south of steppe, is constant in the north of steppe and increases in the forest-steppe native zone. Extreme negative temperatures don't occur in the steppe zone, but takes place in the forest-steppe zone. Results obtained shows that road surface must hold in extreme maximum temperature, and in the forest-steppe zone hazards of extreme negative temperatures must be considered. Frequency of winter events that make road surface worse such as glaze-clear ice, frozen snow that had initially melted on a warm road surface, ice and snow slippery coats etc., are high enough, especially in the forest-steppe zone. In the Black Sea Lowland among winter events the frozen snow that had initially melted on a warm road surface is most commonly observed, that is connected with high occurrence of the thaws. Because of increase in frequency of shower precipitation in all cities wet road surface is observed most frequently, especially in May and June; it must be taken into account for construction of roads, too. Monthly mean wind speed shows that in Odesa and Kharkiv significant increase in average monthly and yearly wind speeds are observed, by 0,5-1 m/s in comparison with the period of 1961 to 1990. On the contrary, in Dnipropetrovsk, wind speed decreases by 0,7 m/s. Frequency distribution of maximum wind speed shows that high wind speeds are more frequent in the winter months.

  12. Effect of various sintering temperature on resistivity behaviour and magnetoresistance of La{sub 0.67}Ba{sub 0.33}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratama, R.; Kurniawan, B., E-mail: bkuru07@gmail.com; Manaf, A.

    2016-04-19

    A detail work was conducted in order to investigate effect of various sintering temperature on resistivity behavior and its relation with the magneto-resistance effect of La{sub 0.67}Ba{sub 0.33}MnO{sub 3} (LBMO). The LBMO samples were synthesized using solid state reaction. Characterization using X-ray diffraction shows that all LBMO samples have a single phase for each variation. Variation of sintering temperature on the LBMO samples affects its lattice parameters. The resistivity measurement in an absence and under applied magnetic field resulted in a highly significant different values. In one of the sintering temperature variation of LBMO, an increasing resistivity had shown atmore » a low temperature and had reached its maximum value at a specific temperature, and then the resistivity decreases to the lowest value near the room temperature. Similar result observed at higher varieties of sintering temperature but with significant lower maximum resistivity.« less

  13. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  14. Optimum discharge energy density at room temperature in relaxor K1/2Bi1/2TiO3 for green energy harvesting

    NASA Astrophysics Data System (ADS)

    Banerjee, Krishnarjun; Asthana, Saket; Karuna Kumari, P.; Niranjan, Manish K.

    2018-03-01

    Lead-free polycrystalline K1/2Bi1/2TiO3 was prepared by the solid state reaction method. Experimentally observed frequencies of Raman modes signified its tetragonal phase, and matched reasonably well with theoretically calculated values. The relaxor nature of this material was observed in the temperature-dependent real part of the permittivity and dielectric loss curve. The value of the degree of diffuseness (1.99) was estimated from the modified Curie-Weiss law confirmed its relaxor behavior. The validation of this behavior was justified by the Vogel-Fülcher relation. The shoulder in the imaginary part of the modulus (M″) and permittivity (ɛ″) spectra revealed the presence of polar nano regions (PNRs). The evidence of PNRs was detectable above freezing temperatures, and became weaker when the temperature exceeded T m (temperature at the maximum of the dielectric constant). The electric field-induced polarization and strain curve showed the stabilization of the long-range ferroelectric order of the specimen at room temperature. Moreover, the discharge energy density and strain were 0.46 J cm-3 and 0.12%, respectively, at the maximum application of the electric field of 115 kV cm-1 at room temperature.

  15. Fabrication of setup for high temperature thermal conductivity measurement.

    PubMed

    Patel, Ashutosh; Pandey, Sudhir K

    2017-01-01

    In this work, we report the fabrication of an experimental setup for high temperature thermal conductivity (κ) measurement. It can characterize samples with various dimensions and shapes. Steady state based axial heat flow technique is used for κ measurement. Heat loss is measured using parallel thermal conductance technique. Simple design, lightweight, and small size sample holder is developed by using a thin heater and limited components. Low heat loss value is achieved by using very low thermal conductive insulator block with small cross-sectional area. Power delivered to the heater is measured accurately by using 4-wire technique and for this, the heater is developed with 4 wires. This setup is validated by using Bi 0.36 Sb 1.45 Te 3 , polycrystalline bismuth, gadolinium, and alumina samples. The data obtained for these samples are found to be in good agreement with the reported data. The maximum deviation of 6% in the value κ is observed. This maximum deviation is observed with the gadolinium sample. We also report the thermal conductivity of polycrystalline tellurium from 320 K to 550 K and the nonmonotonous behavior of κ with temperature is observed.

  16. Spatial and temporal variation in daily temperature indices in summer and winter seasons over India (1969-2012)

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.

    2017-08-01

    Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.

  17. Exposure of trees to drought-induced die-off is defined by a common climatic threshold across different vegetation types

    PubMed Central

    Mitchell, Patrick J; O'Grady, Anthony P; Hayes, Keith R; Pinkard, Elizabeth A

    2014-01-01

    Increases in drought and temperature stress in forest and woodland ecosystems are thought to be responsible for the rise in episodic mortality events observed globally. However, key climatic drivers common to mortality events and the impacts of future extreme droughts on tree survival have not been evaluated. Here, we characterize climatic drivers associated with documented tree die-off events across Australia using standardized climatic indices to represent the key dimensions of drought stress for a range of vegetation types. We identify a common probabilistic threshold associated with an increased risk of die-off across all the sites that we examined. We show that observed die-off events occur when water deficits and maximum temperatures are high and exist outside 98% of the observed range in drought intensity; this threshold was evident at all sites regardless of vegetation type and climate. The observed die-off events also coincided with at least one heat wave (three consecutive days above the 90th percentile for maximum temperature), emphasizing a pivotal role of heat stress in amplifying tree die-off and mortality processes. The joint drought intensity and maximum temperature distributions were modeled for each site to describe the co-occurrence of both hot and dry conditions and evaluate future shifts in climatic thresholds associated with the die-off events. Under a relatively dry and moderate warming scenario, the frequency of droughts capable of inducing significant tree die-off across Australia could increase from 1 in 24 years to 1 in 15 years by 2050, accompanied by a doubling in the occurrence of associated heat waves. By defining commonalities in drought conditions capable of inducing tree die-off, we show a strong interactive effect of water and high temperature stress and provide a consistent approach for assessing changes in the exposure of ecosystems to extreme drought events. PMID:24772285

  18. The influence of climate variables on dengue in Singapore.

    PubMed

    Pinto, Edna; Coelho, Micheline; Oliver, Leuda; Massad, Eduardo

    2011-12-01

    In this work we correlated dengue cases with climatic variables for the city of Singapore. This was done through a Poisson Regression Model (PRM) that considers dengue cases as the dependent variable and the climatic variables (rainfall, maximum and minimum temperature and relative humidity) as independent variables. We also used Principal Components Analysis (PCA) to choose the variables that influence in the increase of the number of dengue cases in Singapore, where PC₁ (Principal component 1) is represented by temperature and rainfall and PC₂ (Principal component 2) is represented by relative humidity. We calculated the probability of occurrence of new cases of dengue and the relative risk of occurrence of dengue cases influenced by climatic variable. The months from July to September showed the highest probabilities of the occurrence of new cases of the disease throughout the year. This was based on an analysis of time series of maximum and minimum temperature. An interesting result was that for every 2-10°C of variation of the maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue cases. For the minimum temperature, we observed that for the same variation, there was an average increase of 26.1-230.3% in the number of the dengue cases from April to August. The precipitation and the relative humidity, after analysis of correlation, were discarded in the use of Poisson Regression Model because they did not present good correlation with the dengue cases. Additionally, the relative risk of the occurrence of the cases of the disease under the influence of the variation of temperature was from 1.2-2.8 for maximum temperature and increased from 1.3-3.3 for minimum temperature. Therefore, the variable temperature (maximum and minimum) was the best predictor for the increased number of dengue cases in Singapore.

  19. Mesoscale landscape model of gypsy moth phenology

    Treesearch

    Joseph M. Russo; John G. W. Kelley; Andrew M. Liebhold

    1991-01-01

    A recently-developed high resolution climatological temperature data base was input into a gypsy moth phenology model. The high resolution data were created from a coupling of 30-year averages of station observations and digital elevation data. The resultant maximum and minimum temperatures have about a 1 km resolution which represents meteorologically the mesoscale....

  20. New results on equatorial thermospheric winds and temperatures from Ethiopia, Africa

    NASA Astrophysics Data System (ADS)

    Tesema, Fasil; Mesquita, Rafael; Meriwether, John; Damtie, Baylie; Nigussie, Melessew; Makela, Jonathan; Fisher, Daniel; Harding, Brian; Yizengaw, Endawoke; Sanders, Samuel

    2017-03-01

    Measurements of equatorial thermospheric winds, temperatures, and 630 nm relative intensities were obtained using an imaging Fabry-Perot interferometer (FPI), which was recently deployed at Bahir Dar University in Ethiopia (11.6° N, 37.4° E, 3.7° N magnetic). The results obtained in this study cover 6 months (53 nights of useable data) between November 2015 and April 2016. The monthly-averaged values, which include local winter and equinox seasons, show the magnitude of the maximum monthly-averaged zonal wind is typically within the range of 70 to 90 ms-1 and is eastward between 19:00 and 21:00 LT. Compared to prior studies of the equatorial thermospheric wind for this local time period, the magnitude is considerably weaker as compared to the maximum zonal wind speed observed in the Peruvian sector but comparable to Brazilian FPI results. During the early evening, the meridional wind speeds are 30 to 50 ms-1 poleward during the winter months and 10 to 25 ms-1 equatorward in the equinox months. The direction of the poleward wind during the winter months is believed to be mainly caused by the existence of the interhemispheric wind flow from the summer to winter hemispheres. An equatorial wind surge is observed later in the evening and is shifted to later local times during the winter months and to earlier local times during the equinox months. Significant night-to-night variations are also observed in the maximum speed of both zonal and meridional winds. The temperature observations show the midnight temperature maximum (MTM) to be generally present between 00:30 and 02:00 LT. The amplitude of the MTM was ˜ 110 K in January 2016 with values smaller than this in the other months. The local time difference between the appearance of the MTM and a pre-midnight equatorial wind was generally 60 to 180 min. A meridional wind reversal was also observed after the appearance of the MTM (after 02:00 LT). Climatological models, HWM14 and MSIS-00, were compared to the observations and the HWM14 model generally predicted the zonal wind observations well with the exception of higher model values by 25 ms-1 in the winter months. The HWM14 model meridional wind showed generally good agreement with the observations. Finally, the MSIS-00 model overestimated the temperature by 50 to 75 K during the early evening hours of local winter months. Otherwise, the agreement was generally good, although, in line with prior studies, the model failed to reproduce the MTM peak for any of the 6 months compared with the FPI data.

  1. Can uncertainties in sea ice albedo reconcile patterns of data-model discord for the Pliocene and 20th/21st centuries?

    USGS Publications Warehouse

    Howell, Fergus W.; Haywood, Alan M.; Dolan, Aisling M.; Dowsett, Harry J.; Francis, Jane E; Hill, Daniel J.; Pickering, Steven J.; Pope, James O.; Salzmann, Ulrich; Wade, Bidget S

    2014-01-01

    General Circulation Model simulations of the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Myr ago) currently underestimate the level of warming that proxy data suggest existed at high latitudes, with discrepancies of up to 11°C for sea surface temperature estimates and 17°C for surface air temperature estimates. Sea ice has a strong influence on high-latitude climates, partly due to the albedo feedback. We present results demonstrating the effects of reductions in minimum sea ice albedo limits in general circulation model simulations of the mPWP. While mean annual surface air temperature increases of up to 6°C are observed in the Arctic, the maximum decrease in model-data discrepancies is just 0.81°C. Mean annual sea surface temperatures increase by up to 2°C, with a maximum model-data discrepancy improvement of 1.31°C. It is also suggested that the simulation of observed 21st century sea ice decline could be influenced by the adjustment of the sea ice albedo parameterization.

  2. Using Multiple Metrics to Analyze Trends and Sensitivity of Climate Variability in New York City

    NASA Astrophysics Data System (ADS)

    Huang, J.; Towey, K.; Booth, J. F.; Baez, S. D.

    2017-12-01

    As the overall temperature of Earth continues to warm, changes in the Earth's climate are being observed through extreme weather events, such as heavy precipitation events and heat waves. This study examines the daily precipitation and temperature record of the greater New York City region during the 1979-2014 period. Daily station observations from three greater New York City airports: John F. Kennedy (JFK), LaGuardia (LGA) and Newark (EWR), are used in this study. Multiple statistical metrics are used in this study to analyze trends and variability in temperature and precipitation in the greater New York City region. The temperature climatology reveals a distinct seasonal cycle, while the precipitation climatology exhibits greater annual variability. Two types of thresholds are used to examine the variability of extreme events: extreme threshold and daily anomaly threshold. The extreme threshold indicates how the strength of the overall maximum is changing whereas the daily anomaly threshold indicates if the strength of the daily maximum is changing over time. We observed an increase in the frequency of anomalous daily precipitation events over the last 36 years, with the greatest frequency occurring in 2011. The most extreme precipitation events occur during the months of late summer through early fall, with approximately four expected extreme events occurring per year during the summer and fall. For temperature, the greatest frequency and variation in temperature anomalies occur during winter and spring. In addition, temperature variance is also analyzed to determine if there is greater day-to-day temperature variability today than in the past.

  3. Assessing climate change over the Marche Region (central Italy) from 1961 to 2100: projected changes in mean temperature and future heat waves characterization (with a statistical evaluation of RCMs local performance)

    NASA Astrophysics Data System (ADS)

    Sangelantoni, Lorenzo; Coluccelli, Alessandro; Russo, Aniello

    2014-05-01

    Marche region (central Italy, facing the Adriatic Sea) climate dynamics are connected to the Mediterranean basin, identified as one of the most sensitive areas to ongoing climate change. Taken into account difficulties to carry out an overarching assessment over the heterogeneous Mediterranean climate-change issues frame, we opted toward a consistent regional bordered study. Projected changes in mean seasonal temperature, with an introductory multi-statistical model performance evaluation and a future heat waves intensity and duration characterization, are here presented. Multi-model projections over Marche Region, on daily mean, minimum and maximum temperature, have been extracted from the outputs of a set of 7 Regional Climate Models (RCMs) over Europe run by several research Institutes participating to the EU ENSEMBLE project. These climate simulations from 1961 to 2100 refer to the boundary conditions of the IPCC A1B emission scenario, and have a horizontal resolution of 25km × 25km. Furthermore, two RCMs outputs from Med-CORDEX project, with a higher horizontal resolution (12km x 12km) and boundary conditions provided by the new Representative Concentration Pathway (RCP) 4.5 and 8.5, are considered. Observed daily mean, minimum and maximum temperature over Marche region domain have been extracted from E-OBS gridded data set (Version 9.0) referring to the period 1970-2004. This twofold work firstly provides a concise statistical summary of how well employed RCMs reproduce observed (1970-2004) mean temperature over Marche region in term of correlation, root-mean-square difference, and ratio of their variances, graphically displayed on a 2D-Taylor diagram. This multi-statistical model performance evaluation easily allows: - to compare the agreement with observation of the 9 individual RCMs - to compare RCMs with different horizontal resolution (12 km and 25 km) - to evaluate the improvement provided by the RCMs ensemble. Results indicate that the 9 RCMs ensemble provides the statistically best reproduction of the observed interannual mean temperature distribution. Secondly, we assessed projected seasonal ensemble average change in mean temperature referring to the ending 21st century obtained by comparison between 2071-2100 and 1961-1990 time slice modeled mean value over Marche region. Results emphasize summer as the season most affected by projected temperature increase (+4.5°C / +5.0°C), followed by spring season temperature increase (+3.5°C / +4.0°C). Finally, considering that some of the most severe health hazards arise from multi-day heat-waves, associated with both hot day-time and warm night-time temperatures, we assessed modeled trend (1961-2100) of the heat waves intensity and duration: intensity through the temporal evolution of the summer (J J A months) maximum and minimum temperature 90th percentile, heat waves length by temporal evolution of two detected threshold-based indices (annual maximum number of consecutive days characterized by Tmin >= 24°C and annual maximum number of consecutive days characterized by Tmax > = 32°C). Same analysis for both coastal and mountainous areas has been conducted. Future research plans aim to involve ensemble RCMs simulation, processed with bias correction methods, in forcing climate change impacts models, to provide a detailed regional heat waves impacts scenario, mainly over agriculture and health sectors.

  4. Model evaluation of temperature dependency for carbon and nitrogen removal in a full-scale activated sludge plant treating leather-tanning wastewater.

    PubMed

    Görgün, Erdem; Insel, Güçlü; Artan, Nazik; Orhon, Derin

    2007-05-01

    Organic carbon and nitrogen removal performance of a full-scale activated sludge plant treating pre-settled leather tanning wastewater was evaluated under dynamic process temperatures. Emphasis was placed upon observed nitrogen removal depicting a highly variable magnitude with changing process temperatures. As the plant was not specifically designed for this purpose, observed nitrogen removal could be largely attributed to simultaneous nitrification and denitrification presumably occurring at increased process temperatures (T>25 degrees C) and resulting low dissolved oxygen levels (DO<0.5 mgO2/L). Model evaluation using long-term data revealed that the yearly performance of activated sludge reactor could be successfully calibrated by means of temperature dependent parameters associated with nitrification, hydrolysis, ammonification and endogenous decay parameters. In this context, the Arrhenius coefficients of (i) for the maximum autotrophic growth rate, [image omitted]A, (ii) maximum hydrolysis rate, khs and (iii) endogenous heterotrophic decay rate, bH were found to be 1.045, 1.070 and 1.035, respectively. The ammonification rate (ka) defining the degradation of soluble organic nitrogen could not be characterized however via an Arrhenius-type equation.

  5. The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment

    NASA Astrophysics Data System (ADS)

    Williams, J.-P.; Paige, D. A.; Greenhagen, B. T.; Sefton-Nash, E.

    2017-02-01

    The Diviner Lunar Radiometer Experiment onboard the Lunar Reconnaissance Orbiter (LRO) has been acquiring solar reflectance and mid-infrared radiance measurements nearly continuously since July of 2009. Diviner is providing the most comprehensive view of how regoliths on airless bodies store and exchange thermal energy with the space environment. Approximately a quarter trillion calibrated radiance measurements of the Moon, acquired over 5.5 years by Diviner, have been compiled into a 0.5° resolution global dataset with a 0.25 h local time resolution. Maps generated with this dataset provide a global perspective of the surface energy balance of the Moon and reveal the complex and extreme nature of the lunar surface thermal environment. Our achievable map resolution, both spatially and temporally, will continue to improve with further data acquisition. Daytime maximum temperatures are sensitive to the albedo of the surface and are ∼387-397 K at the equator, dropping to ∼95 K just before sunrise, though anomalously warm areas characterized by high rock abundances can be > 50 K warmer than the zonal average nighttime temperatures. An asymmetry is observed between the morning and afternoon temperatures due to the thermal inertia of the lunar regolith with the dusk terminator ∼30 K warmer than the dawn terminator at the equator. An increase in albedo with incidence angle is required to explain the observed decrease in temperatures with latitude. At incidence angles exceeding ∼40°, topography and surface roughness influence temperatures resulting in increasing scatter in temperatures and anisothermality between Diviner channels. Nighttime temperatures are sensitive to the thermophysical properties of the regolith. High thermal inertia (TI) materials such as large rocks, remain warmer during the long lunar night and result in anomalously warm nighttime temperatures and anisothermality in the Diviner channels. Anomalous maximum and minimum temperatures are highlighted by subtracting the zonal mean temperatures from maps. Terrains can be characterized as low or high reflectance and low or high TI. Low maximum temperatures result from high reflectance surfaces while low minimum temperatures from low-TI material. Conversely, high maximum temperatures result from dark surface, and high minimum temperatures from high-TI materials. Impact craters are found to modify regolith properties over large distances. The thermal signature of Tycho is asymmetric, consistent with an oblique impact coming from the west. Some prominent crater rays are visible in the thermal data and require material with a higher thermal inertial than nominal regolith. The influence of the formation of the Orientale basin on the regolith properties is observable over a substantial portion of the western hemisphere despite its age (∼3.8 Gyr), and may have contributed to mixing of highland and mare material on the southwest margin of Oceanus Procellarum where the gradient in radiative properties at the mare-highland contact is broad (∼200 km).

  6. Station Blackout Analysis of HTGR-Type Experimental Power Reactor

    NASA Astrophysics Data System (ADS)

    Syarip; Zuhdi, Aliq; Falah, Sabilul

    2018-01-01

    The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.

  7. A Reconstruction of Temperature and δ18O Data Since the Last Glacial Maximum Using Soil and Gastropods from the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Mitsunaga, B.; Mering, J. A.; Eagle, R.; Bricker, H. L.; Davila, N.; Trewman, S.; Burford, S.; Li, G.; Tripati, A. K.

    2016-12-01

    The climate of the Chinese Loess Plateau is affected by the East Asian Monsoon, an important water source for over a billion people. We are examining how temperature and hydrology on the Loess Plateau has changed since the Last Glacial Maximum (18,000 - 23,000 years before the present) in response to insolation, deglaciation, and rising levels of greenhouse gases. Specifically, we are reconstructing temperature and meteoric δ18O through paired clumped and oxygen isotope analyses performed on carbonate minerals. Clumped isotope thermometry—the use of 13C—18O bond frequency in carbonates—is a novel geochemical proxy that provides constraints on mineral formation temperatures and can be combined with carbonate δ18O to quantify meteoric δ18O. We have measured a suite of nodular loess concretions and gastropod shells from the modern as well as the Last Glacial Maximum from 15 sites across the Chinese Loess Plateau. These observations constrain spatial variations in temperature and precipitation, which in turn will provide key constraints on models that simulate changes in regional climates and monsoon intensity over the last 20,000 years.

  8. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a temperature-dependent quantum efficiency term, and is directly driven by bulk photocatalyst crystal parameters: maximum phonon energy and the number of phonons allowed per unit cell. This analysis extends to multiple photocatalysts and can explain experimental observations of photocatalytic oxidation rates with varied reactant concentrations. Lastly, this dissertation applies this knowledge to a thermo-catalytic reaction (CO-oxidation) using a Au/TiO 2 catalyst. The combined photo/thereto-catalytic reaction showed a 10-25% increase in CO conversion during a temperature programmed reaction experiment.

  9. Stable water isotope behavior during the last glacial maximum: A general circulation model analysis

    NASA Technical Reports Server (NTRS)

    Jouzel, Jean; Koster, Randal D.; Suozzo, Robert J.; Russell, Gary L.

    1994-01-01

    Global water isotope geochemisty during the last glacial maximum (LGM) is simulated with an 8 deg x 10 deg atmospheric general circulation model (GCM). The simulation results suggest that the spatial delta O-18/temperature relationships observed for the present day and LGM climates are very similar. Furthermore, the temporal delta O-18/temperature relationship is similar to the present-day spatial relationship in regions for which the LGM/present-day temperature change is significant. This helps justify the standard practice of applying the latter to the interpretation of paleodata, despite the possible influence of other factors, such as changes in the evaportive sources of precipitation or in the seasonality of precipitation. The model suggests, for example, that temperature shifts inferred from ice core data may differ from the true shifts by only about 30%.

  10. Distant Massive Clusters and Cosmology

    NASA Technical Reports Server (NTRS)

    Donahue, Megan

    1999-01-01

    We present a status report of our X-ray study and analysis of a complete sample of distant (z=0.5-0.8), X-ray luminous clusters of galaxies. We have obtained ASCA and ROSAT observations of the five brightest Extended Medium Sensitivity (EMSS) clusters with z > 0.5. We have constructed an observed temperature function for these clusters, and measured iron abundances for all of these clusters. We have developed an analytic expression for the behavior of the mass-temperature relation in a low-density universe. We use this mass-temperature relation together with a Press-Schechter-based model to derive the expected temperature function for different values of Omega-M. We combine this analysis with the observed temperature functions at redshifts from 0 - 0.8 to derive maximum likelihood estimates for the value of Omega-M. We report preliminary results of this analysis.

  11. Effects of increasing aerosol on regional climate change in China: Observation and modeling

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Leung, L.; Ghan, S. J.

    2002-12-01

    We present regional simulations of climate, aerosol properties, and direct radiative forcing and climatic effects of aerosol and analyze the pollutant emissions and observed climatic data during the latter decades of last century in China. The regional model generally captures the spatial distributions and seasonal pattern of temperature and precipitation. Aerosol extinction coefficient and aerosol optical depth are generally well simulated in both magnitude and spatial distribution, which provides a reliable foundation for estimating the radiative forcing and climatic effects of aerosol. The radiative forcing of aerosol is in the range of -1 to -14 W m-2 in autumn and summer and -1 to -9 W m-2 in spring and winter, with substantial spatial variability at the sub-regional scale. A strong maximum in negative radiative forcing corresponding to the maximum optical depth is found over the Sichuan Basin, where emission as well as relative humidity are high, and stagnant atmospheric conditions inhibit pollutants dispersion. Negative radiative forcing of aerosol induces a surface cooling, which is stronger in the range of -0.6 to -1.2oC in autumn and winter than in spring (-0.3 to -0.6oC) and summer (0.0 to -0.9oC) over the Sichuan Basin and East China due to more significant effects of cloud and precipitation in the summer and spring. Aerosol-induced cooling is mainly contributed by cooling in the daytime temperature. The cooling reaches a maximum and is statistically significant in the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of temperature trends observed in the second half of the twentieth century, including the asymmetric daily maximum and minimum temperature trends, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. It supports the hypothesis that the observed temperature trends during the latter decades of the twentieth century, especially the cooling trends over the Sichuan Basin and some parts of East China, which are exceptions to the large scale warming trend in the northern hemisphere, are at least partly related to the cooling induced by atmospheric aerosol loading that has been increasing since the middle of the last century.

  12. Comet 67P: Thermal Maps and Local Properties as Derived from Rosetta/VIRTIS data

    NASA Astrophysics Data System (ADS)

    Tosi, Federico; Capria, Maria Teresa; Capaccioni, Fabrizio; Filacchione, Gianrico; Erard, Stéphane; Leyrat, Cédric; Bockelée-Morvan, Dominique; De Sanctis, Maria Cristina; Raponi, Andrea; Ciarniello, Mauro; Schmitt, Bernard; Arnold, Gabriele; Mottola, Stefano; Fonti, Sergio; Palomba, Ernesto; Longobardo, Andrea; Cerroni, Priscilla; Piccioni, Giuseppe; Drossart, Pierre; Kuehrt, Ekkehard

    2015-04-01

    Comet 67P is shown to be everywhere rich in organic materials with little to no water ice visible on the surface. In the range of heliocentric distances from 3.59 to 2.74 AU, daytime observed surface temperatures retrieved from VIRTIS data are overall comprised in the range between 180 and 220 K, which is incompatible with large exposures of water ice and is consistent with a low-albedo, organics-rich surface. The accuracy of temperature retrieval is as good as a few K in regions of the comet unaffected by shadowing or limb proximity. Maximum temperature values as high as 230 K have been recorded in very few places. The highest values of surface temperature in the early Mapping phase were obtained in August 2014, during observations at small phase angles implying that the observed surface has a large predominance of small incidence angles, and local solar times (LST) centered around the maximum daily insolation. In all cases, direct correlation with topographic features is observed, i.e. largest temperature values are generally associated with the smallest values of illumination angles. So far, there is no evidence of thermal anomalies, i.e. places of the surface that are intrinsically warmer or cooler than surrounding terrains observed at the same local solar time and under similar solar illumination. For a given LST, the maximum temperature mainly depends on the solar incidence angle and on surface properties such as thermal inertia and albedo. Since VIRTIS is able to observe the same point of the surface on various occasions under different conditions of solar illumination and LST, it is possible to reconstruct the temperature of that point at different times of the comet's day, thus building diurnal profiles of temperature that are useful to constrain thermal inertia. The availability of spatially-resolved, accurate temperature observations, significantly spaced out in local solar time, provides clues to the physical structure local features, which complements the compositional investigation based on imaging spectroscopy data collected at shorter wavelengths. In the VIRTIS thermal images, a note of great interest is provided by the 'neck' of the comet close to the 'body', where, because of the concave shape, the 'head' casts prominent shadows on some areas when they experience maximum daily insolation. This is a place potentially subjected to considerable thermal stresses. We evaluate both the spatial thermal gradients and the temporal thermal gradients, providing implications for the surface structure. Acknowledgements: The authors would like to thank the following institutions and agencies, which supported this work: Italian Space Agency (ASI - Italy), Centre National d'Etudes Spatiales (CNES- France), Deutsches Zentrum für Luft- und Raumfahrt (DLR-Germany), National Aeronautic and Space Administration (NASA-USA) Rosetta Program, Science and Technology Facilities Council (UK). VIRTIS has been built by a consortium, which includes Italy, France and Germany, under the scientific responsibility of the Istituto di Astrofisica e Planetologia Spaziali of INAF, Italy, which guides also the scientific operations. The VIRTIS instrument development has been funded and managed by ASI, with contributions from Observatoire de Meudon financed by CNES, and from DLR. The computational resources used in this research have been supplied by INAF-IAPS through the DataWell project.

  13. Changes of atmospheric properties over Belgrade, observed using remote sensing and in situ methods during the partial solar eclipse of 20 March 2015

    NASA Astrophysics Data System (ADS)

    Ilić, L.; Kuzmanoski, M.; Kolarž, P.; Nina, A.; Srećković, V.; Mijić, Z.; Bajčetić, J.; Andrić, M.

    2018-06-01

    Measurements of atmospheric parameters were carried out during the partial solar eclipse (51% coverage of solar disc) observed in Belgrade on 20 March 2015. The measured parameters included height of the planetary boundary layer (PBL), meteorological parameters, solar radiation, surface ozone and air ions, as well as Very Low Frequency (VLF, 3-30 kHz) and Low Frequency (LF, 30-300 kHz) signals to detect low-ionospheric plasma perturbations. The observed decrease of global solar and UV-B radiation was 48%, similar to the solar disc coverage. Meteorological parameters showed similar behavior at two measurement sites, with different elevations and different measurement heights. Air temperature change due to solar eclipse was more pronounced at the lower measurement height, showing a decrease of 2.6 °C, with 15-min time delay relative to the eclipse maximum. However, at the other site temperature did not decrease; its morning increase ceased with the start of the eclipse, and continued after the eclipse maximum. Relative humidity at both sites remained almost constant until the eclipse maximum and then decreased as the temperature increased. The wind speed decreased and reached minimum 35 min after the last contact. The eclipse-induced decrease of PBL height was about 200 m, with minimum reached 20 min after the eclipse maximum. Although dependent on UV radiation, surface ozone concentration did not show the expected decrease, possibly due to less significant influence of photochemical reactions at the measurement site and decline of PBL height. Air-ion concentration decreased during the solar eclipse, with minimum almost coinciding with the eclipse maximum. Additionally, the referential Line-of-Sight (LOS) radio link was set in the area of Belgrade, using the carrier frequency of 3 GHz. Perturbation of the receiving signal level (RSL) was observed on March 20, probably induced by the solar eclipse. Eclipse-related perturbations in ionospheric D-region were detected based on the VLF/LF signal variations, as a consequence of Lyα radiation decrease.

  14. Observational Characteristics of the Tropopause Inversion Layer derived from CHAMP/GRACE Radio Occultations and MOZAIC Aircraft Data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Cammas, J.; Heise, S.; Wickert, J.; Haser, A.

    2010-12-01

    In this study we discuss characteristics of the northern hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two datasets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08±0.35) km, (0.52±0.10) km and (2.10±0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements onboard commercial aircrafts (MOZAIC program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure. Using O3-CO correlations we also show that on average the highest mixing occurs in a layer less than 1 km above the thermal tropopause, i.e., within the TIL.

  15. High-temperature responses of North American cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.D.; Didden-Zopfy, B.; Nobel, P.S.

    1984-04-01

    High-temperature tolerances of 14 species of North American cacti were investigated. A reduction in the proportion of chlorenchyma cells taking up a vital stain (neutral red) and reduced nocturnal acid accumulation were used as indicators of high-temperature damage. All species tolerated relatively high tissue temperatures, the mean maximum tolerance being 64/sup 0/C, with an absolute maximum of 69/sup 0/ for two species of ferocactus. Such tissue tolerances to high temperature may be unsurpassed in vascular plants. Morphological features can affect tissue temperatures. Specifically, thin-stemmed species such as the cylindropuntias attain lower maximum temperatures under identical microclimatic conditions than do moremore » massive species; they also tend to be less tolerant of high-temperature stress. Stem diameter changes of three species of columnar ceriod cacti along a Sonoran Desert latitudinal transect were previously attributed to adaptation to progressively colder temperatures northward. Such changes can also be interpreted as a morphological adaptation to high temperatures, particularly in the southern Sonoran Desert. Interspecific differences in high-temperature tolerance may account for distributional differences among other species. Acclimation of high-temperature tolerances in response to increasing day/night air temperatures was observed in all 14 species, especially at higher growh temperatures. From 40/sup 0/ day/30/sup 0/ night to 50/sup 0//40/sup 0/, the tolerable tissue temperatures increased an average of 6/sup 0/. Half-times for the acclimation shifts were 1-3d. Although cacti attain extremely high tissue temperatures in desert habitats, tolerance of high temperatures and pronounced acclimation potential allow them to occur in some of the hottest habitats in North America.« less

  16. Water ice clouds observations with PFS on Mars Express

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Zasova, L. V.; Formisano, V.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Maturilli, A.; Pfs Team

    The water ice cloud observation is one of the scientific goals of PFS. Presence and properties of the ice particles are identified from absorption features, observed in both spectral ranges of PFS. Being in the near perihelion condition, the temperature of the Martian atmosphere is pretty high and ice clouds exist only in some places, for example, related to topography or at north high latitudes et etc. The ice clouds are observed often above the tops of the volcanoes. We have found the ice clouds above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Effective radius of particles according to the thermal IR is preliminary estimated of 1 μ m, which leads to the visual opacity of 0.2 -0.3 above Olympus and of maximum of 0.6 above Ascraeus Mons. In the case of Ascraeus Mons the ice clouds are observed on the south slope near the top of the volcano. The maximum surface temperature, observed there, results in the upward flux of warm air, which, cooling, provides the condensation of H2O. We will present a detailed analysis of the ice clouds, observed over the planet in the IR spectral range.

  17. Investigation of temperature and its indices under climate change scenarios over different regions of Rajasthan state in India

    NASA Astrophysics Data System (ADS)

    Sharma, Aditya; Sharma, Devesh; Panda, S. K.; Dubey, Swatantra Kumar; Pradhan, Rajani K.

    2018-02-01

    The ongoing increases in concentrations of atmospheric greenhouse gas will most likely affect global climate for the rest of this century. Global warming brings a huge provocation to society and human beings. Single extreme events and increased climate variability have a greater impact than long-term changes in the mean of climatic variables. This study analyzed the temperature projections for Rajasthan state, India using data obtain from two General Circulation Models (GFCM21 and HadCM3) for three Intergovernmental Panel on Climate Change (IPCC) Special Range of Emission Scenarios (SRES) A1B, A2, and B1. A 30 years of maximum (Tmax) and minimum (Tmin) temperature for the period 1976-2005 has been obtained from India Meteorological Department (IMD) and by using LARS-WG5 to generate the long-term weather series for three different periods i.e. 2011-2040 (2025s), 2041-2070 (2055s), and 2071-2100 (2085s). Further to determine the changes in extreme temperature events, the data for the baseline period and the future periods was represented by eight extreme temperature indices. Results illustrate that an increase in minimum and the maximum temperature are observed in all the three future periods. The average mean temperature for base period and three future periods over four regions of Rajasthan was observed highest in region 3 which shows an incessantly increased in mean temperature about 2.6 °C i.e. north-east and north-west part of Rajasthan. Two GCMs depicts that the incessant temperatures may be increase in the future and future maximum temperature in all the seasons varies from 2.43 °C to 4.27 °C in the direction from south to north of Rajasthan during 2071-2100. While for minimum temperature, the range of temperature changes varies from 0.23 °C to 1.42 °C from south-east to north-west of Rajasthan during 2011-2040. In the temperature indices, the number of tropical nights (TR20), warmest day (TX90p), warmest night (TN90p) and summer days (SU25) is expected to increase during all three future periods. The maximum changes was found in region 2 (39.4 days) and region 1 (38.8 days) during the 2071-2100 periods, followed by 2041-2070 and 2011-2040. In all the four regions, the annual occurrence of Cold Spells Duration Indicator (CSDI) decreased and Warm Spells Duration Indicator (WSDI) increased for all three future periods.

  18. Changes in heat waves indices in Romania over the period 1961-2015

    NASA Astrophysics Data System (ADS)

    Croitoru, Adina-Eliza; Piticar, Adrian; Ciupertea, Antoniu-Flavius; Roşca, Cristina Florina

    2016-11-01

    In the last two decades many climate change studies have focused on extreme temperatures as they have a significant impact on environment and society. Among the weather events generated by extreme temperatures, heat waves are some of the most harmful. The main objective of this study was to detect and analyze changes in heat waves in Romania based on daily observation data (maximum and minimum temperature) over the extended summer period (May-Sept) using a set of 10 indices and to explore the spatial patterns of changes. Heat wave data series were derived from daily maximum and minimum temperature data sets recorded in 29 weather stations across Romania over a 55-year period (1961-2015). In this study, the threshold chosen was the 90th percentile calculated based on a 15-day window centered on each calendar day, and for three baseline periods (1961-1990, 1971-2000, and 1981-2010). Two heat wave definitions were considered: at least three consecutive days when maximum temperature exceeds 90th percentile, and at least three consecutive days when minimum temperature exceeds 90th percentile. For each of them, five variables were calculated: amplitude, magnitude, number of events, duration, and frequency. Finally, 10 indices resulted for further analysis. The main results are: most of the indices have statistically significant increasing trends; only one index for one weather station indicated statistically significant decreasing trend; the changes are more intense in case of heat waves detected based on maximum temperature compared to those obtained for heat waves identified based on minimum temperature; western and central regions of Romania are the most exposed to increasing heat waves.

  19. Middle Holocene thermal maximum in eastern Beringia

    NASA Astrophysics Data System (ADS)

    Kaufman, D. S.; Bartlein, P. J.

    2015-12-01

    A new systematic review of diverse Holocene paleoenvironmental records (Kaufman et al., Quat. Sci. Rev., in revision) has clarified the primary multi-centennial- to millennial-scale trends across eastern Beringia (Alaska, westernmost Canada and adjacent seas). Composite time series from midges, pollen, and biogeochemical indicators are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies. The paleo observations are also compared with recently published simulations (Bartlein et al., Clim. Past Discuss., 2015) that used a regional climate model to simulate the effects of global and regional-scale forcings at 11 and 6 ka. During the early Holocene (11.5-8 ka), rather than a prominent thermal maximum as suggested previously, the newly compiled paleo evidence (mostly sensitive to summer conditions) indicates that temperatures were highly variable, at times both higher and lower than present, although the overall lowest average temperatures occurred during the earliest Holocene. During the middle Holocene (8-4 ka), glaciers retreated as the regional average temperature increased to a maximum between 7 and 5 ka, as reflected in most proxy types. The paleo evidence for low and variable temperatures during the early Holocene contrasts with more uniformly high temperatures during the middle Holocene and agrees with the climate simulations, which show that temperature in eastern Beringia was on average lower at 11 ka and higher at 6 ka than at present (pre-industrial). Low temperatures during the early Holocene can be attributed in part to the summer chilling caused by flooding the continental shelves, whereas the mid-Holocene thermal maximum was likely driven by the loss of the Laurentide ice sheet, rise in greenhouse gases, higher-than-present summer insolation, and expansion of forest over tundra.

  20. Observation of nonlinear dissipation in piezoresistive diamond nanomechanical resonators by heterodyne down-mixing.

    PubMed

    Imboden, Matthias; Williams, Oliver A; Mohanty, Pritiraj

    2013-09-11

    We report the observation of nonlinear dissipation in diamond nanomechanical resonators measured by an ultrasensitive heterodyne down-mixing piezoresistive detection technique. The combination of a hybrid structure as well as symmetry breaking clamps enables sensitive piezoresistive detection of multiple orthogonal modes in a diamond resonator over a wide frequency and temperature range. Using this detection method, we observe the transition from purely linear dissipation at room temperature to strongly nonlinear dissipation at cryogenic temperatures. At high drive powers and below liquid nitrogen temperatures, the resonant structure dynamics follows the Pol-Duffing equation of motion. Instead of using the broadening of the full width at half-maximum, we propose a nonlinear dissipation backbone curve as a method to characterize the strength of nonlinear dissipation in devices with a nonlinear spring constant.

  1. Performance of a New Model for Predicting End of Flowering Date (bbch 69) of Grapevine (Vitis Vinifera L.)

    NASA Astrophysics Data System (ADS)

    Gentilucci, Matteo

    2017-04-01

    The end of flowering date (BBCH 69) is an important phenological stage for grapevine (Vitis Vinifera L.), in fact up to this date the growth is focused on the plant and gradually passes on the berries through fruit set. The aim of this study is to perform a model to predict the date of the end of flowering (BBCH69) for some grapevine varieties. This research carried out using three cultivars of grapevine (Maceratino, Montepulciano, Sangiovese) in three different locations (Macerata, Morrovalle and Potenza Picena), places of an equal number of wine farms for the time interval between 2006 and 2013. In order to have reliable temperatures for each location, the data of 6 weather stations near these farms have been interpolated using cokriging methods with elevation as independent variable. The procedure to predict the end of flowering date starts with an investigation of cardinal temperatures typical of each grapevine cultivar. In fact the analysis is characterized by four temperature thresholds (cardinals): minimum activity temperature (TCmin = below this temperature there is no growth for the plant), lower optimal temperature (TLopt = above this temperature there is maximum growth), upper optimal temperature (TUopt = below this temperature there is maximum growth) and maximum activity temperature (TC max = above this temperature there is no growth). Thus this model take into consideration maximum, mean and minimum daily temperatures of each location, relating them with the four above mentioned cultivar temperature thresholds. In this way it has been obtained some possible cases (32) corresponding to as many equations, depending on the position of temperatures compared with the thresholds, in order to calculate the amount of growing degree units (GDU) for each day. Several iterative tests (about 1000 for each cultivar) have been performed, changing the values of temperature thresholds and GDU in order to find the best possible combination which minimizes error between observed and predicted days from budburst to end of flowering. It has been assessed the minimization of error for the predicted dates compared with real ones, calculating some statistical indexes as root mean square error, mean absolute error and coefficient of variation. The procedure led to the identification of four cardinal temperatures and the amount of GDU for each cultivar between BBCH01 (budburst) and BBCH69 (end of flowering). In conclusion, this research has achieved some goals such as the plant response to temperature (same cardinal temperatures for Maceratino and Sangiovese but higher ones for Montepulciano), the interval ranging of growing degree units (from 35 to 38) and the differences between observed and predicted days (ranged from 2 to 3.5), for each grape varieties.

  2. Room temperature ferromagnetism in transition metal-doped black phosphorous

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaohong; Zhang, Xinwei; Xiong, Fang; Hua, Zhenghe; Wang, Zhihe; Yang, Shaoguang

    2018-05-01

    High pressure high temperature synthesis of transition metal (TM = V, Cr, Mn, Fe, Co, Ni, and Cu) doped black phosphorus (BP) was performed. Room temperature ferromagnetism was observed in Cr and Mn doped BP samples. X-ray diffraction and Raman measurements revealed pure phase BP without any impurity. Transport measurements showed us semiconducting character in 5 at. % doped BP samples Cr5%P95% and Mn5%P95%. The magnetoresistance (MR) studies presented positive MR in the relatively high temperature range and negative MR in the low temperature range. Compared to that of pure BP, the maximum MR was enhanced in Cr5%P95%. However, paramagnetism was observed in V, Fe, Co, Ni, and Cu doped BP samples.

  3. Mechanical properties of electron-beam-melted molybdenum and dilute molybdenum-rhenium alloys

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Witzke, W. R.

    1972-01-01

    A study of molybdenum and three dilute molybdenum-rhenium alloys was undertaken to determine the effects of rhenium on the low temperature ductility and other mechanical properties of molybdenum. Alloys containing 3.9, 5.9, and 7.7 atomic percent rhenium exhibited lower ductile-brittle transition temperatures than did the unalloyed molybdenum. The maximum improvement in the annealed condition was observed for molybdenum - 7.7 rhenium, which had a ductile-brittle transition temperature approximately 200 C (360 F) lower than that for unalloyed molybdenum. Rhenium additions also increased the low and high temperature tensile strengths and the high temperature creep strength of molybdenum. The mechanical behavior of dilute molybdenum-rhenium alloys is similar to that observed for dilute tungsten-rhenium alloys.

  4. The effect of temperature and loading frequency on the converse piezoelectric response of soft PZT ceramics

    NASA Astrophysics Data System (ADS)

    Dapeng, Zhu; Qinghui, Jiang; Yingwei, Li

    2017-12-01

    The converse piezoelectric coefficient d 33 of soft PZT ceramics was measured from 20 °C to 150 °C under different loading frequency. Results showed that in the tested temperature range, the evolution of d 33 obeys the Rayleigh-law behavior. The influence of temperature on d 33 is a little complicated. For instance, the maximum d 33 was observed at 150 °C when the applied electric field E was at 0.1 kV mm-1. When E increased to 0.3 kV mm-1 and 0.4 kV mm-1, the maximum d 33 was observed at 120 °C and 100 °C, respectively. Such behaviors are rationalized by the evolution of the Rayleigh parameters d init and α. For d init, it increases as temperature increases. While for α, it first increases and then decreases with the increase of temperature due to the evolution of the spontaneous strain and the volume of the switched domains. In the tested loading frequency, d 33 decreased linearly with the logarithm of the frequency of electric field. With the increase of temperature, the influence of frequency on d 33 gradually weakened, implying that at high temperature, the motion of domain walls became active and the pinning effect of defects nearly disappeared.

  5. Diagnosis of Middle Atmosphere Climate Sensitivity by the Climate Feedback Response Analysis Method

    NASA Technical Reports Server (NTRS)

    Zhu, Xun; Yee, Jeng-Hwa; Cai, Ming; Swartz, William H.; Coy, Lawrence; Aquila, Valentina; Talaat, Elsayed R.

    2014-01-01

    We present a new method to diagnose the middle atmosphere climate sensitivity by extending the Climate Feedback-Response Analysis Method (CFRAM) for the coupled atmosphere-surface system to the middle atmosphere. The Middle atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves the CFRAM unique feature of an additive property for which the sum of all partial temperature changes due to variations in external forcing and feedback processes equals the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. MCFRAM is applied to both measurements and model output fields to diagnose the middle atmosphere climate sensitivity. It is found that the largest component of the middle atmosphere temperature response to the 11-year solar cycle (solar maximum vs. solar minimum) is directly from the partial temperature change due to the variation of the input solar flux. Increasing CO2 always cools the middle atmosphere with time whereas partial temperature change due to O3 variation could be either positive or negative. The partial temperature changes due to different feedbacks show distinctly different spatial patterns. The thermally driven globally averaged partial temperature change due to all radiative processes is approximately equal to the observed temperature change, ranging from 0.5 K near 70 km from the near solar maximum to the solar minimum.

  6. Time trends in minimum mortality temperatures in Castile-La Mancha (Central Spain): 1975-2003

    NASA Astrophysics Data System (ADS)

    Miron, Isidro J.; Criado-Alvarez, Juan José; Diaz, Julio; Linares, Cristina; Mayoral, Sheila; Montero, Juan Carlos

    2008-03-01

    The relationship between air temperature and human mortality is described as non-linear, with mortality tending to rise in response to increasingly hot or cold ambient temperatures from a given minimum mortality or optimal comfort temperature, which varies from some areas to others according to their climatic and socio-demographic characteristics. Changes in these characteristics within any specific region could modify this relationship. This study sought to examine the time trend in the maximum temperature of minimum organic-cause mortality in Castile-La Mancha, from 1975 to 2003. The analysis was performed by using daily series of maximum temperatures and organic-cause mortality rates grouped into three decades (1975-1984, 1985-1994, 1995-2003) to compare confidence intervals ( p < 0.05) obtained by estimating the 10-yearly mortality rates corresponding to the maximum temperatures of minimum mortality calculated for each decade. Temporal variations in the effects of cold and heat on mortality were ascertained by means of ARIMA models (Box-Jenkins) and cross-correlation functions (CCF) at seven lags. We observed a significant decrease in comfort temperature (from 34.2°C to 27.8°C) between the first two decades in the Province of Toledo, along with a growing number of significant lags in the summer CFF (1, 3 and 5, respectively). The fall in comfort temperature is attributable to the increase in the effects of heat on mortality, due, in all likelihood, to the percentage increase in the elderly population.

  7. Modelling Spatial Dependence Structures Between Climate Variables by Combining Mixture Models with Copula Models

    NASA Astrophysics Data System (ADS)

    Khan, F.; Pilz, J.; Spöck, G.

    2017-12-01

    Spatio-temporal dependence structures play a pivotal role in understanding the meteorological characteristics of a basin or sub-basin. This further affects the hydrological conditions and consequently will provide misleading results if these structures are not taken into account properly. In this study we modeled the spatial dependence structure between climate variables including maximum, minimum temperature and precipitation in the Monsoon dominated region of Pakistan. For temperature, six, and for precipitation four meteorological stations have been considered. For modelling the dependence structure between temperature and precipitation at multiple sites, we utilized C-Vine, D-Vine and Student t-copula models. For temperature, multivariate mixture normal distributions and for precipitation gamma distributions have been used as marginals under the copula models. A comparison was made between C-Vine, D-Vine and Student t-copula by observational and simulated spatial dependence structure to choose an appropriate model for the climate data. The results show that all copula models performed well, however, there are subtle differences in their performances. The copula models captured the patterns of spatial dependence structures between climate variables at multiple meteorological sites, however, the t-copula showed poor performance in reproducing the dependence structure with respect to magnitude. It was observed that important statistics of observed data have been closely approximated except of maximum values for temperature and minimum values for minimum temperature. Probability density functions of simulated data closely follow the probability density functions of observational data for all variables. C and D-Vines are better tools when it comes to modelling the dependence between variables, however, Student t-copulas compete closely for precipitation. Keywords: Copula model, C-Vine, D-Vine, Spatial dependence structure, Monsoon dominated region of Pakistan, Mixture models, EM algorithm.

