NASA Astrophysics Data System (ADS)
Dessens, J.; Bücher, A.
In an attempt to contribute to the investigation on a global climate change, a historical series of minimum and maximum temperature data at the Pic du Midi, a mountain observatory at 2862 m a.s.l. in the French Pyrenees, is updated after correction of a systematic deviation due to a relocation of the station in 1971. These data, which now cover the 1882-1984 period, are examined in parallel with humidity and cloud cover data for the same period. From the beginning to the end of this period, observations show that the mean night-time temperature has increased by 2.39° C/100 yr while the mean daytime temperature has decreased by 0.50° C/100 yr. In consequence, the mean annual diurnal temperature range has dropped by 36%/100 yr. The maximum seasonal decrease is 46%/100 yr in spring. Season-to-season and year-to-year inter-relationships between minimum temperature, maximum temperature, relative humidity and cloud cover suggest that the decrease in maximum temperature is related to a concomitant increase of 15%/100 yr in both relative humidity and cloud cover.
Davis, Robert E; Hondula, David M; Patel, Anjali P
2016-06-01
Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat-mortality relationships. We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature-mortality relationships were associated with maximum temperature, although mean temperature results were comparable. There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature-mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality. Davis RE, Hondula DM, Patel AP. 2016. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795-804; http://dx.doi.org/10.1289/ehp.1509946.
Davis, Robert E.; Hondula, David M.; Patel, Anjali P.
2015-01-01
Background: Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat–mortality relationships. Objectives: We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Methods: Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. Results: In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature–mortality relationships were associated with maximum temperature, although mean temperature results were comparable. Conclusions: There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature–mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality. Citation: Davis RE, Hondula DM, Patel AP. 2016. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795–804; http://dx.doi.org/10.1289/ehp.1509946 PMID:26636734
The influence of climate variables on dengue in Singapore.
Pinto, Edna; Coelho, Micheline; Oliver, Leuda; Massad, Eduardo
2011-12-01
In this work we correlated dengue cases with climatic variables for the city of Singapore. This was done through a Poisson Regression Model (PRM) that considers dengue cases as the dependent variable and the climatic variables (rainfall, maximum and minimum temperature and relative humidity) as independent variables. We also used Principal Components Analysis (PCA) to choose the variables that influence in the increase of the number of dengue cases in Singapore, where PC₁ (Principal component 1) is represented by temperature and rainfall and PC₂ (Principal component 2) is represented by relative humidity. We calculated the probability of occurrence of new cases of dengue and the relative risk of occurrence of dengue cases influenced by climatic variable. The months from July to September showed the highest probabilities of the occurrence of new cases of the disease throughout the year. This was based on an analysis of time series of maximum and minimum temperature. An interesting result was that for every 2-10°C of variation of the maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue cases. For the minimum temperature, we observed that for the same variation, there was an average increase of 26.1-230.3% in the number of the dengue cases from April to August. The precipitation and the relative humidity, after analysis of correlation, were discarded in the use of Poisson Regression Model because they did not present good correlation with the dengue cases. Additionally, the relative risk of the occurrence of the cases of the disease under the influence of the variation of temperature was from 1.2-2.8 for maximum temperature and increased from 1.3-3.3 for minimum temperature. Therefore, the variable temperature (maximum and minimum) was the best predictor for the increased number of dengue cases in Singapore.
Wu, Xiaocheng; Lang, Lingling; Ma, Wenjun; Song, Tie; Kang, Min; He, Jianfeng; Zhang, Yonghui; Lu, Liang; Lin, Hualiang; Ling, Li
2018-07-01
Dengue fever is an important infectious disease in Guangzhou, China; previous studies on the effects of weather factors on the incidence of dengue fever did not consider the linearity of the associations. This study evaluated the effects of daily mean temperature, relative humidity and rainfall on the incidence of dengue fever. A generalized additive model with splines smoothing function was performed to examine the effects of daily mean, minimum and maximum temperatures, relative humidity and rainfall on incidence of dengue fever during 2006-2014. Our analysis detected a non-linear effect of mean, minimum and maximum temperatures and relative humidity on dengue fever with the thresholds at 28°C, 23°C and 32°C for daily mean, minimum and maximum temperatures, 76% for relative humidity, respectively. Below the thresholds, there was a significant positive effect, the excess risk in dengue fever for each 1°C in the mean temperature at lag7-14days was 10.21%, (95% CI: 6.62% to 13.92%), 7.10% (95% CI: 4.99%, 9.26%) for 1°C increase in daily minimum temperature in lag 11days, and 2.27% (95% CI: 0.84%, 3.72%) for 1°C increase in daily maximum temperature in lag 10days; and each 1% increase in relative humidity of lag7-14days was associated with 1.95% (95% CI: 1.21% to 2.69%) in risk of dengue fever. Future prevention and control measures and epidemiology studies on dengue fever should consider these weather factors based on their exposure-response relationship. Copyright © 2018. Published by Elsevier B.V.
Junwei, Zhang; Jinping, Li; Xiaojuan, Quan
2013-01-01
The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results.
Jinping, Li; Xiaojuan, Quan
2013-01-01
The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results. PMID:24027444
NASA Technical Reports Server (NTRS)
Hirsch, Annette L.; Kala, Jatin; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Haverd, Vanessa; Mocko, David
2014-01-01
The authors use a sophisticated coupled land-atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%-20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.
DeWeber, Jefferson T; Wagner, Tyler
2018-06-01
Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects. © 2018 John Wiley & Sons Ltd.
DeWeber, Jefferson T.; Wagner, Tyler
2018-01-01
Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects.
NASA Astrophysics Data System (ADS)
van Hal, Ralf; van Kooten, Tobias; Rijnsdorp, Adriaan D.
2016-01-01
Changes in spatial distribution in several fish species have been related to recent increase in global temperature. In the North Sea, both a poleward shift and a shift to deeper water have been observed. Here, we study the underlying mechanism of these shifts in a comparative study of the changes in distribution of two boreal flatfish species (plaice Pleuronectes platessa and dab Limanda limanda) and three Lusitanian flatfish species (sole Solea solea, solenette Buglossidium luteum, and scaldfish Arnoglossus laterna) as recorded in annual bottom trawl surveys carried out in the North Sea in late summer since 1985. The distribution is analysed in relation to the bottom temperature at the time of the survey as well as to the seasonal maximum bottom temperature earlier in the year. It is shown that the boreal species plaice and dab moved to deeper water and maintained the seasonal maximum temperature that they experienced in earlier periods, while the Lusitanian species sole, solenette, and scaldfish experienced an increase in the seasonal maximum temperature that they experienced while maintaining their depth distribution. This overall response varied between length classes, reflecting a preference for higher temperature of the smaller length classes. The results lend support to the hypothesis that the fish displayed a direct response to the maximum temperature that occurred during the growth season before the time of sampling.
Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam-Poupart, Ariane; Smargiassi, Audrey; Institut national de santé publique du Québec
2014-10-15
Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures inmore » 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in colder temperate zones. - Highlights: • 259 heat-related compensated illnesses were modeled with ambient temperature • An overall risk ratio of 1.419 (95% CI 1.326–1.520) for every 1 °C increase was found • Risk estimates were similar for men and women and by large age groups. • There were little lag effects (IRRs of 1.206 to 1.471 for every 1 °C increase)« less
Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi
2011-01-01
This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume. PMID:22203886
Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi
2011-01-01
This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.
Factors affecting the estimate of primary production from space
NASA Technical Reports Server (NTRS)
Balch, W. M.; Byrne, C. F.
1994-01-01
Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface mixed layer, which is useful for predicting integral biomass and primary production.
On the location of the maximum homogeneous crystal nucleation temperature
NASA Technical Reports Server (NTRS)
Weinberg, Michael C.
1986-01-01
Detailed considerations are given to the location of the temperature of maximum homogeneous nucleation as predicted by classical nucleation theory. It is shown quite generally that this maximum temperature, T-asterisk, must occur above the Kauzmann temperature and that the T-asterisk is such that T-asterisk is greater than T(m)/3, where T(m) is the melting temperature. Also, it is demonstrated tha T-asterisk may be considered to be approximately dependent upon two parameters: gamma, the ratio of the difference in specific heat between the crystal and liquid divided by the entropy of fusion, and E, a reduced activation energy for viscous flow. The variation of T-asterisk with these parameters is described. The relationship of the relative location of T-asterisk to the glass transition temperature, is discussed too. This discussion is couched within the framework of the strong and fragile liquid notion introduced by Angell (1981) and coworkers. Finally, the question of the ultimate limits to the undercooling of liquid metals is considered and its relationhsip to computations of the maximum nucleation temperature in such systems.
NASA Astrophysics Data System (ADS)
Whiting, Michael; Preston, Barry; Mucklejohn, Stuart; Santos, Monica; Lister, Graeme
2016-09-01
Here we present an investigation into the feasibility of creating a diagnostic tool for obtaining maximum arc temperature measurements within a high pressure electrodeless discharge; utilizing integrating sphere measurements of optically thin lines emitted from mercury atoms within commercially available high pressure mercury lamp arc tubes. The optically thin lines chosen were 577 nm and 1014 nm from a 250 W high pressure mercury lamp operated at various powers. The effective temperature could be calculated by considering the relative intensities of the two optically thin lines and comparison with the theoretical ratio of the temperature dependent power emitted from the lines derived from the atomic spectral data provided by NIST. The calculations gave effective arc temperatures of 5755, 5804 and 5820 K at 200, 225, 250 W respectively. This method was subsequently used as a basis for determining maximum effective arc temperature within microwave-driven electrodeless discharge capsules, with varying mercury content of 6.07, 9.4 and 12.95 mg within 1 × 10-6 m3 giving maximum effective temperatures of 5163, 4768 and 4715 K respectively at 240 W.
NASA Astrophysics Data System (ADS)
Guo, An; Zhao, Junwen; Xu, Chao; Li, Hu; Han, Jing; Zhang, Xu
2018-05-01
Semisolid slurry of A357 aluminum alloy was prepared using a temperature-controllable electromagnetic stirrer and rheo-diecast at different temperatures. The effects of pouring temperature and electromagnetic stirring (EMS) on the porosity in rheo-diecast samples, as well as the relation between porosity and mechanical properties, were investigated. The results show that pouring temperature and EMS had minor influences on rheo-diecast microstructure but marked influence on the porosity. With decreasing slurry pouring temperature, the porosity decreased first and then increased, whereas the maximum pore ratio (ratio of shape factor to diameter of the largest pore) increased first and then decreased. The maximum pore ratio determines the level of tensile strength and elongation, and higher mechanical properties can be obtained with smaller and rounder pores in samples. The mechanical properties of the rheo-diecast samples increased linearly with increasing maximum pore ratio. The maximum pore ratio was 1.43 µm-1, and the minimum porosity level was 0.37% under EMS condition for the rheo-diecast samples obtained at a pouring temperature of 608 °C. With this porosity condition, the maximum tensile strength and elongation were achieved at 274 MPa and 4.9%, respectively. It was also revealed that EMS improves mechanical properties by reduction in porosity and an increase in maximum pore ratio.
Barker, C.E.; Goldstein, R.H.
1990-01-01
The hypothesis that aqueous fluid inclusions in calcite can be used to establish maximum temperature (Tpeak) is tested. Fluid inclusion Th, mean random vitrinite reflectance (Rm), and present-day Tpeak from 46 diverse geologic systems that have been at Tpeak from 104 to 106 yr have been compiled. Present Tpeak ranged from 65 to 345??C, Th modes and means ranged from 59 to 350??C, and Rm data ranged from 0.4% to 4.6%, spanning the temperature and thermal maturity range associated with burial diagenesis, hydrothermal alteration, and low-grade metamorphism. Plots of Th and Tpeak data for systems thought to be currently at maximum temperature demonstrate close agreement between Th and present Tpeak in sedimentary basins. The relation suggests that Th of aqueous fluid inclusions in calcite may be a useful measure of maximum temperature. This study also compared Th to mean random vitrinite reflectance (Rm). Th correlates well with Rm and results in a curve similar to Rm vs. Tpeak calibrations determined by other workers. Strong correlation between Tpeak and Rm in these systems suggests that maximum temperature is the major control on thermal maturation. -after Authors
The impact of sustained hot weather on risk of acute work-related injury in Melbourne, Australia.
McInnes, Judith Anne; MacFarlane, Ewan M; Sim, Malcolm R; Smith, Peter
2018-02-01
It has been reported that weather-related high ambient temperature is associated with an increased risk of work-related injury. Understanding this relationship is important because work-related injuries are a major public health problem, and because projected climate changes will potentially expose workers to hot days, including consecutive hot days, more often. The aim of this study was to quantify the impact of exposure to sustained periods of hot weather on work-related injury risk for workers in Melbourne, Australia. A time-stratified case crossover study design was utilised to examine the association between two and three consecutive days and two and three consecutive nights of hot weather and the risk of work-related injury, using definitions of hot weather ranging from the 60th to the 95th percentile of daily maximum and minimum temperatures for the Melbourne metropolitan area, 2002-2012. Workers' compensation claim data was used to identify cases of acute work-related injury. Overall, two and three consecutive days of hot weather were associated with an increased risk of injury, with this effect becoming apparent at a daily maximum temperature of 27.6 °C (70th percentile). Three consecutive days of high but not extreme temperatures were associated with the strongest effect, with a 15% increased risk of injury (odds ratio 1.15, 95% confidence interval 1.01-1.30) observed when daily maximum temperature was ≥33.3 °C (90th percentile) for three consecutive days, compared to when it was not. At a threshold of 35.5 °C (95th percentile), there was no significant association between temperature and injury for either two or three consecutive days of heat. These findings suggest that warnings to minimise harm to workers from hot weather should be given, and prevention protocol initiated, when consecutive warm days of temperatures lower than extreme heat temperatures are forecast, and well before the upper ranges of ambient daytime temperatures are reached.
The impact of sustained hot weather on risk of acute work-related injury in Melbourne, Australia
NASA Astrophysics Data System (ADS)
McInnes, Judith Anne; MacFarlane, Ewan M.; Sim, Malcolm R.; Smith, Peter
2018-02-01
It has been reported that weather-related high ambient temperature is associated with an increased risk of work-related injury. Understanding this relationship is important because work-related injuries are a major public health problem, and because projected climate changes will potentially expose workers to hot days, including consecutive hot days, more often. The aim of this study was to quantify the impact of exposure to sustained periods of hot weather on work-related injury risk for workers in Melbourne, Australia. A time-stratified case crossover study design was utilised to examine the association between two and three consecutive days and two and three consecutive nights of hot weather and the risk of work-related injury, using definitions of hot weather ranging from the 60th to the 95th percentile of daily maximum and minimum temperatures for the Melbourne metropolitan area, 2002-2012. Workers' compensation claim data was used to identify cases of acute work-related injury. Overall, two and three consecutive days of hot weather were associated with an increased risk of injury, with this effect becoming apparent at a daily maximum temperature of 27.6 °C (70th percentile). Three consecutive days of high but not extreme temperatures were associated with the strongest effect, with a 15% increased risk of injury (odds ratio 1.15, 95% confidence interval 1.01-1.30) observed when daily maximum temperature was ≥33.3 °C (90th percentile) for three consecutive days, compared to when it was not. At a threshold of 35.5 °C (95th percentile), there was no significant association between temperature and injury for either two or three consecutive days of heat. These findings suggest that warnings to minimise harm to workers from hot weather should be given, and prevention protocol initiated, when consecutive warm days of temperatures lower than extreme heat temperatures are forecast, and well before the upper ranges of ambient daytime temperatures are reached.
NASA Astrophysics Data System (ADS)
Eludoyin, A. O.; Akinbode, O. M.; Archibong, E. O.
2007-07-01
This study was carried out in one of the Administrative State Capitals in the southwestern part of Nigeria. Its aim is to serve as a baseline data for highlighting the effect of spatial distribution of settlements, population, and socioeconomic activities on urban air temperature and relative humidity. The main objective of the study is to assess the impact of urban growth on the microclimate of the administrative city. Temperature and relative humidity data from 1992 to 2001 were obtained from the three existing meteorological stations in Akure, the Administrative Capital of Ondo State, Nigeria, namely the Federal Ministry of Aviation, Akure Airport station (FMA), Federal University of Technology, Akure (FUTA) and the Federal School of Agriculture (SOA). Air temperature and relative humidity measurements along primary roads and in the built up areas were obtained from seventeen stations, using sling psychrometer. The data were subsequently analysed for spatial and temporal variations. The results obtained indicated that while the maximum, average and minimum temperatures showed significant annual variations, the spatial variations among the existing meteorological stations were not significant. The city is characterized by increasing annual mean temperatures whose maximum was significantly higher than that of Ondo town — another important town within the state. The annual mean temperatures ranged between 26.2°C and 30.4°C. Minimum and maximum temperatures varied from 12.3°C to 26°C and 22.5°C to 39.6°C, respectively while the relative humidity ranged between 27.5% and 98.2%. Urban `heat island' intensity was exhibited around central business district of the Oba market. 2007 American Institute of Physics
Flint, L.E.; Flint, A.L.
2008-01-01
Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
NASA Technical Reports Server (NTRS)
Grimes, Craig A. (Inventor); Ong, Keat Ghee (Inventor)
2003-01-01
A temperature sensing apparatus including a sensor element made of a magnetically soft material operatively arranged within a first and second time-varying interrogation magnetic field, the first time-varying magnetic field being generated at a frequency higher than that for the second magnetic field. A receiver, remote from the sensor element, is engaged to measure intensity of electromagnetic emissions from the sensor element to identify a relative maximum amplitude value for each of a plurality of higher-order harmonic frequency amplitudes so measured. A unit then determines a value for temperature (or other parameter of interst) using the relative maximum harmonic amplitude values identified. In other aspects of the invention, the focus is on an apparatus and technique for determining a value for of stress condition of a solid analyte and for determining a value for corrosion, using the relative maximum harmonic amplitude values identified. A magnetically hard element supporting a biasing field adjacent the magnetically soft sensor element can be included.
NASA Technical Reports Server (NTRS)
Moshchalcov, V. V.; Zhukov, A. A.; Kuznetzov, V. D.; Metlushko, V. V.; Leonyuk, L. I.
1990-01-01
At the initial time intervals, preceding the thermally activated flux creep regime, fast nonlogarithmic relaxation is found. The fully magnetic moment Pm(t) relaxation curve is shown. The magnetic measurements were made using SQUID-magnetometer. Two different relaxation regimes exist. The nonlogarithmic relaxation for the initial time intervals may be related to the viscous Abrikosov vortices flow with j is greater than j(sub c) for high enough temperature T and magnetic field induction B. This assumption correlates with Pm(t) measurements. The characteristic time t(sub O) separating two different relaxation regimes decreases as temperature and magnetic field are lowered. The logarithmic magnetization relaxation curves Pm(t) for fixed temperature and different external magnetic field inductions B are given. The relaxation rate dependence on magnetic field, R(B) = dPm(B, T sub O)/d(1nt) has a sharp maximum which is similar to that found for R(T) temperature dependences. The maximum shifts to lower fields as temperature goes up. The observed sharp maximum is related to a topological transition in shielding critical current distribution and, consequently, in Abrikosov vortices density. The nonlogarithmic magnetization relaxation for the initial time intervals is found. This fast relaxation has almost an exponentional character. The sharp relaxation rate R(B) maximum is observed. This maximum corresponds to a topological transition in Abrikosov vortices distribution.
Equatorial temperature anomaly during solar minimum
NASA Astrophysics Data System (ADS)
Suhasini, R.; Raghavarao, R.; Mayr, H. G.; Hoegy, W. R.; Wharton, L. E.
2001-11-01
We show evidence for the occurrence of the equatorial temperature anomaly (ETA) during solar minimum by analyzing the temperature and total ion density data from the Neutral Atmosphere Temperature Experiment (NATE) and the Cylindrical Electrostatic Probe (CEP), respectively, on board the Atmospheric Explorer-E satellite. The chosen data refer to a height of ~254 km in the African and Asian longitude sector (340.1°E-200°E) during a summer season in the Southern Hemisphere. As during the solar maximum period, the spatial characteristics of the ETA are similar to those of the equatorial ionization anomaly (EIA). A minimum in the gas temperature is collocated with the minimum in the ion density at the dip equator, and a temperature maximum on the south side of the equator is collocated with the density maximum of the EIA. The daytime behavior of ETA formation is about the same as that of EIA as both of them are clearly present at around 1300 and 1400 local solar time (LST) only. At 1400 LST the difference between the temperatures at the crest and the trough (ETA strength) reaches a maximum value of about 100°K which is ~14% of the temperature at the trough. Like the EIA, the ETA also suddenly disappears after 1400 LST. Thus the EIA appears to be a prerequisite for the ETA formation. During the premidnight time (2200 LST), however, while the EIA is nonexistent, the temperature distribution forms a pattern opposite to that at 1400 LST in the daytime. It shows a maximum around the dip equator and a broad minimum at the daytime crest region where the postsunset cooling also is faster and occurs earlier than at the dip equator. This nighttime maximum appears to be related to the signature of the midnight temperature maximum (MTM). Mass Spectrometer Incoherent Scatter (MSIS) model temperatures, in general, are higher than the observed average temperatures for the summer season and in particular for the region around the dip equator around noon hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingham, J.G.
Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33%more » of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.« less
Meteorological variables and bacillary dysentery cases in Changsha City, China.
Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa
2014-04-01
This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature.
Meteorological Variables and Bacillary Dysentery Cases in Changsha City, China
Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa
2014-01-01
This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature. PMID:24591435
Inventory of File gfs.t06z.smartguam06.tm00.grib2
(0=sea, 1=land) [Proportion] 009 surface APCP 3-6 hour acc Total Precipitation [kg/m^2] 010 surface ] 020 surface TMAX 3-6 hour acc Maximum Temperature [K] 021 surface TMIN 3-6 hour acc Minimum Temperature [K] 022 surface MAXRH 3-6 hour acc Maximum Relative Humidity [%] 023 surface MINRH 3-6 hour acc
González Parrado, Zulima; Valencia Barrera, Rosa M; Fuertes Rodríguez, Carmen R; Vega Maray, Ana M; Pérez Romero, Rafael; Fraile, Roberto; Fernández González, Delia
2009-01-01
This paper reports on the behaviour of Alnus glutinosa (alder) pollen grains in the atmosphere of Ponferrada (León, NW Spain) from 1995 to 2006. The study, which sought to determine the effects of various weather-related parameters on Alnus pollen counts, was performed using a volumetric method. The main pollination period for this taxon is January-February. Alder pollen is one of the eight major airborne pollen allergens found in the study area. An analysis was made of the correlation between pollen counts and major weather-related parameters over each period. In general, the strongest positive correlation was with temperature, particularly maximum temperature. During each period, peak pollen counts occurred when the maximum temperature fell within the range 9 degrees C-14 degrees C. Finally, multivariate analysis showed that the parameter exerting the greatest influence was temperature, a finding confirmed by Spearman correlation tests. Principal components analysis suggested that periods with high pollen counts were characterised by high maximum temperature, low rainfall and an absolute humidity of around 6 g m(-3). Use of this type of analysis in conjunction with other methods is essential for obtaining an accurate record of pollen-count variations over a given period.
NASA Astrophysics Data System (ADS)
Boehm, R. F.
1985-09-01
A review of thermodynamic principles is given in an effort to see if these concepts may indicate possibilities for improvements in solar central receiver power plants. Aspects related to rate limitations in cycles, thermodynamic availability of solar radiation, and sink temperature considerations are noted. It appears that considerably higher instantaneous plant efficiencies are possible by raising the maximum temperature and lowering the minimum temperature of the cycles. Of course, many practical engineering problems will have to be solved to realize the promised benefits.
A first-principles model for orificed hollow cathode operation
NASA Technical Reports Server (NTRS)
Salhi, A.; Turchi, P. J.
1992-01-01
A theoretical model describing orificed hollow cathode discharge is presented. The approach adopted is based on a purely analytical formulation founded on first principles. The present model predicts the emission surface temperature and plasma properties such as electron temperature, number densities and plasma potential. In general, good agreements between theory and experiment are obtained. Comparison of the results with the available related experimental data shows a maximum difference of 10 percent in emission surface temperature, 20 percent in electron temperature and 35 percent in plasma potential. In case of the variation of the electron number density with the discharge current a maximum discrepancy of 36 percent is obtained. However, in the case of the variation with the cathode internal pressure, the predicted electron number density is higher than the experimental data by a maximum factor of 2.
Thermal design of composite material high temperature attachments
NASA Technical Reports Server (NTRS)
1972-01-01
An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.
Relationships between maximum temperature and heat-related illness across North Carolina, USA.
Sugg, Margaret M; Konrad, Charles E; Fuhrmann, Christopher M
2016-05-01
Heat kills more people than any other weather-related event in the USA, resulting in hundreds of fatalities each year. In North Carolina, heat-related illness accounts for over 2,000 yearly emergency department admissions. In this study, data on emergency department (ED) visits for heat-related illness (HRI) were obtained from the North Carolina Disease Event Tracking and Epidemiologic Collection Tool to identify spatiotemporal relationships between temperature and morbidity across six warm seasons (May-September) from 2007 to 2012. Spatiotemporal relationships are explored across different regions (e.g., coastal plain, rural) and demographics (e.g., gender, age) to determine the differential impact of heat stress on populations. This research reveals that most cases of HRI occur on days with climatologically normal temperatures (e.g., 31 to 35 °C); however, HRI rates increase substantially on days with abnormally high daily maximum temperatures (e.g., 31 to 38 °C). HRI ED visits decreased on days with extreme heat (e.g., greater than 38 °C), suggesting that populations are taking preventative measures during extreme heat and therefore mitigating heat-related illness.
Richard, Joëlle; Morley, Simon Anthony; Thorne, Michael A. S.; Peck, Lloyd Samuel
2012-01-01
Defining ecologically relevant upper temperature limits of species is important in the context of environmental change. The approach used in the present paper estimates the relationship between rates of temperature change and upper temperature limits for survival in order to evaluate the maximum long-term survival temperature (Ts). This new approach integrates both the exposure time and the exposure temperature in the evaluation of temperature limits. Using data previously published for different temperate and Antarctic marine environments, we calculated Ts in each environment, which allowed us to calculate a new index: the Warming Allowance (WA). This index is defined as the maximum environmental temperature increase which an ectotherm in a given environment can tolerate, possibly with a decrease in performance but without endangering survival over seasonal or lifetime time-scales. It is calculated as the difference between maximum long-term survival temperature (Ts) and mean maximum habitat temperature. It provides a measure of how close a species, assemblage or fauna are living to their temperature limits for long-term survival and hence their vulnerability to environmental warming. In contrast to data for terrestrial environments showing that warming tolerance increases with latitude, results here for marine environments show a less clear pattern as the smallest WA value was for the Peru upwelling system. The method applied here, relating upper temperature limits to rate of experimental warming, has potential for wide application in the identification of faunas with little capacity to survive environmental warming. PMID:22509340
Magnetization of Paraffin-Based Magnetic Nanocolloids
NASA Astrophysics Data System (ADS)
Dikanskii, Yu. I.; Ispiryan, A. G.; Kunikin, S. A.; Radionov, A. V.
2018-01-01
Using paraffin-based magnetic nanocolloids as an example, the reasons for maxima in the temperature dependence of the magnetic susceptibility of magnetic colloids have been discussed. The behavior of these dependences in a wide temperature interval has been analyzed for colloids in solid and liquid states. It has been concluded that the maximum observed at the melting point of paraffin can be attributed to freezing Brownian degrees of freedom in magnetite coarse particles, the magnetic moment of which is intimately related to the solid matrix. The second main maximum, which arises in the solid state, is explained by the superparamagnetic-magnetically hard transition of most fine particles at lower temperatures. It has been noted that the flatness of this maximum results from the polydispersity of the magnetic nanoparticle ensemble.
Combustion synthesis of ceramic and metal-matrix composites
NASA Technical Reports Server (NTRS)
Moore, John J.; Feng, Heng J.; Hunter, Kevin J.; Wirth, David G.
1993-01-01
Combustion synthesis or self-propagating high temperature synthesis (SHS) is effected by heating a reactant mixture, to above the ignition temperature (Tig) whereupon an exothermic reaction is initiated which produces a maximum or combustion temperature, Tc. These SHS reactions are being used to produce ceramics, intermetallics, and composite materials. One of the major limitations of this process is that relatively high levels of porosity, e.g., 50 percent, remain in the product. Conducting these SHS reactions under adiabatic conditions, the maximum temperature is the adiabatic temperature, Tad, and delta H (Tad) = 0, Tad = Tc. If the reactants or products go through a phase change, the latent heat of transformation needs to be taken into account.
NASA Astrophysics Data System (ADS)
Abecia, J. A.; Arrébola, F.; Macías, A.; Laviña, A.; González-Casquet, O.; Benítez, F.; Palacios, C.
2016-10-01
A total number of 1092 artificial inseminations (AIs) performed from March to May were documented over four consecutive years on 10 Payoya goat farms (36° N) and 19,392 AIs on 102 Rasa Aragonesa sheep farms (41° N) over 10 years. Mean, maximum, and minimum ambient temperatures, mean relative humidity, mean solar radiation, and total rainfall on each insemination day were recorded. Overall, fertility rates were 58 % in goats and 45 % in sheep. The fertility rates of the highest and lowest deciles of each of the meteorological variables indicated that temperature and rainfall had a significant effect on fertility in goats. Specifically, inseminations that were performed when mean (68 %), maximum (68 %), and minimum (66 %) temperatures were in the highest decile, and rainfall was in the lowest decile (59 %), had a significantly ( P < 0.0001) higher proportion of does that became pregnant than did the ewes in the lowest decile (56, 54, 58, and 49 %, respectively). In sheep, the fertility rates of the highest decile of mean (62 %), maximum (62 %), and minimum (52 %) temperature, RH (52 %), THI (53 %), and rainfall (45 %) were significantly higher ( P < 0.0001) than were the fertility rates among ewes in the lowest decile (46, 45, 45, 45, 46, and 43 %, respectively). In conclusion, weather was related to fertility in small ruminants after AI in spring. It remains to be determined whether scheduling the dates of insemination based on forecasted temperatures can improve the success of AI in goats and sheep.
Resistivity of a simple metal from room temperature to 10 to the 6th K
NASA Astrophysics Data System (ADS)
Milchberg, H. M.; Freeman, R. R.; Davey, S. C.; More, R. M.
1988-11-01
The resistivity of nearly solid-density Al was measured as a function of temperature over 4 orders of magnitude above ambient by observing the self-reflection of an intense, less than 0.5 psec, 308-nm light pulse incident on a planar Al target. As an increasing function of electron temperature, the resistivity is observed initially to increase, reach a maximum which is relatively constant over an extended temperature range, and then decrease at the highest temperatures. The broad maximum is interpreted as resistivity saturation, a condition in which the mean free path of the conduction electrons reaches a minimum value as a function of temperature, regardless of the extent of any further disorder in the material.
Influence of Water Relations and Temperature on Leaf Movements of Rhododendron Species 1
Nilsen, Erik Tallak
1987-01-01
Rhododendron maximum L. and R. Catawbiense L. are subcanopy evergreen shrubs of the eastern United States deciduous forest. Field measurements of climate factors and leaf movements of these species indicated a high correlation between leaf temperature and leaf curling; and between leaf water potential and leaf angle. Laboratory experiments were performed to isolate the influence of temperature and cellular water relations on leaf movements. Significant differences were found between the patterns of temperature induction of leaf curling in the two species. Leaves of the species which curled at higher temperatures (R. catawbiense) also froze at higher leaf temperatures. However, in both cases leaf curling occurred at leaf temperatures two to three degrees above the leaf freezing point. Pressure volume curves indicated that cellular turgor loss was associated with a maximum of 45% curling while 100% or more curling occurred in field leaves which still had positive cell turgor. Moisture release curves indicated that 70% curling requires a loss of greater than 60% of symplastic water which corresponds to leaf water potentials far below those experienced in field situations. Conversely, most laboratory induced changes in leaf angle could be related to leaf cell turgor loss. PMID:16665296
The effects of spatial sampling choices on MR temperature measurements.
Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L
2011-02-01
The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.
Analysis of breast thermograms for ROI extraction and description using mathematical morphology
NASA Astrophysics Data System (ADS)
Zermeño-Loreto, O. A.; Toxqui-Quitl, C.; Orozco Guillén, E. E.; Padilla-Vivanco, A.
2017-09-01
The detection of a temperature increase or hot spots in breast thermograms can be related with high metabolic activity of disease cells. Image processing algorithms to seek mainly temperature increases above 3°C which have a high probability of being a malignancy are proposed. Also a derivative operator is used to highlights breast regions of interest (ROI). In order to determinate a medical alert, a feature descriptor of the ROI is constructed using its maximum temperature, maximum increase of temperature, sector/quadrant position in the breast, and area. The proposed algorithms are tested in a home database and a public database for mastology research.
NASA Astrophysics Data System (ADS)
Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.
2018-06-01
Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.
González-Suárez, Ana; Pérez, Juan J; Berjano, Enrique
2018-04-20
Although accurate modeling of the thermal performance of irrigated-tip electrodes in radiofrequency cardiac ablation requires the solution of a triple coupled problem involving simultaneous electrical conduction, heat transfer, and fluid dynamics, in certain cases it is difficult to combine the software with the expertise necessary to solve these coupled problems, so that reduced models have to be considered. We here focus on a reduced model which avoids the fluid dynamics problem by setting a constant temperature at the electrode tip. Our aim was to compare the reduced and full models in terms of predicting lesion dimensions and the temperatures reached in tissue and blood. The results showed that the reduced model overestimates the lesion surface width by up to 5 mm (i.e. 70%) for any electrode insertion depth and blood flow rate. Likewise, it drastically overestimates the maximum blood temperature by more than 15 °C in all cases. However, the reduced model is able to predict lesion depth reasonably well (within 0.1 mm of the full model), and also the maximum tissue temperature (difference always less than 3 °C). These results were valid throughout the entire ablation time (60 s) and regardless of blood flow rate and electrode insertion depth (ranging from 0.5 to 1.5 mm). The findings suggest that the reduced model is not able to predict either the lesion surface width or the maximum temperature reached in the blood, and so would not be suitable for the study of issues related to blood temperature, such as the incidence of thrombus formation during ablation. However, it could be used to study issues related to maximum tissue temperature, such as the steam pop phenomenon.
[Indoor simulation on dew formation on plant leaves].
Gao, Zhi-Yong; Wang, You-Ke; Wei, Xin-Guang; Liu, Shou-Yang; He, Zi-Li; Zhou, Yu-Hong
2014-03-01
Dew forming on plant leaves through water condensation plays a significant ecological role in arid and semi-arid areas as an ignorable fraction of water resources. In this study, an artificial intelligent climate chamber and an automatic temperature-control system for leaves were implemented to regulate the ambient temperature, the leaf surface temperature and the leaf inclination for dew formation. The impact of leaf inclination, ambient temperature and dew point-leaf temperature depression on the rate and quantity of dew accumulation on leaf surface were analyzed. The results indicated that the accumulation rate and the maximum volume of dew on leaves decreased with increasing the leaf inclination while increased with the increment of dew point-leaf temperature depression, ambient temperature and relative humidity. Under the horizontal configuration, dew accumulated linearly on leaf surface over time until the maximum volume (0.80 mm) was reached. However, dew would fall down after reaching the maximum volume when the leaf inclination existed (45 degrees or 90 degrees), significantly slowing down the accumulative rate, and the zigzag pattern for the dynamic of dew accumulation appeared.
Trends in Middle East climate extreme indices from 1950 to 2003
NASA Astrophysics Data System (ADS)
Zhang, Xuebin; Aguilar, Enric; Sensoy, Serhat; Melkonyan, Hamlet; Tagiyeva, Umayra; Ahmed, Nader; Kutaladze, Nato; Rahimzadeh, Fatemeh; Taghipour, Afsaneh; Hantosh, T. H.; Albert, Pinhas; Semawi, Mohammed; Karam Ali, Mohammad; Said Al-Shabibi, Mansoor Halal; Al-Oulan, Zaid; Zatari, Taha; Al Dean Khelet, Imad; Hamoud, Saleh; Sagir, Ramazan; Demircan, Mesut; Eken, Mehmet; Adiguzel, Mustafa; Alexander, Lisa; Peterson, Thomas C.; Wallis, Trevor
2005-11-01
A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950-2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.
NASA Astrophysics Data System (ADS)
Hurter, F.; Maier, O.
2013-11-01
We reconstruct atmospheric wet refractivity profiles for the western part of Switzerland with a least-squares collocation approach from data sets of (a) zenith path delays that are a byproduct of the GPS (global positioning system) processing, (b) ground meteorological measurements, (c) wet refractivity profiles from radio occultations whose tangent points lie within the study area, and (d) radiosonde measurements. Wet refractivity is a parameter partly describing the propagation of electromagnetic waves and depends on the atmospheric parameters temperature and water vapour pressure. In addition, we have measurements of a lower V-band microwave radiometer at Payerne. It delivers temperature profiles at high temporal resolution, especially in the range from ground to 3000 m a.g.l., though vertical information content decreases with height. The temperature profiles together with the collocated wet refractivity profiles provide near-continuous dew point temperature or relative humidity profiles at Payerne for the study period from 2009 to 2011. In the validation of the humidity profiles, we adopt a two-step procedure. We first investigate the reconstruction quality of the wet refractivity profiles at the location of Payerne by comparing them to wet refractivity profiles computed from radiosonde profiles available for that location. We also assess the individual contributions of the data sets to the reconstruction quality and demonstrate a clear benefit from the data combination. Secondly, the accuracy of the conversion from wet refractivity to dew point temperature and relative humidity profiles with the radiometer temperature profiles is examined, comparing them also to radiosonde profiles. For the least-squares collocation solution combining GPS and ground meteorological measurements, we achieve the following error figures with respect to the radiosonde reference: maximum median offset of relative refractivity error is -16% and quartiles are 5% to 40% for the lower troposphere. We further added 189 radio occultations that met our requirements. They mostly improved the accuracy in the upper troposphere. Maximum median offsets have decreased from 120% relative error to 44% at 8 km height. Dew point temperature profiles after the conversion with radiometer temperatures compare to radiosonde profiles as to: absolute dew point temperature errors in the lower troposphere have a maximum median offset of -2 K and maximum quartiles of 4.5 K. For relative humidity, we get a maximum mean offset of 7.3%, with standard deviations of 12-20%. The methodology presented allows us to reconstruct humidity profiles at any location where temperature profiles, but no atmospheric humidity measurements other than from GPS are available. Additional data sets of wet refractivity are shown to be easily integrated into the framework and strongly aid the reconstruction. Since the used data sets are all operational and available in near-realtime, we envisage the methodology of this paper to be a tool for nowcasting of clouds and rain and to understand processes in the boundary layer and at its top.
NASA Astrophysics Data System (ADS)
Olson, L.; Pogue, K. R.; Bader, N.
2012-12-01
The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation controlled by elevation. In some AVAs, such as Walla Walla Valley and Red Mountain, average air temperatures increased with elevation because of the effect of cold air pooling on valley floors. In other AVAs, such as Horse Heaven Hills, Lake Chelan and Columbia Gorge, average temperatures decreased with elevation due to the moderating influences of the Columbia River and Lake Chelan. Other temperature statistics, including average diurnal range and maximum and minimum temperature, were influenced by relative topography, including local topography and slope. Vineyards with flat slopes that had low elevations relative to their surroundings had larger diurnal variations and lower maximum and minimum temperatures than vineyards with steeper slopes that were high relative to their surroundings.
Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress.
Coast, Onoriode; Murdoch, Alistair J; Ellis, Richard H; Hay, Fiona R; Jagadish, Krishna S V
2016-01-01
Resilience of rice cropping systems to potential global climate change will partly depend on the temperature tolerance of pollen germination (PG) and tube growth (PTG). Pollen germination of high temperature-susceptible Oryza glaberrima Steud. (cv. CG14) and Oryza sativa L. ssp. indica (cv. IR64) and high temperature-tolerant O. sativa ssp. aus (cv. N22), was assessed on a 5.6-45.4 °C temperature gradient system. Mean maximum PG was 85% at 27 °C with 1488 μm PTG at 25 °C. The hypothesis that in each pollen grain, the minimum temperature requirements (Tn ) and maximum temperature limits (Tx ) for germination operate independently was accepted by comparing multiplicative and subtractive probability models. The maximum temperature limit for PG in 50% of grains (Tx(50) ) was the lowest (29.8 °C) in IR64 compared with CG14 (34.3 °C) and N22 (35.6 °C). Standard deviation (sx ) of Tx was also low in IR64 (2.3 °C) suggesting that the mechanism of IR64's susceptibility to high temperatures may relate to PG. Optimum germination temperatures and thermal times for 1 mm PTG were not linked to tolerating high temperatures at anthesis. However, the parameters Tx(50) and sx in the germination model define new pragmatic criteria for successful and resilient PG, preferable to the more traditional cardinal (maximum and minimum) temperatures. © 2014 John Wiley & Sons Ltd.