  8. Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood

    NASA Astrophysics Data System (ADS)

    Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models

  9. Seasonal prediction skill of winter temperature over North India

    NASA Astrophysics Data System (ADS)

    Tiwari, P. R.; Kar, S. C.; Mohanty, U. C.; Dey, S.; Kumari, S.; Sinha, P.

    2016-04-01

    The climatology, amplitude error, phase error, and mean square skill score (MSSS) of temperature predictions from five different state-of-the-art general circulation models (GCMs) have been examined for the winter (December-January-February) seasons over North India. In this region, temperature variability affects the phenological development processes of wheat crops and the grain yield. The GCM forecasts of temperature for a whole season issued in November from various organizations are compared with observed gridded temperature data obtained from the India Meteorological Department (IMD) for the period 1982-2009. The MSSS indicates that the models have skills of varying degrees. Predictions of maximum and minimum temperature obtained from the National Centers for Environmental Prediction (NCEP) climate forecast system model (NCEP_CFSv2) are compared with station level observations from the Snow and Avalanche Study Establishment (SASE). It has been found that when the model temperatures are corrected to account the bias in the model and actual orography, the predictions are able to delineate the observed trend compared to the trend without orography correction.

  10. Viking-1 meteorological measurements - First impressions

    NASA Technical Reports Server (NTRS)

    Hess, S. L.; Henry, R. M.; Leovy, C. B.; Tillman, J. E.; Ryan, J. A.

    1976-01-01

    A preliminary evaluation is given of in situ meteorological measurements made by Viking 1 on Mars. The data reported show that: (1) the atmosphere has approximate volume mixing ratios of 1.5% argon, 3% nitrogen, and 95% carbon dioxide; (2) the diurnal temperature range is large and regular, with a sunrise minimum of about 188 K and a midafternoon maximum near 244 K; (3) air and ground temperatures coincide quite closely during the night, but ground temperature exceeds air temperature near midday by as much as 25 C; (4) the winds exhibit a marked diurnal cycle; and (5) a large diurnal pressure variation with an afternoon minimum and an early-morning maximum parallels the wind pattern. The variations are explained in terms of familiar meteorological processes. It is suggested that latent heat is unlikely to play an important role on Mars because no evidence has been observed for traveling synoptic-scale disturbances such as those that occur in the terrestrial tropics.

  11. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.

    PubMed

    Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash

    2017-03-01

    High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.

  12. Verification of National Weather Service spot forecasts using surface observations

    NASA Astrophysics Data System (ADS)

    Lammers, Matthew Robert

    Software has been developed to evaluate National Weather Service spot forecasts issued to support prescribed burns and early-stage wildfires. Fire management officials request spot forecasts from National Weather Service Weather Forecast Offices to provide detailed guidance as to atmospheric conditions in the vicinity of planned prescribed burns as well as wildfires that do not have incident meteorologists on site. This open source software with online display capabilities is used to examine an extensive set of spot forecasts of maximum temperature, minimum relative humidity, and maximum wind speed from April 2009 through November 2013 nationwide. The forecast values are compared to the closest available surface observations at stations installed primarily for fire weather and aviation applications. The accuracy of the spot forecasts is compared to those available from the National Digital Forecast Database (NDFD). Spot forecasts for selected prescribed burns and wildfires are used to illustrate issues associated with the verification procedures. Cumulative statistics for National Weather Service County Warning Areas and for the nation are presented. Basic error and accuracy metrics for all available spot forecasts and the entire nation indicate that the skill of the spot forecasts is higher than that available from the NDFD, with the greatest improvement for maximum temperature and the least improvement for maximum wind speed.

  13. Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy.

    PubMed

    Falciglia, Pietro P; Maddalena, Riccardo; Mancuso, Giuseppe; Messina, Valeria; Vagliasindi, Federico G A

    2016-02-01

    Aquifer contamination with diesel fuel is a worldwide environmental problem, and related available remediation technologies may not be adequately efficient, especially for the simultaneous treatment of both solid and water phases. In this paper, a lab-scale 2.45 GHz microwave (MW) treatment of an artificially diesel-contaminated aquifer was applied to investigate the effects of operating power (160, 350 and 500 W) and time on temperature profiles and contaminant removal from both solid and water phases. Results suggest that in diesel-contaminated aquifer MW remediation, power significantly influences the final reachable temperature and, consequently, contaminant removal kinetics. A maximum temperature of about 120 °C was reached at 500 W. Observed temperature values depended on the simultaneous irradiation of both aquifer grains and groundwater. In this case, solid phase heating is limited by the maximum temperature that interstitial water can reach before evaporation. A minimal residual diesel concentration of about 100 mg kg(-1) or 100 mg L(-1) was achieved by applying a power of 500 W for a time of 60 min for the solid or water phase, respectively. Measured residual TPH fractions showed that MW heating resulted in preferential effects of the removal of different TPH molecular weight fractions and that the evaporation-stripping phenomena plays a major role in final contaminant removal processes. The power low kinetic equation shows an excellent fit (r(2) > 0.993) with the solid phase residual concentration observed for all the powers investigated. A maximum diesel removal of 88 or 80% was observed for the MW treatment of the solid or water phase, respectively, highlighting the possibility to successfully and simultaneously remediate both the aquifer phases. Consequently, MW, compared to other biological or chemical-physical treatments, appears to be a better choice for the fast remediation of diesel-contaminated aquifers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Soil greenhouse gases fluxes in forest - fallow succession at the Central Forest Reserve in European Russia

    NASA Astrophysics Data System (ADS)

    Komarova, Tatiana; Vasenev, Ivan

    2017-04-01

    One of the principal factors influencing the current level of the greenhouse fluxes are land-use changes, including the forest restoration in fallow lands, which is widespread at the Central Region of Russia. The comprehensive environmental studies of soil greenhouse fluxes have been done in comparable sites with different stages of the forest-fallow successions in the southern part of the Central Forest Reserve with spruce domination in the mature forest - representative southern-taiga ecosystems. Seasonal and diurnal dynamics CO2 fluxes measurements were carried out in situ using a mobile gas analyzer Li-820 with soil exposure chambers and parallel observation of air temperature, soil temperature and moisture. Also, every ten days the soil air has been sampled in the vials for further CO2, CH4 and N2O flux measurements by the stationary gas chromatograph. Within forest-fallow successions there are shown the litter gradual development, humus-accumulative horizon differentiation, soil acidity and bulk density increasing. At the same time there is enough obvious in the down part of past-arable horizon gradual restoration of the podzolic horizon. The monitoring results have shown the essential decreasing of soil CO2 fluxes (in 2 times) in frame of successions. The maximum CO2 fluxes have been fixed in July with optimal soil temperature/moisture ratio. In the middle of July the maximum CO2 emission is observed in fallow grassland (34,1 g CO2 / m2day), that is almost in 2-times more than in spruce-forest after fallow stage of 120-150 years. It is important that soil CO2 fluxes essentially increase with soil temperature rise (with up to R = 0,75) and drop soil moisture (with up to R = - 0,66). During the day, the most intense soil CO2 fluxes have been observed from case of 12:00 to 18:00. The maximum CO2 flux has been recorded at 15:00 in the fallow grassland (23 g CO2 / m2 day). In the forest-fallow stage of 10-15 years the maximum soil CO2 flux observed at 12 hours was (16 - 17 g CO2 / m2 day). There were not strong differences in soil CO2 fluxes of these two investigated sites in the night time from 21:00 to 9:00. The essential daily dynamics must be taken into attention for assessment the seasonal fluxes of greenhouse gases and carbon balance. The maximum CH4 flux has been fixed in the fallow grassland and forest-fallow stage of 10 - 15 years - in contrast to stable soil sink CH4 in the spruce-forest after forest-fallow older than 120 years. In the fallow meadow grassland there are observed CH4 emission in July and sink in June and August, with a maximum flux in early July. The level of N2O fluxes usually does not exceed 0,2 mg N2O /m2*day with the maximum flux in mid-August and light sink in early June.

  15. Observed changes of temperature extremes during 1960-2005 in China: natural or human-induced variations?

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Jianfeng; David Chen, Yongqin; Chen, Xiaohong

    2011-12-01

    The purpose of this study was to statistically examine changes of surface air temperature in time and space and to analyze two factors potentially influencing air temperature changes in China, i.e., urbanization and net solar radiation. Trends within the temperature series were detected by using Mann-Kendall trend test technique. The scientific problem this study expected to address was that what could be the role of human activities in the changes of temperature extremes. Other influencing factors such as net solar radiation were also discussed. The results of this study indicated that: (1) increasing temperature was observed mainly in the northeast and northwest China; (2) different behaviors were identified in the changes of maximum and minimum temperature respectively. Maximum temperature seemed to be more influenced by urbanization, which could be due to increasing urban albedo, aerosol, and air pollutions in the urbanized areas. Minimum temperature was subject to influences of variations of net solar radiation; (3) not significant increasing and even decreasing temperature extremes in the Yangtze River basin and the regions south to the Yangtze River basin could be the consequences of higher relative humidity as a result of increasing precipitation; (4) the entire China was dominated by increasing minimum temperature. Thus, we can say that the warming process of China was reflected mainly by increasing minimum temperature. In addition, consistently increasing temperature was found in the upper reaches of the Yellow River basin, the Yangtze River basin, which have the potential to enhance the melting of permafrost in these areas. This may trigger new ecological problems and raise new challenges for the river basin scale water resource management.

  16. Effect of Structural Parameters on the Combustion Performance of Platelet Engines

    NASA Astrophysics Data System (ADS)

    Liang, Yin; Liu, Weiqiang

    2017-12-01

    Numerical simulation was adopted to determine its flow and combustion characteristics by using gaseous methane and oxygen as the main propellants, the effects of nozzle space and expanding angle are examined for the single element splash platelet injector. Navier-Stokes (N-S) equations were solved for the gas-gas flow field with a reduced mechanism involving 9 species and 1 reaction. Results indicated that large corner recirculation zones are produced in the combustor head. This phenomenon consequently enhances mixing and stabilizes combustion, but non-uniformity in temperature contour is observed in the combustor head. Recirculation zone decreases as nozzle space increases, which induces the decrease of maximum temperature and high temperature regions, but it has little influence on the combustion efficiency and combustion length. The combustion length and maximum temperature decrease initially and then increase as expanding angle increases. Conversely, a D value of 2.4 mm and γ value of 60° are selected for the future works because of the shortest combustion length and minimum temperature of the injector faceplate.

  17. Regimes of an atmospheric pressure nanosecond repetitively pulsed discharge for methane partial oxidation

    NASA Astrophysics Data System (ADS)

    Maqueo, P. D. G.; Maier, M.; Evans, M. D. G.; Coulombe, S.; Bergthorson, J. M.

    2018-04-01

    The operation of a nanosecond repetitively pulsed discharge for partial oxidation of CH4 is characterized at atmospheric pressure and room temperature. Two regimes are observed: diffuse and filamentary. The first is a low power regime, characterized by low rotational temperatures around 400 K. The second is much more energetic with rotational temperatures close to 600 K. Both have vibrational temperatures of at least 10 times their rotational temperatures. The average electron number density was determined to be 8.9×1015 and 4.0×1017 cm-3, respectively, showing an increase in the ionization fraction in the more powerful filamentary regime. Results of CH4 conversion to H2, CO, CO2 and C2H6 are presented for the filamentary regime, while the diffuse regime shows no measurable conversion ability. As expected, oxidative mixtures show higher conversion ability than pure CH4. A maximum conversion efficiency of 26.3% and a maximum energy efficiency of 19.7% were reached for the oxidative mixtures.

  18. Effects of temperature, pH and NaCl on protease activity in digestive tract of young turbot, Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao

    2006-09-01

    The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.

  19. RadioAstron Observations of the Quasar 3C273: A Challenge to the Brightness Temperature Limit

    NASA Astrophysics Data System (ADS)

    Kovalev, Y. Y.; Kardashev, N. S.; Kellermann, K. I.; Lobanov, A. P.; Johnson, M. D.; Gurvits, L. I.; Voitsik, P. A.; Zensus, J. A.; Anderson, J. M.; Bach, U.; Jauncey, D. L.; Ghigo, F.; Ghosh, T.; Kraus, A.; Kovalev, Yu. A.; Lisakov, M. M.; Petrov, L. Yu.; Romney, J. D.; Salter, C. J.; Sokolovsky, K. V.

    2016-03-01

    Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C 273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 μas (2.7 light months) and brightness temperature in excess of 1013 K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require a much higher Doppler factor than what is determined from jet apparent kinematics.

  20. Universal inverse power-law distribution for temperature and rainfall in the UK region

    NASA Astrophysics Data System (ADS)

    Selvam, A. M.

    2014-06-01

    Meteorological parameters, such as temperature, rainfall, pressure, etc., exhibit selfsimilar space-time fractal fluctuations generic to dynamical systems in nature such as fluid flows, spread of forest fires, earthquakes, etc. The power spectra of fractal fluctuations display inverse power-law form signifying long-range correlations. A general systems theory model predicts universal inverse power-law form incorporating the golden mean for the fractal fluctuations. The model predicted distribution was compared with observed distribution of fractal fluctuations of all size scales (small, large and extreme values) in the historic month-wise temperature (maximum and minimum) and total rainfall for the four stations Oxford, Armagh, Durham and Stornoway in the UK region, for data periods ranging from 92 years to 160 years. For each parameter, the two cumulative probability distributions, namely cmax and cmin starting from respectively maximum and minimum data value were used. The results of the study show that (i) temperature distributions (maximum and minimum) follow model predicted distribution except for Stornowy, minimum temperature cmin. (ii) Rainfall distribution for cmin follow model predicted distribution for all the four stations. (iii) Rainfall distribution for cmax follows model predicted distribution for the two stations Armagh and Stornoway. The present study suggests that fractal fluctuations result from the superimposition of eddy continuum fluctuations.

  1. Comparative evaluation of human heat stress indices on selected hospital admissions in Sydney, Australia.

    PubMed

    Goldie, James; Alexander, Lisa; Lewis, Sophie C; Sherwood, Steven

    2017-08-01

    To find appropriate regression model specifications for counts of the daily hospital admissions of a Sydney cohort and determine which human heat stress indices best improve the models' fit. We built parent models of eight daily counts of admission records using weather station observations, census population estimates and public holiday data. We added heat stress indices; models with lower Akaike Information Criterion scores were judged a better fit. Five of the eight parent models demonstrated adequate fit. Daily maximum Simplified Wet Bulb Globe Temperature (sWBGT) consistently improved fit more than most other indices; temperature and heatwave indices also modelled some health outcomes well. Humidity and heat-humidity indices better fit counts of patients who died following admission. Maximum sWBGT is an ideal measure of heat stress for these types of Sydney hospital admissions. Simple temperature indices are a good fallback where a narrower range of conditions is investigated. Implications for public health: This study confirms the importance of selecting appropriate heat stress indices for modelling. Epidemiologists projecting Sydney hospital admissions should use maximum sWBGT as a common measure of heat stress. Health organisations interested in short-range forecasting may prefer simple temperature indices. © 2017 The Authors.

  2. Different Patterns of the Urban Heat Island Intensity from Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Silva, F. B.; Longo, K.

    2014-12-01

    This study analyzes the different variability patterns of the Urban Heat Island intensity (UHII) in the Metropolitan Area of Rio de Janeiro (MARJ), one of the largest urban agglomerations in Brazil. The UHII is defined as the difference in the surface air temperature between the urban/suburban and rural/vegetated areas. To choose one or more stations that represent those areas we used the technique of cluster analysis on the air temperature observations from 14 surface weather stations in the MARJ. The cluster analysis aims to classify objects based on their characteristics, gathering similar groups. The results show homogeneity patterns between air temperature observations, with 6 homogeneous groups being defined. Among those groups, one might be a natural choice for the representative urban area (Central station); one corresponds to suburban area (Afonsos station); and another group referred as rural area is compound of three stations (Ecologia, Santa Cruz and Xerém) that are located in vegetated regions. The arithmetic mean of temperature from the three rural stations is taken to represent the rural station temperature. The UHII is determined from these homogeneous groups. The first UHII is estimated from urban and rural temperature areas (Case 1), whilst the second UHII is obtained from suburban and rural temperature areas (Case 2). In Case 1, the maximum UHII occurs in two periods, one in the early morning and the other at night, while the minimum UHII occurs in the afternoon. In Case 2, the maximum UHII is observed during afternoon/night and the minimum during dawn/early morning. This study demonstrates that the stations choice reflects different UHII patterns, evidencing that distinct behaviors of this phenomenon can be identified.

  3. Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005-2014.

    PubMed

    Xiang, Jianjun; Hansen, Alana; Liu, Qiyong; Liu, Xiaobo; Tong, Michael Xiaoliang; Sun, Yehuan; Cameron, Scott; Hanson-Easey, Scott; Han, Gil-Soo; Williams, Craig; Weinstein, Philip; Bi, Peng

    2017-02-01

    This study aims to (1) investigate the associations between climatic factors and dengue; and (2) identify the susceptible subgroups. De-identified daily dengue cases in Guangzhou for 2005-2014 were obtained from the Chinese Center for Disease Control and Prevention. Weather data were downloaded from the China Meteorological Data Sharing Service System. Distributed lag non-linear models (DLNM) were used to graphically demonstrate the three-dimensional temperature-dengue association. Generalised estimating equation models (GEE) with piecewise linear spline functions were used to quantify the temperature-dengue associations. Threshold values were estimated using a broken-stick model. Middle-aged and older people, people undertaking household duties, retirees, and those unemployed were at high risk of dengue. Reversed U-shaped non-linear associations were found between ambient temperature, relative humidity, extreme wind velocity, and dengue. The optimal maximum temperature (T max ) range for dengue transmission in Guangzhou was 21.6-32.9°C, and 11.2-23.7°C for minimum temperature (T min ). A 1°C increase of T max and T min within these ranges was associated with 11.9% and 9.9% increase in dengue at lag0, respectively. Although lag effects of temperature were observed for up to 141 days for T max and 150 days for T min , the maximum lag effects were observed at 32 days and 39 days respectively. Average relative humidity was negatively associated with dengue when it exceeded 78.9%. Maximum wind velocity (>10.7m/s) inhibited dengue transmission. Climatic factors had significant impacts on dengue in Guangzhou. Lag effects of temperature on dengue lasted the local whole epidemic season. To reduce the likely increasing dengue burden, more efforts are needed to strengthen the capacity building of public health systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. High temperature behaviour of self-consolidating concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, Hanaa, E-mail: hanaafares@yahoo.f; Remond, Sebastien; Noumowe, Albert

    2010-03-15

    This paper presents an experimental study on the properties of self-compacting concrete (SCC) subjected to high temperature. Two SCC mixtures and one vibrated concrete mixture were tested. These concrete mixtures come from the French National Project B-P. The specimens of each concrete mixture were heated at a rate of 1 deg. C/min up to different temperatures (150, 300, 450 and 600 deg. C). In order to ensure a uniform temperature throughout the specimens, the temperature was held constant at the maximum temperature for 1 h before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have alreadymore » been determined. In this paper, the physicochemical properties and the microstuctural characteristics are presented. Thermogravimetric analysis, thermodifferential analysis, X-ray diffraction and SEM observations were used. The aim of these studies was in particular to explain the observed residual compressive strength increase between 150 and 300 deg. C.« less

  5. Fretting wear of iron, nickel, and titanium under varied environmental conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1979-01-01

    Fretting wear experiments were conducted on high-purity iron, nickel and titanium in air under conditions of varied humidity and temperature, and in nitrogen. For iron and titanium, maximum fretting occurred at 10 and 30 percent relative humidity respectively. Nickel showed a minimum in fretting wear at about 10% relative humidity. With increasing temperature, all three metals initially showed reduced fretting wear, with increasing wear observed as temperatures increased beyond 200-300 C. For titanium, dramatically reduced fretting wear was observed at temperatures above 500 C, relatable to a change in oxidation kinetics. All three metals showed much less fretting wear in N2 with the presence of moisture in N2 having a proportionally stronger effect than in air.

  6. Fretting wear of iron, nickel, and titanium under varied environmental conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Fretting wear experiments were conducted on high purity iron, nickel and titanium in air under conditions of varied humidity and temperature, and in nitrogen. For iron and titanium, maximum fretting occurred at 10 and 30 percent relative humidity respectively. Nickel showed a minimum in fretting wear at about 10 percent relative humidity. With increasing temperature, all three metals initially showed reduced fretting wear, with increasing wear observed as temperatures increased beyond 200-300 C. For titanium, dramatically reduced fretting wear was observed at temperatures above 500 C, relatable to a change in oxidation kinetics. All three metals showed much less fretting wear in N2 with the presence of moisture in N2 having a proportionally stronger effect than in air.

  7. An experimental study on pseudoelasticity of a NiTi-based damper for civil applications

    NASA Astrophysics Data System (ADS)

    Nespoli, Adelaide; Bassani, Enrico; Della Torre, Davide; Donnini, Riccardo; Villa, Elena; Passaretti, Francesca

    2017-10-01

    In this work, a pseudoelastic damper composed by NiTi wires is tested at 0.5, 1 and 2 Hz for 1000 mechanical cycles. The damping performances were evaluated by three key parameters: the damping capacity, the dissipated energy per cycle and the maximum force. During testing, the temperature of the pseudoelastic elements was registered as well. Results show that the damper assures a bi-directional motion throughout the 1000 cycles together with the maintenance of the recentering. It was observed a stabilization process in the first 50 mechanical cycles, where the key parameters reach stable values; in particular it was found that the damping capacity and the dissipated energy both decrease with frequency. Besides, the mean temperature of the pseudoleastic elements reaches a stable value during tests and confirms the different response of the pseudoelastic wires accordingly with the specific length and stain. Finally, interesting thermal effects were observed at 1 and 2 Hz: at these frequencies and at high strains, the maximum force increases but the temperature of the NiTi wire decreases being in contraddiction with the Clausius-Clapeyron law.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plucknett, K.P.; Becher, P.F.; Waters, S.B.

    TiC/Ni{sub 3}Al composites were prepared using a simple melt-infiltration process, performed at either 1300 or 1400 C, with the Ni{sub 3}Al content varied over the range of 8--25 vol%. Densities >96% of theoretical were obtained for all composites. Four-point flexure strengths at 22 C increased as the Ni{sub 3}Al content increased (i.e., {approximately}1,100 MPa at 20 vol% Ni{sub 3}Al), with the highest strengths being observed for composites processed at 1300 C, because of reduced TiC grain size. Strengths at elevated temperatures increased with test temperature, up to {approximately}1,000 C. As with the yielding behavior of the Ni{sub 3}Al alloy used,more » a maximum in composite strength ({approximately}1,350 MPa) versus temperature was observed; this occurred at 950 C, which is {approximately}300 C above the yield maximum for the alloy. Extensive plastic strain was achieved in the composites even at high loading rates at 1,135 C, and the yield stress was dependent on the applied loading rate.« less

  9. Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator?

    PubMed

    Jacobsen, Svein; Stauffer, Paul R

    2007-02-21

    The total thermal dose that can be delivered during hyperthermia treatments is frequently limited by temperature heterogeneities in the heated tissue volume. Reliable temperature information on the heated area is thus vital for the optimization of clinical dosimetry. Microwave radiometry has been proposed as an accurate, quick and painless temperature sensing technique for biological tissue. Advantages include the ability to sense volume-averaged temperatures from subsurface tissue non-invasively, rather than with a limited set of point measurements typical of implanted temperature probes. We present a procedure to estimate the maximum tissue temperature from a single radiometric brightness temperature which is based on a numerical simulation of 3D tissue temperature distributions induced by microwave heating at 915 MHz. The temperature retrieval scheme is evaluated against errors arising from unknown variations in thermal, electromagnetic and design model parameters. Whereas realistic deviations from base values of dielectric and thermal parameters have only marginal impact on performance, pronounced deviations in estimated maximum tissue temperature are observed for unanticipated variations of the temperature or thickness of the bolus compartment. The need to pay particular attention to these latter applicator construction parameters in future clinical implementation of the thermometric method is emphasized.

  10. Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator?

    NASA Astrophysics Data System (ADS)

    Jacobsen, Svein; Stauffer, Paul R.

    2007-02-01

    The total thermal dose that can be delivered during hyperthermia treatments is frequently limited by temperature heterogeneities in the heated tissue volume. Reliable temperature information on the heated area is thus vital for the optimization of clinical dosimetry. Microwave radiometry has been proposed as an accurate, quick and painless temperature sensing technique for biological tissue. Advantages include the ability to sense volume-averaged temperatures from subsurface tissue non-invasively, rather than with a limited set of point measurements typical of implanted temperature probes. We present a procedure to estimate the maximum tissue temperature from a single radiometric brightness temperature which is based on a numerical simulation of 3D tissue temperature distributions induced by microwave heating at 915 MHz. The temperature retrieval scheme is evaluated against errors arising from unknown variations in thermal, electromagnetic and design model parameters. Whereas realistic deviations from base values of dielectric and thermal parameters have only marginal impact on performance, pronounced deviations in estimated maximum tissue temperature are observed for unanticipated variations of the temperature or thickness of the bolus compartment. The need to pay particular attention to these latter applicator construction parameters in future clinical implementation of the thermometric method is emphasized.

  11. Evaluating treatments with topical anaesthetic and buccal meloxicam for pain and inflammation caused by amputation dehorning of calves.

    PubMed

    Van der Saag, Dominique; Lomax, Sabrina; Windsor, Peter Andrew; Taylor, Casey; White, Peter John

    2018-01-01

    To assess the effects of a topical anaesthetic (TA) and buccal meloxicam (BM) on behaviour, maximum wound temperature and wound morphology following amputation dehorning of beef calves, 50 unweaned Hereford calves were randomly allocated to: (1) sham dehorning / control (CON, n = 14); (2) amputation dehorning (D, n = 12); (3) amputation dehorning with pre-operative buccal meloxicam (DBM, n = 12); and (4) amputation dehorning with post-operative topical anaesthetic (DTA, n = 12). Videos of the calves were captured for 3 h following treatment. Each calf was later observed for 5 min every hour and the frequency and duration of specific behaviours displayed during these focal periods was recorded. Infrared and digital photographs of dehorning wounds were collected from all dehorned calves on days 1, 3 and 7 following treatment. Infrared photographs were used to identify the maximum temperature within the wound area. Digital photographs were used to score wounds based on visual signs of inflammation and healing, using a numerical rating scale of 1 to 3, with morphological aspects of inflammation increasing and morphological aspects of healing decreasing with progressive scores. CON calves displayed fewer head shakes than all dehorned calves at 2 and 3 h following treatment (P = 0.025). CON and DTA calves displayed less head turns than DBM calves at 2 h following treatment (P = 0.036). CON calves displayed fewer combined point behaviours than all dehorned calves at 2 h following treatment (P = 0.037). All dehorning wounds had a greater maximum temperature on days 3 and 7 compared to day 1 (P = 0.003). All wound morphology scores decreased from day 1 to day 3 and wound morphology scores of DBM and DTA calves increased from day 3 to day 7 (P = 0.03). Although flystrike may have confounded these observations, no clear effects of TA or BM on behaviour, maximum wound temperature or wound morphology following dehorning of calves were observed. Further research is required to evaluate the analgesic efficacy of these products for amputation dehorning of calves.

  12. Modeling the Growth of Epiphytic Bacteria on Kale Treated by Thermosonication Combined with Slightly Acidic Electrolyzed Water and Stored under Dynamic Temperature Conditions.

    PubMed

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2016-08-01

    The growth of epiphytic bacteria (aerobic mesophilic bacteria or Pseudomonas spp.) on kale was modeled isothermally and validated under dynamic storage temperatures. Each bacterial count on kale stored at isothermal conditions (4 to 25 °C) was recorded. The results show that maximum growth rate (μmax ) of both epiphytic bacteria increased and lag time (λ) decreased with increasing temperature (P < 0.05). The maximum population density (Nmax ) of Pseudomonas spp. was significantly greater than that of aerobic mesophilic bacteria, particularly in treated samples and/or at 4 and 10 °C (P < 0.05). The relationship between μmax of both epiphytic bacteria and temperature was linear (R(2) > 0.97), whereas lower R(2) > 0.86 and R(2) > 0.87 was observed for the λ and Nmax , respectively. The overall predictions of both epiphytic bacterial growths under nonisothermal conditions with temperature abuse of 15 °C agreed with the observed data, whereas those with temperature abuse of 25 °C were greatly overestimated. The appropriate parameter q0 (physiological state of cells), therefore, was adjusted by a trial and error to fit the model. This study demonstrates that the developed model was able to predict accurately epiphytic bacterial growth on kale stored under nonisothermal conditions particularly those with low temperature abuse of 15 °C. © 2016 Institute of Food Technologists®

  13. Utilizing Crochet to Showcase Temporal Patterns in Temperature Records from One Location and to Spark a Climate Conversation

    NASA Astrophysics Data System (ADS)

    Guertin, L. A.

    2017-12-01

    Scientists that seek to show temperature changes over time will typically select a line graph as the tool for data communication. However, one non-traditional way to showcase variations in data can be through an artistic visualization created with yarn. For several years, amateur and professional artisans have been using needlework (crocheting/knitting) to represent weather/climate records in scarves and blankets, sharing their work in online communities. Since the Sky Scarf project in 2011, a temporal record of data represented in yarn can include precipitation/snowfall to the air quality index. Here is an example of how crochet is being utilized to show maximum air temperature records over time for one location. Maximum daily temperature values have been collected for January through April in Philadelphia in fifty-year intervals (1917, 1967, 2017). This four-month interval was selected to match with the location and timing of a university's spring semester, as the target audience for this particular visualization is undergraduate students. Instead of trying to read differences in temperature across line graphs plotted for each year, three mini-temperature tapestries have been crocheted. A temperature scale has been developed with rainbow colors of yarn, where the purple and blue represent the coldest temperatures, and the orange and red represent the warmest temperatures. By using the same yarn temperature scale across the three mini-tapestries, the increase in daily maximum temperature in Philadelphia for a set time period can quickly and easily be observed. This form of science art, when presented to students, generates a series of questions, stories and predictions of a scientific and personal nature that are not typically part of a climate science instructional unit.

  14. Features of the low-frequency polarization response in the region of the ferroelectric phase transition in multiferroic TbMnO 3

    DOE PAGES

    Trepakov, V. A.; Kvyatkovskii, O. E.; Savinov, M. E.; ...

    2016-10-01

    The unusual behavior of the low-frequency (10 Hz–1 MHz) permittivity in single crystals of ferroelectric multiferroic TbMnO3 has been experimentally and theoretically studied in detail in the region of the narrow temperature peak of the permittivity, associated with the ferroelectric phase transition (T C ~ 27.4 K). It has been found that the ε c(ω, T) maximum sharply decreases with increasing measured field frequency, while the temperature position of the maximum is independent of frequency. It has been shown that the observed features of the polarization response can be satisfactorily described within the Landau–Khalatnikov polarization relaxation theory.

  15. Time and temperature dependent breakdown characteristics of ZnS:Mn films obtained by rf-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhigal'Skii, A. A.; Mukhachev, V. A.; Troyan, P. E.

    1994-04-01

    Breakdown delay times (tdel) for films of managanese-doped zinc sulfide (ZnS:Mn) were measured in the range 10-6-10-1 s. The maximum value was tdel=10-3-10-2 s. The electrical strength (Ebr) was found to increase as the voltage pulse duration was reduced, the more so the thinner the ZnS:Mn film. The temperature dependence of Ebr exhibited a weak reduction in Ebr as the temperature was raised to roughly 80°C and a sharp reduction in Ebr for T>130°C. A maximum in Ebr was observed at T≈130°C which is presumably explained by a structural modification of the ZnS:Mn film. The experimental results obtained are explained in terms of a combined electronic and thermal breakdown mechanism.

  16. Prompt merger collapse and the maximum mass of neutron stars.

    PubMed

    Bauswein, A; Baumgarte, T W; Janka, H-T

    2013-09-27

    We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent nuclear equations of state and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold mass is larger than the maximum mass of a nonrotating star in isolation by between 30 and 70 percent. Our simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated with the compactness of the nonrotating maximum-mass configuration. We speculate on how this relation can be used to derive constraints on neutron-star properties from future observations.

  17. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  18. On the effects of thermal history on the development and relaxation of thermo-mechanical stress in cryopreservation

    NASA Astrophysics Data System (ADS)

    Eisenberg, David P.; Steif, Paul S.; Rabin, Yoed

    2014-11-01

    This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.

  19. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As the magnitude of air temperatures increase in the four basins, peak flows decrease by larger amounts. If precipitation is held constant (no change from historical values), 17 to 26 percent decreases in peak flow occur at the four basins when temperature is increased by 7.2°F. If temperature is held constant, 26 to 38 percent increases in peak flow result from a 15-percent increase in precipitation. The largest decreases in peak flows at the four basins result from 15-percent decreases in precipitation combined with temperature increases of 10.8°F. The largest increases in peak flows generally result from 30-percent increases in precipitation combined with 3.6 °F decreases in temperatures. In many cases when temperature and precipitation both increase, small increases or decreases in annual daily maximum peak flows result. For likely changes projected for the northeastern United States for the middle of the 21st century (temperature increase of 3.6 °F and precipitation increases of 0 to 15 percent), peak-flow changes at the four coastal Maine basins in this study are modeled to be evenly distributed between increases and decreases of less than 25 percent. Peak flows with 50-percent and 1-percent AEPs (equivalent to 2-year and 100-year recurrence interval peak flows, respectively) were calculated for the four basins in the study using the PRMS-modeled annual daily maximum peak flows. Modeled peak flows with 50-percent and 1-percent AEPs with adjusted temperatures and precipitation were compared to unadjusted (historical) modeled values. Changes in peak flows with 50-percent AEPs are similar to changes in annual daily maximum peak flow; changes in peak flows with 1-percent AEPs are similar in pattern to changes in annual daily maximum peak flow, but some of the changes associated with increasing precipitation are much larger than changes in annual daily maximum peak flow. Substantial decreases in maximum annual winter snowpack water equivalent are modeled to occur with increasing air temperatures at the four basins in the study. (Snowpack is the snow on the ground that accumulates during a winter, and water equivalent is the amount of water in a snowpack if it were melted.) The decrease in modeled peak flows with increasing air temperature, given no change in precipitation amount, is likely caused by these decreases in winter snowpack and resulting decreases in snowmelt runoff. This Scientific Investigations Report, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Fact Sheet (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/fs/2013/3021/.

  20. Understanding observed and simulated historical temperature trends in California

    NASA Astrophysics Data System (ADS)

    Bonfils, C. J.; Duffy, P. B.; Santer, B. D.; Lobell, D. B.; Wigley, T. M.

    2006-12-01

    In our study, we attempt 1) to improve our understanding of observed historical temperature trends and their underlying causes in the context of regional detection of climate change and 2) to identify possible neglected forcings and errors in the model response to imposed forcings at the origin of inconsistencies between models and observations. From eight different observational datasets, we estimate California-average temperature trends over 1950- 1999 and compare them to trends from a suite of IPCC control simulations of natural internal climate variability. We find that the substantial night-time warming occurring from January to September is inconsistent with model-based estimates of natural internal climate variability, and thus requires one or more external forcing agents to be explained. In contrast, we find that a significant day-time warming occurs only from January to March. Our confidence in these findings is increased because there is no evidence that the models systematically underestimate noise on interannual and decadal timescales. However, we also find that IPCC simulations of the 20th century that include combined anthropogenic and natural forcings are not able to reproduce such a pronounced seasonality of the trends. Our first hypothesis is that the warming of Californian winters over the second half of the twentieth century is associated with changes in large-scale atmospheric circulation that are likely to be human-induced. This circulation change is underestimated in the historical simulations, which may explain why the simulated warming of Californian winters is too weak. We also hypothesize that the lack of a detectable observed increase in summertime maximum temperature arises from a cooling associated with large-scale irrigation. This cooling may have, until now, counteracted the warming induced by increasing greenhouse gases and urbanization effects. Omitting to include this forcing in the simulations can result in overestimating the summertime maximum temperature trends. We conduct an empirical study based on observed climate and irrigation changes to evaluate this assumption.

  1. A Method for Estimating Missing Hourly Temperatures Using Daily Maximum and Minimum Temperatures

    DTIC Science & Technology

    1991-08-01

    work documented by USAFETAC/PR-90/006, S/urt-Termn Hourl ’y Iernpcrature Interlyolaion, by Mal Wvalter F . Miller, December 1990. In his study, Miller...temperatures for the missing hours and concluded that the best model %as one developed by Hoogenboom and [luck (1986). The Hoogcnboom/Huck model uses a...mean of the error estimate, was determined from the following equation: - 7)) BIAS = 1 N", f (14) where the difference between the observed hourly

  2. Non-Contact Acousto-Thermal Signatures of Plastic Deformation in TI-6AL-4V

    NASA Astrophysics Data System (ADS)

    Welter, J. T.; Malott, G.; Schehl, N.; Sathish, S.; Jata, K. V.; Blodgett, M. P.

    2010-02-01

    Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.

  3. Development of a bioenergetics model for the threespine stickleback Gasterosteus aculeatus

    USGS Publications Warehouse

    Hovel, Rachel A.; Beauchamp, David A.; Hansen, Adam G.; Sorel, Mark H.

    2016-01-01

    The Threespine Stickleback Gasterosteus aculeatus is widely distributed across northern hemisphere ecosystems, has ecological influence as an abundant planktivore, and is commonly used as a model organism, but the species lacks a comprehensive model to describe bioenergetic performance in response to varying environmental or ecological conditions. This study parameterized a bioenergetics model for the Threespine Stickleback using laboratory measurements to determine mass- and temperature-dependent functions for maximum consumption and routine respiration costs. Maximum consumption experiments were conducted across a range of temperatures from 7.5°C to 23.0°C and a range of fish weights from 0.5 to 4.5 g. Respiration experiments were conducted across a range of temperatures from 8°C to 28°C. Model sensitivity was consistent with other comparable models in that the mass-dependent parameters for maximum consumption were the most sensitive. Growth estimates based on the Threespine Stickleback bioenergetics model suggested that 22°C is the optimal temperature for growth when food is not limiting. The bioenergetics model performed well when used to predict independent, paired measures of consumption and growth observed from a separate wild population of Threespine Sticklebacks. Predicted values for consumption and growth (expressed as percent body weight per day) only deviated from observed values by 2.0%. Our model should provide insight into the physiological performance of this species across a range of environmental conditions and be useful for quantifying the trophic impact of this species in food webs containing other ecologically or economically important species.

  4. Trends and variability of daily temperature and precipitation extremes during 1960-2012 in the Yangtze River Basin, China

    NASA Astrophysics Data System (ADS)

    Guan, Yinghui

    2017-04-01

    The variability of surface air temperature and precipitation extremes has been the focus of attention during the past several decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Using daily minimum (TN), maximum temperature (TX) and precipitation from 143 meteorological stations in the Yangtze River Basin (YRB), a suite of extreme climate indices recommended by the Expert Team on Climate Change Detection and Indices, which has rarely been applied in this region, were computed and analyzed during 1960-2012. The results show widespread significant changes in all temperature indices associated with warming in the YRB during 1960-2012. On the whole, cold-related indices, i.e., cold nights, cold days, frost days, icing days and cold spell duration index significantly decreased by -3.45, -1.03, -3.04, -0.42 and -1.6 days/decade, respectively. In contrast, warm-related indices such as warm nights, warm days, summer days, tropical nights and warm spell duration index significantly increased by 2.95, 1.71, 2.16, 1.05 and 0.73 days/decade. Minimum TN, maximum TN, minimum TX and maximum TX increased significantly by 0.42, 0.18, 0.19 and 0.14 °C/decade. Because of a faster increase in minimum temperature than maximum temperature, the diurnal temperature range (DTR) exhibited a significant decreasing trend of -0.09 °C/decade for the whole YRB during 1960-2012. Geographically, stations in the eastern Tibet Plateau and northeastern YRB showed stronger trends in almost all temperature indices. Time series analysis indicated that the YRB was dominated by a general cooling trend before the mid-1980s, but a warming trend afterwards. For precipitation, simple daily intensity index, very wet day precipitation, extremely wet day precipitation, extremely heavy precipitation days, maximum 1-day precipitation, maximum 5-day precipitation and maximum consecutive dry days all increased significantly during 1960-2012. In contrast, ≥ 10 mm precipitation days and maximum consecutive wet days decreased significantly, implying that the precipitation processes in YRB were dominated by precipitation events with shorter durations. Geographically, a wetting tendency was observed in the eastern Tibet Plateau and the middle and lower YRB, while the other regions experienced precipitation deficits. The increasing precipitation was mainly due to the intensification of extreme precipitation events and the decreasing precipitation may be attributed to the decrease of ≥ 10 mm precipitation days or moderate precipitation events. In addition, the regional trends were of greater magnitudes in the middle and lower YRB, indicating more frequent extreme precipitation events in these sub-regions.

  5. Exergy Analyses of Fabricated Compound Parabolic Solar Collector with Evacuated Tubes at Different Operating Conditions: Indore (India)

    NASA Astrophysics Data System (ADS)

    Geete, Ankur; Dubey, Akash; Sharma, Ankush; Dubey, Anshul

    2018-05-01

    In this research work, compound parabolic solar collector (CPC) with evacuated tubes is fabricated. Main benefit of CPC is that there is no requirement of solar tracking system. With fabricated CPC; outlet temperatures of flowing fluid, instantaneous efficiencies, useful heat gain rates and inlet exergies (with and without considering Sun's cone angle) are experimentally found. Observations are taken at different time intervals (1200, 1230, 1300, 1330 and 1400 h), mass flow rates (1.15, 0.78, 0.76, 0.86 and 0.89 g/s), ambient temperatures and with various dimensions of solar collector. This research work is concluded as; maximum instantaneous efficiency is 69.87% which was obtained with 0.76 g/s flow rate of water at 1300 h and 42°C is the maximum temperature difference which was also found at same time. Maximum inlet exergies are 139.733 and 139.532 kW with and without considering Sun's cone angle at 1300 h, respectively. Best thermal performance from the fabricated CPC with evacuated tubes is found at 1300 h. Maximum inlet exergy is 141.365 kW which was found at 1300 h with 0.31 m aperture width and 1.72 m absorber pipe length.

  6. Statistical inhomogeneity of dates of sudden stratospheric warmings in the wintertime northern hemisphere

    NASA Astrophysics Data System (ADS)

    Savenkova, E. N.; Gavrilov, N. M.; Pogoreltsev, A. I.; Manuilova, R. O.

    2017-05-01

    Using the data of meteorological information reanalysis, a statistical analysis of dates of the main sudden stratospheric warmings observed in 1958-2014 has been performed and their inhomogeneous distribution in winter months with maximums in the beginning of January, from the end of January to the beginning of February, and in the end of February has been shown. To explain these regularities, a climatological analysis of variations in the amplitudes and vertical components of Eliassen-Palm fluxes created by large-scale planetary waves (PWs), as well as of zonal-mean winds and deviations of temperature from their winter-average values in high northern latitudes at heights of up to 50 km from the surface has been carried out using the 20-year (1995-2014) collection of daily meteorological information from the UK Met Office database. During the aforementioned intervals of observing more frequent sudden stratospheric warmings, climatological maximums of temperature perturbations, local minimums of eastward winds, and local maximums of the amplitude and Eliassen-Palm fluxes of PWs with a zonal wavenumber of 1 in the high-latitude northern stratosphere were found. Distinctions between atmospheric characteristics averaged over two last decades have been revealed.

  7. Small lakes show muted climate change signal in deepwater temperatures

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.; Hanson, Paul C.

    2015-01-01

    Water temperature observations were collected from 142 lakes across Wisconsin, USA, to examine variation in temperature of lakes exposed to similar regional climate. Whole lake water temperatures increased across the state from 1990 to 2012, with an average trend of 0.042°C yr−1 ± 0.01°C yr−1. In large (>0.5 km2) lakes, the positive temperature trend was similar across all depths. In small lakes (<0.5 km2), the warming trend was restricted to shallow waters, with no significant temperature trend observed in water >0.5 times the maximum lake depth. The differing response of small versus large lakes is potentially a result of wind-sheltering reducing turbulent mixing magnitude in small lakes. These results demonstrate that small lakes respond differently to climate change than large lakes, suggesting that current predictions of impacts to lakes from climate change may require modification.

  8. Temperature and Precipitation trends in Kashmir valley, North Western Himalayas

    NASA Astrophysics Data System (ADS)

    Shafiq, Mifta Ul; Rasool, Rehana; Ahmed, Pervez; Dimri, A. P.

    2018-01-01

    Climate change has emerged as an important issue ever to confront mankind. This concern emerges from the fact that our day-to-day activities are leading to impacts on the Earth's atmosphere that has the potential to significantly alter the planet's shield and radiation balance. Developing countries particularly whose income is particularly derived from agricultural activities are at the forefront of bearing repercussions due to changing climate. The present study is an effort to analyze the changing trends of precipitation and temperature variables in Kashmir valley along different elevation zones in the north western part of India. As the Kashmir valley has a rich repository of glaciers with its annual share of precipitation, slight change in the temperature and precipitation regime has far reaching environmental and economic consequences. The results from Indian Meteorological Department (IMD) data of the period 1980-2014 reveals that the annual mean temperature of Kashmir valley has increased significantly. Accelerated warming has been observed during 1980-2014, with intense warming in the recent years (2001-2014). During the period 1980-2014, steeper increase, in annual mean maximum temperature than annual mean minimum temperature, has been observed. In addition, mean maximum temperature in plain regions has shown higher rate of increase when compared with mountainous areas. In case of mean minimum temperature, mountainous regions have shown higher rate of increase. Analysis of precipitation data for the same period shows a decreasing trend with mountainous regions having the highest rate of decrease which can be quite hazardous for the fragile mountain environment of the Kashmir valley housing a large number of glaciers.

  9. Adverse Climatic Conditions and Impact on Construction Scheduling and Cost

    DTIC Science & Technology

    1988-01-01

    ABBREVIATIONS ABS MAX MAX TEMP ...... Absolute maximum maximum temperature ABS MIN MIN TEMP ...... Absolute minimum minimum temperature BTU...o Degrees Farenheit MEAN MAX TEMP o.................... Mean maximum temperature MEAN MIN TEMP...temperatures available, a determination had to be made as to whether forecasts were based on absolute , mean, or statistically derived temperatures

  10. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  11. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal

    NASA Astrophysics Data System (ADS)

    Cardoso, Rita M.; Soares, Pedro M. M.; Lima, Daniela C. A.; Miranda, Pedro M. A.

    2018-02-01

    Large temperature spatio-temporal gradients are a common feature of Mediterranean climates. The Portuguese complex topography and coastlines enhances such features, and in a small region large temperature gradients with high interannual variability is detected. In this study, the EURO-CORDEX high-resolution regional climate simulations (0.11° and 0.44° resolutions) are used to investigate the maximum and minimum temperature projections across the twenty-first century according to RCP4.5 and RCP8.5. An additional WRF simulation with even higher resolution (9 km) for RCP8.5 scenario is also examined. All simulations for the historical period (1971-2000) are evaluated against the available station observations and the EURO-CORDEX model results are ranked in order to build multi-model ensembles. In present climate models are able to reproduce the main topography/coast related temperature gradients. Although there are discernible differences between models, most present a cold bias. The multi-model ensembles improve the overall representation of the temperature. The ensembles project a significant increase of the maximum and minimum temperatures in all seasons and scenarios. Maximum increments of 8 °C in summer and autumn and between 2 and 4 °C in winter and spring are projected in RCP8.5. The temperature distributions for all models show a significant increase in the upper tails of the PDFs. In RCP8.5 more than half of the extended summer (MJJAS) has maximum temperatures exceeding the historical 90th percentile and, on average, 60 tropical nights are projected for the end of the century, whilst there are only 7 tropical nights in the historical period. Conversely, the number of cold days almost disappears. The yearly average number of heat waves increases by seven to ninefold by 2100 and the most frequent length rises from 5 to 22 days throughout the twenty-first century. 5% of the longest events will last for more than one month. The amplitude is overwhelming larger, reaching values which are not observed in the historical period. More than half of the heat waves will be stronger than the extreme heat wave of 2003 by the end of the century. The future heatwaves will also enclose larger areas, approximately 100 events in the 2071-2100 period (more than 3 per year) will cover the whole country. The RCP4.5 scenario has in general smaller magnitudes.

  12. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature.

    PubMed

    Zalewski, Pawel; Bitner, Anna; Słomko, Joanna; Szrajda, Justyna; Klawe, Jacek J; Tafil-Klawe, Malgorzata; Newton, Julia L

    2014-10-01

    The cardiovascular, autonomic and thermal response to whole-body cryostimulation exposure are not completely known. Thus the aim of this study was to evaluate objectively and noninvasively autonomic and thermal reactions observed after short exposure to very low temperatures. We examined 25 healthy men with mean age 30.1 ± 3.7 years and comparable anthropomorphical characteristic. Each subject was exposed to cryotherapeutic temperatures in a cryogenic chamber for 3 min (approx. -120 °C). The cardiovascular and autonomic parameters were measured noninvasively with Task Force Monitor. The changes in core body temperature were determined with the Vital Sense telemetric measurement system. Results show that 3 min to cryotherapeutic temperatures causes significant changes in autonomic balance which are induced by peripheral and central blood volume changes. Cryostimulation also induced changes in core body temperature, maximum drop of core temperature was observed 50-60 min after the stimulation. Autonomic and thermal reactions to cryostimulation were observed up to 6 h after the exposure and were not harmful for examined subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. [Temporal change in annual air temperature and heat island effect in a coastal city and an inland city at mid-latitude in China during 1956-1998].

    PubMed

    Chao, Lu-men; Sun, Jian-xin

    2009-12-01

    Temporal changes in air temperature and urban heat island (UHI) effects during 1956-1998 were compared between a coastal city, Ji' nan, and an inland city, Xi' an, which were similar in latitude, size and development. During 1956-1978, except that the annual mean minimum temperature in Ji' nan increased by 0.37 degrees C x 10 a(-1), the temperature variables in the two cities did not display any apparent trend. During 1979-1998, all temperature variables of the two cities showed an increasing trend. Comparing with that in Ji' nan, the increasing rate of annual mean maximum temperature and annual mean temperature in Xi' an was greater, but that of annual mean minimum temperature was smaller. In the two cities, heat island effect occurred during 1956-1978 but without any apparent trend, whereas during 1979-1998, this effect increased with time, especially in Xi' an where the annual mean minimum temperature and annual mean temperature increased by 0.22 degrees C x 10 a(-1) and 0.32 degrees C x 10 a(-1), respectively. Both the level and the inter-annual variation of the heat island effect were much greater in Ji' nan than in Xi' an, but the increasing rate of this effect was greater in Xi' an than in Ji' nan. Obvious differences were observed in the increasing rate of annual mean maximum air temperature, annual mean air temperature, and annual mean minimum temperature as well as the heat island effect in Ji' nan, whereas negligible differences were found in Xi' an. Among the three temperature variables, annual mean minimum temperature displayed the most obvious increasing trend and was most affected by heat island effect, while annual mean maximum temperature was most variable inter-annually. Geographical location not only affected the magnitude of urban warming, but also affected the mode of urban warming and the strength of heat island effect.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinbeck, S.

    Meteorological data collected at SRS since the mid-1960’s have been analyzed for trends in minimum and maximum temperature, heating and cooling degree days, precipitation and relative humidity. The trends in meteorological data collected have been relatively small compared to the interannual variability that is observed. The observed increases, while small, appear to be real (statistically significant). Overnight low temperatures (3.1°F) have increased over twice as fast as the increases in daytime highs (1.4°F). Similarly, there are statistically significant increases in the number of cooling degree days as well. There has been a similar decrease in the number of HDD andmore » freezing days, consistent with the overall increase in overnight low temperatures.« less

  15. Mesospheric temperature estimation from meteor decay times during Geminids meteor shower

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Lukianova, Renata; Shalimov, Sergey; Lester, Mark

    2016-02-01

    Meteor radar observations at the Sodankylä Geophysical Observatory (67° 22'N, 26° 38'E, Finland) indicate that the mesospheric temperature derived from meteor decay times is systematically underestimated by 20-50 K during the Geminids meteor shower which has peak on 13 December. A very good coincidence of the minimum of routinely calculated temperature and maximum of meteor flux (the number of meteors detected per day) was observed regularly on that day in December 2008-2014. These observations are for a specific height-lifetime distribution of the Geminids meteor trails and indicate a larger percentage of overdense trails compared to that for sporadic meteors. A consequence of this is that the routine estimates of mesospheric temperature during the Geminids are in fact underestimates. The observations do, however, indicate unusual properties (e.g., mass, speed, or chemical composition) of the Geminids meteoroids. Similar properties were found also for Quadrantids in January 2009-2015, which like the Geminids has as a parent body an asteroid, but not for other meteor showers.

  16. Simultaneous Solar Maximum Mission and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Lang, K. R.

    1985-01-01

    Simultaneous observations of solar active regions with the Solar Maximum Mission (SMM) Satellite and the Very Large Array (VLA) have been obtained and analyzed. Combined results enhance the scientific return for beyond that expeted from using either SMM or VLA alone. A total of two weeks of simultaneous SMM/VLA data were obtained. The multiple wavelength VLA observations were used to determine the temperature and magnetic structure at different heights within coronal loops. These data are compared with simultaneous SMM observations. Several papers on the subject are in progress. They include VLA observations of compact, transient sources in the transition region; simultaneous SMM/VLA observations of the coronal loops in one active region and the evolution of another one; and sampling of the coronal plasma using thermal cyclotron lines (magnetic field - VLA) and soft X ray spectral lines (electron density and electron temperaure-SMM).

  17. Thermopower of CexR1-xB6 (R=La, Pr and Nd)

    NASA Astrophysics Data System (ADS)

    Kim, Moo‑Sung; Nakai, Yuki; Tou, Hideki; Sera, Masafumi; Iga, Fumitoshi; Takabatake, Toshiro; Kunii, Satoru

    2006-06-01

    The thermopower, S, of CexR1-xB6 (R=La, Pr, Nd) was investigated. S with a positive sign shows a typical behavior observed in the Ce Kondo system, an increase with decreasing temperature at high temperatures and a maximum at low temperatures. The S values of all the systems at high temperatures are roughly linearly dependent on the Ce concentration, indicating the conservation of the single-impurity character of the Kondo effect in a wide x range. However, the maximum value of S, Smax, and the temperature, Tmax, at which Smax is observed exhibit different x dependences between CexLa1-xB6 and CexR1-xB6 (R=Pr, Nd). In CexLa1-xB6, Tmax, which is ˜8 K in CeB6, decreases with decreasing x and converges to ˜1 K in a very dilute alloy and Smax shows an increase below x ˜ 0.1 after decreasing with decreasing x. In CexR1-xB6 (R=Pr, Nd), Tmax shows a weak x dependence but Smax shows a roughly linear decrease in x. These results are discussed from the standpoint of the chemical pressure effect and the Ce-Ce interaction. S in the long-range ordered phase shows very different behaviors between CexPr1-xB6 and CexNd1-xB6.

  18. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  19. Daily Temperature and Precipitation Data for 223 Former-USSR Stations (NDP-040)

    DOE Data Explorer

    Razuvaev, V. N. [Russian Research Institute of Hydrometeorological Information-World Data Centre; Apasova, E. B. [Russian Research Institute of Hydrometeorological Information-World Data Centre; Martuganov, R. A. [Russian Research Institute of Hydrometeorological Information-World Data Centre

    1990-01-01

    The stations in this dataset are considered by RIHMI to comprise one of the best networks suitable for temperature and precipitation monitoring over the the former-USSR. Factors involved in choosing these 223 stations included length or record, amount of missing data, and achieving reasonably good geographic coverage. There are indeed many more stations with daily data over this part of the world, and hundreds more station records are available through NOAA's Global Historical Climatology Network - Daily (GHCND) database. The 223 stations comprising this database are included in GHCND, but different data processing, updating, and quality assurance methods/checks mean that the agreement between records will vary depending on the station. The relative quality and accuracy of the common station records in the two databases also cannot be easily assessed. As of this writing, most of the common stations contained in the GHCND have more recent records, but not necessarily records starting as early as the records available here. This database contains four variables: daily mean, minimum, and maximum temperature, and daily total precipitation (liquid equivalent). Temperature were taken three times a day from 1881-1935, four times a day from 1936-65, and eight times a day since 1966. Daily mean temperature is defined as the average of all observations for each calendar day. Daily maximum/minimum temperatures are derived from maximum/minimum thermometer measurements. See the measurement description file for further details. Daily precipitation totals are also available (to the nearest tenth of a millimeter) for each station. Throughout the record, daily precipitation is defined as the total amount of precipitation recorded during a 24-h period, snowfall being converted to a liquid total by melting the snow in the gauge. From 1936 on, rain gauges were checked several times each day; the cumulative total of all observations during a calendar day was presumably used as the daily total. Again, see the measurement description file for further details.

  20. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Jansen, Malte F.

    2017-01-01

    Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  1. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    PubMed Central

    Jansen, Malte F.

    2017-01-01

    Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5–10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage. PMID:27994158

  2. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    PubMed

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  3. Behavior of Solar Cycles 23 and 24 Revealed by Microwave Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Yashiro, S.; Maekelae, P.; Michalek, G.; Shibasaki, K.; Hathaway, D. H.

    2012-01-01

    Using magnetic and microwave butterfly diagrams, we compare the behavior of solar polar regions to show that (1) the polar magnetic field and the microwave brightness temperature during solar minimum substantially diminished during the cycle 23/24 minimum compared to the 22/23 minimum. (2) The polar microwave brightness temperature (Tb) seems to be a good proxy for the underlying magnetic field strength (B). The analysis indicates a relationship, B = 0.0067Tb - 70, where B is in G and Tb in K. (3) Both the brightness temperature and the magnetic field strength show north-south asymmetry most of the time except for a short period during the maximum phase. (4) The rush-to-the-pole phenomenon observed in the prominence eruption (PE) activity seems to be complete in the northern hemisphere as of 2012 March. (5) The decline of the microwave brightness temperature in the north polar region to the quiet-Sun levels and the sustained PE activity poleward of 60degN suggest that solar maximum conditions have arrived at the northern hemisphere. The southern hemisphere continues to exhibit conditions corresponding to the rise phase of solar cycle 24. Key words: Sun: chromosphere Sun: coronal mass ejections (CMEs) Sun: filaments, prominences Sun: photosphere Sun: radio radiation Sun: surface magnetism

  4. Persistence and long-term memories of daily maximum and minimum temperatures in southern South America

    NASA Astrophysics Data System (ADS)

    Naumann, Gustavo; Vargas, Walter M.; Minetti, Juan L.

    2011-10-01

    The persistence and long-term memories in daily maximum and minimum temperature series during the instrumental period in southern South America were analysed. Here, we found a markedly seasonal pattern both for short- and long-term memories that can lead to enhanced predictability on intraseasonal timescales. In addition, well-defined spatial patterns of these properties were found in the region. Throughout the entire region, the strongest dependence was observed in autumn and early winter. In the Patagonia region only, the temperatures exhibited more memory during the spring. In general, these elements indicate that nonlinear interactions exist between the annual cycles of temperature and its anomalies. Knowledge of the spatiotemporal behaviour of these long-term memories can be used in the building of stochastic models that only use persistence. It is possible to propose two objective forecast models based on linear interactions associated with persistence and one that allows for the use of information from nonlinear interactions that are manifested in the form of forerunners.

  5. The Eocene climate of China, the early elevation of the Tibetan Plateau and the onset of the Asian Monsoon.

    PubMed

    Wang, Qing; Spicer, Robert A; Yang, Jian; Wang, Yu-Fei; Li, Cheng-Sen

    2013-12-01

    Eocene palynological samples from 37 widely distributed sites across China were analysed using co-existence approach to determine trends in space and time for seven palaeoclimate variables: Mean annual temperature, mean annual precipitation, mean temperature of the warmest month, mean temperature of the coldest month, mean annual range of temperature, mean maximum monthly precipitation and mean minimum monthly precipitation. Present day distributions and observed climates within China of the nearest living relatives of the fossil forms were used to find the range of a given variable in which a maximum number of taxa can coexist. Isotherm and isohyet maps for the early, middle and late Eocene were constructed. These illustrate regional changing patterns in thermal and precipitational gradients that may be interpreted as the beginnings of the modern Asian Monsoon system, and suggest that the uplift of parts of the Tibetan Plateau appear to have taken place by the middle to late Eocene. © 2013 John Wiley & Sons Ltd.

  6. Transient natural convection with density inversion from a horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Wang, P.; Kahawita, R.; Nguyen, D. L.

    1992-01-01

    This paper is devoted to a numerical investigation of the free convection flow about a horizontal cylinder maintained at 0 °C in a water ambient close to the point of maximum density. Complete numerical solutions covering both the transient as well as steady state have been obtained. Principal results indicate that the proximity of the ambient temperature to the point of maximum density plays an important role in the type of convection pattern that may be obtained. When the ambient temperature is within 4.7 °C

  7. Estimating Net Primary Productivity Using Satellite and Ancillary Data

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Houser, Paul (Technical Monitor)

    2001-01-01

    The net primary productivity (C) or annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of the rate of gross photosynthesis (A(sub g)) and autotrophic respiration (R) per unit ground area. Although available observations show that R is a large and variable fraction of A(sub g), viz., 0.3 to 0.7, it is generally recognized that much uncertainties exist in this fraction due to difficulties associated with the needed measurements. Additional uncertainties arise when these measurements are extrapolated to regional or global land surface using empirical equations, for example, using regression equations relating C to mean annual precipitation and air temperature. Here, a process-based approach has been taken to calculate A(sub g) and R using satellite and ancillary data. A(sub g) has been expressed as a product of radiation use efficiency, magnitude of intercepted photosynthetically active radiation (PAR), and normalized by stresses due to soil water shortage and air temperature away from the optimum range. A biophysical model has been used to determine the radiation use efficiency from the maximum rate of carbon assimilation by a leaf, foliage temperature, and the fraction of diffuse PAR incident on a canopy. All meteorological data (PAR, air temperature, precipitation, etc.) needed for the calculation are derived from satellite observations, while a land use, land cover data (based on satellite and ground measurements) have been used to assess the maximum rate of carbon assimilation by a leaf of varied cover type based on field measurements. R has been calculated as the sum of maintenance and growth components. The maintenance respiration of foliage and live fine roots at a standard temperature of different land cover has been determined from their nitrogen content using field and satellite measurements, while that of living fraction of woody stem (viz., sapwood) from the seasonal maximum leaf area index as determined from satellite observations. These maintenance respiration values were then adjusted to that corresponding to air temperature according to a prescribed non-linear variation of respiration with temperature. The growth respiration has been calculated from the difference of Ag and maintenance respiration, according to the two-compartment model. The results of calculations will be reported for 36 consecutive months (1987-1989) over large contiguous areas (ca. 10(exp 5) sq km) Of agricultural land and tropical humid evergreen forests, and compared with available field data.

  8. Intrapulpal Temperature Increases Caused by 445-nm Diode Laser-Assisted Debonding of Self-Ligating Ceramic Brackets During Simulated Pulpal Fluid Circulation.

    PubMed

    Stein, Steffen; Wenzler, Johannes; Hellak, Andreas; Schauseil, Michael; Korbmacher-Steiner, Heike; Braun, Andreas

    2018-04-01

    This study investigated temperature increases in dental pulp resulting from laser-assisted debonding of ceramic brackets using a 445-nm diode laser. Eighteen ceramic brackets were bonded in standardized manner to 18 caries-free human third molars. Pulpal fluid circulation was simulated by pumping distilled water at 37°C through the pulp chamber. The brackets were irradiated with a 445-nm diode laser. Temperatures were measured using a thermal camera at points P1 (center of the pulp) and P2 (in the hard dental tissue) at the baseline (T0), at the start and end of laser application (T1 and T2), and the maximum during the sequence (T max ). Significant differences in the temperatures measured at P1 and P2 were observed among T0, T1, T2, and T max . Significant increases in temperature were noted at points P1 and P2, between T1 and T2, T1 and T max , and T2 and T max . The maximum P2 values were significantly higher than at P1. The maximum temperature increase measured in the pulp was 2.23°C, lower than the critical threshold of 5.5°C. On the basis of the laser settings used, there is no risk to the vitality of dental pulp during laser-assisted debonding of ceramic brackets with a 445-nm diode laser.

  9. Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.

    PubMed

    Rowe, R Kerry; Islam, M Z

    2009-10-01

    The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.

  10. Influence of geomagnetic activity on mesopause temperature over Yakutia

    NASA Astrophysics Data System (ADS)

    Gavrilyeva, Galina; Ammosov, Petr

    2018-03-01

    The long-term temperature changes of the mesopause region at the hydroxyl molecule OH (6-2) nighttime height and its connection with the geomagnetic activity during the 23rd and beginning of the 24th solar cycles are presented. Measurements were conducted with an infrared digital spectrograph at the Maimaga station (63° N, 129.5° E). The hydroxyl rotational temperature (TOH) is assumed to be equal to the neutral atmosphere temperature at the altitude of ˜ 87 km. The average temperatures obtained for the period 1999 to 2015 are considered. The season of observations starts at the beginning of August and lasts until the middle of May. The maximum of the seasonally averaged temperatures is delayed by 2 years relative to the maximum of the solar radio emission flux (wavelength of 10.7 cm), and correlates with a change in geomagnetic activity (Ap index). Temperature grouping in accordance with the geomagnetic activity level showed that in years with high activity (Ap > 8), the mesopause temperature from October to February is about 10 K higher than in years with low activity (Ap < = 8). Cross-correlation analysis showed no temporal shift between geomagnetic activity and temperature. The correlation coefficient is equal to 0.51 at the 95 % level.

  11. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.

    PubMed

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.

  12. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    PubMed

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  13. Spatiotemporal Evaluation of Reanalysis and In-situ Surface Air Temperature over Ethiopia

    NASA Astrophysics Data System (ADS)

    Tesfaye, T.

    2017-12-01

    Tewodros Woldemariam Tesfaye*1, C.T. Dhanya 2,and A.K. Gosain3 1Research Scholar, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 2Assistant Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 3 Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India, *e-mail: tewodros2002@gmail.com Abstract: Water resources management and modelling studies are often constrained by the scarcity of observed data, especially of the two major variables i.e., precipitation and temperature. Modellers, hence, rely on reanalysis datasets as a substitute; though its performance heavily vary depending on the data availability and regional characteristics. The present study aims at examining the ability of frequently used reanalysis datasets in capturing the spatiotemporal characteristics of maximum and minimum surface temperatures over Ethiopia and to highlight the biases, if any, in these over Ethiopian region. We considered ERA-Interim, NCEP 2, MERRA and CFSR reanalysis datasets and compared these with temperature observations from 15 synoptic stations spread over Ethiopia. In addition to the long term averages and annual cycle, a critical comparison of various extreme indices such as diurnal temperature range, warm days, warm nights, cool days, cool nights, summer days and tropical nights are also undertaken. Our results indicate that, the performance of CFSR followed by NCEP 2 is better in capturing majority of the aspects. ERA-Interim suffers a huge additive bias in the simulation of various aspects of minimum temperature in all the stations considered; while its performance is better for maximum temperature. The inferior performance of ERA-Interim is noted to be only because of the difficulty in simulating minimum temperature. Key words: ERA Interim; NCEP Reanalysis; MERRA; CFSR; Diurnal temperature range; reanalysis performance.

  14. Wiesbaden AB, Germany, Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F

    DTIC Science & Technology

    1972-08-16

    temperatures, extreme maximum and miinimum temperatures, psychrometric sunmmary of wet-bulb temperature depression versusI dry-bulb temperature._means...14 5.1 033 MA us3 s , 33𔃾 *,~76, ~ ____ 6 5 410-0 U~i 4 6 it" 4! - 4 0 4 fl? 2 . a354,,-S 35W 11-44*0 - 3 5i f 4F1 5fu 7. 1,i 2 62M e a * _ 601_...body of the -ummary consists of a bivariate percentage frequeucy distribution of wet-bulb depression in 17 classes anread horisontally; by 2-degree

  15. Temperature dependent energy levels of methylammonium lead iodide perovskite

    NASA Astrophysics Data System (ADS)

    Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.

    2015-06-01

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  16. Do the western Himalayas defy global warming?

    NASA Astrophysics Data System (ADS)

    Yadav, Ram R.; Park, Won-Kyu; Singh, Jayendra; Dubey, Bhasha

    2004-09-01

    Observational records and reconstructions from tree rings reflect premonsoon (March to May) temperature cooling in the western Himalaya during the latter part of the 20th century. A rapid decrease of minimum temperatures at around three times higher rate, as compared to the rate of increase in maximum temperatures found in local climate records is responsible for the cooling trend in mean premonsoon temperature. The increase of the diurnal temperature range is attributed to large scale deforestation and land degradation in the area and shows the higher influence of local forcing factors on climate in contrast to the general trend found in higher latitudes of the northern Hemisphere.

  17. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    NASA Astrophysics Data System (ADS)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  18. 238U Mössbauer study on the magnetic properties of uranium-based heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Tsutsui, Satoshi; Nakada, Masami; Nasu, Saburo; Haga, Yoshinori; Honma, Tetsuo; Yamamoto, Etsuji; Ohkuni, Hitoshi; Ōnuki, Yoshichika

    2000-07-01

    We have performed 238U Mössbauer spectroscopy of uranium-based heavy fermion superconductors, UPd2Al3 and URu2Si2, in order to investigate their physical properties, mainly their magnetic properties. The slow relaxation of magnetic hyperfine interaction in a paramagnetic state and the static hyperfine field has been observed in an antiferromagnetic ordered state for each compound. The line-widths have maximum at their characteristic temperatures where their magnetic susceptibilities have maximum values.

  19. Study of temperature effect on junctionless Si nanotube FET concerning analog/RF performance

    NASA Astrophysics Data System (ADS)

    Tayal, Shubham; Nandi, Ashutosh

    2018-06-01

    This paper for the first time investigates the effect of temperature variation on analog/RF performance of SiO2 as well as high-K gate dielectric based junctionless silicon nanotube FET (JL-SiNTFET). It is observed that the change in temperature does not variate the analog/RF performance of junctionless silicon nanotube FET by substantial amount. By increasing the temperature from 77 K to 400 K, the deterioration in intrinsic dc gain (AV) is marginal that is only ∼3 dB. Furthermore, the variation in cut-off frequency (fT), maximum oscillation frequency (fMAX), and gain-frequency product (GFP) with temperature is also minimal in JLSiNT-FET. More so, the same trend is observed even at scaled gate length (Lg = 15 nm). Furthermore, we have observed that the use of high-K gate dielectric deteriorates the analog/RF performance of JLSiNT-FET. However, the use of high-K gate dielectric negligibly changes the effect of temperature variation on analog/RF performance of JLSINT-FET device.

  20. Role of resolution in regional climate change projections over China

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Wang, Guiling; Gao, Xuejie

    2017-11-01

    This paper investigates the sensitivity of projected future climate changes over China to the horizontal resolution of a regional climate model RegCM4.4 (RegCM), using RCP8.5 as an example. Model validation shows that RegCM performs better in reproducing the spatial distribution and magnitude of present-day temperature, precipitation and climate extremes than the driving global climate model HadGEM2-ES (HadGEM, at 1.875° × 1.25° degree resolution), but little difference is found between the simulations at 50 and 25 km resolutions. Comparison with observational data at different resolutions confirmed the added value of the RCM and finer model resolutions in better capturing the probability distribution of precipitation. However, HadGEM and RegCM at both resolutions project a similar pattern of significant future warming during both winter and summer, and a similar pattern of winter precipitation changes including dominant increase in most areas of northern China and little change or decrease in the southern part. Projected precipitation changes in summer diverge among the three models, especially over eastern China, with a general increase in HadGEM, little change in RegCM at 50 km, and a mix of increase and decrease in RegCM at 25 km resolution. Changes of temperature-related extremes (annual total number of daily maximum temperature > 25 °C, the maximum value of daily maximum temperature, the minimum value of daily minimum temperature in the three simulations especially in the two RegCM simulations are very similar to each other; so are the precipitation-related extremes (maximum consecutive dry days, maximum consecutive 5-day precipitation and extremely wet days' total amount). Overall, results from this study indicate a very low sensitivity of projected changes in this region to model resolution. While fine resolution is critical for capturing the spatial variability of the control climate, it may not be as important for capturing the climate response to homogeneous forcing (in this case greenhouse gas concentration changes).

  1. Changing climate and endangered high mountain ecosystems in Colombia.

    PubMed

    Ruiz, Daniel; Moreno, Hernán Alonso; Gutiérrez, María Elena; Zapata, Paula Andrea

    2008-07-15

    High mountain ecosystems are among the most sensitive environments to changes in climatic conditions occurring on global, regional and local scales. The article describes the changing conditions observed over recent years in the high mountain basin of the Claro River, on the west flank of the Colombian Andean Central mountain range. Local ground truth data gathered at 4150 m, regional data available at nearby weather stations, and satellite info were used to analyze changes in the mean and the variance, and significant trends in climatic time series. Records included minimum, mean and maximum temperatures, relative humidity, rainfall, sunshine, and cloud characteristics. In high levels, minimum and maximum temperatures during the coldest days increased at a rate of about 0.6 degrees C/decade, whereas maximum temperatures during the warmest days increased at a rate of about 1.3 degrees C/decade. Rates of increase in maximum, mean and minimum diurnal temperature range reached 0.6, 0.7, and 0.5 degrees C/decade. Maximum, mean and minimum relative humidity records showed reductions of about 1.8, 3.9 and 6.6%/decade. The total number of sunny days per month increased in almost 2.1 days. The headwaters exhibited no changes in rainfall totals, but evidenced an increased occurrence of unusually heavy rainfall events. Reductions in the amount of all cloud types over the area reached 1.9%/decade. In low levels changes in mean monthly temperatures and monthly rainfall totals exceeded + 0.2 degrees C and - 4% per decade, respectively. These striking changes might have contributed to the retreat of glacier icecaps and to the disappearance of high altitude water bodies, as well as to the occurrence and rapid spread of natural and man-induced forest fires. Significant reductions in water supply, important disruptions of the integrity of high mountain ecosystems, and dramatic losses of biodiversity are now a steady menu of the severe climatic conditions experienced by these fragile tropical environments.

  2. Evaluation of Ultra High Pressure (UHP) Firefighting in a Room-and-Contents Fire

    DTIC Science & Technology

    2017-03-15

    Burn Room and Hangar Temperature Prior to Ignition ............................................... 18 Figure 12. Effect of Temperature on Normalized...Figure 20. Maximum Average Temperature and Heat Flux ......................................................... 22 Figure 21. Effect of Maximum Average...Aspirated Ceiling Temperature .................................... 23 Figure 22. Effect of Maximum Average Floor Heat Flux on Extinguishment Quantity

  3. Low temperature resistivity plateau and non-saturating magnetoresistance in Type-II Weyl semimetal WP2

    NASA Astrophysics Data System (ADS)

    Nagpal, V.; Kumar, P.; Sudesh, Patnaik, S.

    2018-04-01

    We have studied the resistivity and magnetoresistance (MR) properties of the recently predicted type-II Weyl semimetal WP2. Polycrystalline WP2 is synthesized using solid state reaction and crystallizes in an orthorhombic structure with the Cmc21 spacegroup. The temperature dependent resistivity is enhanced with the application of magnetic field and a resistivity plateau is observed at low temperatures. We find a small dip in resistivity around 30K at 5T field suggesting that there might be a metal-insulator-like transition at higher magnetic fields. A non-saturating magnetoresistance is observed at low temperatures with maximum MR ˜ 94% at 2K and 6T. The value of MR decreases with the increase in temperature. We see a deviation from Kohler's power law which implies that the system comprises of two types of charge carriers.

  4. Surface tension anomalies in room temperature ionic liquids-acetone solutions

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Murata, Keisuke; Kiyokawa, Shota; Yoshimura, Yukihiro

    2018-05-01

    Surface tension anomalies were observed in room temperature ionic liquid (RTIL)-acetone solutions. The RTILs are 1-alkyl-3-methylimidazorium iodide with [Cnmim][I] in a [Cnmim][I]-x mol% acetone. The maximum value of the surface tension appeared at 40 mol% acetone, although density decreased monotonically with an increase in acetone concentration. A small alkyl chain length effect of the Cnmim+ cations was observed in the surface tension. By the Gibbs adsorption isotherm, it was found that I- anion-mediated surface structure became dominant above 40 mol%. In the different [Cnmim][TFSI]-acetone mixtures, normal decay of the surface tension was observed on the acetone concentration scale, where TFSI- is bis(trifluoromethanesulfonyl)imide.

  5. A comparison of climatological observing windows and their impact on detecting daily temperature extrema

    NASA Astrophysics Data System (ADS)

    Žaknić-Ćatović, Ana; Gough, William A.

    2018-04-01

    Climatological observing window (COW) is defined as a time frame over which continuous or extreme air temperature measurements are collected. A 24-h time interval, ending at 00UTC or shifted to end at 06UTC, has been associated with difficulties in characterizing daily temperature extrema. A fixed 24-h COW used to obtain the temperature minima leads to potential misidentification due to fragmentation of "nighttime" into two subsequent nighttime periods due to the time discretization interval. The correct identification of air temperature extrema is achievable using a COW that identifies daily minimum over a single nighttime period and maximum over a single daytime period, as determined by sunrise and sunset. Due to a common absence of hourly air temperature observations, the accuracy of the mean temperature estimation is dependent on the accuracy of determination of diurnal air temperature extrema. Qualitative and quantitative criteria were used to examine the impact of the COW on detecting daily air temperature extrema. The timing of the 24-h observing window occasionally affects the determination of daily extrema through a mischaracterization of the diurnal minima and by extension can lead to errors in determining daily mean temperature. Hourly air temperature data for the time period from year 1987 to 2014, obtained from Toronto Buttonville Municipal Airport weather station, were used in analysis of COW impacts on detection of daily temperature extrema and calculation of annual temperature averages based on such extrema.

  6. Pyrolysis Pathways of Sulfonated Polyethylene, an Alternative Carbon Fiber Precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A

    2013-01-01

    Sulfonated polyethylene is an emerging precursor for the production of carbon fibers. Pyrolysis of sulfonated polyethylene was characterized by thermogravimetric analysis (TGA). n-heptane-4-sulfonic acid (H4S) was selected as a model compound for the study of sulfonated polyethylene. Density functional theory and conventional transition state theory were used to determine the rate constants of pyrolysis for H4S from 300-1000 K. Multiple reaction channels from two different mechanisms were explored: 1) internal five-centered elimination (Ei 5) and 2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain TGA plots that compared favorably to experiment. Wemore » observed that at tem- peratures < 550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial OH radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440-460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene ( 31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOSO2 became competitive to H abstraction by HOSO2, making OH the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures > 600 K. Low-scale carbonization utilizes temperatures < 620 K; thus, internal elimination will not be competitive. Ei5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids. Nonlinear Arrhenius plots were found for all bimolecular reactions. The most significant nonlinear behavior was observed for reactions where the barrier was small. For reactions with low activation barriers, nonlinearity was traced to conflicting trends between the exponential temperature dependence of the energetic term and the temperature dependence of the vibrational partition function of the transitional modes.« less

  7. Study on the Fire Damage Characteristics of the New Qidaoliang Highway Tunnel: Field Investigation with Computational Fluid Dynamics (CFD) Back Analysis

    PubMed Central

    Lai, Hongpeng; Wang, Shuyong; Xie, Yongli

    2016-01-01

    In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m3; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations. PMID:27754455

  8. Study on the Fire Damage Characteristics of the New Qidaoliang Highway Tunnel: Field Investigation with Computational Fluid Dynamics (CFD) Back Analysis.

    PubMed

    Lai, Hongpeng; Wang, Shuyong; Xie, Yongli

    2016-10-15

    In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m³; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations.

  9. Magnetic hyperthermia in water based ferrofluids: Effects of initial susceptibility and size polydispersity on heating efficiency

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Ranoo, Surojit; Muthukumaran, T.; Philip, John

    2018-04-01

    The effects of initial susceptibility and size polydispersity on magnetic hyperthermia efficiency in two water based ferrofluids containing phosphate and TMAOH coated superparamagnetic Fe3O4 nanoparticles were studied. Experiments were performed at a fixed frequency of 126 kHz on four different concentrations of both samples and under different external field amplitudes. It was observed that for field amplitudes beyond 45.0 kAm-1, the maximum temperature rise was in the vicinity of 42°C (hyperthermia limit) which indicated the suitability of the water based ferrofluids for hyperthermia applications. The maximum temperature rise and specific absorption rate were found to vary linearly with square of the applied field amplitudes, in accordance with theoretical predictions. It was further observed that for a fixed sample concentration, specific absorption rate was higher for the phosphate coated samples which was attributed to the higher initial static susceptibility and lower size polydispersity of phosphate coated Fe3O4.

  10. Prediction of climate change in Brunei Darussalam using statistical downscaling model

    NASA Astrophysics Data System (ADS)

    Hasan, Dk. Siti Nurul Ain binti Pg. Ali; Ratnayake, Uditha; Shams, Shahriar; Nayan, Zuliana Binti Hj; Rahman, Ena Kartina Abdul

    2017-06-01

    Climate is changing and evidence suggests that the impact of climate change would influence our everyday lives, including agriculture, built environment, energy management, food security and water resources. Brunei Darussalam located within the heart of Borneo will be affected both in terms of precipitation and temperature. Therefore, it is crucial to comprehend and assess how important climate indicators like temperature and precipitation are expected to vary in the future in order to minimise its impact. This study assesses the application of a statistical downscaling model (SDSM) for downscaling General Circulation Model (GCM) results for maximum and minimum temperatures along with precipitation in Brunei Darussalam. It investigates future climate changes based on numerous scenarios using Hadley Centre Coupled Model, version 3 (HadCM3), Canadian Earth System Model (CanESM2) and third-generation Coupled Global Climate Model (CGCM3) outputs. The SDSM outputs were improved with the implementation of bias correction and also using a monthly sub-model instead of an annual sub-model. The outcomes of this assessment show that monthly sub-model performed better than the annual sub-model. This study indicates a satisfactory applicability for generation of maximum temperatures, minimum temperatures and precipitation for future periods of 2017-2046 and 2047-2076. All considered models and the scenarios were consistent in predicting increasing trend of maximum temperature, increasing trend of minimum temperature and decreasing trend of precipitations. Maximum overall trend of Tmax was also observed for CanESM2 with Representative Concentration Pathways (RCP) 8.5 scenario. The increasing trend is 0.014 °C per year. Accordingly, by 2076, the highest prediction of average maximum temperatures is that it will increase by 1.4 °C. The same model predicts an increasing trend of Tmin of 0.004 °C per year, while the highest trend is seen under CGCM3-A2 scenario which is 0.009 °C per year. The highest change predicted for the Tmin is therefore 0.9 °C by 2076. The precipitation showed a maximum trend of decrease of 12.7 mm year. It is also seen in the output using CanESM2 data that precipitation will be more chaotic with some reaching 4800 mm per year and also producing low rainfall about 1800 mm per year. All GCMs considered are consistent in predicting it is very likely that Brunei is expected to experience more warming as well as less frequent precipitation events but with a possibility of intensified and drastically high rainfalls in the future.

  11. Melting line of polymeric nitrogen

    NASA Astrophysics Data System (ADS)

    Yakub, L. N.

    2013-05-01

    We made an attempt to predict location of the melting line of polymeric nitrogen using two equations for Helmholtz free energy: proposed earlier for cubic gauche-structure and developed recently for liquid polymerized nitrogen. The P-T relation, orthobaric densities and latent heat of melting were determined using a standard double tangent construction. The estimated melting temperature decreases with increasing pressure, alike the temperature of molecular-nonmolecular transition in solid. We discuss the possibility of a triple point (solid-molecular fluid-polymeric fluid) at ˜80 GPa and observed maximum of melting temperature of nitrogen.

  12. Water Resources Data for California, 1965; Part 2: Water Quality Records

    USGS Publications Warehouse

    1965-01-01

    Water quality information is presented for chemical quality, fluvial sediment, and water temperatures. The chemical quality includes concentrations of individual dissolved constituents and certain properties or characteristics such as hardness, sodium-adsorption-ratio, specific conductance, and pH. Fluvial sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment and bed material. Water temperature data represent once-daily observations except for stations where a continuous temperature recorder furnishes information from which daily minimums and maximums are obtained.

  13. Water Resources Data for California, 1966; Part 2: Water Quality Records

    USGS Publications Warehouse

    1967-01-01

    Water-quality information is presented for chemical quality, fluvial sediment, and water temperatures. The chemical quality includes concentrations of individual dissolved constituents and certain properties or characteristics such as hardness, sodium-adsorption ratio, specific conductance, and pH. Fluvial-sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment and bed material. Water-temperature data represent once-daily observations except for stations where a continuous temperature recorder furnishes information from which daily minimums and maximums are obtained.

  14. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (< 10 mTorr) radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (< 1 kW), the molecular hydrogen temperature was observed to be linearly proportional to the pressure while the atomic hydrogen temperature was inversely proportional. Both temperatures were observed to rise linearly with input power. For high power operation (5-20 kW), the molecular temperature was found to rise with both power and pressure up to a maximum of approximately 1200 K. Spatially resolved measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  15. Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications

    PubMed Central

    Chlenova, Anna A.; Moiseev, Alexey A.; Derevyanko, Mikhail S.; Semirov, Aleksandr V.; Lepalovsky, Vladimir N.

    2017-01-01

    Permalloy-based thin film structures are excellent materials for sensor applications. Temperature dependencies of the magnetic properties and giant magneto-impedance (GMI) were studied for Fe19Ni81-based multilayered structures obtained by the ion-plasma sputtering technique. Selected temperature interval of 25 °C to 50 °C corresponds to the temperature range of functionality of many devices, including magnetic biosensors. A (Cu/FeNi)5/Cu/(Cu/FeNi)5 multilayered structure with well-defined traverse magnetic anisotropy showed an increase in the GMI ratio for the total impedance and its real part with temperature increased. The maximum of the GMI of the total impedance ratio ΔZ/Z = 56% was observed at a frequency of 80 MHz, with a sensitivity of 18%/Oe, and the maximum GMI of the real part ΔR/R = 170% at a frequency of 10 MHz, with a sensitivity of 46%/Oe. As the magnetization and direct current electrical resistance vary very little with the temperature, the most probable mechanism of the unexpected increase of the GMI sensitivity is the stress relaxation mechanism associated with magnetoelastic anisotropy. PMID:28817084

  16. A new model to predict diffusive self-heating during composting incorporating the reaction engineering approach (REA) framework.

    PubMed

    Putranto, Aditya; Chen, Xiao Dong

    2017-05-01

    During composting, self-heating may occur due to the exothermicities of the chemical and biological reactions. An accurate model for predicting maximum temperature is useful in predicting whether the phenomena would occur and to what extent it would have undergone. Elevated temperatures would lead to undesirable situations such as the release of large amount of toxic gases or sometimes would even lead to spontaneous combustion. In this paper, we report a new model for predicting the profiles of temperature, concentration of oxygen, moisture content and concentration of water vapor during composting. The model, which consists of a set of equations of conservation of heat and mass transfer as well as biological heating term, employs the reaction engineering approach (REA) framework to describe the local evaporation/condensation rate quantitatively. A good agreement between the predicted and experimental data of temperature during composting of sewage sludge is observed. The modeling indicates that the maximum temperature is achieved after some 46weeks of composting. Following this period, the temperature decreases in line with a significant decrease in moisture content and a tremendous increase in concentration of water vapor, indicating the massive cooling effect due to water evaporation. The spatial profiles indicate that the maximum temperature is approximately located at the middle-bottom of the compost piles. Towards the upper surface of the piles, the moisture content and concentration of water vapor decreases due to the moisture transfer to the surrounding. The newly proposed model can be used as reliable simulation tool to explore several geometry configurations and operating conditions for avoiding elevated temperature build-up and self-heating during industrial composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    NASA Astrophysics Data System (ADS)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  18. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.

    2016-03-01

    Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG system to provide ˜95% MPPT efficiency when the input temperature is changing at 5°C/s.

  19. Towards bridging the gap between climate change projections and maize producers in South Africa

    NASA Astrophysics Data System (ADS)

    Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus

    2018-05-01

    Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.

  20. Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Salgado, D.; Zemánková, K.; Noya, E. G.

    In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion bymore » the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.« less

  1. Anomalous Change of Hall Coefficient in Overdoped La2-xSrxCu1-yZnyO4 around x = 0.2

    NASA Astrophysics Data System (ADS)

    Tonishi, Jun; Suzuki, Takao; Goto, Takayuki

    2006-09-01

    The Hall coefficient (RH) has been measured in 0.5% Zn-doped La2-xSrxCu0.995Zn0.005O4 under high magnetic fields up to 12 T. With decreasing temperature, RH increases and begins to decrease below a temperature TRH. This characteristic temperature TRH has the local maximum around x = 0.195, and this Sr-concentration coincides with that the superconducting transition temperature is slightly suppressed. This behavior is quite similar to the phenomena observed in the stripe phase in x ˜ 0.12. These results suggest that the anomalous decrease of RH around x = 0.195 observed in this study is responsible for the "1/4"-anomaly [as reported by Kakinuma et al., Phys. Rev. B 59, 1491 (1999).].

  2. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Liu, Huixin; Chen, Yiding; Le, Huijun

    2017-04-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5 °N, 122.3° E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Secondly, the full-width of half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that the FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM and TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2° S, 58.8° E) station. Acknowledgments The TIMED/SABER kinetic temperature (version 2.0) data are provided by the SABER team through http://saber.gats-inc.com/. The temperatures from the NRLMSISE-00 model are calculated using Aerospace Blockset toolbox of MATLAB (2016a). This research was supported by National Natural Science Foundation of China (41231065, 41321003). We acknowledge the use of meteor radar data from the Chinese Meridian Project and from Data Center for Geophysics, Data Sharing Infrastructure of Earth System Science. The Mohe meteor radar was operated by Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences. The data can be available from the first author.

  3. Vertical Structure of Ice Cloud Layers From CloudSat and CALIPSO Measurements and Comparison to NICAM Simulations

    NASA Technical Reports Server (NTRS)

    Ham, Seung-Hee; Sohn, Byung-Ju; Kato, Seiji; Satoh, Masaki

    2013-01-01

    The shape of the vertical profile of ice cloud layers is examined using 4 months of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) global measurements taken on January, April, July, and October 2007. Ice clouds are selected using temperature profiles when the cloud base is located above the 253K temperature level. The obtained ice water content (IWC), effective radius, or extinction coefficient profiles are normalized by their layer mean values and are expressed in the normalized vertical coordinate, which is defined as 0 and 1 at the cloud base and top heights, respectively. Both CloudSat and CALIPSO observations show that the maximum in the IWC and extinction profiles shifts toward the cloud bottom, as the cloud depth increases. In addition, clouds with a base reaching the surface in a high-latitude region show that the maximum peak of the IWC and extinction profiles occurs near the surface, which is presumably due to snow precipitation. CloudSat measurements show that the seasonal difference in normalized cloud vertical profiles is not significant, whereas the normalized cloud vertical profile significantly varies depending on the cloud type and the presence of precipitation. It is further examined if the 7 day Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation results from 25 December 2006 to 1 January 2007 generate similar cloud profile shapes. NICAM IWC profiles also show maximum peaks near the cloud bottom for thick cloud layers and maximum peaks at the cloud bottom for low-level clouds near the surface. It is inferred that oversized snow particles in the NICAM cloud scheme produce a more vertically inhomogeneous IWC profile than observations due to quick sedimentation.

  4. Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakker, Akke, E-mail: akke.bakker@amc.uva.nl; Kolff, M. Willemijn; Holman, Rebecca

    Purpose: To investigate the relationship of thermal skin damage (TSD) to time–temperature isoeffect levels for patients with breast cancer recurrence treated with reirradiation plus hyperthermia (reRT + HT), and to investigate whether the treatment history of previous treatments (scar tissue) is a risk factor for TSD. Methods and Materials: In this observational study, temperature characteristics of hyperthermia sessions were analyzed in 262 patients with recurrent breast cancer treated in the AMC between 2010 and 2014 with reirradiation and weekly hyperthermia for 1 hour. Skin temperature was measured using a median of 42 (range, 29-82) measurement points per hyperthermia session. Results: Sixty-eight patients (26%) developed 79more » sites of TSD, after the first (n=26), second (n=17), third (n=27), and fourth (n=9) hyperthermia session. Seventy percent of TSD occurred on or near scar tissue. Scar tissue reached higher temperatures than other skin tissue (0.4°C, P<.001). A total of 102 measurement points corresponded to actual TSD sites in 35 of 79 sessions in which TSD developed. Thermal skin damage sites had much higher maximum temperatures than non-TSD sites (2.8°C, P<.001). Generalized linear mixed models showed that the probability of TSD is related to temperature and thermal dose values (P<.001) and that scar tissue is more at risk (odds ratio 0.4, P<.001). Limiting the maximum temperature of a measurement point to 43.7°C would mean that the probability of observing TSD was at most 5%. Conclusion: Thermal skin damage during reRT + HT for recurrent breast cancer was related to higher local temperatures and time–temperature isoeffect levels. Scar tissue reached higher temperatures than other skin tissue, and TSD occurred at lower temperatures and thermal dose values in scar tissue compared with other skin tissue. Indeed, TSD developed often on and around scar tissue from previous surgical procedures.« less

  5. A global view of F-region electron density and temperature at solar maximum

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Theis, R. F.; Hoegy, W. R.

    1982-01-01

    It is pointed out that the thermal structure of the ionosphere represents a quasi-static balance between a variety of heat sources and sinks which vary spatially and temporally on a wide range of time scales. The present investigation has the objective to present selected early results from the Dynamics Explorer-2 (DE-2) Langmuir probe instrument and to make an initial evaluation of how the thermal structure of the ionosphere at solar maximum differs from that observed at solar minimum. Bowen et al. (1964) and Brace and Reddy (1965) devised early empirical models of the F region electron temperature (Te), based on satellite Langmuir probe measurements at low levels of solar activity. The global structure of Te and the electron density (Ne) obtained in the current investigation is not very different from that reported by Brace and Reddy. The primary difference at solar maximum is that Ne is everywhere much higher, but Te differs only in detail.

  6. Attribution of the United States “warming hole”: Aerosol indirect effect andprecipitable water vapor

    EPA Science Inventory

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and /or ice nuclei, thereby modifying cloud optical properties. Observations show a striking cooling trend in summertime daily maximum temperature (Tmax) in the central and...

  7. Spring and Summer Proliferation of Floating Macroalgae in a Mediterranean Coastal Lagoon (Tancada Lagoon, Ebro Delta, NE Spain)

    NASA Astrophysics Data System (ADS)

    Menéndez, M.; Comín, F. A.

    2000-08-01

    During the last 10 years, a drastic change in the structure of the community of primary producers has been observed in Tancada Lagoon (Ebro Delta, NE Spain). This consisted of a decrease in the abundance of submerged rooted macrophyte cover and a spring and summer increase in floating macroalgae. Two spatial patterns have been observed. In the west part of the lagoon, Chaetomorpha linum Kützing, dominated during winter and decreased progressively in spring when Cladophora sp. reached its maximum development. In the east part of the lagoon, higher macroalgal diversity was observed, together with lower cover in winter and early spring. Cladophora sp., Gracilaria verrucosa Papenfuss and Chondria tenuissima Agardh, increased cover and biomass in summer. Maximum photosynthetic production was observed in spring for G. verrucosa (10·9 mg O 2 g -1 DW h -1) and C. tenuissima (19·0 mg O 2 g -1 DW h -1) in contrast with Cladophora sp. (15·9 mg O 2 g -1 DW h -1) and Chaetomorpha linum (7·2 mg O 2 g -1 DW h -1) which reached maximum production in summer. Increased conductivity from reduced freshwater inflow, and higher water temperatures during periods of lagoon isolation, mainly in summer, were the main physical factors associated with an increase in floating macroalgal biomass across the lagoon. Reduced nitrogen availability and temperature-related changes in carbon availability during summer were related to a decrease in abundance of C. linum and increases in G. verrucosa and Cladophora sp.

  8. X-ray Spectral Analysis of the Cataclysmic Variable LS Peg using XMM-Newton Observatory Data

    NASA Astrophysics Data System (ADS)

    Talebpour Sheshvan, N.; Nabizadeh, A.; Balman, S.

    2017-10-01

    LS Peg is a Cataclysmic Variable (CV) suggested as Intermediate Polar (IP) because of similar properties to those observed in IP systems. We used archival XMM-Newton observation of LS Peg in order to study the X-ray characteristics of the system. We show LS Peg light curves in several different energy bands, and discuss about orbital modulations and power spectral analysis. Unlike the previous spectral analysis of the EPIC-MOS data by fitting a hot optically thin plasma emission model with a single temperature, we simultaneously fit EPIC spectrum (pn+MOS) using a composite model of absorption (tbabs) along with two different partial covering absorbers plus a multi-temperature plasma emission component in XSPEC. In addition, we find a Gaussian emission line at 6.4 keV. For LS Peg the maximum temperature of the plasma distribution is found to be ˜ 17.8 keV with a luminosity of ˜ 7.4×10^{32}erg s^{-1} translating to an accretion rate of ˜ 1.7×10 ^{-10} M_{⊙} yr^{-1}. We present spectra for orbital minimum and orbital maximum. In addition, we use SWIFT observations of the source in order to make a comparison. We elaborate on the geometry of accretion and absorption in the X-ray emitting region with articulation on the magnetic nature.

  9. The temperature characteristics of biological active period of the peat soils of Bakchar swamp

    NASA Astrophysics Data System (ADS)

    Kiselev, M. V.; Dyukarev, E. A.; Voropay, N. N.

    2018-01-01

    The results of the study of the peculiarities of the temperature regime in the five basic ecosystems of oligotrophic bogs in the south taiga zone of Western Siberia in 2011-2016 are presented. The soil temperature regime was studied using the atmospheric-soil measuring complex at different depths from surface to 240 cm. All sites were divided into two groups according the bog water level: flooded sites (hollow and open fen) and drained sites (ridge, tall and low ryam). Waterlogged sites are better warmed in the summer period, and slowly freeze in the winter period. The analysis of the annual cycle of temperature showed that the maximum surface temperature is observed in July. The minimum temperature on the surface observed in February or January. The greatest temperature gradient was recorded in the upper 2 cm layer. The gradient at the open fen was -2 °C·cm-1 in February and 1.1 °C·cm-1 in October. The peak of formation of the seasonally frozen layer occurs at the end of autumn, beginning of winter. The degradation of the seasonally frozen layer was observed both from top and bottom, but degradation from the top is faster.

  10. Doppler signals observed during high temperature thermal ablation are the result of boiling.

    PubMed

    Nahirnyak, Volodymyr M; Moros, Eduardo G; Novák, Petr; Suzanne Klimberg, V; Shafirstein, Gal

    2010-01-01

    To elucidate the causation mechanism of Spectral Doppler ultrasound signals (DUS) observed during high temperature thermal ablation and evaluate their potential for image-guidance. Sixteen ex vivo ablations were performed in fresh turkey breast muscle, eight with radiofrequency ablation (RFA) devices, and eight with a conductive interstitial thermal therapy (CITT) device. Temperature changes in the ablation zone were measured with thermocouples located at 1 to 10 mm away from the ablation probes. Concomitantly, DUS were recorded using a standard diagnostic ultrasound scanner. Retrospectively, sustained observations of DUS were correlated with measured temperatures. Sustained DUS was arbitrarily defined as the Doppler signals lasting more than 10 s as observed in the diagnostic ultrasound videos captured from the scanner. For RFA experiments, minimum average temperature (T1 +/- SD) at which sustained DUS were observed was 97.2 +/- 7.3 degrees C, while the maximum average temperature (T2 +/- SD) at which DUS were not seen was 74.3 +/- 9.1 degrees C. For CITT ablation, T1 and T2 were 95.7 +/- 5.9 degrees C and 91.6 +/- 7.2 degrees C, respectively. It was also observed, especially during CITT ablation, that temperatures remained relatively constant during Doppler activity. The value of T1 was near the standard boiling point of water (99.61 degrees C) while T2 was below it. Together, T1 and T2 support the conclusion that DUS during high temperature thermal ablation are the result of boiling (phase change). This conclusion is also supported by the nearly constant temperature histories maintained at locations from which DUS emanated.

  11. Changes in temperature and precipitation extremes observed in Modena, Italy

    NASA Astrophysics Data System (ADS)

    Boccolari, M.; Malmusi, S.