Temperature thresholds related to flight of Dendroctonus frontalis Zimm. (Col.: Scolytidae)
John C. Moser; William A. Thompson
1986-01-01
We have plotted the complete range of flight temperatures for the southern pine beele, the first such figures for any bark beetle.The optimum flight temperature was about 27oC.Observed minimum and maximum flight temperatures for southern pine beetle were 6.7oC and 36.7oC, respectively. Projected...
Does hot weather affect work-related injury? A case-crossover study in Guangzhou, China.
Sheng, Rongrong; Li, Changchang; Wang, Qiong; Yang, Lianping; Bao, Junzhe; Wang, Kaiwen; Ma, Rui; Gao, Chuansi; Lin, Shao; Zhang, Ying; Bi, Peng; Fu, Chuandong; Huang, Cunrui
2018-04-01
Despite increasing concerns about the health effects of climate change, the extent to which workers are affected by hot weather is not well documented. This study aims to investigate the association between high temperatures and work-related injuries using data from a large subtropical city in China. We used workers' compensation claims to identify work-related injuries in Guangzhou, China during 2011-2012. To feature the heat effect, the study period was restricted to the warm seasons in Guangzhou (1 May-31 October). We conducted a time-stratified case-crossover study to examine the association between ambient outdoor temperatures, including daily maximum and minimum temperatures, and cases of work-related injury. The relationships were assessed using conditional Poisson regression models. Overall, a total of 5418 workers' compensation claims were included over the study period. Both maximum and minimum temperatures were significantly associated with work-related injuries, but associations varied by subgroup. One °C increase in maximum temperature was associated with a 1.4% (RR = 1.014, 95%CIs 1.012-1.017) increase in daily injury claims. Significant associations were seen for male and middle-aged workers, workers in small and medium-sized enterprises, and those working in manufacturing sector. And 1 °C increase in minimum temperature was associated with 1.7% (RR = 1.017, 95%CIs 1.012-1.021) increase in daily injury claims. Significant associations were observed for female and middle-aged workers, workers in large-sized enterprises, and those working in transport and construction sectors. We found a higher risk of work-related injuries due to hot weather in Guangzhou, China. This study provides important epidemiological evidence for policy-makers and industry that may assist in the formulation of occupational safety and climate adaptation strategies. Copyright © 2018 Elsevier GmbH. All rights reserved.
Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan
2012-01-01
The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (p<0.05). It was concluded that the bipolar electrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541
Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985-2014
NASA Astrophysics Data System (ADS)
Raggad, Bechir
2018-05-01
In this study, two statistical approaches were adopted in the analysis of observed maximum temperature data collected from fifteen stations over Saudi Arabia during the period 1985-2014. In the first step, the behavior of extreme temperatures was analyzed and their changes were quantified with respect to the Expert Team on Climate Change Detection Monitoring indices. The results showed a general warming trend over most stations, in maximum temperature-related indices, during the period of analysis. In the second step, stationary and non-stationary extreme-value analyses were conducted for the temperature data. The results revealed that the non-stationary model with increasing linear trend in its location parameter outperforms the other models for two-thirds of the stations. Additionally, the 10-, 50-, and 100-year return levels were found to change with time considerably and that the maximum temperature could start to reappear in the different T-year return period for most stations. This analysis shows the importance of taking account the change over time in the estimation of return levels and therefore justifies the use of the non-stationary generalized extreme value distribution model to describe most of the data. Furthermore, these last findings are in line with the result of significant warming trends found in climate indices analyses.
Method and apparatus for determining peak temperature along an optical fiber
Fox, R.J.
1982-07-29
The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light fraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.
Method and apparatus for determining peak temperature along an optical fiber
Fox, Richard J.
1985-01-01
The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light refraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.
The Effects of Global Warming on Temperature and Precipitation Trends in Northeast America
NASA Astrophysics Data System (ADS)
Francis, F.
2013-12-01
The objective of this paper is to discuss the analysis of results in temperature and precipitation (rainfall) data and how they are affected by the theory of global warming in Northeast America. The topic was chosen because it will show the trends in temperature and precipitation and their relations to global warming. Data was collected from The Global Historical Climatology Network (GHCN). The data range from years of 1973 to 2012. We were able to calculate the yearly and monthly regress to estimate the relationship of variables found in the individual sources. With the use of specially designed software, analysis and manual calculations we are able to give a visualization of these trends in precipitation and temperature and to question if these trends are due to the theory of global warming. With the Calculation of the trends in slope we were able to interpret the changes in minimum and maximum temperature and precipitation. Precipitation had a 9.5 % increase over the past forty years, while maximum temperature increased 1.9 %, a greater increase is seen in minimum temperature of 3.3 % was calculated over the years. The trends in precipitation, maximum and minimum temperature is statistically significant at a 95% level.
Abecia, J A; Arrébola, F; Macías, A; Laviña, A; González-Casquet, O; Benítez, F; Palacios, C
2016-10-01
A total number of 1092 artificial inseminations (AIs) performed from March to May were documented over four consecutive years on 10 Payoya goat farms (36° N) and 19,392 AIs on 102 Rasa Aragonesa sheep farms (41° N) over 10 years. Mean, maximum, and minimum ambient temperatures, mean relative humidity, mean solar radiation, and total rainfall on each insemination day were recorded. Overall, fertility rates were 58 % in goats and 45 % in sheep. The fertility rates of the highest and lowest deciles of each of the meteorological variables indicated that temperature and rainfall had a significant effect on fertility in goats. Specifically, inseminations that were performed when mean (68 %), maximum (68 %), and minimum (66 %) temperatures were in the highest decile, and rainfall was in the lowest decile (59 %), had a significantly (P < 0.0001) higher proportion of does that became pregnant than did the ewes in the lowest decile (56, 54, 58, and 49 %, respectively). In sheep, the fertility rates of the highest decile of mean (62 %), maximum (62 %), and minimum (52 %) temperature, RH (52 %), THI (53 %), and rainfall (45 %) were significantly higher (P < 0.0001) than were the fertility rates among ewes in the lowest decile (46, 45, 45, 45, 46, and 43 %, respectively). In conclusion, weather was related to fertility in small ruminants after AI in spring. It remains to be determined whether scheduling the dates of insemination based on forecasted temperatures can improve the success of AI in goats and sheep.
Current and Projected Heat-Related Morbidity and Mortality in Rhode Island.
Kingsley, Samantha L; Eliot, Melissa N; Gold, Julia; Vanderslice, Robert R; Wellenius, Gregory A
2016-04-01
Climate change is expected to cause increases in heat-related mortality, especially among the elderly and very young. However, additional studies are needed to clarify the effects of heat on morbidity across all age groups and across a wider range of temperatures. We aimed to estimate the impact of current and projected future temperatures on morbidity and mortality in Rhode Island. We used Poisson regression models to estimate the association between daily maximum temperature and rates of all-cause and heat-related emergency department (ED) admissions and all-cause mortality. We then used downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5; a standardized set of climate change model simulations) projections to estimate the excess morbidity and mortality that would be observed if this population were exposed to the temperatures projected for 2046-2053 and 2092-2099 under two representative concentration pathways (RCP): RCP 8.5 and 4.5. Between 2005 and 2012, an increase in maximum daily temperature from 75 to 85°F was associated with 1.3% and 23.9% higher rates of all-cause and heat-related ED visits, respectively. The corresponding effect estimate for all-cause mortality from 1999 through 2011 was 4.0%. The association with all-cause ED admissions was strongest for those < 18 or ≥ 65 years of age, whereas the association with heat-related ED admissions was most pronounced among 18- to 64-year-olds. If this Rhode Island population were exposed to temperatures projected under RCP 8.5 for 2092-2099, we estimate that there would be 1.2% (range, 0.6-1.6%) and 24.4% (range, 6.9-41.8%) more all-cause and heat-related ED admissions, respectively, and 1.6% (range, 0.8-2.1%) more deaths annually between April and October. With all other factors held constant, our findings suggest that the current population of Rhode Island would experience substantially higher morbidity and mortality if maximum daily temperatures increase further as projected. Kingsley SL, Eliot MN, Gold J, Vanderslice RR, Wellenius GA. 2016. Current and projected heat-related morbidity and mortality in Rhode Island. Environ Health Perspect 124:460-467; http://dx.doi.org/10.1289/ehp.1408826.
NASA Technical Reports Server (NTRS)
Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.
1976-01-01
Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.
Hammac, W Ashley; Maaz, Tai M; Koenig, Richard T; Burke, Ian C; Pan, William L
2017-12-06
Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of nitrogen (N) and sulfur (S) fertilizer rate, soil water, and atmospheric temperature on canola (Brassica napus L.) fatty acid (FA), total oil, protein, and grain yield. Nitrogen and sulfur were assessed in a 4-yr study with two locations, five N rates (0, 45, 90, 135, and 180 kg ha -1 ), and two S rates (0 and 17 kg ha -1 ). Water and temperature were assessed using variability across 12 site-years of dryland canola production. Effects of N and S were inconsistent. Unsaturated FA, oleic acid, grain oil, protein, and theoretical maximum grain yield were highly related to water and temperature variability across the site-years. A nonlinear model identified water and temperature conditions that enabled production of maximum unsaturated FA content, oleic acid content, total oil, protein, and theoretical maximum grain yield. Water and temperature variability played a larger role than soil nutrient status on canola grain constituents and yield.
NASA Astrophysics Data System (ADS)
Guan, Yinghui
2017-04-01
The variability of surface air temperature and precipitation extremes has been the focus of attention during the past several decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Using daily minimum (TN), maximum temperature (TX) and precipitation from 143 meteorological stations in the Yangtze River Basin (YRB), a suite of extreme climate indices recommended by the Expert Team on Climate Change Detection and Indices, which has rarely been applied in this region, were computed and analyzed during 1960-2012. The results show widespread significant changes in all temperature indices associated with warming in the YRB during 1960-2012. On the whole, cold-related indices, i.e., cold nights, cold days, frost days, icing days and cold spell duration index significantly decreased by -3.45, -1.03, -3.04, -0.42 and -1.6 days/decade, respectively. In contrast, warm-related indices such as warm nights, warm days, summer days, tropical nights and warm spell duration index significantly increased by 2.95, 1.71, 2.16, 1.05 and 0.73 days/decade. Minimum TN, maximum TN, minimum TX and maximum TX increased significantly by 0.42, 0.18, 0.19 and 0.14 °C/decade. Because of a faster increase in minimum temperature than maximum temperature, the diurnal temperature range (DTR) exhibited a significant decreasing trend of -0.09 °C/decade for the whole YRB during 1960-2012. Geographically, stations in the eastern Tibet Plateau and northeastern YRB showed stronger trends in almost all temperature indices. Time series analysis indicated that the YRB was dominated by a general cooling trend before the mid-1980s, but a warming trend afterwards. For precipitation, simple daily intensity index, very wet day precipitation, extremely wet day precipitation, extremely heavy precipitation days, maximum 1-day precipitation, maximum 5-day precipitation and maximum consecutive dry days all increased significantly during 1960-2012. In contrast, ≥ 10 mm precipitation days and maximum consecutive wet days decreased significantly, implying that the precipitation processes in YRB were dominated by precipitation events with shorter durations. Geographically, a wetting tendency was observed in the eastern Tibet Plateau and the middle and lower YRB, while the other regions experienced precipitation deficits. The increasing precipitation was mainly due to the intensification of extreme precipitation events and the decreasing precipitation may be attributed to the decrease of ≥ 10 mm precipitation days or moderate precipitation events. In addition, the regional trends were of greater magnitudes in the middle and lower YRB, indicating more frequent extreme precipitation events in these sub-regions.
Thompson, Cynthia L; Powell, Brianna L; Williams, Susan H; Hanya, Goro; Glander, Kenneth E; Vinyard, Christopher J
2017-11-01
Thyroid hormones boost animals' basal metabolic rate and represent an important thermoregulatory pathway for mammals that face cold temperatures. Whereas the cold thermal pressures experienced by primates in seasonal habitats at high latitudes and elevations are often apparent, tropical habitats also display distinct wet and dry seasons with modest changes in thermal environment. We assessed seasonal and temperature-related changes in thyroid hormone levels for two primate species in disparate thermal environments, tropical mantled howlers (Alouatta palliata), and seasonally cold-habitat Japanese macaques (Macaca fuscata). We collected urine and feces from animals and used ELISA to quantify levels of the thyroid hormone triiodothyronine (fT 3 ). For both species, fT 3 levels were significantly higher during the cooler season (wet/winter), consistent with a thermoregulatory role. Likewise, both species displayed greater temperature deficits (i.e., the degree to which animals warm their body temperature relative to ambient) during the cooler season, indicating greater thermoregulatory pressures during this time. Independently of season, Japanese macaques displayed increasing fT 3 levels with decreasing recently experienced maximum temperatures, but no relationship between fT 3 and recently experienced minimum temperatures. Howlers increased fT 3 levels as recently experienced minimum temperatures decreased, although demonstrated the opposite relationship with maximum temperatures. This may reflect natural thermal variation in howlers' habitat: wet seasons had cooler minimum and mean temperatures than the dry season, but similar maximum temperatures. Overall, our findings support the hypothesis that both tropical howlers and seasonally cold-habitat Japanese macaques utilize thyroid hormones as a mechanism to boost metabolism in response to thermoregulatory pressures. This implies that cool thermal pressures faced by tropical primates are sufficient to invoke an energetically costly and relatively longer-term thermoregulatory pathway. The well-established relationship between thyroid hormones and energetics suggests that the seasonal hormonal changes we observed could influence many commonly studied behaviors including food choice, range use, and activity patterns. © 2017 Wiley Periodicals, Inc.
Observations and simulations of the interactions between clouds, radiation, and precipitation
NASA Astrophysics Data System (ADS)
Naegele, Alexandra Claire
Increasing precipitation and warming temperatures associated with climate change have been documented across the globe, including in the Northeast US. These climate changes threaten human health in many ways. Research is necessary to understand and explain the relationship between climate change and human health. Extreme weather events such as extreme temperatures, convective storms, floods, lightning events, wintry precipitation, and low visibility, are frequently associated with adverse effects on human health. While more media attention is typically given to events that cause the most structural or economic damage (e.g., tornadoes, hurricanes, earthquakes, etc.), extreme temperatures ultimately account for the greatest loss of life in the US. Extreme weather events can be unpredictable; however, improved knowledge and technology allow meteorologists to accurately forecast many of these events, specifically extreme temperature and precipitation events. Advancing our knowledge of climate variability and trends in extreme weather can inform: public education programs to alert the community of the dangers of extreme heat or cold, emergency response plans to hazardous weather conditions, and current thresholds for emergency alerts. This study evaluates trends in extreme weather events across New Hampshire and links these extreme events to adverse health outcomes. Using data from NCEI Global Historical Climatological Network (GHCN) - Daily dataset (1981 - 2015), five daily xiii Extreme Weather Metrics (EWMs) were defined: Daily Maximum Temperature ≤32°F, Daily Maximum Temperature ≥90°F, Daily Maximum Temperature ≥95°F, Daily Precipitation ≥1", and Daily Precipitation ≥2". Relevant human health outcomes were extracted from the New Hampshire Hospital Discharge Dataset for the years 2001-2009. Health cases were defined based on the International Classification of Disease 9th Revision (ICD-9). Outcomes in this analysis include: All-Cause Injury, Vehicle Accidents, Accidental Falls, Accidents Due to Natural and Environmental (including excessive heat, excessive cold, exposure due to weather conditions, lightning, and storms and floods), Accidental Drowning, and Carbon Monoxide Poisoning. Temporal and spatial trends were assessed, and the associations between all health outcomes and EWMs, daily maximum temperature, and daily precipitation were evaluated via Spearman correlations. Once the four strongest correlations were determined, a quasi-Poisson regression model was used to evaluate the relationship between each exposureoutcome pair. These pairs were modeled to show the relation between maximum temperature and all-cause hospital visits, hospital visits related to vehicle accidents, hospital visits related to accidental falls, and hospital visits related to heat. Future work will incorporate these findings into public health planning and programming. This project is a collaboration with New Hampshire Department of Health and Human Services (NH DHHS) who have a shared interest in understanding the impact of extreme weather events on the citizens of New Hampshire. Furthermore, this work supports an ongoing effort to implement the Centers for Disease Control (CDC) Building Resilience Against Climate Effects (BRACE) Framework, which focuses on identifying climate and weather-related hazards and estimating the associated disease burden.
NASA Astrophysics Data System (ADS)
Schäfer, Jan; Bonaventura, Zdeněk; Foest, Rüdiger
2015-07-01
Recently, laser schlieren deflectometry (LSD) had been successfully employed as a temperature measurement method to reveal the heat convection generated by micro filaments of a self-organized non-thermal atmospheric plasma jet. Based on the theory of the temperature measurements using LSD, in this work, three approaches for an application of the method are introduced: (i) a hyperbolic-like model of refractive index is applied which allows an analytical theory for the evaluation of the deflection angle to be developed, (ii) a Gaussian shape model for the filament temperature is implemented which is analyzed numerically and (iii) an experimental calibration of the laser deflection with a gas mixture of helium and argon is performed. Thus, these approaches demonstrate that a universal relation between the relative maximum temperature of the filament core (T1/T0) and a the maximum deflection angle δ1 of the laser beam can be written as T1/T0=(1 - δ1/δ0)-1, where δ0 is a parameter that is defined by the configuration of the experiment and by the assumed model for the shape of the temperature profile. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark
NASA Astrophysics Data System (ADS)
Good, Michael R. R.; Ong, Yen Chin
2015-02-01
A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.
Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B
2011-02-01
Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.
Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Eudell, A. H.; Patt, F. S.
1990-01-01
The temperature correlation of the relative coalignment between the fine-pointing sun sensor and fixed-head star trackers measured on the Solar Maximum Mission (SMM) is analyzed. An overview of the SMM, including mission history and configuration, is given. Possible causes of the misalignment variation are discussed, with focus placed on spacecraft bending due to solar-radiation pressure, electronic or mechanical changes in the sensors, uncertainty in the attitude solutions, and mounting-plate expansion and contraction due to thermal effects. Yaw misalignment variation from the temperature profile is assessed, and suggestions for spacecraft operations are presented, involving methods to incorporate flight measurements of the temperature-versus-alignment function and its variance in operational procedures and the spacecraft structure temperatures in the attitude telemetry record.
Dunham, J.B.; Rosenberger, A.E.; Luce, C.H.; Rieman, B.E.
2007-01-01
Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a pre-post fire comparison of temperatures between two sites (one from a burned stream and one unburned) over 13 years, a short-term (3 year) pre-post fire comparison of a burned and unburned stream with spatially extensive data, and a short-term (1 year) comparative study of spatial variability in temperatures using a "space for time" substitutive design across 90 sites in nine streams (retrospective comparative study). The latter design included streams with a history of stand-replacing wildfire and streams with severe post-fire reorganization of channels due to debris flows and flooding. Results from these three studies indicated that summer maximum water temperatures can remain significantly elevated for at least a decade following wildfire, particularly in streams with severe channel reorganization. In the retrospective comparative study we investigated occurrence of native rainbow trout (Oncorhynchus mykiss) and tailed frog larvae (Ascaphus montanus) in relation to maximum stream temperatures during summer. Both occurred in nearly every site sampled, but tailed frog larvae were found in much warmer water than previously reported in the field (26.6??C maximum summer temperature). Our results show that physical stream habitats can remain altered (for example, increased temperature) for many years following wildfire, but that native aquatic vertebrates can be resilient. In a management context, this suggests wildfire may be less of a threat to native species than human influences that alter the capacity of stream-living vertebrates to persist in the face of natural disturbance. ?? 2007 Springer Science+Business Media, LLC.
Negative to positive magnetoresistance and magnetocaloric effect in Pr 0.6Er 0.4Al 2
Pathak, Arjun K.; Gschneidner, Jr., K. A.; Pecharsky, V. K.
2014-10-13
We report on the magnetic, magnetocaloric and magnetotransport properties of Pr 0.6Er 0.4Al 2. The title compound exhibits a large positive magnetoresistance (MR) for H ≥ 40 kOe and a small but non negligible negative MR for H ≤ 30 kOe. The maximum positive MR reaches 13% at H = 80 kOe. The magnetic entropy and adiabatic temperature changes as functions of temperature each show two anomalies: a broad dome-like maximum below 20 K and a relatively sharp peak at higher temperature. As a result, observed behaviors are unique among other binary and mixed lanthanide compounds.
Tixier, Philippe; Germon, Amandine; Rakotobe, Veromanitra; Phillips-Mora, Wilbert; Maximova, Siela; Avelino, Jacques
2017-01-01
Moniliophthora Pod Rot (MPR) caused by the fungus Moniliophthora roreri (Cif.) Evans et al., is one of the main limiting factors of cocoa production in Latin America. Currently insufficient information on the biology and epidemiology of the pathogen limits the development of efficient management options to control MPR. This research aims to elucidate MPR development through the following daily microclimatic variables: minimum and maximum temperatures, wetness frequency, average temperature and relative humidity in the highly susceptible cacao clone Pound-7 (incidence = 86% 2008–2013 average). A total of 55 cohorts totaling 2,268 pods of 3–10 cm length, one to two months of age, were tagged weekly. Pods were assessed throughout their lifetime, every one or two weeks, and classified in 3 different categories: healthy, diseased with no sporulation, diseased with sporulating lesions. As a first step, we used Generalized Linear Mixed Models (GLMM) to determine with no a priori the period (when and for how long) each climatic variable was better related with the appearance of symptoms and sporulation. Then the significance of the candidate variables was tested in a complete GLMM. Daily average wetness frequency from day 14 to day 1, before tagging, and daily average maximum temperature from day 4 to day 21, after tagging, were the most explanatory variables of the symptoms appearance. The former was positively linked with the symptoms appearance when the latter exhibited a maximum at 30°C. The most important variables influencing sporulation were daily average minimum temperature from day 35 to day 58 and daily average maximum temperature from day 37 to day 48, both after tagging. Minimum temperature was negatively linked with the sporulation while maximum temperature was positively linked. Results indicated that the fungal microclimatic requirements vary from the early to the late cycle stages, possibly due to the pathogen’s long latent period. This information is valuable for development of new conceptual models for MPR and improvement of control methods. PMID:28972981
Leandro-Muñoz, Mariela E; Tixier, Philippe; Germon, Amandine; Rakotobe, Veromanitra; Phillips-Mora, Wilbert; Maximova, Siela; Avelino, Jacques
2017-01-01
Moniliophthora Pod Rot (MPR) caused by the fungus Moniliophthora roreri (Cif.) Evans et al., is one of the main limiting factors of cocoa production in Latin America. Currently insufficient information on the biology and epidemiology of the pathogen limits the development of efficient management options to control MPR. This research aims to elucidate MPR development through the following daily microclimatic variables: minimum and maximum temperatures, wetness frequency, average temperature and relative humidity in the highly susceptible cacao clone Pound-7 (incidence = 86% 2008-2013 average). A total of 55 cohorts totaling 2,268 pods of 3-10 cm length, one to two months of age, were tagged weekly. Pods were assessed throughout their lifetime, every one or two weeks, and classified in 3 different categories: healthy, diseased with no sporulation, diseased with sporulating lesions. As a first step, we used Generalized Linear Mixed Models (GLMM) to determine with no a priori the period (when and for how long) each climatic variable was better related with the appearance of symptoms and sporulation. Then the significance of the candidate variables was tested in a complete GLMM. Daily average wetness frequency from day 14 to day 1, before tagging, and daily average maximum temperature from day 4 to day 21, after tagging, were the most explanatory variables of the symptoms appearance. The former was positively linked with the symptoms appearance when the latter exhibited a maximum at 30°C. The most important variables influencing sporulation were daily average minimum temperature from day 35 to day 58 and daily average maximum temperature from day 37 to day 48, both after tagging. Minimum temperature was negatively linked with the sporulation while maximum temperature was positively linked. Results indicated that the fungal microclimatic requirements vary from the early to the late cycle stages, possibly due to the pathogen's long latent period. This information is valuable for development of new conceptual models for MPR and improvement of control methods.
Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun
2011-01-30
The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.
Smith, Nicholas G; Dukes, Jeffrey S
2017-11-01
While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.
Chuang, Ting-Wu; Ionides, Edward L; Knepper, Randall G; Stanuszek, William W; Walker, Edward D; Wilson, Mark L
2012-07-01
Weather is important determinant of mosquito abundance that, in turn, influences vectorborne disease dynamics. In temperate regions, transmission generally is seasonal as mosquito abundance and behavior varies with temperature, precipitation, and other meteorological factors. We investigated how such factors affected species-specific mosquito abundance patterns in Saginaw County, MI, during a 17-yr period. Systematic sampling was undertaken at 22 trapping sites from May to September, during 1989-2005, for 19,228 trap-nights and 300,770 mosquitoes in total. Aedes vexans (Meigen), Culex pipiens L. and Culex restuans Theobald, the most abundant species, were analyzed. Weather data included local daily maximum temperature, minimum temperature, total precipitation, and average relative humidity. In addition to standard statistical methods, cross-correlation mapping was used to evaluate temporal associations with various lag periods between weather variables and species-specific mosquito abundances. Overall, the average number of mosquitoes was 4.90 per trap-night for Ae. vexans, 2.12 for Cx. pipiens, and 1.23 for Cx. restuans. Statistical analysis of the considerable temporal variability in species-specific abundances indicated that precipitation and relative humidity 1 wk prior were significantly positively associated with Ae. vexans, whereas elevated maximum temperature had a negative effect during summer. Cx. pipiens abundance was positively influenced by the preceding minimum temperature in the early season but negatively associated with precipitation during summer and with maximum temperature in July and August. Cx. restuans showed the least weather association, with only relative humidity 2-24 d prior being linked positively during late spring-early summer. The recently developed analytical method applied in this study could enhance our understanding of the influences of weather variability on mosquito population dynamics.
The effect of air temperature and human thermal indices on mortality in Athens, Greece
NASA Astrophysics Data System (ADS)
Nastos, Panagiotis T.; Matzarakis, Andreas
2012-05-01
This paper investigates whether there is any association between the daily mortality for the wider region of Athens, Greece and the thermal conditions, for the 10-year period 1992-2001. The daily mortality datasets were acquired from the Hellenic Statistical Service and the daily meteorological datasets, concerning daily maximum and minimum air temperature, from the Hellinikon/Athens meteorological station, established at the headquarters of the Greek Meteorological Service. Besides, the daily values of the thermal indices Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) were evaluated in order to interpret the grade of physiological stress. The first step was the application of Pearson's χ 2 test to the compiled contingency tables, resulting in that the probability of independence is zero ( p = 0.000); namely, mortality is in close relation to the air temperature and PET/UTCI. Furthermore, the findings extracted by the generalized linear models showed that, statistically significant relationships ( p < 0.01) between air temperature, PET, UTCI and mortality exist on the same day. More concretely, on one hand during the cold period (October-March), a 10°C decrease in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 13%, 15%, 2%, 7% and 6% of the probability having a death, respectively. On the other hand, during the warm period (April-September), a 10°C increase in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 3%, 1%, 10%, 3% and 5% of the probability having a death, respectively. Taking into consideration the time lag effect of the examined parameters on mortality, it was found that significant effects of 3-day lag during the cold period appears against 1-day lag during the warm period. In spite of the general aspect that cold conditions seem to be favourable factors for daily mortality, the air temperature and PET/UTCI exceedances over specific thresholds depending on the distribution reveal that, very hot conditions are risk factors for the daily mortality.
Roger D. Hungerford; Ronald E. Babbitt
1987-01-01
Potentially lethal ground surface temperatures were measured at three locations in the Northern Rocky Mountains but occurred more frequently under treatments with greater overstory removal. Observed maximum and minimum temperatures of exposed surfaces are directly related to the thermal properties of the surface materials. Survival of planted seedlings was consistent...
Mishra, Sapna; Kumar, Peeyush; Malik, Anushree
2015-12-01
Beauveria bassiana HQ917687 virulence to housefly larvae and adult was assessed at different relative humidity, RH (50, 75, 90, and 100 %) and temperature (15, 20, 25, 30, 35, 40, 45 °C) conditions at the fungal dose of 10(8) conidia/ml. Depending on the temperature and RH regime tested, difference in mortality rates of housefly adult and larvae were detected. During assay on adult housefly, 100 % mortality was achieved at RH, 90 and 100 % while the temperature of 30 °C showed maximum mortality at all the tested humidity conditions. Lethal time, LT50 was 2.9 days at 100 % RH. Larval mortality at different humidity conditions varied between 30 and 74 %, with maximum mortality at 100 % RH and 30 °C. Optimum temperature for B. bassiana virulence to housefly larvae was also found to be 30 °C. The interaction between temperature and RH revealed significant effect of RH at moderate temperature range (20-35 °C), while such an interaction was not observed at extreme temperatures. The results obtained in this study have useful implications in understanding the pathogen behavior under actual field conditions. This in turn may help devising suitable entomopathogen release schedules for maximum fungal infection.
NASA Astrophysics Data System (ADS)
Sheng, Jie; Zhu, Qiaoming; Cao, Shijie; You, Yang
2017-05-01
This paper helps in study of the relationship between the photovoltaic power generation of large scale “fishing and PV complementary” grid-tied photovoltaic system and meteorological parameters, with multi-time scale power data from the photovoltaic power station and meteorological data over the same period of a whole year. The result indicates that, the PV power generation has the most significant correlation with global solar irradiation, followed by diurnal temperature range, sunshine hours, daily maximum temperature and daily average temperature. In different months, the maximum monthly average power generation appears in August, which related to the more global solar irradiation and longer sunshine hours in this month. However, the maximum daily average power generation appears in October, this is due to the drop in temperature brings about the improvement of the efficiency of PV panels. Through the contrast of monthly average performance ratio (PR) and monthly average temperature, it is shown that, the larger values of monthly average PR appears in April and October, while it is smaller in summer with higher temperature. The results concluded that temperature has a great influence on the performance ratio of large scale grid-tied PV power system, and it is important to adopt effective measures to decrease the temperature of PV plant properly.
NASA Astrophysics Data System (ADS)
Zhu, Jinxin; Huang, Gordon; Wang, Xiuquan; Cheng, Guanhui
2017-11-01
Impacts of climate change relating to public health are often determined by multiple climate variables. The health-related metrics combining high-temperature and relative humidity are most concerned. Temperatures, relative humidity and relationship among them are investigated here for a comprehensive assessment of climate change impacts over China. A projection of combined temperatures and humidity through the PRECIS model is addressed. The PRECIS model's skill in reproducing the historical climate over China was first gauged through validating its historical simulation with the observation data set in terms of the two contributing variables. With good results of validation, a plausible range of combined temperatures and relative humidity were generated under RCPs. The results suggested that the annual mean temperature of China will increase up to 6°C at the end of 21st century. Opposite to the significantly change in the temperature, the maximum magnitude of changes in relative humidity is only 8% from the value in the baseline period. The dew point temperature is projected to be 14.9°C (within the comfortable interval) over the whole nation under high radiative forcing scenario at the end of this century. Therefore, the combination effects of high temperatures and relative humidity are substantially smaller than generally anticipated for China. Even though the impact-relevant metric like the dew point temperature is not projected as bad as the generally anticipated, we found that the frequency of high-temperature extremes increases up to 40% and the duration increases up to 150% in China. China is still expected to have more number of extremely hot days, more frequent high-temperature extremes, and longer duration of warm spell than before. Regionally, South China has the smallest changes in the mean, maximum and minimum temperatures while the largest increases in all five high-temperature indices. Consequently, the climate over South China for two future periods will be changing more drastically than the baseline period. Extra cautions need to be given to South China in the future.
Role of resolution in regional climate change projections over China
NASA Astrophysics Data System (ADS)
Shi, Ying; Wang, Guiling; Gao, Xuejie
2017-11-01
This paper investigates the sensitivity of projected future climate changes over China to the horizontal resolution of a regional climate model RegCM4.4 (RegCM), using RCP8.5 as an example. Model validation shows that RegCM performs better in reproducing the spatial distribution and magnitude of present-day temperature, precipitation and climate extremes than the driving global climate model HadGEM2-ES (HadGEM, at 1.875° × 1.25° degree resolution), but little difference is found between the simulations at 50 and 25 km resolutions. Comparison with observational data at different resolutions confirmed the added value of the RCM and finer model resolutions in better capturing the probability distribution of precipitation. However, HadGEM and RegCM at both resolutions project a similar pattern of significant future warming during both winter and summer, and a similar pattern of winter precipitation changes including dominant increase in most areas of northern China and little change or decrease in the southern part. Projected precipitation changes in summer diverge among the three models, especially over eastern China, with a general increase in HadGEM, little change in RegCM at 50 km, and a mix of increase and decrease in RegCM at 25 km resolution. Changes of temperature-related extremes (annual total number of daily maximum temperature > 25 °C, the maximum value of daily maximum temperature, the minimum value of daily minimum temperature in the three simulations especially in the two RegCM simulations are very similar to each other; so are the precipitation-related extremes (maximum consecutive dry days, maximum consecutive 5-day precipitation and extremely wet days' total amount). Overall, results from this study indicate a very low sensitivity of projected changes in this region to model resolution. While fine resolution is critical for capturing the spatial variability of the control climate, it may not be as important for capturing the climate response to homogeneous forcing (in this case greenhouse gas concentration changes).
Changing climate and endangered high mountain ecosystems in Colombia.
Ruiz, Daniel; Moreno, Hernán Alonso; Gutiérrez, María Elena; Zapata, Paula Andrea
2008-07-15
High mountain ecosystems are among the most sensitive environments to changes in climatic conditions occurring on global, regional and local scales. The article describes the changing conditions observed over recent years in the high mountain basin of the Claro River, on the west flank of the Colombian Andean Central mountain range. Local ground truth data gathered at 4150 m, regional data available at nearby weather stations, and satellite info were used to analyze changes in the mean and the variance, and significant trends in climatic time series. Records included minimum, mean and maximum temperatures, relative humidity, rainfall, sunshine, and cloud characteristics. In high levels, minimum and maximum temperatures during the coldest days increased at a rate of about 0.6 degrees C/decade, whereas maximum temperatures during the warmest days increased at a rate of about 1.3 degrees C/decade. Rates of increase in maximum, mean and minimum diurnal temperature range reached 0.6, 0.7, and 0.5 degrees C/decade. Maximum, mean and minimum relative humidity records showed reductions of about 1.8, 3.9 and 6.6%/decade. The total number of sunny days per month increased in almost 2.1 days. The headwaters exhibited no changes in rainfall totals, but evidenced an increased occurrence of unusually heavy rainfall events. Reductions in the amount of all cloud types over the area reached 1.9%/decade. In low levels changes in mean monthly temperatures and monthly rainfall totals exceeded + 0.2 degrees C and - 4% per decade, respectively. These striking changes might have contributed to the retreat of glacier icecaps and to the disappearance of high altitude water bodies, as well as to the occurrence and rapid spread of natural and man-induced forest fires. Significant reductions in water supply, important disruptions of the integrity of high mountain ecosystems, and dramatic losses of biodiversity are now a steady menu of the severe climatic conditions experienced by these fragile tropical environments.
Ecologic factors relating to firearm injuries and gun violence in Chicago.
Kieltyka, Jude; Kucybala, Karolina; Crandall, Marie
2016-01-01
Firearm violence is a major burden on Chicago with greater than 1500 gunshot injuries occurring annually. Identifying ecologic variables related to the incidence of firearm-related injuries and crime could prove useful for developing new strategies for reducing gun-related injuries. The Illinois Trauma Registry (ITSR) and the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) dataset were retrospectively analyzed to investigate group-level factors potentially related to the incidence of gun-related injuries and crime in Chicago from 1999 through 2012. Multivariate linear regression was used to evaluate the effects of day of the week, daily maximum temperature, precipitation, and snow on the incidence of firearm-related injuries and crime. A total of 18,655 gunshot wounds occurred during the study period (ITSR, 1999-2009). There were 156,866 acts of gun violence identified in the CLEAR dataset (2002-2012). Day of the week, daily maximum temperature, and precipitation were associated with differential risks of gun injury and violence. Rain decreased firearm-related injuries by 9.80% [RR: 0.902, 95% CI: 0.854-0.950] and crime by 7.00% [RR: 0.930, 95% CI: 0.910-0.950]. Gunshot wounds were 33% [RR: 1.33, 95% CI: 1.29-1.37] more frequent on Fridays and Saturdays and gun crime was 18% [RR: 1.18, 95% CI: 1.16-1.20] more common on these days. Snow was not associated with firearm-related injuries or crime. Day of the week, daily maximum temperature, and rain are associated with the incidence of firearm-related injuries and crime. Understanding the effects of these variables may allow for the development of predictive models and for risk-adjusting injury and crime data. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-10-03
This report is a six-part statistical summary of surface weather observations for Torrejon AB, Madrid Spain. It contains the following parts: (A) Weather Conditions; Atmospheric Phenomena; (B) Precipitation, Snowfall and Snow Depth (daily amounts and extreme values); (C) Surface winds; (D) Ceiling Versus Visibility; Sky Cover; (E) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric summary of wet-bulb temperature depression versus dry-bulb temperature, means and standard deviations of dry-bulb, wet-bulb and dew-point temperatures and relative humidity); and (F) Pressure Summary (means, standard, deviations, and observation counts of station pressure and sea-level pressure). Data in thismore » report are presented in tabular form, in most cases in percentage frequency of occurrence or cumulative percentage frequency of occurrence tables.« less
Linares, Cristina; Martinez-Martin, Pablo; Rodríguez-Blázquez, Carmen; Forjaz, Maria João; Carmona, Rocío; Díaz, Julio
2016-01-01
Parkinson's disease (PD) is one of the factors which are associated with a higher risk of mortality during heat waves. The use of certain neuroleptic medications to control some of this disease's complications would appear to be related to an increase in heat-related mortality. To analyse the relationship and quantify the short-term effect of high temperatures during heat wave episodes in Madrid on daily mortality and PD-related hospital admissions. We used an ecological time-series study and fit Poisson regression models. We analysed the daily number of deaths due to PD and the number of daily PD-related emergency hospital admissions in the city of Madrid, using maximum daily temperature (°C) as the main environmental variable and chemical air pollution as covariates. We controlled for trend, seasonalities, and the autoregressive nature of the series. There was a maximum daily temperature of 30°C at which PD-related admissions were at a minimum. Similarly, a temperature of 34°C coincides with an increase in the number of admissions. For PD-related admissions, the Relative Risk (RR) for every increase of 1°C above the threshold temperature was 1.13 IC95%:(1.03-1.23) at lags 1 and 5; and for daily PD-related mortality, the RR was 1.14 IC95%:(1.01-1.28) at lag 3. Our results indicate that suffering from PD is a risk factor that contributes to the excess morbidity and mortality associated with high temperatures, and is relevant from the standpoint of public health prevention plans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessment of extreme value distributions for maximum temperature in the Mediterranean area
NASA Astrophysics Data System (ADS)
Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus
2015-04-01
Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New (2008), A European daily high-resolution gridded data set of surface temperature and precipitation for 1950 - 2006, J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.
Impact of impurities on zonal flow driven by trapped electron mode turbulence
NASA Astrophysics Data System (ADS)
Guo, Weixin; Wang, Lu; Zhuang, Ge
2017-12-01
The impact of impurities on the generation of zonal flow (ZF) driven by collisonless trapped electron mode turbulence in deuterium (D)-tritium (T) plasmas is investigated. An expression for ZF growth rate with impurities is derived by balancing the ZF potential shielded by polarization effects and the ZF modulated radial turbulent current. Then, it is shown that the maximum normalized ZF growth rate is reduced by the presence of fully ionized non-trace light impurities with relatively flat density profile, and slightly reduced by highly ionized trace tungsten, while the maximum normalized ZF growth rate can be enhanced by fully ionized non-trace light impurities with relatively steep density profile. In particular, the effects of high temperature helium from D-T reaction on ZF depend on the temperature ratio between electrons and high temperature helium. The possible relevance of our findings to recent experimental results and future burning plasmas is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratama, R.; Kurniawan, B., E-mail: bkuru07@gmail.com; Manaf, A.
2016-04-19
A detail work was conducted in order to investigate effect of various sintering temperature on resistivity behavior and its relation with the magneto-resistance effect of La{sub 0.67}Ba{sub 0.33}MnO{sub 3} (LBMO). The LBMO samples were synthesized using solid state reaction. Characterization using X-ray diffraction shows that all LBMO samples have a single phase for each variation. Variation of sintering temperature on the LBMO samples affects its lattice parameters. The resistivity measurement in an absence and under applied magnetic field resulted in a highly significant different values. In one of the sintering temperature variation of LBMO, an increasing resistivity had shown atmore » a low temperature and had reached its maximum value at a specific temperature, and then the resistivity decreases to the lowest value near the room temperature. Similar result observed at higher varieties of sintering temperature but with significant lower maximum resistivity.« less
Current and Projected Heat-Related Morbidity and Mortality in Rhode Island
Kingsley, Samantha L.; Eliot, Melissa N.; Gold, Julia; Vanderslice, Robert R.; Wellenius, Gregory A.