    2013-03-01

    Climate changes has become one of the most analysed subjects from researchers community, mainly because of the numerous extreme events that hit the globe. To have a better view of climate changes and trends, long observations time series are needed. During last decade a lot of Italian time series, concerning several surface meteorological variables, have been analysed and published. No one of them includes one of the longest record in Italy, the time series of the Geophysical Observatory of the University of Modena and Reggio Emilia. Measurements, collected since early 19th century, always in the same position, except for some months during the second world war, embrace daily temperature, precipitation amount, relative humidity, pressure, cloudiness and other variables. In this work we concentrated on the analysis of yearly and seasonal trends and climate extremes of temperature, both minimum and maximum, and precipitation time series, for the periods 1861-2010 and 1831-2010 respectively, in which continuous measurements are available. In general, our results confirm quite well those reported by IPCC and in many other studies over Mediterranean area. In particular, we found that minimum temperature has a non significant positive trend of + 0.1 °C per decade considering all the period, the value increases to 0.9 °C per decade for 1981-2010. For maximum temperature we observed a non significant + 0.1 °C trend for all the period, while + 0.8 °C for the last thirty years. On the other hand precipitation is decreasing, -6.3 mm per decade, considering all the analysed period, while the last thirty years are characterised by a great increment of 74.8 mm per decade. For both variables several climate indices have been analysed and they confirm what has been found for minimum and maximum temperatures and precipitation. In particular, during last 30 years frost days and ice days are decreasing, whereas summer days are increasing. During the last 30-year tropical nights and warm spell duration indices are characterised by a particular strong increment, if compared to the ones of the entire period. Finally, a cursory comparison between winter precipitation and NAO index was done, showing a high anti-correlation, especially since the second half of 20th century.

  12. Climate Data Bases of the People's Republic of China 1841-1988 (TR-055)

    DOE Data Explorer

    Kaiser, Dale. [Oak Ridge National Lab, Oak Ridge, TN (USA); Carbon Dioxide Analysis Center (CDIAC); Tao, Shiyan [Chinese Academy of Sciences, Beijing, China; Fu, Congbin [Chinese Academy of Sciences, Beijing, China; Zeng, Zhaomei [Chinese Academy of Sciences (CAS), Beijing, China; Zhang, Qingyun [Chinese Academy of Sciences (CAS), Beijing (China); Wang, Wei-Chyung [University at Albany, State University of New York, Albany, New York (USA); Atmospheric Science Research Center; Karl, Thomas [National Oceanic and Atmospheric Administration, Asheville, North Carolina (USA); Global Climate Laboratory, National Climatic Data Center

    1993-01-01

    A data base containing meteorological observations from the People's Republic of China (PRC) is described. These data were compiled in accordance with a joint research agreement signed by the U.S. Department of Energy and the PRC Chinese Academy of Sciences (CAS) on August 19, 1987. CAS's Institute of Atmospheric Physics (Beijing, PRC) has provided records from 296 stations, organized into five data sets: (1) a 60-station data set containing monthly measurements of barometric pressure, surface air temperature, precipitation amount, relative humidity, sunshine duration, cloud amount, wind direction and speed, and number of days with snow cover; (2) a 205-station data set containing monthly mean temperatures and monthly precipitation totals; (3) a 40-station subset of the 205-station data set containing monthly mean maximum and minimum temperatures and monthly extreme maximum and minimum temperatures; (4) a 180-station data set containing daily precipitation totals; and (5) a 147-station data set containing 10-day precipitation totals. Sixteen stations from these data sets (13 from the 60-station set and 3 from the 205-station set) have temperature and/or precipitation records that begin prior to 1900, whereas the remaining stations began observing in the early to mid-1900s. Records from most stations extend through 1988. (Note: Users interested in the TR055 60-station data set should acquire expanded and updated data from CDIAC's NDP-039, Two Long-Term Instrumental Climatic Data Bases of the People's Republic of China)

  13. Ecosystem approach to fisheries: Exploring environmental and trophic effects on Maximum Sustainable Yield (MSY) reference point estimates

    PubMed Central

    Kumar, Rajeev; Pitcher, Tony J.; Varkey, Divya A.

    2017-01-01

    We present a comprehensive analysis of estimation of fisheries Maximum Sustainable Yield (MSY) reference points using an ecosystem model built for Mille Lacs Lake, the second largest lake within Minnesota, USA. Data from single-species modelling output, extensive annual sampling for species abundances, annual catch-survey, stomach-content analysis for predatory-prey interactions, and expert opinions were brought together within the framework of an Ecopath with Ecosim (EwE) ecosystem model. An increase in the lake water temperature was observed in the last few decades; therefore, we also incorporated a temperature forcing function in the EwE model to capture the influences of changing temperature on the species composition and food web. The EwE model was fitted to abundance and catch time-series for the period 1985 to 2006. Using the ecosystem model, we estimated reference points for most of the fished species in the lake at single-species as well as ecosystem levels with and without considering the influence of temperature change; therefore, our analysis investigated the trophic and temperature effects on the reference points. The paper concludes that reference points such as MSY are not stationary, but change when (1) environmental conditions alter species productivity and (2) fishing on predators alters the compensatory response of their prey. Thus, it is necessary for the management to re-estimate or re-evaluate the reference points when changes in environmental conditions and/or major shifts in species abundance or community structure are observed. PMID:28957387

  14. Fabrication of Titanium Oxide-Based Composites by Reactive SPS Sintering and Their Thermoelectric Properties

    NASA Astrophysics Data System (ADS)

    Fuda, K.; Shoji, T.; Kikuchi, S.; Kunihiro, Y.; Sugiyama, S.

    2013-07-01

    Titanium oxide-based composites containing (1) Nb, (2) Nb and Sr, and (3) Sr and La were fabricated by a combination of wet processing and reactive spark plasma sintering in which the metal oxide components were reduced by reaction with titanium nitride. If only TiO2 was used as the starting material, several Magneli-type phases of oxygen-deficient titanium oxides were obtained. When mixed with Nb ions with Ti:Nb = 0.9:0.1, microsegregation of Nb ions was observed (case 1). If Sr was added, a perovskite, SrTiO3 (STO) phase occurred (case 2), which contained La ions in the case of La addition (case 3). The sintered compacts consisted largely of grains of about 1 μm in size. In the case of Ti-Nb combination (case 1), a unique stripe pattern also appeared inside the grains. The electrical conductivity increased monotonically with increasing temperature in the case of the pure Magneli phases and the Nb-containing composite, whereas bow-shaped temperature dependences with a maximum were observed in the case of the composites containing STO phases. The Seebeck coefficients were commonly negative, and the absolute values increased with temperature. The thermal conductivity was between 2 W m-1 K-1 and 4 W m-1 K-1 in the temperature range from room temperature to 800°C. A maximum ZT of 0.34 was achieved at 800°C (case 2).

  15. Spatiotemporal Variations in the Difference between Satellite-observed Land Surface Temperature and Station-based Near-surface Air Temperature

    NASA Astrophysics Data System (ADS)

    Lian, X.

    2016-12-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature ( ). Using satellite observations and in-situ station-based datasets, we conducted a global-scale assessment of the spatial, seasonal, and interannual variations in the difference between daytime maximum LST and daytime maximum ( , LST - ) during 2003-2014. Spatially, LST is generally higher than over arid and sparsely vegetated regions in the mid-low latitudes, but LST is lower than in the tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the mid-latitudes and boreal regions. The seasonality in the mid-latitudes is a result of the asynchronous responses of LST and to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. At an interannual scale, only a small proportion of the land surface displays a statistically significant trend (P <0.05) due to the short time span of current measurements. Our study identified substantial spatial heterogeneity and seasonality in , as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface temperature changes using remote sensing, particularly in remote regions.

  16. Dielectric maximum temperature non-monotonic behavior in unaxial Sr0.75Ba0.25Nb2O6 relaxor seen via acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Kojima, S.; Roth, M.

    2011-08-01

    [100] oriented Sr0.75Ba0.25Nb2O6 relaxor crystals have been studied by means of acoustic emission (AE) over a wide 20-400 °C temperature range. Both the Burns temperature, Td = 350 °C, and the intermediate temperature, T* = 183°C, and the susceptibility maximum temperature, Tm (59 °C on heating and 47 °C on cooling), have been successfully detected. Dependent upon the external electric field, the Tm exhibits a local minimum near 0.25 kV/cm accompanied by pronounced AE maximum in a manner which had recently been detected in Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 by Dul'kin et al. [Appl. Phys. Lett. 94, 252904 (2009)] and in Pb(Sc1/2Ta1/2)O3 by Dul'kin et al. [Phys. Rev. B 82, 180101(R) (2010)], whereas the T* increases monotonically, similar to that which had recently been revealed in BaTiO3 by Dul'kin et al. [Appl. Phys. Lett. 97, 032903 (2010)] with a rate of 7.5 K cm/kV. An observed Tm behavior is discussed from the point of view of the existence of the random electric field components along the [100] direction in Sr0.75Ba0.25Nb2O6 crystals.

  17. Displacement damage dose and implantation temperature effects on the trapping and release of deuterium implanted into SiC

    NASA Astrophysics Data System (ADS)

    Muñoz, P.; García-Cortés, I.; Sánchez, F. J.; Moroño, A.; Malo, M.; Hodgson, E. R.

    2017-09-01

    Radiation damage to flow channel insert (FCI) materials is an important issue for the concept of dual-coolant blanket development in future fusion devices. Silicon Carbide (SiC) is one of the most suitable materials for FCI. Because of the severe radiation environment and exposure to tritium during operation it is of fundamental importance to study hydrogen isotope trapping and release in these materials. Here the trapping, detrapping, and diffusion of deuterium implanted into SiC is studied in correlation with pre- and post-damage induced under different conditions. For this, SiC samples are pre-damaged with 50 keV Ne+ ions at different temperatures (20, 200, 450, 700 °C) to different damage doses (1, 3.6, 7 dpa). Next, deuterium is introduced into the samples at 450 °C by ion implantation at 7 keV. The implanted deuterium retained in the sample is analysed using secondary ion mass spectrometry (SIMS) and thermo-stimulated desorption (TSD) measurements. The results indicate that with increasing neon damage dose, the maximum deuterium desorption occurs at higher temperatures. In contrast, when increasing neon implantation temperature for a fixed dose, the maximum deuterium desorption release temperature decreases. It is interpreted that the neon bombardment produces thermally stable traps for hydrogen isotopes and the stability of this damage increases with neon pre-implantation dose. A decrease of the trapping of implanted deuterium is also observed to occur due to damage recovery by thermal annealing during pre-implantation at the higher temperatures. Finally, direct particle bombardment induced deuterium release is also observed.

  18. Spin-glass polyamorphism induced by a magnetic field in LaMnO3 single crystal

    NASA Astrophysics Data System (ADS)

    Eremenko, V. V.; Sirenko, V. A.; Baran, A.; Čižmár, E.; Feher, A.

    2018-05-01

    We present experimental evidence of field-driven transition in spin-glass state, similar to pressure-induced transition between amorphous phases in structural and metallic glasses, attributed to the polyamorphism phenomena. Cusp in temperature dependences of ac magnetic susceptibility of weakly disordered LaMnO3 single crystal is registered below the temperature of magnetic ordering. Frequency dependence of the cusp temperature proves its spin-glass origin. The transition induced by a magnetic field in spin-glass state, is manifested by peculiarity in dependence of cusp temperature on applied magnetic field. Field dependent maximum of heat capacity is observed in the same magnetic field and temperature range.

  19. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.

    2018-02-01

    Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

  20. Temperature estimation from hydroxyl airglow emission in the Venus night side mesosphere

    NASA Astrophysics Data System (ADS)

    Migliorini, A.; Snels, M.; Gérard, J.-C.; Soret, L.; Piccioni, G.; Drossart, P.

    2018-01-01

    The temperature of the night side of Venus at about 95 km has been determined by using spectral features of the hydroxyl airglow emission around 3 μm, recorded from July 2006 to July 2008 by VIRTIS onboard Venus Express. The retrieved temperatures vary from 145.5 to about 198.1 K with an average value of 176.3 ± 14.3 K and are in good agreement with previous ground-based and space observations. The variability with respect to latitude and local time has been studied, showing a minimum of temperature at equatorial latitudes, while temperature values increase toward mid latitudes with a local maximum at about 35°N. The present work provides an independent contribution to the temperature estimation in the transition region between the Venus upper mesosphere and the lower thermosphere, by using the OH emission as a thermometer, following the technique previously applied to the high-resolution O2(a1Δg) airglow emissions observed from ground.

  1. Comparison of four MPPT techniques for PV systems

    NASA Astrophysics Data System (ADS)

    Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Aillerie, M.

    2016-07-01

    The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, for all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.

  2. Presunrise ion temperature enhancement observed at 600 km low- and mid-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Chao, C. K.; Su, S.-Y.; Yeh, H. C.

    2003-02-01

    The quiet-time low- and mid-latitude topside ionospheric ion temperature measured with ROCSAT-1/IPEI instrument is studied for local time, longitudinal, latitudinal, and seasonal variations for the solar maximum year of 2000. The statistical result shows two significant observations at the presunrise sector. Namely, the earliest presunrise ion temperature increase at 600 km low- and mid-latitude ionosphere always starts in the winter hemisphere for both summer and winter seasons; and the strongest presunrise ion-heating region is located in the longitudinal region between 165° and 195° during June summer and between 285° and 345° during December winter. Our simple calculation indicates that the temperature increase at the satellite altitude results from the heating process of photoelectrons that are produced at the magnetic conjugate-point where sunrise is at an earlier time. However, the mechanism to enhance the photoelectron heating at the strongest presunrise ion-heating region is still not clear, because the observed ion density and the field flow data fail to lend a clear support to the proposed heating mechanism for the current observations.

  3. Geomagnetic activity signature in seasonal variations of mesopause temperature over Yakutia

    NASA Astrophysics Data System (ADS)

    Gavrilyeva, G. A.; Ammosov, P. P.; Ammosova, A. M.; Koltovskoi, I. I.; Sivtseva, V. I.

    2017-11-01

    Research of the seasonal change of mesopause temperature at height of nightglow of hydroxyl excited molecules and its correlation with geomagnetic activity during the 23 solar cycle is presented. An infrared digital spectrograph installed at the Maimaga station (63°N, 129.5°E) measured P-branches of the OH(6-2) band. The rotational temperature of OH emission (TOH) is assumed to be equal to the neutral atmosphere temperature at the altitude of 87 km. The database of TOH comprises 2864 nightly average temperatures obtained from August 1999 to May 2015 is considered. The observation starts at the beginning of August and ends in the middle of May. It was revealed that the maximum flux of radio emission from the Sun with a wavelength of 10.7 cm is 2 years ahead of the maximum of seasonally averaged temperature. Temperature is correlated with a change of Ap-index which is a measure of geomagnetic activity. Nightly mean TOH were grouped in accordance with the geomagnetic activity level: the temperatures measured during years with a high activity (Ap> 8), and low activity (Ap <= 8). It was found that the mesopause temperature from October to February is higher by a factor of about ·10 K than during years with low activity (Ap <= 8). There is no dependence of the TOH on the level of geomagnetic activity in autumn and spring.

  4. Argentina corn yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate corn yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the corn-growing area. Predictor variables for the model were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. A trend variable was included for the years 1965 to 1980 since an increasing trend in yields due to technology was observed between these years.

  5. Dielectric and AC conductivity studies of Nd substituted 0.8BaTiO{sub 3}-0.2(Bi{sub 0.5(1-x)}Nd{sub 0.5x}K{sub 0.5})TiO{sub 3} lead free ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramesh, M. N. V.; Ramesh, K. V., E-mail: kv-ramesh5@yahoo.co.in

    2016-05-23

    0.8BaTiO{sub 3} – 0.2(Bi{sub 0.5(1-x)}Nd{sub 0.5x}K{sub 0.5})TiO{sub 3} (0.01 ≤ x ≤ 0.06) lead free ceramic materials have been prepared by solid state reaction method and followed by high energy ball milling process. X-ray diffraction studies confirm the tetragonal structure of the materials at room temperature. Lattice parameters and density are decreasing with increase of Nd substitution. Microstructure studies were done by using Scanning electron microscope and it found that grain size is decreasing with increase of Nd substitution. Temperature and frequency dependent dielectric studies reveal relaxor behaviour of the materials. Dielectric constant, dielectric loss and Curie temperature are decreasingmore » with Nd substitution. Maximum Curie temperature of 195°C was observed at 1 MHz for x=0.01 Nd substituted sample. Degree of diffuseness was calculated from the modified Curie-Weiss law and it is increasing with Nd substitution. AC conductivity is increasing with increase of Nd substitution and observed maximum activation energy of 0.52 eV for x=0.02 Nd substituted sample.« less

  6. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    PubMed

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Regional Climate Model sesitivity to different parameterizations schemes with WRF over Spain

    NASA Astrophysics Data System (ADS)

    García-Valdecasas Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Hidalgo-Muñoz, Jose Manuel; Argüeso, Daniel; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2015-04-01

    The ability of the Weather Research and Forecasting (WRF) model to simulate the regional climate depends on the selection of an adequate combination of parameterization schemes. This study assesses WRF sensitivity to different parameterizations using six different runs that combined three cumulus, two microphysics and three surface/planetary boundary layer schemes in a topographically complex region such as Spain, for the period 1995-1996. Each of the simulations spanned a period of two years, and were carried out at a spatial resolution of 0.088° over a domain encompassing the Iberian Peninsula and nested in the coarser EURO-CORDEX domain (0.44° resolution). The experiments were driven by Interim ECMWF Re-Analysis (ERA-Interim) data. In addition, two different spectral nudging configurations were also analysed. The simulated precipitation and maximum and minimum temperatures from WRF were compared with Spain02 version 4 observational gridded datasets. The comparison was performed at different time scales with the purpose of evaluating the model capability to capture mean values and high-order statistics. ERA-Interim data was also compared with observations to determine the improvement obtained using dynamical downscaling with respect to the driving data. For this purpose, several parameters were analysed by directly comparing grid-points. On the other hand, the observational gridded data were grouped using a multistep regionalization to facilitate the comparison in term of monthly annual cycle and the percentiles of daily values analysed. The results confirm that no configuration performs best, but some combinations that produce better results could be chosen. Concerning temperatures, WRF provides an improvement over ERA-Interim. Overall, model outputs reduce the biases and the RMSE for monthly-mean maximum and minimum temperatures and are higher correlated with observations than ERA-Interim. The analysis shows that the Yonsei University planetary boundary layer scheme is the most appropriate parameterization in term of temperatures because it better describes monthly minimum temperatures and seems to perform well for maximum temperatures. Regarding precipitation, ERA-Interim time series are slightly higher correlated with observations than WRF, but the bias and the RMSE are largely worse. These results also suggest that CAM V.5.1 2-moment 5-class microphysics schemes should not be used due to the computational cost with no apparent gain with respect to simpler schemes such as WRF single-moment 3-class. For the convection scheme, this study suggests that Betts-Miller-Janjic scheme is an appropriate choice due to its robustness and Kain-Fritsch cumulus scheme should not be used over this region. KEY WORDS: Regional climate modelling, physics schemes, parameterizations, WRF. ACKNOWLEDGEMENTS This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  8. Quasi-decadal variations in total ozone content, wind velocity, temperature, and geopotential height over the Arosa station (Switzerland)

    NASA Astrophysics Data System (ADS)

    Visheratin, K. N.

    2016-01-01

    We present the results of the analysis of the phase relationships between the quasi-decadal variations (QDVs) (in the range from 8 to 13 years) in the total ozone content (TOC) at the Arosa station for 1932-2012 and a number of meteorological parameters: monthly mean values of temperature, meridional and zonal components of wind velocity, and geopotential heights for isobaric surfaces in the layer of 10-925 hPa over the Arosa station using the Fourier methods and composite and cross-wavelet analysis. It has been shown that the phase relationships of the QDVs in the TOC and meteorological parameters with an 11-year cycle of solar activity change in time and height; starting with cycle 24 of solar activity (2008-2010), the variations in the TOC and a number of meteorological parameters occur in almost counter phase with the variations in solar activity. The periods of the maximum growth rate of the temperature at isobaric surfaces 50-100 hPa nearly correspond to the TOC's maximum periods, and the periods of the maximum temperature correspond the periods of the decrease of the peak TOC rate. The highest correlation coefficients between the meridional wind velocity and temperature are observed at 50 hPa at positive and negative delays of ~27 months. The times of the maxima (minima) of the QDVs in the meridional wind velocity nearly correspond to the periods of the maximum amplification (attenuation) rate of the temperature of the QDVs. The QDVs in the geopotential heights of isobaric surfaces fall behind the variations in the TOC by an average of 1.5 years everywhere except in the lower troposphere. In general, the periods of variations in the TOC and meteorological parameters in the range of 8-13 years are smaller than the period of variations in the level of solar activity.

  9. Evaporative cooling over the Tibetan Plateau induced by vegetation growth.

    PubMed

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z X; Li, Yue; Myneni, Ranga B; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-07-28

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.

  10. Evaporative cooling over the Tibetan Plateau induced by vegetation growth

    PubMed Central

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z. X.; Li, Yue; Myneni, Ranga B.; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-01-01

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316

  11. Soft X-ray polychromator for the Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Haisch, B. M.; Levay, M.; Stern, R. A.; Strong, K. T.; Wolfson, C. J.; Acton, L. W.

    1984-12-01

    The XRP was designed to measure the following temporal and spatial properties of the active and flaring Sun: electron temperature, departures from steady state, ion kinetic temperatures, and electron density. The Bent Crystal Spectrometer (BCS) is capable of measuring the broadening and blue shifts often observed in the impulsive phase of flares. The six simultaneous line fluxes indicative of six different temperatures of formation observable by the Flat Crystal Spectrometer (FCS) allows the derivation of the differential emission measure of the plasma at each raster point. During the operational periods of the XRP hundreds of flares of C-level (GOES classification) were observed and brighter in both the FCS and BCS, including 5 X-flares. Associated theoretical work in atomic physics, stimulated in part by the promise of XRP measurements, has benefitted from the experimental data on solar plasmas which the XRP has provided in abundance.

  12. Soft X-ray polychromator for the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Levay, M.; Stern, R. A.; Strong, K. T.; Wolfson, C. J.; Acton, L. W.

    1984-01-01

    The XRP was designed to measure the following temporal and spatial properties of the active and flaring Sun: electron temperature, departures from steady state, ion kinetic temperatures, and electron density. The Bent Crystal Spectrometer (BCS) is capable of measuring the broadening and blue shifts often observed in the impulsive phase of flares. The six simultaneous line fluxes indicative of six different temperatures of formation observable by the Flat Crystal Spectrometer (FCS) allows the derivation of the differential emission measure of the plasma at each raster point. During the operational periods of the XRP hundreds of flares of C-level (GOES classification) were observed and brighter in both the FCS and BCS, including 5 X-flares. Associated theoretical work in atomic physics, stimulated in part by the promise of XRP measurements, has benefitted from the experimental data on solar plasmas which the XRP has provided in abundance.

  13. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...

  14. Modelling the occurrence of heat waves in maximum and minimum temperatures over Spain and projections for the period 2031-60

    NASA Astrophysics Data System (ADS)

    Abaurrea, J.; Asín, J.; Cebrián, A. C.

    2018-02-01

    The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.

  15. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Vaidyanathan, Raj; Gaydosh, Darrell; Noebe, Ronald; Bigelow, Glen; Garg, Anita

    2008-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. This investigation extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional improvement in the work output of the material, which has a stress-free Af of 113 oC, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted in the aforementioned alloy at various stress levels from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 oC. The data indicated that the amount of applied stress influenced the transformation strain available in the system, as would be expected. However, the maximum temperature reached during the thermal excursion also plays a role in determining the transformation strain, with the maximum transformation strain being developed by thermal cycling to 290 oC. In situ, neutron diffraction showed that the differences in transformation strain were related to differences in martensite texture within the microstructure when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  16. Historical Changes in Water Quality, Temperature Regimes, and Cyanobacteria Densities of 20 Midwestern USA Reservoirs

    EPA Science Inventory

    Water quality and cyanobacteria densities from 1989-2015 were compiled for 20 Midwestern USA reservoirs. Maximum summer cyanobacteria densities increased over the last 7-15 years of the record, with greatest increases typically observed in reservoirs with low watershed forest cov...

  17. Contention between supply of hydrothermal fluid and conduit obstruction: inferences from numerical simulations

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryo; Hashimoto, Takeshi; Matsushima, Nobuo; Ishido, Tsuneo

    2018-05-01

    We investigate a volcanic hydrothermal system using numerical simulations, focusing on change in crater temperature. Both increases and decreases in crater temperature have been observed before phreatic eruptions. We follow the system's response for up to a decade after hydrothermal fluid flux from the deep part of the system is increased and permeability is reduced at a certain depth in a conduit. Our numerical simulations demonstrate that: (1) changes in crater temperature are controlled by the magnitude of the increase in hydrothermal fluid flux and the degree of permeability reduction; (2) significant increases in hydrothermal flux with decreases in permeability induce substantial pressure changes in shallow depths in the edifice and decreases in crater temperature; (3) the location of maximum pressure change differs between the mechanisms. The results of this study imply that it is difficult to predict eruptions by crater temperature change alone. One should be as wary of large eruptions when crater temperature decreases as when crater temperature increases. It is possible to clarify the implications of changes in crater temperature with simultaneous observation of ground deformation.[Figure not available: see fulltext.

  18. Magnetized liquid 3He at finite temperature: A variational calculation approach

    NASA Astrophysics Data System (ADS)

    Bordbar, Gholam Hossein; Mohammadi Sabet, Mohammad Taghi

    2016-08-01

    Using the spin-dependent (SD) and spin-independent (SI) correlation functions, we have investigated the properties of liquid 3He in the presence of magnetic field at finite temperature. Our calculations have been done using the variational method based on cluster expansion of the energy functional. Our results show that the low field magnetic susceptibility obeys Curie law at high temperatures. This behavior is in a good agreement with the experimental data as well as the molecular field theory results in which the spin dependency has been introduced in correlation function. Reduced susceptibility as a function of temperature as well as reduced temperature has been also investigated, and again we have seen that the spin-dependent correlation function leads to a good agreement with the experimental data. The Landau parameter, F0a, has been calculated, and for this parameter, a value about - 0.75 has been found in the case of spin-spin correlation. In the case of spin-independent correlation function, this value is about - 0.7. Therefore, inclusion of spin dependency in the correlation function leads to a more compatible value of F0a with experimental data. The magnetization and susceptibility of liquid 3He have also been investigated as a function of magnetic field. Our results show a downward curvature in magnetization of system with spin-dependent correlation for all densities and relevant temperatures. A metamagnetic behavior has been observed as a maximum in susceptibility versus magnetic field, when the spin-spin correlation has been considered. This maximum occurs at 45T ≤ B ≤ 100T for all densities and temperatures. This behavior has not been observed in the case of spin-independent correlation function.

  19. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  20. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  1. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  2. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  3. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  4. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-12-01

    Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up-down-down-up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.

  5. The study of the special features of winter stratospheric warming manifestations over Tomsk according to the lidar temperature measurements

    NASA Astrophysics Data System (ADS)

    Marichev, V. N.; Samokhvalov, I. V.

    2014-11-01

    In the article the lidar observations of the winter stratosphere warming manifestations of (SW) 2011-13 over Tomsk are considered. In 2010/11 the winter warming took place in January with insignificant positive temperature deviations from the mean monthly values in its first decade and then two maxima on the 14th and 15th of January at the altitude of 30-40 km with a deviation to 45K. In 2011/12 the beginning of the SW was recorded from lidar measurements on December 26 and lasted for two decades of January. The maximum development of SW was at the end of December 2011 - the first decade of January. The biggest temperature deviations were at the 40-60K level in the height interval of 35-45 km. In 2012/13 the SW began on December 25. The phase of its maximum development fell on the 1-4th of January when the stratopause altitude dropped on 30 km and the maximum temperature deviation from the model at this level reached 70K. In contrast to the first two warming (minor), the last was referred to the major type wherein air mass circulation change happened in the upper stratosphere over Tomsk ((http://www.geo.fu-berlin.de/en/met/ag/strat/index.html).).

  6. Intraseasonal Variability of the Indian Monsoon as Simulated by a Global Model

    NASA Astrophysics Data System (ADS)

    Joshi, Sneh; Kar, S. C.

    2018-01-01

    This study uses the global forecast system (GFS) model at T126 horizontal resolution to carry out seasonal simulations with prescribed sea-surface temperatures. Main objectives of the study are to evaluate the simulated Indian monsoon variability in intraseasonal timescales. The GFS model has been integrated for 29 monsoon seasons with 15 member ensembles forced with observed sea-surface temperatures (SSTs) and additional 16-member ensemble runs have been carried out using climatological SSTs. Northward propagation of intraseasonal rainfall anomalies over the Indian region from the model simulations has been examined. It is found that the model is unable to simulate the observed moisture pattern when the active zone of convection is over central India. However, the model simulates the observed pattern of specific humidity during the life cycle of northward propagation on day - 10 and day + 10 of maximum convection over central India. The space-time spectral analysis of the simulated equatorial waves shows that the ensemble members have varying amount of power in each band of wavenumbers and frequencies. However, variations among ensemble members are more in the antisymmetric component of westward moving waves and maximum difference in power is seen in the 8-20 day mode among ensemble members.

  7. Long-term temperature observations from the troposphere to upper mesosphere over Mauna Loa, HI (19.5N, 155.6W) and Table Mountain, CA (34.4N, 117.7W) by JPL Lidars and nearby Radiosondes

    NASA Astrophysics Data System (ADS)

    Li, T.; Leblanc, T.; McDermid, S.; Wu, D. L.

    2007-12-01

    The JPL Rayleigh lidars at Mauna Loa Observatory (MLO), HI (19.5N, 155.6W) and Table Mountain Observatory (TMO), CA (34.4N, 117.7W) have been operated for the regular nighttime data acquisition of temperature since 1994 and 1989 respectively. Using the monthly mean temperature vertical profiles observed by the JPL lidars (35- 85km) and nearby radiosondes (5-30km), and with the linear regression analysis, we are able to extract the temperature trend, solar cycle, El Nino South Oscillation (ENSO), and Quasi-Biennial Oscillation (QBO) signals from the troposphere to upper mesosphere over MLO and TMO. The temperature trends show different behaviors at two sites, minor trend at MLO, but more negative trend at TMO. The solar cycle responses in temperature are generally positive above the middle stratosphere at both sites, but negative response at MLO and positive at TMO below. During the El Nino events, the warmer temperatures in the troposphere and upper mesosphere, and the colder temperatures in the stratosphere and lower mesosphere were observed at MLO and almost visa verse at TMO. The significant QBO oscillations were observed in the stratosphere with amplitudes of ~2-3K and with clearer downward phase progression at MLO than that at TMO. The mesospheric QBO near 75-85km is clearly present at both sites with amplitude of ~2K and with longer vertical wavelength than that in stratosphere. In addition, we calculated the GW variances using lidar temperature profiles with 30min and 1km resolutions in the upper stratosphere (38-50km) and lower mesosphere (50-62km), and nearby radiosondes in the lower stratosphere (18-30km). The monthly mean GW variances clearly show an annual oscillation with a maximum in the winter and minimum in the summer. The QBO signature could be clearly seen in the lower stratosphere. In the upper stratosphere, a longer period oscillation (~5-6 years) with maxima in 2000-2001 and 2006 was revealed to synchronize with the solar maximum and minimum. No clear signature of GW activity in the lower mesosphere could be associated to that in the upper stratosphere, suggesting that part of gravity waves may either dissipated or reflected when crossing the stratopause region.

  8. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin

    2011-01-01

    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Constraints on filament models deduced from dynamical analysis

    NASA Technical Reports Server (NTRS)

    Simon, G.; Schmieder, B.; Demoulin, P.; Malherbe, J. M.; Poland, A. I.

    1986-01-01

    The conclusions deduced from simultaneous observations with the Ultra-Violet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission satellite, and the Multichannel Subtractive Double Pass (MSPD) spectrographs at Meudon and Pic du Midi observatories are presented. The observations were obtained in 1980 and 1984. All instruments have almost the same field of view and provide intensity and velocity maps at two temperatures. The resolution is approx. 0.5 to 1.5" for H alpha line and 3" for C IV. The high resolution and simultaneity of the two types of observations allows a more accurate description of the flows in prominences as functions of temperature and position. The results put some contraints on the models and show that dynamical aspects must be taken into account.

  10. Thyroid hormone fluctuations indicate a thermoregulatory function in both a tropical (Alouatta palliata) and seasonally cold-habitat (Macaca fuscata) primate.

    PubMed

    Thompson, Cynthia L; Powell, Brianna L; Williams, Susan H; Hanya, Goro; Glander, Kenneth E; Vinyard, Christopher J

    2017-11-01

    Thyroid hormones boost animals' basal metabolic rate and represent an important thermoregulatory pathway for mammals that face cold temperatures. Whereas the cold thermal pressures experienced by primates in seasonal habitats at high latitudes and elevations are often apparent, tropical habitats also display distinct wet and dry seasons with modest changes in thermal environment. We assessed seasonal and temperature-related changes in thyroid hormone levels for two primate species in disparate thermal environments, tropical mantled howlers (Alouatta palliata), and seasonally cold-habitat Japanese macaques (Macaca fuscata). We collected urine and feces from animals and used ELISA to quantify levels of the thyroid hormone triiodothyronine (fT 3 ). For both species, fT 3 levels were significantly higher during the cooler season (wet/winter), consistent with a thermoregulatory role. Likewise, both species displayed greater temperature deficits (i.e., the degree to which animals warm their body temperature relative to ambient) during the cooler season, indicating greater thermoregulatory pressures during this time. Independently of season, Japanese macaques displayed increasing fT 3 levels with decreasing recently experienced maximum temperatures, but no relationship between fT 3 and recently experienced minimum temperatures. Howlers increased fT 3 levels as recently experienced minimum temperatures decreased, although demonstrated the opposite relationship with maximum temperatures. This may reflect natural thermal variation in howlers' habitat: wet seasons had cooler minimum and mean temperatures than the dry season, but similar maximum temperatures. Overall, our findings support the hypothesis that both tropical howlers and seasonally cold-habitat Japanese macaques utilize thyroid hormones as a mechanism to boost metabolism in response to thermoregulatory pressures. This implies that cool thermal pressures faced by tropical primates are sufficient to invoke an energetically costly and relatively longer-term thermoregulatory pathway. The well-established relationship between thyroid hormones and energetics suggests that the seasonal hormonal changes we observed could influence many commonly studied behaviors including food choice, range use, and activity patterns. © 2017 Wiley Periodicals, Inc.

  11. Validation of mathematical models for Salmonella growth in raw ground beef under dynamic temperature conditions representing loss of refrigeration.

    PubMed

    McConnell, Jennifer A; Schaffner, Donald W

    2014-07-01

    Temperature is a primary factor in controlling the growth of microorganisms in food. The current U. S. Food and Drug Administration Model Food Code guidelines state that food can be kept out of temperature control for up to 4 h without qualifiers, or up to 6 h, if the food product starts at an initial 41 °F (5 °C) temperature and does not exceed 70 °F (21 °C) at 6 h. This project validates existing ComBase computer models for Salmonella growth under changing temperature conditions modeling scenarios using raw ground beef as a model system. A cocktail of Salmonella serovars isolated from different meat products ( Salmonella Copenhagen, Salmonella Montevideo, Salmonella Typhimurium, Salmonella Saintpaul, and Salmonella Heidelberg) was made rifampin resistant and used for all experiments. Inoculated samples were held in a programmable water bath at 4.4 °C (40 °F) and subjected to linear temperature changes to different final temperatures over various lengths of time and then returned to 4.4 °C (40 °F). Maximum temperatures reached were 15.6, 26.7, or 37.8 °C (60, 80, or 100 °F), and the temperature increases took place over 4, 6, and 8 h, with varying cooling times. Our experiments show that when maximum temperatures were lower (15.6 or 26.7 °C), there was generally good agreement between the ComBase models and experiments: when temperature increases of 15.6 or 26.7 °C occurred over 8 h, experimental data were within 0.13 log CFU of the model predictions. When maximum temperatures were 37 °C, predictive models were fail-safe. Overall bias of the models was 1.11. and accuracy was 2.11. Our experiments show the U.S. Food and Drug Administration Model Food Code guidelines for holding food out of temperature control are quite conservative. Our research also shows that the ComBase models for Salmonella growth are accurate or fail-safe for dynamic temperature conditions as might be observed due to power loss from natural disasters or during transport out of temperature control.

  12. Effect of Bi substitution on the magnetic and magnetocaloric properties of Ni50Mn35In15-xBix Heusler alloys

    NASA Astrophysics Data System (ADS)

    Aryal, Anil; Quetz, Abdiel; Pandey, Sudip; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2018-05-01

    The structural, magnetic, magnetocaloric, and transport properties of Ni50Mn35In15-xBix (x = 0, 0.25, 0.5, 1, 1.5) compounds has been studied through X-ray diffraction (XRD), differential scanning calorimetry, and magnetization measurements. A mixture of high temperature austenite phase (AP) and low temperature martensitic phase (MP) was observed from the XRD at room temperature. The saturation magnetization MS at 10 K was found to decrease with increasing Bi content. A shift in the martensitic transition temperature (TM) relative to the parent compound was observed with a maximum shift of ˜ 36 K for x = 1.5. Abnormal shifts in TC and TM to higher temperatures were observed at high field for x ≥ 0.5. Large magnetic entropy changes (ΔSM) of about 40 J/kg K (x = 0) and 34 J/kg K (x = 0.25) were observed at TM with H = 5 T, which reduced significantly for higher Bi concentrations. The doping of small amounts of Bi in the In sites increased the peak width of the ΔSM curves at the second order transition, leading to larger values of relative cooling power. A significant magnetoresistance (-30%) was observed near TM with ΔH = 5T for x = 0.5.

  13. Assimilation of Freeze - Thaw Observations into the NASA Catchment Land Surface Model

    NASA Technical Reports Server (NTRS)

    Farhadi, Leila; Reichle, Rolf H.; DeLannoy, Gabrielle J. M.; Kimball, John S.

    2014-01-01

    The land surface freeze-thaw (F-T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, we developed an F-T assimilation algorithm for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F-T state in the GEOS-5 Catchment land surface model. The F-T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F-T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F-T observations. The assimilation of perfect (error-free) F-T observations reduced the root-mean-square errors (RMSE) of surface temperature and soil temperature by 0.206 C and 0.061 C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7 percent and 3.1 percent, respectively). For a maximum classification error (CEmax) of 10 percent in the synthetic F-T observations, the F-T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178 C and 0.036 C, respectively. For CEmax=20 percent, the F-T assimilation still reduces the RMSE of model surface temperature estimates by 0.149 C but yields no improvement over the model soil temperature estimates. The F-T assimilation scheme is being developed to exploit planned operational F-T products from the NASA Soil Moisture Active Passive (SMAP) mission.

  14. Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires.

    PubMed

    Li, Jian; Kirkwood, Robert A; Baker, Luke J; Bosworth, David; Erotokritou, Kleanthis; Banerjee, Archan; Heath, Robert M; Natarajan, Chandra M; Barber, Zoe H; Sorel, Marc; Hadfield, Robert H

    2016-06-27

    We present low temperature nano-optical characterization of a silicon-on-insulator (SOI) waveguide integrated SNSPD. The SNSPD is fabricated from an amorphous Mo83Si17 thin film chosen to give excellent substrate conformity. At 350 mK, the SNSPD exhibits a uniform photoresponse under perpendicular illumination, corresponding to a maximum system detection efficiency of approximately 5% at 1550 nm wavelength. Under these conditions 10 Hz dark count rate and 51 ps full width at half maximum (FWHM) timing jitter is observed.

  15. Transport properties of Y1-xNdxCo2 compounds

    NASA Astrophysics Data System (ADS)

    Uchima, K.; Takeda, M.; Zukeran, C.; Nakamura, A.; Arakaki, N.; Komesu, S.; Takaesu, Y.; Hedo, M.; Nakama, T.; Yagasaki, K.; Uwatoko, Y.; Burkov, A. T.

    2012-12-01

    Electrical resistivity ρ and thermopower S of light rare earth-based pseudo-binary Y1-xNdxCo2 alloys have been measured at temperatures from 2 K to 300 K and under pressures up to 3.5 GPa. The Curie temperature of the alloys, TC, determined from characteristic features in the temperature dependences of the transport properties, decreases with decreasing Nd concentration x and vanishes around xc = 0.3. The residual resistivity has a pronounced maximum at x = xc. The temperature coefficient of thermopower dS/dT at low temperature limit shows a complex dependence on alloy composition: it changes its sign from negative to positive at x ≍ 0.2, having a maximum at x = xc, and is nearly composition independent at x > 0.5. The pressure dependences of TC and ρ0 of Yo.6Ndo.4Co2 reveal the behavior similar to that observed in the Y1-xRxHCo2 (RH = heavy rare earth) alloy systems, which implies that the magnetic state of the Co-3d electron subsystem is responsible for the transport properties in the Y1-xNdxCo2 alloys.

  16. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae).

    PubMed

    Sanabria, Eduardo A; Vaira, Marcos; Quiroga, Lorena B; Akmentins, Mauricio S; Pereyra, Laura C

    2014-04-01

    We study the variation in thermal parameters in two contrasting populations Yungas Redbelly Toads (Melanophryniscus rubriventris) with different discrete color phenotypes comparing field body temperatures, critical thermal maximum and heating rates. We found significant differences in field body temperatures of the different morphs. Temperatures were higher in toads with a high extent of dorsal melanization. No variation was registered in operative temperatures between the study locations at the moment of capture and processing. Critical thermal maximum of toads was positively related with the extent of dorsal melanization. Furthermore, we founded significant differences in heating rates between morphs, where individuals with a high extent of dorsal melanization showed greater heating rates than toads with lower dorsal melanization. The color pattern-thermal parameter relationship observed may influence the activity patterns and body size of individuals. Body temperature is a modulator of physiological and behavioral functions in amphibians, influencing daily and seasonal activity, locomotor performance, digestion rate and growth rate. It is possible that some growth constraints may arise due to the relationship of color pattern-metabolism allowing different morphs to attain similar sizes at different locations instead of body-size clines. Copyright © 2014. Published by Elsevier Ltd.

  17. Dengue Fever in American Military Personnel in the Philippines: Clinical Observations on Hospitalized Patients during a 1984 Epidemic

    DTIC Science & Technology

    1989-03-01

    the mean maximum temperature was Hypotenson 15 (62.5) 102.0 + 1.3 F. A "saddle back" or dip- Rash (Non- Petechial ) 13 (54.2) hasic fever pattern was not...DENGUE FEVER IN AMERICAN MILITARY PERSONNEL IN THE PHILIPPINES: CLINICAL OBSERVATIONS ON HOSPITALIZED PATIENS DURING A 1984 EPIDEMIC C.G. Hayes, T.F...Accession Tr~I Jti ti DENGUE FEVER IN AMERICAN MILITARY PERSONNEL IN THE PHILIPPINES: CLINICAL OBSERVATIONS ON HOSPITALIZED PATIENTS DURING A 1984

  18. On the Uncertainties of the Hot Oxygen Geocorona: Ground-based 732.0-nm Observations

    NASA Astrophysics Data System (ADS)

    Harding, B. J.; Makela, J. J.; Meriwether, J. W.

    2017-12-01

    Although it is well established that Venus and Mars both have a significant hot oxygen geocorona, the evidence for a hot oxygen geocorona on Earth is sparse. Recent theoretical estimates suggest the concentration of hot oxygen at the exobase is 0.1-1% of the thermal oxygen concentration, while the observational evidence (largely from the 1980s) suggests 1-20%. There is also disagreement about the effective temperature of the hot atoms (1500-6000 K). Hot oxygen is known to affect satellite drag, ambient thermospheric temperature and circulation, and ion temperature. We show results from a recent effort to replicate the initial observation of the hot oxygen geocorona [Yee et al., 1980], using ground-based observations of the shadow height variation of the 732-nm O+ emission. Yee, J., Meriwether, J. W., & Hays, P. B. (1980). Detection of a corona of fast oxygen atoms during solar maximum. Journal of Geophysical Research, 85(80), 3396-3400.

  19. Rosat observations of FK comae berenices

    NASA Technical Reports Server (NTRS)

    Welty, Alan D.; Ramsey, Lawrence W.

    1994-01-01

    We obtained ROSAT PSPC observations of FK Com over a period of 24.4 h, or 0.42 rotation. During the observations the x-ray flux increased by a factor of at least 5 before declining toward its previous level. A single temperature Raymond-Smith model is adequate to model the low signal-to-noise ratio spectrum from each observation interval. Initially the spectrum was that of a 8.5 x 10(exp 6) K plasma, with L9sub x)=0.66 x 10(exp 31) erg s(exp -1). When the x-ray flux was greatest, the model plasma temperature rose to 2.5 x 10(exp 7) K, and L(sub x)=3.46 x 10(exp 31) ergs(exp -1). During the post-maximum decline in luminosity the plasma temperature was approximately 12 x 10(exp 6) K. We conclude that the increase of x-ray flux recorded by ROSAT was due to an x-ray flare with a 1.5 h decline time scale.

  20. Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Rejaur; Lateh, Habibah

    2017-04-01

    In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80-2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20-2.48 °C) was found in the southern, southeastern and northeastern parts during 1971-2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (-0.75 mm per year) and post-monsoon rainfall (-0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011-2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.

  1. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table.

    PubMed

    Koseki, Shigenobu; Isobe, Seiichiro

    2005-10-25

    The growth of pathogenic bacteria Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on iceberg lettuce under constant and fluctuating temperatures was modelled in order to estimate the microbial safety of this vegetable during distribution from the farm to the table. Firstly, we examined pathogen growth on lettuce at constant temperatures, ranging from 5 to 25 degrees C, and then we obtained the growth kinetic parameters (lag time, maximum growth rate (micro(max)), and maximum population density (MPD)) using the Baranyi primary growth model. The parameters were similar to those predicted by the pathogen modelling program (PMP), with the exception of MPD. The MPD of each pathogen on lettuce was 2-4 log(10) CFU/g lower than that predicted by PMP. Furthermore, the MPD of pathogens decreased with decreasing temperature. The relationship between mu(max) and temperature was linear in accordance with Ratkowsky secondary model as was the relationship between the MPD and temperature. Predictions of pathogen growth under fluctuating temperature used the Baranyi primary microbial growth model along with the Ratkowsky secondary model and MPD equation. The fluctuating temperature profile used in this study was the real temperature history measured during distribution from the field at harvesting to the retail store. Overall predictions for each pathogen agreed well with observed viable counts in most cases. The bias and root mean square error (RMSE) of the prediction were small. The prediction in which mu(max) was based on PMP showed a trend of overestimation relative to prediction based on lettuce. However, the prediction concerning E. coli O157:H7 and Salmonella spp. on lettuce greatly overestimated growth in the case of a temperature history starting relatively high, such as 25 degrees C for 5 h. In contrast, the overall prediction of L. monocytogenes under the same circumstances agreed with the observed data.

  2. Synthesis and characterization of nickel oxide particulate annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Sharma, Khem Raj; Thakur, Shilpa; Negi, N. S.

    2018-04-01

    Nickel oxide has been synthesized by solution combustion technique. The nickel oxide ceramic was annealed at 600°C and 1000°C for 2 hours. Structural, electrical, dielectric and magnetic properties were analyzed which are strongly dependent upon the synthesis method. Structural properties were examined by X-ray diffractometer (XRD), which confirmed the purity and cubic phase of nickel oxide. XRD data reveals the increase in crystallite size and decrease in full width half maximum (FWHM) as the annealing temperature increases. Electrical conductivity is found to increase from 10-6 to 10-5 (Ω-1cm-1) after annealing. Dielectric constant is observed to increase from 26 to 175 when the annealing temperature is increased from 600°C to 1000°C. Low value of coercive field is found which shows weak ferromagnetic behavior of NiO. It is observed that all the properties of NiO particulate improve with increasing annealing temperature.

  3. Optimization of Pulsed-DEER Measurements for Gd-Based Labels: Choice of Operational Frequencies, Pulse Durations and Positions, and Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.

    2012-12-29

    In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimalmore » temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.« less

  4. On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.

  5. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.

    PubMed

    Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi

    2010-08-21

    The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.

  6. [Monitoring of brightness temperature fluctuation of water in SHF range].

    PubMed

    Ivanov, Yu D; Kozlov, A F; Galiullin, R A; Tatu, V Yu; Vesnin, S G; Ziborov, V S; Ivanova, N D; Pleshakova, T O

    2017-01-01

    The purpose of the research consisted in detection of fluctuation of brightness temperature (TSHF) of water in the area of the temperature Т = 42°С (that is critical for human) during its evaporation by SHF radiometry. Methods: Monitoring of the changes in brightness temperature of water in superhigh frequency (SHF) range (3.8-4.2 GHz) near the phase transition temperature of water Т = 42°С during its evaporation in the cone dielectric cell. The brightness temperature measurements were carried out using radiometer. Results: Fluctuation with maximum of brightness temperature was detected in 3.8-4.2 GHz frequency range near at the temperature of water Т = 42°С. It was characteristic for these TSHF fluctuations that brightness temperature rise time in this range of frequencies in ~4°С temperature range with 0.05-15°С/min gradient and a sharp decrease during 10 s connected with measuring vapor conditions. Then nonintensive fluctuation series was observed. At that, the environment temperature remained constant. Conclusion: The significant increasing in brightness temperature of water during its evaporation in SHF range near the temperature of Т ~42°С were detected. It was shown that for water, ТSHF pull with the amplitude DТSHF ~4°C are observed. At the same time, thermodynamic temperature virtually does not change. The observed effects can be used in the development of the systems for diadnostics of pathologies in human and analytical system.

  7. Seasonally Distinct Reconstructions of Northern Alaskan Temperature Variability Since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Longo, W. M.; Crowther, J.; Daniels, W.; Russell, J. M.; Giblin, A. E.; Morrill, C.; Zhang, X.; Wang, X.; Huang, Y.