2015-01-01
Background: Climate change is expected to cause increases in heat-related mortality, especially among the elderly and very young. However, additional studies are needed to clarify the effects of heat on morbidity across all age groups and across a wider range of temperatures. Objectives: We aimed to estimate the impact of current and projected future temperatures on morbidity and mortality in Rhode Island. Methods: We used Poisson regression models to estimate the association between daily maximum temperature and rates of all-cause and heat-related emergency department (ED) admissions and all-cause mortality. We then used downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5; a standardized set of climate change model simulations) projections to estimate the excess morbidity and mortality that would be observed if this population were exposed to the temperatures projected for 2046–2053 and 2092–2099 under two representative concentration pathways (RCP): RCP 8.5 and 4.5. Results: Between 2005 and 2012, an increase in maximum daily temperature from 75 to 85°F was associated with 1.3% and 23.9% higher rates of all-cause and heat-related ED visits, respectively. The corresponding effect estimate for all-cause mortality from 1999 through 2011 was 4.0%. The association with all-cause ED admissions was strongest for those < 18 or ≥ 65 years of age, whereas the association with heat-related ED admissions was most pronounced among 18- to 64-year-olds. If this Rhode Island population were exposed to temperatures projected under RCP 8.5 for 2092–2099, we estimate that there would be 1.2% (range, 0.6–1.6%) and 24.4% (range, 6.9–41.8%) more all-cause and heat-related ED admissions, respectively, and 1.6% (range, 0.8–2.1%) more deaths annually between April and October. Conclusions: With all other factors held constant, our findings suggest that the current population of Rhode Island would experience substantially higher morbidity and mortality if maximum daily temperatures increase further as projected. Citation: Kingsley SL, Eliot MN, Gold J, Vanderslice RR, Wellenius GA. 2016. Current and projected heat-related morbidity and mortality in Rhode Island. Environ Health Perspect 124:460–467; http://dx.doi.org/10.1289/ehp.1408826 PMID:26251954
Characteristics and model of sludge adhesion during thermal drying.
Li, Huan; Zou, Shuxin; Li, Yangyang; Jin, Yiying
2013-01-01
During sludge thermal drying, the sludge adhered on the heated surface of drying equipments may affect drying efficiency. Sludge thermal drying experiments were conducted to investigate the effect of different drying conditions on sludge adhesion. The mass of sludge adhered on the heated surface (dryer wall) reached the maximum when sludge water content was about 60%. A high drying temperature would result in more sludge adhered on the heated surface in the temperature range of 80-160 degrees C. The convection heating and rougher surface would also lead to more sludge adhered on the heated surface. The relation between the maximum mass of adherent sludge and drying temperatures could be described by an exponential equation.
NASA Astrophysics Data System (ADS)
Chen, Zhiping; Luo, Jia
2017-04-01
The specific humidity and the temperature response of El Niño-Southern Oscillation in the troposphere and lower stratosphere (TLS) over different areas i.e., Niño 3.4 (N3.4); -5˚ S-5˚ N, 180˚ W-180˚ E (G5); -30˚ S-30˚ N, 180˚ W-180˚ E (G30); -60˚ S-60˚ N, 180˚ W-180˚ E (G60); -90˚ S-90˚ N, 180˚ W-180˚ E (G90) were investigated using Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) data from June 2006 to June 2014. The empirical orthogonal functions (EOFs) and band-pass filtering with different filtering ranges at different altitudes were used to extract the ENSO-related signals of the specific humidity and the temperature over different altitude levels in the TLS. The time series that has the maximum correlation coefficient between the ENSO-related signals and the ONI were regarded as the strongest response to ENSO. The results confirmed that the ENSO was originated from tropical Pacific Ocean. The lag time and the phase of the maximum specific humidity or temperature response to ENSO event does not show a uniform patern at different altitudes in the troposphere over different areas, but the 1-2 seasons lag ONI was found and consistent with previous study results. The maximum correlation coefficient between the specific humidity and the ONI was about 0.94 at a lag time of 3 months at about 225 hpa altitude over the statistical areas while the maximum correlation coefficients (0.91) between the temperature and the ONI was found at ˜325 hpa altitude level at a lag time of 1 month in the TLS. The well agreement between the ENSO-related signals in the troposphere and the ONI indicates that the specific humidity and temperature derived from COSMIC GPS RO observations are significant for monitoring the ENSO events.
NASA Astrophysics Data System (ADS)
Salleh, Nur Hanim Mohd; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Saad, Ahmad Ramli; Sulaiman, Husna Mahirah; Ahmad, Wan Muhamad Amir W.
2014-07-01
Polynomial regression is used to model a curvilinear relationship between a response variable and one or more predictor variables. It is a form of a least squares linear regression model that predicts a single response variable by decomposing the predictor variables into an nth order polynomial. In a curvilinear relationship, each curve has a number of extreme points equal to the highest order term in the polynomial. A quadratic model will have either a single maximum or minimum, whereas a cubic model has both a relative maximum and a minimum. This study used quadratic modeling techniques to analyze the effects of environmental factors: temperature, relative humidity, and rainfall distribution on the breeding of Aedes albopictus, a type of Aedes mosquito. Data were collected at an urban area in south-west Penang from September 2010 until January 2011. The results indicated that the breeding of Aedes albopictus in the urban area is influenced by all three environmental characteristics. The number of mosquito eggs is estimated to reach a maximum value at a medium temperature, a medium relative humidity and a high rainfall distribution.
Sea-Ice Conditions in the Norwegian, Barents, and White Seas
1976-08-01
pack, aided by relatively warm water from the Murman coast current, would reduce the maximum ice thickness predicted by the equation used for...THICKNESS With the aid of the ice growth model in the appendix, it is pos- sible to relate the maximum ice thickness attained during a winter season to a...inserted merely to aid the reader in discerning differences between individual winter seasons. As was the case for the 12-month mean temperatures
NASA Technical Reports Server (NTRS)
Useller, James W.; Auble, Carmon M.; Harvey, Ray W., Sr.
1952-01-01
An investigation was conducted at simulated high-altitude flight conditions to evaluate the use of compressor evaporative cooling as a means of turbojet-engine thrust augmentation. Comparison of the performance of the engine with water-alcohol injection at the compressor inlet, at the sixth stage of the compressor, and at the sixth and ninth stages was made. From consideration of the thrust increases achieved, the interstage injection of the coolant was considered more desirable preferred over the combined sixth- and ninth-stage injection because of its relative simplicity. A maximum augmented net-thrust ratio of 1.106 and a maximum augmented jet-thrust ratio of 1.062 were obtained at an augmented liquid ratio of 2.98 and an engine-inlet temperature of 80 F. At lower inlet temperatures (-40 to 40 F), the maximum augmented net-thrust ratios ranged from 1.040 to 1.076 and the maximum augmented jet-thrust ratios ranged from 1.027 to 1.048, depending upon the inlet temperature. The relatively small increase in performance at the lower inlet-air temperatures can be partially attributed to the inadequate evaporation of the water-alcohol mixture, but the more significant limitation was believed to be caused by the negative influence of the liquid coolant on engine- component performance. In general, it is concluded that the effectiveness of the injection of a coolant into the compressor as a means of thrust augmentation is considerably influenced by the design characteristics of the components of the engine being used.
Challenges associated with projecting urbanization-induced heat-related mortality.
Hondula, David M; Georgescu, Matei; Balling, Robert C
2014-08-15
Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables. Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983-2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (-95%) to an increase of 339 deaths per year (+359%). Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making. Copyright © 2014 Elsevier B.V. All rights reserved.
Land use/land cover change effects on temperature trends at U.S. Climate Normals stations
Hale, R.C.; Gallo, K.P.; Owen, T.W.; Loveland, Thomas R.
2006-01-01
Alterations in land use/land cover (LULC) in areas near meteorological observation stations can influence the measurement of climatological variables such as temperature. Urbanization near climate stations has been the focus of considerable research attention, however conversions between non-urban LULC classes may also have an impact. In this study, trends of minimum, maximum, and average temperature at 366 U.S. Climate Normals stations are analyzed based on changes in LULC defined by the U.S. Land Cover Trends Project. Results indicate relatively few significant temperature trends before periods of greatest LULC change, and these are generally evenly divided between warming and cooling trends. In contrast, after the period of greatest LULC change was observed, 95% of the stations that exhibited significant trends (minimum, maximum, or mean temperature) displayed warming trends. Copyriht 2006 by the American Geophysical Union.
Ye, Zhuolin; Hu, Yingying; He, Jizhou; Wang, Jianhui
2017-07-24
We study the performance of a cyclic heat engine which uses a small system with a finite number of ultracold atoms as its working substance and works between two heat reservoirs at constant temperatures T h and T c (
High-temperature responses of North American cacti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.D.; Didden-Zopfy, B.; Nobel, P.S.
1984-04-01
High-temperature tolerances of 14 species of North American cacti were investigated. A reduction in the proportion of chlorenchyma cells taking up a vital stain (neutral red) and reduced nocturnal acid accumulation were used as indicators of high-temperature damage. All species tolerated relatively high tissue temperatures, the mean maximum tolerance being 64/sup 0/C, with an absolute maximum of 69/sup 0/ for two species of ferocactus. Such tissue tolerances to high temperature may be unsurpassed in vascular plants. Morphological features can affect tissue temperatures. Specifically, thin-stemmed species such as the cylindropuntias attain lower maximum temperatures under identical microclimatic conditions than do moremore » massive species; they also tend to be less tolerant of high-temperature stress. Stem diameter changes of three species of columnar ceriod cacti along a Sonoran Desert latitudinal transect were previously attributed to adaptation to progressively colder temperatures northward. Such changes can also be interpreted as a morphological adaptation to high temperatures, particularly in the southern Sonoran Desert. Interspecific differences in high-temperature tolerance may account for distributional differences among other species. Acclimation of high-temperature tolerances in response to increasing day/night air temperatures was observed in all 14 species, especially at higher growh temperatures. From 40/sup 0/ day/30/sup 0/ night to 50/sup 0//40/sup 0/, the tolerable tissue temperatures increased an average of 6/sup 0/. Half-times for the acclimation shifts were 1-3d. Although cacti attain extremely high tissue temperatures in desert habitats, tolerance of high temperatures and pronounced acclimation potential allow them to occur in some of the hottest habitats in North America.« less
Temperature initiated passive cooling system
Forsberg, Charles W.
1994-01-01
A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.
BOREAS AES READAC Surface Meteorological Data
NASA Technical Reports Server (NTRS)
Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)
2000-01-01
Canadian AES personnel collected and processed data related to surface atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from one READAC meteorology station in Hudson Bay, Saskatchewan. Parameters include day, time, type of report, sky condition, visibility, mean sea level pressure, temperature, dewpoint, wind, altimeter, opacity, minimum and maximum visibility, station pressure, minimum and maximum air temperature, a wind group, precipitation, and precipitation in the last hour. The data were collected non-continuously from 24-May-1994 to 20-Sep-1994. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.
NASA Technical Reports Server (NTRS)
Morse, C R; Johnston, J R
1955-01-01
In order to determine the conditions of engine operation causing the most severe thermal stresses in the hot parts of a turbojet engine, a J47-25 engine was instrumented with thermocouples and operated to obtain engine material temperatures under steady-state and transient conditions. Temperatures measured during rated take-off conditions of nozzle guide vanes downstream of a single combustor differed on the order of 400 degrees F depending on the relation of the blades position to the highest temperature zone of the burner. Under the same operation conditions, measured midspan temperatures in a nozzle guide vane in the highest temperature zone of a combustor wake ranged from approximately 1670 degrees F at leading and trailing edges to 1340 degrees F at midchord on the convex side of the blade. The maximum measured nozzle-guide-vane temperature of 1920degrees at the trailing edge occurred during a rapid acceleration from idle to rated take-off speed following which the tail-pipe gas temperature exceeded maximum allowable temperature by 125 degrees F.
Ocean Cooling Pattern at the Last Glacial Maximum
Zhuang, Kelin; Giardino, John R.
2012-01-01
Ocean temperature and ocean heat content change are analyzed based on four PMIP3 model results at the Last Glacial Maximum relative to the prehistorical run. Ocean cooling mostly occurs in the upper 1000 m depth and varies spatially in the tropical and temperate zones. The Atlantic Ocean experiences greater cooling than the rest of the ocean basins. Ocean cooling is closely related to the weakening of meridional overturning circulation and enhanced intrusion of Antarctic Bottom Water into the North Atlantic.
Franklin, C E
1998-09-01
1. Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3. In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degree C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N. coriiceps at 0 degree C. 4. It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish. Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.
NASA Astrophysics Data System (ADS)
Longo, W. M.; Crowther, J.; Daniels, W.; Russell, J. M.; Giblin, A. E.; Morrill, C.; Zhang, X.; Wang, X.; Huang, Y.
2015-12-01
Paleoclimate reconstructions have provided little consensus on how continental temperatures in Eastern Beringia changed from the Last Glacial Maximum (LGM) to the present. Reconstructions show regional differences in LGM severity, the timing of deglacial warming, and Holocene temperature variability. Currently, arctic temperatures are increasing at the fastest rates on the planet, highlighting the need to identify the sensitivities of arctic systems to various climate forcings. This cannot be done without resolving the complex climate history of Eastern Beringia. Here, we present two new organic geochemical temperature reconstructions from Lake E5, north central Alaska that span the LGM, last glacial termination and Holocene. The proxies (alkenones and brGDGTs) record seasonally distinct temperatures, allowing for the attribution of different forcings to each proxy. The alkenone-based UK37 reconstruction records spring/early summer lake temperatures and indicates a 4 oC abrupt warming at 13.1 ka and a relatively warm late Holocene, which peaks at 2.4 ka and exhibits a cooling trend from 2.4 to 0.1 ka. The brGDGT reconstruction is calibrated to mean annual air temperature and interpreted here as exhibiting a strong warm season bias. BrGDGTs show an abrupt 4.5 oC warming at 14 ka, and show evidence for an early Holocene Thermal Maximum (HTM), which cools by 3 oC after 8.4 ka. Because UK37 temperatures do not exhibit an early HTM, we hypothesize that summer insolation had a minimal effect on spring/early summer lake temperatures. Instead, the UK37 reconstruction agrees with sea ice and sea surface temperature reconstructions from the Beaufort and Chukchi Seas and northeast Pacific Ocean. We hypothesize that forcings associated with sea ice concentration and changes in atmospheric circulation had stronger affects on spring/early summer lake temperatures and we present modern observational data in support of this hypothesis. By contrast, the summer-biased brGDGT reconstruction suggests a strong and relatively direct temperature response to summer insolation forcing. Together, these records suggest that both internal and external forcings significantly affected LGM to present temperature variability in Eastern Beringia, with different seasonal biases.
Adverse Climatic Conditions and Impact on Construction Scheduling and Cost
1988-01-01
ABBREVIATIONS ABS MAX MAX TEMP ...... Absolute maximum maximum temperature ABS MIN MIN TEMP ...... Absolute minimum minimum temperature BTU...o Degrees Farenheit MEAN MAX TEMP o.................... Mean maximum temperature MEAN MIN TEMP...temperatures available, a determination had to be made as to whether forecasts were based on absolute , mean, or statistically derived temperatures
Temperature initiated passive cooling system
Forsberg, C.W.
1994-11-01
A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.
Relative air temperature analysis external building on Gowa Campus
NASA Astrophysics Data System (ADS)
Mustamin, Tayeb; Rahim, Ramli; Baharuddin; Jamala, Nurul; Kusno, Asniawaty
2018-03-01
This study aims to data analyze the relative temperature and humidity of the air outside the building. Data retrieval taken from weather monitoring device (monitoring) Vaisala, RTU (Remote Terminal Unit), Which is part of the AWS (Automatic Weather Stations) Then Processing data processed and analyzed by using Microsoft Excel program in the form of graph / picture fluctuation Which shows the average value, standard deviation, maximum value, and minimum value. Results of data processing then grouped in the form: Daily, and monthly, based on time intervals every 30 minutes. The results showed Outside air temperatures in March, April, May and September 2016 Which entered in the thermal comfort zone according to SNI standard (Indonesian National Standard) only at 06.00-10.00. In late March to early April Thermal comfort zone also occurs at 15.30-18.00. The highest maximum air temperature occurred in September 2016 at 11.01-11.30 And the lowest minimum value in September 2016, time 6:00 to 6:30. The result of the next analysis shows the level of data conformity with thermal comfort zone based on SNI (Indonesian National Standard) every month.
Long-term trends in daily temperature extremes in Iraq
NASA Astrophysics Data System (ADS)
Salman, Saleem A.; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Al-Abadi, Alaa M.
2017-12-01
The existence of long-term persistence (LTP) in hydro-climatic time series can lead to considerable change in significance of trends. Therefore, past findings of climatic trend studies that did not consider LTP became a disputable issue. A study has been conducted to assess the trends in temperature and temperature extremes in Iraq in recent years (1965-2015) using both ordinary Mann-Kendal (MK) test; and the modified Mann-Kendall (m-MK) test, which can differentiate the multi-decadal oscillatory variations from secular trends. Trends in annual and seasonal minimum and maximum temperatures, diurnal temperature range (DTR), and 14 temperature-related extremes were assessed. MK test detected the significant increases in minimum and maximum temperature at all stations, where m-MK test detected at 86% and 80% of all stations, respectively. The temperature in Iraq is increasing 2 to 7 times faster than global temperature rise. The minimum temperature is increasing more (0.48-1.17 °C/decade) than maximum temperature (0.25-1.01 °C/decade). Temperature rise is higher in northern Iraq and in summer. The hot extremes particularly warm nights are increasing all over Iraq at a rate of 2.92-10.69 days/decade, respectively. On the other hand, numbers of cold days are decreasing at some stations at a rate of - 2.65 to - 8.40 days/decade. The use of m-MK test along with MK test confirms the significant increase in temperature and some of the temperature extremes in Iraq. This study suggests that trends in many temperature extremes in the region estimated in previous studies using MK test may be due to natural variability of climate, which empathizes the need for validation of the trends by considering LTP in time series.
Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis).
Brown, Kelly J; Downs, Colleen T
2006-01-01
Rock hyrax (Procavia capensis) are faced with large daily fluctuations in ambient temperature during summer and winter. In this study, peritoneal body temperature of free-living rock hyrax was investigated. During winter, when low ambient temperatures and food supply prevail, rock hyrax maintained a lower core body temperature relative to summer. In winter body temperatures during the day were more variable than at night. This daytime variability is likely a result of body temperatures being raised from basking in the sun. Body temperatures recorded during winter never fell to low levels recorded in previous laboratory studies. During summer ambient temperatures exceeded the thermoneutral zone of the rock hyrax throughout most of the day, while crevice temperatures remained within the thermoneutral zone of rock hyrax. However, in summer variation in core body temperature was small. Minimum and maximum body temperatures did not coincide with minimum and maximum ambient temperatures. Constant body temperatures were also recorded when ambient temperatures reached lethal limits. During summer it is likely that rock hyrax select cooler refugia to escape lethal temperatures and to prevent excessive water loss. Body temperature of rock hyrax recorded in this study reflects the adaptability of this animal to the wide range of ambient temperatures experienced in its natural environment.
Quantifying Observed Temperature Extremes in the Southeastern United States
NASA Astrophysics Data System (ADS)
Sura, P.; Stefanova, L. B.; Griffin, M.; Worsnop, R.
2011-12-01
There is broad consensus that the most hazardous effects of climate change are related to a potential increase (in frequency and/or intensity) of extreme weather and climate events. In particular, the statistics of regional daily temperature extremes are of practical interest for the agricultural community and energy suppliers. This is notably true for the Southeastern United States where winter hard freezes are a relatively rare and potentially catastrophic event. Here we use a long record of quality-controlled observations collected from 272 National Weather Service (NWS) Cooperative Observing Network (COOP) stations throughout Florida, Georgia, Alabama, and South and North Carolina to provide a detailed climatology of temperature extremes in the Southeastern United States. We employ two complementary approaches. First, we analyze the effect of El Nino-Southern Oscillation (ENSO) and the Arctic Oscillation (AO) on the non-Gaussian (i.e. higher order) statistics of wintertime daily minimum and maximum temperatures. We find a significant and spatially varying impact of ENSO and AO on the non-Gaussian statistics of daily maximum and minimum temperatures throughout the domain. Second, the extremes of the temperature distributions are studied by calculating the 1st and 99th percentiles, and then analyzing the number of days with record low/high temperatures per season. This analysis of daily temperature extremes reveals oscillating, multi-decadal patterns with spatially varying centers of action.
Hot Weather Impacts on New York City Restaurant Food Safety Violations and Operations.
Dominianni, Christine; Lane, Kathryn; Ahmed, Munerah; Johnson, Sarah; McKELVEY, Wendy; Ito, Kazuhiko
2018-06-06
Previous studies have shown that higher ambient air temperature is associated with increased incidence of gastrointestinal illnesses, possibly as a result of leaving potentially hazardous food in the temperature danger zone for too long. However, little is known about the effect of hot weather on restaurant practices to maintain safe food temperatures. We examined hot weather impacts on restaurant food safety violations and operations in New York City using quantitative and qualitative methods. We used data from 64,661 inspections conducted among 29,614 restaurants during May to September, 2011 to 2015. We used Poisson time-series regression to estimate the cumulative relative risk (CRR) of temperature-related food safety violations across a range of daily maximum temperature (13 to 40°C [56 to 104°F]) over a lag of 0 to 3 days. We present CRRs for an increase in daily maximum temperature from the median (28°C [82°F]) to the 95th percentile (34°C [93°F]) values. Maximum temperature increased the risk of violations for cold food holding above 5°C (41°F) (CRR, 1.19; 95% CI, 1.14, 1.25) and insufficient refrigerated or hot holding equipment (CRR, 2.37; 95% CI, 2.02, 2.79). We also conducted focus groups among restaurant owners and managers to aid interpretation of findings and identify challenges or knowledge gaps that prevent hot weather preparedness. Focus group participants cited refrigeration issues as a common problem during hot weather. Participants expressed the need for more guidance on hot weather and power outages to be delivered concisely. Our findings suggest that hotter temperatures may compromise cold and hot food holding, possibly by straining refrigeration or other equipment. The findings have public health implications because holding potentially hazardous foods in the temperature danger zone allows foodborne pathogens to proliferate and increases risk for foodborne illness. Distribution of simple guidelines that can be easily accessed during emergencies could help restaurants respond better.
Melquiades, Fábio L; Thomaz, Edivaldo L
2016-05-01
An important aspect for the evaluation of fire effects in slash-and-burn agricultural system, as well as in wildfire, is the soil burn severity. The objective of this study is to estimate the maximum temperature reached in real soil burn events using energy dispersive X-ray fluorescence (EDXRF) as an analytical tool, combined with partial least square (PLS) regression. Muffle-heated soil samples were used for PLS regression model calibration and two real slash-and-burn soils were tested as external samples in the model. It was possible to associate EDXRF spectra alterations to the maximum temperature reached in the heat affected soils with about 17% relative standard deviation. The results are promising since the analysis is fast, nondestructive, and conducted after the burn event, although local calibration for each type of burned soil is necessary. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Melting phase relations in the MgSiO3-CaSiO3 system at 24 GPa
NASA Astrophysics Data System (ADS)
Nomura, Ryuichi; Zhou, Youmo; Irifune, Tetsuo
2017-12-01
The Earth's lower mantle is composed of bridgmanite, ferropericlase, and CaSiO3-rich perovskite. The melting phase relations between each component are key to understanding the melting of the Earth's lower mantle and the crystallization of the deep magma ocean. In this study, melting phase relations in the MgSiO3-CaSiO3 system were investigated at 24 GPa using a multi-anvil apparatus. The eutectic composition is (Mg,Ca)SiO3 with 81-86 mol% MgSiO3. The solidus temperature is 2600-2620 K. The solubility of CaSiO3 component into bridgmanite increases with temperature, reaching a maximum of 3-6 mol% at the solidus, and then decreases with temperature. The same trend was observed for the solubility of MgSiO3 component into CaSiO3-rich perovskite, with a maximum of 14-16 mol% at the solidus. The asymmetric regular solutions between bridgmanite and CaSiO3-rich perovskite and between MgSiO3 and CaSiO3 liquid components well reproduce the melting phase relations constrained experimentally. [Figure not available: see fulltext.
Uncertainties in observations and climate projections for the North East India
NASA Astrophysics Data System (ADS)
Soraisam, Bidyabati; Karumuri, Ashok; D. S., Pai
2018-01-01
The Northeast-India has undergone many changes in climatic-vegetation related issues in the last few decades due to increased human activities. However, lack of observations makes it difficult to ascertain the climate change. The study involves the mean, seasonal cycle, trend and extreme-month analysis for summer-monsoon and winter seasons of observed climate data from Indian Meteorological Department (1° × 1°) and Aphrodite & CRU-reanalysis (both 0.5° × 0.5°), and five regional-climate-model simulations (LMDZ, MPI, GFDL, CNRM and ACCESS) data from AR5/CORDEX-South-Asia (0.5° × 0.5°). Long-term (1970-2005) observed, minimum and maximum monthly temperature and precipitation, and the corresponding CORDEX-South-Asia data for historical (1970-2005) and future-projections of RCP4.5 (2011-2060) have been analyzed for long-term trends. A large spread is found across the models in spatial distributions of various mean maximum/minimum climate statistics, though models capture a similar trend in the corresponding area-averaged seasonal cycles qualitatively. Our observational analysis broadly suggests that there is no significant trend in rainfall. Significant trends are observed in the area-averaged minimum temperature during winter. All the CORDEX-South-Asia simulations for the future project either a decreasing insignificant trend in seasonal precipitation, but increasing trend for both seasonal maximum and minimum temperature over the northeast India. The frequency of extreme monthly maximum and minimum temperature are projected to increase. It is not clear from future projections how the extreme rainfall months during JJAS may change. The results show the uncertainty exists in the CORDEX-South-Asia model projections over the region in spite of the relatively high resolution.
NASA Astrophysics Data System (ADS)
Suchanicz, J.; Bovtun, V.; Dutkiewicz, E. M.; Konieczny, K.; Sitko, D.; Kluczewska, K.; Wajda, A.; Kalvane, A.; Sternberg, A.
2016-08-01
Lead-free (Na0.5Bi0.5)1-xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics with relative densities above 97% were prepared by solid-state synthesis process. Their dielectric, thermal and Raman properties were studied. X-ray diffraction analysis shows perovskite structure with rhombohedral symmetry at room temperature. Sr doping of Na0.5Bi0.5TiO3 (NBT) results in an increase of the dielectric permittivity, diffusing of the permittivity maximum and its shift toward lower temperatures. The temperature of the rhombohedral-tetragonal phase transition indicated by the differential scanning calorimetry (DSC) peak and relaxational dielectric anomaly near the depolarization temperature are also shifted toward lower temperatures. The observed increase and broadening of the permittivity maximum, enhancement of the dielectric relaxation near the depolarization temperature, broadening of the DSC anomaly related to the rhombohedral-tetragonal phase transition and broadening of the Raman bands with increasing Sr content are attributed to the increase of the degree of cationic disorder and evident enhancement of the relaxor-like features in NBT-xST. This enhancement could play a positive role in the improvement of the piezoelectric performance of NBT-based ceramics.
A pantropical analysis of the impacts of forest degradation and conversion on local temperature.
Senior, Rebecca A; Hill, Jane K; González Del Pliego, Pamela; Goode, Laurel K; Edwards, David P
2017-10-01
Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site-level (<1 ha) temperature data from the literature to quantify impacts of land-use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human-impacted land-use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest-dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.
Palacios, C; Abecia, J A
2015-05-01
A total number of 48,088 artificial inseminations (AIs) have been controlled during seven consecutive years in 79 dairy sheep Spanish farms (41° N). Mean, maximum and minimum ambient temperatures (Ts), temperature amplitude (TA), mean relative humidity (RH), mean solar radiation (SR) and total rainfall of each insemination day and 15 days later were recorded. Temperature-humidity index (THI) and effective temperature (ET) have been calculated. A binary logistic regression model to estimate the risk of not getting pregnant compared to getting pregnant, through the odds ratio (OR), was performed. Successful winter inseminations were carried out under higher SR (P < 0.01) and summer inseminations under lower SR values (P < 0.05). Successful inseminations during the summer were performed under significantly lower maximum T (P < 0.01), while winter inseminations resulted in pregnancy when they were carried out under higher maximum (P < 0.05) and minimum Ts (P < 0.01). Up to five meteorological variables presented OR >1 (maximum T, ET and rainfall on AI day, and ET and rainfall on day 15), and two variables presented OR <1 (SR on AI day and maximum T on day 15). However, the effect of meteorological factors affected fertility in opposite ways, so T becomes a protective or risk factor on fertility depending on season. In conclusion, the percentage of pregnancy after AI in sheep is significantly affected by meteorological variables in a seasonal-dependent manner, so the parameters such as temperature reverse their effects in the hot or cold seasons. A forecast of the meteorological conditions could be a useful tool when AI dates are being scheduled.
NASA Astrophysics Data System (ADS)
Palacios, C.; Abecia, J. A.
2015-05-01
A total number of 48,088 artificial inseminations (AIs) have been controlled during seven consecutive years in 79 dairy sheep Spanish farms (41° N). Mean, maximum and minimum ambient temperatures ( Ts), temperature amplitude (TA), mean relative humidity (RH), mean solar radiation (SR) and total rainfall of each insemination day and 15 days later were recorded. Temperature-humidity index (THI) and effective temperature (ET) have been calculated. A binary logistic regression model to estimate the risk of not getting pregnant compared to getting pregnant, through the odds ratio (OR), was performed. Successful winter inseminations were carried out under higher SR ( P < 0.01) and summer inseminations under lower SR values ( P < 0.05). Successful inseminations during the summer were performed under significantly lower maximum T ( P < 0.01), while winter inseminations resulted in pregnancy when they were carried out under higher maximum ( P < 0.05) and minimum Ts ( P < 0.01). Up to five meteorological variables presented OR >1 (maximum T, ET and rainfall on AI day, and ET and rainfall on day 15), and two variables presented OR <1 (SR on AI day and maximum T on day 15). However, the effect of meteorological factors affected fertility in opposite ways, so T becomes a protective or risk factor on fertility depending on season. In conclusion, the percentage of pregnancy after AI in sheep is significantly affected by meteorological variables in a seasonal-dependent manner, so the parameters such as temperature reverse their effects in the hot or cold seasons. A forecast of the meteorological conditions could be a useful tool when AI dates are being scheduled.
Fretting wear of iron, nickel, and titanium under varied environmental conditions
NASA Technical Reports Server (NTRS)
Bill, R. C.
1979-01-01
Fretting wear experiments were conducted on high-purity iron, nickel and titanium in air under conditions of varied humidity and temperature, and in nitrogen. For iron and titanium, maximum fretting occurred at 10 and 30 percent relative humidity respectively. Nickel showed a minimum in fretting wear at about 10% relative humidity. With increasing temperature, all three metals initially showed reduced fretting wear, with increasing wear observed as temperatures increased beyond 200-300 C. For titanium, dramatically reduced fretting wear was observed at temperatures above 500 C, relatable to a change in oxidation kinetics. All three metals showed much less fretting wear in N2 with the presence of moisture in N2 having a proportionally stronger effect than in air.
Fretting wear of iron, nickel, and titanium under varied environmental conditions
NASA Technical Reports Server (NTRS)
Bill, R. C.
1978-01-01
Fretting wear experiments were conducted on high purity iron, nickel and titanium in air under conditions of varied humidity and temperature, and in nitrogen. For iron and titanium, maximum fretting occurred at 10 and 30 percent relative humidity respectively. Nickel showed a minimum in fretting wear at about 10 percent relative humidity. With increasing temperature, all three metals initially showed reduced fretting wear, with increasing wear observed as temperatures increased beyond 200-300 C. For titanium, dramatically reduced fretting wear was observed at temperatures above 500 C, relatable to a change in oxidation kinetics. All three metals showed much less fretting wear in N2 with the presence of moisture in N2 having a proportionally stronger effect than in air.
Temporal variation in the effect of heat and the role of the Italian heat prevention plan.
de'Donato, F; Scortichini, M; De Sario, M; de Martino, A; Michelozzi, P
2018-05-08
The aim of the article is to evaluate the temporal change in the effect of heat on mortality in Italy in the last 12 years after the introduction of the national heat plan. Time series analysis. Distributed lag non-linear models were used to estimate the association between maximum apparent temperature and mortality in 23 Italian cities included in the national heat plan in four study periods (before the introduction of the heat plan and three periods after the plan was in place between 2005 and 2016). The effect (relative risks) and impact (attributable fraction [AF] and number of heat-related deaths) were estimated for mild summer temperatures (20th and 75th percentile maximum apparent temperature [Tappmax]) and extreme summer temperatures (75th and 99th percentile Tappmax) in each study period. A survey of the heat preventive measures adopted over time in the cities included in the Italian heat plan was carried out to better describe adaptation measures and response. Although heat still has an impact on mortality in Italian cities, a reduction in heat-related mortality is observed progressively over time. In terms of the impact, the heat AF related to extreme temperatures declined from 6.3% in the period 1999-2002 to 4.1% in 2013-2016. Considering the entire temperature range (20th vs 99th percentile), the total number of heat-related deaths spared over the entire study period was 1900. Considering future climate change and the health burden associated to heat waves, it is important to promote adaptation measures by showing the potential effectiveness of heat prevention plans. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Garner, Grace; Malcolm, Iain A.; Sadler, Jonathan P.; Hannah, David M.
2017-10-01
A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ∼1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Data from nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model of the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥1.6 °C) and maximum (≥3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation, and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.
Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan
Ali, Sajjad; Liu, Ying; Ishaq, Muhammad; Shah, Tariq; Abdullah; Ilyas, Aasir; Din, Izhar Ud
2017-01-01
Pakistan is vulnerable to climate change, and extreme climatic conditions are threatening food security. This study examines the effects of climate change (e.g., maximum temperature, minimum temperature, rainfall, relative humidity, and the sunshine) on the major crops of Pakistan (e.g., wheat, rice, maize, and sugarcane). The methods of feasible generalized least square (FGLS) and heteroscedasticity and autocorrelation (HAC) consistent standard error were employed using time series data for the period 1989 to 2015. The results of the study reveal that maximum temperature adversely affects wheat production, while the effect of minimum temperature is positive and significant for all crops. Rainfall effect towards the yield of a selected crop is negative, except for wheat. To cope with and mitigate the adverse effects of climate change, there is a need for the development of heat- and drought-resistant high-yielding varieties to ensure food security in the country. PMID:28538704
Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan.
Ali, Sajjad; Liu, Ying; Ishaq, Muhammad; Shah, Tariq; Abdullah; Ilyas, Aasir; Din, Izhar Ud
2017-05-24
Pakistan is vulnerable to climate change, and extreme climatic conditions are threatening food security. This study examines the effects of climate change (e.g., maximum temperature, minimum temperature, rainfall, relative humidity, and the sunshine) on the major crops of Pakistan (e.g., wheat, rice, maize, and sugarcane). The methods of feasible generalized least square (FGLS) and heteroscedasticity and autocorrelation (HAC) consistent standard error were employed using time series data for the period 1989 to 2015. The results of the study reveal that maximum temperature adversely affects wheat production, while the effect of minimum temperature is positive and significant for all crops. Rainfall effect towards the yield of a selected crop is negative, except for wheat. To cope with and mitigate the adverse effects of climate change, there is a need for the development of heat- and drought-resistant high-yielding varieties to ensure food security in the country.
Ratiometric near infrared luminescent thermometer based on lanthanide metal-organic frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Dan; Zhang, Jun; Zhao, Dian
2016-09-15
A near infrared luminescent MOFs thermometer (Nd{sub 0.676}Yb{sub 0.324}BTC) was prepared via a simple solvothermal method using Ln{sup 3+} (Ln=Nd, Yb) ions and 1, 3, 5-benznenetricarboxylic acid (H{sub 3}BTC), and characterized by PXRD, TGA, ICP, and photoluminescence (PL) spectrum. These results indicate that the Nd{sub 0.676}Yb{sub 0.324}BTC displays high relative sensitivity and excellent repeatability in the physiological temperature range (288–323 K), and the maximum relative sensitivity is determined to be 1.187% K{sup −1} at 323 K. These NIR luminescent MOFs may have potential applications in physiological temperature sensing. - Graphical abstract: A near infrared luminescent MOFs thermometer (Nd{sub 0.054}Yb{sub 0.946}BTCmore » ) displays high relative sensitivity and excellent repeatability in the physiological temperature range (288–323 K). Display Omitted - Highlights: • A ratiometric near infrared luminescent MOFs thermometer (Nd{sub 0.676}Yb{sub 0.324}BTC) was prepared via a simple solvothermal method. • The maximum relative sensitivity of Nd{sub 0.676}Yb{sub 0.324}BTC is determined to be 1.187% K{sup −1} at 323 K. • Nd{sub 0.676}Yb{sub 0.324}BTC showed excellent repeatability in the physiological temperature range (288–323 K).« less
Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Eudell, A. H.; Patt, F. S.
1989-01-01
Results are presented on the temperature correlation of the relative coalignment between the fine pointing sun sensor (FPSS) and fixed head star trackers (FHSTs) on the Solar Maximum Mission (SMM). This correlation can be caused by spacecraft electronic and mechanical effects. Routine daily measurements reveal a time dependent sensor coalignment variation. The magnitude of the alignment variation is on the order of 120 arc seconds (arc sec), which greatly exceeds the prelaunch thermal structural analysis estimate of 15 acr sec. Differences between FPSS-only and FHST-only yaw solutions as a function of mission day are correlated with the relevant spacecraft temperature. If unaccounted for, the sensor misalignments due to thermal effects are a significant source of error in attitude determination accuracy. Prominent sources of temperature variation are identified and correlated with the temperature profile observed on the SMM. It was determined that even relatively small changes in spacecraft temperature can affect the coalignments between the attitude hardware on the SMM and the science instrument support plate and that frequent recalibration of sensor alignments is necessary to compensate for this effect. An alterntive to frequent recalibration is to model the variation of alignments as a function of temperature and use this to maintain accurate ground or onboard alignment estimates. These flight data analysis results may be important consierations for prelaunch analysis of future missions.
Body mass modulates huddling dynamics and body temperature profiles in rabbit pups.
Bautista, Amando; Zepeda, José Alfredo; Reyes-Meza, Verónica; Féron, Christophe; Rödel, Heiko G; Hudson, Robyn
2017-10-01
Altricial mammals typically lack the physiological capacity to thermoregulate independently during the early postnatal period, and in litter-bearing species the young benefit strongly from huddling together with their litter siblings. Such litter huddles are highly dynamic systems, often characterized by competition for energetically favorable, central positions. In the present study, carried out in domestic rabbits Oryctolagus cuniculus, we asked whether individual differences in body mass affect changes in body temperature during changes in the position within the huddle. We predicted that pups with relatively lower body mass should be more affected by such changes arising from huddle dynamics in comparison to heavier ones. Changes in pups' maximum body surface temperature (determined by infrared thermography) were significantly affected by changes in the number of their neighbors in the litter huddle, and indeed these temperature changes largely depended on the pups' body mass relative to their litter siblings. Lighter pups showed significant increases in their maximum body surface temperature when their number of huddling partners increased by one or two siblings whereas pups with intermediate or heavier body mass did not show such significant increases in maximum body temperature when experiencing such changes. A similar pattern was found with respect to average body surface temperature. This strong link between changes in the number of huddling partners and body surface temperature in lighter pups might, on the one hand, arise from a higher vulnerability of such pups due to their less favorable body surface area-to-volume ratio. On the other hand, as lighter pups generally had fewer neighbors than heavier ones and thus typically a comparatively smaller body surface in contact with siblings, they potentially had more to gain from increasing their number of neighbors. The present findings might help to understand how individual differences in body mass within a litter lead to the emergence of individual differences in sibling interactions during early postnatal life in different species of altricial and litter-bearing mammals. Copyright © 2017 Elsevier Inc. All rights reserved.
Comparison of infrared canopy temperature in a rubber plantation and tropical rain forest
NASA Astrophysics Data System (ADS)
Song, Qing-Hai; Deng, Yun; Zhang, Yi-Ping; Deng, Xiao-Bao; Lin, You-Xing; Zhou, Li-Guo; Fei, Xue-Hai; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Gao, Jin-Bo
2017-10-01
Canopy temperature is a result of the canopy energy balance and is driven by climate conditions, plant architecture, and plant-controlled transpiration. Here, we evaluated canopy temperature in a rubber plantation (RP) and tropical rainforest (TR) in Xishuangbanna, southwestern China. An infrared temperature sensor was installed at each site to measure canopy temperature. In the dry season, the maximum differences (Tc - Ta) between canopy temperature (Tc) and air temperature (Ta) in the RP and TR were 2.6 and 0.1 K, respectively. In the rainy season, the maximum (Tc - Ta) values in the RP and TR were 1.0 and -1.1 K, respectively. There were consistent differences between the two forests, with the RP having higher (Tc - Ta) than the TR throughout the entire year. Infrared measurements of Tc can be used to calculate canopy stomatal conductance in both forests. The difference in (Tc - Ta) at three gc levels with increasing direct radiation in the RP was larger than in the TR, indicating that change in (Tc - Ta) in the RP was relatively sensitive to the degree of stomatal closure.