    2015-12-01

    Paleoclimate reconstructions have provided little consensus on how continental temperatures in Eastern Beringia changed from the Last Glacial Maximum (LGM) to the present. Reconstructions show regional differences in LGM severity, the timing of deglacial warming, and Holocene temperature variability. Currently, arctic temperatures are increasing at the fastest rates on the planet, highlighting the need to identify the sensitivities of arctic systems to various climate forcings. This cannot be done without resolving the complex climate history of Eastern Beringia. Here, we present two new organic geochemical temperature reconstructions from Lake E5, north central Alaska that span the LGM, last glacial termination and Holocene. The proxies (alkenones and brGDGTs) record seasonally distinct temperatures, allowing for the attribution of different forcings to each proxy. The alkenone-based UK37 reconstruction records spring/early summer lake temperatures and indicates a 4 oC abrupt warming at 13.1 ka and a relatively warm late Holocene, which peaks at 2.4 ka and exhibits a cooling trend from 2.4 to 0.1 ka. The brGDGT reconstruction is calibrated to mean annual air temperature and interpreted here as exhibiting a strong warm season bias. BrGDGTs show an abrupt 4.5 oC warming at 14 ka, and show evidence for an early Holocene Thermal Maximum (HTM), which cools by 3 oC after 8.4 ka. Because UK37 temperatures do not exhibit an early HTM, we hypothesize that summer insolation had a minimal effect on spring/early summer lake temperatures. Instead, the UK37 reconstruction agrees with sea ice and sea surface temperature reconstructions from the Beaufort and Chukchi Seas and northeast Pacific Ocean. We hypothesize that forcings associated with sea ice concentration and changes in atmospheric circulation had stronger affects on spring/early summer lake temperatures and we present modern observational data in support of this hypothesis. By contrast, the summer-biased brGDGT reconstruction suggests a strong and relatively direct temperature response to summer insolation forcing. Together, these records suggest that both internal and external forcings significantly affected LGM to present temperature variability in Eastern Beringia, with different seasonal biases.

  8. Extraction, stability, and separation of betalains from Opuntia joconostle cv. using response surface methodology.

    PubMed

    Sanchez-Gonzalez, Noe; Jaime-Fonseca, Monica R; San Martin-Martinez, Eduardo; Zepeda, L Gerardo

    2013-12-11

    Betalains were extracted and analyzed from Opuntia joconostle (the prickly pear known as xoconostle in Mexico). For the extraction, two solvent systems were used, methanol/water and ethanol/water. A three-variable Box-Behnken statistical design was used for extraction: solvent concentration (0-80%, v/v), temperature (5-30 °C), and treatment time (10-30 min). The extraction and stability of betalains from xoconostle were studied using response surface methodology (RSM). Techniques such as UV-vis, column chromatography, and HPLC were employed for the separation and analysis of the main pigments present in the extracts. Maximum pigment concentration (92 mg/100 g of fruit) was obtained at a temperature of 15 °C and a time of 10 min for methanol/water (20:80), whereas maximum stability of the pigment was observed at pH 5 and a temperature of 25 °C. HPLC chromatograms showed the main betalains of the xoconostle characterized were betalain, betanidin, and isobetalain.

  9. Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1982-01-01

    The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.

  10. High-efficiency impurity activation by precise control of cooling rate during atmospheric pressure thermal plasma jet annealing of 4H-SiC wafer

    NASA Astrophysics Data System (ADS)

    Maruyama, Keisuke; Hanafusa, Hiroaki; Ashihara, Ryuhei; Hayashi, Shohei; Murakami, Hideki; Higashi, Seiichiro

    2015-06-01

    We have investigated high-temperature and rapid annealing of a silicon carbide (SiC) wafer by atmospheric pressure thermal plasma jet (TPJ) irradiation for impurity activation. To reduce the temperature gradient in the SiC wafer, a DC current preheating system and the lateral back-and-forth motion of the wafer were introduced. A maximum surface temperature of 1835 °C within 2.4 s without sample breakage was achieved, and aluminum (Al), phosphorus (P), and arsenic (As) activations in SiC were demonstrated. We have investigated precise control of heating rate (Rh) and cooling rate (Rc) during rapid annealing of P+-implanted 4H-SiC and its impact on impurity activation. No dependence of resistivity on Rh was observed, while increasing Rc significantly decreased resistivity. A minimum resistivity of 0.0025 Ω·cm and a maximum carrier concentration of 2.9 × 1020 cm-3 were obtained at Rc = 568 °C/s.

  11. Rapid change in the thermal tolerance of a tropical lizard.

    PubMed

    Leal, Manuel; Gunderson, Alex R

    2012-12-01

    The predominant view is that the thermal physiology of tropical ectotherms, including lizards, is not labile over ecological timescales. We used the recent introduction (∼35 years ago) of the Puerto Rican lizard Anolis cristatellus to Miami, Florida, to test this thermal rigidity hypothesis. We measured lower (critical thermal minimum [CT(min)]) and upper (critical thermal maximum [CT(max)]) thermal tolerances and found that the introduced population tolerates significantly colder temperatures (by ∼3°C) than does the Puerto Rican source population; however, CT(max) did not differ. These results mirror the thermal regimes experienced by each population: Miami reaches colder ambient temperatures than Puerto Rico, but maximum ambient temperatures are similar. The differences in CT(min) were observed even though lizards from both sites experienced nearly identical conditions for 49 days before CT(min) measurement. Our results demonstrate that changes in thermal tolerance occurred relatively rapidly (∼35 generations), which strongly suggests that the thermal physiology of tropical lizards is more labile than previously proposed.

  12. The maximum evaporative potential of constant wear immersion suits influences the risk of excessive heat strain for helicopter aircrew

    PubMed Central

    2018-01-01

    The heat exchange properties of aircrew clothing including a Constant Wear Immersion Suit (CWIS), and the environmental conditions in which heat strain would impair operational performance, were investigated. The maximum evaporative potential (im/clo) of six clothing ensembles (three with a flight suit (FLY) and three with a CWIS) of varying undergarment layers were measured with a heated sweating manikin. Biophysical modelling estimated the environmental conditions in which body core temperature would elevate above 38.0°C during routine flight. The im/clo was reduced with additional undergarment layers, and was more restricted in CWIS compared to FLY ensembles. A significant linear relationship (r2 = 0.98, P<0.001) was observed between im/clo and the highest wet-bulb globe temperature in which the flight scenario could be completed without body core temperature exceeding 38.0°C. These findings provide a valuable tool for clothing manufacturers and mission planners for the development and selection of CWIS’s for aircrew. PMID:29723267

  13. Pyrolysis of tyre powder using microwave thermogravimetric analysis: Effect of microwave power.

    PubMed

    Song, Zhanlong; Yang, Yaqing; Zhou, Long; Zhao, Xiqiang; Wang, Wenlong; Mao, Yanpeng; Ma, Chunyuan

    2017-02-01

    The pyrolytic characteristics of tyre powder treated under different microwave powers (300, 500, and 700 W) were studied via microwave thermogravimetric analysis. The product yields at different power levels were studied, along with comparative analysis of microwave pyrolysis and conventional pyrolysis. The feedstock underwent preheating, intense pyrolysis, and final pyrolysis in sequence. The main and secondary weight loss peaks observed during the intense pyrolysis stage were attributed to the decomposition of natural rubbers and synthetic rubbers, respectively. The total mass loss rates, bulk temperatures, and maximum temperatures were distinctively higher at higher powers. However, the maximum mass loss rate (0.005 s -1 ), the highest yields of liquid product (53%), and the minimum yields of residual solid samples (43.83%) were obtained at 500 W. Compared with conventional pyrolysis, microwave pyrolysis exhibited significantly different behaviour with faster reaction rates, which can decrease the decomposition temperatures of both natural and synthetic rubber by approximately 110 °C-140 °C.

  14. Exhaust-Gas Pressure and Temperature Survey of F404-GE-400 Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Walton, James T.; Burcham, Frank W., Jr.

    1986-01-01

    An exhaust-gas pressure and temperature survey of the General Electric F404-GE-400 turbofan engine was conducted in the altitude test facility of the NASA Lewis Propulsion System Laboratory. Traversals by a survey rake were made across the exhaust-nozzle exit to measure the pitot pressure and total temperature. Tests were performed at Mach 0.87 and a 24,000-ft altitude and at Mach 0.30 and a 30,000-ft altitude with various power settings from intermediate to maximum afterburning. Data yielded smooth pressure and temperature profiles with maximum jet temperatures approximately 1.4 in. inside the nozzle edge and maximum jet temperatures from 1 to 3 in. inside the edge. A low-pressure region located exactly at engine center was noted. The maximum temperature encountered was 3800 R.

  15. Phonons in Confinement and the Boson Peak Using Nuclear Inelastic Absorption

    NASA Astrophysics Data System (ADS)

    Asthalter, T.; Bauer, M.; van Bürck, U.; Sergueev, I.; Franz, H.; Chumakov, A. I.

    2002-12-01

    We have applied nuclear inelastic absorption (NIA) to the molecular glass former dibutylphthalate/ferrocene, both in bulk and in nanoporous matrices having pore sizes of 50 and 25 Å, respectively. The quantity g(E)/E 2, where g(E) is the vibrational phonon density of states (VDOS) of the resonant nuclei, exhibits a pronounced maximum at low energies. Confinement in pores leads to a suppression of the VDOS below 1.5 meV, independent of the pore size. Also in the scaled heat capacity C(T)/T 3, we observe a decrease of the peak maximum for low temperatures. Our observations are discussed in the light of experimental and theoretical results on nanocrystals and a recent theoretical model for the boson peak.

  16. Evidence of nonlinear interaction between quasi 2 day wave and quasi-stationary wave

    NASA Astrophysics Data System (ADS)

    Gu, Sheng-Yang; Liu, Han-Li; Li, Tao; Dou, Xiankang; Wu, Qian; Russell, James M.

    2015-02-01

    The nonlinear interaction between the westward quasi 2 day wave (QTDW) with zonal wave number s = 3 (W3) and stationary planetary wave with s = 1 (SPW1) is first investigated using both Thermosphere, Ionosphere, and Mesosphere Electric Dynamics (TIMED) satellite observations and the thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. A QTDW with westward s = 2 (W2) is identified in the mesosphere and lower thermosphere (MLT) region in TIMED/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature and TIMED/TIMED Doppler Imager (TIDI) wind observations during 2011/2012 austral summer period, which coincides with a strong SPW1 episode at high latitude of the northern winter hemisphere. The temperature perturbation of W2 QTDW reaches a maximum amplitude of ~8 K at ~30°S and ~88 km in the Southern Hemisphere, with a smaller amplitude in the Northern Hemisphere at similar latitude and minimum amplitude at the equator. The maximum meridional wind amplitude of the W2 QTDW is observed to be ~40 m/s at 95 km in the equatorial region. The TIME-GCM is utilized to simulate the nonlinear interactions between W3 QTDW and SPW1 by specifying both W3 QTDW and SPW1 perturbations at the lower model boundary. The model results show a clear W2 QTDW signature in the MLT region, which agrees well with the TIMED/SABER temperature and TIMED/TIDI horizontal wind observations. We conclude that the W2 QTDW during the 2011/2012 austral summer period results from the nonlinear interaction between W3 QTDW and SPW1.

  17. Influence of synthetic calcium silicates on the strength properties of fine-grained concrete

    NASA Astrophysics Data System (ADS)

    Yarusova, S. B.; Gordienko, P. S.; Kozin, A. V.; Zhevtun, I. G.; Perfilev, A. V.

    2018-04-01

    The effect of additives based on acicular calcium hydrosilicates (xonotlite and tobermorite) and wollastonite, obtained from boric acid production waste in autoclave synthesis at a temperature of 220 °C, on the strength of fine-grained concrete, has been studied in this paper. It was shown that when the calcium hydrosilicates and wollastonite are introduced, an increase in the strength characteristics of concrete is observed. After heat and moisture treatment, the maximum increase in strength is observed with the addition of 4% of mass content of calcium hydrosilicates and 6% of mass content of wollastonite. After 28 days of hardening under normal conditions, the maximum increase in strength of concrete is observed with the addition of 4% of mass content of both types of additives. It was shown that the water absorption of concrete decreases with a maximum when 4% of mass content is added, as in the case of the introduction of calcium hydrosilicates, and wollastonite. With a further increase in the number of additives, the amount of water absorption increases, but these values remain below the values for the control sample without additives.

  18. Impacts of urbanization and agricultural development on observed changes in surface air temperature over mainland China from 1961 to 2006

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Tang, Qiuhong; Xu, Di; Yang, Zhiyong

    2018-03-01

    A large proportion of meteorological stations in mainland China are located in or near either urban or agricultural lands that were established throughout the period of rapid urbanization and agricultural development (1961-2006). The extent of the impacts of urbanization and agricultural development on observed air temperature changes across different climate regions remains elusive. This study evaluates the surface air temperature trends observed by 598 meteorological stations in relation to the urbanization and agricultural development over the arid northwest, semi-arid intermediate, and humid southeast regions of mainland China based on linear regressions of temperature trends on the fractions of urban and cultivated land within a 3-km radius of the stations. In all three regions, the stations surrounded by large urban land tend to experience rapid warming, especially at minimum temperature. This dependence is particularly significant in the southeast region, which experiences the most intense urbanization. In the northwest and intermediate regions, stations surrounded by large cultivated land encounter less warming during the main growing season, especially at the maximum temperature changes. These findings suggest that the observed surface warming has been affected by urbanization and agricultural development represented by urban and cultivated land fractions around stations in with land cover changes in their proximity and should thus be considered when analyzing regional temperature changes in mainland China.

  19. Effects of a temperature-dependent rheology on large scale continental extension

    NASA Technical Reports Server (NTRS)

    Sonder, Leslie J.; England, Philip C.

    1988-01-01

    The effects of a temperature-dependent rheology on large-scale continental extension are investigated using a thin viscous sheet model. A vertically-averaged rheology is used that is consistent with laboratory experiments on power-law creep of olivine and that depends exponentially on temperature. Results of the calculations depend principally on two parameters: the Peclet number, which describes the relative rates of advection and diffusion of heat, and a dimensionless activation energy, which controls the temperature dependence of the rheology. At short times following the beginning of extension, deformation occurs with negligible change in temperature, so that only small changes in lithospheric strength occur due to attenuation of the lithosphere. However, after a certain critical time interval, thermal diffusion lowers temperatures in the lithosphere, strongly increasing lithospheric strength and slowing the rate of extension. This critical time depends principally on the Peclet number and is short compared with the thermal time constant of the lithosphere. The strength changes cause the locus of high extensional strain rates to shift with time from regions of high strain to regions of low strain. Results of the calculations are compared with observations from the Aegean, where maximum extensional strains are found in the south, near Crete, but maximum present-day strain rates are largest about 300 km further north.

  20. Morphological adaptation to climate in modern Homo sapiens crania: the importance of basicranial breadth.

    PubMed

    Nowaczewska, Wioletta; Dabrowski, Paweł; Kuźmiński, Łukasz

    2011-09-01

    The aim of this study is to investigate whether the variation in breadth of the cranial base among modern human populations that inhabit different regions of the world is linked with climatic adaptation. This work provides an examination of two hypotheses. The first hypothesis is that the correlation between basicranial breadth and ambient temperature is stronger than the correlation between temperature and other neurocranial variables, such as maximum cranial breadth, maximum neurocranial length, and the endocranial volume. The second hypothesis is that the correlation between the breadth of the cranial base and the ambient temperature is significant even when other neurocranial features used in this study (including the size of the neurocranium) are constant. For the sake of this research, the necessary neurocranial variables for fourteen human populations living in diverse environments were obtained from Howells' data (except for endocranial volume which was obtained by means of estimation). The ambient temperature (more precisely, the mean yearly temperature) of the environments inhabited by these populations was used as a major climatic factor. Data were analysed using Pearson correlation coefficients, linear regression and partial correlation analyses. The results supported the two hypotheses, thus suggesting that ambient temperature may contribute to the observed differences in the breadth of the cranial base in the studied modern humans.

  1. Dielectric, thermal and Raman spectroscopy studies of lead-free (Na0.5Bi0.5)1-xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics

    NASA Astrophysics Data System (ADS)

    Suchanicz, J.; Bovtun, V.; Dutkiewicz, E. M.; Konieczny, K.; Sitko, D.; Kluczewska, K.; Wajda, A.; Kalvane, A.; Sternberg, A.

    2016-08-01

    Lead-free (Na0.5Bi0.5)1-xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics with relative densities above 97% were prepared by solid-state synthesis process. Their dielectric, thermal and Raman properties were studied. X-ray diffraction analysis shows perovskite structure with rhombohedral symmetry at room temperature. Sr doping of Na0.5Bi0.5TiO3 (NBT) results in an increase of the dielectric permittivity, diffusing of the permittivity maximum and its shift toward lower temperatures. The temperature of the rhombohedral-tetragonal phase transition indicated by the differential scanning calorimetry (DSC) peak and relaxational dielectric anomaly near the depolarization temperature are also shifted toward lower temperatures. The observed increase and broadening of the permittivity maximum, enhancement of the dielectric relaxation near the depolarization temperature, broadening of the DSC anomaly related to the rhombohedral-tetragonal phase transition and broadening of the Raman bands with increasing Sr content are attributed to the increase of the degree of cationic disorder and evident enhancement of the relaxor-like features in NBT-xST. This enhancement could play a positive role in the improvement of the piezoelectric performance of NBT-based ceramics.

  2. High temperature impact on fatigue life of asphalt mixture in Slovakia

    NASA Astrophysics Data System (ADS)

    Mandula, Ján; Olexa, Tomáš

    2017-09-01

    Temperature dependence of materials bonded with bitumen is a well-known fact. The impact of temperature changes the behaviour of asphalt mixtures from elastic to viscous state, and it also influences the complex modulus, phase angle and other properties of asphalt mixtures. This study observed the summer temperature influence on fatigue behaviour of an asphalt mixture for the surface course of roads in conditions of Slovakia. Measurements were made using the four-point bending method on the asphalt mixture with maximum grain size of 11 mm bonded with polymer modified bitumen. Summer conditions were represented by environmental temperature of 27 °C according to the Slovakian pavement design method. Ordinary temperatures for fatigue measurements are 10 °C, 15 °C and 20 °C according to European standards for asphalt mixture testing. Structural changes in the material were observed by dissipation energy calculations for each loading cycle. The aim of the study was to find out if the influence of high environmental temperature is positive or negative for the lifespan of asphalt mixtures.

  3. Temperature and electrical memory of polymer fibers

    NASA Astrophysics Data System (ADS)

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

    2014-05-01

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  4. Signature of present and projected climate change at an urban scale: The case of Addis Ababa

    NASA Astrophysics Data System (ADS)

    Arsiso, Bisrat Kifle; Mengistu Tsidu, Gizaw; Stoffberg, Gerrit Hendrik

    2018-06-01

    Understanding climate change and variability at an urban scale is essential for water resource management, land use planning, development of adaption plans, mitigation of air and water pollution. However, there are serious challenges to meet these goals due to unavailability of observed and/or simulated high resolution spatial and temporal climate data. The statistical downscaling of general circulation climate model, for instance, is usually driven by sparse observational data hindering the use of downscaled data to investigate urban scale climate variability and change in the past. Recently, these challenges are partly resolved by concerted international effort to produce global and high spatial resolution climate data. In this study, the 1 km2 high resolution NIMR-HadGEM2-AO simulations for future projections under Representative Concentration Pathways (RCP4.5 and RCP8.5) scenarios and gridded observations provided by Worldclim data center are used to assess changes in rainfall, minimum and maximum temperature expected under the two scenarios over Addis Ababa city. The gridded 1 km2 observational data set for the base period (1950-2000) is compared to observation from a meteorological station in the city in order to assess its quality for use as a reference (baseline) data. The comparison revealed that the data set has a very good quality. The rainfall anomalies under RCPs scenarios are wet in the 2030s (2020-2039), 2050s (2040-2069) and 2080s (2070-2099). Both minimum and maximum temperature anomalies under RCPs are successively getting warmer during these periods. Thus, the projected changes under RCPs scenarios show a general increase in rainfall and temperatures with strong variabilities in rainfall during rainy season implying level of difficulty in water resource use and management as well as land use planning and management.

  5. Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India

    NASA Astrophysics Data System (ADS)

    Sharma, Priyank J.; Loliyana, V. D.; S. R., Resmi; Timbadiya, P. V.; Patel, P. L.

    2017-12-01

    The flood risk across the globe is intensified due to global warming and subsequent increase in extreme temperature and precipitation. The long-term trends in extreme rainfall (1944-2013) and temperature (1969-2012) indices have been investigated at annual, seasonal, and monthly time scales using nonparametric Mann-Kendall (MK), modified Mann-Kendall (MMK), and Sen's slope estimator tests. The extreme rainfall and temperature indices, recommended by the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI), have been analyzed at finer spatial scales for trend detection. The results of trend analyses indicate decreasing trend in annual total rainfall, significant decreasing trend in rainy days, and increasing trend in rainfall intensity over the basin. The seasonal rainfall has been found to decrease for all the seasons except postmonsoon, which could affect the rain-fed agriculture in the basin. The 1- and 5-day annual maximum rainfalls exhibit mixed trends, wherein part of the basin experiences increasing trend, while other parts experience a decreasing trend. The increase in dry spells and concurrent decrease in wet spells are also observed over the basin. The extreme temperature indices revealed increasing trends in hottest and coldest days, while decreasing trends in coldest night are found over most parts of the basin. Further, the diurnal temperature range is also found to increase due to warming tendency in maximum temperature (T max) at a faster rate compared to the minimum temperature (T min). The increase in frequency and magnitude of extreme rainfall in the basin has been attributed to the increasing trend in maximum and minimum temperatures, reducing forest cover, rapid pace of urbanization, increase in human population, and thereby increase in the aerosol content in the atmosphere. The findings of the present study would significantly help in sustainable water resource planning, better decision-making for policy framework, and setting up infrastructure against flood disasters in Upper Tapi Basin, India.

  6. The impact of sustained hot weather on risk of acute work-related injury in Melbourne, Australia.

    PubMed

    McInnes, Judith Anne; MacFarlane, Ewan M; Sim, Malcolm R; Smith, Peter

    2018-02-01

    It has been reported that weather-related high ambient temperature is associated with an increased risk of work-related injury. Understanding this relationship is important because work-related injuries are a major public health problem, and because projected climate changes will potentially expose workers to hot days, including consecutive hot days, more often. The aim of this study was to quantify the impact of exposure to sustained periods of hot weather on work-related injury risk for workers in Melbourne, Australia. A time-stratified case crossover study design was utilised to examine the association between two and three consecutive days and two and three consecutive nights of hot weather and the risk of work-related injury, using definitions of hot weather ranging from the 60th to the 95th percentile of daily maximum and minimum temperatures for the Melbourne metropolitan area, 2002-2012. Workers' compensation claim data was used to identify cases of acute work-related injury. Overall, two and three consecutive days of hot weather were associated with an increased risk of injury, with this effect becoming apparent at a daily maximum temperature of 27.6 °C (70th percentile). Three consecutive days of high but not extreme temperatures were associated with the strongest effect, with a 15% increased risk of injury (odds ratio 1.15, 95% confidence interval 1.01-1.30) observed when daily maximum temperature was ≥33.3 °C (90th percentile) for three consecutive days, compared to when it was not. At a threshold of 35.5 °C (95th percentile), there was no significant association between temperature and injury for either two or three consecutive days of heat. These findings suggest that warnings to minimise harm to workers from hot weather should be given, and prevention protocol initiated, when consecutive warm days of temperatures lower than extreme heat temperatures are forecast, and well before the upper ranges of ambient daytime temperatures are reached.

  7. The impact of sustained hot weather on risk of acute work-related injury in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    McInnes, Judith Anne; MacFarlane, Ewan M.; Sim, Malcolm R.; Smith, Peter

    2018-02-01

    It has been reported that weather-related high ambient temperature is associated with an increased risk of work-related injury. Understanding this relationship is important because work-related injuries are a major public health problem, and because projected climate changes will potentially expose workers to hot days, including consecutive hot days, more often. The aim of this study was to quantify the impact of exposure to sustained periods of hot weather on work-related injury risk for workers in Melbourne, Australia. A time-stratified case crossover study design was utilised to examine the association between two and three consecutive days and two and three consecutive nights of hot weather and the risk of work-related injury, using definitions of hot weather ranging from the 60th to the 95th percentile of daily maximum and minimum temperatures for the Melbourne metropolitan area, 2002-2012. Workers' compensation claim data was used to identify cases of acute work-related injury. Overall, two and three consecutive days of hot weather were associated with an increased risk of injury, with this effect becoming apparent at a daily maximum temperature of 27.6 °C (70th percentile). Three consecutive days of high but not extreme temperatures were associated with the strongest effect, with a 15% increased risk of injury (odds ratio 1.15, 95% confidence interval 1.01-1.30) observed when daily maximum temperature was ≥33.3 °C (90th percentile) for three consecutive days, compared to when it was not. At a threshold of 35.5 °C (95th percentile), there was no significant association between temperature and injury for either two or three consecutive days of heat. These findings suggest that warnings to minimise harm to workers from hot weather should be given, and prevention protocol initiated, when consecutive warm days of temperatures lower than extreme heat temperatures are forecast, and well before the upper ranges of ambient daytime temperatures are reached.

  8. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral

    PubMed Central

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0–21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming. PMID:26582993

  9. New method for determining temperature and emission measure during solar flares from light curves of soft X-ray line fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornmann, P.L.

    I describe a new property of soft X-ray line fluxes observed during the decay phase of solar flares and a technique for using this property to determine the plasma temperature and emission measure as functions of time. The soft X-ray line fluxes analyzed in this paper were observed during the decay phase of the 1980 November 5 flare by the X-Ray Polychromator (XRP) instrument on board the Solar Maximum Mission (SMM). The resonance, intercombination, and forbidden lines of Ne IX, Mg XI, Si XIII, S XV, Ca XIX, and Fe XXV, as well as the Lyman-..cap alpha.. line of Omore » VIII and the resonance lines of Fe XIX, were observed. The rates at which the observed line fluxes decayed were not constant. For all but the highest temperature lines observed, the rate changed abruptly, causing the fluxes to fall at a more rapid rate later in the flare decay. These changes occurred at earlier times for lines formed at higher temperatures. This behavior is proposed to be due to the decreasing temperature of the flare plasma tracking the rise and subsequent fall of each line emissivity function. This explanation is used to empirically model the observed light curves and to estimate the temperature and the change in emission measure of the plasma as a function of time during the decay phase. Estimates are made of various plasma parameters based on the model results.« less

  10. Improvement of patient return electrodes in electrosurgery by experimental investigations and numerical field calculations.

    PubMed

    Golombeck, M A; Dössel, O; Raiser, J

    2003-09-01

    Numerical field calculations and experimental investigations were performed to examine the heating of the surface of human skin during the application of a new electrode design for the patient return electrode. The new electrode is characterised by an equipotential ring around the central electrode pads. A multi-layer thigh model was used, to which the patient return electrode and the active electrode were connected. The simulation geometry and the dielectric tissue parameters were set according to the frequency of the current. The temperature rise at the skin surface due to the flow of current was evaluated using a two-step numerical solving procedure. The results were compared with experimental thermographical measurements that yielded a mean value of maximum temperature increase of 3.4 degrees C and a maximum of 4.5 degrees C in one test case. The calculated heating patterns agreed closely with the experimental results. However, the calculated mean value in ten different numerical models of the maximum temperature increase of 12.5 K (using a thermodynamic solver) exceeded the experimental value owing to neglect of heat transport by blood flow and also because of the injection of a higher test current, as in the clinical tests. The implementation of a simple worst-case formula that could significantly simplify the numerical process led to a substantial overestimation of the mean value of the maximum skin temperature of 22.4 K and showed only restricted applicability. The application of numerical methods confirmed the experimental assertions and led to a general understanding of the observed heating effects and hotspots. Furthermore, it was possible to demonstrate the beneficial effects of the new electrode design with an equipotential ring. These include a balanced heating pattern and the absence of hotspots.

  11. Ambient temperature thermoelectric performance of thermally evaporated p-type Bi-Sb-Te thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Singh, Janpreet; Tripathi, S. K.

    2018-04-01

    Bismuth antimony telluride (BST) compounds have shown a promising performance in low to medium temperature thermoelectric (TE) conversion. One such composition, Bi1.2Sb0.8Te3, was synthesized by melting elemental entities and thin films of the as-synthesized material were deposited by thermal evaporation. X-Ray Diffraction analysis was conducted to study the crystallographic phases and other structural properties. Electrical conductivity and Seebeck coefficient measurements of as-prepared thin films were conducted in the temperature range from 303-363 K with a view to study ambient temperature application of the synthesized material for power generation in which an increasing trend was observed in the Seebeck coefficient. Electrical conductivity displayed a maximum value of 0.22 × 104 Sm-1 that was comparable to other Bi-Sb-Te compositions whereas power factor had its peak at 323 K. These trends observed in electrical properties indicate that synthesized material can be used for room temperature TE module fabrication.

  12. Global discrimination of land cover types from metrics derived from AVHRR pathfinder data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeFries, R.; Hansen, M.; Townshend, J.

    1995-12-01

    Global data sets of land cover are a significant requirement for global biogeochemical and climate models. Remotely sensed satellite data is an increasingly attractive source for deriving these data sets due to the resulting internal consistency, reproducibility, and coverage in locations where ground knowledge is sparse. Seasonal changes in the greenness of vegetation, described in remotely sensed data as changes in the normalized difference vegetation index (NDVI) throughout the year, have been the basis for discriminating between cover types in previous attempts to derive land cover from AVHRR data at global and continental scales. This study examines the use ofmore » metrics derived from the NDVI temporal profile, as well as metrics derived from observations in red, infrared, and thermal bands, to improve discrimination between 12 cover types on a global scale. According to separability measures calculated from Bhattacharya distances, average separabilities improved by using 12 of the 16 metrics tested (1.97) compared to separabilities using 12 monthly NDVI values alone (1.88). Overall, the most robust metrics for discriminating between cover types were: mean NDVI, maximum NDVI, NDVI amplitude, AVHRR Band 2 (near-infrared reflectance) and Band 1 (red reflectance) corresponding to the time of maximum NDVI, and maximum land surface temperature. Deciduous and evergreen vegetation can be distinguished by mean NDVI, maximum NDVI, NDVI amplitude, and maximum land surface temperature. Needleleaf and broadleaf vegetation can be distinguished by either mean NDVI and NDVI amplitude or maximum NDVI and NDVI amplitude.« less

  13. X-ray bursts: Observation versus theory

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1981-01-01

    Results of various observations of common type I X-ray bursts are discussed with respect to the theory of thermonuclear flashes in the surface layers of accreting neutron stars. Topics covered include burst profiles; irregular burst intervals; rise and decay times and the role of hydrogen; the accuracy of source distances; accuracy in radii determination; radius increase early in the burst; the super Eddington limit; temperatures at burst maximum; and the role of the magnetic field.

  14. Microstructure of squarylium dye J aggregate films examined on the basis of optical behavior at low temperature

    NASA Astrophysics Data System (ADS)

    Tatsuura, Satoshi; Tian, Minquan; Furuki, Makoto; Sato, Yasuhiro; Iwasa, Izumi; Pu, Lyong Sun; Kawashima, Hitoshi; Ishikawa, Hiroshi

    2002-10-01

    The microstructure of a spin-coated film of squarylium dye J aggregates is examined on the basis of the measurement of the optical properties and the third-order nonlinear optical susceptibility χ(3) at low temperature. The absorption maximum of J aggregates shifted to lower energies as the film temperature decreased, while χ(3) was independent of the temperature. The latter finding indicates that the coherent length of J aggregates is confined by a structural boundary rather than by phonons; consequently, the observed peak energy shift can be due to temperature-dependent conformational change of the aggregates. The small aggregation size may contribute to the ultrahigh-speed optical response of squarylium dye J aggregates.

  15. Observation of room temperature negative differential resistance in multi-layer heterostructures of quantum dots and conducting polymers.

    PubMed

    Kannan, V; Kim, M R; Chae, Y S; Ramana, Ch V V; Rhee, J K

    2011-01-14

    Multi-layer heterostructure negative differential resistance devices based on poly-[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene] (MEH-PPV) conducting polymer and CdSe quantum dots is reported. The conducting polymer MEH-PPV acts as a barrier while CdSe quantum dots form the well layer. The devices exhibit negative differential resistance (NDR) at low voltages. For these devices, strong negative differential resistance is observed at room temperature. A maximum value of 51 for the peak-to-valley ratio of current is reported. Tunneling of electrons through the discrete quantum confined states in the CdSe quantum dots is believed to be responsible for the multiple peaks observed in the I-V measurement. Depending on the observed NDR signature, operating mechanisms are explored based on resonant tunneling and Coulomb blockade effects.

  16. Redox potentials and kinetics of the Ce 3+/Ce 4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.

    Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce 4+ may not be well suited for use in RFB technology.

  17. Hydrogen and Palladium Foil: Two Classroom Demonstrations

    ERIC Educational Resources Information Center

    Klotz, Elsbeth; Mattson, Bruce

    2009-01-01

    In these two classroom demonstrations, students observe the reaction between H[subscript 2] gas and Pd foil. In the first demonstration, hydrogen and palladium combine within one minute at 1 atm and room temperature to yield the non-stoichiometric, interstitial hydride with formula close to the maximum known value, PdH[subscript 0.7]. In the…

  18. Comparison of four MPPT techniques for PV systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atik, L., E-mail: lotfi.atik@univ-usto.dz; Ternifi, Z. T.; Université de Lorraine, LMOPS, EA 4423, 57070 Metz

    2016-07-25

    The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, formore » all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.« less

  19. Influence of alkyl sulfates on waste activated sludge fermentation at ambient temperature.

    PubMed

    Jiang, Su; Chen, Yinguang; Zhou, Qi

    2007-09-05

    Alkyl sulfates (AS), such as sodium dodecyl sulfate (SDS), are widely used in household and industrial products, and can be found in some wastewater and waste activated sludge (WAS). The effect of SDS on the fermentation of WAS at ambient temperature was investigated in this paper. Experimental results showed that the concentrations of protein and carbohydrate in aqueous phase increased with the amount of SDS. The concentrations of both NH(4)(+)-N and PO(4)(3-)-P in fermentation liquor also increased in the presence of SDS. In addition, it was observed that the fermentative short-chain fatty acids (SCFAs) concentration was affected by SDS. With the increase of SDS dosage, the maximum SCFAs concentration increased, and the fermentation time before reaching the maximum SCFAs concentration also increased. Further investigation showed that the produced SCFAs consisted of acetic, propionic, n-butyric, iso-butyric, n-valeric and iso-valeric acids, and acetic, iso-valeric and propionic acids were the three main products. The influence of SDS on methanogenesis was also investigated, and the inhibitory effect of SDS on methanogens activity was observed.

  20. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Treesearch

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  1. Thermal study of longitudinal and torsional ultrasound phacoemulsification: tracking the temperature of the corneal surface, incision, and handpiece.

    PubMed

    Jun, Bokkwan; Berdahl, John P; Kim, Terry

    2010-05-01

    To evaluate the change and difference in the corneal surface, incision, and handpiece temperatures during longitudinal and torsional ultrasound (US) phacoemulsification with standard incisions (2.75 mm) and microincisions (2.20 mm) and the thermal effect on wounds. Department of Ophthalmology, Duke University, Durham, North Carolina, USA. In this prospective study, human cadaver eyes had simulated phacoemulsification. Group 1 had a 2.75 mm incision with 100% longitudinal US; Group 2, a 2.20 mm incision with 100% longitudinal US; Group 3, a 2.75 mm incision with 100% torsional US; and Group 4, a 2.20 mm incision with 100% torsional US. During phacoemulsification, the corneal incision was evaluated by surgical microscopy and scanning electron microscopy (SEM) and images of the corneal surface, incision, and handpiece were captured with an infrared camera. Twelve eyes (3 each group) were evaluated. The maximum incision temperature was higher in the longitudinal groups than in the torsional groups. With the same US modality, the maximum microincision temperature was higher than the maximum standard incision temperature. After application of full power for 40 seconds, wound burn was observed in all eyes in the longitudinal groups and no eyes in the torsional groups. On SEM, there was more extensive loss of Descemet membrane in the longitudinal groups than in the torsional groups. Incision temperature was influenced by US modality and was significantly lower with torsional US than with longitudinal US. Using torsional US with smaller incisions may decrease the risk for wound burn in eyes with denser cataracts. (c) 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Temperature dependence of electroresistance for La0.67Ba0.33MnO3 manganite

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Gupta, Ajai K.; Kumar, Vijay; Bhalla, G. L.; Khare, Neeraj

    2007-12-01

    The influence of dc biasing current on temperature dependence of resistance of La0.67Ba0.33MnO3 bulk sample is reported. A decrease in the resistance (electroresistance) on the application of higher bias current is observed. The electroresistance is maximum at metal insulator transition temperature (TMI) and decreases when the temperature is either increased or decreased from TMI. A two-phase model is proposed to explain the occurrence of electroresistance. The higher bias current leads to an increase in alignment of spins and thus, in turn, leads to an increase in spin stiffness coefficient and decrease in the resistance at TMI.

  3. Enhanced production of polygalacturonase in solid-state fermentation: selection of the process conditions, isolation and partial characterization of the enzyme.

    PubMed

    Zaslona, Halina; Trusek-Holownia, Anna

    2015-01-01

    Polygalacturonase (PG) production by Penicillium chrysogenum during solid-state fermentation was accompanied by decomposition of orange peels. A leaching procedure was developed through the selection of solvent, time and intensity of stirring. A maximum PG activity was observed after 48 h peel inoculation. Further cultivation decreased the enzyme activity significantly, up to 60% of the maximum PG activity. During fermentation, a rapid acidification of the solid medium which inhibited the pectinolytic enzyme, was observed. Buffering agents with different pH values and different ionic strengths were examined to identify the most suitable medium to avoid this problem. Buffer addition counteracted acidification and enhanced active protein production, which was observed for all of the applied pH values (6.5-8.0) of the buffering agent. The most satisfactory results were obtained when using the highest pH at 8.0. The protein content and PG activity increased from 3.5 mg/g and 1.09 U/g to 7.7 mg/g and 7.11 U/g during cultivation, with uncontrolled and pH-controlled medium, respectively. Measurements at wide pH and temperature ranges indicated an optimum for PG activity at pH 5.0 and 43°C; however, high thermal stability corresponded to lower temperatures, and a temperature of 37°C is thus recommended. Under these conditions, the operational stability was determined to be t1/2=570 h.

  4. Effect of ion beam on the characteristics of ion acoustic Gardner solitons and double layers in a multicomponent superthermal plasma

    NASA Astrophysics Data System (ADS)

    Kaur, Nimardeep; Singh, Kuldeep; Saini, N. S.

    2017-09-01

    The nonlinear propagation of ion acoustic solitary waves (IASWs) is investigated in an unmagnetized plasma composed of a positive warm ion fluid, two temperature electrons obeying kappa type distribution and penetrated by a positive ion beam. The reductive perturbation method is used to derive the nonlinear equations, namely, Korteweg-de Vries (KdV), modified KdV (mKdV), and Gardner equations. The characteristic features of both compressive and rarefactive nonlinear excitations from the solution of these equations are studied and compared in the context with the observation of the He+ beam in the polar cap region near solar maximum by the Dynamics Explorer 1 satellite. It is observed that the superthermality and density of cold electrons, number density, and temperature of the positive ion beam crucially modify the basic properties of compressive and rarefactive IASWs in the KdV and mKdV regimes. It is further analyzed that the amplitude and width of Gardner solitons are appreciably affected by different plasma parameters. The characteristics of double layers are also studied in detail below the critical density of cold electrons. The theoretical results may be useful for the observation of nonlinear excitations in laboratory and ion beam driven plasmas in the polar cap region near solar maximum and polar ionosphere as well in Saturn's magnetosphere, solar wind, pulsar magnetosphere, etc., where the population of two temperature superthermal electrons is present.

  5. Impact of automatization in temperature series in Spain and comparison with the POST-AWS dataset

    NASA Astrophysics Data System (ADS)

    Aguilar, Enric; López-Díaz, José Antonio; Prohom Duran, Marc; Gilabert, Alba; Luna Rico, Yolanda; Venema, Victor; Auchmann, Renate; Stepanek, Petr; Brandsma, Theo

    2016-04-01

    Climate data records are most of the times affected by inhomogeneities. Especially inhomogeneities introducing network-wide biases are sometimes related to changes happening almost simultaneously in an entire network. Relative homogenization is difficult in these cases, especially at the daily scale. A good example of this is the substitution of manual observations (MAN) by automatic weather stations (AWS). Parallel measurements (i.e. records taken at the same time with the old (MAN) and new (AWS) sensors can provide an idea of the bias introduced and help to evaluate the suitability of different correction approaches. We present here a quality controlled dataset compiled under the DAAMEC Project, comprising 46 stations across Spain and over 85,000 parallel measurements (AWS-MAN) of daily maximum and minimum temperature. We study the differences between both sensors and compare it with the available metadata to account for internal inhomogeneities. The differences between both systems vary much across stations, with patterns more related to their particular settings than to climatic/geographical reasons. The typical median biases (AWS-MAN) by station (comprised between the interquartile range) oscillate between -0.2°C and 0.4 in daily maximum temperature and between -0.4°C and 0.2°C in daily minimum temperature. These and other results are compared with a larger network, the Parallel Observations Scientific Team, a working group of the International Surface Temperatures Initiative (ISTI-POST) dataset, which comprises our stations, as well as others from different countries in America, Asia and Europe.

  6. Statistical downscaling of mean temperature, maximum temperature, and minimum temperature on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Lin, Jiang; Miao, Chiyuan

    2017-04-01

    Climate change is considered to be one of the greatest environmental threats. This has urged scientific communities to focus on the hot topic. Global climate models (GCMs) are the primary tool used for studying climate change. However, GCMs are limited because of their coarse spatial resolution and inability to resolve important sub-grid scale features such as terrain and clouds. Statistical downscaling methods can be used to downscale large-scale variables to local-scale. In this study, we assess the applicability of the widely used Statistical Downscaling Model (SDSM) for the Loess Plateau, China. The observed variables included daily mean temperature (TMEAN), maximum temperature (TMAX) and minimum temperature (TMIN) from 1961 to 2005. The and the daily atmospheric data were taken from reanalysis data from 1961 to 2005, and global climate model outputs from Beijing Normal University Earth System Model (BNU-ESM) from 1961 to 2099 and from observations . The results show that SDSM performs well for these three climatic variables on the Loess Plateau. After downscaling, the root mean square errors for TMEAN, TMAX, TMIN for BNU-ESM were reduced by 70.9%, 75.1%, and 67.2%, respectively. All the rates of change in TMEAN, TMAX and TMIN during the 21st century decreased after SDSM downscaling. We also show that SDSM can effectively reduce uncertainty, compared with the raw model outputs. TMEAN uncertainty was reduced by 27.1%, 26.8%, and 16.3% for the future scenarios of RCP 2.6, RCP 4.5 and RCP 8.5, respectively. The corresponding reductions in uncertainty were 23.6%, 30.7%, and 18.7% for TMAX, ; and 37.6%, 31.8%, and 23.2% for TMIN.

  7. Continuous Hydrogen Production from Agricultural Wastewaters at Thermophilic and Hyperthermophilic Temperatures.

    PubMed

    Ramos, Lucas Rodrigues; Silva, Edson Luiz

    2017-06-01

    The objective of this study was to investigate the effects of hydraulic retention time (HRT) (8 to 0.5 h) and temperature (55 to 75 °C) in two anaerobic fluidized bed reactors (AFBR) using cheese whey (AFBR-CW = 10,000 mg sugars L -1 ) and vinasse (AFBR-V = 10,000 mg COD L -1 ) as substrates. Decreasing the HRT to 0.5 h increased the hydrogen production rates in both reactors, with maximum values of 5.36 ± 0.81 L H 2 h -1 L -1 in AFBR-CW and 0.71 ± 0.16 L H 2 h -1 L -1 in AFBR-V. The optimal conditions for hydrogen production were the HRT of 4 h and temperature of 65 °C in AFBR-CW, observing maximum hydrogen yield (HY) of 5.51 ± 0.37 mmol H 2 g COD -1 . Still, the maximum HY in AFBR-V was 1.64 ± 0.22 mmol H 2 g COD -1 at 4 h and 55 °C. However, increasing the temperature to 75 °C reduced the hydrogen production in both reactors. Methanol and butyric, acetic, and lactic acids were the main metabolites at temperatures of 55 and 65 °C, favoring the butyric and acetic metabolic pathways of hydrogen production. The increased productions of lactate, propionate, and methanol at 75 °C indicate that the hydrogen-producing bacteria in the thermophilic inoculum were inhibited under hyperthermophilic conditions.

  8. Thermo-mechanical stress analysis of cryopreservation in cryobags and the potential benefit of nanowarming.

    PubMed

    Solanki, Prem K; Bischof, John C; Rabin, Yoed

    2017-06-01

    Cryopreservation by vitrification is the only promising solution for long-term organ preservation which can save tens of thousands of lives across the world every year. One of the challenges in cryopreservation of large-size tissues and organs is to prevent fracture formation due to the tendency of the material to contract with temperature. The current study focuses on a pillow-like shape of a cryobag, while exploring various strategies to reduce thermo-mechanical stress during the rewarming phase of the cryopreservation protocol, where maximum stresses are typically found. It is demonstrated in this study that while the level of stress may generally increase with the increasing amount of CPA filled in the cryobag, the ratio between width and length of the cryobag play a significant role. Counterintuitively, the overall maximum stress is not found when the bag is filled to its maximum capacity (when the filled cryobag resembles a sphere). Parametric investigation suggests that reducing the initial rewarming rate between the storage temperature and the glass transition temperature may dramatically decrease the thermo-mechanical stress. Adding a temperature hold during rewarming at the glass transition temperature may reduce the thermo-mechanical stress in some cases, but may have an adverse effect in other cases. Finally, it is demonstrated that careful incorporation of volumetric heating by means on nanoparticles in an alternating magnetic field, or nanowarming, can dramatically reduce the resulting thermo-mechanical stress. These observations display the potential benefit of a thermo-mechanical design of the cryopreservation protocols in order to prevent structural damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Recent increase in maximum temperature at the tropical treeline of North America

    NASA Astrophysics Data System (ADS)

    Biondi, F.

    2009-12-01

    There are only a handful of weather stations above 3000 m in the entire American Cordillera, from Alaska to Tierra del Fuego. I present a surface instrumental record of high elevation (treeline) ecoclimatic variables for the tropics of North America. Besides its high elevation (3760 m) and tropical (19.5°N) features, this site is also located in the North American Monsoon System, making the data relevant to a broad suite of environmental issues. Automated half-hour data collected on Nevado de Colima, Mexico, from 2001 to 2009 show an increase in maximum temperature during the dry winter season, while incoming solar radiation remained stationary. Since minimum temperature did not increase as much, the daily range of air temperature has expanded over time. At this elevation, with average daily barometric pressure of 655 ± 1.4 hPa, maximum temperatures reflect the annual and daily energy cycle because of the dominant role of ground heating caused by incoming shortwave radiation. In fact, spring is the warmest season in this area, as it is followed by pronounced cooling during the summer monsoon because of increased cloudiness. The observed warming is associated with reduced wind speed, especially around solar noon, and is therefore most likely driven by reduced atmospheric flow, suggesting that the energy and water balance of high elevation tropical ecosystems are changing in unexpected ways. Further measurements and regional modeling experiments are therefore needed, given the staggering consequences this could have for any resource managers and policy makers concerned with trans-boundary (Mexico-US) terrestrial, coastal, and oceanic issues.

  10. Ecological covariates based predictive model of malaria risk in the state of Chhattisgarh, India.

    PubMed

    Kumar, Rajesh; Dash, Chinmaya; Rani, Khushbu

    2017-09-01

    Malaria being an endemic disease in the state of Chhattisgarh and ecologically dependent mosquito-borne disease, the study is intended to identify the ecological covariates of malaria risk in districts of the state and to build a suitable predictive model based on those predictors which could assist developing a weather based early warning system. This secondary data based analysis used one month lagged district level malaria positive cases as response variable and ecological covariates as independent variables which were tested with fixed effect panelled negative binomial regression models. Interactions among the covariates were explored using two way factorial interaction in the model. Although malaria risk in the state possesses perennial characteristics, higher parasitic incidence was observed during the rainy and winter seasons. The univariate analysis indicated that the malaria incidence risk was statistically significant associated with rainfall, maximum humidity, minimum temperature, wind speed, and forest cover ( p  < 0.05). The efficient predictive model include the forest cover [IRR-1.033 (1.024-1.042)], maximum humidity [IRR-1.016 (1.013-1.018)], and two-way factorial interactions between district specific averaged monthly minimum temperature and monthly minimum temperature, monthly minimum temperature was statistically significant [IRR-1.44 (1.231-1.695)] whereas the interaction term has a protective effect [IRR-0.982 (0.974-0.990)] against malaria infections. Forest cover, maximum humidity, minimum temperature and wind speed emerged as potential covariates to be used in predictive models for modelling the malaria risk in the state which could be efficiently used for early warning systems in the state.

  11. A generalized conditional heteroscedastic model for temperature downscaling

    NASA Astrophysics Data System (ADS)

    Modarres, R.; Ouarda, T. B. M. J.

    2014-11-01

    This study describes a method for deriving the time varying second order moment, or heteroscedasticity, of local daily temperature and its association to large Coupled Canadian General Circulation Models predictors. This is carried out by applying a multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) approach to construct the conditional variance-covariance structure between General Circulation Models (GCMs) predictors and maximum and minimum temperature time series during 1980-2000. Two MGARCH specifications namely diagonal VECH and dynamic conditional correlation (DCC) are applied and 25 GCM predictors were selected for a bivariate temperature heteroscedastic modeling. It is observed that the conditional covariance between predictors and temperature is not very strong and mostly depends on the interaction between the random process governing temporal variation of predictors and predictants. The DCC model reveals a time varying conditional correlation between GCM predictors and temperature time series. No remarkable increasing or decreasing change is observed for correlation coefficients between GCM predictors and observed temperature during 1980-2000 while weak winter-summer seasonality is clear for both conditional covariance and correlation. Furthermore, the stationarity and nonlinearity Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Brock-Dechert-Scheinkman (BDS) tests showed that GCM predictors, temperature and their conditional correlation time series are nonlinear but stationary during 1980-2000 according to BDS and KPSS test results. However, the degree of nonlinearity of temperature time series is higher than most of the GCM predictors.

  12. Long-term trends in a Dimictic Lake

    USGS Publications Warehouse

    Robertson, Dale M.; Hsieh, Yi-Fang; Lathrop, Richard C; Wu, Chin H; Magee, Madeline; Hamilton, David P.

    2016-01-01

     The one-dimensional hydrodynamic ice model, DYRESM-WQ-I, was modified to simulate ice cover and thermal structure of dimictic Lake Mendota, Wisconsin, USA, over a continuous 104-year period (1911–2014). The model results were then used to examine the drivers of changes in ice cover and water temperature, focusing on the responses to shifts in air temperature, wind speed, and water clarity at multiyear timescales. Observations of the drivers include a change in the trend of warming air temperatures from 0.081 °C per decade before 1981 to 0.334 °C per decade thereafter, as well as a shift in mean wind speed from 4.44 m s−1 before 1994 to 3.74 m s−1 thereafter. Observations show that Lake Mendota has experienced significant changes in ice cover: later ice-on date(9.0 days later per century), earlier ice-off date (12.3 days per century), decreasing ice cover duration (21.3 days per century), while model simulations indicate a change in maximum ice thickness (12.7 cm decrease per century). Model simulations also show changes in the lake thermal regime of earlier stratification onset (12.3 days per century), later fall turnover (14.6 days per century), longer stratification duration (26.8 days per century), and decreasing summer hypolimnetic temperatures (−1.4 °C per century). Correlation analysis of lake variables and driving variables revealed ice cover variables, stratification onset, epilimnetic temperature, and hypolimnetic temperature were most closely correlated with air temperature, whereas freeze-over water temperature, hypolimnetic heating, and fall turnover date were more closely correlated with wind speed. Each lake variable (i.e., ice-on and ice-off dates, ice cover duration, maximum ice thickness, freeze-over water temperature, stratification onset, fall turnover date, stratification duration, epilimnion temperature, hypolimnion temperature, and hypolimnetic heating) was averaged for the three periods (1911–1980, 1981–1993, and 1994–2014) delineated by abrupt changes in air temperature and wind speed. Average summer hypolimnetic temperature and fall turnover date exhibit significant differences between the third period and the first two periods. Changes in ice cover (ice-on and ice-off dates, ice cover duration, and maximum ice thickness) exhibit an abrupt change after 1994, which was related in part to the warm El Niño winter of 1997–1998. Under-ice water temperature, freeze-over water temperature, hypolimnetic temperature, fall turnover date, and stratification duration demonstrate a significant difference in the third period (1994–2014), when air temperature was warmest and wind speeds decreased rather abruptly. The trends in ice cover and water temperature demonstrate responses to both long-term and abrupt changes in meteorological conditions that can be complemented with numerical modeling to better understand how these variables will respond in a future climate.

  13. Parallel transmission RF pulse design with strict temperature constraints.

    PubMed

    Deniz, Cem M; Carluccio, Giuseppe; Collins, Christopher

    2017-05-01

    RF safety in parallel transmission (pTx) is generally ensured by imposing specific absorption rate (SAR) limits during pTx RF pulse design. There is increasing interest in using temperature to ensure safety in MRI. In this work, we present a local temperature correlation matrix formalism and apply it to impose strict constraints on maximum absolute temperature in pTx RF pulse design for head and hip regions. Electromagnetic field simulations were performed on the head and hip of virtual body models. Temperature correlation matrices were calculated for four different exposure durations ranging between 6 and 24 min using simulated fields and body-specific constants. Parallel transmission RF pulses were designed using either SAR or temperature constraints, and compared with each other and unconstrained RF pulse design in terms of excitation fidelity and safety. The use of temperature correlation matrices resulted in better excitation fidelity compared with the use of SAR in parallel transmission RF pulse design (for the 6 min exposure period, 8.8% versus 21.0% for the head and 28.0% versus 32.2% for the hip region). As RF exposure duration increases (from 6 min to 24 min), the benefit of using temperature correlation matrices on RF pulse design diminishes. However, the safety of the subject is always guaranteed (the maximum temperature was equal to 39°C). This trend was observed in both head and hip regions, where the perfusion rates are very different. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    NASA Technical Reports Server (NTRS)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1989-01-01

    Results are presented on the temperature correlation of the relative coalignment between the fine pointing sun sensor (FPSS) and fixed head star trackers (FHSTs) on the Solar Maximum Mission (SMM). This correlation can be caused by spacecraft electronic and mechanical effects. Routine daily measurements reveal a time dependent sensor coalignment variation. The magnitude of the alignment variation is on the order of 120 arc seconds (arc sec), which greatly exceeds the prelaunch thermal structural analysis estimate of 15 acr sec. Differences between FPSS-only and FHST-only yaw solutions as a function of mission day are correlated with the relevant spacecraft temperature. If unaccounted for, the sensor misalignments due to thermal effects are a significant source of error in attitude determination accuracy. Prominent sources of temperature variation are identified and correlated with the temperature profile observed on the SMM. It was determined that even relatively small changes in spacecraft temperature can affect the coalignments between the attitude hardware on the SMM and the science instrument support plate and that frequent recalibration of sensor alignments is necessary to compensate for this effect. An alterntive to frequent recalibration is to model the variation of alignments as a function of temperature and use this to maintain accurate ground or onboard alignment estimates. These flight data analysis results may be important consierations for prelaunch analysis of future missions.

  15. Association between high temperature and mortality in metropolitan areas of four cities in various climatic zones in China: a time-series study

    PubMed Central

    2014-01-01

    Background Numerous studies have reported on the associations between ambient temperatures and mortality. However, few multi-city studies have been conducted in developing countries including China. This study aimed to examine the association between high temperature and mortality outcomes in four cities with different climatic characteristics in China to identify the most vulnerable population, detect the threshold temperatures, and provide scientific evidence for public health policy implementations to respond to challenges from extreme heat. Methods A semi-parametric generalized additive model (GAM) with a Poisson distribution was used to analyze the impacts of the daily maximum temperature over the threshold on mortality after controlling for covariates including time trends, day of the week (DOW), humidity, daily temperature range, and outdoor air pollution. Results The temperature thresholds for all-cause mortality were 29°C, 35°C, 33°C and 34°C for Harbin, Nanjing, Shenzhen and Chongqing, respectively. After adjusting for potential confounders including air pollution, strong associations between daily maximum temperature and daily mortality from all-cause, cardiovascular, endocrine and metabolic outcomes, and particularly diabetes, were observed in different geographical cities, with increases of 3.2-5.5%, 4.6-7.5% and 12.5-31.9% (with 14.7-29.2% in diabetes), respectively, with each 1°C increment in the daily maximum temperature over the threshold. A stronger temperature-associated mortality was detected in females compared to males. Additionally, both the population over 55 years and younger adults aged 30 to 54 years reported significant heat-mortality associations. Conclusions Extreme heat is becoming a huge threat to public health and human welfare due to the strong temperature-mortality associations in China. Climate change with increasing temperatures may make the situation worse. Relevant public health strategies and an early extreme weather and health warning system should be developed and improved at an early stage to prevent and reduce the health risks due to extreme weather and climate change in China, given its huge population, diverse geographic distribution and unbalanced socioeconomic status with various climatic characteristics. PMID:25103276

  16. Association between high temperature and mortality in metropolitan areas of four cities in various climatic zones in China: a time-series study.

    PubMed

    Li, Yonghong; Cheng, Yibin; Cui, Guoquan; Peng, Chaoqiong; Xu, Yan; Wang, Yulin; Liu, Yingchun; Liu, Jingyi; Li, Chengcheng; Wu, Zhen; Bi, Peng; Jin, Yinlong

    2014-08-07

    Numerous studies have reported on the associations between ambient temperatures and mortality. However, few multi-city studies have been conducted in developing countries including China. This study aimed to examine the association between high temperature and mortality outcomes in four cities with different climatic characteristics in China to identify the most vulnerable population, detect the threshold temperatures, and provide scientific evidence for public health policy implementations to respond to challenges from extreme heat. A semi-parametric generalized additive model (GAM) with a Poisson distribution was used to analyze the impacts of the daily maximum temperature over the threshold on mortality after controlling for covariates including time trends, day of the week (DOW), humidity, daily temperature range, and outdoor air pollution. The temperature thresholds for all-cause mortality were 29°C, 35°C, 33°C and 34°C for Harbin, Nanjing, Shenzhen and Chongqing, respectively. After adjusting for potential confounders including air pollution, strong associations between daily maximum temperature and daily mortality from all-cause, cardiovascular, endocrine and metabolic outcomes, and particularly diabetes, were observed in different geographical cities, with increases of 3.2-5.5%, 4.6-7.5% and 12.5-31.9% (with 14.7-29.2% in diabetes), respectively, with each 1°C increment in the daily maximum temperature over the threshold. A stronger temperature-associated mortality was detected in females compared to males. Additionally, both the population over 55 years and younger adults aged 30 to 54 years reported significant heat-mortality associations. Extreme heat is becoming a huge threat to public health and human welfare due to the strong temperature-mortality associations in China. Climate change with increasing temperatures may make the situation worse. Relevant public health strategies and an early extreme weather and health warning system should be developed and improved at an early stage to prevent and reduce the health risks due to extreme weather and climate change in China, given its huge population, diverse geographic distribution and unbalanced socioeconomic status with various climatic characteristics.

  17. Increases in maximum stream temperatures after slash burning in a small experimental watershed.

    Treesearch

    Al Levno; Jack Rothacher

    1969-01-01

    The first year after slash was burned on a 237-acre clearcut watershed in the Cascade Range of Oregon, average maximum water temperatures increased 13°, 14°, and 12°F, during June, July, and August. A maximum stream temperature of 75°F. persisted for 3 hours on a day in July.

  18. Determination of the Maximum Temperature in a Non-Uniform Hot Zone by Line-of-Site Absorption Spectroscopy with a Single Diode Laser.

    PubMed

    Liger, Vladimir V; Mironenko, Vladimir R; Kuritsyn, Yurii A; Bolshov, Mikhail A

    2018-05-17

    A new algorithm for the estimation of the maximum temperature in a non-uniform hot zone by a sensor based on absorption spectrometry with a diode laser is developed. The algorithm is based on the fitting of the absorption spectrum with a test molecule in a non-uniform zone by linear combination of two single temperature spectra simulated using spectroscopic databases. The proposed algorithm allows one to better estimate the maximum temperature of a non-uniform zone and can be useful if only the maximum temperature rather than a precise temperature profile is of primary interest. The efficiency and specificity of the algorithm are demonstrated in numerical experiments and experimentally proven using an optical cell with two sections. Temperatures and water vapor concentrations could be independently regulated in both sections. The best fitting was found using a correlation technique. A distributed feedback (DFB) diode laser in the spectral range around 1.343 µm was used in the experiments. Because of the significant differences between the temperature dependences of the experimental and theoretical absorption spectra in the temperature range 300⁻1200 K, a database was constructed using experimentally detected single temperature spectra. Using the developed algorithm the maximum temperature in the two-section cell was estimated with accuracy better than 30 K.

  19. Statistical analysis of the mesospheric inversion layers over two symmetrical tropical sites: Réunion (20.8° S, 55.5° E) and Mauna Loa (19.5° N, 155.6° W)

    NASA Astrophysics Data System (ADS)

    Bègue, Nelson; Mbatha, Nkanyiso; Bencherif, Hassan; Tato Loua, René; Sivakumar, Venkataraman; Leblanc, Thierry

    2017-11-01

    In this investigation a statistical analysis of the characteristics of mesospheric inversion layers (MILs) over tropical regions is presented. This study involves the analysis of 16 years of lidar observations recorded at Réunion (20.8° S, 55.5° E) and 21 years of lidar observations recorded at Mauna Loa (19.5° N, 155.6° W) together with SABER observations at these two locations. MILs appear in 10 and 9.3 % of the observed temperature profiles recorded by Rayleigh lidar at Réunion and Mauna Loa, respectively. The parameters defining MILs show a semi-annual cycle over the two selected sites with maxima occurring near the equinoxes and minima occurring during the solstices. Over both sites, the maximum mean amplitude is observed in April and October, and this corresponds to a value greater than 35 K. According to lidar observations, the maximum and minimum mean of the base height ranged from 79 to 80.5 km and from 76 to 77.5 km, respectively. The MILs at Réunion appear on average ˜ 1 km thinner and ˜ 1 km lower, with an amplitude of ˜ 2 K higher than Mauna Loa. Generally, the statistical results for these two tropical locations as presented in this investigation are in fairly good agreement with previous studies. When compared to lidar measurements, on average SABER observations show MILs with greater amplitude, thickness and base altitudes of 4 K, 0.75 and 1.1 km, respectively. Taking into account the temperature error by SABER in the mesosphere, it can therefore be concluded that the measurements obtained from lidar and SABER observations are in significant agreement. The frequency spectrum analysis based on the lidar profiles and the 60-day averaged profile from SABER confirms the presence of the semi-annual oscillation where the magnitude maximum is found to coincide with the height range of the temperature inversion zone. This connection between increases in the semi-annual component close to the inversion zone is in agreement with most previously reported studies over tropics based on satellite observations. Results presented in this study confirm through the use of the ground-based Rayleigh lidar at Réunion and Mauna Loa that the semi-annual oscillation contributes to the formation of MILs over the tropical region.

  20. Using GAMM to examine inter-individual heterogeneity in thermal performance curves for Natrix natrix indicates bet hedging strategy by mothers.

    PubMed

    Vickers, Mathew J; Aubret, Fabien; Coulon, Aurélie

    2017-01-01

    The thermal performance curve (TPC) illustrates the dependence on body- and therefore environmental- temperature of many fitness-related aspects of ectotherm ecology and biology including foraging, growth, predator avoidance, and reproduction. The typical thermal performance curve model is linear in its parameters despite the well-known, strong, non-linearity of the response of performance to temperature. In addition, it is usual to consider a single model based on few individuals as descriptive of a species-level response to temperature. To overcome these issues, we used generalized additive mixed modeling (GAMM) to estimate thermal performance curves for 73 individual hatchling Natrix natrix grass snakes from seven clutches, taking advantage of the structure of GAMM to demonstrate that almost 16% of the deviance in thermal performance curves is attributed to inter-individual variation, while only 1.3% is attributable to variation amongst clutches. GAMM allows precise estimation of curve characteristics, which we used to test hypotheses on tradeoffs thought to constrain the thermal performance curve: hotter is better, the specialist-generalist trade off, and resource allocation/acquisition. We observed a negative relationship between maximum performance and performance breadth, indicating a specialist-generalist tradeoff, and a positive relationship between thermal optimum and maximum performance, suggesting "hotter is better". There was a significant difference among matrilines in the relationship between Area Under the Curve and maximum performance - relationship that is an indicator of evenness in acquisition or allocation of resources. As we used unfed hatchlings, the observed matriline effect indicates divergent breeding strategies among mothers, with some mothers provisioning eggs unequally resulting in some offspring being better than others, while other mothers provisioned the eggs more evenly, resulting in even performance throughout the clutch. This observation is reminiscent of bet-hedging strategies, and implies the possibility for intra-clutch variability in the TPCs to buffer N. natrix against unpredictable environmental variability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A Lagrangian analysis of cold cloud clusters and their life cycles with satellite observations

    PubMed Central

    Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong

    2018-01-01

    Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi-coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Niño. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics. PMID:29744257

  2. A Lagrangian analysis of cold cloud clusters and their life cycles with satellite observations.

    PubMed

    Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong

    2016-10-16

    Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi-coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Niño. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics.

  3. A Lagrangian Analysis of Cold Cloud Clusters and Their Life Cycles With Satellite Observations

    NASA Technical Reports Server (NTRS)

    Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong

    2016-01-01

    Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Nino. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics.

  4. Magnetic studies of CuFe{sub 2}O{sub 4} nanoparticles prepared by co-precipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subha, A.; Shalini, M. Govindaraj; Sahoo, Subasa C., E-mail: subasa@cukerala.ac.in

    2016-05-06

    Cu-ferrite nanoparticles were synthesized by co-precipitation method and were annealed at different temperatures ranging from 400 to l000°C in air for 4 hours. The as-prepared sample and the sample annealed at 400°C showed small peaks of cubic Cu-ferrite in X-ray diffraction studies. For the intermediate temperature 600°C, some additional peaks of α-Fe{sub 2}O{sub 3} were observed. As the annealing temperature increased further only tetragonal Cu-ferrite peaks were observed. In all the samples some traces of CuO was noted. Grain size was increased from 2lnm for the as prepared sample to 42nm for the sample annealed at l000°C. Spontaneous magnetization valuemore » was found to be very small for the as prepared sample and it was increased monotonically with the increase in annealing temperature. Maximum magnetization of 29.7emu/g was observed at 300K for the sample annealed at l000°C. The remanent magnetization was increased with the increase in annealing temperature up to 900°C and then decreased whereas for the coercivity a peak was observed for the sample annealed at 800°C. The highest coercivity of l402 Oe was observed at 300K for the sample annealed at 800°C. As the measurement temperature decreased from 300K to 60K, magnetization and coercivity values were increased. The observed magnetic behaviour may be understood on the basis of phase transformation, grain growth with the increase in annealing temperature and reduced thermal energy at low measurement temperature.« less

  5. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  6. Chromatographic removal combined with heat, acid and chaotropic inactivation of four model viruses.

    PubMed

    Valdés, R; Ibarra, Neysi; Ruibal, I; Beldarraín, A; Noa, E; Herrera, N; Alemán, R; Padilla, S; Garcia, J; Pérez, M; Morales, R; Chong, E; Reyes, B; Quiñones, Y; Agraz, A; Herrera, L

    2002-07-03

    The virus removal of protein A affinity chromatography, inactivation capacity, acid pH and a combination of high temperature with a chaotropic agent was determined in this work. The model viruses studied were sendaivirus, human immunodeficency virus (HIV-IIIb), human poliovirus type-II, human herpesvirus I and canine parvovirus. The protein A affinity chromatography showed a maximum reduction factor of 8 logs in the case of viruses larger than 120 nm size, while for small viruses (18-30 nm) the maximum reduction factor was about 5 logs. Non viral inactivation was observed during the monoclonal antibody elution step. Low pH treatment showed a maximum inactivation factor of 7.1 logs for enveloped viruses. However, a weak inactivation factor (3.4 logs) was obtained for DNA nonenveloped viruses. The combination of high temperature with 3 M KSCN showed a high inactivation factor for all of the viruses studied. The total clearance factor was 23.1, 15.1, 13.6, 20.0 and 16.0 logs for sendaivirus, HIV-IIIb, human poliovirus type-II, human herpesvirus I and canine parvovirus, respectively.

  7. Effect of elevated temperature on soil hydrothermal regimes and growth of wheat crop.

    PubMed

    Pramanik, P; Chakrabarti, Bidisha; Bhatia, Arti; Singh, S D; Maity, A; Aggarwal, P; Krishnan, P

    2018-03-14

    An attempt has been made to study the effect of elevated temperature on soil hydrothermal regimes and winter wheat growth under simulated warming in temperature gradient tunnel (TGT). Results showed that bulk density (BDs) of 0, 0.9, and 2.5 °C were significantly different whereas BDs of 2.8 and 3.5 °C were not significantly different. Water filled pore space (WFPS) was maximum at 3.5 °C temperature rise and varied between 43.80 and 98.55%. Soil surface temperature (ST) at different dates of sowing increased with rise in sensor temperature and highest ST was observed at S5 sensors (3.5 °C temperature rise). Temperature and its difference were high for the top soil, and were stable for the deep soil. Photosynthesis rate (μmol CO 2 m -2  s -1 ) of wheat was lower at higher temperature in different growth stages of wheat. In wheat, stomatal conductance declined from 0.67 to 0.44 mol m -2  s -1 with temperature rise. Stomatal conductance decreased with increase in soil temperature and gravimetric soil moisture content (SWC). In TGT, 0 °C temperature rise showed highest root weight density (RWD) (5.95 mg cm -3 ); whereas, 2.8 and 3.5 °C showed lowest RWD (4.90 mg cm -3 ). Harvest index was maximum (0.37) with 0 °C temperature rise, and it decreased with increase in temperature, which indicated that both grain and shoot biomass decreased with increase in temperature. Intensive studies are needed to quantify the soil hydrothermal regimes inside TGT along with the crop growth parameters.

  8. Seasonal dynamics of VLF signals amplitude Novosibirsk radio station and mesopause region temperature in 2009-2015

    NASA Astrophysics Data System (ADS)

    Kozlov, V. I.; Korsakov, A. A.; Ammosov, P. P.; Ammosova, A. M.; Gavrilyeva, G. A.; Koltovskoi, I. I.

    2017-11-01

    Dynamics of seasonal variations in the amplitude of the VLF radio signal received in Yakutsk from the navigation station near Novosibirsk and the radiation intensity in the wavelength range from 835 to 853 nm, where the P-branches of the OH band (6-2) are located, is present. The radiation variations give information about mesopause region measured at the Maimaga station (130 km from Yakutsk). Observation period from 2009 to 2015 covers period with minimum and maximum solar activity (solar flux F10.7). In the seasonal dynamics of the VLF amplitude signals and the mesopause temperature are observed annual, semiannual and third-annual variations, increasing during nighttime for VLF signals. The mesopause temperature and the VLF signal increase with increasing solar flux F10.7 in winter.

  9. Explosive decomposition of ethylene oxide at elevated condition: effect of ignition energy, nitrogen dilution, and turbulence.

    PubMed

    Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J

    2005-02-14

    Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.

  10. Chromospheric Activity of HAT-P-11: An Unusually Active Planet-hosting K Star

    NASA Astrophysics Data System (ADS)

    Morris, Brett M.; Hawley, Suzanne L.; Hebb, Leslie; Sakari, Charli; Davenport, James. R. A.; Isaacson, Howard; Howard, Andrew W.; Montet, Benjamin T.; Agol, Eric

    2017-10-01

    Kepler photometry of the hot Neptune host star HAT-P-11 suggests that its spot latitude distribution is comparable to the Sun’s near solar maximum. We search for evidence of an activity cycle in the Ca II H & K chromospheric emission S-index with archival Keck/HIRES spectra and observations from the echelle spectrograph on the Astrophysical Research Consortium 3.5 m Telescope at Apache Point Observatory. The chromospheric emission of HAT-P-11 is consistent with an ≳ 10 year activity cycle, which plateaued near maximum during the Kepler mission. In the cycle that we observed, the star seemed to spend more time near active maximum than minimum. We compare the {log}{R}{HK}{\\prime } normalized chromospheric emission index of HAT-P-11 with other stars. HAT-P-11 has unusually strong chromospheric emission compared to planet-hosting stars of similar effective temperature and rotation period, perhaps due to tides raised by its planet.

  11. Hydrogen molecules and hydrogen-related defects in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Fukata, N.; Sasaki, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.

    1997-09-01

    We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158 cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990 cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydrogen molecules is broad and asymmetric. It consists of at least two components, possibly arising from hydrogen molecules in different occupation sites in crystalline silicon. The rotational Raman line of hydrogen molecules is observed at 590 cm-1. The Raman band of Si-H stretching is observed for hydrogenation temperatures between 100 and 500 °C and the intensity has a maximum for hydrogenation at 250 °C.

  12. A Gridded Daily Min/Max Temperature Dataset With 0.1° Resolution for the Yangtze River Valley and its Error Estimation

    NASA Astrophysics Data System (ADS)

    Xiong, Qiufen; Hu, Jianglin

    2013-05-01

    The minimum/maximum (Min/Max) temperature in the Yangtze River valley is decomposed into the climatic mean and anomaly component. A spatial interpolation is developed which combines the 3D thin-plate spline scheme for climatological mean and the 2D Barnes scheme for the anomaly component to create a daily Min/Max temperature dataset. The climatic mean field is obtained by the 3D thin-plate spline scheme because the relationship between the decreases in Min/Max temperature with elevation is robust and reliable on a long time-scale. The characteristics of the anomaly field tend to be related to elevation variation weakly, and the anomaly component is adequately analyzed by the 2D Barnes procedure, which is computationally efficient and readily tunable. With this hybridized interpolation method, a daily Min/Max temperature dataset that covers the domain from 99°E to 123°E and from 24°N to 36°N with 0.1° longitudinal and latitudinal resolution is obtained by utilizing daily Min/Max temperature data from three kinds of station observations, which are national reference climatological stations, the basic meteorological observing stations and the ordinary meteorological observing stations in 15 provinces and municipalities in the Yangtze River valley from 1971 to 2005. The error estimation of the gridded dataset is assessed by examining cross-validation statistics. The results show that the statistics of daily Min/Max temperature interpolation not only have high correlation coefficient (0.99) and interpolation efficiency (0.98), but also the mean bias error is 0.00 °C. For the maximum temperature, the root mean square error is 1.1 °C and the mean absolute error is 0.85 °C. For the minimum temperature, the root mean square error is 0.89 °C and the mean absolute error is 0.67 °C. Thus, the new dataset provides the distribution of Min/Max temperature over the Yangtze River valley with realistic, successive gridded data with 0.1° × 0.1° spatial resolution and daily temporal scale. The primary factors influencing the dataset precision are elevation and terrain complexity. In general, the gridded dataset has a relatively high precision in plains and flatlands and a relatively low precision in mountainous areas.

  13. Thermophysical Properties of Liquid Te: Density, Electrical Conductivity, and Viscosity

    NASA Technical Reports Server (NTRS)

    Li, C.; Su, C.; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.

    2004-01-01

    The thermophysical properties of liquid Te, namely, density, electrical conductivity, and viscosity, were determined using the pycnometric and transient torque methods from the melting point of Te (723 K) to approximately 1150 K. A maximum was observed in the density of liquid Te as the temperature was increased. The electrical conductivity of liquid Te increased to a constant value of 2.89 x 10(exp 5 OMEGA-1m-1) as the temperature was raised above 1000 K. The viscosity decreased rapidly upon heating the liquid to elevated temperatures. The anomalous behaviors of the measured properties are explained as caused by the structural transitions in the liquid and discussed in terms of Eyring's and Bachiskii's predicted behaviors for homogeneous liquids. The Properties were also measured as a function of time after the liquid was coded from approximately 1173 or 1123 to 823 K. No relaxation phenomena were observed in the properties after the temperature of liquid Te was decreased to 823 K, in contrast to the relaxation behavior observed for some of the Te compounds.

  14. Mapping the dark matter in the NGC 5044 group with ROSAT: Evidence for a nearly homogeneous cooling flow with a cooling wake

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Jones, Christine; Forman, William; Daines, Stuart

    1994-01-01

    The NGC 5044 group of galaxies was observed by the ROSAT Position Sensitive Proportional Counter (PSPC) for 30 ks during its reduced pointed phase (1991 July). Due to the relatively cool gas temperature in the group (kT = 0.98 +/- 0.02 keV) and the excellent photon statistics (65,000 net counts), we are able to determine precisely a number of fundamental properties of the group within 250 kpc of the central galaxy. In particular, we present model-independent measurements of the total gravitating mass, the temperature and abundance profiles of the gas, and the mass accretion rate. Between 60 and 250 kpc, the gas is nearly isothermal with T varies as r(exp (-0.13 +/- 0.03)). The total gravitating mass of the group can be unambiguously determined from the observed density and temperature profiles of the gas using the equation of hydrostatic equilibrium. Within 250 kpc, the gravitating mass is 1.6 x 10(exp 13) solar mass, yielding a mass-to-light ratio of 130 solar mass/solar luminosity. The baryons (gas and stars) comprise 12% of the total mass within this radius. At small radii, the temperature clearly increases outward and attains a maximum value at 60 kpc. The positive temperature gradient in the center of the group confirms the existence of a cooling flow. The cooling flow region extends well beyond the temperature maximum with a cooling radius between 100 and 150 kpc. There are two distinct regions in the cooling flow separated by the temperature maximum. In the outer region, the gas is nearly isothermal with a unifor m Fe abundance of approximately 80% solar, the flow is nearly homogeneous with dot-M= 20 to 25 solar mass/year, the X-ray contours are spherically symmetric, and rho(sub gas) varies as r(exp -1.6). In the inner region, the temperature profile has a positive gradient, the mass accretion rate decreases rapidly inward, the gas density profile is steeper, and the X-ray image shows some substrucutre. NGC 5044 is offset from the centroid of the outer X-ray contours indicating that the central galaxy may have a residual velocity with respect to the center of the group potential. There is also a linear X-ray feature with an extent of approximately 30 kpc with one end coincident with NGC 5044. The X-ray emission from this feature is softer than the ambient gas. We interpret this feature as a 'cooling wake' formed by the accreting gas as it is gravitationally focused into the wake of NGC 5044. One of the most surprising results of our PSPC observation is the discovery of a nearly homogeneous cooling flow. Prior results concerning the mass accretion profile in cooling flows indicate that dot-M varies as r. This relation implies that significant mass deposition occurs at large radii which generates an inhomogeneous flow. The mass accretion rate in the NGC 5044 group is essentially a constant beyond 40 kpc (well within the cooling radius). Significant mass deposition (a declining dot-M) does not commence until the gas accretes to within 40 kpc of the group center where the radiative cooling time is approximately equals 10(exp 9) year. Th is radius also corresponds to the temperature maximum, the break in gas density profile, and the onset of structure in the X-ray image. A Hubble constant of H(sub 0) = 50 km/sec/Mpc is used throughout the paper.

  15. Analysis of temperature trends in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Tosic, Ivana; Gavrilov, Milivoj; Unkašević, Miroslava; Marković, Slobodan; Petrović, Predrag

    2017-04-01

    An analysis of air temperature trends in Northern Serbia for the annual and seasonal time series is performed for two periods: 1949-2013 and 1979-2013. Three data sets of surface air temperatures: monthly mean temperatures, monthly maximum temperatures, and monthly minimum temperatures are analyzed at 9 stations that have altitudes varying between 75 m and 102 m. Monthly mean temperatures are obtained as the average of the daily mean temperatures, while monthly maximum (minimum) temperatures are the maximum (minimum) values of daily temperatures in corresponding month. Positive trends were found in 29 out of 30 time series, and the negative trend was found only in winter during the period 1979-2013. Applying the Mann-Kendall test, significant positive trends were found in 15 series; 7 in the period 1949-2013 and 8 in the period 1979-2013; and no significant trend was found in 15 series. Significant positive trends are dominated during the year, spring, and summer, where it was found in 14 out of 18 cases. Significant positive trends were found 7, 5, and 3 times in mean, maximum and minimum temperatures, respectively. It was found that the positive temperature trends are dominant in Northern Serbia.

  16. The CM SAF ATOVS data record: overview of methodology and evaluation of total column water and profiles of tropospheric humidity

    NASA Astrophysics Data System (ADS)

    Courcoux, N.; Schröder, M.

    2015-12-01

    Recently, the reprocessed Advanced Television Infrared Observation Satellite (TIROS)-N Operational Vertical Sounder (ATOVS) tropospheric water vapour and temperature data record was released by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM~SAF). ATOVS observations from infrared and microwave sounders onboard the National Oceanic and Atmospheric Agency (NOAA)-15-19 satellites and EUMETSAT's Meteorological Operational (Metop-A) satellite have been consistently reprocessed to generate 13 years (1999-2011) of global water vapour and temperature daily and monthly means with a spatial resolution of 90 km × 90 km. The data set is referenced under the following digital object identifier (DOI): doi:10.5676/EUM_SAF_CM/WVT_ATOVS/V001. After preprocessing, a maximum likelihood solution scheme was applied to the observations to simultaneously infer temperature and water vapour profiles. In a post-processing step, an objective interpolation method (Kriging) was applied to allow for gap filling. The product suite includes total precipitable water vapour (TPW), layer-integrated precipitable water vapour (LPW) and layer mean temperature for five tropospheric layers between the surface and 200 hPa, as well as specific humidity and temperature at six tropospheric levels between 1000 and 200 hPa. To our knowledge, this is the first time that the ATOVS record (1998-now) has been consistently reprocessed (1999-2011) to retrieve water vapour. TPW and LPW products were compared to corresponding products from the Global Climate Observing System (GCOS) Upper-Air Network (GUAN) radiosonde observations and from the Atmospheric Infrared Sounder (AIRS) version 5 satellite data record. TPW shows a good agreement with the GUAN radiosonde data: average bias and root mean square error (RMSE) are -0.2 and 3.3 kg m-2, respectively. For LPW, the maximum absolute (relative) bias and RMSE values decrease (increase) strongly with height. The maximum bias and RMSE are found at the lowest layer and are -0.7 and 2.5 kg m-2, respectively. While the RMSE relative to AIRS is generally smaller, the TPW bias relative to AIRS is larger, with dominant contributions from precipitating areas. The consistently reprocessed ATOVS data record exhibits improved quality and stability relative to the operational CM SAF products when compared to the TPW from GUAN radiosonde data over the period 2004-2011. Finally, it became evident that the change in the number of satellites used for the retrieval combined with the use of the Kriging leads to breakpoints in the ATOVS data record; therefore, a variability analysis of the data record is not recommended for the time period from January 1999 to January 2001.

  17. Enhancement of photovoltaic effects and photoconductivity observed in Co-doped amorphous carbon/silicon heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Y. C.; Gao, J., E-mail: jugao@hku.hk

    2016-08-22

    Co-doped amorphous carbon (Co-C)/silicon heterostructures were fabricated by growing Co-C films on n-type Si substrates using pulsed laser deposition. A photovoltaic effect (PVE) has been observed at room temperature. Open-circuit voltage V{sub oc} = 320 mV and short-circuit current density J{sub sc }= 5.62 mA/cm{sup 2} were measured under illumination of 532-nm light with the power of 100 mW/cm{sup 2}. In contrast, undoped amorphous carbon/Si heterostructures revealed no significant PVE. Based on the PVE and photoconductivity (PC) investigated at different temperatures, it was found that the energy conversion efficiency increased with increasing the temperature and reached the maximum at room temperature, while the photoconductivity showed amore » reverse temperature dependence. The observed competition between PVE and PC was correlated with the way to distribute absorbed photons. The possible mechanism, explaining the enhanced PVE and PC in the Co-C/Si heterostructures, might be attributed to light absorption enhanced by localized surface plasmons in Co nanoparticles embedded in the carbon matrix.« less

  18. Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies.

    PubMed

    Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove

    2015-01-01

    Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.

  19. Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies

    PubMed Central

    Kline, David I.; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove

    2015-01-01

    Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 – 6.6°C) and lowest diel ranges (0.9 – 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 – 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems. PMID:26039687

  20. Near-surface Salinity and Temperature Structure Observed with Dual-Sensor Drifters in the Subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, Shenfu; Goni, Gustavo; Volkov, Denis; Lumpkin, Rick; Foltz, Gregory

    2017-04-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific Ocean with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of the differences. Measurements from these drifters indicate that, on average, water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths often occur when surface winds are weak. In addition to the expected surface freshening and cooling during rainfall events, surface salinification occurs under weak wind conditions when there is strong surface warming that enhances evaporation and upper ocean stratification. Further examination of the drifter measurements demonstrate that (i) the amount of surface freshening and vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 4 m/s. Its phase is consistent with diurnal changes in surface temperature-induced evaporation. Below a wind speed of 6 m/s, the amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. Wind speed also affects the phasing of the diurnal cycle of T5m with the time of maximum T5m increasing gradually with decreasing wind speed. Wind speed does not affect the phasing of the diurnal cycle of T0.2m. At 0.2 m and 5 m, the diurnal cycle of temperature also depends on surface solar radiation, with the amplitude and time of diurnal maximum increasing as solar radiation increases.

  1. Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing in the Wind River Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2010-01-01

    MODIS-derived snow cover measured on 30 April in any given year explains approximately 89 % of the variance in stream discharge for maximum monthly streamflow in that year. Observed changes in streamflow appear to be related to increasing maximum air temperatures over the last four decades causing lower spring snow-cover extent. The majority (>70%) of the water supply in the western United States comes from snowmelt, thus analysis of the declining spring snowpack (and resulting declining stream discharge) has important implications for streamflow management in the drought-prone western U.S.

  2. Enhancing thermoelectric properties through a three-terminal benzene molecule

    NASA Astrophysics Data System (ADS)

    Sartipi, Z.; Vahedi, J.

    2018-05-01

    The thermoelectric transport through a benzene molecule with three metallic terminals is discussed. Using general local and non-local transport coefficients, we investigated different conductance and thermopower coefficients within the linear response regime. Based on the Onsager coefficients which depend on the number of terminal efficiencies, efficiency at maximum power is also studied. In the three-terminal setup with tuning temperature differences, a great enhancement of the figure of merit is observed. Results also show that the third terminal model can be useful in improving the efficiency at maximum output power compared to the two-terminal model.

  3. The sun and heliosphere at solar maximum

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Marsden, R. G.; Balogh, A.; Gloeckler, G.; Geiss, J.; McComas, D. J.; McKibben, R. B.; MacDowall, R. J.; Lanzerotti, L. J.; Krupp, N.; hide

    2003-01-01

    Recent Ulysses observations from the Sun's equator to the poles reveal fundamental properties of the three-dimensional heliosphere at the maximum in solar activity. The heliospheric magnetic field originates from a magnetic dipole oriented nearly perpendicular to, instead of nearly parallel to, the Sun'rotation axis. Magnetic fields, solar wind, and energetic charged particles from low-latitude sources reach all latitudes, including the polar caps. The very fast high-latitude wind and polar coronal holes disappear and reappear together. Solar wind speed continues to be inversely correlated with coronal temperature. The cosmic ray flux is reduced symmetrically at all latitudes.

  4. Supporting Climatic Trends of Corn and Soybean Production in the USA

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cherkauer, K. A.; Verdin, J. P.

    2010-12-01

    The United States of America (USA) is a major source of corn and soybeans, producing about 39 percent of the world’s corn and 50 percent of world’s soybean supply. The north central states, including parts of the Midwestern US and the Great Plains form what is commonly described as the “Corn Belt” and consist of the most productive grain growing region in the United States. Changes in climate, including precipitation and temperature, are being observed throughout the world, and the Corn Belt region of the US is not immune posing a potential threat to global food security. We conducted a retrospective analysis of observed climate variables and crop production statistics to evaluate if observed climatic trends are having a positive or negative effect on corn and soybean production in the US. We selected climate indices based on gridded daily precipitation, maximum and minimum air temperature data from the National Climatic Data Center (NCDC) for the period of 1920-2009 and for 13 states in the Corn Belt region. We used the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for different periods overlapping the important seasons for crop growths, such as the planting (April-May), grain-filling (June-August), and harvesting (September -October) seasons. We estimated the seasonal average of maximum and minimum daily temperatures to identify the historic trends and variability in air temperature during the key crop-growth seasons. Extreme warm temperatures can affect crop growth and yields adversely; therefore, cumulative maximum air temperature above the 90th percentiles (e.g. Cumulative Heat Index) was estimated for each growing period. We evaluated historic trends and variability of areal extents of severe or extreme droughts along with the areal extents facing the high cumulative heat stress. Our results showed that climatic extremes (e.g. droughts and heat stress) that occurred during the period of June - August (JJA), affected the yields of corn and soybeans most severely. High moisture and low heat stress during the JJA period favored crop yields, while low moisture and high heat conditions during the planting season (April-May) increased yields. Results also indicated that this part of the US is trending towards lower heat stress and drought extents, and higher moisture conditions during the JJA period. Therefore, in future, if the present trends persist, we expect the climate will more supportive of increased corn and soybean yields.

  5. CPLFD-GDPT5: high-resolution gridded daily precipitation and temperature dataset for two largest Polish river basins

    NASA Astrophysics Data System (ADS)

    Berezowski, T.; Szcześniak, M.; Kardel, I.; Michałowski, R.; Okruszko, T.; Mezghani, A.; Piniewski, M.

    2015-12-01

    The CHASE-PL Forcing Data-Gridded Daily Precipitation and Temperature Dataset-5 km (CPLFD-GDPT5) consists of 1951-2013 daily minimum and maximum air temperatures and precipitation totals interpolated onto a 5 km grid based on daily meteorological observations from Institute of Meteorology and Water Management (IMGW-PIB; Polish stations), Deutscher Wetterdienst (DWD, German and Czech stations), ECAD and NOAA-NCDC (Slovak, Ukrainian and Belarus stations). The main purpose for constructing this product was the need for long-term aerial precipitation and temperature data for earth-system modelling, especially hydrological modelling. The spatial coverage is the union of Vistula and Odra basin and Polish territory. The number of available meteorological stations for precipitation and temperature varies in time from about 100 for temperature and 300 for precipitation in 1950 up to about 180 for temperature and 700 for precipitation in 1990. The precipitation dataset was corrected for snowfall and rainfall under-catch with the Richter method. The interpolation methods were: kriging with elevation as external drift for temperatures and indicator kriging combined with universal kriging for precipitation. The kriging cross-validation revealed low root mean squared errors expressed as a fraction of standard deviation (SD): 0.54 and 0.47 for minimum and maximum temperature, respectively and 0.79 for precipitation. The correlation scores were 0.84 for minimum temperatures, 0.88 for maximum temperatures and 0.65 for precipitation. The CPLFD-GDPT5 product is consistent with 1971-2000 climatic data published by IMGW-PIB. We also confirm good skill of the product for hydrological modelling by performing an application using the Soil and Water Assessment Tool (SWAT) in the Vistula and Odra basins. Link to the dataset: http://data.3tu.nl/repository/uuid:e939aec0-bdd1-440f-bd1e-c49ff10d0a07

  6. Photosynthesis of young apple trees in response to low sink demand under different air temperatures.

    PubMed

    Fan, Pei G; Li, Lian S; Duan, Wei; Li, Wei D; Li, Shao H

    2010-03-01

    Gas exchange, chlorophyll fluorescence, photosynthetic end products and related enzymes in source leaves in response to low sink demand after girdling to remove the root sink were assessed in young apple trees (Malus pumila) grown in two greenhouses with different air temperatures for 5 days. Compared with the non-girdled control in the low-temperature greenhouse (diurnal maximum air temperature <32 degrees C), low sink demand resulted in lower net photosynthetic rate (P(n)), stomatal conductance (g(s)) and transpiration rate (E) but higher leaf temperature on Day 5, while in the high-temperature greenhouse (diurnal maximum air temperature >36 degrees C), P(n), g(s) and E declined from Day 3 onwards. Moreover, gas exchange responded more to low sink demand in the high-temperature greenhouse than in the low-temperature greenhouse. Decreased P(n) at low sink demand was accompanied by lower intercellular CO(2) concentrations in the low-temperature greenhouse. However, decreased maximal photochemical efficiency, potential activity, efficiency of excitation capture, actual efficiency and photochemical quenching, with increased minimal fluorescence and non-photochemical quenching of photosystem II (PSII), were observed in low sink demand leaves only in the high-temperature greenhouse. In addition, low sink demand increased leaf starch and soluble carbohydrate content in both greenhouses but did not result in lower activity of enzymes involved in metabolism. Thus, decreased P(n) under low sink demand was independent of a direct effect of end-product feedback but rather depended on a high temperature threshold. The lower P(n) was likely due to stomatal limitation in the low-temperature greenhouse, but mainly due to non-stomatal limitation in the high-temperature greenhouse.

  7. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Low-temperature thermal conductivity of ferroelastic Gd 2(MoO 4) 3

    NASA Astrophysics Data System (ADS)

    Mielcarek, S.; Mróz, B.; Tylczyński, Z.; Piskunowicz, P.; Trybuła, Z.; Bromberek, M.

    2001-05-01

    Thermal conductivity, k, of GMO crystal has been measured in temperatures from 0.5 to 80 K. The maximum of k appears at 18 K and its value depends on the current domain state of the sample. The ferroelastic domain walls and antiphase boundaries, characterised by elastic inhomogeneities, are responsible for additional phonon scattering and a decrease in the thermal conductivity. The deviation of the temperature dependence of thermal conductivity from the classical Debye theory observed below 4 K is related to the anomalous behaviour of specific heat in the region of the antiferromagnetic transition at T N=0.3 K .

  9. Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling

    PubMed Central

    Wang, Kai; Li, Liwei; Yin, Huaixian; Zhang, Tiezhu; Wan, Wubo

    2015-01-01

    A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it’s up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process. PMID:26444687

  10. High-Pressure Study of the Ground- and Superconducting-State Properties of CeAu2Si2

    NASA Astrophysics Data System (ADS)

    Scheerer, Gernot W.; Giriat, Gaétan; Ren, Zhi; Lapertot, Gérard; Jaccard, Didier

    2017-06-01

    The pressure-temperature phase diagram of the new heavy-fermion superconductor CeAu2Si2 is markedly different from those studied previously. Indeed, superconductivity emerges not on the verge but deep inside the magnetic phase, and mysteriously Tc increases with the strengthening of magnetism. In this context, we have carried out ac calorimetry, resistivity, and thermoelectric power measurements on a CeAu2Si2 single crystal under high pressure. We uncover a strong link between the enhancement of superconductivity and quantum-critical-like features in the normal-state resistivity. Non-Fermi-liquid behavior is observed around the maximum of superconductivity and enhanced scattering rates are observed close to both the emergence and the maximum of superconductivity. Furthermore we observe signatures of pressure- and temperature-driven modifications of the magnetic structure inside the antiferromagnetic phase. A comparison of the features of CeAu2Si2 and its parent compounds CeCu2Si2 and CeCu2Ge2 plotted as function of the unit-cell volume leads us to propose that critical fluctuations of a valence crossover play a crucial role in the superconducting pairing mechanism. Our study illustrates the complex interplay between magnetism, valence fluctuations, and superconductivity.

  11. Temperature-induced excess mortality in Moscow, Russia.

    PubMed

    Revich, Boris; Shaposhnikov, Dmitri

    2008-05-01

    After considering the observed long-term trends in average monthly temperatures distribution in Moscow, the authors evaluated how acute mortality responded to changes in daily average, minimum and maximum temperatures throughout the year, and identified vulnerable population groups, by age and causes of death. A plot of the basic mortality-temperature relationship indicated that this relationship was V-shaped with the minimum around 18 degrees C. Each 1 degree C increment of average daily temperature above 18 degrees C resulted in an increase in deaths from all non-accidental causes by 2.8%, from coronary heart disease by 2.7%, from cerebrovascular diseases by 4.7%, and from respiratory diseases by 8.7%, with a lag of 0 or 1 day. Each 1 degrees C drop of average daily temperature from +18 degrees C to -10 degrees C resulted in an increase in deaths from all non-accidental causes by 0.49%, from coronary heart disease by 0.57%, from cerebrovascular diseases by 0.78%, and from respiratory diseases by 1.5%, with lags of maximum association varying from 3 days for non-accidental mortality to 6 days for cerebrovascular mortality. In the age group 75+ years, corresponding risks were consistently higher by 13-30%. The authors also estimated the increase in non-accidental deaths against the variation of daily temperatures. For each 1 degrees C increase of variation of temperature throughout the day, mortality increased by 0.3-1.9%, depending on other assumptions of the model.

  12. Temperature-induced excess mortality in Moscow, Russia

    NASA Astrophysics Data System (ADS)

    Revich, Boris; Shaposhnikov, Dmitri

    2008-05-01

    After considering the observed long-term trends in average monthly temperatures distribution in Moscow, the authors evaluated how acute mortality responded to changes in daily average, minimum and maximum temperatures throughout the year, and identified vulnerable population groups, by age and causes of death. A plot of the basic mortality temperature relationship indicated that this relationship was V-shaped with the minimum around 18°C. Each 1°C increment of average daily temperature above 18°C resulted in an increase in deaths from all non-accidental causes by 2.8%, from coronary heart disease by 2.7%, from cerebrovascular diseases by 4.7%, and from respiratory diseases by 8.7%, with a lag of 0 or 1 day. Each 1°C drop of average daily temperature from +18°C to -10°C resulted in an increase in deaths from all non-accidental causes by 0.49%, from coronary heart disease by 0.57%, from cerebrovascular diseases by 0.78%, and from respiratory diseases by 1.5%, with lags of maximum association varying from 3 days for non-accidental mortality to 6 days for cerebrovascular mortality. In the age group 75+ years, corresponding risks were consistently higher by 13 30%. The authors also estimated the increase in non-accidental deaths against the variation of daily temperatures. For each 1°C increase of variation of temperature throughout the day, mortality increased by 0.3 1.9%, depending on other assumptions of the model.

  13. GCM simulations of Titan's middle and lower atmosphere and comparison to observations

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Lunine, Jonathan I.; Russell, Joellen L.

    2015-04-01

    Simulation results are presented from a new general circulation model (GCM) of Titan, the Titan Atmospheric Model (TAM), which couples the Flexible Modeling System (FMS) spectral dynamical core to a suite of external/sub-grid-scale physics. These include a new non-gray radiative transfer module that takes advantage of recent data from Cassini-Huygens, large-scale condensation and quasi-equilibrium moist convection schemes, a surface model with "bucket" hydrology, and boundary layer turbulent diffusion. The model produces a realistic temperature structure from the surface to the lower mesosphere, including a stratopause, as well as satisfactory superrotation. The latter is shown to depend on the dynamical core's ability to build up angular momentum from surface torques. Simulated latitudinal temperature contrasts are adequate, compared to observations, and polar temperature anomalies agree with observations. In the lower atmosphere, the insolation distribution is shown to strongly impact turbulent fluxes, and surface heating is maximum at mid-latitudes. Surface liquids are unstable at mid- and low-latitudes, and quickly migrate poleward. The simulated humidity profile and distribution of surface temperatures, compared to observations, corroborate the prevalence of dry conditions at low latitudes. Polar cloud activity is well represented, though the observed mid-latitude clouds remain somewhat puzzling, and some formation alternatives are suggested.

  14. Effect of water temperature on cyclic fatigue properties of glass-fiber-reinforced hybrid composite resin and its fracture pattern after flexural testing.

    PubMed

    Kuroda, Soichi; Shinya, Akikazu; Vallittu, Pekka K; Nakasone, Yuji; Shinya, Akiyoshi

    2013-02-01

    To evaluate in vitro the influence of dynamic loading applied to a glass-fiber-reinforced hybrid composite resin on its flexural strength in a moist, simulated oral environment. Three-point flexural strength specimens were subjected to cyclic loading in water at 37°C and 55°C to investigate the influence of immersion temperature on impact fatigue properties. Specimens were subjected to cyclic impact loading at 1 Hz for up to 5 × 105 cycles to obtain the number of cycles to failure, the number of unbroken specimens after 5 × 105 cycles, and the residual flexural strength of unbroken specimens. Maximum loads of 100, 200, and 300 N were chosen for both the non-reinforced and the glass-fiber reinforced hybrid composite resins. The mean residual flexural strength for 100 N impact loading at temperatures of 37°C and 55°C was 634 and 636 MPa, respectively. All specimens fractured at fewer than 5 × 105 cycles for loads of 200 and 300 N. Reduced numbers of cycles to fracture and lower fatigue values were observed as both the maximum load and immersion temperature increased.