Evaluation of Ultra High Pressure (UHP) Firefighting in a Room-and-Contents Fire
2017-03-15
Burn Room and Hangar Temperature Prior to Ignition ............................................... 18 Figure 12. Effect of Temperature on Normalized...Figure 20. Maximum Average Temperature and Heat Flux ......................................................... 22 Figure 21. Effect of Maximum Average...Aspirated Ceiling Temperature .................................... 23 Figure 22. Effect of Maximum Average Floor Heat Flux on Extinguishment Quantity
Attitude sensor alignment calibration for the solar maximum mission
NASA Technical Reports Server (NTRS)
Pitone, Daniel S.; Shuster, Malcolm D.
1990-01-01
An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission (SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair of fixed-head star trackers relative to the fine pointing Sun sensor. Here, new sensor alignment algorithms which better quantify the dependence of the alignments on the temperature are developed and applied to the SMM data. Comparison with the results from the previous study reveals the limitations of the heuristic approach. In addition, some of the basic assumptions made in the prelaunch analysis of the alignments of the SMM are examined. The results of this work have important consequences for future missions with stringent attitude requirements and where misalignment variations due to variations in the temperature will be significant.
Beeswax as phase change material to improve solar panel’s performance
NASA Astrophysics Data System (ADS)
Thaib, R.; Rizal, S.; Riza, M.; Mahlia, T. M. I.; Rizal, T. A.
2018-02-01
One of the main obstacles faced during the operation of photovoltaic (PV) panels was overheating due to excessive solar radiation and high ambient temperatures. In this research, investigates the use of beeswax phase change materials (PCM) to maintain the temperature of the panels close to ambient. Solar panels used in this study has 839 mm length, 537 mm wide, and 50 mm thick, with maximum output power at 50 W. During the study, there were two solar panels was evaluated, one without phase change material while the other one was using beeswax phase change material. Solar panels were mounted at 15° slope. Variables observed was the temperature of solar panel’s surface, output voltage and current that produced by PV panels, wind speed around solar panels, and solar radiation. The observation was started at 07:00 am and ended at 06:00 pm. The research shows that maximum temperature of solar panels surface without phase change material is ranging between 46-49 °C, and electrical efficiency is about 7.2-8.8%. Meanwhile, for solar panels with beeswax phase change material, the maximum temperature solar panels surface is relatively low ranging between 33-34 °C, and its electrical efficiency seems to increase about 9.1-9.3%.
Sahoo, Krushna Chandra; Sahoo, Soumyakanta; Marrone, Gaetano; Pathak, Ashish; Lundborg, Cecilia Stålsby; Tamhankar, Ashok J
2014-08-29
Skin and soft tissue infections caused by Staphylococcus aureus (SA-SSTIs) including methicillin-resistant Staphylococcus aureus (MRSA) have experienced a significant surge all over the world. Changing climatic factors are affecting the global burden of dermatological infections and there is a lack of information on the association between climatic factors and MRSA infections. Therefore, association of temperature and relative humidity (RH) with occurrence of SA-SSTIs (n = 387) and also MRSA (n = 251) was monitored for 18 months in the outpatient clinic at a tertiary care hospital located in Bhubaneswar, Odisha, India. The Kirby-Bauer disk diffusion method was used for antibiotic susceptibility testing. Time-series analysis was used to investigate the potential association of climatic factors (weekly averages of maximum temperature, minimum temperature and RH) with weekly incidence of SA-SSTIs and MRSA infections. The analysis showed that a combination of weekly average maximum temperature above 33 °C coinciding with weekly average RH ranging between 55% and 78%, is most favorable for the occurrence of SA-SSTIs and MRSA and within these parameters, each unit increase in occurrence of MRSA was associated with increase in weekly average maximum temperature of 1.7 °C (p = 0.044) and weekly average RH increase of 10% (p = 0.097).
NASA Astrophysics Data System (ADS)
Ishida, K.; Ohara, N.; Kavvas, M. L.; Chen, Z. Q.; Anderson, M. L.
2018-01-01
Impact of air temperature on the Maximum Precipitation (MP) estimation through change in moisture holding capacity of air was investigated. A series of previous studies have estimated the MP of 72-h basin-average precipitation over the American River watershed (ARW) in Northern California by means of the Maximum Precipitation (MP) estimation approach, which utilizes a physically-based regional atmospheric model. For the MP estimation, they have selected 61 severe storm events for the ARW, and have maximized them by means of the atmospheric boundary condition shifting (ABCS) and relative humidity maximization (RHM) methods. This study conducted two types of numerical experiments in addition to the MP estimation by the previous studies. First, the air temperature on the entire lateral boundaries of the outer model domain was increased uniformly by 0.0-8.0 °C with 0.5 °C increments for the two severest maximized historical storm events in addition to application of the ABCS + RHM method to investigate the sensitivity of the basin-average precipitation over the ARW to air temperature rise. In this investigation, a monotonous increase was found in the maximum 72-h basin-average precipitation over the ARW with air temperature rise for both of the storm events. The second numerical experiment used specific amounts of air temperature rise that is assumed to happen under future climate change conditions. Air temperature was increased by those specified amounts uniformly on the entire lateral boundaries in addition to application of the ABCS + RHM method to investigate the impact of air temperature on the MP estimate over the ARW under changing climate. The results in the second numerical experiment show that temperature increases in the future climate may amplify the MP estimate over the ARW. The MP estimate may increase by 14.6% in the middle of the 21st century and by 27.3% in the end of the 21st century compared to the historical period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neises, T. W.; Wagner, M. J.; Gray, A. K.
Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditionalmore » boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.« less
NASA Astrophysics Data System (ADS)
Kim, J.-H.; Kim, Y. H.; Moon, B.-K.; Chung, J.-K.; Won, Y.-I.
A spectral airglow temperature imager SATI was operated at King Sejong Station 62 22 r S 301 2 r E Korea Antarctic Research Station during a period of 2002 - 2005 Rotational temperatures from the OH 6-2 and O 2 0-1 band airglow were obtained for more than 600 nights during the 4 year operation Both the OH and O 2 temperatures show similar seasonal variations which change significantly year by year A maximum temperature occurred early May in 2003 and 2004 whereas two maxima appeared in April and August in 2002 The 2005 data show only a broad and weak maximum during months of April and May The data also show oscillations with periods of hours that seem to relate to tides and gravity waves and fluctuations with timescales of days that could be due to planetary waves Detailed analysis will be performed to the data set to identify major atmospheric oscillations or variation over hours days and seasons
Prediction based proactive thermal virtual machine scheduling in green clouds.
Kinger, Supriya; Kumar, Rajesh; Sharma, Anju
2014-01-01
Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated.
Hansen, James; Sato, Makiko; Ruedy, Reto; Lo, Ken; Lea, David W.; Medina-Elizade, Martin
2006-01-01
Global surface temperature has increased ≈0.2°C per decade in the past 30 years, similar to the warming rate predicted in the 1980s in initial global climate model simulations with transient greenhouse gas changes. Warming is larger in the Western Equatorial Pacific than in the Eastern Equatorial Pacific over the past century, and we suggest that the increased West–East temperature gradient may have increased the likelihood of strong El Niños, such as those of 1983 and 1998. Comparison of measured sea surface temperatures in the Western Pacific with paleoclimate data suggests that this critical ocean region, and probably the planet as a whole, is approximately as warm now as at the Holocene maximum and within ≈1°C of the maximum temperature of the past million years. We conclude that global warming of more than ≈1°C, relative to 2000, will constitute “dangerous” climate change as judged from likely effects on sea level and extermination of species. PMID:17001018
NASA Astrophysics Data System (ADS)
Jayakumar, M.; Rajavel, M.; Surendran, U.
2016-12-01
A study on the variability of coffee yield of both Coffea arabica and Coffea canephora as influenced by climate parameters (rainfall (RF), maximum temperature (Tmax), minimum temperature (Tmin), and mean relative humidity (RH)) was undertaken at Regional Coffee Research Station, Chundale, Wayanad, Kerala State, India. The result on the coffee yield data of 30 years (1980 to 2009) revealed that the yield of coffee is fluctuating with the variations in climatic parameters. Among the species, productivity was higher for C. canephora coffee than C. arabica in most of the years. Maximum yield of C. canephora (2040 kg ha-1) was recorded in 2003-2004 and there was declining trend of yield noticed in the recent years. Similarly, the maximum yield of C. arabica (1745 kg ha-1) was recorded in 1988-1989 and decreased yield was noticed in the subsequent years till 1997-1998 due to year to year variability in climate. The highest correlation coefficient was found between the yield of C. arabica coffee and maximum temperature during January (0.7) and between C. arabica coffee yield and RH during July (0.4). Yield of C. canephora coffee had highest correlation with maximum temperature, RH and rainfall during February. Statistical regression model between selected climatic parameters and yield of C. arabica and C. canephora coffee was developed to forecast the yield of coffee in Wayanad district in Kerala. The model was validated for years 2010, 2011, and 2012 with the coffee yield data obtained during the years and the prediction was found to be good.
Joule-Thomson inversion curves and related coefficients for several simple fluids
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Peller, I. C.; Baron, A. K.
1972-01-01
The equations of state (PVT relations) for methane, oxygen, argon, carbon dioxide, carbon monoxide, neon, hydrogen, and helium were used to establish Joule-Thomson inversion curves for each fluid. The principle of corresponding states was applied to the inversion curves, and a generalized inversion curve for fluids with small acentric factors was developed. The quantum fluids (neon, hydrogen, and helium) were excluded from the generalization, but available data for the fluids xenon and krypton were included. The critical isenthalpic Joule-Thomson coefficient mu sub c was determined; and a simplified approximation mu sub c approximates T sub c divided by 6P sub c was found adequate, where T sub c and P sub c are the temperature and pressure at the thermodynamic critical point. The maximum inversion temperatures were obtained from the second virial coefficient (maximum (B/T)).
Modeling the impact of climate variability on diarrhea-associated diseases in Taiwan (1996-2007).
Chou, Wei-Chun; Wu, Jiunn-Lin; Wang, Yu-Chun; Huang, Hsin; Sung, Fung-Chang; Chuang, Chun-Yu
2010-12-01
Diarrhea is an important public health problem in Taiwan. Climatic changes and an increase in extreme weather events (extreme heat, drought or rainfalls) have been strongly linked to the incidence of diarrhea-associated disease. This study investigated and quantified the relationship between climate variations and diarrhea-associated morbidity in subtropical Taiwan. Specifically, this study analyzed the local climatic variables and the number of diarrhea-associated infection cases from 1996 to 2007. This study applied a climate variation-guided Poisson regression model to predict the dynamics of diarrhea-associated morbidity. The proposed model allows for climate factors (relative humidity, maximum temperature and the numbers of extreme rainfall), autoregression, long-term trends and seasonality, and a lag-time effect. Results indicated that the maximum temperature and extreme rainfall days were strongly related to diarrhea-associated morbidity. The impact of maximum temperature on diarrhea-associated morbidity appeared primarily among children (0-14years) and older adults (40-64years), and had less of an effect on adults (15-39years). Otherwise, relative humidity and extreme rainfall days significantly contributed to the diarrhea-associated morbidity in adult. This suggested that children and older adults were the most susceptible to diarrhea-associated morbidity caused by climatic variation. Because climatic variation contributed to diarrhea morbidity in Taiwan, it is necessary to develop an early warning system based on the climatic variation information for disease control management. Copyright © 2010 Elsevier B.V. All rights reserved.
Towards bridging the gap between climate change projections and maize producers in South Africa
NASA Astrophysics Data System (ADS)
Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus
2018-05-01
Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.
Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012
Chen, Tianqi; Sarnat, Stefanie E.; Grundstein, Andrew J.; Winquist, Andrea
2017-01-01
Background: Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves’ impact on population morbidity, such as emergency department (ED) visits. Objectives: We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993–2012. Methods: Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of ≥2 consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945–2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Results: Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03–1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02–1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00–1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Conclusions: Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44 PMID:28599264
Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012.
Chen, Tianqi; Sarnat, Stefanie E; Grundstein, Andrew J; Winquist, Andrea; Chang, Howard H
2017-05-31
Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves' impact on population morbidity, such as emergency department (ED) visits. We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993-2012. Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945-2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03-1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02-1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00-1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44.
NASA Astrophysics Data System (ADS)
Yan, Tiezhu; Shen, Zhenyao; Heng, Lee; Dercon, Gerd
2016-04-01
Future climate change information is important to formulate adaptation and mitigation strategies for climate change. In this study, a statistical downscaling model (SDSM) was established using both NCEP reanalysis data and ground observations (daily maximum and minimum temperature) during the period 1971-2010, and then calibrated model was applied to generate the future maximum and minimum temperature projections using predictors from the two CMIP5 models (MPI-ESM-LR and CNRM-CM5) under two Representative Concentration Pathway (RCP2.6 and RCP8.5) during the period 2011-2100 for the Haihe River Basin, China. Compared to the baseline period, future change in annual and seasonal maximum and minimum temperature was computed after bias correction. The spatial distribution and trend change of annual maximum and minimum temperature were also analyzed using ensemble projections. The results shows that: (1)The downscaling model had a good applicability on reproducing daily and monthly mean maximum and minimum temperature over the whole basin. (2) Bias was observed when using historical predictors from CMIP5 models and the performance of CNRM-CM5 was a little worse than that of MPI-ESM-LR. (3) The change in annual mean maximum and minimum temperature under the two scenarios in 2020s, 2050s and 2070s will increase and magnitude of maximum temperature will be higher than minimum temperature. (4) The increase in temperature in the mountains and along the coastline is remarkably high than the other parts of the studies basin. (5) For annual maximum and minimum temperature, the significant upward trend will be obtained under RCP 8.5 scenario and the magnitude will be 0.37 and 0.39 ℃ per decade, respectively; the increase in magnitude under RCP 2.6 scenario will be upward in 2020s and then decrease in 2050s and 2070s, and the magnitude will be 0.01 and 0.01℃ per decade, respectively.
Increasing influence of heat stress on French maize yields from the 1960s to the 2030s
Hawkins, Ed; Fricker, Thomas E; Challinor, Andrew J; Ferro, Christopher A T; Kit Ho, Chun; Osborne, Tom M
2013-01-01
Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target. PMID:23504849
Thermal buffering of concrete by seaweeds during a prolonged summer heatwave
NASA Astrophysics Data System (ADS)
Naylor, Larissa; Coombes, Martin
2014-05-01
Hard coastal infrastructure is subject to aggressive environmental conditions, including a suite of weathering processes in the intertidal zone. These processes, along with waves, lead to costly deterioration of coastal structures. Existing methods (e.g. coatings, less porous concrete) to reduce the risk of concrete deterioration rapidly lose their effectiveness in the intertidal zone. Additionally, a changing climate will lead to increased frequency of storms, higher sea level and higher extreme temperatures - and therefore, pose an increased risk of deterioration. Might there be a biogenic solution? New research (Coombes et al. 2013) has shown that fucoid seaweeds reduce microclimatic extremes and variability under normal summer conditions. The results presented here supplement these findings in two ways. First, they demonstrate that fucoid seaweeds act as a thermal buffer during a prolonged summer heatwave in Britain (July 2013). Over 36 days of continuous monitoring at two sites in Cornwall, UK, 19 of which were during the official heatwave, there were statistically significant differences (p = 0.000) in the maximum temperatures between thick seaweed (7.5 - 9.5 cm thickness) and thin seaweed (2 - 2.5 cm thickness) plots. Maximum temperatures reached 22°C and 33°C, for thick seaweed and thin seaweed plots, respectively. Variations in maximum temperatures between the two sites appear to be related to aspect. Second, the significantly different maximum temperature results between plots also demonstrate that seaweed thickness is an important factor influencing thermal buffering capacity. These data clearly demonstrate that fucoid seaweeds buffer concrete seawalls against extreme temperature fluxes during a heatwave, probably limiting the efficiency of deteriorative processes such as thermal expansion and contraction and salt crystallisation.
Process for fabrication of large titanium diboride ceramic bodies
Moorhead, Arthur J.; Bomar, E. S.; Becher, Paul F.
1989-01-01
A process for manufacturing large, fully dense, high purity TiB.sub.2 articles by pressing powders with a sintering aid at relatively low temperatures to reduce grain growth. The process requires stringent temperature and pressure applications in the hot-pressing step to ensure maximum removal of sintering aid and to avoid damage to the fabricated article or the die.
Mapping Topoclimate and Microclimate in the Monarch Butterfly Biosphere Reserve, Mexico
NASA Astrophysics Data System (ADS)
Weiss, S. B.
2006-12-01
Overwintering monarch butterflies in Mexico select areas of the high elevation Oyamel fir -pine forest providing a canopy that protects them from extremes of cold, heat, sun, and wind. These exacting microclimatic conditions are found in relatively small areas of forest with appropriate topography and canopy cover. The major goal of this investigation is to map topoclimatic and microclimatic conditions within the Monarch Butterfly Biosphere Reserve by combining temperature monitoring (iButton Thermochrons), hemispherical canopy photography, multiple regression, and GIS modeling. Temperature measurements included base weather stations and arrays of Thermochrons (on the north-side of trees at 2m height) across local topographic and canopy cover gradients. Topoclimatic models of minimum temperatures included topographic position, slope, and elevation, and predicted that thermal belts on slopes and cold air drainage into canyons create local minimum temperature gradients of 2°C. Topoclimatic models of maximum temperatures models included elevation, topographic position, and relative solar exposure, with local gradients of 3°C. These models, which are independent of forest canopy structure, were then projected across the entire region. Forest canopy structure, including direct and diffuse solar radiation, was assessed with hemispherical photography at each Thermochron site. Canopy cover affected minimum temperatures primarily on the calmest, coldest nights. Maximum temperatures were predicted by direct radiation below the canopy. Fine- scale grids (25 m spacing) at three overwintering sites characterized effects of canopy gaps and edges on temperature and wind exposure. The effects of temperature variation were considered for lipid loss rates, ability to take flight, and freezing mortality. Lipid loss rates were estimated by measured hourly temperatures. Many of the closed canopy sites allowed for substantial lipid reserves at the end of the season (March 15), but increases in average temperature could effectively deplete lipids by that time. The large influence of canopy cover on daytime maximum temperatures demonstrates that forest thinning directly reduces habitat suitability. Monarchs' flight behavior under warmer conditions suggests that daytime temperatures drive the dynamics of monarch distribution within colonies. Thinning also decreases nighttime minimum temperatures, and increases wind exposure. These results create a basis for quantitative understanding of the combinations of topography and forest structure that provide high quality overwintering habitat.
Rubin, Stephen P.; Reisenbichler, Reginald R.; Slatton, Stacey L.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.
2012-01-01
The accuracy of a model that predicts time between fertilization and maximum alevin wet weight (MAWW) from incubation temperature was tested for steelhead Oncorhynchus mykiss from Dworshak National Fish Hatchery on the Clearwater River, Idaho. MAWW corresponds to the button-up fry stage of development. Embryos were incubated at warm (mean=11.6°C) or cold (mean=7.3°C) temperatures and time between fertilization and MAWW was measured for each temperature. Model predictions of time to MAWW were within 1% of measured time to MAWW. Mean egg weight ranged from 0.101-0.136 g among females (mean = 0.116). Time to MAWW was positively related to egg size for each temperature, but the increase in time to MAWW with increasing egg size was greater for embryos reared at the warm than at the cold temperature. We developed equations accounting for the effect of egg size on time to MAWW for each temperature, and also for the mean of those temperatures (9.3°C).
Deformation and annealing study of NiCrAlY
NASA Technical Reports Server (NTRS)
Ebert, L. J.; Trela, D. M.
1978-01-01
The elevated temperature properties (tensile and creep) of NiCrALY, a nickel base alloy containing nominally 16% chromium, 4% aluminum, and 2 to 3% yttria (Y2O3) were evaluated and the optimal combination of thermomechanical treatments for maximum creep resistance was determined. Stored strain energy in as-extruded bars (14:1 extrusion ratio) permitted the development of a large grain size in the material when it was annealed at the maximum safe temperature 2450 F (1343 C). With a one-hour anneal at this temperature, the relatively fine grain size of the as-extruded material was changed to one in which the average grain diameter approached 1 mm, and the aspect ratio was about 10. The material was capable of being cold worked (by rolling) in amounts greater than 30% reduction in area. When the cold worked material was given a relaxation treatment, consisting of heating one hour at 1600 F(871 C), and then a high temperature anneal at 2450 F (1343 C) for one hour, both the high temperature strength and the high temperature creep resistance of the material was further enhanced.
Xiang, Jianjun; Hansen, Alana; Liu, Qiyong; Liu, Xiaobo; Tong, Michael Xiaoliang; Sun, Yehuan; Cameron, Scott; Hanson-Easey, Scott; Han, Gil-Soo; Williams, Craig; Weinstein, Philip; Bi, Peng
2017-02-01
This study aims to (1) investigate the associations between climatic factors and dengue; and (2) identify the susceptible subgroups. De-identified daily dengue cases in Guangzhou for 2005-2014 were obtained from the Chinese Center for Disease Control and Prevention. Weather data were downloaded from the China Meteorological Data Sharing Service System. Distributed lag non-linear models (DLNM) were used to graphically demonstrate the three-dimensional temperature-dengue association. Generalised estimating equation models (GEE) with piecewise linear spline functions were used to quantify the temperature-dengue associations. Threshold values were estimated using a broken-stick model. Middle-aged and older people, people undertaking household duties, retirees, and those unemployed were at high risk of dengue. Reversed U-shaped non-linear associations were found between ambient temperature, relative humidity, extreme wind velocity, and dengue. The optimal maximum temperature (T max ) range for dengue transmission in Guangzhou was 21.6-32.9°C, and 11.2-23.7°C for minimum temperature (T min ). A 1°C increase of T max and T min within these ranges was associated with 11.9% and 9.9% increase in dengue at lag0, respectively. Although lag effects of temperature were observed for up to 141 days for T max and 150 days for T min , the maximum lag effects were observed at 32 days and 39 days respectively. Average relative humidity was negatively associated with dengue when it exceeded 78.9%. Maximum wind velocity (>10.7m/s) inhibited dengue transmission. Climatic factors had significant impacts on dengue in Guangzhou. Lag effects of temperature on dengue lasted the local whole epidemic season. To reduce the likely increasing dengue burden, more efforts are needed to strengthen the capacity building of public health systems. Copyright © 2016 Elsevier Inc. All rights reserved.
Reassessment of ice-age cooling of the tropical ocean and atmosphere
Hostetler, S.W.; Mix, A.C.
1999-01-01
The CLIMAP project's reconstruction of past sea surface temperature inferred limited ice-age cooling in the tropical oceans. This conclusion has been controversial, however, because of the greater cooling indicated by other terrestrial and ocean proxy data. A new faunal sea surface temperature reconstruction, calibrated using the variation of foraminiferal species through time, better represents ice-age faunal assemblages and so reveals greater cooling than CLIMAP in the equatorial current systems of the eastern Pacific and tropical Atlantic oceans. Here we explore the climatic implications of this revised sea surface temperature field for the Last Glacial Maximum using an atmospheric general circulation model. Relative to model results obtained using CLIMAP sea surface temperatures, the cooler equatorial oceans modify seasonal air temperatures by 1-2??C or more across parts of South America, Africa and southeast Asia and cause attendant changes in regional moisture patterns. In our simulation of the Last Glacial Maximum, the Amazon lowlands, for example, are cooler and drier, whereas the Andean highlands are cooler and wetter than the control simulation. Our results may help to resolve some of the apparent disagreements between oceanic and continental proxy climate data. Moreover, they suggest a wind-related mechanism for enhancing the export of water vapour from the Atlantic to the Indo-Pacific oceans, which may link variations in deep-water production and high-latitude climate changes to equatorial sea surface temperatures.
2011-01-01
Background Evidence is mounting regarding the clinically significant effect of temperature on blood pressure. Methods In this cross-sectional study the authors obtained minimum and maximum temperatures and their respective previous week variances at the geographic locations of the self-reported residences of 26,018 participants from a national cohort of blacks and whites, aged 45+. Linear regression of data from 20,623 participants was used in final multivariable models to determine if these temperature measures were associated with levels of systolic or diastolic blood pressure, and whether these relations were modified by stroke-risk region, race, education, income, sex hypertensive medication status, or age. Results After adjustment for confounders, same-day maximum temperatures 20°F lower had significant associations with 1.4 mmHg (95% CI: 1.0, 1.9) higher systolic and 0.5 mmHg (95% CI: 0.3, 0.8) higher diastolic blood pressures. Same-day minimum temperatures 20°F lower had a significant association with 0.7 mmHg (95% CI: 0.3, 1.0) higher systolic blood pressures but no significant association with diastolic blood pressure differences. Maximum and minimum previous-week temperature variabilities showed significant but weak relationships with blood pressures. Parameter estimates showed effect modification of negligible magnitude. Conclusions This study found significant associations between outdoor temperature and blood pressure levels, which remained after adjustment for various confounders including season. This relationship showed negligible effect modification. PMID:21247466
Morley, Simon A; Martin, Stephanie M; Day, Robert W; Ericson, Jess; Lai, Chien-Houng; Lamare, Miles; Tan, Koh-Siang; Thorne, Michael A S; Peck, Lloyd S
2012-01-01
The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of "duration tenacity", which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (T(opt)) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CT(max) and T(opt) over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions.
Morley, Simon A.; Martin, Stephanie M.; Day, Robert W.; Ericson, Jess; Lai, Chien-Houng; Lamare, Miles; Tan, Koh-Siang; Thorne, Michael A. S.; Peck, Lloyd S.
2012-01-01
The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of “duration tenacity”, which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (Topt) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CTmax and Topt over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions. PMID:23285194
NASA Astrophysics Data System (ADS)
Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.
2018-04-01
The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.
Estimating missing daily temperature extremes in Jaffna, Sri Lanka
NASA Astrophysics Data System (ADS)
Thevakaran, A.; Sonnadara, D. U. J.
2018-04-01
The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
Death from respiratory diseases and temperature in Shiraz, Iran (2006-2011).
Dadbakhsh, Manizhe; Khanjani, Narges; Bahrampour, Abbas; Haghighi, Pegah Shoae
2017-02-01
Some studies have suggested that the number of deaths increases as temperatures drops or rises above human thermal comfort zone. The present study was conducted to evaluate the relation between respiratory-related mortality and temperature in Shiraz, Iran. In this ecological study, data about the number of respiratory-related deaths sorted according to age and gender as well as average, minimum, and maximum ambient air temperatures during 2007-2011 were examined. The relationship between air temperature and respiratory-related deaths was calculated by crude and adjusted negative binomial regression analysis. It was adjusted for humidity, rainfall, wind speed and direction, and air pollutants including CO, NO x , PM 10 , SO 2 , O 3 , and THC. Spearman and Pearson correlations were also calculated between air temperature and respiratory-related deaths. The analysis was done using MINITAB16 and STATA 11. During this period, 2598 respiratory-related deaths occurred in Shiraz. The minimum number of respiratory-related deaths among all subjects happened in an average temperature of 25 °C. There was a significant inverse relationship between average temperature- and respiratory-related deaths among all subjects and women. There was also a significant inverse relationship between average temperature and respiratory-related deaths among all subjects, men and women in the next month. The results suggest that cold temperatures can increase the number of respiratory-related deaths and therefore policies to reduce mortality in cold weather, especially in patients with respiratory diseases should be implemented.
Death from respiratory diseases and temperature in Shiraz, Iran (2006-2011)
NASA Astrophysics Data System (ADS)
Dadbakhsh, Manizhe; Khanjani, Narges; Bahrampour, Abbas; Haghighi, Pegah Shoae
2017-02-01
Some studies have suggested that the number of deaths increases as temperatures drops or rises above human thermal comfort zone. The present study was conducted to evaluate the relation between respiratory-related mortality and temperature in Shiraz, Iran. In this ecological study, data about the number of respiratory-related deaths sorted according to age and gender as well as average, minimum, and maximum ambient air temperatures during 2007-2011 were examined. The relationship between air temperature and respiratory-related deaths was calculated by crude and adjusted negative binomial regression analysis. It was adjusted for humidity, rainfall, wind speed and direction, and air pollutants including CO, NOx, PM10, SO2, O3, and THC. Spearman and Pearson correlations were also calculated between air temperature and respiratory-related deaths. The analysis was done using MINITAB16 and STATA 11. During this period, 2598 respiratory-related deaths occurred in Shiraz. The minimum number of respiratory-related deaths among all subjects happened in an average temperature of 25 °C. There was a significant inverse relationship between average temperature- and respiratory-related deaths among all subjects and women. There was also a significant inverse relationship between average temperature and respiratory-related deaths among all subjects, men and women in the next month. The results suggest that cold temperatures can increase the number of respiratory-related deaths and therefore policies to reduce mortality in cold weather, especially in patients with respiratory diseases should be implemented.
The existence of negative absolute temperatures in Axelrod’s social influence model
NASA Astrophysics Data System (ADS)
Villegas-Febres, J. C.; Olivares-Rivas, W.
2008-06-01
We introduce the concept of temperature as an order parameter in the standard Axelrod’s social influence model. It is defined as the relation between suitably defined entropy and energy functions, T=(. We show that at the critical point, where the order/disorder transition occurs, this absolute temperature changes in sign. At this point, which corresponds to the transition homogeneous/heterogeneous culture, the entropy of the system shows a maximum. We discuss the relationship between the temperature and other properties of the model in terms of cultural traits.
Prompt merger collapse and the maximum mass of neutron stars.
Bauswein, A; Baumgarte, T W; Janka, H-T
2013-09-27
We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent nuclear equations of state and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold mass is larger than the maximum mass of a nonrotating star in isolation by between 30 and 70 percent. Our simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated with the compactness of the nonrotating maximum-mass configuration. We speculate on how this relation can be used to derive constraints on neutron-star properties from future observations.
Spatial outline of malaria transmission in Iran.
Barati, Mohammad; Keshavarz-valian, Hossein; Habibi-nokhandan, Majid; Raeisi, Ahmad; Faraji, Leyla; Salahi-moghaddam, Abdoreza
2012-10-01
To conduct for modeling spatial distribution of malaria transmission in Iran. Records of all malaria cases from the period 2008-2010 in Iran were retrieved for malaria control department, MOH&ME. Metrological data including annual rainfall, maximum and minimum temperature, relative humidity, altitude, demographic, districts border shapefiles, and NDVI images received from Iranian Climatologic Research Center. Data arranged in ArcGIS. 99.65% of malaria transmission cases were focused in southeast part of Iran. These transmissions had statistically correlation with altitude (650 m), maximum (30 °C), minimum (20 °C) and average temperature (25.3 °C). Statistical correlation and overall relationship between NDVI (118.81), relative humidity (⩾45%) and rainfall in southeast area was defined and explained in this study. According to ecological condition and mentioned cut-off points, predictive map was generated using cokriging method. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Zhang, Tangtang; Wen, Jun; van der Velde, Rogier; Meng, Xianhong; Li, Zhenchao; Liu, Yuanyong; Liu, Rong
2008-01-01
The total atmospheric water vapor content (TAWV) and land surface temperature (LST) play important roles in meteorology, hydrology, ecology and some other disciplines. In this paper, the ENVISAT/AATSR (The Advanced Along-Track Scanning Radiometer) thermal data are used to estimate the TAWV and LST over the Loess Plateau in China by using a practical split window algorithm. The distribution of the TAWV is accord with that of the MODIS TAWV products, which indicates that the estimation of the total atmospheric water vapor content is reliable. Validations of the LST by comparing with the ground measurements indicate that the maximum absolute derivation, the maximum relative error and the average relative error is 4.0K, 11.8% and 5.0% respectively, which shows that the retrievals are believable; this algorithm can provide a new way to estimate the LST from AATSR data. PMID:27879795
NASA Astrophysics Data System (ADS)
Wang, Pin; Zhao, Han; You, Fangxin; Zhou, Hailong; Goggins, William B.
2017-08-01
Hand, foot, and mouth disease (HFMD) is an enterovirus-induced infectious disease, mainly affecting children under 5 years old. Outbreaks of HFMD in recent years indicate the disease interacts with both the weather and season. This study aimed to investigate the seasonal association between HFMD and weather variation in Chongqing, China. Generalized additive models and distributed lag non-linear models based on a maximum lag of 14 days, with negative binomial distribution assumed to account for overdispersion, were constructed to model the association between reporting HFMD cases from 2009 to 2014 and daily mean temperature, relative humidity, total rainfall and sun duration, adjusting for trend, season, and day of the week. The year-round temperature and relative humidity, rainfall in summer, and sun duration in winter were all significantly associated with HFMD. An inverted-U relationship was found between mean temperature and HFMD above 19 °C in summer, with a maximum morbidity at 27 °C, while the risk increased linearly with the temperature in winter. A hockey-stick association was found for relative humidity in summer with increasing risks over 60%. Heavy rainfall, relative to no rain, was found to be associated with reduced HFMD risk in summer and 2 h of sunshine could decrease the risk by 21% in winter. The present study showed meteorological variables were differentially associated with HFMD incidence in two seasons. Short-term weather variation surveillance and forecasting could be employed as an early indicator for potential HFMD outbreaks.
Thorogood, Robert M.
1986-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, Robert M.
1983-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, R.M.
1983-12-27
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.
Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.
NASA Astrophysics Data System (ADS)
Yang, H. W.; Ouarda, T.
2015-12-01
This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.
NASA Astrophysics Data System (ADS)
Schmidt, T.; Cammas, J.-P.; Smit, H. G. J.; Heise, S.; Wickert, J.; Haser, A.
2010-12-01
In this study we discuss characteristics of the Northern Hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two data sets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause, and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum, and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08 ± 0.35) km, (0.52 ± 0.10) km and (2.10 ± 0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements on board commercial aircrafts (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum, and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure.
Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong
2011-06-01
Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent plastic strains are reduced; and (3) the maximum first principal stresses for certain burnup at the matrix or the cladding are lower than the ones without the hardening effect, and the differences are found to increase with burnup; and the variation rules of the interfacial stresses are similar.
Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi
NASA Technical Reports Server (NTRS)
Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Qiu, Shipeng; Vaidyanathan, Raj; Gaydosh, Darrell; Garg, Anita
2011-01-01
Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 113 C, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 C. The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 290 C. In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.
Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants.
Kaspari, Michael; Clay, Natalie A; Lucas, Jane; Revzen, Shai; Kay, Adam; Yanoviak, Stephen P
2016-04-01
We studied the Thermal Performance Curves (TPCs) of 87 species of rainforest ants and found support for both the Thermal Adaptation and Phosphorus-Tolerance hypotheses. TPCs relate a fitness proxy (here, worker speed) to environmental temperature. Thermal Adaptation posits that thermal generalists (ants with flatter, broader TPCs) are favored in the hotter, more variable tropical canopy compared to the cooler, less variable litter below. As predicted, species nesting in the forest canopy 1) had running speeds less sensitive to temperature; 2) ran over a greater range of temperatures; and 3) ran at lower maximum speeds. Tradeoffs between tolerance and maximum performance are often invoked for constraining the evolution of thermal generalists. There was no evidence that ant species traded off thermal tolerance for maximum speed, however. Phosphorus-Tolerance is a second mechanism for generating ectotherms able to tolerate thermal extremes. It posits that ants active at high temperatures invest in P-rich machinery to buffer their metabolism against thermal extremes. Phosphorus content in ant tissue varied three-fold, and as predicted, temperature sensitivity was lower and thermal range was higher in P-rich species. Combined, we show how the vertical distribution of hot and variable vs. cooler and stable microclimates in a single forest contribute to a diversity of TPCs and suggest that a widely varying P stoichiometry among these ants may drive some of these differences.
Sahoo, Krushna Chandra; Sahoo, Soumyakanta; Marrone, Gaetano; Pathak, Ashish; Lundborg, Cecilia Stålsby; Tamhankar, Ashok J.
2014-01-01
Skin and soft tissue infections caused by Staphylococcus aureus (SA-SSTIs) including methicillin-resistant Staphylococcus aureus (MRSA) have experienced a significant surge all over the world. Changing climatic factors are affecting the global burden of dermatological infections and there is a lack of information on the association between climatic factors and MRSA infections. Therefore, association of temperature and relative humidity (RH) with occurrence of SA-SSTIs (n = 387) and also MRSA (n = 251) was monitored for 18 months in the outpatient clinic at a tertiary care hospital located in Bhubaneswar, Odisha, India. The Kirby-Bauer disk diffusion method was used for antibiotic susceptibility testing. Time-series analysis was used to investigate the potential association of climatic factors (weekly averages of maximum temperature, minimum temperature and RH) with weekly incidence of SA-SSTIs and MRSA infections. The analysis showed that a combination of weekly average maximum temperature above 33 °C coinciding with weekly average RH ranging between 55% and 78%, is most favorable for the occurrence of SA-SSTIs and MRSA and within these parameters, each unit increase in occurrence of MRSA was associated with increase in weekly average maximum temperature of 1.7 °C (p = 0.044) and weekly average RH increase of 10% (p = 0.097). PMID:25177823
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2010 CFR
2010-07-01
...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2011 CFR
2011-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2013 CFR
2013-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2010 CFR
2010-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2014 CFR
2014-07-01
...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2011 CFR
2011-07-01
...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2012 CFR
2012-07-01
...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2012 CFR
2012-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2014 CFR
2014-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2013 CFR
2013-07-01
...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...
Process for hydrocracking carbonaceous material to provide fuels or chemical feed stock
Duncan, Dennis A.
1980-01-01
A process is disclosed for hydrocracking coal or other carbonaceous material to produce various aromatic hydrocarbons including benzene, toluene, xylene, ethylbenzene, phenol and cresols in variable relative concentrations while maintaining a near constant maximum temperature. Variations in relative aromatic concentrations are achieved by changing the kinetic severity of the hydrocracking reaction by altering the temperature profile up to and quenching from the final hydrocracking temperature. The relative concentration of benzene to the alkyl and hydroxyl aromatics is increased by imposing increased kinetic severity above that corresponding to constant heating rate followed by immediate quenching at about the same rate to below the temperature at which dehydroxylation and dealkylation reactions appreciably occur. Similarly phenols, cresols and xylenes are produced in enhanced concentrations by adjusting the temperature profile to provide a reduced kinetic severity relative to that employed when high benzene concentrations are desired. These variations in concentrations can be used to produce desired materials for chemical feed stocks or for fuels.
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2013-01-01
Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.
Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components
NASA Technical Reports Server (NTRS)
Campbell, J. E.
1972-01-01
A set of conditions in which 90 C was a more lethal temperature than 125 C for the destruction of Bacillus subtilis var. niger was identified as a function of relative humidity, with maximum effectiveness at 100% R.H. A systematic study of the influence of head-space moisture and temperature on the destruction of B. subtilis var. niger is reported.
Exhaust-Gas Pressure and Temperature Survey of F404-GE-400 Turbofan Engine
NASA Technical Reports Server (NTRS)
Walton, James T.; Burcham, Frank W., Jr.
1986-01-01
An exhaust-gas pressure and temperature survey of the General Electric F404-GE-400 turbofan engine was conducted in the altitude test facility of the NASA Lewis Propulsion System Laboratory. Traversals by a survey rake were made across the exhaust-nozzle exit to measure the pitot pressure and total temperature. Tests were performed at Mach 0.87 and a 24,000-ft altitude and at Mach 0.30 and a 30,000-ft altitude with various power settings from intermediate to maximum afterburning. Data yielded smooth pressure and temperature profiles with maximum jet temperatures approximately 1.4 in. inside the nozzle edge and maximum jet temperatures from 1 to 3 in. inside the edge. A low-pressure region located exactly at engine center was noted. The maximum temperature encountered was 3800 R.
Influence of geomagnetic activity on mesopause temperature over Yakutia
NASA Astrophysics Data System (ADS)
Gavrilyeva, Galina; Ammosov, Petr
2018-03-01
The long-term temperature changes of the mesopause region at the hydroxyl molecule OH (6-2) nighttime height and its connection with the geomagnetic activity during the 23rd and beginning of the 24th solar cycles are presented. Measurements were conducted with an infrared digital spectrograph at the Maimaga station (63° N, 129.5° E). The hydroxyl rotational temperature (TOH) is assumed to be equal to the neutral atmosphere temperature at the altitude of ˜ 87 km. The average temperatures obtained for the period 1999 to 2015 are considered. The season of observations starts at the beginning of August and lasts until the middle of May. The maximum of the seasonally averaged temperatures is delayed by 2 years relative to the maximum of the solar radio emission flux (wavelength of 10.7 cm), and correlates with a change in geomagnetic activity (Ap index). Temperature grouping in accordance with the geomagnetic activity level showed that in years with high activity (Ap > 8), the mesopause temperature from October to February is about 10 K higher than in years with low activity (Ap < = 8). Cross-correlation analysis showed no temporal shift between geomagnetic activity and temperature. The correlation coefficient is equal to 0.51 at the 95 % level.