  15. Simultaneous measurement of pressure evolution of crystal structure and superconductivity in FeSe[subscript 0.92] using designer diamonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh

    Simultaneous high-pressure X-ray diffraction and electrical resistance measurements have been carried out on a PbO-type {alpha}-FeSe{sub 0.92} compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source. A ambient temperature, a structural phase transition from a tetragonal (P4/nmm) phase to an orthorhombic (Pbnm) phase is observed at 11 GPa and the Pbnm phase persists up to 74 GPa. The superconducting transition temperature (T{sub c}) increases rapidly with pressure reaching a maximum of {approx}28 K at {approx}6 GPa and decreases at higher pressures, disappearing completely at 14.6 GPa. Simultaneous pressure-dependent X-raymore » diffraction and resistance measurements at low temperatures show superconductivity only in a low-pressure orthorhombic (Cmma) phase of the {alpha}-FeSe{sub 0.92}. Upon increasing pressure at 10 K near T{sub c}, crystalline phases change from a mixture of orthorhombic (Cmma) and hexagonal (P63/mmc) phases to a high-pressure orthorhombic (Pbnm) phase near 6.4 GPa where T{sub c} is maximum.« less

  16. Re-entrant relaxor behavior of Ba{sub 5}RTi{sub 3}Nb{sub 7}O{sub 30} (R = La, Nd, Sm) tungsten bronze ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kun; Li Zhu, Xiao; Qiang Liu, Xiao

    2013-03-18

    Ba{sub 5}RTi{sub 3}Nb{sub 7}O{sub 30} (R = La, Nd, Sm) tungsten bronze ceramics were prepared, and the dielectric and ferroelectric properties were investigated over a broad temperature range. The relaxor nature was determined for all compositions in their permittivity curves, and a second anomaly of the dielectric loss (tan {delta}) was observed around 250 K in Ba{sub 5}NdTi{sub 3}Nb{sub 7}O{sub 30} and around 275 K in Ba{sub 5}SmTi{sub 3}Nb{sub 7}O{sub 30}. Both the maximum and remanent polarization tended to decrease and vanish at low temperatures in the ferroelectric phase for all compositions, which was referred to as the low temperaturemore » re-entrant relaxor behavior. The remanent polarization increased with decreasing temperature first and then reached the maximum value at the re-entrant temperature (T{sub r}). For Ba{sub 5}RTi{sub 3}Nb{sub 7}O{sub 30} (R = La, Nd, Sm), T{sub r} decreased with the radius of R{sup 3+} cations and the applied field amplitude.« less

  17. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1985-01-01

    A 3 year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for nonproportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved understanding were through several critical nonproportional loading experiments. The direction of cracking observed on failed specimens was also recorded and used to guide the development of the theory. Cyclic deformation responses were permanently recorded digitally during each test. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C. In contrast to some other metals, loading path in nonproportional loading had little effect on fatigue lives. Strain rate had a small effect on fatigue lives at 649 C. Of the various correlating parameters the modified plastic work and octahedral shear stress were the most successful.

  18. Heat waves in Senegal : detection, characterization and associated processes.

    NASA Astrophysics Data System (ADS)

    Gnacoussa Sambou, Marie Jeanne; Janicot, Serge; Badiane, Daouda; Pohl, Benjamin; Dieng, Abdou L.; Gaye, Amadou T.

    2017-04-01

    Atmospheric configuration and synoptic evolution of patterns associated with Senegalese heat wave (HW) are examined on the period 1979-2014 using the Global Surface Summary of the Day (GSOD) observational database and ERA-Interim reanalysis. Since there is no objective and uniform definition of HW events, threshold methods based on atmospheric variables as daily maximum (Tmax) / minimum (Tmin) temperatures and daily mean apparent temperature (AT) are used to define HW threshold detection. Each criterion is related to a specific category of HW events: Tmax (warm day events), Tmin (warm night events) and AT (combining temperature and moisture). These definitions are used in order to characterize as well as possible the warm events over the Senegalese regions (oceanic versus continental region). Statistics on time evolution and spatial distribution of warm events are carried out over the 2 seasons of maximum temperature (March-May and October-November). For each season, a composite of HW events, as well as the most extended event over Senegal (as a case study) are analyzed using usual atmospheric fields (sea level pressure, geopotential height, total column water content, wind components, 2m temperature). This study is part of the project ACASIS (https://acasis.locean-ipsl.upmc.fr/doku.php) on heat waves occurrences over the Sahel and their impact on health. Keywords: heat wave, Senegal, ACASIS.

  19. Understanding the science of climate change: Talking points - Impacts to western mountains and forests

    Treesearch

    Rachel Loehman

    2009-01-01

    Observed climate changes in the Western Mountains and Forests bioregion include increased seasonal, annual, minimum, and maximum temperatures, altered precipitation patterns, and a shift toward earlier timing of peak runoff. These climatic changes have resulted in widespread mortality in western forests, species range shifts and changes in phenology, productivity, and...

  20. A spline model of climate for the Western United States

    Treesearch

    Gerald E. Rehfeldt

    2006-01-01

    Monthly climate data of average, minimum, and maximum temperature and precipitation normalized for the period 1961 through 1990 were accumulated from approximately 3,000 weather stations in the Western United States and Southwestern Canada. About two-thirds of these observations were available from the weather services of the two countries while the remaining third...

  1. Tropospheric temperature climatology and trends observed over the Middle East

    NASA Astrophysics Data System (ADS)

    Basha, Ghouse; Marpu, P. R.; Ouarda, T. B. M. J.

    2015-10-01

    In this study, we report for the first time, the upper air temperature climatology, and trends over the Middle East, which seem to be significantly affected by the changes associated with hot summer and low precipitation. Long term (1985-2012) radiosonde data from 12 stations are used to derive the mean temperature climatology and vertical trends. The study was performed by analyzing the data at different latitudes. The vertical profiles of air temperature show distinct behavior in terms of vertical and seasonal variability at different latitudes. The seasonal cycle of temperature at the 100 hPa, however, shows an opposite pattern compared to the 200 hPa levels. The temperature at 100 hPa shows a maximum during winter and minimum in summer. Spectral analysis shows that the annual cycle is dominant in comparison with the semiannual cycle. The time-series of temperature data was analyzed using the Bayesian change point analysis and cumulative sum method to investigate the changes in temperature trends. Temperature shows a clear change point during the year 1999 at all stations. Further, Modified Mann-Kendall test was applied to study the vertical trend, and analysis shows statistically significant lower tropospheric warming and cooling in upper troposphere after the year 1999. In general, the magnitude of the trend decreases with altitude in the troposphere. In all the latitude bands in lower troposphere, significant warming is observed, whereas at higher altitudes cooling is noticed based on 28 years temperature observations over the Middle East.

  2. Initial fuel temperature effects on burning rate of pool fire.

    PubMed

    Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien

    2011-04-15

    The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires

    DOE PAGES

    Sapkota, Keshab R.; Chen, Weimin; Maloney, F. Scott; ...

    2016-10-14

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior wasmore » modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. Finally, this work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications.« less

  4. Effects of Pouring Temperature and Electromagnetic Stirring on Porosity and Mechanical Properties of A357 Aluminum Alloy Rheo-Diecasting

    NASA Astrophysics Data System (ADS)

    Guo, An; Zhao, Junwen; Xu, Chao; Li, Hu; Han, Jing; Zhang, Xu

    2018-05-01

    Semisolid slurry of A357 aluminum alloy was prepared using a temperature-controllable electromagnetic stirrer and rheo-diecast at different temperatures. The effects of pouring temperature and electromagnetic stirring (EMS) on the porosity in rheo-diecast samples, as well as the relation between porosity and mechanical properties, were investigated. The results show that pouring temperature and EMS had minor influences on rheo-diecast microstructure but marked influence on the porosity. With decreasing slurry pouring temperature, the porosity decreased first and then increased, whereas the maximum pore ratio (ratio of shape factor to diameter of the largest pore) increased first and then decreased. The maximum pore ratio determines the level of tensile strength and elongation, and higher mechanical properties can be obtained with smaller and rounder pores in samples. The mechanical properties of the rheo-diecast samples increased linearly with increasing maximum pore ratio. The maximum pore ratio was 1.43 µm-1, and the minimum porosity level was 0.37% under EMS condition for the rheo-diecast samples obtained at a pouring temperature of 608 °C. With this porosity condition, the maximum tensile strength and elongation were achieved at 274 MPa and 4.9%, respectively. It was also revealed that EMS improves mechanical properties by reduction in porosity and an increase in maximum pore ratio.

  5. Applicability of AgMERRA Forcing Dataset to Fill Gaps in Historical in-situ Meteorological Data

    NASA Astrophysics Data System (ADS)

    Bannayan, M.; Lashkari, A.; Zare, H.; Asadi, S.; Salehnia, N.

    2015-12-01

    Integrated assessment studies of food production systems use crop models to simulate the effects of climate and socio-economic changes on food security. Climate forcing data is one of those key inputs of crop models. This study evaluated the performance of AgMERRA climate forcing dataset to fill gaps in historical in-situ meteorological data for different climatic regions of Iran. AgMERRA dataset intercompared with in- situ observational dataset for daily maximum and minimum temperature and precipitation during 1980-2010 periods via Root Mean Square error (RMSE), Mean Absolute Error (MAE) and Mean Bias Error (MBE) for 17 stations in four climatic regions included humid and moderate, cold, dry and arid, hot and humid. Moreover, probability distribution function and cumulative distribution function compared between model and observed data. The results of measures of agreement between AgMERRA data and observed data demonstrated that there are small errors in model data for all stations. Except for stations which are located in cold regions, model data in the other stations illustrated under-prediction for daily maximum temperature and precipitation. However, it was not significant. In addition, probability distribution function and cumulative distribution function showed the same trend for all stations between model and observed data. Therefore, the reliability of AgMERRA dataset is high to fill gaps in historical observations in different climatic regions of Iran as well as it could be applied as a basis for future climate scenarios.

  6. Temperature limitation of methanogenesis in aquatic sediments.

    PubMed Central

    Zeikus, J G; Winfrey, M R

    1976-01-01

    Microbial methanogenesis was examined in sediments collected from Lake Mendota, Wisconsin, at water depths of 5, 10, and 18 m. The rate of sediment methanogenesis was shown to vary with respect to sediment site and depth, sampling date, in situ temperature, and number of methanogens. Increased numbers of methanogenic bacteria and rates of methanogenesis correlated with increased sediment temperature during seasonal change. The greatest methanogenic activity was observed for 18-m sediments throughout the sampling year. As compared with shallower sediments, 18-m sediment was removed from oxygenation effects and contained higher amounts of ammonia, carbonate, and methanogenic bacteria, and the population density of methanogens fluctuated less during seasonal change. Rates of methanogenesis in 18-m sediment cores decreased with increasing sediment depth. The optimum temperature, 35 to 42 C, for sediment methanogenesis was considerably higher than the maximum observed in situ temperature of 23 C. The conversion of H2 and [14C]carbonate to [14C]methane displayed the same temperature optimum when these substrates were added to sediments. The predominant methanogenic population had simple nutritional requirements and were metabolically active at 4 to 45 C. Hydrogen oxidizers were the major nutritional type of sediment methanogens; formate and methanol fermentors were present, but acetate fermentors were not observed. Methanobacterium species were most abundant in sediments although Methanosarcina, Methanococcus, and Methanospirillum species were observed in enrichment cultures. A chemolithotropic species of Methanosarcina and Methanobacterium was isolated in pure culture that displayed temperature optima above 30 C and had simple nutritional requirements. PMID:821396

  7. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae

    PubMed Central

    Candebat, Caroline; Ruhbaum, Yannick; Álvarez-Fernández, Santiago; Claireaux, Guy; Zambonino-Infante, José-Luis; Peck, Myron A.

    2017-01-01

    Most of the thermal tolerance studies on fish have been performed on juveniles and adults, whereas limited information is available for larvae, a stage which may have a particularly narrow range in tolerable temperatures. Moreover, previous studies on thermal limits for marine and freshwater fish larvae (53 studies reviewed here) applied a wide range of methodologies (e.g. the static or dynamic method, different exposure times), making it challenging to compare across taxa. We measured the Critical Thermal Maximum (CTmax) of Atlantic herring (Clupea harengus) and European seabass (Dicentrarchus labrax) larvae using the dynamic method (ramping assay) and assessed the effect of warming rate (0.5 to 9°C h-1) and acclimation temperature. The larvae of herring had a lower CTmax (lowest and highest values among 222 individual larvae, 13.1–27.0°C) than seabass (lowest and highest values among 90 individual larvae, 24.2–34.3°C). At faster rates of warming, larval CTmax significantly increased in herring, whereas no effect was observed in seabass. Higher acclimation temperatures led to higher CTmax in herring larvae (2.7 ± 0.9°C increase) with increases more pronounced at lower warming rates. Pre-trials testing the effects of warming rate are recommended. Our results for these two temperate marine fishes suggest using a warming rate of 3–6°C h-1: CTmax is highest in trials of relatively short duration, as has been suggested for larger fish. Additionally, time-dependent thermal tolerance was observed in herring larvae, where a difference of up to 8°C was observed in the upper thermal limit between a 0.5- or 24-h exposure to temperatures >18°C. The present study constitutes a first step towards a standard protocol for measuring thermal tolerance in larval fish. PMID:28749960

  8. WRF model forecasts and their use for hydroclimate monitoring over southern South America

    NASA Astrophysics Data System (ADS)

    Muller, Omar; Lovino, Miguel; Berbery, E. Hugo

    2017-04-01

    Weather forecasting and monitoring systems based on regional models are becoming increasingly relevant for decision support in agriculture and water management. This work evaluates the predictive and monitoring capabilities of a system based on WRF model simulations at 15 km grid spacing over a domain that encompasses La Plata Basin (LPB) in southern South America, where agriculture and water resources are essential. The model's skill up to a lead-time of 7 days is evaluated with daily precipitation and 2m temperature in-situ observations. Results show high prediction performance with 7 days lead-time throughout the domain and particularly over LPB, where about 70% of rain and no-rain days are correctly predicted. The scores tend to be better over humid climates than over arid-to-semiarid climates. Compared to the arid-semiarid climate, the humid climate has a higher probability of detection and less false alarms. The ranges of the skill scores are similar to those found over the United States, suggesting that proper choice of parameterizations lead to no loss of performance of the model. Daily mean, minimum and maximum forecast temperatures are highly correlated with observations up to 7 day lead time. The best performance is for daily mean temperature, followed by minimum temperature and a slightly weaker performance for maximum temperature over arid regions. The usefulness of WRF products for hydroclimate monitoring was tested for an unprecedented drought in southern Brazil and for a slightly above normal precipitation season in northeastern Argentina. In both cases the model products reproduce the observed precipitation conditions with consistent impacts on soil moisture, evapotranspiration and runoff. This evaluation validates the model's usefulness to fore-cast weather up to one week and to monitor climate conditions in real time. The scores suggest that the forecast lead-time can be extended into week two, while bias correction methods can reduce part of the systematic errors.

  9. Production and Optimization of Physicochemical Parameters of Cellulase Using Untreated Orange Waste by Newly Isolated Emericella variecolor NS3.

    PubMed

    Srivastava, Neha; Srivastava, Manish; Manikanta, Ambepu; Singh, Pardeep; Ramteke, P W; Mishra, P K; Malhotra, Bansi D

    2017-10-01

    Cellulase enzymes have versatile industrial applications. This study was directed towards the isolation, production, and characterization of cellulase enzyme system. Among the five isolated fungal cultures, Emericella variecolor NS3 showed maximum cellulase production using untreated orange peel waste as substrate using solid-state fermentation (SSF). Maximum enzyme production of 31 IU/gds (per gram of dry substrate) was noticed at 6.0 g concentration of orange peel. Further, 50 °C was recorded as the optimum temperature for cellulase activity and the thermal stability for 240 min was observed at this temperature. In addition, the crude enzyme was stable at pH 5.0 and held its complete relative activity in presence of Mn 2+ and Fe 3+ . This study explored the production of crude enzyme system using biological waste with future potential for research and industrial applications.

  10. Superconductivity in multiple phases of compressed GeS b2T e4

    NASA Astrophysics Data System (ADS)

    Greenberg, E.; Hen, B.; Layek, Samar; Pozin, I.; Friedman, R.; Shelukhin, V.; Rosenberg, Y.; Karpovski, M.; Pasternak, M. P.; Sterer, E.; Dagan, Y.; Rozenberg, G. Kh.; Palevski, A.

    2017-02-01

    Here we report the discovery of superconductivity in multiple phases of the compressed GeS b2T e4 (GST) phase change memory alloy, which has attracted considerable attention for the last decade due to its unusual physical properties with many potential applications. Superconductivity is observed through electrical transport measurements, both for the amorphous (a -GST) and for the crystalline (c -GST) phases. The superconducting critical temperature Tc continuously increases with applied pressure, reaching a maximum Tc=6 K at P =20 GPa for a -GST, whereas the critical temperature of the cubic phase reaches a maximum Tc=8 K at 30 GPa. This material system, exhibiting a superconductor-insulator quantum phase transition, has an advantage over disordered metals since it has a continuous control of the crystal structure and the electronic properties using pressure as an external stimulus.

  11. Application of thermal model for pan evaporation to the hydrology of a defined medium, the sponge

    NASA Technical Reports Server (NTRS)

    Trenchard, M. H.; Artley, J. A. (Principal Investigator)

    1981-01-01

    A technique is presented which estimates pan evaporation from the commonly observed values of daily maximum and minimum air temperatures. These two variables are transformed to saturation vapor pressure equivalents which are used in a simple linear regression model. The model provides reasonably accurate estimates of pan evaporation rates over a large geographic area. The derived evaporation algorithm is combined with precipitation to obtain a simple moisture variable. A hypothetical medium with a capacity of 8 inches of water is initialized at 4 inches. The medium behaves like a sponge: it absorbs all incident precipitation, with runoff or drainage occurring only after it is saturated. Water is lost from this simple system through evaporation just as from a Class A pan, but at a rate proportional to its degree of saturation. The contents of the sponge is a moisture index calculated from only the maximum and minium temperatures and precipitation.

  12. Malaria transmission in two localities in north-western Argentina

    PubMed Central

    Dantur Juri, María J; Zaidenberg, Mario; Claps, Guillermo L; Santana, Mirta; Almirón, Walter R

    2009-01-01

    Background Malaria is one of the most important tropical diseases that affects people globally. The influence of environmental conditions in the patterns of temporal distribution of malaria vectors and the disease has been studied in different countries. In the present study, ecological aspects of the malaria vector Anopheles (Anopheles) pseudopunctipennis and their relationship with climatic variables, as well as the seasonality of malaria cases, were studied in two localities, El Oculto and Aguas Blancas, in north-western Argentina. Methods The fluctuation of An. pseudopunctipennis and the malaria cases distribution was analysed with Random Effect Poisson Regression. This analysis takes into account the effect of each climatic variable on the abundance of both vector and malaria cases, giving as results predicted values named Incidence Rate Radio. Results The number of specimens collected in El Oculto and Aguas Blancas was 4224 (88.07%) and 572 (11.93%), respectively. In El Oculto no marked seasonality was found, different from Aguas Blancas, where high abundance was detected at the end of spring and the beginning of summer. The maximum mean temperature affected the An. pseudopunctipennis fluctuation in El Oculto and Aguas Blancas. When considering the relationship between the number of malaria cases and the climatic variables in El Oculto, maximum mean temperature and accumulated rainfall were significant, in contrast with Aguas Blancas, where mean temperature and humidity showed a closer relationship to the fluctuation in the disease. Conclusion The temporal distribution patterns of An. pseudopunctipennis vary in both localities, but spring appears as the season with better conditions for mosquito development. Maximum mean temperature was the most important variable in both localities. Malaria cases were influenced by the maximum mean temperature in El Oculto, while the mean temperature and humidity were significant in Aguas Blancas. In Aguas Blancas peaks of mosquito abundance and three months later, peaks of malaria cases were observed. The study reported here will help to increase knowledge about not only vectors and malaria seasonality but also their relationships with the climatic variables that influence their appearances and abundances. PMID:19152707

  13. A critical Examination of the Phenomenon of Bonding Area - Bonding Strength Interplay in Powder Tableting.

    PubMed

    Osei-Yeboah, Frederick; Chang, Shao-Yu; Sun, Changquan Calvin

    2016-05-01

    Although the bonding area (BA) and bonding strength (BS) interplay is used to explain complex tableting behaviors, it has never been experimentally proven. The purpose of this study is to unambiguously establish the distinct contributions of each by decoupling the contributions from BA and BS. To modulate BA, a Soluplus® powder was compressed into tablets at different temperatures and then broken following equilibration at 25°C. To modulate BS, tablets were equilibrated at different temperatures. To simultaneously modulate BA and BS, both powder compression and tablet breaking test were carried out at different temperatures. Lower tablet tensile strength is observed when the powder is compressed at a lower temperature but broken at 25°C. This is consistent with the increased resistance to polymer deformation at lower temperatures. When equilibrated at different temperatures, the tensile strength of tablets prepared under identical conditions increases with decreasing storage temperature, indicating that BS is higher at a lower temperature. When powder compression and tablet breaking are carried out at the same temperature, the profile with a maximum tensile strength at 4°C is observed due to the BA-BS interplay. By systematically varying temperature during tablet compression and breaking, we have experimentally demonstrated the phenomenon of BA-BS interplay in tableting.

  14. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.

  15. Transcriptomic analysis reveals the roles of gibberellin-regulated genes and transcription factors in regulating bolting in lettuce (Lactuca sativa L.).

    PubMed

    Liu, Xueying; Lv, Shanshan; Liu, Ran; Fan, Shuangxi; Liu, Chaojie; Liu, Renyi; Han, Yingyan

    2018-01-01

    A cool temperature is preferred for lettuce cultivation, as high temperatures cause premature bolting. Accordingly, exploring the mechanism of bolting and preventing premature bolting is important for agriculture. To explore this relationship in depth, morphological, physiological, and transcriptomic analyses of the bolting-sensitive line S39 at the five-leaf stage grown at 37°C were performed in the present study. Based on paraffin section results, we observed that S39 began bolting on the seventh day at 37°C. During bolting in the heat-treated plants, GA3 and GA4 levels in leaves and the indoleacetic acid (IAA) level in the stem reached a maximum on the sixth day, and these high contents were maintained. Additionally, bolting begins in the fifth day after GA3 treatment in S39 plants, GA3 and GA4 increased and then decreased, reaching a maximum on the fourth day in leaves. Similarly, IAA contents reached a maximum in the stem on the fifth day. No bolting was observed in the control group grown at 25°C, and significant changes were not observed in GA3 and GA4 levels in the controls during the observation period. RNA-sequencing data implicated transcription factors (TFs) in regulating bolting in lettuce, suggesting that the high GA contents in the leaves and IAA in the stem promote bolting. TFs possibly modulate the expression of related genes, such as those encoding hormones, potentially regulating bolting in lettuce. Compared to the control group, 258 TFs were identified in the stem of the treatment group, among which 98 and 156 were differentially up- and down-regulated, respectively; in leaves, 202 and 115 TFs were differentially up- and down-regulated, respectively. Significant changes in the treated group were observed for C2H2 zinc finger, AP2-EREBP, and WRKY families, indicating that these TFs may play important roles in regulating bolting.

  16. Ionic conductivity and dielectric permittivity of polymer electrolyte plasticized with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-05-01

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.

  17. Estimation of sediment friction coefficient from heating upon APC penetration during the IODP NanTroSEIZE

    NASA Astrophysics Data System (ADS)

    Kinoshita, M.; Kawamura, K.; Lin, W.

    2015-12-01

    During the Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE) of the Integrated Ocean Drilling Program (IODP), the advanced piston corer temperature (APC-T) tool was used to determine in situ formation temperatures while piston coring down to ~200 m below sea floor. When the corer is fired into the formation, temperature around the shoe abruptly increases due to the frictional heating. The temperature rise due to the frictional heat at the time of penetration is 10 K or larger. We found that the frictional temperature rise (=maximum temperature) increases with increasing depth, and that its intersection at the seafloor seems non-zero. Frictional heat energy is proportional to the maximum temperature rise, which is confirmed by a FEM numerical simulation of 2D cylindrical system. Here we use the result of numerical simulation to convert the observed temperature rise into the frictional heat energy. The frictional heat energy is represented as the product of the shooting length D and the shear stress (τ) between the pipe and the sediment. Assuming a coulomb slip regime, the shear stress is shows as: τ= τ0 + μ*(Sv-Pp), where τ0 is the cohesive stress, μ the dynamic frictional coefficient between the pipe and the sediment, Sv the normal stress at the pipe, and Pp the pore pressure. This can explain the non-zero intersection as well as depth-dependent increase for the frictional heating observed in the APC-T data. Assuming a hydrostatic state and by using the downhole bulk density data, we estimated the friction coefficient for each APC-T measurement. For comparison, we used the vane-shear strength measured on core samples to estimate the friction coefficients. The frictional coefficients μ were estimated as ranging 0.01 - 0.06, anomalously lower than expected for shallow marine sediments. They were lower than those estimated from vane-shear data, which range 0.05 to 0.2. Still, both estimates exhibit a significant increase in the friction coefficient at Site C0012, which dominates in the hemipelagic sediment in the Shikoku Basin. The anomalously low values suggest either fluid injection between the pipe and the sediment during the measurement, or some other uncertainties in converting the observed temperature rise to the frictional heat generation.

  18. On the effect of surface emissivity on temperature retrievals. [for meteorology

    NASA Technical Reports Server (NTRS)

    Kornfield, J.; Susskind, J.

    1977-01-01

    The paper is concerned with errors in temperature retrieval caused by incorrectly assuming that surface emissivity is equal to unity. An error equation that applies to present-day atmospheric temperature sounders is derived, and the bias errors resulting from various emissivity discrepancies are calculated. A model of downward flux is presented and used to determine the effective downward flux. In the 3.7-micron region of the spectrum, emissivities of 0.6 to 0.9 have been observed over land. At a surface temperature of 290 K, if the true emissivity is 0.6 and unit emissivity is assumed, the error would be approximately 11 C. In the 11-micron region, the maximum deviation of the surface emissivity from unity was 0.05.

  19. The effect of temperature on ferroelectric properties of CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Ahlawat, Neetu; Punia, Suman

    2014-04-01

    CaCu3Ti4O12 (CCTO) ceramic was synthesized by conventional solid-state reaction technique and sintered at 1353K for 10 hours. The dielectric properties of CCTO were analyzed in 1Hz-5 MHz frequency range, from room temperature to 413K. The ferroelectric properties of CCTO were analyzed at various frequencies viz. 50 Hz, 100 Hz and 200 Hz at temperatures (298K to 413K). Result of these investigation points that with increasing temperature the values of coercive field (Ec) and remnant polarization (Pr) decrease while maximum polarization (Pmax) increases non-linearly. P-E hysteresis loop of CCTO goes to slimed and a ferroelectric to Para-electric phase transition is observed at 403K.

  20. Influence of stream characteristics and grazing intensity on stream temperatures in eastern Oregon.

    Treesearch

    S.B. Maloney; A.R. Tiedemann; D.A. Higgins; T.M. Quigley; D.B. Marx

    1999-01-01

    Stream temperatures were measured during summer months, 1978 to 1984, at 12 forested watersheds near John Day, Oregon, to determine temperature characteristics and assess effects of three range management strategies of increasing intensity. Maximum temperatures in streams of the 12 watersheds ranged from 12.5 to 27.8 oC. Maximum stream temperatures on four watersheds...

  1. Experimental study of the effect of cycle pressure on lean combustion emissions

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Venkataramani, K. S.

    1978-01-01

    Experiments were conducted in which a stream of premixed propane and air was burned under conditions representative of gas turbine operation. Emissions of NOx, CO, and unburned hydrocarbons (UHC) were measured over a range of combustor inlet temperature, pressure, and residence time at equivalence ratios from 0.7 down to the lean stability limit. At an inlet temperature of 600 K, observed NOx levels dropped markedly with decreasing pressure for pressures below 20 atm. The NOx levels are proportional to combustor residence time and formation rates were principally a function of adiabatic flame temperature. For adiabatic flame temperatures of 2050 K and higher, CO reached chemical equilibrium within 2 msec. Unburned hydrocarbon species dropped to a negligible level within 2 msec regardless of inlet temperature, pressure, or equivalence ratio. For a combustor residence time of 2.5 msec, combustion inefficiency became less than 0.01% at an adiabatic flame temperature of 2050 K. The maximum combustion inefficiency observed was on the order of 1% and corresponded to conditions near the lean stability limit. Using a perforated plate flameholder, this limit is well represented by the condition of 1800 K adiabatic flame temperature.

  2. Local- and landscape-scale land cover affects microclimate and water use in urban gardens.

    PubMed

    Lin, Brenda B; Egerer, Monika H; Liere, Heidi; Jha, Shalene; Bichier, Peter; Philpott, Stacy M

    2018-01-01

    Urban gardens in Central California are highly vulnerable to the effects of climate change, experiencing both extended high heat periods as well as water restrictions because of severe drought conditions. This puts these critical community-based food production systems at risk as California is expected to experience increasing weather extremes. In agricultural systems, increased vegetation complexity, such as greater structure or biodiversity, can increase the resilience of food production systems from climate fluctuations. We test this theory in 15 urban gardens across California's Central Coast. Local- and landscape-scale measures of ground, vegetation, and land cover were collected in and around each garden, while climate loggers recorded temperatures in each garden in 30min increments. Multivariate analyses, using county as a random factor, show that both local- and landscape-scale factors were important. All factors were significant predictors of mean temperature. Tallest vegetation, tree/shrub species richness, grass cover, mulch cover, and landscape level agricultural cover were cooling factors; in contrast, garden size, garden age, rock cover, herbaceous species richness, and landscape level urban cover were warming factors. Results were similar for the maximum temperature analysis except that agriculture land cover and herbaceous species richness were not significant predictors of maximum temperature. Analysis of gardener watering behavior to observed temperatures shows that garden microclimate was significantly related to the number of minutes watered as well as the number of liters of water used per watering event. Thus gardeners seem to respond to garden microclimate in their watering behavior even though this behavior is most probably motivated by a range of other factors such as water regulations and time availability. This research shows that local management of ground cover and vegetation can reduce mean and maximum temperatures in gardens, and the reduced temperatures may influence watering behavior of gardeners. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  3. Evidence for Surface Water Ice in the Lunar Polar Regions Using Reflectance Measurements from the Lunar Orbiter Laser Altimeter and Temperature Measurements from the Diviner Lunar Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; hide

    2017-01-01

    We find that the reflectance of the lunar surface within 5 deg of latitude of theSouth Pole increases rapidly with decreasing temperature, near approximately 110K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5 deg from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10 deg to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al. 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200K and possibly at 300K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. 2015 based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

  4. Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment

    NASA Astrophysics Data System (ADS)

    Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; Paige, David A.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    We find that the reflectance of the lunar surface within 5° of latitude of the South Pole increases rapidly with decreasing temperature, near ∼110 K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5° from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10° to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110 K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al., 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200 K and possibly at 300 K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. (2015) based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

  5. Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China: Urbanization and the Increase of EHEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xuchao; Ruby Leung, L.; Zhao, Naizhuo

    The urban agglomeration of Yangtze River Delta (YRD) is emblematic of China’s rapid urbanization during the past decades. Based on homogenized daily maximum and minimum temperature data, the contributions of urbanization to trends of extreme temperature indices (ETIs) during summer in YRD are evaluated. Dynamically classifying the observational stations into urban and rural areas, this study presents unexplored changes in temperature extremes during the past four decades in the YRD region and quantifies the amplification of the positive trends in ETIs by the urban heat island effect. Overall, urbanization contributes to more than one third in the increase of intensitymore » of extreme heat events in the region, which is comparable to the contribution of greenhouse gases. Compared to rural stations, more notable shifts to the right in the probability distribution of temperature and ETIs were observed in urban stations.« less

  6. The seasonal timing of warming that controls onset of the growing season.

    PubMed

    Clark, James S; Melillo, Jerry; Mohan, Jacqueline; Salk, Carl

    2014-04-01

    Forecasting how global warming will affect onset of the growing season is essential for predicting terrestrial productivity, but suffers from conflicting evidence. We show that accurate estimates require ways to connect discrete observations of changing tree status (e.g., pre- vs. post budbreak) with continuous responses to fluctuating temperatures. By coherently synthesizing discrete observations with continuous responses to temperature variation, we accurately quantify how increasing temperature variation accelerates onset of growth. Application to warming experiments at two latitudes demonstrates that maximum responses to warming are concentrated in late winter, weeks ahead of the main budbreak period. Given that warming will not occur uniformly over the year, knowledge of when temperature variation has the most impact can guide prediction. Responses are large and heterogeneous, yet predictable. The approach has immediate application to forecasting effects of warming on growing season length, requiring only information that is readily available from weather stations and generated in climate models. © 2013 John Wiley & Sons Ltd.

  7. Anomalous amplitude of the quantum oscillations in the longitudinal magneto-thermoelectric power

    NASA Astrophysics Data System (ADS)

    Satoh, N.

    2018-03-01

    Longitudinal magneto-thermoelectric power Syy (y) of a pure bismuth single crystal was measured in magnetic fields up to 8T at several fixed temperatures between 1.4 and 15 K to investigate the magneto-phonon effect in the longitudinal magneto-thermoelectric power (MTP). The oscillation patterns of the longitudinal MTP was similar to that of the longitudinal Shubnikov-de Haas (SdH) effect, expectedly. However, the observed amplitude of oscillations showed a curious temperature dependence. That is, in the range of temperature T > 4.2 K, the amplitude has a maximum around 9K, which is well described by considering the inter-Landau level scattering of electrons. On the contrary, in the range of T < 4.2K, the observed amplitude is enhanced markedly although that of the longitudinal SdH oscillations becomes less pronounced by lowering temperature. This discrepancy may be attributed to the effect of the surface (wrapping) current and to the energy dependence of the electron relaxation time.

  8. Magnetic study of the low temperature anomalies in the magnetodielectric terbium iron garnet

    NASA Astrophysics Data System (ADS)

    Lahoubi, Mahieddine

    2018-05-01

    The anomalous magnetic properties at low temperatures of terbium iron garnet (TbIG) are analyzed and summarized using neutron powder diffraction (NPD) experiments together with high field magnetization, magnetostriction and specific heat measurements performed on single crystals. Reliable information at both microscopic and macroscopic levels is provided about the significant change of the double umbrella structure observed in the NPD results near 54 K. The positions of the observed maxima at 55-65 K in the paraprocess magnetic susceptibility along the three mean directions and paraprocess of the forced magnetostriction along the easy axis of magnetization 〈111〉 agree with the manifestations of the "low-temperature point" TB predicted by Belov at 58 K. However, the pronounced maximum at 57 K in the excess of specific heat in zero magnetic fields reveals that the Schottky effect causes anomaly at temperature close the TB point. The results are discussed and compared with previous magnetic, magneto-optical and magnetodielectric reports.

  9. Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea

    NASA Astrophysics Data System (ADS)

    Bi, X.; Huang, J.; Gao, Z.; Liu, Y.

    2017-12-01

    This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.

  10. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  11. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  12. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  13. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  14. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  15. Observation of Snow cover glide on Sub-Alpine Coniferous Forests in Mount Zao, Northeastern Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, A.; Suzuki, K.

    2017-12-01

    This is the study to clarify the snow cover glide behavior in the sub-alpine coniferous forests on Mount Zao, Northeastern Japan, in the winter of 2014-2015. We installed the glide-meter which is sled type, and measured the glide motion on the slope of Abies mariesii forest and its surrounding slope. In addition, we observed the air temperature, snow depth, density of snow, and snow temperature to discuss relationship between weather conditions and glide occurrence. The snow cover of the 2014-15 winter started on November 13th and disappeared on April 21st. The maximum snow depth was 242 cm thick, it was recorded at February 1st. The snow cover glide in the surrounding slope was occurred first at February 10th, although maximum snow depth recorded on February 1st. The glide motion in the surrounding slope is continuing and its velocity was 0.4 cm per day. The glide in the surrounding slope stopped at March 16th. The cumulative amount of the glide was 21.1 cm. The snow cover glide in the A. mariesii forest was even later occurred first at February 21st. The glide motion of it was intermittent and extremely small. On sub-alpine zone of Mount Zao, snow cover glide intensity is estimated to be 289 kg/m2 on March when snow water equivalent is maximum. At same period, maximum snow cover glide intensity is estimated to be about 1000 kg/m2 at very steep slopes where the slope angle is about 35 degree. Although potential of snow cover glide is enough high, the snow cover glide is suppressed by stem of A. mariesii trees, in the sub-alpine coniferous forest.

  16. Temperature changes in dental implants following exposure to hot substances in an ex vivo model.

    PubMed

    Feuerstein, Osnat; Zeichner, Kobi; Imbari, Chen; Ormianer, Zeev; Samet, Nachum; Weiss, Ervin I

    2008-06-01

    The habitual consumption of extremely hot foods and beverages may affect implant treatment modality. Our objectives were to: (i) establish the maximum temperature produced intra-orally while consuming very hot substances and (ii) use these values in an ex vivo model to assess the temperature changes along the implant-bone interface. Temperatures were measured using thermocouples linked to a computer. The thermocouple electrodes were attached to the tooth-gum interface of the interproximal areas in 14 volunteers during consumption of extremely hot foods and beverages. The in vivo measured temperature values obtained were used in an ex vivo model of a bovine mandible block with an implant and with an assembled abutment. Temperatures were measured by thermocouple electrodes attached to five locations, three of them along the implant-bone interface. During consumption of a hot beverage, a maximum temperature of up to 76.3 degrees C was recorded, and a calculated extreme intra-oral temperature of 61.4 degrees C was established. The ex vivo model showed a high correlation between the temperature measured at the abutment and that measured at the abutment-implant interface and inside the implant, reaching maximum temperatures close to 60 degrees C. At the mid-implant-bone and apical implant-bone interfaces, the maximum temperatures measured were 43.3 and 42 degrees C, respectively. The maximum temperatures measured at the implant-bone interfaces reached the temperature threshold of transient changes in bone (42 degrees C). The results of this study support the notion that intra-oral temperatures, developed during the consumption of very hot substances, may be capable of damaging peri-implant tissues.

  17. Infrared thermal imaging as a method to evaluate heat loss in newborn lambs.

    PubMed

    Labeur, L; Villiers, G; Small, A H; Hinch, G N; Schmoelzl, S

    2017-12-01

    Thermal imaging technology has been identified as a potential method for non-invasive study of thermogenesis in the neonatal lamb. In comparison to measurement of the core body temperature, infrared thermography may observe thermal loss and thermogenesis linked to subcutaneous brown fat depots. This study aimed to identify a suitable method to measure heat loss in the neonatal lamb under a cold challenge. During late pregnancy (day 125), ewes were subjected to either shearing (n=15) or mock handling (sham-shorn for 2min mimicking the shearing movements) (n=15). Previous studies have shown an increase in brown adipose tissue deposition in lambs born to ewes shorn during pregnancy and we hypothesized that the shearing treatment would impact thermoregulatory capacities in newborn lambs. Lambs born to control ewes (n=14; CONTROL) and shorn ewes (n=13; SHORN) were subjected to a cold challenge of 1h duration at 4h after birth. During the cold challenge, thermography images were taken every 10min, from above, at a fixed distance from the dorsal midline. On each image, four fixed-size areas were identified (shoulder, mid loin, hips and rump) and the average and maximum temperatures of each recorded. In all lambs, body surface temperature decreased over time. Overall the SHORN lambs appeared to maintain body surface temperature better than CONTROL lambs, while CONTROL lambs appeared to have higher core temperature. At 30min post cold challenge SHORN lambs tended to have higher body surface temperatures than lambs (P=0.0474). Both average and maximum temperatures were highest at the hips. Average temperature was lowest at the shoulder (P<0.05), while maximum temperatures were lowest at both shoulder and rump (P<0.005). These results indicate that lambs born to shorn ewes maintained their radiated body surface temperature better than CONTROL lambs. In conjunction with core temperature changes under cold challenge, this insight will allow us to understand whether increased body surface temperature contributes to increased overall heat loss or whether increased body surface temperature is indeed a mechanism contributing to maintenance of core body temperature under cold challenge conditions. This study has confirmed the utility of infrared thermography images to capture and identify different levels of thermoregulatory capacity in newborn lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Design and evaluation of a conical solar cooker in glazed and non-glazed configurations: Cooking tests

    NASA Astrophysics Data System (ADS)

    Touré, S.; Sidibé, M.

    2017-11-01

    This paper reports the evaluation of a conical solar cooker. This prototype was designed in galvanized sheet with an opening diameter of 120 cm. The experiment was carried out on the roof of the building of the solar energy laboratory of FHB University. Tests of boiling eggs were carried out. During operation, two configurations of the conical cooker were adopted. In the first configuration, the cooker was used without modification. On the other hand, in the second configuration, a removable glass plate is placed in the cone and at a distance of 25 cm from the base. This contribution has the role of creating a greenhouse effect between the absorber and the glass. During the tests, the temperature of cooking, the ambient temperature as well as the solar illumination were measured. The tests were conducted in accordance with the maximum cooking time of some foods given by "Solar cookers international". Despite the observed cloudy periods, maximum temperatures obtained by the eggs were 82°C in 2 hours cooking for the first configuration and 100°C in cooking 1h10 for the second configuration. These results show that the addition of the glass plate in the conical solar cooker gives good satisfaction. In addition, in both cases, a perfect cooking of the eggs was observed.

  19. The northern annular mode in summer and its relation to solar activity variations in the GISS ModelE

    NASA Astrophysics Data System (ADS)

    Lee, Jae N.; Hameed, Sultan; Shindell, Drew T.

    2008-03-01

    The northern annular mode (NAM) has been successfully used in several studies to understand the variability of the winter atmosphere and its modulation by solar activity. The variability of summer circulation can also be described by the leading empirical orthogonal function (EOF) of geopotential heights. We compare the annular modes of the summer geopotential heights in the northern hemisphere stratosphere and troposphere in the Goddard Institute for Space Studies (GISS) ModelE with those in the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. In the stratosphere, the summer NAM obtained from NCEP/NCAR reanalysis as well as from the ModelE simulations has the same sign throughout the northern hemisphere, but shows greater variability at low latitudes. The patterns in both analyses are consistent with the interpretation that low NAM conditions represent an enhancement of the seasonal difference between the summer and the annual averages of geopotential height, temperature and velocity distributions, while the reverse holds for high NAM conditions. Composite analysis of high and low NAM cases in both model and observation suggests that the summer stratosphere is more "summer-like" when the solar activity is near a maximum. This means that the zonal easterly wind flow is stronger and the temperature is higher than normal. Thus increased irradiance favors a low summer NAM. A quantitative comparison of the anti-correlation between the NAM and the solar forcing is presented in the model and in the observation, both of which show lower/higher NAM index in solar maximum/minimum conditions. The temperature fluctuations in simulated solar minimum conditions are greater than in solar maximum throughout the summer stratosphere. The summer NAM in the troposphere obtained from NCEP/NCAR reanalysis has a dipolar zonal structure with maximum variability over the Asian monsoon region. The corresponding EOF in ModelE has a qualitatively similar structure but with less variability in the Asian monsoon region which is displaced eastward of its observed position. In both the NCEP/NCAR reanalysis and the GCM the negative anomalies associated with the NAM in the Euro-Atlantic and Aleutian island regions are enhanced in the solar minimum conditions, though the results are not statistically significant.

  20. Results from CoMStOC - The Coronal Magnetic Structures Observing Campaign

    NASA Technical Reports Server (NTRS)

    Schmelz, J. T.; Holman, G. D.

    1991-01-01

    The Coronal Magnetic Structures Observing Campaign (CoMStOC) was designed to measure the magnetic field strength and determine its structure in the solar corona. Simultaneous soft X-ray and microwave observations were taken by the Solar Maximum Mission's X-ray Polychromator (XRP) and the Very Large Array (VLA) on four days in the campaign period (Nov 25 to Dec 21, 1987). XRP maps in soft X-ray resonance lines formed at different coronal temperatures provide accurate temperature and emission measure diagnostics. VLA maps at several frequencies in the 20 cm and 6 cm bands yield information on microwave structure, spectrum and polarization. The combined data set separates contributions from the two dominant microwave emission mechanisms, thermal bremsstrahlung and gyroresonance. Where gyroresonance dominates, the coronal magnetic field strength has been determined with the aid of theoretical modeling.

  1. Results from CoMStOC - The Coronal Magnetic Structures Observing Campaign

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Holman, G. D.

    The Coronal Magnetic Structures Observing Campaign (CoMStOC) was designed to measure the magnetic field strength and determine its structure in the solar corona. Simultaneous soft X-ray and microwave observations were taken by the Solar Maximum Mission's X-ray Polychromator (XRP) and the Very Large Array (VLA) on four days in the campaign period (Nov 25 to Dec 21, 1987). XRP maps in soft X-ray resonance lines formed at different coronal temperatures provide accurate temperature and emission measure diagnostics. VLA maps at several frequencies in the 20 cm and 6 cm bands yield information on microwave structure, spectrum and polarization. The combined data set separates contributions from the two dominant microwave emission mechanisms, thermal bremsstrahlung and gyroresonance. Where gyroresonance dominates, the coronal magnetic field strength has been determined with the aid of theoretical modeling.

  2. The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain

    NASA Astrophysics Data System (ADS)

    Galán, C.; García-Mozo, H.; Cariñanos, P.; Alcázar, P.; Domínguez-Vilches, E.

    Temperature is one of the main factors affecting the flowering of Mediterranean trees. In the case of Olea europaea L., a low-temperature period prior to bud development is essential to interrupt dormancy. After that, and once a base temperature is reached, the plant accumulates heat until flowering starts. Different methods of obtaining the best-forecast model for the onset date of the O. europaea pollen season, using temperature as the predictive parameter, are proposed in this paper. An 18-year pollen and climatic data series (1982-1999) from Cordoba (Spain) was used to perform the study. First a multiple-regression analysis using 15-day average temperatures from the period prior to flowering time was tested. Second, three heat-summation methods were used, determining the the quantities heat units (HU): accumulated daily mean temperature after deducting a threshold, growing degree-days (GDD): proposed by Snyder [J Agric Meteorol 35:353-358 (1985)] as a measure of physiological time, and accumulated maximum temperature. In the first two, the optimum base temperature selected for heat accumulation was 12.5°C. The multiple-regression equation for 1999 gives a 7-day delay from the observed date. The most accurate results were obtained with the GDD method, with a difference of only 4.7 days between predicted and observed dates. The average heat accumulation expressed as GDD was 209.9°C days. The HU method also gives good results, with no significant statistical differences between predictions and observations.

  3. Non-trivial behavior of the low temperature maximum of dielectric constant and location of the end critical point in Na0.5Bi0.5TiO3-0.06BaTiO3 lead free relaxor ferroelectrics crystals detected by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, Evgeniy; Tiagunova, Jenia; Mojaev, Evgeny; Roth, Michael

    2018-01-01

    [001] lead free relaxor ferroelectrics crystals of Na0.5Bi0.5TiO3-0.06BaTiO3 were studied by means of dielectric and acoustic emission methods in the temperature range of 25-240 °C and under a dc bias electric field up to 0.4 kV/cm. A temperature maximum of the dielectric constant was found near 170 °C, as well as the acoustic emission bursts pointed out to both the depolarization temperature near 120 °C and the temperature, corresponding to the maximum of dielectric constant, near 170 °C. While the depolarization temperature increased linearly, the temperature of the dielectric constant maximum was shown to exhibit a V-shape behavior under an electric field: it initially decreases, reaches a sharp minimum at some small threshold electric field of 0.15 kV/cm, and then starts to increase similar to the Curie temperature of the normal ferroelectrics, as the field enhances. Acoustic emission bursts, accompanying the depolarization temperature, weakened with the enhancing field, whereas the ones accompanying the temperature of the dielectric constant maximum exhibited two maxima: near 0.1 kV/cm and near 0.3 kV/cm. The meaning of these two acoustic emission maxima is discussed.

  4. Magnetoelectric coupling in oxygen deficient La0.67Sr0.33MnO3-δ/BaTiO3 composite film

    NASA Astrophysics Data System (ADS)

    Wang, Jianyuan; Han, Zhuokun; Bai, Jianying; Luo, Bingcheng; Chen, Changle

    2018-04-01

    The effect of magnetic field on the polarization and dielectric properties in oxygen deficient La0.67Sr0.33MnO3-δ/BaTiO3 composite film are investigated. A temperature dependent polarization variation induced by the magnetic field is observed. Under a magnetic fields of 0.8 T, the enhancement of saturation polarization is remarkable at low temperature region with a maximum changing rate 66.5% occurring at 70 K, whereas it is indistinctive at high temperature. The composite film also exhibits significant magnetodielectric property. The positive changing rate of dielectric constant ηε induced by 0.8 T magnetic field reaches the maximum of 80% and 57% at 80 K with the frequency of 1 kHz and 100 kHz, respectively, and the corresponding changing rate of dielectric loss get the negative peak of -27% and -22%. The magneto-induced polarization and dielectric change may result from the charge-based coupling as well as the Maxwell-Wagner effect in this heterojunction.

  5. Invalidity of the Fermi liquid theory and magnetic phase transition in quasi-1D dopant-induced armchair-edged graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen

    2018-04-01

    Based on theoretically tight-binding calculations considering nearest neighbors and Green's function technique, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons with width ranging from 9.83 Å to 69.3 Å would be observed in the presence of injecting electrons by doping. This transition is explained by the temperature-dependent static charge susceptibility through calculation of the correlation function of charge density operators. This work showed that charge concentration of dopants in such system plays a crucial role in determining the magnetic phase. A variety of multicritical points such as transition temperatures and maximum susceptibility are compared in undoped and doped cases. Our findings show that there exist two different transition temperatures and maximum susceptibility depending on the ribbon width in doped structures. Another remarkable point refers to the invalidity (validity) of the Fermi liquid theory in nanoribbons-based systems at weak (strong) concentration of dopants. The obtained interesting results of magnetic phase transition in such system create a new potential for magnetic graphene nanoribbon-based devices.

  6. Conformation transitions of a single polyelectrolyte chain in a poor solvent: a replica-exchange lattice Monte-Carlo study.

    PubMed

    Wang, Lang; Wang, Zheng; Jiang, Run; Yin, Yuhua; Li, Baohui

    2017-03-15

    The thermodynamic behaviors of a strongly charged polyelectrolyte chain in a poor solvent are studied using replica-exchange Monte-Carlo simulations on a lattice model, focusing on the effects of finite chain length and the solvent quality on the chain conformation and conformation transitions. The neutralizing counterions and solvent molecules are considered explicitly. The thermodynamic quantities that vary continuously with temperature over a wide range are computed using the multiple histogram reweighting method. Our results suggest that the strength of the short-range hydrophobic interaction, the chain length, and the temperature of the system, characterized by ε, N, and T, respectively, are important parameters that control the conformations of a charged chain. When ε is moderate, the competition between the electrostatic energy and the short-range hydrophobic interaction leads to rich conformations and conformation transitions for a longer chain with a fixed length. Our results have unambiguously demonstrated the stability of the n-pearl-necklace structures, where n has a maximum value and decreases with decreasing temperature. The maximum n value increases with increasing chain length. Our results have also demonstrated the first-order nature of the conformation transitions between the m-pearl and the (m-1)-pearl necklaces. With the increase of ε, the transition temperature increases and the first-order feature becomes more pronounced. It is deduced that at the thermodynamic limit of infinitely long chain length, the conformational transitions between the m-pearl and the (m-1)-pearl necklaces may remain first order when ε > 0 and m = 2 or 3. Pearl-necklace conformations cannot be observed when either ε is too large or N is too small. To observe a pearl-necklace conformation, the T value needs to be carefully chosen for simulations performed at only a single temperature.

  7. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO₂ concentration.

    PubMed

    Potosnak, Mark J; Lestourgeon, Lauren; Nunez, Othon

    2014-05-15

    Including algorithms to account for the suppression of isoprene emission by elevated CO2 concentration affects estimates of global isoprene emission for future climate change scenarios. In this study, leaf-level measurements of isoprene emission were made to determine the short-term interactive effect of leaf temperature and CO2 concentration. For both greenhouse plants and plants grown under field conditions, the suppression of isoprene emission was reduced by increasing leaf temperature. For each of the four different tree species investigated, aspen (Populus tremuloides Michx.), cottonwood (Populus deltoides W. Bartram ex Marshall), red oak (Quercus rubra L.), and tundra dwarf willow (Salix pulchra Cham.), the suppression of isoprene by elevated CO2 was eliminated at increased temperature, and the maximum temperature where suppression was observed ranged from 25 to 35°C. Hypotheses proposed to explain the short-term suppression of isoprene emission by increased CO2 concentration were tested against this observation. Hypotheses related to cofactors in the methylerythritol phosphate (MEP) pathway were consistent with reduced suppression at elevated leaf temperature. Also, reduced solubility of CO2 with increased temperature can explain the reduced suppression for the phosphoenolpyruvate (PEP) carboxylase competition hypothesis. Some global models of isoprene emission include the short-term suppression effect, and should be modified to include the observed interaction. If these results are consistent at longer timescales, there are implications for predicting future global isoprene emission budgets and the reduced suppression at increased temperature could explain some of the variable responses observed in long-term CO2 exposure experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Landfast ice thickness in the Canadian Arctic Archipelago from observations and models

    NASA Astrophysics Data System (ADS)

    Howell, Stephen E. L.; Laliberté, Frédéric; Kwok, Ron; Derksen, Chris; King, Joshua

    2016-07-01

    Observed and modelled landfast ice thickness variability and trends spanning more than 5 decades within the Canadian Arctic Archipelago (CAA) are summarized. The observed sites (Cambridge Bay, Resolute, Eureka and Alert) represent some of the Arctic's longest records of landfast ice thickness. Observed end-of-winter (maximum) trends of landfast ice thickness (1957-2014) were statistically significant at Cambridge Bay (-4.31 ± 1.4 cm decade-1), Eureka (-4.65 ± 1.7 cm decade-1) and Alert (-4.44 ± 1.6 cm -1) but not at Resolute. Over the 50+-year record, the ice thinned by ˜ 0.24-0.26 m at Cambridge Bay, Eureka and Alert with essentially negligible change at Resolute. Although statistically significant warming in spring and fall was present at all sites, only low correlations between temperature and maximum ice thickness were present; snow depth was found to be more strongly associated with the negative ice thickness trends. Comparison with multi-model simulations from Coupled Model Intercomparison project phase 5 (CMIP5), Ocean Reanalysis Intercomparison (ORA-IP) and Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) show that although a subset of current generation models have a "reasonable" climatological representation of landfast ice thickness and distribution within the CAA, trends are unrealistic and far exceed observations by up to 2 orders of magnitude. ORA-IP models were found to have positive correlations between temperature and ice thickness over the CAA, a feature that is inconsistent with both observations and coupled models from CMIP5.

  9. Temperature Variation under Continuous Light Restores Tomato Leaf Photosynthesis and Maintains the Diurnal Pattern in Stomatal Conductance

    PubMed Central

    Haque, Mohammad S.; de Sousa, Alexandra; Soares, Cristiano; Kjaer, Katrine H.; Fidalgo, Fernanda; Rosenqvist, Eva; Ottosen, Carl-Otto

    2017-01-01

    The response of tomato plants (Solanum lycopersicum L. cv. Aromata) to continuous light (CL) in relation to photosynthesis, abscisic acid (ABA) and reactive oxygen species (ROS) was investigated to improve the understanding of the development and/or alleviation of CL-induced leaf injury in constant and diurnal temperature fluctuations with similar daily light integral and daily mean temperature. The plants were grown in three photoperiodic treatments for 15 days; One treatment with a 16/8 h light/dark period and a light/dark temperature of 27/17°C (Control), two CL treatments with 24 h photoperiods, one with a constant temperature of 24°C (CLCT) and the other one with variable temperature of 27/17°C for 16/8 ho, respectively (CLVT). A diurnal pattern of stomatal conductance (gs) and [ABA] was observed in the plants grown in the control and CLVT conditions, while the plants in CLCT conditions experienced a significant decrease in stomatal conductance aligned with an increase in ABA. The net photosynthesis (A) was significantly reduced in CLCT, aligned with a significant decrease in the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax) and mesophyll diffusion conductance to CO2 (gm) in comparison to the control and CLVT. An increased production of H2O2 and O2•- linked with increased activities of antioxidative enzymes was seen in both CL treatments, but despite of this, leaf injuries were only observed in the CLCT treatment. The results suggest that the diurnal temperature fluctuations alleviated the CL injury symptoms, probably because the diurnal cycles of cellular mechanisms were maintained. The ROS were shown not to be directly involved in CL-induced leaf injury, since both ROS production and scavenging was highest in CLVT without leaf chlorotic symptoms. PMID:28979273

  10. Biophysical climate impacts of recent changes in global forest cover.

    PubMed

    Alkama, Ramdane; Cescatti, Alessandro

    2016-02-05

    Changes in forest cover affect the local climate by modulating the land-atmosphere fluxes of energy and water. The magnitude of this biophysical effect is still debated in the scientific community and currently ignored in climate treaties. Here we present an observation-driven assessment of the climate impacts of recent forest losses and gains, based on Earth observations of global forest cover and land surface temperatures. Our results show that forest losses amplify the diurnal temperature variation and increase the mean and maximum air temperature, with the largest signal in arid zones, followed by temperate, tropical, and boreal zones. In the decade 2003-2012, variations of forest cover generated a mean biophysical warming on land corresponding to about 18% of the global biogeochemical signal due to CO2 emission from land-use change. Copyright © 2016, American Association for the Advancement of Science.

  11. Axillary and Tympanic Temperature Measurement in Children and Normal Values for Ages.

    PubMed

    Oguz, Fatma; Yildiz, Ismail; Varkal, Muhammet Ali; Hizli, Zeynep; Toprak, Sadik; Kaymakci, Kevser; Saygili, Seha Kamil; Kilic, Ayşe; Unuvar, Emin

    2018-03-01

    The aim of the study was define the normal values of tympanic and axillary body temperature in healthy children. This observational cross-sectional study was performed in healthy children aged 0 to 17 years who visited the ambulatory general pediatric of Istanbul Medical Faculty. Of 1364 children, 651 (47.7%) were girls and 713 were boys, the mean (SD, range) age was 72.5 (53.6, 1-204) months. The mean (SD) axillary body temperature was 36.04°C (0.46°C; minimum, 35.0°C; maximum, 37.6°C). The 95th and 99th percentiles were 36.8°C and 37.0°C, respectively. The mean (SD) tympanic body temperature was 36.91°C (0.46°C; minimum, 35.15°C; maximum, 37.9°C). The 95th and 99th percentiles were 37.6°C and 37.8°C, respectively. There were statistically significant differences between sexes for only tympanic body temperatures. Both axillary and tympanic body temperatures were statistically higher in 0 to 2 months compared with other age groups. For this age group, the 99th percentile was 37.5°C for axillary and 37.85°C for tympanic temperature. Axillary and tympanic body temperatures should be considered as fever when they are more than 37.0°C and 37.8°C, respectively. For 0 to 2 months, fever is 37.5°C and 37.85°C in axillary and tympanic temperatures, respectively.

  12. The flame characteristics of the biogas has produced through the digester method with various starters

    NASA Astrophysics Data System (ADS)

    Ketut, Caturwati Ni; Agung, Sudrajat; Mekro, Permana; Heri, Haryanto; Bachtiar

    2018-01-01

    Increasing the volume of waste, especially in urban areas is a source of problems in realizing the comfort and health of the environment. It needs to do a good handling of garbage so as to provide benefits for the whole community. Organic waste processing through bio-digester method to produce a biogas as an energy source is an effort. This research was conducted to test the characteristics of biogas flame generated from organic waste processing through digester with various of the starter such as: cow dung, goat manure, and leachate that obtained from the landfill at Bagendung-Cilegon. The flame height and maximum temperature of the flame are measured for the same pressure of biogas. The measurements showed the flame produced by bio-digester with leachate starter has the lowest flame height compared to the other types of biogas, and the highest flame height is given by biogas from digester with cow dung as a starter. The maximum flame temperature of biogas produced by leachate as a starter reaches 1027 °C. This value is 7% lower than the maximum flame temperature of biogas produced by cow dung as a starter. Cow dung was observed to be the best starter compared to goat manure and leachate, but the use of leachate as a starter in producing biogas with biodigester method is not the best but it worked.

  13. Mechanisms of deformation and fracture in high temperature low cycle fatigue of Rene 80 and IN 100

    NASA Technical Reports Server (NTRS)

    Romanoski, G. R., Jr.

    1982-01-01

    Specimens tested for the AGARD strain range partitioning program were investigated. Rene 80 and IN 100 were tested in air and in vacuum; at 871 C, 925 C, and 1000 C; and in the coated and uncoated condition. The specimens exhibited a multiplicity of high-temperature low-cycle fatigue damage. Observations of the various forms of damage were consistent with material and testing conditions and were generally in agreement with previous studies. In every case observations support a contention that failure occurs at a particular combination of crack length and maximum stress. A failure criterion which is applicable in the regime of testing studied is presented. The predictive capabilities of this criterion are straight forward.

  14. Flare Plasma Diagnostics from X-Ray and Ultraviolet Observations

    NASA Astrophysics Data System (ADS)

    Tsap, Yu. T.; Motorina, G. G.

    2017-12-01

    We compare the measured values of emission measure EM and temperature T of coronal flare plasma following the GOES, RHESSI, and SDO/AIA satellite observations for the events of July 4, 5, and 7, 2012, in the NOAA 11515 active region. We show that the values of EM and T can vary widely (up to one order of magnitude for EM) depending on the technical features of instruments and processing technique. The maximum difference has been found to be between RHESSI and SDO/AIA measurements for temperature and between GOES and SDO/AIA measurements for EM. We discuss the pros and cons of the approaches used and the practical effects of the resulting numerical estimates for EM and T.

  15. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    NASA Astrophysics Data System (ADS)

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-02-01

    SummaryTwo physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32 m diameter by 0.99 m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed. Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1 cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9 cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6 cm of water and 55.9 cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix lags behind maximum solar radiation by approximately 2 h. A slightly longer temperature lag was observed between the maximum solar radiation and maximum water temperature both with and without soil.

  16. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    USGS Publications Warehouse

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-01-01

    Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix lags behind maximum solar radiation by approximately 2. h. A slightly longer temperature lag was observed between the maximum solar radiation and maximum water temperature both with and without soil. ?? 2012 Elsevier B.V.

  17. Risk of pulp damage due to temperature increase during thermodebonding of ceramic brackets.

    PubMed

    Jost-Brinkmann, P G; Radlanski, R J; Artun, J; Loidl, H

    1997-12-01

    The purpose of this study was to perform in vitro measurements of the temperature increase at the enamel-dentine interface during electrothermal removal of ceramic brackets, and to analyse, in vivo, whether signs of pulp damage can be observed 4 weeks after the procedure. In vitro study: a total of 29 caries-free human teeth were cut into buccal and lingual halves. The buccal halves were bonded with ceramic brackets, and miniature thermocouples were placed from the pulpal side into holes drilled to the enamel-dentine interface under the centre of the bracket slot. From the onset of thermodebonding, the temperature increase relative to room temperature was recorded for a period of 43 seconds. The maximum temperature increase at the enamel-dentine interface was 6.9 degrees C. In vivo study: a total of 12 human premolars scheduled for extraction for orthodontic reasons were bonded with ceramic brackets. Electrothermal debonding was performed the following day. After 4 weeks, the teeth were extracted and prepared for histological examination. Following demineralization, sections were prepared for light microscopic examination. No signs of pulpal inflammation were observed.

  18. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE PAGES

    Russi, Silvia; González, Ana; Kenner, Lillian R.; ...

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.« less

  19. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russi, Silvia; González, Ana; Kenner, Lillian R.

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.« less

  20. The range of medication storage temperatures in aeromedical emergency medical services.

    PubMed

    Madden, J F; O'Connor, R E; Evans, J

    1999-01-01

    The United States Pharmacopoeia (USP) recommends that medication storage temperatures should be maintained between 15 degrees C and 30 degrees C (59 degrees F to 86 degrees F). Concerns have been raised that storage temperatures in EMS may deviate from this optimal range, predisposing drugs to degradation. This study was conducted to determine whether temperatures inside the drug box carried by paramedics aboard a helicopter remained within the range. The Aviation Section, with a paramedic on board, utilizes two helicopters and conducts approximately 80 patient care flights per month. A dual-display indoor/outdoor thermometer with memory was used to measure the highest and lowest temperatures during each shift. The thermometer was kept with medications in a nylon drug bag, which remained on the helicopter except when needed for patient care. Ambient temperature measurements at the location of the helicopter base were obtained from the National Climatic Data Center. Temperature ranges were recorded during day shift (8 AM to 4 PM) and night shift (4 PM to 12 AM) during the winter from December 1, 1995, to March 13, 1996, and summer from June 17, 1996, to September 14, 1996. Statistical analysis was performed using chi-square and the Bonferroni-adjusted t-test. Compared with the winter day period, the winter night period had lower minimum (13.2 degrees C vs 14.7 degrees C, p = 0.003) and maximum (20.3 degrees C vs 21.2 degrees C, p = 0.02) temperatures. Both were below the USP minimum. The summer day period had higher maximum temperatures than the summer night period (31.2 degrees C vs 27.6 degrees C, p = 5 x 10(-9)). The mean daytime summer maximum exceeded the USP upper limit. Storage temperatures outside of the USP range were observed during 49% of winter days, 62% of winter nights, 56% of summer days, and 27% of summer nights. There was a significant tendency for summer days (p = 8 x 10(-8)) and winter nights (p = 0.009) to be outside of the acceptable range. There was moderate correlation between ambient and drug box temperatures (r2 = 0.49). Medications stored aboard an EMS helicopter are exposed to extremes of temperature, even inside a drug bag. Measures are needed to attenuate storage temperature fluctuations aboard aeromedical helicopters.

  1. Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer

    USGS Publications Warehouse

    Barker, C.E.; Goldstein, R.H.

    1990-01-01

    The hypothesis that aqueous fluid inclusions in calcite can be used to establish maximum temperature (Tpeak) is tested. Fluid inclusion Th, mean random vitrinite reflectance (Rm), and present-day Tpeak from 46 diverse geologic systems that have been at Tpeak from 104 to 106 yr have been compiled. Present Tpeak ranged from 65 to 345??C, Th modes and means ranged from 59 to 350??C, and Rm data ranged from 0.4% to 4.6%, spanning the temperature and thermal maturity range associated with burial diagenesis, hydrothermal alteration, and low-grade metamorphism. Plots of Th and Tpeak data for systems thought to be currently at maximum temperature demonstrate close agreement between Th and present Tpeak in sedimentary basins. The relation suggests that Th of aqueous fluid inclusions in calcite may be a useful measure of maximum temperature. This study also compared Th to mean random vitrinite reflectance (Rm). Th correlates well with Rm and results in a curve similar to Rm vs. Tpeak calibrations determined by other workers. Strong correlation between Tpeak and Rm in these systems suggests that maximum temperature is the major control on thermal maturation. -after Authors

  2. Modeling maximum daily temperature using a varying coefficient regression model

    Treesearch

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  3. A method for safety testing of radiofrequency/microwave-emitting devices using MRI.

    PubMed

    Alon, Leeor; Cho, Gene Y; Yang, Xing; Sodickson, Daniel K; Deniz, Cem M

    2015-11-01

    Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non-MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83°C and 12.4 W/kg, respectively, for simulations and 1.73°C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15°C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7°C and 0.54 W/kg, respectively. Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. © 2014 Wiley Periodicals, Inc.

  4. A Method for Safety Testing of Radiofrequency/Microwave-Emitting Devices Using MRI

    PubMed Central

    Alon, Leeor; Cho, Gene Y.; Yang, Xing; Sodickson, Daniel K.; Deniz, Cem M.

    2015-01-01

    Purpose Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Methods Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non–MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. Results The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83° C and 12.4 W/kg, respectively, for simulations and 1.73° C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15° C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7° C and 0.54 W/kg, respectively. Conclusion Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. PMID:25424724

  5. Capturing Characteristics of Atmospheric Refractivity Using Observations and Modeling Approaches

    DTIC Science & Technology

    2015-06-01

    Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Electromagnetic wave...INTENTIONALLY LEFT BLANK v ABSTRACT Electromagnetic wave propagation is sensitive to gradients of refractivity derived from atmospheric temperature...evaporation duct profiles is then run through AREPS to calculate the propagation loss of EM energy along the path of varying geometric and transmitter setups

  6. Trends in global wildfire potential in a changing climate

    Treesearch

    Y. Liu; J.A. Stanturf; S.L. Goodrick

    2009-01-01

    The trend in global wildfire potential under the climate change due to the greenhouse effect is investigated. Fire potential is measured by the Keetch-Byram Drought Index (KBDI), which is calculated using the observed maximum temperature and precipitation and projected changes at the end of this century (2070–2100) by general circulation models (GCMs) for present and...

  7. Calculation of change in brain temperatures due to exposure to a mobile phone

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, G. M. J.; Lagendijk, J. J. W.; Van Leersum, B. J. A. M.; Zwamborn, A. P. M.; Hornsleth, S. N.; Kotte, A. N. T. J.

    1999-10-01

    In this study we evaluated for a realistic head model the 3D temperature rise induced by a mobile phone. This was done numerically with the consecutive use of an FDTD model to predict the absorbed electromagnetic power distribution, and a thermal model describing bioheat transfer both by conduction and by blood flow. We calculated a maximum rise in brain temperature of 0.11 °C for an antenna with an average emitted power of 0.25 W, the maximum value in common mobile phones, and indefinite exposure. Maximum temperature rise is at the skin. The power distributions were characterized by a maximum averaged SAR over an arbitrarily shaped 10 g volume of approximately 1.6 W kg-1. Although these power distributions are not in compliance with all proposed safety standards, temperature rises are far too small to have lasting effects. We verified our simulations by measuring the skin temperature rise experimentally. Our simulation method can be instrumental in further development of safety standards.

  8. What are the main environmental factors driving the development of the neurotoxic dinoflagellate Vulcanodinium rugosum in a Mediterranean ecosystem (Ingril lagoon, France)?

    PubMed

    Abadie, Eric; Chiantella, Claude; Crottier, Anaïs; Rhodes, Lesley; Masseret, Estelle; Berteaux, Tom; Laabir, Mohamed

    2018-05-01

    Vulcanodinium rugosum, a dinoflagellate developing in Ingril Lagoon (Mediterranean, France) is responsible for shellfish intoxications due to the neurotoxin pinnatoxin G. A one year survey (March 2012-April 2013) was conducted in this oligotrophic shallow lagoon and key environmental parameters were recorded (temperature, salinity and nutrients). The spatio-temporal distribution of V. rugosum in water column and on macrophytes was also determined. Planktonic cells of V. rugosum were observed at all sampling stations, but in relatively low concentrations (maximum of 1000 cell/L). The highest abundances were observed from June to September 2012. There was a positive correlation between cell densities and both temperature and salinity. Non-motile cells were detected on macrophytes, with a maximum concentration of 6300 cells/g wet weight. Nitrite and ammonium were negatively related to V. rugosum abundance whereas total nitrogen, total phosphorus and phosphates showed a positive correlation. Altogether, in situ results suggest that V. rugosum is rather thermophilic and that organic nutrients should be considered when studying the nutrition requirements for this noxious expanding dinoflagellate. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. An analysis of isothermal, bithermal, and thermomechanical fatigue data of Haynes 188 and B1900+Hf by energy considerations

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Kalluri, Sreeramesh; Halford, Gary R.

    1993-01-01

    The low-cycle fatigue behavior of Haynes 188 and B1900+Hf under isothermal, bithermal, and thermomechanical loading conditions has been analyzed on the basis of the total hysteresis energy expended per cycle. It has been observed that in the case of isothermal fatigue the total hysteresis energy correlates well with the fatigue life. In the case of bithermal 'high rate' fatigue, for a given total hysteresis energy per cycle, the fatigue life is equal to or greater than the isothermal fatigue life at the maximum bithermal temperature. This observation could be used to establish a lower bound on life for design purposes. In one case of bithermal creep-fatigue and in thermomechanical fatigue, the life is shorter than that corresponding to the isothermal life at the maximum temperature. The energy supplied, per se, may not always give a systematic correlation with the fatigue life in the cases where time-dependent creep and environmental effects are encountered. Thus, in bithermal creep-fatigue and thermomechanical fatigue, the role of creep and environment and their dependence on the energy supplied have to be properly accounted for before the energy term can be used for life prediction.

  10. FADING EFFECT OF LiF:Mg,Ti AND LiF:Mg,Cu,P Ext-Rad AND WHOLE-BODY DETECTORS.

    PubMed

    Pereira, J; Pereira, M F; Rangel, S; Saraiva, M; Santos, L M; Cardoso, J V; Alves, J G

    2016-09-01

    Thermoluminescence dosemeters are widely used in individual and environmental monitoring. The aim of this work was to compare the thermal stability of dosemeters of the Ext-Rad and whole-body card types with LiF:Mg,Ti and LiF:Mg,Cu,P detectors stored at different temperatures and periods. The dosemeters were stored at 0°C, room temperature and 40°C for periods that lasted 8, 30, 45, 90 and 120 d. In general, TLD-100H detectors present higher TL signal stability than TLD-100 detectors. The intensity of the signal remained constant for both materials for storage periods at 0°C. At RT the same results was observed for TLD-100H. For TLD-100 detectors, a maximum variation of 22 % was registered for the longest period. At 40°C the TL signal decreased with storage time for both detectors. The TL signal of TLD-100H detectors presented maximum variations of 12 % whereas for TLD-100 detectors, larger variations of 25 % were observed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Electric field poling induced self-biased converse magnetoelectric response in PMN-PT/NiFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Ahlawat, Anju; Satapathy, S.; Deshmukh, Pratik; Shirolkar, M. M.; Sinha, A. K.; Karnal, A. K.

    2017-12-01

    In this letter, studies on structural transitions and the effect of electric field poling on magnetoelectric (ME) properties in 0.65Pb (Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT)/NiFe2O4 (NFO) nanocomposites are reported. The composite illustrates dramatic changes in the NFO crystal structure across ferroelectric transition temperature [Curie temperature (Tc) ˜ 450 K] of PMN-PT, while pure NFO does not exhibit any structural change in the temperature range (300 K-650 K). Synchrotron based X-ray diffraction analysis revealed the splitting of NFO peaks across the Tc of PMN-PT in the PMN-PT/NFO composite. Consequently, the anomalies are observed in temperature dependent magnetization of the NFO phase at the Tc of PMN-PT, establishing ME coupling in the PMN-PT/NFO composite. Furthermore, the composite exhibits drastic modification in ME coupling under electrically poled and unpoled conditions. A large self-biased ME effect characterized by non-zero ME response at zero Hbias was observed in electrically poled composites, which was not observed in unpoled PMN-PT/NFO. These results propose an alternative mechanism for intrinsic converse ME effects. The maximum magnetoelectric output was doubled after electrical poling. The observed self-biased converse magnetoelectric effect at room temperature provides potential applications in electrically controlled memory devices and magnetic flux control devices.

  12. Anomalies of hydrological cycle components during the 2007 heat wave in Bulgaria

    NASA Astrophysics Data System (ADS)

    Mircheva, Biliana; Tsekov, Milen; Meyer, Ulrich; Guerova, Guergana

    2017-12-01

    Heat waves have large adverse social, economic and environmental effects which include increased mortality, transport restrictions and a decreased agricultural production. The estimated economic losses of the 2007 heat wave in South-east Europe exceed 2 billion EUR with 19 000 hospitalisation in Romania only. Understanding the changes of the hydrological cycle components is essential for early forecasting of heat wave occurrence. Valuable insight of two components of the hydrological cycle, namely Integrated Water Vapour (IWV) and Terrestrial Water Storage Anomaly (TWSA), is now possible using observations from Global Navigation Satellite System (GNSS) and Gravity Recovery And Climate Experiment (GRACE) mission. In this study anomalies of temperature, precipitation, IWV and TWS in 2007 are compared to 2003-2013 period for Sofia, Bulgaria. In 2007, positive temperature anomalies are observed in January, February and July. There are negative IWV and precipitation anomalies in July 2007 that coincides with the heat wave in Bulgaria. TWSA in 2007 are negative in January, May and from July to October being largest in August. Long-term trends of: 1) temperatures have a local maximum in March 2007, 2) TWSA has a local minimum in May 2007, 3) IWV has a local minimum in September 2007, and 4) precipitation has a local maximum in July 2007. The TWSA interannual trends in Bulgaria, Hungary and Poland show similar behaviour as indicated by cross correlation coefficients of 0.9 and 0.7 between Bulgaria and Hungary and Bulgaria and Poland respectively. ALADIN-Climate describes the anomalies of temperature and IWV more successfully than those of precipitation and TWS.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingham, J.G.

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33%more » of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.« less

  14. Storm-Time Meridional Wind Perturbations in the Equatorial Thermosphere

    NASA Astrophysics Data System (ADS)

    Haaser, R. A.; Davidson, R.; Heelis, R. A.; Earle, G. D.; Venkatraman, S.; Klenzing, J.

    2013-12-01

    We present observations from the Coupled Ion Neutral Dynamics Investigation (CINDI) of storm-time modifications to the neutral atmosphere at equatorial latitudes near the magnetic equator at 400 km altitude during the active period near solar maximum in 2011 and 2012. Perturbations in the neutral temperature on the dayside and the nightside are consistent with observed increases in the neutral density in accord with hydrostatic equilibrium. In the evening and midnight sectors these modifications are additionally accompanied by perturbations in the meridional neutral wind, which are the focus of the work. The observations are made in the southern hemisphere near the magnetic equator, usually dominated by energy inputs from the southern polar regions that produce south to north (northward) wind perturbations to accompany perturbations in the neutral density and temperature. In one exceptional case when observations are made near midnight and the north magnetic pole rotates through the midnight sector, north to south (southward) meridional wind perturbations are observed.

  15. Evaluating historical climate and hydrologic trends in the Central Appalachian region of the United States

    NASA Astrophysics Data System (ADS)

    Gaertner, B. A.; Zegre, N.

    2015-12-01

    Climate change is surfacing as one of the most important environmental and social issues of the 21st century. Over the last 100 years, observations show increasing trends in global temperatures and intensity and frequency of precipitation events such as flooding, drought, and extreme storms. Global circulation models (GCM) show similar trends for historic and future climate indicators, albeit with geographic and topographic variability at regional and local scale. In order to assess the utility of GCM projections for hydrologic modeling, it is important to quantify how robust GCM outputs are compared to robust historical observations at finer spatial scales. Previous research in the United States has primarily focused on the Western and Northeastern regions due to dominance of snow melt for runoff and aquifer recharge but the impact of climate warming in the mountainous central Appalachian Region is poorly understood. In this research, we assess the performance of GCM-generated historical climate compared to historical observations primarily in the context of forcing data for macro-scale hydrologic modeling. Our results show significant spatial heterogeneity of modeled climate indices when compared to observational trends at the watershed scale. Observational data is showing considerable variability within maximum temperature and precipitation trends, with consistent increases in minimum temperature. The geographic, temperature, and complex topographic gradient throughout the central Appalachian region is likely the contributing factor in temperature and precipitation variability. Variable climate changes are leading to more severe and frequent climate events such as temperature extremes and storm events, which can have significant impacts on our drinking water supply, infrastructure, and health of all downstream communities.

  16. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  17. Superplastic Behaviour of AZ61-F Magnesium Composite Materials

    NASA Astrophysics Data System (ADS)

    Besterci, Michal; Sülleiová, Katarína; Velgosová, Oksana; Balloková, Beáta; Huang, S.-J.

    2017-03-01

    Deformation of AZ61-F magnesium alloys with 1 wt % of Al2O3 phase was tested at different temperatures and different strain rates. It was shown that at temperatures 473-523 K and the highest strain rate applied from 1×10-2 s-1 to 1×10-4 s-1, a significant ductility growth was observed. The grain size of 0.6-0.8 μm was reached by severe plastic deformations by means of equal channel angular pressing (ECAP). Secondary Mg17Al12 and Al2O3 phases were identified. Maximum strain was gained at temperature of 473 K and strain rate of 1×10-4 s-1.

  18. On the location of the maximum homogeneous crystal nucleation temperature

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1986-01-01

    Detailed considerations are given to the location of the temperature of maximum homogeneous nucleation as predicted by classical nucleation theory. It is shown quite generally that this maximum temperature, T-asterisk, must occur above the Kauzmann temperature and that the T-asterisk is such that T-asterisk is greater than T(m)/3, where T(m) is the melting temperature. Also, it is demonstrated tha T-asterisk may be considered to be approximately dependent upon two parameters: gamma, the ratio of the difference in specific heat between the crystal and liquid divided by the entropy of fusion, and E, a reduced activation energy for viscous flow. The variation of T-asterisk with these parameters is described. The relationship of the relative location of T-asterisk to the glass transition temperature, is discussed too. This discussion is couched within the framework of the strong and fragile liquid notion introduced by Angell (1981) and coworkers. Finally, the question of the ultimate limits to the undercooling of liquid metals is considered and its relationhsip to computations of the maximum nucleation temperature in such systems.

  19. Developing a diagnostic tool for measuring maximum effective temperature within high pressure electrodeless discharges

    NASA Astrophysics Data System (ADS)

    Whiting, Michael; Preston, Barry; Mucklejohn, Stuart; Santos, Monica; Lister, Graeme

    2016-09-01

    Here we present an investigation into the feasibility of creating a diagnostic tool for obtaining maximum arc temperature measurements within a high pressure electrodeless discharge; utilizing integrating sphere measurements of optically thin lines emitted from mercury atoms within commercially available high pressure mercury lamp arc tubes. The optically thin lines chosen were 577 nm and 1014 nm from a 250 W high pressure mercury lamp operated at various powers. The effective temperature could be calculated by considering the relative intensities of the two optically thin lines and comparison with the theoretical ratio of the temperature dependent power emitted from the lines derived from the atomic spectral data provided by NIST. The calculations gave effective arc temperatures of 5755, 5804 and 5820 K at 200, 225, 250 W respectively. This method was subsequently used as a basis for determining maximum effective arc temperature within microwave-driven electrodeless discharge capsules, with varying mercury content of 6.07, 9.4 and 12.95 mg within 1 × 10-6 m3 giving maximum effective temperatures of 5163, 4768 and 4715 K respectively at 240 W.

  20. Possible combined influences of absorbing aerosols and anomalous atmospheric circulation on summertime diurnal temperature range variation over the middle and lower reaches of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Cai, Jiaxi; Guan, Zhaoyong; Ma, Fenhua

    2016-12-01

    Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.

  1. Note: Characterization of the plasma parameters of a capillary discharge-produced plasma channel waveguide to guide an intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashiguchi, Takeshi; Yugami, Noboru; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kanagawa, Saitama 332-0012

    2010-04-15

    We demonstrated the production of an optical waveguide in a capillary discharge-produced plasma using a cylindrical capillary. Plasma parameters of its waveguide were characterized by use of both a Nomarski laser interferometer and a hydrogen plasma line spectrum. A space-averaged maximum temperature of 3.3 eV with electron densities of the order of 10{sup 17} cm{sup -3} was observed at a discharge time of 150 ns and a maximum discharge current of 400 A. An ultrashort, intense laser pulse was guided by use of this plasma channel.

  2. 40 CFR 60.37e - Compliance, performance testing, and monitoring guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements: (1) Establish maximum charge rate and minimum secondary chamber temperature as site-specific... above the maximum charge rate or below the minimum secondary chamber temperature measured as 3-hour... below the minimum secondary chamber temperature shall constitute a violation of the established...

  3. The temperature dependences of electromechanical properties of PLZT ceramics

    NASA Astrophysics Data System (ADS)

    Czerwiec, M.; Zachariasz, R.; Ilczuk, J.

    2008-02-01

    The mechanical and electrical properties in lanthanum modified lead zirconate-titanate ceramics of 5/50/50 and 10/50/50 were studied by mechanical loss Q - 1, Young's modulus E, electric permittivity ɛ and tangent of dielectric loss of angle tgδ measurements. The internal friction Q - 1 and Young modulus E measured from 290 K to 600 K shows that Curie temperature TC is located at 574 K and 435 K (1st cycle of heating) respectively for ceramic samples 5/50/50 and 10/50/50. The movement of TC in second cycle of heating to lower temperature (561 K for 5/50/50 and 420 K for 10/50/50) has been observed. Together with Q - 1 and E measurements, temperature dependences of ɛ=f(T) and tgδ=f(T) were determinated in temperature range from 300 K to 730 K. The values of TC obtained during ɛ and tgδ measurements were respectively: 560 K for 5/50/50 and 419 K for 10/50/50. These temperatures are almost as high as the temperatures obtained by internal friction Q - 1 measurements in second cycle of heating. In ceramic sample 10/50/50 the additional maximum on internal friction Q - 1 curve at the temperature 316 K was observed.

  4. [Dynamics of sap flow density in stems of typical desert shrub Calligonum mongolicum and its responses to environmental variables].

    PubMed

    Xu, Shi-qin; Ji, Xi-bin; Jin, Bo-wen

    2016-02-01

    Independent measurements of stem sap flow in stems of Calligonum mongolicum and environmental variables using commercial sap flow gauges and a micrometeorological monitoring system, respectively, were made to simulate the variation of sap flow density in the middle range of Hexi Corridor, Northwest China during June to September, 2014. The results showed that the diurnal process of sap flow density in C. mongolicum showed a broad unimodal change, and the maximum sap flow density reached about 30 minutes after the maximum of photosynthetically active radiation (PAR) , while about 120 minutes before the maximum of temperature and vapor pressure deficit (VPD). During the studying period, sap flow density closely related with atmosphere evapor-transpiration demand, and mainly affected by PAR, temperature and VPD. The model was developed which directly linked the sap flow density with climatic variables, and good correlation between measured and simulated sap flow density was observed in different climate conditions. The accuracy of simulation was significantly improved if the time-lag effect was taken into consideration, while this model underestimated low and nighttime sap flow densities, which was probably caused by plant physiological characteristics.

  5. Low summer water temperatures influence occurrence of naturalized salmonids across a mountain watershed

    USGS Publications Warehouse

    Mullner, S.A.; Hubert, W.A.

    2005-01-01

    We investigated relationships between the absence of salmonids and low summer water temperatures across a 150-km2 Rocky Mountain watershed. A model predicting maximum July water temperature (MJT) from measurements of perennial stream length, wetted width, and midrange basin elevation was developed from temperature data obtained at 20 sites across the watershed. The model was used to predict MJT in 75 reaches across the watershed where salmonids were sampled. The lowest predicted MJT in reaches where age-0 and juvenile-adult brook trout Salvelinus fontinalis were observed was 9??C. The lowest predicted MJT in reaches where age-0 progeny of the genus Oncorhynchus spp. (i.e., rainbow trout O. mykiss or cutthroat trout O. clarkii) were observed was 13??C and where Oncorhynchus spp. adults where observed was 12??C. The probability of occurrence of both age-0 and adult brook trout and Oncorhynchus spp. increased as MJT increased above these thresholds. Our results indicate that low MJT in some portions of a mountain watershed can be related to the absence of salmonids. Consequently, data on MJT may provide managers with a means of assessing where summer water temperatures are not suitable for establishment of naturalized salmonid populations. ?? Copyright by the American Fisheries Society 2005.

  6. Body temperature, activity patterns, and hunting in free-living cheetah: biologging reveals new insights.

    PubMed

    Hetem, Robyn S; Mitchell, Duncan; de Witt, Brenda A; Fick, Linda G; Maloney, Shane K; Meyer, Leith C R; Fuller, Andrea

    2018-05-31

    As one of the few felids that is predominantly diurnal, cheetahs (Acinonyx jubatus Von Schreber, 1775) can be exposed to high heat loads in their natural habitat. Little is known about long-term patterns of body temperature and activity (including hunting) in cheetahs because long-term concurrent measurements of body temperature and activity never have been reported for cheetahs, or indeed for any free-living felid. We report here body temperature and locomotor activity measured with implanted data loggers over seven months in five free-living cheetahs in Namibia. Air temperature ranged from a maximum of 39ºC in summer to -2ºC in winter. Cheetahs had higher (∼0.4 ºC) maximum 24h body temperatures, later acrophase (∼1 h), with larger fluctuations in the range of the 24h body temperature rhythm (∼0.4 ºC) during a hot-dry period than during a cool-dry period, but maintained homeothermy irrespective of the climatic conditions. As ambient temperatures increased, the cheetahs shifted from a diurnal to a crepuscular activity pattern, with reduced activity between 9:00 and 15:00 and increased nocturnal activity. The timing of hunts followed the general pattern of activity; the cheetahs hunted when they were on the move. Cheetahs hunted if an opportunity presented itself, on occasion they hunted in the midday heat or in total darkness (new moon). Biologging revealed insights into cheetah biology that are not accessible by traditional observer-based techniques. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    NASA Astrophysics Data System (ADS)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  8. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.

    1991-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  9. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.

    1989-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  10. Characterization of polyphenol oxidase from the Manzanilla cultivar (Olea europaea pomiformis) and prevention of browning reactions in bruised olive fruits.

    PubMed

    Segovia-Bravo, Kharla A; Jarén-Galan, Manuel; García-García, Pedro; Garrido-Fernandez, Antonio

    2007-08-08

    The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used.

  11. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax).

    PubMed

    Claireaux, Guy; Couturier, Christine; Groison, Anne-Laure

    2006-09-01

    This study is an attempt to gain an integrated understanding of the interactions between temperature, locomotion activity and metabolism in the European sea bass (Dicentrarchus labrax). To our knowledge this study is among the few that have investigated the influence of the seasonal changes in water temperature on swimming performance in fish. Using a Brett-type swim-tunnel respirometer the relationship between oxygen consumption and swimming speed was determined in fish acclimatised to 7, 11, 14, 18, 22, 26 and 30 degrees C. The corresponding maximum swimming speed (U(max)), optimal swimming speed (U(opt)), active (AMR) and standard (SMR) metabolic rates as well as aerobic metabolic scope (MS) were calculated. Using simple mathematical functions, these parameters were modelled as a function of water temperature and swimming speed. Both SMR and AMR were positively related to water temperature up to 24 degrees C. Above 24 degrees C SMR and AMR levelled off and MS tended to decrease. We found a tight relationship between AMR and U(max) and observed that raising the temperature increased AMR and increased swimming ability. However, although fish swam faster at high temperature, the net cost of transport (COT(net)) at a given speed was not influence by the elevation of the water temperature. Although U(opt) doubled between 7 degrees C and 30 degrees C (from 0.3 to 0.6 m s(-1)), metabolic rate at U(opt) represented a relatively constant fraction of the animal active metabolic rate (40-45%). A proposed model integrates the effects of water temperature on the interaction between metabolism and swimming performance. In particular the controlling effect of temperature on AMR is shown to be the key factor limiting maximal swimming speed of sea bass.

  12. High Concentrations of Hydrogen-bearing Volatiles at the Base of Poleward-facing slopes in the Moon's Large Southern Permanently Shadowed Regions.

    NASA Astrophysics Data System (ADS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T. A.; Litvak, M. L.; Sanin, A. B.; Starr, R. D.

    2016-12-01

    In this paper we review evidence that indicates that high concentrations of hydrogen-bearing volatiles are biased towards the base of poleward-facing slopes (PFS) in the Moon's large southern permanently shadowed regions (PSR). Results are derived from a correlated study of Lunar Reconnaissance Orbiter instrument maps of: epithermal neutron leakage flux observed by the Lunar Exploration Neutron Detector (LEND), topography derived from the Lunar Observing Laser Altimeter (LOLA) and surface thermal maps derived from the Diviner radiometer. Maximum concentrations of hydrogen-volatiles, likely as water ice, are observed in the Cabeus crater's PSR, 0.62 wght% water-equivalent-hydrogen. Detailed studies show that the occurrence of hydrogen-volatiles at the base of the (PFS) are correlated with the locations of low PSR temperatures of Cabeus, Haworth, Shoemaker and Faustini. LEND observations show no consistent correlation to smaller impact craters and the lowest temperatures within the PSR's. It is not presently known if the high volatile concentrations are due to downslope migration or thermal stability in the PFS breaks in slope. 15-km Full-width at Half-Maximum (FWHM) is shown to be an upper-bounds condition for the LEND collimated sensor's spatial resolution, derived from a cross-sectional profile, through the permanently shadowed region at Cabeus'. LEND's high-resolution spatial response is further illustrated in a 220-km long profile cut through the co-aligned permanently shadowed regions and partially-illuminated ridges of Haworth, Shoemaker, Faustini and Amundsen craters.

  13. Observations on lava, snowpack and their interactions during the 2012-13 Tolbachik eruption, Klyuchevskoy Group, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Melnikov, Dmitry

    2015-12-01

    Observations made during January and April 2013 show that interactions between lava flows and snowpack during the 2012-13 Tolbachik fissure eruption in Kamchatka, Russia, were controlled by different styles of emplacement and flow velocities. `A`a lava flows and sheet lava flows generally moved on top of the snowpack with few immediate signs of interaction besides localized steaming. However, lavas melted through underlying snowpack 1-4 m thick within 12 to 24 h, and melt water flowed episodically from the beneath flows. Pahoehoe lava lobes had lower velocities and locally moved beneath/within the snowpack; even there the snow melting was limited. Snowpack responses were physical, including compressional buckling and doming, and thermal, including partial and complete melting. Maximum lava temperatures were up to 1355 K (1082 °C; type K thermal probes), and maximum measured meltwater temperatures were 335 K (62.7 °C). Theoretical estimates for rates of rapid (e.g., radiative) and slower (conductive) snowmelt are consistent with field observations showing that lava advance was fast enough for `a`a and sheet flows to move on top of the snowpack. At least two styles of physical interactions between lava flows and snowpack observed at Tolbachik have not been previously reported: migration of lava flows beneath the snowpack, and localized phreatomagmatic explosions caused by snowpack failure beneath lava. The distinctive morphologies of sub-snowpack lava flows have a high preservation potential and can be used to document snowpack emplacement during eruptions.

  14. Energetic electrons in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Batchelor, D. A.

    1984-01-01

    A new analysis was made of a thermal flare model proposed by Brown, Melrose, and Spicer (1979) and Smith and Lilliequist (1979). They assumed the source of impulsive hard X-rays to be a plasma at a temperature of order 10 to the 8th power K, initially located at the apex of a coronal arch, and confined by ion-acoustic turbulence in a collisionless conduction front. Such a source would expand at approximately the ion-sound speed, C sub S = square root of (k T sub e/m sub i), until it filled the arch. Brown, Melrose, and Spicer and Smith and Brown (1980) argued that the source assumed in this model would not explain the simultaneous impulsive microwave emission. In contrast, the new results presented herein suggest that this model leads to the development of a quasi-Maxwellian distribution of electrons that explains both the hard X-ray and microwave emissions. This implies that the source sizes can be determined from observations of the optically-thick portions of microwave spectra and the temperatures obtained from associated hard X-ray observations. In this model, the burst emission would rise to a maximum in a time, t sub r, approximately equal to L/c sub s, where L is the half-length of the arch. New observations of these impulsive flare emissions were analyzed herein to test this prediction of the model. Observations made with the Solar Maximum Mission spacecraft and the Bern Radio Observatory are in good agreement with the model.

  15. Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems

    NASA Technical Reports Server (NTRS)

    Lustig, P. H.; Holms, A. G.; Davison, H. W.

    1973-01-01

    The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.

  16. System for Repairing Cracks in Structures

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W. (Inventor); Newman, John A. (Inventor); Piascik, Robert S. (Inventor); Glaessgen, Edward H. (Inventor)

    2014-01-01

    A first material with a known maximum temperature of operation is coated with a second material on at least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.

  17. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    2015-11-01

    Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.

  18. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue for SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.

    2016-01-01

    A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the selective laser melt (SLM) process. This factor is the reduction at a common fatigue life from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition. Various vendors provided specimens. To reduce the number of degrees-of-freedom, only one heat treat condition was evaluated. Testing temperatures included room temperature, 800F, 1000F, and 1200F. The two surface conditions were compared at constant lives, where data was available. The recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness <= 4 micro-inches/inch) is approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce the same life in the as built surface condition. As an alternative method, the surface finish was incorporated into a new parameter with the maximum stress. The new parameter was formulated to be similar to the fracture mechanics stress intensity factor, and it was named the pseudo stress intensity factor, Kp. Using Kp, the variance seemed acceptable across all sources, and the knockdown factor was estimated over the range of data identified by Kp where data occurred. A plot of the results suggests that the knockdown factor is a function of temperature, and that for low lives the knockdown is greater than the knockdown observed above about one million cycles, where it stabilizes. One data point at room temperature was clearly different, and the sparsity of data in the higher life region reduces the value of these results. The method does appear to provide useful results, and further characterization of the method is suggested.

  19. Temperature structure in the Perseus cluster core observed with Hitomi

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furukawa, Maki; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Kato, Yuichi; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shiníchiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shiníchiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen

    2018-03-01

    The present paper explains the temperature structure of X-ray emitting plasma in the core of the Perseus cluster based on 1.8-20.0 keV data obtained with the Soft X-ray Spectrometer (SXS) on board the Hitomi Observatory. A series of four observations was carried out, with a total effective exposure time of 338 ks that covered a central region of ˜7΄ in diameter. SXS was operated with an energy resolution of ˜5 eV (full width at half maximum) at 5.9 keV. Not only fine structures of K-shell lines in He-like ions, but also transitions from higher principal quantum numbers were clearly resolved from Si through Fe. That enabled us to perform temperature diagnostics using the line ratios of Si, S, Ar, Ca, and Fe, and to provide the first direct measurement of the excitation temperature and ionization temperature in the Perseus cluster. The observed spectrum is roughly reproduced by a single-temperature thermal plasma model in collisional ionization equilibrium, but detailed line-ratio diagnostics reveal slight deviations from this approximation. In particular, the data exhibit an apparent trend of increasing ionization temperature with the atomic mass, as well as small differences between the ionization and excitation temperatures for Fe, the only element for which both temperatures could be measured. The best-fit two-temperature models suggest a combination of 3 and 5 keV gas, which is consistent with the idea that the observed small deviations from a single-temperature approximation are due to the effects of projecting the known radial temperature gradient in the cluster core along the line of sight. A comparison with the Chandra/ACIS and the XMM-Newton/RGS results, on the other hand, suggests that additional lower-temperature components are present in the intracluster medium (ICM), but not detectable with Hitomi/SXS giving its 1.8-20 keV energy band.

  20. Actual and future trends of extreme values of temperature for the NW Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Taboada, J.; Brands, S.; Lorenzo, N.

    2009-09-01

    It is now very well established that yearly averaged temperatures are increasing due to anthropogenic climate change. In the area of Galicia (NW Spain) this trend has also been determined. The main objective of this work is to assess actual and future trends of different extreme indices of temperature, which are of curcial importance for many impact studies. Station data for the study was provided by the CLIMA database of the regional government of Galicia (NW Spain). As direct GCM-output significantly underestimates the variance of daily surface temperature variables in NW Spain, these variables are obtained by applying a statistical downscaling technique (analog method), using 850hPa temperature and mean sea level pressure as combined predictors. The predictor fields have been extracted from three GCMs participating in the IPCC AR4 under A1, A1B and A2 scenarios. The definitions of the extreme indices have been taken from the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) This group has defined a set of standard extreme values to simplify intercomparisons of data from different regions of the world. For the temperatures in the period 1960-2006, results show a significant increase of the number of days with maximum temperatures above the 90th percentile. Furthermore, a significant decrease of the days with maximum temperatures below the 10th percentile has been found. The tendencies of minimum temperatures are reverse: less nights with minimum temperatures below 10th percentile, and more with minimum temperatures above 90th percentile. Those tendencies can be observed all over the year, but are more pronounced in summer. We have also calculated the relationship between the above mentioned extreme values and different teleconnection patterns appearing in the North Atlantic area. Results show that local tendencies are associated with trends of EA (Eastern Atlantic) and SCA (Scandinavian) patterns. NAO (North Atlantic Oscillation) has also some relationship with these tendencies, but only related with cold days and nights in winter. The results of the applied statistical downscaling technique indicate that observed trends in maximum and minimum temperatures in NW Spain are expected to continue in the next decades because of anthropogenic climate change. The common tendency is that hot days increase while cold nights diminish all over the year. As expected, these tendencies change between different scenarios: they are more marked for A2 and A1B scenarios than for the for the B1 scenario. Moreover, the three models behave different under the same scenario, leaving a great uncertainty for the future. Nevertheless, we conclude that more frequent hot days, as well as an increasing probability of summertime heat waves are to be expected in the next decades. Cold days tend to diminish, decreasing the probability of wintertime cold waves and leaving a greater part of the area under study without frost days throughout the year.

Top