NASA Astrophysics Data System (ADS)
Ilić, L.; Kuzmanoski, M.; Kolarž, P.; Nina, A.; Srećković, V.; Mijić, Z.; Bajčetić, J.; Andrić, M.
2018-06-01
Measurements of atmospheric parameters were carried out during the partial solar eclipse (51% coverage of solar disc) observed in Belgrade on 20 March 2015. The measured parameters included height of the planetary boundary layer (PBL), meteorological parameters, solar radiation, surface ozone and air ions, as well as Very Low Frequency (VLF, 3-30 kHz) and Low Frequency (LF, 30-300 kHz) signals to detect low-ionospheric plasma perturbations. The observed decrease of global solar and UV-B radiation was 48%, similar to the solar disc coverage. Meteorological parameters showed similar behavior at two measurement sites, with different elevations and different measurement heights. Air temperature change due to solar eclipse was more pronounced at the lower measurement height, showing a decrease of 2.6 °C, with 15-min time delay relative to the eclipse maximum. However, at the other site temperature did not decrease; its morning increase ceased with the start of the eclipse, and continued after the eclipse maximum. Relative humidity at both sites remained almost constant until the eclipse maximum and then decreased as the temperature increased. The wind speed decreased and reached minimum 35 min after the last contact. The eclipse-induced decrease of PBL height was about 200 m, with minimum reached 20 min after the eclipse maximum. Although dependent on UV radiation, surface ozone concentration did not show the expected decrease, possibly due to less significant influence of photochemical reactions at the measurement site and decline of PBL height. Air-ion concentration decreased during the solar eclipse, with minimum almost coinciding with the eclipse maximum. Additionally, the referential Line-of-Sight (LOS) radio link was set in the area of Belgrade, using the carrier frequency of 3 GHz. Perturbation of the receiving signal level (RSL) was observed on March 20, probably induced by the solar eclipse. Eclipse-related perturbations in ionospheric D-region were detected based on the VLF/LF signal variations, as a consequence of Lyα radiation decrease.
Fu, Qian; Fukushima, Naoya; Maeda, Haruo; Sato, Kozo; Kobayashi, Hajime
2015-01-01
We examined whether a hyperthermophilic microbial fuel cell (MFC) would be technically feasible. Two-chamber MFC reactors were inoculated with subsurface microorganisms indigenous to formation water from a petroleum reservoir and were started up at operating temperature 80 °C. The MFC generated a maximum current of 1.3 mA 45 h after the inoculation. Performance of the MFC improved with an increase in the operating temperature; the best performance was achieved at 95 °C with the maximum power density of 165 mWm(-2), which was approximately fourfold higher than that at 75 °C. Thus, to our knowledge, our study is the first to demonstrate generation of electricity in a hyperthermophilic MFC (operating temperature as high as 95 °C). Scanning electron microscopy showed that filamentous microbial cells were attached on the anode surface. The anodic microbial consortium showed limited phylogenetic diversity and primarily consisted of hyperthermophilic bacteria closely related to Caldanaerobacter subterraneus and Thermodesulfobacterium commune.
Wang, Qing; Spicer, Robert A; Yang, Jian; Wang, Yu-Fei; Li, Cheng-Sen
2013-12-01
Eocene palynological samples from 37 widely distributed sites across China were analysed using co-existence approach to determine trends in space and time for seven palaeoclimate variables: Mean annual temperature, mean annual precipitation, mean temperature of the warmest month, mean temperature of the coldest month, mean annual range of temperature, mean maximum monthly precipitation and mean minimum monthly precipitation. Present day distributions and observed climates within China of the nearest living relatives of the fossil forms were used to find the range of a given variable in which a maximum number of taxa can coexist. Isotherm and isohyet maps for the early, middle and late Eocene were constructed. These illustrate regional changing patterns in thermal and precipitational gradients that may be interpreted as the beginnings of the modern Asian Monsoon system, and suggest that the uplift of parts of the Tibetan Plateau appear to have taken place by the middle to late Eocene. © 2013 John Wiley & Sons Ltd.
Doping reaction of PH3 and B2H6 with Si(100)
NASA Astrophysics Data System (ADS)
Yu, Ming L.; Vitkavage, D. J.; Meyerson, B. S.
1986-06-01
The reaction of phosphine PH3 and diborane B2H6 on Si(100) surfaces was studied by surface analytical techniques in relation to the in situ doping process in the chemical vapor deposition of silicon. Phosphine chemisorbs readily either nondissociatively at room temperature or dissociatively with the formation of silicon-hydrogen bonds at higher temperatures. Hydrogen can be desorbed at temperatures above 400 °C to generate a phosphorus layer. Phosphorus is not effective in shifting the Fermi level until the coverage reaches 2×1014/cm2. A maximum shift of 0.45 eV toward the conduction band was observed. In contrast, diborane has a very small sticking coefficient and the way to deposit boron is to decompose diborane directly on the silicon surface at temperatures above 600 °C. Boron at coverages less than 2×1014/cm2 is very effective in shifting the Fermi level toward the valence band and a maximum change of 0.4 eV was observed.
Controlling a rabbet load and air/oil seal temperatures in a turbine
Schmidt, Mark Christopher
2002-01-01
During a standard fired shutdown of a turbine, a loaded rabbet joint between the fourth stage wheel and the aft shaft of the machine can become unloaded causing a gap to occur due to a thermal mismatch at the rabbet joint with the bearing blower turned on. An open or unloaded rabbet could cause the parts to move relative to each other and therefore cause the rotor to lose balance. If the bearing blower is turned off during a shutdown, the forward air/oil seal temperature may exceed maximum design practice criterion due to "soak-back." An air/oil seal temperature above the established maximum design limits could cause a bearing fire to occur, with catastrophic consequences to the machine. By controlling the bearing blower according to an optimized blower profile, the rabbet load can be maintained, and the air/oil seal temperature can be maintained below the established limits. A blower profile is determined according to a thermodynamic model of the system.
Thermopower and magnetocaloric properties in NdSrMnO/CrO3 composites
NASA Astrophysics Data System (ADS)
Ahmed, A. M.; Mohamed, H. F.; Paixão, J. A.; Mohamed, Sara A.
2018-06-01
The thermoelectric power (TEP) and magnetocaloric effect (MCE) for (Nd0.6Sr0.4MnO3)1-x/(CrO3)x composites have been measured. The TEP measurements show a negative sign value of the Seebeck coefficient (S), in microvolts. TEP data construe in the low range of temperature by the magnon and phonon drag model, whereas at high temperature by small polaron conduction mechanism. Magnetic measurements exhibit that all composites show a paramagnetic-ferromagnetic transition with decreasing temperature. The Arrott plots of composites reveal the occurrence of a second order phase transition. The maximum value of magnetic entropy change (ΔS) is 2.37 J kg-1 K-1, achieved fore the composite with x = 0.015. Moreover, the maximum value of relative cooling power (RCP) is 122.1 J kg-1, achieved for the composite with x = 0.020. These composites may be appropriate for magnetic application near room temperature.
Claireaux, Guy; Couturier, Christine; Groison, Anne-Laure
2006-09-01
This study is an attempt to gain an integrated understanding of the interactions between temperature, locomotion activity and metabolism in the European sea bass (Dicentrarchus labrax). To our knowledge this study is among the few that have investigated the influence of the seasonal changes in water temperature on swimming performance in fish. Using a Brett-type swim-tunnel respirometer the relationship between oxygen consumption and swimming speed was determined in fish acclimatised to 7, 11, 14, 18, 22, 26 and 30 degrees C. The corresponding maximum swimming speed (U(max)), optimal swimming speed (U(opt)), active (AMR) and standard (SMR) metabolic rates as well as aerobic metabolic scope (MS) were calculated. Using simple mathematical functions, these parameters were modelled as a function of water temperature and swimming speed. Both SMR and AMR were positively related to water temperature up to 24 degrees C. Above 24 degrees C SMR and AMR levelled off and MS tended to decrease. We found a tight relationship between AMR and U(max) and observed that raising the temperature increased AMR and increased swimming ability. However, although fish swam faster at high temperature, the net cost of transport (COT(net)) at a given speed was not influence by the elevation of the water temperature. Although U(opt) doubled between 7 degrees C and 30 degrees C (from 0.3 to 0.6 m s(-1)), metabolic rate at U(opt) represented a relatively constant fraction of the animal active metabolic rate (40-45%). A proposed model integrates the effects of water temperature on the interaction between metabolism and swimming performance. In particular the controlling effect of temperature on AMR is shown to be the key factor limiting maximal swimming speed of sea bass.
Crops Models for Varying Environmental Conditions
NASA Technical Reports Server (NTRS)
Jones, Harry; Cavazzoni, James; Keas, Paul
2001-01-01
New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allows changes in light energy but uses a less accurate linear approximation. The simulation outputs of the new MEC models for constant nominal environmental conditions are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have realistic exponential canopy growth, and have corrected harvest dates for potato and tomato. The new MEC models indicate that the maximum edible biomass per meter squared per day is produced at the maximum allowed carbon dioxide level, the nominal temperatures, and the maximum light input. Reducing the carbon dioxide level from the maximum to the minimum allowed in the model reduces crop production significantly. Increasing temperature decreases production more than it decreases the time to harvest, so productivity in edible biomass per meter squared per day is greater at nominal than maximum temperatures, The productivity in edible biomass per meter squared per day is greatest at the maximum light energy input allowed in the model, but the edible biomass produced per light energy input unit is lower than at nominal light levels. Reducing light levels increases light and power use efficiency. The MEC models suggest we can adjust the light energy day-to- day to accommodate power shortages or Lise excess power while monitoring and controlling edible biomass production.
NASA Astrophysics Data System (ADS)
Suhaila, Jamaludin; Yusop, Zulkifli
2017-06-01
Most of the trend analysis that has been conducted has not considered the existence of a change point in the time series analysis. If these occurred, then the trend analysis will not be able to detect an obvious increasing or decreasing trend over certain parts of the time series. Furthermore, the lack of discussion on the possible factors that influenced either the decreasing or the increasing trend in the series needs to be addressed in any trend analysis. Hence, this study proposes to investigate the trends, and change point detection of mean, maximum and minimum temperature series, both annually and seasonally in Peninsular Malaysia and determine the possible factors that could contribute to the significance trends. In this study, Pettitt and sequential Mann-Kendall (SQ-MK) tests were used to examine the occurrence of any abrupt climate changes in the independent series. The analyses of the abrupt changes in temperature series suggested that most of the change points in Peninsular Malaysia were detected during the years 1996, 1997 and 1998. These detection points captured by Pettitt and SQ-MK tests are possibly related to climatic factors, such as El Niño and La Niña events. The findings also showed that the majority of the significant change points that exist in the series are related to the significant trend of the stations. Significant increasing trends of annual and seasonal mean, maximum and minimum temperatures in Peninsular Malaysia were found with a range of 2-5 °C/100 years during the last 32 years. It was observed that the magnitudes of the increasing trend in minimum temperatures were larger than the maximum temperatures for most of the studied stations, particularly at the urban stations. These increases are suspected to be linked with the effect of urban heat island other than El Niño event.
Overload characteristics of paper-polypropylene-paper cable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, A.
1990-09-01
The short-time rating of PPP pipe-type cable may be lower than the equivalent paper cable sized to carry the same normal load. The ratings depend on the relative conductor sizes and the maximum allowable conductor temperatures of the insulation. The insulation thermal resistivity may be a significant parameter for overload times of approximately one hour and should be verified for PPP insulation. The thermal capacitance temperature characteristic of PPP insulation is not known. However, the overload ratings are not very sensitive to this parameter. Overload ratings are given for maximum conductor temperatures from 105 C to 130 C. Use ofmore » ratings based on temperatures greater than 105 C would require testing to determine the extent of degradation of the insulation at these higher temperatures. PPP-insulated cable will be thermally stable over a wider range of operating conditions (voltage and current) compared with paper-insulated cable. The short-circuit ratings of PPP- and paper-insulated cable systems and the positive/negative and zero sequence impedances are compared. 21 refs., 22 figs., 5 tabs.« less
Prediction Based Proactive Thermal Virtual Machine Scheduling in Green Clouds
Kinger, Supriya; Kumar, Rajesh; Sharma, Anju
2014-01-01
Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated. PMID:24737962
Effects of radiofrequency probe application on irrigation fluid temperature in the wrist joint.
Sotereanos, Dean G; Darlis, Nickolaos A; Kokkalis, Zinon T; Zanaros, George; Altman, Gregory T; Miller, Mark Carl
2009-12-01
Radiofrequency (RF) probes used in wrist arthroscopy may raise joint fluid temperature, increasing the risk of capsular and ligamentous damage. The purposes of the current study were to measure joint fluid temperature during wrist arthroscopy with the use of RF probes, and to determine whether using an outlet portal will reduce the maximum temperature. We performed wrist arthroscopy on 8 cadaveric arms. Ablation and coagulation cycles using RF probe were performed at documented locations within the joint. This was done for 60-second intervals on both the radial and ulnar side of the wrist, to mimic clinical practice. We used 4 fiberoptic phosphorescent probes to measure temperature (radial, ulnar, inflow-tube, and outflow-tube probes) and measured joint fluid temperature with and without outflow. There was a significant difference between wrists with and without outflow when examining maximum ablation temperatures (p < .002). All specimens showed higher maximum and average ablation temperatures without outflow. Maximum joint temperatures, greater than 60 degrees C, were observed in only no-outflow conditions. In performing RF ablation during wrist arthroscopy, the use of an outlet portal reduces the joint fluid temperature. Without an outlet portal, maximum temperatures can exceed desirable levels when using ablation; such temperatures have the potential to damage adjacent tissues. It is useful to maintain adequate outflow when using the radiofrequency probes during wrist arthroscopy.
Design of Kinetic Energy Projectiles for Structural Integrity
1981-09-01
wear, and good pressure sealing experience. Unfortunately, the constitutive relations for these materials are highly temperature and rate of loading...41’ M IA 0 41 Lii uci a.O 49= z 445 Before any grooves are dimensioned, the maximum shear stress at the interface must be determined from a finite...concentrations in these sensitive materials. Filet radii at the root of the tooth should be increased to the maximum size consistent with good fit between
Superconductivity-related insulating behavior.
Sambandamurthy, G; Engel, L W; Johansson, A; Shahar, D
2004-03-12
We present the results of an experimental study of superconducting, disordered, thin films of amorphous indium oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (B). We find that the high-B insulator exhibits activated transport with a characteristic temperature, TI. TI has a maximum value (TpI) that is close to the superconducting transition temperature (Tc) at B=0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. Tp(I) and Tc display opposite dependences on the disorder strength.
The response of middle atmospheric ozone to solar UV irradiance variations with a period of 27 days
NASA Technical Reports Server (NTRS)
Chen, LI; Brasseur, Guy; London, Julius
1994-01-01
A one-dimensional photochemical-dynamical-radiative time-dependent model was used to study the response of middle atmospheric temperature and ozone to solar UV irradiance variations with the period of 27 days. The model solar UV O(x), HO(x), NO(x), and CIO(x)families and modeled solar UV variations. The amplitude of the primary temperature response to the solar UV variation is plus 0.4 K at 85-90 km with a phase lag of about 6 days. A secondary maximum response of plus 0.3 K at 45-50 km appears with a phase lag of 1 day. There is a maximum positive ozone response to the 27-day solar UV oscillation of 2.5 percent at 80-90 km with a phase lag of about 10 days after the solar irradiance maximum. At 70 km the ozone response is about 1.2 percent and is out of phase with the solar variation. In the upper stratosphere (40-50 km) the relative ozone variation is small, about 0.2 percent to 0.3 percent, and there is a negative phase of about 4 days between the ozone and solar oscillations. These oscillations are in phase in the middle stratosphere (35-40 km) where there is again a maximum relative response of about 0.6 percent. The reasons for these ozone amplitude and phase variations are discussed.
Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum.
Currano, Ellen D; Wilf, Peter; Wing, Scott L; Labandeira, Conrad C; Lovelock, Elizabeth C; Royer, Dana L
2008-02-12
The Paleocene-Eocene Thermal Maximum (PETM, 55.8 Ma), an abrupt global warming event linked to a transient increase in pCO2, was comparable in rate and magnitude to modern anthropogenic climate change. Here we use plant fossils from the Bighorn Basin of Wyoming to document the combined effects of temperature and pCO2 on insect herbivory. We examined 5,062 fossil leaves from five sites positioned before, during, and after the PETM (59-55.2 Ma). The amount and diversity of insect damage on angiosperm leaves, as well as the relative abundance of specialized damage, correlate with rising and falling temperature. All reach distinct maxima during the PETM, and every PETM plant species is extensively damaged and colonized by specialized herbivores. Our study suggests that increased insect herbivory is likely to be a net long-term effect of anthropogenic pCO2 increase and warming temperatures.
Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Turner, T. N.
1979-01-01
Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.
Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load.
Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai
2016-10-13
This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C.
NASA Astrophysics Data System (ADS)
Tian, D.; Cammarano, D.
2017-12-01
Modeling changes of crop production at regional scale is important to make adaptation measures for sustainably food supply under global change. In this study, we explore how changing climate extremes in the 20th and 21st century affect maize (summer crop) and wheat (winter crop) yields in an agriculturally important region: the southeast United States. We analyze historical (1950-1999) and projected (2006-2055) precipitation and temperature extremes by calculating the changes of 18 climate extreme indices using the statistically downscaled CMIP5 data from 10 general circulation models (GCMs). To evaluate how these climate extremes affect maize and wheat yields, historical baseline and projected maize and wheat yields under RCP4.5 and RCP8.5 scenarios are simulated using the DSSAT-CERES maize and wheat models driven by the same downscaled GCMs data. All of the changes are examined at 110 locations over the study region. The results show that most of the precipitation extreme indices do not have notable change; mean precipitation, precipitation intensity, and maximum 1-day precipitation are generally increased; the number of rainy days is decreased. The temperature extreme indices mostly showed increased values on mean temperature, number of high temperature days, diurnal temperature range, consecutive high temperature days, maximum daily maximum temperature, and minimum daily minimum temperature; the number of low temperature days and number of consecutive low temperature days are decreased. The conditional probabilistic relationships between changes in crop yields and changes in extreme indices suggested different responses of crop yields to climate extremes during sowing to anthesis and anthesis to maturity periods. Wheat yields and crop water productivity for wheat are increased due to an increased CO2 concentration and minimum temperature; evapotranspiration, maize yields, and crop water productivity for wheat are decreased owing to the increased temperature extremes. We found the effects of precipitation changes on both yields are relatively uncertain.
Soil and air temperatures for different habitats in Mount Rainier National Park.
Sarah E. Greene; Mark Klopsch
1985-01-01
This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...
NASA Astrophysics Data System (ADS)
Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van
2018-01-01
Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.
NASA Astrophysics Data System (ADS)
Viana, Liviany; Herdies, Dirceu; Muller, Gabriela
2017-04-01
An observational study was carried out to quantify the events of cold air outbreak moving above the Equator from 1980 to 2013 during the austral winter period (May, June, July, August and September), and later analyzed the behavior of the circulation responsible for this displacement. The observational datasets from the Sector of Climatological studies of the Institute of Airspace Control of the city of Iauarete (0.61N, 69.0W; 120m), located at the extreme northern of the Brazilian Amazon Basin, were used for the analyzes. The meteorological variables used were the temperatures minimum, maximum and maximum atmospheric pressure. A new methodology was used to identify these events, calculated by the difference between the monthly average and 2 (two) standard deviations for the extremes of the air temperature, and the sum of 1 (one) standard deviation for the maximum atmospheric pressure. As a result, a total of 11 cold events were recorded that reached the extreme northern of the Brazilian Amazon Basin, with values recorded at a minimum temperature of 17.8 °C, at the maximum temperature of 21.0 °C and maximum atmospheric pressure reaching 1021.2 hPa. These reductions and augmentation are equivalent to the negative anomalies of 5.9 and 8.7 °C at the minimum and maximum temperatures, respectively, while a positive anomaly of 7.1 hPa was observed at the maximum pressure. In relation to the dynamic behavior of large-scale circulation, a Rossby wave-type configuration propagating from west to east over subtropical latitudes was observed from the European Center for Medium-Range Weather Forecast (ECMWF) since the days before the arrival of the event in the city of Iauarete. This behavior was observed both in the anomalies of the gepotencial (250 hPa and 850 hPa) and in the southern component of the wind (250 hPa and 850 hPa), both presenting statistical significance of 99 % (Student's T test). Therefore, a new criterion for the identification of "friagens" in the tropical latitude has been able to represent the effects of colds air outbreak and the advancement of the cold air mass, which are subsidized by the large-scale circulation, and consequently contribute to the modifications in the weather and the life of the population over this Equatorial region.
The coronal structure of active regions
NASA Technical Reports Server (NTRS)
Landini, M.; Monsignori Fossi, B. C.; Krieger, A.; Vaiana, G. S.
1975-01-01
A four-parameter model, which assumes a Gaussian dependence of both temperature and pressure on distance from center, is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature, the maximum pressure, the width of the pressure distribution, and the width of the temperature distribution. The maximum temperature ranges from 2.2 to 2.8 million K, and the maximum density from 2 to 9 by 10 to the 9th power per cu cm. The range of the pressure-distribution width is from 2 to 4 by 10 to the 9th power cm and that of the temperature-distribution width from 2 to 7.
Rosenthal, David M; Ruiz-Vera, Ursula M; Siebers, Matthew H; Gray, Sharon B; Bernacchi, Carl J; Ort, Donald R
2014-09-01
The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
[New methods for determining the relative load due to physical effort of the human body].
Szubert, Józef; Szubert, Sławomir; Koszada-Włodarczyk, Wiesława; Bortkiewicz, Alicja
2014-01-01
The relative physical load (% VO2max) is the quotient of oxygen uptake (Vo2) during physical effort and maximum oxygen uptake (VO2max) by the human body. For this purpose the stress test must be performed. The relative load shows a high correlation with minute ventilation, cardiac output, heart rate, stroke volume, increased concentrations of catecholamines in the blood, inner temperature, weight, height and human body surface area. The relative load is a criterion for the maximum workloads admissible for healthy and sick workers. Besides, the classification of effort can be more precise when based on the relative load than on the energy output. Based on our own and international empirical evidence and the laws of heat transfer and fluid mechanics, a model of temperature control system has been developed, involving the elements of human cardiovascular and respiratory systems. Using this model, we have been able to develop our own methods of determining the relative load, applying only the body core temperature (Tw) or heart rate within one minute (HR), body mass (m), height (H), and body surface area (AD) instead of VO,max. The values of the relative physical load (% VO2max) obtained by using our own methods do not differ significantly from those obtained by other methods and by other researchers. The developed methods for determining the relative physical load (% VO2max) do not require the exercise test to be performed, therefore, they may be considered (after verification in an experimental study) a feasible alternative to current methods.
Distant Massive Clusters and Cosmology
NASA Technical Reports Server (NTRS)
Donahue, Megan
1999-01-01
We present a status report of our X-ray study and analysis of a complete sample of distant (z=0.5-0.8), X-ray luminous clusters of galaxies. We have obtained ASCA and ROSAT observations of the five brightest Extended Medium Sensitivity (EMSS) clusters with z > 0.5. We have constructed an observed temperature function for these clusters, and measured iron abundances for all of these clusters. We have developed an analytic expression for the behavior of the mass-temperature relation in a low-density universe. We use this mass-temperature relation together with a Press-Schechter-based model to derive the expected temperature function for different values of Omega-M. We combine this analysis with the observed temperature functions at redshifts from 0 - 0.8 to derive maximum likelihood estimates for the value of Omega-M. We report preliminary results of this analysis.
Arduini, Agnese; Redaelli, Veronica; Luzi, Fabio; Dall'Olio, Stefania; Pace, Vincenzo; Nanni Costa, Leonardo
2017-02-10
In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min), 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI) was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score ( p < 0.05), which increased on quarters and whole carcasses with increasing THI class. The results of this study on short-distance transport of Italian heavy pigs highlighted the need to control and ameliorate the environmental conditions in the trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.
Tropical climate at the last glacial maximum inferred from glacier mass-balance modeling
Hostetler, S.W.; Clark, P.U.
2000-01-01
Model-derived equilibrium line altitudes (ELAs) of former tropical glaciers support arguments, based on other paleoclimate data, for both the magnitude and spatial pattern of terrestrial cooling in the tropics at the last glacial maximum (LGM). Relative to the present, LGM ELAs were maintained by air temperatures that were 3.5??to 6.6 ??C lower and precipitation that ranged from 63% wetter in Hawaii to 25% drier on Mt. Kenya, Africa. Our results imply the need for a ~3 ??C cooling of LGM sea surface temperatures in the western Pacific warm pool. Sensitivity tests suggest that LGM ELAs could have persisted until 16,000 years before the present in the Peruvian Andes and on Papua, New Guinea.
Increases in maximum stream temperatures after slash burning in a small experimental watershed.
Al Levno; Jack Rothacher
1969-01-01
The first year after slash was burned on a 237-acre clearcut watershed in the Cascade Range of Oregon, average maximum water temperatures increased 13°, 14°, and 12°F, during June, July, and August. A maximum stream temperature of 75°F. persisted for 3 hours on a day in July.
Effect of cyclic conditions on the dynamic oxidation of gas turbine superalloys
NASA Technical Reports Server (NTRS)
Johnston, J. R.; Ashbrook, R. L.
1974-01-01
The effects of operating parameters of a dynamic apparatus used to study oxidation and thermal fatigue of gas turbine materials were studied. IN-100, TD-NiCr, and WI-52 were tested at a maximum temperature of 1,090 deg C. Heating time per cycle was varied from 1/20 hr to 10 hr. Minimum temperatures between heating cycles were room temperature, 430 deg, and 650 deg C. Cooling air velocities were zero, Mach 0.7, and Mach 1. Increasing the number of cycles for a given time at temperature increased weight loss. Thermal fatigue was related to number of cycles more than to time at temperature.
Urticaceae pollen concentration in the atmosphere of North Western Spain.
Vega-Maray, Ana Maria; Valencia-Barrera, Rosa; Fernandez-Gonzalez, Delia; Fraile, Roberto
2003-01-01
Plants of the Urticaceae family can develop into a pest on soils enriched with nitrogen. Urticaceae pollen is a biohazard because it elicits severe pollinosis. Pollen grains were sampled by using a Lanzoni seven-day-recording trap from February 1995-December 2000 in the atmosphere of the city of Ponferrada (Leon, North Western Spain). The Spearman test was used to analyse the statistical correlation between Urticaceae pollen and certain meteorological factors in different main pollination periods. Maximum values are reached in June and July, minimum levels are recorded in January and December. The parameters bearing the greatest positive influence on the occurrence of Urticaceae pollen grains are: temperature (maximum, minimum and mean), humidity (absolute, wet-bulb temperature, dew point and mixing ratio) and south western wind direction; negative parameters are: relative humidity, rainfall and period without wind. The highest correlation coefficients were obtained with temperature and wet-bulb. Absolute humidity and wet-bulb temperature yielded better correlation than relative humidity; hence, these two parameters must be included in this type of study. The use of one main pollination period or another in statistical analysis has an influence on the coefficient value. The behaviour of the pollen grains in the atmosphere during the year also influences the results.
USSR Report, Physics and Mathematics.
1987-01-14
polarization distribution in these crystals at a temperature above the 70°C phase transition point corresponding to maximum dielectric permittivity ...are derived theoretically and matched with experimental data. The theory is based on the relation between complex dielectric permittivity and...Kramers-Heisenberg relation for polarizability. Both real and imaginary parts of dielectric permittivity are evaluated, assuming a valence band fully
Liger, Vladimir V; Mironenko, Vladimir R; Kuritsyn, Yurii A; Bolshov, Mikhail A
2018-05-17
A new algorithm for the estimation of the maximum temperature in a non-uniform hot zone by a sensor based on absorption spectrometry with a diode laser is developed. The algorithm is based on the fitting of the absorption spectrum with a test molecule in a non-uniform zone by linear combination of two single temperature spectra simulated using spectroscopic databases. The proposed algorithm allows one to better estimate the maximum temperature of a non-uniform zone and can be useful if only the maximum temperature rather than a precise temperature profile is of primary interest. The efficiency and specificity of the algorithm are demonstrated in numerical experiments and experimentally proven using an optical cell with two sections. Temperatures and water vapor concentrations could be independently regulated in both sections. The best fitting was found using a correlation technique. A distributed feedback (DFB) diode laser in the spectral range around 1.343 µm was used in the experiments. Because of the significant differences between the temperature dependences of the experimental and theoretical absorption spectra in the temperature range 300⁻1200 K, a database was constructed using experimentally detected single temperature spectra. Using the developed algorithm the maximum temperature in the two-section cell was estimated with accuracy better than 30 K.
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina
2010-01-01
Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).
Impact of automatization in temperature series in Spain and comparison with the POST-AWS dataset
NASA Astrophysics Data System (ADS)
Aguilar, Enric; López-Díaz, José Antonio; Prohom Duran, Marc; Gilabert, Alba; Luna Rico, Yolanda; Venema, Victor; Auchmann, Renate; Stepanek, Petr; Brandsma, Theo
2016-04-01
Climate data records are most of the times affected by inhomogeneities. Especially inhomogeneities introducing network-wide biases are sometimes related to changes happening almost simultaneously in an entire network. Relative homogenization is difficult in these cases, especially at the daily scale. A good example of this is the substitution of manual observations (MAN) by automatic weather stations (AWS). Parallel measurements (i.e. records taken at the same time with the old (MAN) and new (AWS) sensors can provide an idea of the bias introduced and help to evaluate the suitability of different correction approaches. We present here a quality controlled dataset compiled under the DAAMEC Project, comprising 46 stations across Spain and over 85,000 parallel measurements (AWS-MAN) of daily maximum and minimum temperature. We study the differences between both sensors and compare it with the available metadata to account for internal inhomogeneities. The differences between both systems vary much across stations, with patterns more related to their particular settings than to climatic/geographical reasons. The typical median biases (AWS-MAN) by station (comprised between the interquartile range) oscillate between -0.2°C and 0.4 in daily maximum temperature and between -0.4°C and 0.2°C in daily minimum temperature. These and other results are compared with a larger network, the Parallel Observations Scientific Team, a working group of the International Surface Temperatures Initiative (ISTI-POST) dataset, which comprises our stations, as well as others from different countries in America, Asia and Europe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinbeck, S.
Meteorological data collected at SRS since the mid-1960’s have been analyzed for trends in minimum and maximum temperature, heating and cooling degree days, precipitation and relative humidity. The trends in meteorological data collected have been relatively small compared to the interannual variability that is observed. The observed increases, while small, appear to be real (statistically significant). Overnight low temperatures (3.1°F) have increased over twice as fast as the increases in daytime highs (1.4°F). Similarly, there are statistically significant increases in the number of cooling degree days as well. There has been a similar decrease in the number of HDD andmore » freezing days, consistent with the overall increase in overnight low temperatures.« less
BOREAS AES Campbell Scientific Surface Meteorological Data
NASA Technical Reports Server (NTRS)
Atkinson, G. Barrie; Funk, Barrie; Knapp. David E. (Editor); Hall, Forrest G. (Editor)
2000-01-01
Canadian AES personnel collected data related to surface and atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from 14 automated meteorology stations located across the BOREAS region. Included in this data are parameters of date, time, mean sea level pressure, station pressure, temperature, dew point, wind speed, resultant wind speed, resultant wind direction, peak wind, precipitation, maximum temperature in the last hour, minimum temperature in the last hour, pressure tendency, liquid precipitation in the last hour, relative humidity, precipitation from a weighing gauge, and snow depth. Temporally, the data cover the period of August 1993 to December 1996. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.
The characteristics on spatiotemporal variations of summer heatwaves in China
NASA Astrophysics Data System (ADS)
Qixiang, C.; Wang, L.; Wu, S., II; Li, Y.
2016-12-01
Summer heatwaves in China have impacts on forestry, agriculture resource, infrastructure, and heat -related illness and mortality. Based on daily air temperature and relative humidity from the Chinese Meteorological Data Sharing Service System, the spatial distribution and trends of the intensity, duration, and frequency of heatwaves in China during 1960-2015 were analyzed. Considering climatic variability, we defined a heatwave as a spell of consecutive days with maximum temperatures exceeding the relative threshold (temperature percentile) .We also consider a indices combined hot days and tropical nights (CHT), and the humidity-corrected apparent temperature (AT) to analyze the health impacts of hot days in summer. This study shows that while the average frequency and duration of heatwaves has an increasing trend since 1990s, the North China Plain has a decreasing trend. This study also shows that the largest CHT values occur in southeast China, and the largest AT values occur in South China.
Chantre, Guillermo R; Batlla, Diego; Sabbatini, Mario R; Orioli, Gustavo
2009-06-01
Models based on thermal-time approaches have been a useful tool for characterizing and predicting seed germination and dormancy release in relation to time and temperature. The aims of the present work were to evaluate the relative accuracy of different thermal-time approaches for the description of germination in Lithospermum arvense and to develop an after-ripening thermal-time model for predicting seed dormancy release. Seeds were dry-stored at constant temperatures of 5, 15 or 24 degrees C for up to 210 d. After different storage periods, batches of 50 seeds were incubated at eight constant temperature regimes of 5, 8, 10, 13, 15, 17, 20 or 25 degrees C. Experimentally obtained cumulative-germination curves were analysed using a non-linear regression procedure to obtain optimal population thermal parameters for L. arvense. Changes in these parameters were described as a function of after-ripening thermal-time and storage temperature. The most accurate approach for simulating the thermal-germination response of L. arvense was achieved by assuming a normal distribution of both base and maximum germination temperatures. The results contradict the widely accepted assumption of a single T(b) value for the entire seed population. The after-ripening process was characterized by a progressive increase in the mean maximum germination temperature and a reduction in the thermal-time requirements for germination at sub-optimal temperatures. The after-ripening thermal-time model developed here gave an acceptable description of the observed field emergence patterns, thus indicating its usefulness as a predictive tool to enhance weed management tactics.
NASA Astrophysics Data System (ADS)
Tawatsupa, Benjawan; Dear, Keith; Kjellstrom, Tord; Sleigh, Adrian
2014-03-01
We have investigated the association between tropical weather condition and age-sex adjusted death rates (ADR) in Thailand over a 10-year period from 1999 to 2008. Population, mortality, weather and air pollution data were obtained from four national databases. Alternating multivariable fractional polynomial (MFP) regression and stepwise multivariable linear regression analysis were used to sequentially build models of the associations between temperature variable and deaths, adjusted for the effects and interactions of age, sex, weather (6 variables), and air pollution (10 variables). The associations are explored and compared among three seasons (cold, hot and wet months) and four weather zones of Thailand (the North, Northeast, Central, and South regions). We found statistically significant associations between temperature and mortality in Thailand. The maximum temperature is the most important variable in predicting mortality. Overall, the association is nonlinear U-shape and 31 °C is the minimum-mortality temperature in Thailand. The death rates increase when maximum temperature increase with the highest rates in the North and Central during hot months. The final equation used in this study allowed estimation of the impact of a 4 °C increase in temperature as projected for Thailand by 2100; this analysis revealed that the heat-related deaths will increase more than the cold-related deaths avoided in the hot and wet months, and overall the net increase in expected mortality by region ranges from 5 to 13 % unless preventive measures were adopted. Overall, these results are useful for health impact assessment for the present situation and future public health implication of global climate change for tropical Thailand.
Analysis of temperature trends in Northern Serbia
NASA Astrophysics Data System (ADS)
Tosic, Ivana; Gavrilov, Milivoj; Unkašević, Miroslava; Marković, Slobodan; Petrović, Predrag
2017-04-01
An analysis of air temperature trends in Northern Serbia for the annual and seasonal time series is performed for two periods: 1949-2013 and 1979-2013. Three data sets of surface air temperatures: monthly mean temperatures, monthly maximum temperatures, and monthly minimum temperatures are analyzed at 9 stations that have altitudes varying between 75 m and 102 m. Monthly mean temperatures are obtained as the average of the daily mean temperatures, while monthly maximum (minimum) temperatures are the maximum (minimum) values of daily temperatures in corresponding month. Positive trends were found in 29 out of 30 time series, and the negative trend was found only in winter during the period 1979-2013. Applying the Mann-Kendall test, significant positive trends were found in 15 series; 7 in the period 1949-2013 and 8 in the period 1979-2013; and no significant trend was found in 15 series. Significant positive trends are dominated during the year, spring, and summer, where it was found in 14 out of 18 cases. Significant positive trends were found 7, 5, and 3 times in mean, maximum and minimum temperatures, respectively. It was found that the positive temperature trends are dominant in Northern Serbia.
NASA Astrophysics Data System (ADS)
Yang, Chao; Wu, Wei; Wu, Shu-Cheng; Liu, Hong-Bin; Peng, Qing
2014-02-01
Aroma types of flue-cured tobacco (FCT) are classified into light, medium, and heavy in China. However, the spatial distribution of FCT aroma types and the relationships among aroma types, chemical parameters, and climatic variables were still unknown at national scale. In the current study, multi-year averaged chemical parameters (total sugars, reducing sugars, nicotine, total nitrogen, chloride, and K2O) of FCT samples with grade of C3F and climatic variables (mean, minimum and maximum temperatures, rainfall, relative humidity, and sunshine hours) during the growth periods were collected from main planting areas across China. Significant relationships were found between chemical parameters and climatic variables ( p < 0.05). A spatial distribution map of FCT aroma types were produced using support vector machine algorithms and chemical parameters. Significant differences in chemical parameters and climatic variables were observed among the three aroma types based on one-way analysis of variance ( p < 0.05). Areas with light aroma type had significantly lower values of mean, maximum, and minimum temperatures than regions with medium and heavy aroma types ( p < 0.05). Areas with heavy aroma type had significantly lower values of rainfall and relative humidity and higher values of sunshine hours than regions with light and medium aroma types ( p < 0.05). The output produced by classification and regression trees showed that sunshine hours, rainfall, and maximum temperature were the most important factors affecting FCT aroma types at national scale.
21 CFR 172.260 - Oxidized polyethylene.
Code of Federal Regulations, 2013 CFR
2013-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.260 Oxidized polyethylene. Oxidized polyethylene may... by high temperature vapor pressure osmometry; contains a maximum of 5 percent by weight of total...
21 CFR 172.260 - Oxidized polyethylene.
Code of Federal Regulations, 2011 CFR
2011-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.260 Oxidized polyethylene. Oxidized polyethylene may... by high temperature vapor pressure osmometry; contains a maximum of 5 percent by weight of total...
21 CFR 172.260 - Oxidized polyethylene.
Code of Federal Regulations, 2012 CFR
2012-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.260 Oxidized polyethylene. Oxidized polyethylene may... by high temperature vapor pressure osmometry; contains a maximum of 5 percent by weight of total...
Endothermy in the temperate scarab Cyclocephala signaticollis.
Zermoglio, Paula F; Castelo, Marcela K; Lazzari, Claudio R
2018-07-01
The increase in body temperature over that of the environment has been frequently reported in insects, in particular in relation with flight activity. Scarab beetles of the genus Cyclocephala living in tropical areas are known to exploit the heat produced by thermogenic plants, also producing heat by endothermy. Here, we report the first case of endothermy in a species of this genus living in a temperate region, Cyclocephala signaticollis. We characterised the phenomenon in this beetle using infrared thermography and exposing them to different thermal conditions. We evaluated the frequency of endothermic bouts, the nature of their periodic occurrence and their association with the activity cycles of the beetles. We found that endothermy occurs in both males and females in a cyclic fashion, at the beginning of the night, around 21:00 local time. The mean temperature increase was of 9 °C, and the mean duration of the bouts was 7 min. During endothermic bouts, the temperature of the thorax was on average 3.6 °C higher than that of the head and 4.8 °C above that of the abdomen. We found no differences between females and males in the maximum temperature attained and in the duration of the endothermy bouts. The activity period of the beetles extends throughout the whole night, with maximum activity between 22:00 and 23:00. By subjecting the beetles to different light regimes we were able to determine that the rhythm of endothermy is not controlled by the circadian system. Finally, we experimentally tested if by performing endothermy the scarabs try to reach a particular body temperature or if they invest a given amount of energy in heating up, instead. Our results indicate that at lower ambient temperature beetles show higher increase in body temperature, and that endothermy bouts last longer than at relatively higher ambient temperatures. We discuss our findings in relation to the ecology and behaviour of this beetle pest. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of suspension of air-conditioning on airtight-type racks.
Kanzaki, M; Fujieda, M; Furukawa, T
2001-10-01
Although isolation racks are superior to open-type racks in terms of securing breeding conditions for laboratory animals, the contingency-proofing capability of the former has yet to be determined. Therefore, from the view of risk management, we studied the environmental change in isolation racks by forcibly suspending ventilation and air-conditioning and confirming the maximal time length for complete recovery to the original condition after restarting their operations. The isolation racks were placed in a room that was equipped with an independent air-conditioning system. When the inside condition of the racks reached 22-24 degrees C and 59-64% of relative humidity, the air-conditioning and ventilation were forcibly suspended and the subsequent temperature, relative humidity, ammonium and CO2 concentrations in the racks were measured over time. We found that after suspending the air-conditioning and ventilation, it took 40-60 min for temperature, and about 10 min for relative humidity to exceed the maximum values (temperature and relative humidity) referred to in the Showa 58 Nenban Guideline Jikken Doubutsu Shisetsu no Kenchiku oyobi Setsubi (Guidelines of buildings and facilities for experimental animals in Japan; Year 1983 edition). After 17 hr 25 min of the suspension of air-conditioning and ventilation, two rats were found dead. Then, the air-conditioning and ventilation were restarted. It took about 2 hr for temperature, and 50 min for relative humidity to regain the guideline values. The ammonium concentration stayed within the guideline value with a maximum concentration of 2 ppm in the experimental period, whereas the CO2 concentration was found to exceed 9% at the time of animal death.
NASA Astrophysics Data System (ADS)
Wang, Chaolin; Zhong, Shaobo; Zhang, Fushen; Huang, Quanyi
2016-11-01
Precipitation interpolation has been a hot area of research for many years. It had close relation to meteorological factors. In this paper, precipitation from 91 meteorological stations located in and around Yunnan, Guizhou and Guangxi Zhuang provinces (or autonomous region), Mainland China was taken into consideration for spatial interpolation. Multivariate Bayesian maximum entropy (BME) method with auxiliary variables, including mean relative humidity, water vapour pressure, mean temperature, mean wind speed and terrain elevation, was used to get more accurate regional distribution of annual precipitation. The means, standard deviations, skewness and kurtosis of meteorological factors were calculated. Variogram and cross- variogram were fitted between precipitation and auxiliary variables. The results showed that the multivariate BME method was precise with hard and soft data, probability density function. Annual mean precipitation was positively correlated with mean relative humidity, mean water vapour pressure, mean temperature and mean wind speed, negatively correlated with terrain elevation. The results are supposed to provide substantial reference for research of drought and waterlog in the region.
Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling
Wang, Kai; Li, Liwei; Yin, Huaixian; Zhang, Tiezhu; Wan, Wubo
2015-01-01
A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it’s up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process. PMID:26444687
Melting line of polymeric nitrogen
NASA Astrophysics Data System (ADS)
Yakub, L. N.
2013-05-01
We made an attempt to predict location of the melting line of polymeric nitrogen using two equations for Helmholtz free energy: proposed earlier for cubic gauche-structure and developed recently for liquid polymerized nitrogen. The P-T relation, orthobaric densities and latent heat of melting were determined using a standard double tangent construction. The estimated melting temperature decreases with increasing pressure, alike the temperature of molecular-nonmolecular transition in solid. We discuss the possibility of a triple point (solid-molecular fluid-polymeric fluid) at ˜80 GPa and observed maximum of melting temperature of nitrogen.
NASA Astrophysics Data System (ADS)
Abaurrea, J.; Asín, J.; Cebrián, A. C.
2018-02-01
The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.
Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi
NASA Technical Reports Server (NTRS)
Padula, Santo, II; Vaidyanathan, Raj; Gaydosh, Darrell; Noebe, Ronald; Bigelow, Glen; Garg, Anita
2008-01-01
Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. This investigation extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional improvement in the work output of the material, which has a stress-free Af of 113 oC, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted in the aforementioned alloy at various stress levels from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 oC. The data indicated that the amount of applied stress influenced the transformation strain available in the system, as would be expected. However, the maximum temperature reached during the thermal excursion also plays a role in determining the transformation strain, with the maximum transformation strain being developed by thermal cycling to 290 oC. In situ, neutron diffraction showed that the differences in transformation strain were related to differences in martensite texture within the microstructure when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.
High ambient temperature and risk of intestinal obstruction in cystic fibrosis.
Ooi, Chee Y; Jeyaruban, Christina; Lau, Jasmine; Katz, Tamarah; Matson, Angela; Bell, Scott C; Adams, Susan E; Krishnan, Usha
2016-04-01
Distal intestinal obstruction syndrome (DIOS) and constipation in cystic fibrosis (CF) are conditions associated with impaction and/or obstruction by abnormally viscid mucofaecal material within the intestinal lumen. Dehydration has been proposed as a risk factor for DIOS and constipation in CF. The study primarily aimed to determine whether warmer ambient temperature and lower rainfall are risk factors for DIOS and constipation in CF. Hospitalisations for DIOS (incomplete or complete) and/or constipation were retrospectively identified (2000-2012). Genotype, phenotype, temperatures and rainfall data (for the week preceding and season of hospitalisation) were collected. Twenty-seven DIOS (59.3% incomplete; 40.7% complete) and 44 constipation admissions were identified. All admitted patients were pancreatic insufficient. Meconium ileus was significantly more likely in DIOS than constipation (64.7% vs. 33.3%; P = 0.038) and in complete than incomplete DIOS (100% vs. 57.1%; P = 0.04). The maximum temperature of the week before DIOS admission (mean (standard deviation) = 28.0 (5.8) °C) was significantly higher than the maximum temperature of the season of admission (25.2 (3.4) °C; P = 0.002). Similarly, the maximum temperature of the week before hospitalisation for constipation (mean (standard deviation) = 27.9 (6.3) °C) was significantly warmer compared with the season of admission (24.0 (4.1) °C; P < 0.0001). There were no significant differences between levels of rainfall during the week before hospitalisation and the season of admission for both DIOS and constipation. Relatively high ambient temperature may play a role in the pathogenesis of DIOS and constipation in CF. © 2016 The Authors Journal of Paediatrics and Child Health © 2016 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
NASA Astrophysics Data System (ADS)
Banerjee, Krishnarjun; Asthana, Saket; Karuna Kumari, P.; Niranjan, Manish K.
2018-03-01
Lead-free polycrystalline K1/2Bi1/2TiO3 was prepared by the solid state reaction method. Experimentally observed frequencies of Raman modes signified its tetragonal phase, and matched reasonably well with theoretically calculated values. The relaxor nature of this material was observed in the temperature-dependent real part of the permittivity and dielectric loss curve. The value of the degree of diffuseness (1.99) was estimated from the modified Curie-Weiss law confirmed its relaxor behavior. The validation of this behavior was justified by the Vogel-Fülcher relation. The shoulder in the imaginary part of the modulus (M″) and permittivity (ɛ″) spectra revealed the presence of polar nano regions (PNRs). The evidence of PNRs was detectable above freezing temperatures, and became weaker when the temperature exceeded T m (temperature at the maximum of the dielectric constant). The electric field-induced polarization and strain curve showed the stabilization of the long-range ferroelectric order of the specimen at room temperature. Moreover, the discharge energy density and strain were 0.46 J cm-3 and 0.12%, respectively, at the maximum application of the electric field of 115 kV cm-1 at room temperature.
Comparison of infrared canopy temperature in a rubber plantation and tropical rain forest.
Song, Qing-Hai; Deng, Yun; Zhang, Yi -Ping; Deng, Xiao-Bao; Lin, You-Xing; Zhou, Li-Guo; Fei, Xue-Hai; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Gao, Jin-Bo
2017-10-01
Canopy temperature is a result of the canopy energy balance and is driven by climate conditions, plant architecture, and plant-controlled transpiration. Here, we evaluated canopy temperature in a rubber plantation (RP) and tropical rainforest (TR) in Xishuangbanna, southwestern China. An infrared temperature sensor was installed at each site to measure canopy temperature. In the dry season, the maximum differences (T c - T a ) between canopy temperature (T c ) and air temperature (T a ) in the RP and TR were 2.6 and 0.1 K, respectively. In the rainy season, the maximum (T c - T a ) values in the RP and TR were 1.0 and -1.1 K, respectively. There were consistent differences between the two forests, with the RP having higher (T c - T a ) than the TR throughout the entire year. Infrared measurements of T c can be used to calculate canopy stomatal conductance in both forests. The difference in (T c - T a ) at three g c levels with increasing direct radiation in the RP was larger than in the TR, indicating that change in (T c - T a ) in the RP was relatively sensitive to the degree of stomatal closure.
Pitteri, Sharon J.; Chrisman, Paul A.; McLuckey, Scott A.
2005-01-01
In this study, the electron-transfer dissociation (ETD) behavior of cations derived from 27 different peptides (22 of which are tryptic peptides) has been studied in a 3D quadrupole ion trap mass spectrometer. Ion/ion reactions between peptide cations and nitrobenzene anions have been examined at both room temperature and in an elevated temperature bath gas environment to form ETD product ions. From the peptides studied, the ETD sequence coverage tends to be inversely related to peptide size. At room temperature, very high sequence coverage (~100%) was observed for small peptides (≤7 amino acids). For medium-sized peptides composed of 8–11 amino acids, the average sequence coverage was 46%. Larger peptides with 14 or more amino acids yielded an average sequence coverage of 23%. Elevated-temperature ETD provided increased sequence coverage over room-temperature experiments for the peptides of greater than 7 residues, giving an average of 67% for medium-sized peptides and 63% for larger peptides. Percent ETD, a measure of the extent of electron transfer, has also been calculated for the peptides and also shows an inverse relation with peptide size. Bath gas temperature does not have a consistent effect on percent ETD, however. For the tryptic peptides, fragmentation is localized at the ends of the peptides suggesting that the distribution of charge within the peptide may play an important role in determining fragmentation sites. A triply protonated peptide has also been studied and shows behavior similar to the doubly charged peptides. These preliminary results suggest that for a given charge state there is a maximum size for which high sequence coverage is obtained and that increasing the bath gas temperature can increase this maximum. PMID:16131079
NASA Astrophysics Data System (ADS)
Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team
2003-04-01
Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T&P-model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the inter-site variability, regardless whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly time scale we developed a simple T&P&LAI-model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time-step model and explained 50 % of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index.
Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakker, Akke, E-mail: akke.bakker@amc.uva.nl; Kolff, M. Willemijn; Holman, Rebecca
Purpose: To investigate the relationship of thermal skin damage (TSD) to time–temperature isoeffect levels for patients with breast cancer recurrence treated with reirradiation plus hyperthermia (reRT + HT), and to investigate whether the treatment history of previous treatments (scar tissue) is a risk factor for TSD. Methods and Materials: In this observational study, temperature characteristics of hyperthermia sessions were analyzed in 262 patients with recurrent breast cancer treated in the AMC between 2010 and 2014 with reirradiation and weekly hyperthermia for 1 hour. Skin temperature was measured using a median of 42 (range, 29-82) measurement points per hyperthermia session. Results: Sixty-eight patients (26%) developed 79more » sites of TSD, after the first (n=26), second (n=17), third (n=27), and fourth (n=9) hyperthermia session. Seventy percent of TSD occurred on or near scar tissue. Scar tissue reached higher temperatures than other skin tissue (0.4°C, P<.001). A total of 102 measurement points corresponded to actual TSD sites in 35 of 79 sessions in which TSD developed. Thermal skin damage sites had much higher maximum temperatures than non-TSD sites (2.8°C, P<.001). Generalized linear mixed models showed that the probability of TSD is related to temperature and thermal dose values (P<.001) and that scar tissue is more at risk (odds ratio 0.4, P<.001). Limiting the maximum temperature of a measurement point to 43.7°C would mean that the probability of observing TSD was at most 5%. Conclusion: Thermal skin damage during reRT + HT for recurrent breast cancer was related to higher local temperatures and time–temperature isoeffect levels. Scar tissue reached higher temperatures than other skin tissue, and TSD occurred at lower temperatures and thermal dose values in scar tissue compared with other skin tissue. Indeed, TSD developed often on and around scar tissue from previous surgical procedures.« less
Amanda C. Abnee; James A. Thompson; Randall K. Kolka; Elisa M. D' Angelo; Mark S. Coyne
2004-01-01
Soil respiration measurements conducted in the laboratory have been shown to be related to temperature and moisture, with maximum rates at soil temperatures between 25 and 40°C and soil moisture between -0.01 and -0.10 MPa. A preliminary study using forest soils from eastern Kentucky supported the previous research with soil respiration rates greater at 25°C than at 15...
Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D
2011-06-15
The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu
2017-12-01
Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up-down-down-up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.
Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region
NASA Astrophysics Data System (ADS)
Griffiths, G. M.; Chambers, L. E.; Haylock, M. R.; Manton, M. J.; Nicholls, N.; Baek, H.-J.; Choi, Y.; della-Marta, P. M.; Gosai, A.; Iga, N.; Lata, R.; Laurent, V.; Maitrepierre, L.; Nakamigawa, H.; Ouprasitwong, N.; Solofa, D.; Tahani, L.; Thuy, D. T.; Tibig, L.; Trewin, B.; Vediapan, K.; Zhai, P.
2005-08-01
Trends (1961-2003) in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.
Citizen science: Plant and insect phenology with regards to degree-days
USDA-ARS?s Scientific Manuscript database
Daily minimum and maximum temperatures collected from grower-collaborators were used to calculate site specific degree-days. Using our new understanding of Sparganothis phenology, plant phenology were examined relative to moth phenology, allowing us to predict moth development in parallel with plant...
NASA Astrophysics Data System (ADS)
Gentilucci, Matteo
2017-04-01
The end of flowering date (BBCH 69) is an important phenological stage for grapevine (Vitis Vinifera L.), in fact up to this date the growth is focused on the plant and gradually passes on the berries through fruit set. The aim of this study is to perform a model to predict the date of the end of flowering (BBCH69) for some grapevine varieties. This research carried out using three cultivars of grapevine (Maceratino, Montepulciano, Sangiovese) in three different locations (Macerata, Morrovalle and Potenza Picena), places of an equal number of wine farms for the time interval between 2006 and 2013. In order to have reliable temperatures for each location, the data of 6 weather stations near these farms have been interpolated using cokriging methods with elevation as independent variable. The procedure to predict the end of flowering date starts with an investigation of cardinal temperatures typical of each grapevine cultivar. In fact the analysis is characterized by four temperature thresholds (cardinals): minimum activity temperature (TCmin = below this temperature there is no growth for the plant), lower optimal temperature (TLopt = above this temperature there is maximum growth), upper optimal temperature (TUopt = below this temperature there is maximum growth) and maximum activity temperature (TC max = above this temperature there is no growth). Thus this model take into consideration maximum, mean and minimum daily temperatures of each location, relating them with the four above mentioned cultivar temperature thresholds. In this way it has been obtained some possible cases (32) corresponding to as many equations, depending on the position of temperatures compared with the thresholds, in order to calculate the amount of growing degree units (GDU) for each day. Several iterative tests (about 1000 for each cultivar) have been performed, changing the values of temperature thresholds and GDU in order to find the best possible combination which minimizes error between observed and predicted days from budburst to end of flowering. It has been assessed the minimization of error for the predicted dates compared with real ones, calculating some statistical indexes as root mean square error, mean absolute error and coefficient of variation. The procedure led to the identification of four cardinal temperatures and the amount of GDU for each cultivar between BBCH01 (budburst) and BBCH69 (end of flowering). In conclusion, this research has achieved some goals such as the plant response to temperature (same cardinal temperatures for Maceratino and Sangiovese but higher ones for Montepulciano), the interval ranging of growing degree units (from 35 to 38) and the differences between observed and predicted days (ranged from 2 to 3.5), for each grape varieties.
Influence of stream characteristics and grazing intensity on stream temperatures in eastern Oregon.
S.B. Maloney; A.R. Tiedemann; D.A. Higgins; T.M. Quigley; D.B. Marx
1999-01-01
Stream temperatures were measured during summer months, 1978 to 1984, at 12 forested watersheds near John Day, Oregon, to determine temperature characteristics and assess effects of three range management strategies of increasing intensity. Maximum temperatures in streams of the 12 watersheds ranged from 12.5 to 27.8 oC. Maximum stream temperatures on four watersheds...
Pneumatic testing in 45-degree-inclined boreholes in ash-flow tuff near Superior, Arizona
LeCain, G.D.
1995-01-01
Matrix permeability values determined by single-hole pneumatic testing in nonfractured ash-flow tuff ranged from 5.1 to 20.3 * 1046 m2 (meters squared), depending on the gas-injection rate and analysis method used. Results from the single-hole tests showed several significant correlations between permeability and injection rate and between permeability and test order. Fracture permeability values determined by cross-hole pneumatic testing in fractured ash-flow tuff ranged from 0.81 to 3.49 * 1044 m2, depending on injection rate and analysis method used. Results from the cross-hole tests monitor intervals showed no significant correlation between permeability and injection rate; however, results from the injection interval showed a significant correlation between injection rate and permeability. Porosity estimates from the 'cross-hole testing range from 0.8 to 2.0 percent. The maximum temperature change associated with the pneumatic testing was 1.2'(2 measured in the injection interval during cross-hole testing. The maximum temperature change in the guard and monitor intervals was O.Ip C. The maximum error introduced into the permeability values due to temperature fluctuations is approximately 4 percent. Data from temperature monitoring in the borehole indicated a positive correlation between the temperature decrease in the injection interval during recovery testing and the gas-injection rate. The thermocouple psychrometers indicated that water vapor was condensing in the boreholes during testing. The psychrometers in the guard and monitor intervals detected the drier injected gas as an increase in the dry bulb reading. The relative humidity in the test intervals was always higher than the upper measurement limit of the psychrometers. Although the installation of the packer system may have altered the water balance of the borehole, the gas-injection testing resulted in minimal or no changes in the borehole relative humidity.
14 CFR 23.1521 - Powerplant limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...
14 CFR 23.1521 - Powerplant limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...
14 CFR 23.1521 - Powerplant limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...
14 CFR 23.1521 - Powerplant limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...
14 CFR 23.1521 - Powerplant limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...
Temperature changes in dental implants following exposure to hot substances in an ex vivo model.
Feuerstein, Osnat; Zeichner, Kobi; Imbari, Chen; Ormianer, Zeev; Samet, Nachum; Weiss, Ervin I
2008-06-01
The habitual consumption of extremely hot foods and beverages may affect implant treatment modality. Our objectives were to: (i) establish the maximum temperature produced intra-orally while consuming very hot substances and (ii) use these values in an ex vivo model to assess the temperature changes along the implant-bone interface. Temperatures were measured using thermocouples linked to a computer. The thermocouple electrodes were attached to the tooth-gum interface of the interproximal areas in 14 volunteers during consumption of extremely hot foods and beverages. The in vivo measured temperature values obtained were used in an ex vivo model of a bovine mandible block with an implant and with an assembled abutment. Temperatures were measured by thermocouple electrodes attached to five locations, three of them along the implant-bone interface. During consumption of a hot beverage, a maximum temperature of up to 76.3 degrees C was recorded, and a calculated extreme intra-oral temperature of 61.4 degrees C was established. The ex vivo model showed a high correlation between the temperature measured at the abutment and that measured at the abutment-implant interface and inside the implant, reaching maximum temperatures close to 60 degrees C. At the mid-implant-bone and apical implant-bone interfaces, the maximum temperatures measured were 43.3 and 42 degrees C, respectively. The maximum temperatures measured at the implant-bone interfaces reached the temperature threshold of transient changes in bone (42 degrees C). The results of this study support the notion that intra-oral temperatures, developed during the consumption of very hot substances, may be capable of damaging peri-implant tissues.
Apparatus for accurate density measurements of fluids based on a magnetic suspension balance
NASA Astrophysics Data System (ADS)
Gong, Maoqiong; Li, Huiya; Guo, Hao; Dong, Xueqiang; Wu, J. F.
2012-06-01
A new apparatus for accurate pressure, density and temperature (p, ρ, T) measurements over wide ranges of (p, ρ, T) (90 K to 290 K; 0 MPa to 3 MPa; 0 kg/m3 to 2000 kg/m3) is described. This apparatus is based on a magnetic suspension balance which applies the Archimedes' buoyancy principle. In order to verify the new apparatus, comprehensive (p, ρ, T) measurements on pure nitrogen were carried out. The maximum relative standard uncertainty is 0.09% in density. The maximum standard uncertainty in temperature is 5 mK, and that in pressure is 250 Pa for 1.5 MPa and 390 Pa for 3MPa full scale range respectively. The experimental data were compared with selected literature data and good agreements were found.
Shapiro, Lillian L M; Whitehead, Shelley A; Thomas, Matthew B
2017-10-01
Malaria transmission is known to be strongly impacted by temperature. The current understanding of how temperature affects mosquito and parasite life history traits derives from a limited number of empirical studies. These studies, some dating back to the early part of last century, are often poorly controlled, have limited replication, explore a narrow range of temperatures, and use a mixture of parasite and mosquito species. Here, we use a single pairing of the Asian mosquito vector, An. stephensi and the human malaria parasite, P. falciparum to conduct a comprehensive evaluation of the thermal performance curves of a range of mosquito and parasite traits relevant to transmission. We show that biting rate, adult mortality rate, parasite development rate, and vector competence are temperature sensitive. Importantly, we find qualitative and quantitative differences to the assumed temperature-dependent relationships. To explore the overall implications of temperature for transmission, we first use a standard model of relative vectorial capacity. This approach suggests a temperature optimum for transmission of 29°C, with minimum and maximum temperatures of 12°C and 38°C, respectively. However, the robustness of the vectorial capacity approach is challenged by the fact that the empirical data violate several of the model's simplifying assumptions. Accordingly, we present an alternative model of relative force of infection that better captures the observed biology of the vector-parasite interaction. This model suggests a temperature optimum for transmission of 26°C, with a minimum and maximum of 17°C and 35°C, respectively. The differences between the models lead to potentially divergent predictions for the potential impacts of current and future climate change on malaria transmission. The study provides a framework for more detailed, system-specific studies that are essential to develop an improved understanding on the effects of temperature on malaria transmission.
NASA Astrophysics Data System (ADS)
Dul'kin, Evgeniy; Tiagunova, Jenia; Mojaev, Evgeny; Roth, Michael
2018-01-01
[001] lead free relaxor ferroelectrics crystals of Na0.5Bi0.5TiO3-0.06BaTiO3 were studied by means of dielectric and acoustic emission methods in the temperature range of 25-240 °C and under a dc bias electric field up to 0.4 kV/cm. A temperature maximum of the dielectric constant was found near 170 °C, as well as the acoustic emission bursts pointed out to both the depolarization temperature near 120 °C and the temperature, corresponding to the maximum of dielectric constant, near 170 °C. While the depolarization temperature increased linearly, the temperature of the dielectric constant maximum was shown to exhibit a V-shape behavior under an electric field: it initially decreases, reaches a sharp minimum at some small threshold electric field of 0.15 kV/cm, and then starts to increase similar to the Curie temperature of the normal ferroelectrics, as the field enhances. Acoustic emission bursts, accompanying the depolarization temperature, weakened with the enhancing field, whereas the ones accompanying the temperature of the dielectric constant maximum exhibited two maxima: near 0.1 kV/cm and near 0.3 kV/cm. The meaning of these two acoustic emission maxima is discussed.
Effects of Catch-and-Release Angling on Salmonids at Elevated Water Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, James W.; Guy, Christopher S.; Horton, Travis
2010-08-01
Few studies have assessed catch and release mortality of salmonids at water temperatures ≥23°C, despite predictions of warming stream temperatures due to climate change. In addition, the effects of diel temperature fluctuations on salmonid mortality have largely been ignored in catch and release angling studies. The primary objective of this study was to measure catch and release mortality of rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta, and mountain whitefish Prosopium williamsoni in three water temperature treatments; when daily maximum water temperatures were cool (<20°C), warm (20 to 22.9°C), and hot ( 23°C). A secondary objective was to assess catchmore » and release mortality of salmonids angled in morning and evening within water-temperature treatments. These objectives were related to Montana Fish, Wildlife and Parks’ Drought Fishing Closure Policy (DFCP). Angling (fly-fishing only) occurred in the Gallatin and Smith rivers. All angled fish were confined to in-stream holding cages and monitored for mortality for 72 h. Mortality of rainbow trout peaked at 16% in the Gallatin River and 9% in the Smith River during the hot treatment. Mortality of brown trout was less than 5% in all water-temperature treatments in both rivers. Mountain whitefish mortality peaked at 28% in the hot treatment in the Smith River. No mortality for any species occurred in either river when daily maximum water temperatures were <20°C. Mortality of rainbow trout peaked at 16% in the evening hot treatment in the Smith River. Mortality of brown trout and mountain whitefish was not related to time of day. The catch and release mortality values presented here likely represent fishing mortality given that most anglers in southwest Montana practice catch and release angling. The mortality values we observed were lower than predicted (< 30%), given reports in the literature. The difference is likely related to the in situ nature of the study and periods of cooler water temperatures between peaks facilitating recovery from thermal stress.« less
Sanabria, Eduardo A; Vaira, Marcos; Quiroga, Lorena B; Akmentins, Mauricio S; Pereyra, Laura C
2014-04-01
We study the variation in thermal parameters in two contrasting populations Yungas Redbelly Toads (Melanophryniscus rubriventris) with different discrete color phenotypes comparing field body temperatures, critical thermal maximum and heating rates. We found significant differences in field body temperatures of the different morphs. Temperatures were higher in toads with a high extent of dorsal melanization. No variation was registered in operative temperatures between the study locations at the moment of capture and processing. Critical thermal maximum of toads was positively related with the extent of dorsal melanization. Furthermore, we founded significant differences in heating rates between morphs, where individuals with a high extent of dorsal melanization showed greater heating rates than toads with lower dorsal melanization. The color pattern-thermal parameter relationship observed may influence the activity patterns and body size of individuals. Body temperature is a modulator of physiological and behavioral functions in amphibians, influencing daily and seasonal activity, locomotor performance, digestion rate and growth rate. It is possible that some growth constraints may arise due to the relationship of color pattern-metabolism allowing different morphs to attain similar sizes at different locations instead of body-size clines. Copyright © 2014. Published by Elsevier Ltd.
Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load
Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai
2016-01-01
This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C. PMID:27754356
Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997
NASA Astrophysics Data System (ADS)
Díaz, J.; García, R.; Velázquez de Castro, F.; Hernández, E.; López, C.; Otero, A.
2002-04-01
The effects of heat waves on the population have been described by different authors and a consistent relationship between mortality and temperature has been found, especially in elderly subjects. The present paper studies this effect in Seville, a city in the south of Spain, known for its climate of mild winters and hot summers, when the temperature frequently exceeds 40 °C. This study focuses on the summer months (June to September) for the years from 1986 to 1997. The relationships between total daily mortality and different specific causes for persons older than 65 and 75 years, of each gender, were analysed. Maximum daily temperature and relative humidity at 7.00 a.m. were introduced as environmental variables. The possible confounding effect of different atmospheric pollutants, particularly ozone, were considered. The methodology employed was time series analysis using Box-Jenkins models with exogenous variables. On the basis of dispersion diagrams, we defined extremely hot days as those when the maximum daily temperature surpassed 41 °C. The ARIMA model clearly shows the relationship between temperature and mortality. Mortality for all causes increased up to 51% above the average in the group over 75 years for each degree Celsius beyond 41 °C. The effect is more noticeable for cardiovascular than for respiratory diseases, and more in women than in men. Among the atmospheric pollutants, a relation was found between mortality and concentrations of ozone, especially for men older than 75.
NASA Astrophysics Data System (ADS)
Zhao, Jiaju; An, Chen-Bang; Huang, Yongsong; Morrill, Carrie; Chen, Fa-Hu
2017-12-01
Numerous studies have demonstrated that there are major differences in the timing of maximum Holocene precipitation between the monsoonal East Asia and westerly dominated Central Asia, but it is unclear if the moisture differences are also associated with corresponding temperature contrasts. Here we present the first alkenone-based paleotemperature reconstructions for the past 21 kyr from Lake Balikun, central Asia. We show, unlike the initiation of Holocene warm conditions at ∼11 kyr BP in the monsoon regions, the arid central Asia remained in a glacial-like cold condition prior to 8 kyr BP and experienced abrupt warming of ∼9 °C after the collapse of the Laurentide ice sheet. Comparison with pollen and other geochemical data indicates the abrupt warming is closely associated with major increase in the moisture supply to the region. Together, our multiproxy data indicate ∼2 thousand years delay of temperature and moisture optimum relative to local summer insolation maximum, suggesting major influence of the Laurentide ice sheet and other high latitude ice sheet forcings on the regional atmospheric circulation. In addition, our data reveal a temperature drop by ∼4 °C around 4 kyr BP lasting multiple centuries, coinciding with severe increases in aridity previously reported based on multiproxy data. In contrast, model simulations display a much less pronounced delay in the initiation of Holocene warm conditions, raising unresolved questions about the relative importance of local radiative forcing and high-latitude ice on temperature in this region.
West, J W; Mullinix, B G; Bernard, J K
2003-01-01
Lactating cows were exposed to moderate and hot, humid weather to determine the effect of increasing ambient temperature, relative humidity, or temperature-humidity index (THI) on intake, milk yield, and milk temperature. Minimum and maximum temperatures averaged 17.9 and 29.5 degrees C (cool period) and 22.5 and 34.4 degrees C (hot period), and minimum and maximum THI averaged 63.8 and 76.6 (cool period) and 72.1 and 83.6 (hot period). Environmental conditions had minor effects on intake and milk yield during the cool period. During the hot period, the THI 2 d earlier and mean air temperature 2 d earlier had the greatest impact on milk yield and DMI, respectively. Both breeds maintained milk temperature within normal ranges during the cool period, but Holstein and Jersey p.m. milk temperatures averaged 39.6 and 39.2 degrees C during the hot period. Current day mean air temperature during the hot period had the greatest impact on cow p.m. milk temperature, and minimum air temperature had the greatest influence on a.m. milk temperature. Dry matter intake and milk yield declined linearly with respective increases in air temperature or THI during the hot period and milk temperature increased linearly with increasing air temperature. Dry matter intake and milk yield both exhibited a curvilinear relationship with milk temperature. Environmental modifications should target the effects of high temperatures on cow body temperature and should modify the environment at critical times during the day when cows are stressed, including morning hours when ambient temperatures are typically cooler and cows are not assumed to be stressed.
Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko
2006-04-01
To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.
The effects of hot nights on mortality in Barcelona, Spain
NASA Astrophysics Data System (ADS)
Royé, D.
2017-12-01
Heat-related effects on mortality have been widely analyzed using maximum and minimum temperatures as exposure variables. Nevertheless, the main focus is usually on the former with the minimum temperature being limited in use as far as human health effects are concerned. Therefore, new thermal indices were used in this research to describe the duration of night hours with air temperatures higher than the 95% percentile of the minimum temperature (hot night hours) and intensity as the summation of these air temperatures in degrees (hot night degrees). An exposure-response relationship between mortality due to natural, respiratory, and cardiovascular causes and summer night temperatures was assessed using data from the Barcelona region between 2003 and 2013. The non-linear relationship between the exposure and response variables was modeled using a distributed lag non-linear model. The estimated associations for both exposure variables and mortality shows a relationship with high and medium values that persist significantly up to a lag of 1-2 days. In mortality due to natural causes, an increase of 1.1% per 10% (CI95% 0.6-1.5) for hot night hours and 5.8% per each 10° (CI95% 3.5-8.2%) for hot night degrees is observed. The effects of hot night hours reach their maximum with 100% and lead to an increase by 9.2% (CI95% 5.3-13.1%). The hourly description of night heat effects reduced to a single indicator in duration and intensity is a new approach and shows a different perspective and significant heat-related effects on human health.
Station Blackout Analysis of HTGR-Type Experimental Power Reactor
NASA Astrophysics Data System (ADS)
Syarip; Zuhdi, Aliq; Falah, Sabilul
2018-01-01
The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.
Hostetler, S.; Pisias, N.; Mix, A.
2006-01-01
The faunal and floral gradients that underlie the CLIMAP (1981) sea-surface temperature (SST) reconstructions for the Last Glacial Maximum (LGM) reflect ocean temperature gradients and frontal positions. The transfer functions used to reconstruct SSTs from biologic gradients are biased, however, because at the warmest sites they display inherently low sensitivity in translating fauna to SST and they underestimate SST within the euphotic zones where the pycnocline is strong. Here we assemble available data and apply a statistical approach to adjust for hypothetical biases in the faunal-based SST estimates of LGM temperature. The largest bias adjustments are distributed in the tropics (to address low sensitivity) and subtropics (to address underestimation in the euphotic zones). The resulting SSTs are generally in better agreement than CLIMAP with recent geochemical estimates of glacial-interglacial temperature changes. We conducted a series of model experiments using the GENESIS general atmospheric circulation model to assess the sensitivity of the climate system to our bias-adjusted SSTs. Globally, the new SST field results in a modeled LGM surface-air cooling relative to present of 6.4 ??C (1.9 ??C cooler than that of CLIMAP). Relative to the simulation with CLIMAP SSTs, modeled precipitation over the oceans is reduced by 0.4 mm d-1 (an anomaly -0.4 versus 0.0 mm d-1 for CLIMAP) and increased over land (an anomaly -0.2 versus -0.5 mm d-1 for CLIMAP). Regionally strong responses are induced by changes in SST gradients. Data-model comparisons indicate improvement in agreement relative to CLIMAP, but differences among terrestrial data inferences and simulated moisture and temperature remain. Our SSTs result in positive mass balance over the northern hemisphere ice sheets (primarily through reduced summer ablation), supporting the hypothesis that tropical and subtropical ocean temperatures may have played a role in triggering glacial changes at higher latitudes.
NASA Astrophysics Data System (ADS)
Schmidt, T.; Cammas, J.; Heise, S.; Wickert, J.; Haser, A.
2010-12-01
In this study we discuss characteristics of the northern hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two datasets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08±0.35) km, (0.52±0.10) km and (2.10±0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements onboard commercial aircrafts (MOZAIC program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure. Using O3-CO correlations we also show that on average the highest mixing occurs in a layer less than 1 km above the thermal tropopause, i.e., within the TIL.
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
Smith, Eric Krabbe; O'Neill, Jacqueline J; Gerson, Alexander R; McKechnie, Andrew E; Wolf, Blair O
2017-09-15
We examined thermoregulatory performance in seven Sonoran Desert passerine bird species varying in body mass from 10 to 70 g - lesser goldfinch, house finch, pyrrhuloxia, cactus wren, northern cardinal, Abert's towhee and curve-billed thrasher. Using flow-through respirometry, we measured daytime resting metabolism, evaporative water loss and body temperature at air temperatures ( T air ) between 30 and 52°C. We found marked increases in resting metabolism above the upper critical temperature ( T uc ), which for six of the seven species fell within a relatively narrow range (36.2-39.7°C), but which was considerably higher in the largest species, the curve-billed thrasher (42.6°C). Resting metabolism and evaporative water loss were minimal below the T uc and increased with T air and body mass to maximum values among species of 0.38-1.62 W and 0.87-4.02 g H 2 O h -1 , respectively. Body temperature reached maximum values ranging from 43.5 to 45.3°C. Evaporative cooling capacity, the ratio of evaporative heat loss to metabolic heat production, reached maximum values ranging from 1.39 to 2.06, consistent with known values for passeriforms and much lower than values in taxa such as columbiforms and caprimulgiforms. These maximum values occurred at heat tolerance limits that did not scale with body mass among species, but were ∼50°C for all species except the pyrrhuloxia and Abert's towhee (48°C). High metabolic costs associated with respiratory evaporation appeared to drive the limited heat tolerance in these desert passeriforms, compared with larger desert columbiforms and galliforms that use metabolically more efficient mechanisms of evaporative heat loss. © 2017. Published by The Company of Biologists Ltd.
Chantre, Guillermo R.; Batlla, Diego; Sabbatini, Mario R.; Orioli, Gustavo
2009-01-01
Background and Aims Models based on thermal-time approaches have been a useful tool for characterizing and predicting seed germination and dormancy release in relation to time and temperature. The aims of the present work were to evaluate the relative accuracy of different thermal-time approaches for the description of germination in Lithospermum arvense and to develop an after-ripening thermal-time model for predicting seed dormancy release. Methods Seeds were dry-stored at constant temperatures of 5, 15 or 24 °C for up to 210 d. After different storage periods, batches of 50 seeds were incubated at eight constant temperature regimes of 5, 8, 10, 13, 15, 17, 20 or 25 °C. Experimentally obtained cumulative-germination curves were analysed using a non-linear regression procedure to obtain optimal population thermal parameters for L. arvense. Changes in these parameters were described as a function of after-ripening thermal-time and storage temperature. Key Results The most accurate approach for simulating the thermal-germination response of L. arvense was achieved by assuming a normal distribution of both base and maximum germination temperatures. The results contradict the widely accepted assumption of a single Tb value for the entire seed population. The after-ripening process was characterized by a progressive increase in the mean maximum germination temperature and a reduction in the thermal-time requirements for germination at sub-optimal temperatures. Conclusions The after-ripening thermal-time model developed here gave an acceptable description of the observed field emergence patterns, thus indicating its usefulness as a predictive tool to enhance weed management tactics. PMID:19332426
Effect of summer outdoor temperatures on work-related injuries in Quebec (Canada).
Adam-Poupart, Ariane; Smargiassi, Audrey; Busque, Marc-Antoine; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Labrèche, France
2015-05-01
To quantify the associations between occupational injury compensations and exposure to summer outdoor temperatures in Quebec (Canada). The relationship between 374,078 injuries compensated by the Workers' Compensation Board (WCB) (between May and September, 2003-2010) and maximum daily outdoor temperatures was modelled using generalised linear models with negative binomial distributions. Pooled effect sizes for all 16 health regions of Quebec were estimated with random-effect models for meta-analyses for all compensations and by sex, age group, mechanism of injury, industrial sector and occupations (manual vs other) within each sector. Time lags and cumulative effect of temperatures were also explored. The relationship between daily counts of compensations and maximum daily temperatures reached statistical significance for three health regions. The incidence rate ratio (IRR) of daily compensations per 1°C increase was 1.002 (95% CI 1.002 to 1.003) for all health regions combined. Statistically significant positive associations were observed for men, workers aged less than 45 years, various industrial sectors with both indoor and outdoor activities, and for slips/trips/falls, contact with object/equipment and exposure to harmful substances/environment. Manual occupations were not systematically at higher risk than non-manual and mixed ones. This study is the first to quantify the association between work-related injury compensations and exposure to summer temperatures according to physical demands of the occupation and this warrants further investigations. In the context of global warming, results can be used to estimate future impacts of summer outdoor temperatures on workers, as well as to plan preventive interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Tawatsupa, Benjawan; Dear, Keith; Kjellstrom, Tord; Sleigh, Adrian
2014-03-01
We have investigated the association between tropical weather condition and age-sex adjusted death rates (ADR) in Thailand over a 10-year period from 1999 to 2008. Population, mortality, weather and air pollution data were obtained from four national databases. Alternating multivariable fractional polynomial (MFP) regression and stepwise multivariable linear regression analysis were used to sequentially build models of the associations between temperature variable and deaths, adjusted for the effects and interactions of age, sex, weather (6 variables), and air pollution (10 variables). The associations are explored and compared among three seasons (cold, hot and wet months) and four weather zones of Thailand (the North, Northeast, Central, and South regions). We found statistically significant associations between temperature and mortality in Thailand. The maximum temperature is the most important variable in predicting mortality. Overall, the association is nonlinear U-shape and 31 °C is the minimum-mortality temperature in Thailand. The death rates increase when maximum temperature increase with the highest rates in the North and Central during hot months. The final equation used in this study allowed estimation of the impact of a 4 °C increase in temperature as projected for Thailand by 2100; this analysis revealed that the heat-related deaths will increase more than the cold-related deaths avoided in the hot and wet months, and overall the net increase in expected mortality by region ranges from 5 to 13 % unless preventive measures were adopted. Overall, these results are useful for health impact assessment for the present situation and future public health implication of global climate change for tropical Thailand.
NASA Astrophysics Data System (ADS)
Santolaria, P.; Yániz, J.; Fantova, E.; Vicente-Fiel, S.; Palacín, I.
2014-09-01
This study was carried out to examine the impact of several climate variables on the pregnancy rate after cervical artificial insemination (AI) of Rasa Aragonesa ewes. Data were derived from 8,977 inseminations in 76 well-managed flocks performed during the first month of the breeding season (July to October). The following data were recorded for each animal: farm, year, month of AI, parity, lambing-treatment interval, inseminating ram, AI technician, and climatic variables such as mean, maximum and minimum temperature, mean and maximum relative humidity, rainfall, and mean and maximum temperature-humidity index (THI) for each day from day 12 before AI to day 14 post-AI. Means were furthermore calculated for the following periods around AI (day 0): -12 to 0, -2 to 0, AI day, 0 to 2, and 0 to 14. Logistic regression analysis indicated that the likelihood of pregnancy decreased when maximum temperature in the 2 days prior to AI was higher than 30 °C (by a factor of 0.81). Fertility was also lower for primiparous ewes and in multiparous ewes with more than five previous parturitions. Other factors with significant impact on fertility were flock, technician, inseminating ram, and a lambing-AI interval longer than 240 days. It was concluded that the 2 days prior to AI seems to be the period when heat stress had the greatest impact on pregnancy rate in Rasa Aragonesa ewes.
Ianoş, Robert; Istratie, Roxana; Păcurariu, Cornelia; Lazău, Radu
2016-01-14
The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,β)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.
NASA Astrophysics Data System (ADS)
Wu, Wei; Xu, An-Ding; Liu, Hong-Bin
2015-01-01
Climate data in gridded format are critical for understanding climate change and its impact on eco-environment. The aim of the current study is to develop spatial databases for three climate variables (maximum, minimum temperatures, and relative humidity) over a large region with complex topography in southwestern China. Five widely used approaches including inverse distance weighting, ordinary kriging, universal kriging, co-kriging, and thin-plate smoothing spline were tested. Root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) showed that thin-plate smoothing spline with latitude, longitude, and elevation outperformed other models. Average RMSE, MAE, and MAPE of the best models were 1.16 °C, 0.74 °C, and 7.38 % for maximum temperature; 0.826 °C, 0.58 °C, and 6.41 % for minimum temperature; and 3.44, 2.28, and 3.21 % for relative humidity, respectively. Spatial datasets of annual and monthly climate variables with 1-km resolution covering the period 1961-2010 were then obtained using the best performance methods. Comparative study showed that the current outcomes were in well agreement with public datasets. Based on the gridded datasets, changes in temperature variables were investigated across the study area. Future study might be needed to capture the uncertainty induced by environmental conditions through remote sensing and knowledge-based methods.
NASA Astrophysics Data System (ADS)
Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan
2016-08-01
In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.
Modeling maximum daily temperature using a varying coefficient regression model
Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith
2014-01-01
Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...
Effects of a temperature-dependent rheology on large scale continental extension
NASA Technical Reports Server (NTRS)
Sonder, Leslie J.; England, Philip C.
1988-01-01
The effects of a temperature-dependent rheology on large-scale continental extension are investigated using a thin viscous sheet model. A vertically-averaged rheology is used that is consistent with laboratory experiments on power-law creep of olivine and that depends exponentially on temperature. Results of the calculations depend principally on two parameters: the Peclet number, which describes the relative rates of advection and diffusion of heat, and a dimensionless activation energy, which controls the temperature dependence of the rheology. At short times following the beginning of extension, deformation occurs with negligible change in temperature, so that only small changes in lithospheric strength occur due to attenuation of the lithosphere. However, after a certain critical time interval, thermal diffusion lowers temperatures in the lithosphere, strongly increasing lithospheric strength and slowing the rate of extension. This critical time depends principally on the Peclet number and is short compared with the thermal time constant of the lithosphere. The strength changes cause the locus of high extensional strain rates to shift with time from regions of high strain to regions of low strain. Results of the calculations are compared with observations from the Aegean, where maximum extensional strains are found in the south, near Crete, but maximum present-day strain rates are largest about 300 km further north.
A method for safety testing of radiofrequency/microwave-emitting devices using MRI.
Alon, Leeor; Cho, Gene Y; Yang, Xing; Sodickson, Daniel K; Deniz, Cem M
2015-11-01
Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non-MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83°C and 12.4 W/kg, respectively, for simulations and 1.73°C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15°C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7°C and 0.54 W/kg, respectively. Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. © 2014 Wiley Periodicals, Inc.
A Method for Safety Testing of Radiofrequency/Microwave-Emitting Devices Using MRI
Alon, Leeor; Cho, Gene Y.; Yang, Xing; Sodickson, Daniel K.; Deniz, Cem M.
2015-01-01
Purpose Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Methods Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non–MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. Results The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83° C and 12.4 W/kg, respectively, for simulations and 1.73° C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15° C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7° C and 0.54 W/kg, respectively. Conclusion Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. PMID:25424724
NASA Astrophysics Data System (ADS)
Villarini, Gabriele; Khouakhi, Abdou; Cunningham, Evan
2017-12-01
Daily temperature values are generally computed as the average of the daily minimum and maximum observations, which can lead to biases in the estimation of daily averaged values. This study examines the impacts of these biases on the calculation of climatology and trends in temperature extremes at 409 sites in North America with at least 25 years of complete hourly records. Our results show that the calculation of daily temperature based on the average of minimum and maximum daily readings leads to an overestimation of the daily values of 10+ % when focusing on extremes and values above (below) high (low) thresholds. Moreover, the effects of the data processing method on trend estimation are generally small, even though the use of the daily minimum and maximum readings reduces the power of trend detection ( 5-10% fewer trends detected in comparison with the reference data).
Calculation of change in brain temperatures due to exposure to a mobile phone
NASA Astrophysics Data System (ADS)
Van Leeuwen, G. M. J.; Lagendijk, J. J. W.; Van Leersum, B. J. A. M.; Zwamborn, A. P. M.; Hornsleth, S. N.; Kotte, A. N. T. J.
1999-10-01
In this study we evaluated for a realistic head model the 3D temperature rise induced by a mobile phone. This was done numerically with the consecutive use of an FDTD model to predict the absorbed electromagnetic power distribution, and a thermal model describing bioheat transfer both by conduction and by blood flow. We calculated a maximum rise in brain temperature of 0.11 °C for an antenna with an average emitted power of 0.25 W, the maximum value in common mobile phones, and indefinite exposure. Maximum temperature rise is at the skin. The power distributions were characterized by a maximum averaged SAR over an arbitrarily shaped 10 g volume of approximately 1.6 W kg-1. Although these power distributions are not in compliance with all proposed safety standards, temperature rises are far too small to have lasting effects. We verified our simulations by measuring the skin temperature rise experimentally. Our simulation method can be instrumental in further development of safety standards.
Rapid change in the thermal tolerance of a tropical lizard.
Leal, Manuel; Gunderson, Alex R
2012-12-01
The predominant view is that the thermal physiology of tropical ectotherms, including lizards, is not labile over ecological timescales. We used the recent introduction (∼35 years ago) of the Puerto Rican lizard Anolis cristatellus to Miami, Florida, to test this thermal rigidity hypothesis. We measured lower (critical thermal minimum [CT(min)]) and upper (critical thermal maximum [CT(max)]) thermal tolerances and found that the introduced population tolerates significantly colder temperatures (by ∼3°C) than does the Puerto Rican source population; however, CT(max) did not differ. These results mirror the thermal regimes experienced by each population: Miami reaches colder ambient temperatures than Puerto Rico, but maximum ambient temperatures are similar. The differences in CT(min) were observed even though lizards from both sites experienced nearly identical conditions for 49 days before CT(min) measurement. Our results demonstrate that changes in thermal tolerance occurred relatively rapidly (∼35 generations), which strongly suggests that the thermal physiology of tropical lizards is more labile than previously proposed.
NASA Astrophysics Data System (ADS)
Torregrosa, A.; Flint, L. E.; Flint, A. L.; Combs, C.; Peters, J.
2013-12-01
Several studies have documented the human benefits of temperature cooling derived from coastal fog such as the reduction in the number of hospital visits/emergency response requests from heat stress-vulnerable population sectors or decreased energy consumption during periods when summer maximum temperatures are lower than normal. In this study we quantify the hourly, daily, monthly and seasonal thermal effect of fog and low clouds (FLC) hours on maximum summer temperatures across a northern California landscape. The FLC data summaries are calculated from the CIRA (Cooperative Institute for Research in the Atmosphere) 10 year archive that were derived from hourly night and day images using channels 1 (Visible), 2 (3.6 μm) and 4 (10.7 μm) NOAA GOES (Geostationary Operational Environmental Satellite). The FLC summaries were analyzed with two sets of site based data, meteorological (met) station-based measurements and downscaled interpolated PRISM data for selected point locations spanning a range of coastal to inland geographic conditions and met station locations. In addition to finding a 0.4 degree C per hour of FLC effect, our results suggest variability related to site specific thermal response. For example, sites closest to the coast have less thermal variability between low cloud and sunny days than sites further from the coast suggesting a much stronger influence of ocean temperature than of FLC thermal dynamics. The thermal relief provided by summertime FLC is equivalent in magnitude to the temperature increase projected by the driest and hottest of regional downscaled climate models using the A2 ('worst') IPCC scenario. Extrapolating these thermal calculations can facilitate future quantifications of the ecosystem service provided by summertime low clouds and fog.
Koseki, Shigenobu; Isobe, Seiichiro
2005-10-25
The growth of pathogenic bacteria Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on iceberg lettuce under constant and fluctuating temperatures was modelled in order to estimate the microbial safety of this vegetable during distribution from the farm to the table. Firstly, we examined pathogen growth on lettuce at constant temperatures, ranging from 5 to 25 degrees C, and then we obtained the growth kinetic parameters (lag time, maximum growth rate (micro(max)), and maximum population density (MPD)) using the Baranyi primary growth model. The parameters were similar to those predicted by the pathogen modelling program (PMP), with the exception of MPD. The MPD of each pathogen on lettuce was 2-4 log(10) CFU/g lower than that predicted by PMP. Furthermore, the MPD of pathogens decreased with decreasing temperature. The relationship between mu(max) and temperature was linear in accordance with Ratkowsky secondary model as was the relationship between the MPD and temperature. Predictions of pathogen growth under fluctuating temperature used the Baranyi primary microbial growth model along with the Ratkowsky secondary model and MPD equation. The fluctuating temperature profile used in this study was the real temperature history measured during distribution from the field at harvesting to the retail store. Overall predictions for each pathogen agreed well with observed viable counts in most cases. The bias and root mean square error (RMSE) of the prediction were small. The prediction in which mu(max) was based on PMP showed a trend of overestimation relative to prediction based on lettuce. However, the prediction concerning E. coli O157:H7 and Salmonella spp. on lettuce greatly overestimated growth in the case of a temperature history starting relatively high, such as 25 degrees C for 5 h. In contrast, the overall prediction of L. monocytogenes under the same circumstances agreed with the observed data.
Effects of increasing aerosol on regional climate change in China: Observation and modeling
NASA Astrophysics Data System (ADS)
Qian, Y.; Leung, L.; Ghan, S. J.
2002-12-01
We present regional simulations of climate, aerosol properties, and direct radiative forcing and climatic effects of aerosol and analyze the pollutant emissions and observed climatic data during the latter decades of last century in China. The regional model generally captures the spatial distributions and seasonal pattern of temperature and precipitation. Aerosol extinction coefficient and aerosol optical depth are generally well simulated in both magnitude and spatial distribution, which provides a reliable foundation for estimating the radiative forcing and climatic effects of aerosol. The radiative forcing of aerosol is in the range of -1 to -14 W m-2 in autumn and summer and -1 to -9 W m-2 in spring and winter, with substantial spatial variability at the sub-regional scale. A strong maximum in negative radiative forcing corresponding to the maximum optical depth is found over the Sichuan Basin, where emission as well as relative humidity are high, and stagnant atmospheric conditions inhibit pollutants dispersion. Negative radiative forcing of aerosol induces a surface cooling, which is stronger in the range of -0.6 to -1.2oC in autumn and winter than in spring (-0.3 to -0.6oC) and summer (0.0 to -0.9oC) over the Sichuan Basin and East China due to more significant effects of cloud and precipitation in the summer and spring. Aerosol-induced cooling is mainly contributed by cooling in the daytime temperature. The cooling reaches a maximum and is statistically significant in the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of temperature trends observed in the second half of the twentieth century, including the asymmetric daily maximum and minimum temperature trends, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. It supports the hypothesis that the observed temperature trends during the latter decades of the twentieth century, especially the cooling trends over the Sichuan Basin and some parts of East China, which are exceptions to the large scale warming trend in the northern hemisphere, are at least partly related to the cooling induced by atmospheric aerosol loading that has been increasing since the middle of the last century.
NASA Technical Reports Server (NTRS)
Held, Louis F.; Pritchard, Ernest I.
1946-01-01
An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.
NASA Astrophysics Data System (ADS)
Cai, Jiaxi; Guan, Zhaoyong; Ma, Fenhua
2016-12-01
Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.
NASA Astrophysics Data System (ADS)
Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai
2017-01-01
The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.
EnviroAtlas - Maximum Temperature 1950 - 2099 for the Conterminous United States
The EnviroAtlas Climate Scenarios were generated from NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) ensemble averages (the average of over 30 available climate models) for each of the four representative concentration pathways (RCP) for the contiguous U.S. at 30 arc-second (approx. 800 m2) spatial resolution. NEX-DCP30 mean monthly maximum temperature for the 4 RCPs (2.6, 4.5, 6.0, 8.5) were organized by season (Winter, Spring, Summer, and Fall) and annually for the years 2006 00e2?? 2099. Additionally, mean monthly maximum temperature for the ensemble average of all historic runs is organized similarly for the years 1950 00e2?? 2005. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
40 CFR 60.37e - Compliance, performance testing, and monitoring guidelines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements: (1) Establish maximum charge rate and minimum secondary chamber temperature as site-specific... above the maximum charge rate or below the minimum secondary chamber temperature measured as 3-hour... below the minimum secondary chamber temperature shall constitute a violation of the established...
Dehydration in the tropical tropopause layer: implications from the UARS Microwave Limb Sounder
NASA Technical Reports Server (NTRS)
Read, W. G.; Wu, D. L.; Waters, J. W.
2004-01-01
The new MLS data are consistent with convective input of H(sub 2)O into the bottom of the TTL followed by slow ascent with a maximum relative amplitude in the seasonal cycle occurring near the tropopause nearly in phase with the tropopause temperature seasonal cycle.
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix...—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration (natural, Roots blown, supercharged.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1...
Coupling diffusion and maximum entropy models to estimate thermal inertia
USDA-ARS?s Scientific Manuscript database
Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...
Non-isothermal crystallization of poly(etheretherketone) aromatic polymer composite
NASA Technical Reports Server (NTRS)
Cebe, Peggy
1988-01-01
The nonisothermal crystallization kinetics of PEEK APC-2 and of 450G neat resin PEEK material were compared using a differential scanning calorimeter to monitor heat flow during crystallization; the effects of cooling rate on the crystallization temperature, the degree of crystallinity, and the conversion rate were investigated. A modified Avrami (1940) analysis was used to describe nonisothermal crystallization kinetics. It was found that, compared with the 450G neat resin PEEK, the nonisothermal crystallization of the PEEK APC-2 composite is characterized by higher initiation temperature, higher heat flow maximum temperature, and greater relative conversion by primary processes.
Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua
2017-01-01
Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981–2014 and detailed observed data of spring wheat from 1981–2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological factors that affected in the eastern and western Inner Mongolia. Furthermore, the effect of the average minimum temperature on yield was greater than that of the average maximum temperature. The increase of temperature in the western and middle regions would reduce the spring wheat yield, while in the eastern region due to the rising temperature, the spring wheat yield increased. The increase of solar radiation in the eastern and central regions would increase the yield of spring wheat. The increased air relative humidity would make the western spring wheat yield increased and the eastern spring wheat yield decreased. Finally, the models describing combined effects of these dominant climatic factors on the maturity and yield in different regions of Inner Mongolia were used to establish geographical differences. Our findings have important implications for improving climate change impact studies and for local agricultural production to cope with ongoing climate change. PMID:29099842
Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua
2017-01-01
Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981-2014 and detailed observed data of spring wheat from 1981-2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological factors that affected in the eastern and western Inner Mongolia. Furthermore, the effect of the average minimum temperature on yield was greater than that of the average maximum temperature. The increase of temperature in the western and middle regions would reduce the spring wheat yield, while in the eastern region due to the rising temperature, the spring wheat yield increased. The increase of solar radiation in the eastern and central regions would increase the yield of spring wheat. The increased air relative humidity would make the western spring wheat yield increased and the eastern spring wheat yield decreased. Finally, the models describing combined effects of these dominant climatic factors on the maturity and yield in different regions of Inner Mongolia were used to establish geographical differences. Our findings have important implications for improving climate change impact studies and for local agricultural production to cope with ongoing climate change.
Temperature and electrical memory of polymer fibers
NASA Astrophysics Data System (ADS)
Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe
2014-05-01
We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.
NASA Astrophysics Data System (ADS)
Kumar, Hardeep; Ghosh, Santanu; Bürger, Danilo; Li, Lin; Zhou, Shengqiang; Kabiraj, Debdulal; Avasthi, Devesh Kumar; Grötzschel, Rainer; Schmidt, Heidemarie
2011-04-01
In this work, we report the effect of FeCo atomic fraction (0.33 < x < 0.54) and temperature on the electrical, magnetic, and tunneling magnetoresistance (TMR) properties of FeCo-Si-O granular films prepared by atom beam sputtering technique. Glancing angle x-ray diffraction and TEM studies reveal that films are amorphous in nature. The dipole-dipole interactions (particle-matrix mixing) is evident from zero-field cooled and field-cooled magnetic susceptibility measurements and the presence of oxides (mainly Fe-related) is observed by x-ray photoelectron spectroscopy analysis. The presence of Fe-oxides is responsible for the observed reduction of saturation magnetization and rapid increase in coercivity below 50 K. TMR has been observed in a wide temperature range, and a maximum TMR of -4.25% at 300 K is observed for x = 0.39 at a maximum applied field of 60 kOe. The fast decay of maximum TMR at high temperatures and lower TMR values at 300 K when compared to PFeCo2/(1+PFeCo2), where PFeCo is the spin polarization of FeCo are in accordance with a theoretical model that includes spin-flip scattering processes. The temperature dependent study of TMR effect reveals a remarkably enhanced TMR at low temperatures. The TMR value varies from -2.1% at 300 K to -14.5% at 5 K for x = 0.54 and a large MR value of -18.5% at 5 K for x = 0.39 is explained on the basis of theoretical models involving Coulomb blockade effects. Qualitatively particle-matrix mixing and the presence of Fe-oxides seems to be the source of spin-flip scattering, responsible for fast decay of TMR at high temperatures. A combination of higher order tunneling (in Coulomb blockade regime) and spin-flip scattering (high temperature regime) explains the temperature dependent TMR of these films.
Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems
NASA Technical Reports Server (NTRS)
Lustig, P. H.; Holms, A. G.; Davison, H. W.
1973-01-01
The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.
System for Repairing Cracks in Structures
NASA Technical Reports Server (NTRS)
Smith, Stephen W. (Inventor); Newman, John A. (Inventor); Piascik, Robert S. (Inventor); Glaessgen, Edward H. (Inventor)
2014-01-01
A first material with a known maximum temperature of operation is coated with a second material on at least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.
NASA Astrophysics Data System (ADS)
Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen
2015-11-01
Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.
Definition of temperature thresholds: the example of the French heat wave warning system.
Pascal, Mathilde; Wagner, Vérène; Le Tertre, Alain; Laaidi, Karine; Honoré, Cyrille; Bénichou, Françoise; Beaudeau, Pascal
2013-01-01
Heat-related deaths should be somewhat preventable. In France, some prevention measures are activated when minimum and maximum temperatures averaged over three days reach city-specific thresholds. The current thresholds were computed based on a descriptive analysis of past heat waves and on local expert judgement. We tested whether a different method would confirm these thresholds. The study was set in the six cities of Paris, Lyon, Marseille, Nantes, Strasbourg and Limoges between 1973 and 2003. For each city, we estimated the excess in mortality associated with different temperature thresholds, using a generalised additive model, controlling for long-time trends, seasons and days of the week. These models were used to compute the mortality predicted by different percentiles of temperatures. The thresholds were chosen as the percentiles associated with a significant excess mortality. In all cities, there was a good correlation between current thresholds and the thresholds derived from the models, with 0°C to 3°C differences for averaged maximum temperatures. Both set of thresholds were able to anticipate the main periods of excess mortality during the summers of 1973 to 2003. A simple method relying on descriptive analysis and expert judgement is sufficient to define protective temperature thresholds and to prevent heat wave mortality. As temperatures are increasing along with the climate change and adaptation is ongoing, more research is required to understand if and when thresholds should be modified.
Kumar Mahata, Manoj; Koppe, Tristan; Kumar, Kaushal; Hofsäss, Hans; Vetter, Ulrich
2016-01-01
A dual mode rare-earth based vanadate material (YVO4: Ho3+/Yb3+), prepared through ethylene glycol assisted hydrothermal method, demonstrating both downconversion and upconversion, along with systematic investigation of the luminescence spectroscopy within 12–300 K is presented herein. The energy transfer processes have been explored via steady-state and time-resolved spectroscopic measurements and explained in terms of rate equation description and temporal evolution below room temperature. The maximum time for energy migration from host to rare earth (Ho3+) increases (0.157 μs to 0.514 μs) with the material’s temperature decreasing from 300 K to 12 K. The mechanism responsible for variation of the transients’ character is discussed through thermalization and non-radiative transitions in the system. More significantly, the temperature of the nanocrystals was determined using not only the thermally equilibrated radiative intra-4f transitions of Ho3+ but also the decay time and rise time of vanadate and Ho3+ energy levels. Our studies show that the material is highly suitable for temperature sensing below room temperature. The maximum relative sensor sensitivity using the rise time of Ho3+ energy level (5F4/5S2) is 1.35% K−1, which is the highest among the known sensitivities for luminescence based thermal probes. PMID:27805060
Methven, David A.; Piatt, John F.
1991-01-01
The seasonal abundance and vertical distribution of capelin in relation to water temperature have been investigated by conducting repeated hydroacoustic surveys at a coastal site off eastern Newfoundland. Water temperatures were warmer in 1983 than in 1984 as indicated by the earlier appearance and greater depth of the seasonal thermocline. Correspondingly, schools of capelin appeared earlier, were more abundant, and extended deeper in the water column in 1983 than in 1984. Most capelin were found between the surface and the 5°C isotherm. In both years, initial peaks of capelin abundance occurred when nearshore water temperatures increased from about 0-1°C to above 6°C and, at or near, periods of maximum tidal oscillation. Short-term variations in the depth of the 5°C isotherm were related to nearshore wind-induced upwelling events. Annual variations corresponded to the volume of cold (>0°C) water and sea-ice transported south by the Labrador Current.
Fragile-to-strong transition in liquid silica
NASA Astrophysics Data System (ADS)
Geske, Julian; Drossel, Barbara; Vogel, Michael
2016-03-01
We investigate anomalies in liquid silica with molecular dynamics simulations and present evidence for a fragile-to-strong transition at around 3100 K-3300 K. To this purpose, we studied the structure and dynamical properties of silica over a wide temperature range, finding four indicators of a fragile-to-strong transition. First, there is a density minimum at around 3000 K and a density maximum at 4700 K. The turning point is at 3400 K. Second, the local structure characterized by the tetrahedral order parameter changes dramatically around 3000 K from a higher-ordered, lower-density phase to a less ordered, higher-density phase. Third, the correlation time τ changes from an Arrhenius behavior below 3300 K to a Vogel-Fulcher-Tammann behavior at higher temperatures. Fourth, the Stokes-Einstein relation holds for temperatures below 3000 K, but is replaced by a fractional relation above this temperature. Furthermore, our data indicate that dynamics become again simple above 5000 K, with Arrhenius behavior and a classical Stokes-Einstein relation.
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2011 CFR
2011-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2013 CFR
2013-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2014 CFR
2014-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
Zhang, Boya; Li, Guoxing; Ma, Yue; Pan, Xiaochuan
2018-04-01
Human health faces unprecedented challenges caused by climate change. Thus, studies of the effect of temperature change on total mortality have been conducted in numerous countries. However, few of those studies focused on temperature-related mortality due to cardiovascular disease (CVD) or considered future population changes and adaptation to climate change. We present herein a projection of temperature-related mortality due to CVD under different climate change, population, and adaptation scenarios in Beijing, a megacity in China. To this end, 19 global circulation models (GCMs), 3 representative concentration pathways (RCPs), 3 socioeconomic pathways, together with generalized linear models and distributed lag non-linear models, were used to project future temperature-related CVD mortality during periods centered around the years 2050 and 2070. The number of temperature-related CVD deaths in Beijing is projected to increase by 3.5-10.2% under different RCP scenarios compared with that during the baseline period. Using the same GCM, the future daily maximum temperatures projected using the RCP2.6, RCP4.5, and RCP8.5 scenarios showed a gradually increasing trend. When population change is considered, the annual rate of increase in temperature-related CVD deaths was up to fivefold greater than that under no-population-change scenarios. The decrease in the number of cold-related deaths did not compensate for the increase in that of heat-related deaths, leading to a general increase in the number of temperature-related deaths due to CVD in Beijing. In addition, adaptation to climate change may enhance rather than ameliorate the effect of climate change, as the increase in cold-related CVD mortality greater than the decrease in heat-related CVD mortality in the adaptation scenarios will result in an increase in the total number of temperature-related CVD mortalities. Copyright © 2018 Elsevier Inc. All rights reserved.
Photothermal characterization of the gelation process in Gelidium robustum Agar
NASA Astrophysics Data System (ADS)
Freile-Pelegrín, Y.; Bante, J.; Alvarado-Gil, J. J.; Yánez-Limón, J. M.
2005-06-01
Agar is a hydrophilic colloid formed by polysaccharides, whose ability to form reversible gels simply by cooling hot aqueous solutions is the most important property and can be regarded as the prototype and model for all gelling systems. In this paper the evolution of the gelation process of agar obtained from algae of the species Gelidium robustum, using the photopyroelectric technique is reported. It is shown that thermal effusivity increase when the agar is cooled, reaching a maximum value around 37°C. The increase in thermal effusivity can be related to the increasing of the bondings in the gel as temperature decreases, reaching the maximum at the gelation point. The decrease of the thermal effusivity at lower temperature could be due to the syneresis process involving a gradual release of water after gelation.
NASA Astrophysics Data System (ADS)
Kamrukov, A. S.; Kireev, S. G.; Kozlov, N. P.; Shashkovskii, S. G.
2017-09-01
We present the results of a study of the electrical, energy, and spectral brightness characteristics of an experimental three-electrode high-pressure xenon flash lamp under conditions ensuring close to maximum possible spectral brightness for the xenon emission. We show that under saturated optical brightness conditions (brightness temperature in the visible region of the spectrum 30,000 K), emission of a pulsed discharge in xenon is quite different from the emission from an ideal blackbody: the maximum brightness temperatures are 24,000 K in the short-wavelength UV region and 19,000 K in the near IR range. The relative fraction of UV radiation in the emission spectrum of the lamp is >50%, which lets us consider such lamps as promising broadband sources of radiation with high spectral brightness for many important practical applications.
Room temperature ferromagnetism in transition metal-doped black phosphorous
NASA Astrophysics Data System (ADS)
Jiang, Xiaohong; Zhang, Xinwei; Xiong, Fang; Hua, Zhenghe; Wang, Zhihe; Yang, Shaoguang
2018-05-01
High pressure high temperature synthesis of transition metal (TM = V, Cr, Mn, Fe, Co, Ni, and Cu) doped black phosphorus (BP) was performed. Room temperature ferromagnetism was observed in Cr and Mn doped BP samples. X-ray diffraction and Raman measurements revealed pure phase BP without any impurity. Transport measurements showed us semiconducting character in 5 at. % doped BP samples Cr5%P95% and Mn5%P95%. The magnetoresistance (MR) studies presented positive MR in the relatively high temperature range and negative MR in the low temperature range. Compared to that of pure BP, the maximum MR was enhanced in Cr5%P95%. However, paramagnetism was observed in V, Fe, Co, Ni, and Cu doped BP samples.
NASA Technical Reports Server (NTRS)
Jagow, R. B.; Katan, T.; Ray, C. D.; Lamparter, R. A.
1977-01-01
Carbon monoxide generation rates related to the use of commerical equipment in Spacelab, added to the normal metabolic and subsystem loads, will produce carbon monoxide levels in excess of the maximum allowable concentration. In connection with the sensitivity of carbon monoxide oxidation catalysts to poisoning at room temperature, catalysts for an oxidation of carbon monoxide at low temperatures have been investigated. It was found that platinum and palladium are the only effective room temperature catalysts which are effective at 333 K. Hopcalite was ineffective at ambient temperatures, but converted CO with 100 percent efficiency at 333 K. Poisoning tests showed the noble metal catalysts to be very sensitive, and Hopcalite to be very resistant to poisoning.
Intrinsic Brightness Temperatures of AGN Jets
NASA Astrophysics Data System (ADS)
Homan, D. C.; Kovalev, Y. Y.; Lister, M. L.; Ros, E.; Kellermann, K. I.; Cohen, M. H.; Vermeulen, R. C.; Zensus, J. A.; Kadler, M.
2006-05-01
We present a new method for studying the intrinsic brightness temperatures of the parsec-scale jet cores of active galactic nuclei (AGNs). Our method uses observed superluminal motions and observed brightness temperatures for a large sample of AGNs to constrain the characteristic intrinsic brightness temperature of the sample as a whole. To study changes in intrinsic brightness temperature, we assume that the Doppler factors of individual jets are constant in time, as justified by their relatively small changes in observed flux density. We find that in their median-low brightness temperature state, the sources in our sample have a narrow range of intrinsic brightness temperatures centered on a characteristic temperature, Tint~=3×1010 K, which is close to the value expected for equipartition, when the energy in the radiating particles equals the energy stored in the magnetic fields. However, in their maximum brightness state, we find that sources in our sample have a characteristic intrinsic brightness temperature greater than 2×1011 K, which is well in excess of the equipartition temperature. In this state, we estimate that the energy in radiating particles exceeds the energy in the magnetic field by a factor of ~105. We suggest that the excess of particle energy when sources are in their maximum brightness state is due to injection or acceleration of particles at the base of the jet. Our results suggest that the common method of estimating jet Doppler factors by using a single measurement of observed brightness temperature, the assumption of equipartition, or both may lead to large scatter or systematic errors in the derived values.
NASA Astrophysics Data System (ADS)
Zou, Yunlong; Holmes, Russell
2013-03-01
Transition metal oxides including molybdenum oxide (MoOx) are characterized by large work functions and deep energy levels relative to the organic semiconductors used in photovoltaic cells (OPVs). These materials have been used in OPVs as interlayers between the indium-tin-oxide anode and the active layers to increase the open-circuit voltage (VOC) and power conversion efficiency. We examine the role of MoOx in determining the maximum achievable VOC in planar heterojunction OPVs based on the donor-acceptor pairing of boron subphthalocyanine chloride (SubPc) and C60. While causing minor changes in VOC at room temperature, the inclusion of MoOx significantly changes the temperature dependence of VOC. Devices containing no interlayer show a maximum VOC\\ of 1.2 V, while devices containing MoOx show no saturation in VOC, reaching a value of >1.4 V at 110 K. We propose that the MoOx-SubPc interface forms a dissociating Schottky junction that provides an additional contribution to VOC at low temperature. Separate measurements of photoluminescence confirm that excitons in SubPc can be quenched by MoOx. Charge transfer at this interface is by hole extraction from SubPc to MoOx, and this mechanism favors donors with a deep highest occupied molecular orbital (HOMO) energy level. Consistent with this expectation, the temperature dependence of VOC for devices constructed using a donor with a shallower HOMO level, e.g. copper phthalocyanine, is independent of the presence of MoOx.
Divvy Economies Based On (An Abstract) Temperature
NASA Astrophysics Data System (ADS)
Collins, Dennis G.
2004-04-01
The Leontief Input-Output economic system can provide a model for a one-parameter family of economic systems based on an abstract temperature T. In particular, given a normalized input-output matrix R and taking R= R(1), a family of economic systems R(1/T)=R(α) is developed that represents heating (T>1) and cooling (T<1) of the economy relative to T=1. .The economy for a given value of T represents the solution of a constrained maximum entropy problem.
NASA Astrophysics Data System (ADS)
Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad
2017-02-01
High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.
Ratiometric near infrared luminescent thermometer based on lanthanide metal-organic frameworks
NASA Astrophysics Data System (ADS)
Yue, Dan; Zhang, Jun; Zhao, Dian; Lian, Xiusheng; Cui, Yuanjing; Yang, Yu; Qian, Guodong
2016-09-01
A near infrared luminescent MOFs thermometer (Nd0.676Yb0.324BTC) was prepared via a simple solvothermal method using Ln3+ (Ln=Nd, Yb) ions and 1, 3, 5-benznenetricarboxylic acid (H3BTC), and characterized by PXRD, TGA, ICP, and photoluminescence (PL) spectrum. These results indicate that the Nd0.676Yb0.324BTC displays high relative sensitivity and excellent repeatability in the physiological temperature range (288-323 K), and the maximum relative sensitivity is determined to be 1.187% K-1 at 323 K. These NIR luminescent MOFs may have potential applications in physiological temperature sensing.
NASA Astrophysics Data System (ADS)
Munroe, D. M.; Narváez, D. A.; Hennen, D.; Jacobson, L.; Mann, R.; Hofmann, E. E.; Powell, E. N.; Klinck, J. M.
2016-03-01
Maximum shell length of Atlantic surfclams (Spisula solidissima) on the Middle Atlantic Bight (MAB) continental shelf, obtained from federal fishery survey data from 1982-present, has decreased by 15-20 mm. Two potential causes of this decreasing trend, fishery removal of large animals and stress due to warming bottom temperatures, were investigated using an individual-based model for post-settlement surfclams and a fifty-year hindcast of bottom water temperatures on the MAB. Simulations showed that fishing and/or warming bottom water temperature can cause decreases in maximum surfclam shell length (body size) equivalent to those observed in the fished stock. Independently, either localized fishing rates of 20% or sustained bottom temperatures that are 2 °C warmer than average conditions generate the observed decrease in maximum shell length. However, these independent conditions represent extremes and are not sustained in the MAB. The combined effects of fishing and warmer temperatures can generate simulated length decreases that are similar to observed decreases. Interannual variability in bottom water temperatures can also generate fluctuations in simulated shell length of up to 20 mm over a period of 10-15 years. If the change in maximum size is not genotypic, simulations also suggest that shell size composition of surfclam populations can recover if conditions change; however, that recovery could take a decade to become evident.
Sun, Pingyue; Xu, Xiaoyin; Chen, Huili; Ji, Xiang
2002-09-01
The thermal tolerance, body temperature, and influence of temperature on locomotor performance of hatchling soft-shelled turtles (Trionyx sinensis) were studied under dry and wet conditions, and the selected body temperature of hatchlings was 28.0 and 30.3 degrees C, respectively. Under wet condition, the critical thermal maximum and minimum averaged 40.9 and 7.8 degrees C, respectively. In the environments without thermal gradients, the diel variation of body temperature was highly consistent with the variation of both air and water temperatures, and the body temperature was more directly affected by water temperature than by air temperature, which implied that the physiological thermoregulation of hatchling T. sinensis was very weak. In the environments with thermal gradients, hatchling turtles could maintain relatively high and constant body temperatures, primarily through behavioral thermoregulation. The locomotor performance of hatchling turtles was highly dependent on their body temperature. Within a certain range, the locomotor performance increased with increasing body temperature. In our study, the optimal body temperature for locomotor performance was 31.5 degrees C, under which, the maximum continuous running distance, running distance per minute, and number of stops per minute averaged 1.87 m, 4.92 m.min-1, and 6.2 times.min-1, respectively. The correspondent values at 33.0 degrees C averaged 1.30 m, 4.28 m.min-1, and 7.7 times.min-1, respectively, which indicated that the locomotor performance of hatchling turtles was impaired at 33.0 degrees C. Therefore, extremely high body temperatures might have an adverse effect on locomotor performance of hatchling turtles.
Photosynthesis of young apple trees in response to low sink demand under different air temperatures.
Fan, Pei G; Li, Lian S; Duan, Wei; Li, Wei D; Li, Shao H
2010-03-01
Gas exchange, chlorophyll fluorescence, photosynthetic end products and related enzymes in source leaves in response to low sink demand after girdling to remove the root sink were assessed in young apple trees (Malus pumila) grown in two greenhouses with different air temperatures for 5 days. Compared with the non-girdled control in the low-temperature greenhouse (diurnal maximum air temperature <32 degrees C), low sink demand resulted in lower net photosynthetic rate (P(n)), stomatal conductance (g(s)) and transpiration rate (E) but higher leaf temperature on Day 5, while in the high-temperature greenhouse (diurnal maximum air temperature >36 degrees C), P(n), g(s) and E declined from Day 3 onwards. Moreover, gas exchange responded more to low sink demand in the high-temperature greenhouse than in the low-temperature greenhouse. Decreased P(n) at low sink demand was accompanied by lower intercellular CO(2) concentrations in the low-temperature greenhouse. However, decreased maximal photochemical efficiency, potential activity, efficiency of excitation capture, actual efficiency and photochemical quenching, with increased minimal fluorescence and non-photochemical quenching of photosystem II (PSII), were observed in low sink demand leaves only in the high-temperature greenhouse. In addition, low sink demand increased leaf starch and soluble carbohydrate content in both greenhouses but did not result in lower activity of enzymes involved in metabolism. Thus, decreased P(n) under low sink demand was independent of a direct effect of end-product feedback but rather depended on a high temperature threshold. The lower P(n) was likely due to stomatal limitation in the low-temperature greenhouse, but mainly due to non-stomatal limitation in the high-temperature greenhouse.
An evaluation of 2 new devices for nasal high-flow gas therapy.
Waugh, Jonathan B; Granger, Wesley M
2004-08-01
The traditional nasal cannula with bubble humidifier is limited to a maximum flow of 6 L/min to minimize the risk of complications. We conducted a bench study of 2 new Food and Drug Administration-approved nasal cannula/humidifier products designed to deliver at flows> 6 L/min. Using a digital psychrometer we measured the relative humidity and temperature of delivered gas from each device, at 5 L/min increments over the specified functional high-flow range. The Salter Labs unit achieved 72.5-78.7% relative humidity (5-15 L/min range) at ambient temperature (21-23 degrees C). The Vapotherm device achieved 99.9% relative humidity at a temperature setting of 37 degrees C (5-40 L/min). Both devices meet minimum humidification standards and offer practical new treatment options. The patient-selection criteria are primarily the severity of the patient's condition and cost.
Strategy for thermometry via Tm³⁺-doped NaYF₄ core-shell nanoparticles.
Zhou, Shaoshuai; Jiang, Guicheng; Li, Xinyue; Jiang, Sha; Wei, Xiantao; Chen, Yonghu; Yin, Min; Duan, Changkui
2014-12-01
Optical thermometers usually make use of the fluorescence intensity ratio of two thermally coupled energy levels, with the relative sensitivity constrained by the limited energy gap. Here we develop a strategy by using the upconversion (UC) emissions originating from two multiplets with opposite temperature dependences to achieve higher relative temperature sensitivity. We show that the intensity ratio of the two UC emissions, ³F(2,3) and ¹G₄, of Tm³⁺ in β-NaYF₄:20%Yb³⁺, 0.5%Tm³⁺/NaYF₄:1%Pr³⁺ core-shell nanoparticles under 980 nm laser excitation exhibits high relative temperature sensitivity between 350 and 510 K, with a maximum of 1.53% K⁻¹ at 417 K. This demonstrates the validity of the strategy, and that the studied material has the potential for high-performance optical thermometry.
Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan
Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju
2016-01-01
This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (−) and one month ago (−)), and average relative humidity (current and 9 months ago (−)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future. PMID:26848675
Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan.
Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju
2016-02-03
This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (-) and one month ago (-)), and average relative humidity (current and 9 months ago (-)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future.
Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust
NASA Astrophysics Data System (ADS)
Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.
2018-05-01
Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.
NASA Astrophysics Data System (ADS)
Reichstein, Markus; Rey, Ana; Freibauer, Annette; Tenhunen, John; Valentini, Riccardo; Banza, Joao; Casals, Pere; Cheng, Yufu; Grünzweig, Jose M.; Irvine, James; Joffre, Richard; Law, Beverly E.; Loustau, Denis; Miglietta, Franco; Oechel, Walter; Ourcival, Jean-Marc; Pereira, Joao S.; Peressotti, Alessandro; Ponti, Francesca; Qi, Ye; Rambal, Serge; Rayment, Mark; Romanya, Joan; Rossi, Federica; Tedeschi, Vanessa; Tirone, Giampiero; Xu, Ming; Yakir, Dan
2003-12-01
Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g., leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical nonlinear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content, and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and intersite variability of soil respiration with a mean absolute error of 0.82 μmol m-2 s-1. The parameterized model exhibits the following principal properties: (1) At a relative amount of upper-layer soil water of 16% of field capacity, half-maximal soil respiration rates are reached. (2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. (3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly timescale, we employed the approach by [2002] that used monthly precipitation and air temperature to globally predict soil respiration (T&P model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the intersite variability, regardless of whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly timescale, we developed a simple T&P&LAI model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time step model and explained 50% of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index. Before application at the continental or global scale, this approach should be further tested in boreal, cold-temperate, and tropical biomes as well as for non-woody vegetation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drakakis, E.; Karabourniotis, D.
For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousandmore » degrees difference was obtained between atomic and electron temperatures at the maximum current phase.« less
A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control
NASA Technical Reports Server (NTRS)
Ng, Daniel
1999-01-01
The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.
Chen, Feng; Yuan, Yujiang
2014-01-01
Cores of Pinus tabulaformis from Tianshui were subjected to densitometric analysis to obtain mean earlywood density data. Climate response analysis indicates that May–June maximum temperature is the main factor limiting the mean earlywood density (EWD) of Chinese pine trees in the Shimen Mountains. Based on the EWD chronology, we have reconstructed May–June maximum temperature 1666 to 2008 for Tianshui, north central China. The reconstruction explains 40.1% of the actual temperature variance during the common period 1953–2008. The temperature reconstruction is representative of temperature conditions over a large area to the southeast and northwest of the sampling site. Preliminary analysis of links between large-scale climatic variation and the temperature reconstruction shows that there is a relationship between extremes in spring temperature and anomalous atmospheric circulation in the region. It is thus revealed that the mean earlywood density chronology of Pinus tabulaformis has enough potential to reconstruct the temperature variability further into the past. PMID:25207554
Simon, Monique Nouailhetas; Ribeiro, Pedro Leite; Navas, Carlos Arturo
2015-02-01
Tropical ectothermic species are currently depicted as more vulnerable to increasing temperatures because of the proximity between their upper thermal limits and environmental temperatures. Yet, the acclimatory capacity of thermal limits has rarely been measured in tropical species, even though they are generally predicted to be smaller than in temperate species. We compared critical thermal maximum (CTmax) and warming tolerance (WT: the difference between CTmax and maximum temperature, Tmax), as well as CTmax acclimatory capacity of toad species from the Atlantic forest (AF) and the Brazilian Caatinga (CAA), a semi-arid habitat with high temperatures. Acclimation temperatures represented the mean temperatures of AF and CAA habitats, making estimates of CTmax and WT more ecologically realistic. CAA species mean CTmax was higher compared to AF species in both acclimation treatments. Clutches within species, as well as between AF and CAA species, differed in CTmax plasticity and we discuss the potential biological meaning of these findings. We did not find a trade-off between absolute CTmax and CTmax plasticity, indicating that species can have both high CTmax and high CTmax plasticity. Although CTmax was highly correlated to Tmax, CTmax plasticity was not related to Tmax or Tmax coefficients of variation. CAA species mean WT was lower than for AF species, but still very high for all species, diverging from other studies with tropical species. This might be partially related to over-estimation of vulnerability due to under-appreciation of realistic acclimation treatments in CTmax estimation. Thus, some tropical species might not be as vulnerable to warming as previously predicted if CTmax is considered as a shifting population parameter. Copyright © 2014 Elsevier Ltd. All rights reserved.
Climatic controls of western U.S. glaciers at the last glacial maximum
Hostetler, S.W.; Clark, P.U.
1997-01-01
We use a nested atmospheric modeling strategy to simulate precipitation and temperature of the western United States 18,000 years ago (18 ka). The high resolution of the nested model allows us to isolate the regional structure of summer temperature and winter precipitation that is crucial to determination of the net mass balance of late-Pleistocene mountain glaciers in this region of diverse topography and climate. Modeling results suggest that climatic controls of these glaciers varied significantly over the western U.S. Glaciers in the northern Rocky Mountains existed under relatively cold July temperatures and low winter accumulation, reflecting anticyclonic, easterly wind flow off the Laurentide Ice Sheet. In contrast, glaciers that existed under relatively warmer and wetter conditions are located along the Pacific coast south of Oregon, where enhanced westerlies delivered higher precipitation than at present. Between these two groupings lie glaciers that were controlled by a mix of cold and wet conditions attributed to the convergence of cold air from the ice sheet and moisture derived from the westerlies. Sensitivity tests suggest that, for our simulated 18 ka climate, many of the glaciers exhibit a variable response to climate but were generally more sensitive to changes in temperature than to changes in precipitation, particularly those glaciers in central Idaho and the Yellowstone Plateau. Our results support arguments that temperature depression generally played a larger role in lowering equilibrium line altitudes in the western U.S. during the last glacial maximum than did increased precipitation, although the magnitude of temperature depression required for steady-state mass balance varied from 8-18??C. Only the Sierra Nevada glaciers required a substantial increase in precipitation to achieve steady-state mass balance, while glaciers in the Cascade Range existed with decreased precipitation.
Panno, Angelo; Carrus, Giuseppe; Lafortezza, Raffaele; Mariani, Luigi; Sanesi, Giovanni
2017-11-01
Air temperatures are increasing because of global climate change. A warming phenomenon strongly related to global climate change is the urban heat island. It has been shown that the hotter temperatures occurring in cities during the summer negatively affect human wellbeing, but little is known about the potential mechanisms underlying the relationships between hotter temperatures, cognitive psychological resources and wellbeing. The aim of the present research is to understand whether, and how, spending time in urban green spaces, which can be considered as a specific kind of Nature-Based Solution (NBS), helps the recovery of cognitive resources and wellbeing. The main hypothesis is that contact with urban green is related to wellbeing through the depletion of cognitive resources (i.e., ego depletion). Moreover, we expected that individuals showing higher scores of ego depletion also report a higher estimate of the maximum temperature reached during the summer. The results of a survey (N = 115) conducted among visitors to Parco Nord Milano, a large urban park located in Milan (Italy), point out that people visiting the park during the summer show a higher level of wellbeing as well as a lower level of ego depletion. A mediation analysis shows that visiting urban green spaces is associated with greater wellbeing through less ego depletion. Our results also point out that, as expected, people showing a higher level of ego depletion tend to overestimate the maximum air temperature. Implications for future studies and applied interventions regarding the role of NBS to promote human wellbeing are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Wu, Wenzheng; Ye, Wenli; Wu, Zichao; Geng, Peng; Wang, Yulei; Zhao, Ji
2017-01-01
The success of the 3D-printing process depends upon the proper selection of process parameters. However, the majority of current related studies focus on the influence of process parameters on the mechanical properties of the parts. The influence of process parameters on the shape-memory effect has been little studied. This study used the orthogonal experimental design method to evaluate the influence of the layer thickness H, raster angle θ, deformation temperature Td and recovery temperature Tr on the shape-recovery ratio Rr and maximum shape-recovery rate Vm of 3D-printed polylactic acid (PLA). The order and contribution of every experimental factor on the target index were determined by range analysis and ANOVA, respectively. The experimental results indicated that the recovery temperature exerted the greatest effect with a variance ratio of 416.10, whereas the layer thickness exerted the smallest effect on the shape-recovery ratio with a variance ratio of 4.902. The recovery temperature exerted the most significant effect on the maximum shape-recovery rate with the highest variance ratio of 1049.50, whereas the raster angle exerted the minimum effect with a variance ratio of 27.163. The results showed that the shape-memory effect of 3D-printed PLA parts depended strongly on recovery temperature, and depended more weakly on the deformation temperature and 3D-printing parameters. PMID:28825617
Verification of National Weather Service spot forecasts using surface observations
NASA Astrophysics Data System (ADS)
Lammers, Matthew Robert
Software has been developed to evaluate National Weather Service spot forecasts issued to support prescribed burns and early-stage wildfires. Fire management officials request spot forecasts from National Weather Service Weather Forecast Offices to provide detailed guidance as to atmospheric conditions in the vicinity of planned prescribed burns as well as wildfires that do not have incident meteorologists on site. This open source software with online display capabilities is used to examine an extensive set of spot forecasts of maximum temperature, minimum relative humidity, and maximum wind speed from April 2009 through November 2013 nationwide. The forecast values are compared to the closest available surface observations at stations installed primarily for fire weather and aviation applications. The accuracy of the spot forecasts is compared to those available from the National Digital Forecast Database (NDFD). Spot forecasts for selected prescribed burns and wildfires are used to illustrate issues associated with the verification procedures. Cumulative statistics for National Weather Service County Warning Areas and for the nation are presented. Basic error and accuracy metrics for all available spot forecasts and the entire nation indicate that the skill of the spot forecasts is higher than that available from the NDFD, with the greatest improvement for maximum temperature and the least improvement for maximum wind speed.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Li, Jianfeng; David Chen, Yongqin; Chen, Xiaohong
2011-12-01
The purpose of this study was to statistically examine changes of surface air temperature in time and space and to analyze two factors potentially influencing air temperature changes in China, i.e., urbanization and net solar radiation. Trends within the temperature series were detected by using Mann-Kendall trend test technique. The scientific problem this study expected to address was that what could be the role of human activities in the changes of temperature extremes. Other influencing factors such as net solar radiation were also discussed. The results of this study indicated that: (1) increasing temperature was observed mainly in the northeast and northwest China; (2) different behaviors were identified in the changes of maximum and minimum temperature respectively. Maximum temperature seemed to be more influenced by urbanization, which could be due to increasing urban albedo, aerosol, and air pollutions in the urbanized areas. Minimum temperature was subject to influences of variations of net solar radiation; (3) not significant increasing and even decreasing temperature extremes in the Yangtze River basin and the regions south to the Yangtze River basin could be the consequences of higher relative humidity as a result of increasing precipitation; (4) the entire China was dominated by increasing minimum temperature. Thus, we can say that the warming process of China was reflected mainly by increasing minimum temperature. In addition, consistently increasing temperature was found in the upper reaches of the Yellow River basin, the Yangtze River basin, which have the potential to enhance the melting of permafrost in these areas. This may trigger new ecological problems and raise new challenges for the river basin scale water resource management.
Caldwell, Amanda J; While, Geoffrey M; Beeton, Nicholas J; Wapstra, Erik
2015-08-01
Climatic changes are predicted to be greater in higher latitude and mountainous regions but species specific impacts are difficult to predict. This is partly due to inter-specific variance in the physiological traits which mediate environmental temperature effects at the organismal level. We examined variation in the critical thermal minimum (CTmin), critical thermal maximum (CTmax) and evaporative water loss rates (EWL) of a widespread lowland (Niveoscincus ocellatus) and two range restricted highland (N. microlepidotus and N. greeni) members of a cool temperate Tasmanian lizard genus. The widespread lowland species had significantly higher CTmin and CTmax and significantly lower EWL than both highland species. Implications of inter-specific variation in thermal tolerance for activity were examined under contemporary and future climate change scenarios. Instances of air temperatures below CTmin were predicted to decline in frequency for the widespread lowland and both highland species. Air temperatures of high altitude sites were not predicted to exceed the CTmax of either highland species throughout the 21st century. In contrast, the widespread lowland species is predicted to experience air temperatures in excess of CTmax on 1 or 2 days by three of six global circulation models from 2068-2096. To estimate climate change effects on activity we reran the thermal tolerance models using minimum and maximum temperatures selected for activity. A net gain in available activity time was predicted under climate change for all three species; while air temperatures were predicted to exceed maximum temperatures selected for activity with increasing frequency, the change was not as great as the predicted decline in air temperatures below minimum temperatures selected for activity. We hypothesise that the major effect of rising air temperatures under climate change is an increase in available activity period for both the widespread lowland and highland species. The consequences of a greater available activity period will depend on the extent to which changes in climate alters other related factors, such as the nature and level of competition between the respective species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Heat waves in Senegal : detection, characterization and associated processes.
NASA Astrophysics Data System (ADS)
Gnacoussa Sambou, Marie Jeanne; Janicot, Serge; Badiane, Daouda; Pohl, Benjamin; Dieng, Abdou L.; Gaye, Amadou T.
2017-04-01
Atmospheric configuration and synoptic evolution of patterns associated with Senegalese heat wave (HW) are examined on the period 1979-2014 using the Global Surface Summary of the Day (GSOD) observational database and ERA-Interim reanalysis. Since there is no objective and uniform definition of HW events, threshold methods based on atmospheric variables as daily maximum (Tmax) / minimum (Tmin) temperatures and daily mean apparent temperature (AT) are used to define HW threshold detection. Each criterion is related to a specific category of HW events: Tmax (warm day events), Tmin (warm night events) and AT (combining temperature and moisture). These definitions are used in order to characterize as well as possible the warm events over the Senegalese regions (oceanic versus continental region). Statistics on time evolution and spatial distribution of warm events are carried out over the 2 seasons of maximum temperature (March-May and October-November). For each season, a composite of HW events, as well as the most extended event over Senegal (as a case study) are analyzed using usual atmospheric fields (sea level pressure, geopotential height, total column water content, wind components, 2m temperature). This study is part of the project ACASIS (https://acasis.locean-ipsl.upmc.fr/doku.php) on heat waves occurrences over the Sahel and their impact on health. Keywords: heat wave, Senegal, ACASIS.
Long-term projections and acclimatization scenarios of temperature-related mortality in Europe.
Ballester, Joan; Robine, Jean-Marie; Herrmann, François Richard; Rodó, Xavier
2011-06-21
The steady increase in greenhouse gas concentrations is inducing a detectable rise in global temperatures. The sensitivity of human societies to warming temperatures is, however, a transcendental question not comprehensively addressed to date. Here we show the link between temperature, humidity and daily numbers of deaths in nearly 200 European regions, which are subsequently used to infer transient projections of mortality under state-of-the-art high-resolution greenhouse gas scenario simulations. Our analyses point to a change in the seasonality of mortality, with maximum monthly incidence progressively shifting from winter to summer. The results also show that the rise in heat-related mortality will start to completely compensate the reduction of deaths from cold during the second half of the century, amounting to an average drop in human lifespan of up 3-4 months in 2070-2100. Nevertheless, projections suggest that human lifespan might indeed increase if a substantial degree of adaptation to warm temperatures takes place.
Effect of climatological factors on respiratory syncytial virus epidemics
NOYOLA, D. E.; MANDEVILLE, P. B.
2008-01-01
SUMMARY Respiratory syncytial virus (RSV) presents as yearly epidemics in temperate climates. We analysed the association of atmospheric conditions to RSV epidemics in San Luis Potosí, S.L.P., Mexico. The weekly number of RSV detections between October 2002 and May 2006 were correlated to ambient temperature, barometric pressure, relative humidity, vapour tension, dew point, precipitation, and hours of light using time-series and regression analyses. Of the variation in RSV cases, 49·8% was explained by the study variables. Of the explained variation in RSV cases, 32·5% was explained by the study week and 17·3% was explained by meteorological variables (average daily temperature, maximum daily temperature, temperature at 08:00 hours, and relative humidity at 08:00 hours). We concluded that atmospheric conditions, particularly temperature, partly explain the year to year variability in RSV activity. Identification of additional factors that affect RSV seasonality may help develop a model to predict the onset of RSV epidemics. PMID:18177520
21 CFR 172.260 - Oxidized polyethylene.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances... average molecular weight of 1,200, as determined by high temperature vapor pressure osmometry; contains a maximum of 5 percent by weight of total oxygen; and has an acid value of 9 to 19. (b) The additive is used...
NASA Astrophysics Data System (ADS)
Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred
2014-05-01
High-resolution gridded daily datasets are essential for natural resource management and the analysis of climate changes and their effects. This study aimed to create gridded datasets of daily precipitation and daily minimum and maximum temperature, for the future (2020-2050). The horizontal resolution of the developed datasets is 1 x 1 km2, covering the area under control of the Republic of Cyprus (5.760 km2). The study is divided into two parts. The first consists of the evaluation of the performance of different interpolation techniques for daily rainfall and temperature data (1980-2010) for the creation of the gridded datasets. Rainfall data recorded at 145 stations and temperature data from 34 stations were used. For precipitation, inverse distance weighting (IDW) performs best for local events, while a combination of step-wise geographically weighted regression and IDW proves to be the best method for large scale events. For minimum and maximum temperature, a combination of step-wise linear multiple regression and thin plate splines is recognized as the best method. Six Regional Climate Models (RCMs) for the A1B SRES emission scenario from the EU ENSEMBLE project database were selected as sources for future climate projections. The RCMs were evaluated for their capacity to simulate Cyprus climatology for the period 1980-2010. Data for the period 2020-2050 from the three best performing RCMs were downscaled, using the change factors approach, at the location of observational stations. Daily time series were created with a stochastic rainfall and temperature generator. The RainSim V3 software (Burton et al., 2008) was used to generate spatial-temporal coherent rainfall fields. The temperature generator was developed in R and modeled temperature as a weakly stationary process with the daily mean and standard deviation conditioned on the wet and dry state of the day (Richardson, 1981). Finally gridded datasets depicting projected future climate conditions were created with the identified best interpolation methods. The difference between the input and simulated mean daily rainfall, averaged over all the stations, was 0.03 mm (2.2%), while the error related to the number of dry days was 2 (0.6%). For mean daily minimum temperature the error was 0.005 ºC (0.04%), while for maximum temperature it was 0.01 ºC (0.04%). Overall, the weather generators were found to be reliable instruments for the downscaling of precipitation and temperature. The resulting datasets indicate a decrease of the mean annual rainfall over the study area between 5 and 70 mm (1-15%) for 2020-2050, relative to 1980-2010. Average annual minimum and maximum temperature over the Republic of Cyprus are projected to increase between 1.2 and 1.5 ºC. The dataset is currently used to compute agricultural production and water use indicators, as part of the AGWATER project (AEIFORIA/GEORGO/0311(BIE)/06), co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation. Burton, A., Kilsby, C.G., Fowler, H.J., Cowpertwait, P.S.P., and O'Connell, P.E.: RainSim: A spatial-temporal stochastic rainfall modelling system. Environ. Model. Software 23, 1356-1369, 2008 Richardson, C.W.: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res. 17, 182-190, 1981.
Rotating protoneutron stars: Spin evolution, maximum mass, and I-Love-Q relations
NASA Astrophysics Data System (ADS)
Martinon, Grégoire; Maselli, Andrea; Gualtieri, Leonardo; Ferrari, Valeria
2014-09-01
Shortly after its birth in a gravitational collapse, a protoneutron star enters in a phase of quasistationary evolution characterized by large gradients of the thermodynamical variables and intense neutrino emission. In a few tens of seconds, the gradients smooth out while the star contracts and cools down, until it becomes a neutron star. In this paper we study this phase of the protoneutron star life including rotation, and employing finite-temperature equations of state. We model the evolution of the rotation rate, and determine the relevant quantities characterizing the star. Our results show that an isolated neutron star cannot reach, at the end of the evolution, the maximum values of mass and rotation rate allowed by the zero-temperature equation of state. Moreover, a mature neutron star evolved in isolation cannot rotate too rapidly, even if it is born from a protoneutron star rotating at the mass-shedding limit. We also show that the I-Love-Q relations are violated in the first second of life, but they are satisfied as soon as the entropy gradients smooth out.
Scale Properties of Anisotropic and Isotropic Turbulence in the Urban Surface Layer
NASA Astrophysics Data System (ADS)
Liu, Hao; Yuan, Renmin; Mei, Jie; Sun, Jianning; Liu, Qi; Wang, Yu
2017-11-01
The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where C = 3d3 + 1 (d3 is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when C ≈ 1, and anisotropic when C ≪ 1. Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability ξ = (z-zd)/L_{{it{MO}}}, where z is the measurement height, zd is the displacement height, and L_{{it{MO}}} is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., ξ < 0) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.
NASA Technical Reports Server (NTRS)
Gentry, R. C.; Rodgers, E.; Steranka, J.; Shenk, W. E.
1978-01-01
A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques.
Local- and landscape-scale land cover affects microclimate and water use in urban gardens.
Lin, Brenda B; Egerer, Monika H; Liere, Heidi; Jha, Shalene; Bichier, Peter; Philpott, Stacy M
2018-01-01
Urban gardens in Central California are highly vulnerable to the effects of climate change, experiencing both extended high heat periods as well as water restrictions because of severe drought conditions. This puts these critical community-based food production systems at risk as California is expected to experience increasing weather extremes. In agricultural systems, increased vegetation complexity, such as greater structure or biodiversity, can increase the resilience of food production systems from climate fluctuations. We test this theory in 15 urban gardens across California's Central Coast. Local- and landscape-scale measures of ground, vegetation, and land cover were collected in and around each garden, while climate loggers recorded temperatures in each garden in 30min increments. Multivariate analyses, using county as a random factor, show that both local- and landscape-scale factors were important. All factors were significant predictors of mean temperature. Tallest vegetation, tree/shrub species richness, grass cover, mulch cover, and landscape level agricultural cover were cooling factors; in contrast, garden size, garden age, rock cover, herbaceous species richness, and landscape level urban cover were warming factors. Results were similar for the maximum temperature analysis except that agriculture land cover and herbaceous species richness were not significant predictors of maximum temperature. Analysis of gardener watering behavior to observed temperatures shows that garden microclimate was significantly related to the number of minutes watered as well as the number of liters of water used per watering event. Thus gardeners seem to respond to garden microclimate in their watering behavior even though this behavior is most probably motivated by a range of other factors such as water regulations and time availability. This research shows that local management of ground cover and vegetation can reduce mean and maximum temperatures in gardens, and the reduced temperatures may influence watering behavior of gardeners. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.
2010-09-01
Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave incidence in connection with macro scale circulation patterns in central European region.
A biometeorology study of climate and heat-related morbidity in Phoenix from 2001 to 2006
NASA Astrophysics Data System (ADS)
Golden, Jay S.; Hartz, Donna; Brazel, Anthony; Luber, George; Phelan, Patrick
2008-07-01
Heat waves kill more people in the United States than hurricanes, tornadoes, earthquakes, and floods combined. Recently, international attention focused on the linkages and impacts of human health vulnerability to urban climate when Western Europe experienced over 30,000 excess deaths during the heat waves of the summer of 2003—surpassing the 1995 heat wave in Chicago, Illinois, that killed 739. While Europe dealt with heat waves, in the United States, Phoenix, Arizona, established a new all-time high minimum temperature for the region on July 15, 2003. The low temperature of 35.5°C (96°F) was recorded, breaking the previous all-time high minimum temperature record of 33.8°C (93°F). While an extensive literature on heat-related mortality exists, greater understanding of influences of heat-related morbidity is required due to climate change and rapid urbanization influences. We undertook an analysis of 6 years (2001 2006) of heat-related dispatches through the Phoenix Fire Department regional dispatch center to examine temporal, climatic and other non-spatial influences contributing to high-heat-related medical dispatch events. The findings identified that there were no significant variations in day-of-week dispatch events. The greatest incidence of heat-related medical dispatches occurred between the times of peak solar irradiance and maximum diurnal temperature, and during times of elevated human comfort indices (combined temperature and relative humidity).
A biometeorology study of climate and heat-related morbidity in Phoenix from 2001 to 2006.
Golden, Jay S; Hartz, Donna; Brazel, Anthony; Luber, George; Phelan, Patrick
2008-07-01
Heat waves kill more people in the United States than hurricanes, tornadoes, earthquakes, and floods combined. Recently, international attention focused on the linkages and impacts of human health vulnerability to urban climate when Western Europe experienced over 30,000 excess deaths during the heat waves of the summer of 2003-surpassing the 1995 heat wave in Chicago, Illinois, that killed 739. While Europe dealt with heat waves, in the United States, Phoenix, Arizona, established a new all-time high minimum temperature for the region on July 15, 2003. The low temperature of 35.5 degrees C (96 degrees F) was recorded, breaking the previous all-time high minimum temperature record of 33.8 degrees C (93 degrees F). While an extensive literature on heat-related mortality exists, greater understanding of influences of heat-related morbidity is required due to climate change and rapid urbanization influences. We undertook an analysis of 6 years (2001-2006) of heat-related dispatches through the Phoenix Fire Department regional dispatch center to examine temporal, climatic and other non-spatial influences contributing to high-heat-related medical dispatch events. The findings identified that there were no significant variations in day-of-week dispatch events. The greatest incidence of heat-related medical dispatches occurred between the times of peak solar irradiance and maximum diurnal temperature, and during times of elevated human comfort indices (combined temperature and relative humidity).
NASA Technical Reports Server (NTRS)
Snyder, A.; Lauver, M. R.; Patch, R. W.
1976-01-01
Further hot-ion plasma experiments were conducted in the SUMMA superconducting magnetic mirror facility. A steady-state ExB plasma was formed by applying a strong radially inward dc electric field between cylindrical anodes and hollow cathodes located near the magnetic mirror maxima. Extending the use of water cooling to the hollow cathodes, in addition to the anodes, resulted in higher maximum power input to the plasma. Steady-state hydrogen plasmas with ion kinetic temperatures as high as 830 eV were produced. Functional relations were obtained empirically among the plasma current, voltage, magnetic flux density, ion temperature, and relative ion density. The functional relations were deduced by use of a multiple correlation analysis. Data were obtained for midplane magnetic fields from 0.5 to 3.37 tesla and input power up to 45 kW. Also, initial absolute electron density measurements are reported from a 90 deg Thomson scattering laser system.
NASA Astrophysics Data System (ADS)
José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María
2016-04-01
In the current context of global change, mountainous areas constitute singular locations in which these changes can be traced. Early detection of significant shifts of snow state variables in semiarid regions can help assess climate variability impacts and future snow dynamics in northern latitudes. The Sierra Nevada mountain range, in southern Spain, is a representative example of snow areas in Mediterranean-climate regions and both monitoring and modelling efforts have been performed to assess this variability and its significant scales. This work presents a decadal trend analysis throughout the 50-yr period 1960-2010 performed on some snow-related variables over Sierra Nevada, in Spain, which is included in the global climate change observatories network around the world. The study area comprises 4583 km2 distributed throughout the five head basins influenced by these mountains, with altitude values ranging from 140 to 3479 m.a.s.l., just 40 km from the Mediterranean coastline. Meteorological variables obtained from 44 weather stations from the National Meteorological Agency were studied and further used as input to the distributed hydrological model WiMMed (Polo et al., 2010), operational at the study area, to obtain selected snow variables. Decadal trends were obtained, together with their statistical significance, over the following variables, averaged over the whole study area: (1) annual precipitation; (2) annual snowfall; annual (3) mean, (4) maximum and (5) minimum daily temperature; annual (6) mean and (7) maximum daily fraction of snow covered areas; (8) annual number of days with snow cover; (9) mean and (10) maximum daily snow water equivalent; (11) annual number of extreme precipitation events; and (12) mean intensity of the annual extreme precipitation events. These variables were also studied over each of the five regions associated to each basin in the range. Globally decreasing decadal trends were obtained for all the meteorological variables, with the exception of the average annual mean and maximum daily temperature. In the case of the snow-related variables, no significant trends are observed at this time scale; nonetheless, a global decreasing rate is predominant in most of the variables. The torrential events are more frequent in the last decades of the study period, with an apparently increasing associated dispersion. This study constitutes a first sound analysis of the long-term observed trends of the snow regime in this area under the context of increasing temperature and decreasing precipitation regimes. The results highlight the complexity of non-linearity in environmental processes in Mediterranean regions, and point out to a significant shift in the precipitation and temperature regime, and thus on the snow-affected hydrological variables in the study area.
Plant Distribution Data Show Broader Climatic Limits than Expert-Based Climatic Tolerance Estimates
Curtis, Caroline A.; Bradley, Bethany A.
2016-01-01
Background Although increasingly sophisticated environmental measures are being applied to species distributions models, the focus remains on using climatic data to provide estimates of habitat suitability. Climatic tolerance estimates based on expert knowledge are available for a wide range of plants via the USDA PLANTS database. We aim to test how climatic tolerance inferred from plant distribution records relates to tolerance estimated by experts. Further, we use this information to identify circumstances when species distributions are more likely to approximate climatic tolerance. Methods We compiled expert knowledge estimates of minimum and maximum precipitation and minimum temperature tolerance for over 1800 conservation plant species from the ‘plant characteristics’ information in the USDA PLANTS database. We derived climatic tolerance from distribution data downloaded from the Global Biodiversity and Information Facility (GBIF) and corresponding climate from WorldClim. We compared expert-derived climatic tolerance to empirical estimates to find the difference between their inferred climate niches (ΔCN), and tested whether ΔCN was influenced by growth form or range size. Results Climate niches calculated from distribution data were significantly broader than expert-based tolerance estimates (Mann-Whitney p values << 0.001). The average plant could tolerate 24 mm lower minimum precipitation, 14 mm higher maximum precipitation, and 7° C lower minimum temperatures based on distribution data relative to expert-based tolerance estimates. Species with larger ranges had greater ΔCN for minimum precipitation and minimum temperature. For maximum precipitation and minimum temperature, forbs and grasses tended to have larger ΔCN while grasses and trees had larger ΔCN for minimum precipitation. Conclusion Our results show that distribution data are consistently broader than USDA PLANTS experts’ knowledge and likely provide more robust estimates of climatic tolerance, especially for widespread forbs and grasses. These findings suggest that widely available expert-based climatic tolerance estimates underrepresent species’ fundamental niche and likely fail to capture the realized niche. PMID:27870859
Deglacial Warming and Wetting of Northern Alaska
NASA Astrophysics Data System (ADS)
Daniels, W.; Russell, J. M.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Morrill, C.; Huang, Y.
2015-12-01
Aeolian sand dunes swept across northern Alaska during the last glacial maximum. Today, summer temperatures are moderate and soils can remain waterlogged all summer long. How did the transition from a cold and dry glacial to a warm and wet interglacial take place? To answer this question we reconstructed temperature and precipitation changes during the last deglaciation using biomarker hydrogen isotopes from a new 28,000 year-long sediment core from Lake E5, located in the central Brooks Range of Alaska. We use terrestrial leaf waxes (dDterr, C28-acid), informed by dD measurements of modern vegetation, to infer dD of precipitation, an indicator of relative temperature change. Biomarkers from aquatic organisms (dDaq, C18-acid) are used as a proxy for lake water isotopes. The offset between the two (eterr-aq) is used to infer relative changes in evaporative enrichment of lake water, and by extension, moisture balance. dDterr during the last glacial period was -282‰ compared to -258‰ during the Holocene, suggesting a 5.6 ± 2.7 °C increase in summer temperature using the modern local temperature-dD relationship. Gradual warming began at ~18.5 ka, and temperature increased abruptly at 11.5 ka, at the end of the Younger Dryas. Warming peaked in the early Holocene from 11.5 to 9.1 ka, indicating a Holocene thermal maximum associated with peak summer insolation. The eterr-aq supports a dry LGM and moist Holocene. Other sediment proxies (TIC, TOC, redox-sensitive elements) support the eterr-aq, and reveal a shift to more positive P-E beginning around 17 ka, suggesting rising temperature led increases in precipitation during the last deglaciation. Moreover, differing patterns of dDterr and eterr-aq during the deglaciation suggest that the relationship between temperature and precipitation changed through time. Such decoupling, likely due to regional atmospheric reorganization as the Laurentide ice sheet waned, illustrates the importance of atmospheric dynamics in controlling Alaskan climate.
NASA Astrophysics Data System (ADS)
Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.
2017-07-01
This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.
Sepulveda, C; Dickson, K A
2000-10-01
Tunas (Scombridae) have been assumed to be among the fastest and most efficient swimmers because they elevate the temperature of the slow-twitch, aerobic locomotor muscle above the ambient water temperature (endothermy) and because of their streamlined body shape and use of the thunniform locomotor mode. The purpose of this study was to test the hypothesis that juvenile tunas swim both faster and more efficiently than their ectothermic relatives. The maximum sustainable swimming speed (U(max), the maximum speed attained while using a steady, continuous gait powered by the aerobic myotomal muscle) and the net cost of transport (COT(net)) were compared at 24 degrees C in similar-sized (116-255 mm fork length) juvenile scombrids, an endothermic tuna, the kawakawa (Euthynnus affinis) and the ectothermic chub mackerel (Scomber japonicus). U(max) and COT(net) were measured by forcing individual fish to swim in a temperature-controlled, variable-speed swimming tunnel respirometer. There were no significant interspecific differences in the relationship between U(max) and body mass or fork length or in the relationship between COT(net) and body mass or fork length. Muscle temperatures were elevated by 1.0-2.3 degrees C and 0.1-0.6 degrees C above water temperature in the kawakawa and chub mackerel, respectively. The juvenile kawakawa had significantly higher standard metabolic rates than the chub mackerel, because the total rate of oxygen consumption at a given swimming speed was higher in the kawakawa when the effects of fish size were accounted for. Thus, juvenile kawakawa are not capable of higher sustainable swimming speeds and are not more efficient swimmers than juvenile chub mackerel.
Hassan, A K
2015-01-01
In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.
NASA Astrophysics Data System (ADS)
Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek
2018-04-01
The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
40 CFR 86.133-96 - Diurnal emission test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
40 CFR 86.1233-96 - Diurnal emission test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... according to the profile specified in § 86.1233 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
40 CFR 86.133-96 - Diurnal emission test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
40 CFR 86.1233-96 - Diurnal emission test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... according to the profile specified in § 86.1233 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
40 CFR 86.133-96 - Diurnal emission test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
40 CFR 86.1233-96 - Diurnal emission test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... according to the profile specified in § 86.1233 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
40 CFR 86.133-96 - Diurnal emission test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
NASA Astrophysics Data System (ADS)
García-Cueto, O. Rafael; Cavazos, M. Tereza; de Grau, Pamela; Santillán-Soto, Néstor
2014-04-01
The generalized extreme value distribution is applied in this article to model the statistical behavior of the maximum and minimum temperature distribution tails in four cities of Baja California in northwestern Mexico, using data from 1950-2010. The approach used of the maximum of annual time blocks. Temporal trends were included as covariates in the location parameter (μ), which resulted in significant improvements to the proposed models, particularly for the extreme maximum temperature values in the cities of Mexicali, Tijuana, and Tecate, and the extreme minimum temperature values in Mexicali and Ensenada. These models were used to estimate future probabilities over the next 100 years (2015-2110) for different time periods, and they were compared with changes in the extreme (P90th and P10th) percentiles of maximum and minimum temperature scenarios for a set of six general circulation models under low (RCP4.5) and high (RCP8.5) radiative forcings. By the end of the twenty-first century, the scenarios of the changes in extreme maximum summer temperature are of the same order in both the statistical model and the high radiative scenario (increases of 4-5 °C). The low radiative scenario is more conservative (increases of 2-3 °C). The winter scenario shows that minimum temperatures could be less severe; the temperature increases suggested by the probabilistic model are greater than those projected for the end of the century by the set of global models under RCP4.5 and RCP8.5 scenarios. The likely impacts on the region are discussed.
Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D; Shoshiashvili, Levan; Petryk, Alicia A; Hoopes, P Jack
2016-11-01
Magnetic nanoparticle hyperthermia therapy is a promising technology for cancer treatment, involving delivering magnetic nanoparticles (MNPs) into tumours then activating them using an alternating magnetic field (AMF). The system produces not only a magnetic field, but also an electric field which penetrates normal tissue and induces eddy currents, resulting in unwanted heating of normal tissues. Magnitude of the eddy current depends, in part, on the AMF source and the size of the tissue exposed to the field. The majority of in vivo MNP hyperthermia therapy studies have been performed in small animals, which, due to the spatial distribution of the AMF relative to the size of the animals, do not reveal the potential toxicity of eddy current heating in larger tissues. This has posed a non-trivial challenge for researchers attempting to scale up to clinically relevant volumes of tissue. There is a relative dearth of studies focused on decreasing the maximum temperature resulting from eddy current heating to increase therapeutic ratio. This paper presents two simple, clinically applicable techniques for decreasing maximum temperature induced by eddy currents. Computational and experimental results are presented to understand the underlying physics of eddy currents induced in conducting, biological tissues and leverage these insights to mitigate eddy current heating during MNP hyperthermia therapy. Phantom studies show that the displacement and motion techniques reduce maximum temperature due to eddy currents by 74% and 19% in simulation, and by 77% and 33% experimentally. Further study is required to optimise these methods for particular scenarios; however, these results suggest larger volumes of tissue could be treated, and/or higher field strengths and frequencies could be used to attain increased MNP heating when these eddy current mitigation techniques are employed.
NASA Astrophysics Data System (ADS)
Zhao, Junhua; Jiang, Jin-Wu; Rabczuk, Timon
2013-12-01
The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS2) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS2. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.
Future Extreme Event Vulnerability in the Rural Northeastern United States
NASA Astrophysics Data System (ADS)
Winter, J.; Bowen, F. L.; Partridge, T.; Chipman, J. W.
2017-12-01
Future climate change impacts on humans will be determined by the convergence of evolving physical climate and socioeconomic systems. Of particular concern is the intersection of extreme events and vulnerable populations. Rural areas of the Northeastern United States have experienced increased temperature and precipitation extremes, especially over the past three decades, and face unique challenges due to their physical isolation, natural resources dependent economies, and high poverty rates. To explore the impacts of future extreme events on vulnerable, rural populations in the Northeast, we project extreme events and vulnerability indicators to identify where changes in extreme events and vulnerable populations coincide. Specifically, we analyze future (2046-2075) maximum annual daily temperature, minimum annual daily temperature, maximum annual daily precipitation, and maximum consecutive dry day length for Representative Concentration Pathways (RCP) 4.5 and 8.5 using four global climate models (GCM) and a gridded observational dataset. We then overlay those projections with estimates of county-level population and relative income for 2060 to calculate changes in person-events from historical (1976-2005), with a focus on Northeast counties that have less than 250,000 people and are in the bottom income quartile. We find that across the rural Northeast for RCP4.5, heat person-events per year increase tenfold, far exceeding decreases in cold person-events and relatively small changes in precipitation and drought person-events. Counties in the bottom income quartile have historically (1976-2005) experienced a disproportionate number of heat events, and counties in the bottom two income quartiles are projected to experience a greater heat event increase by 2046-2075 than counties in the top two income quartiles. We further explore the relative contributions of event frequency, population, and income changes to the total and geographic distribution of climate change impacts on rural, vulnerable areas of the Northeast.
NASA Astrophysics Data System (ADS)
Xiong, Qiufen; Hu, Jianglin
2013-05-01
The minimum/maximum (Min/Max) temperature in the Yangtze River valley is decomposed into the climatic mean and anomaly component. A spatial interpolation is developed which combines the 3D thin-plate spline scheme for climatological mean and the 2D Barnes scheme for the anomaly component to create a daily Min/Max temperature dataset. The climatic mean field is obtained by the 3D thin-plate spline scheme because the relationship between the decreases in Min/Max temperature with elevation is robust and reliable on a long time-scale. The characteristics of the anomaly field tend to be related to elevation variation weakly, and the anomaly component is adequately analyzed by the 2D Barnes procedure, which is computationally efficient and readily tunable. With this hybridized interpolation method, a daily Min/Max temperature dataset that covers the domain from 99°E to 123°E and from 24°N to 36°N with 0.1° longitudinal and latitudinal resolution is obtained by utilizing daily Min/Max temperature data from three kinds of station observations, which are national reference climatological stations, the basic meteorological observing stations and the ordinary meteorological observing stations in 15 provinces and municipalities in the Yangtze River valley from 1971 to 2005. The error estimation of the gridded dataset is assessed by examining cross-validation statistics. The results show that the statistics of daily Min/Max temperature interpolation not only have high correlation coefficient (0.99) and interpolation efficiency (0.98), but also the mean bias error is 0.00 °C. For the maximum temperature, the root mean square error is 1.1 °C and the mean absolute error is 0.85 °C. For the minimum temperature, the root mean square error is 0.89 °C and the mean absolute error is 0.67 °C. Thus, the new dataset provides the distribution of Min/Max temperature over the Yangtze River valley with realistic, successive gridded data with 0.1° × 0.1° spatial resolution and daily temporal scale. The primary factors influencing the dataset precision are elevation and terrain complexity. In general, the gridded dataset has a relatively high precision in plains and flatlands and a relatively low precision in mountainous areas.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.
2010-01-01
MODIS-derived snow cover measured on 30 April in any given year explains approximately 89 % of the variance in stream discharge for maximum monthly streamflow in that year. Observed changes in streamflow appear to be related to increasing maximum air temperatures over the last four decades causing lower spring snow-cover extent. The majority (>70%) of the water supply in the western United States comes from snowmelt, thus analysis of the declining spring snowpack (and resulting declining stream discharge) has important implications for streamflow management in the drought-prone western U.S.
NASA Astrophysics Data System (ADS)
Pryor, Sara C.; Sullivan, Ryan C.; Schoof, Justin T.
2017-12-01
The static energy content of the atmosphere is increasing on a global scale, but exhibits important subglobal and subregional scales of variability and is a useful parameter for integrating the net effect of changes in the partitioning of energy at the surface and for improving understanding of the causes of so-called warming holes
(i.e., locations with decreasing daily maximum air temperatures (T) or increasing trends of lower magnitude than the global mean). Further, measures of the static energy content (herein the equivalent potential temperature, θe) are more strongly linked to excess human mortality and morbidity than air temperature alone, and have great relevance in understanding causes of past heat-related excess mortality and making projections of possible future events that are likely to be associated with negative human health and economic consequences. New nonlinear statistical models for summertime daily maximum and minimum θe are developed and used to advance understanding of drivers of historical change and variability over the eastern USA. The predictor variables are an index of the daily global mean temperature, daily indices of the synoptic-scale meteorology derived from T and specific humidity (Q) at 850 and 500 hPa geopotential heights (Z), and spatiotemporally averaged soil moisture (SM). SM is particularly important in determining the magnitude of θe over regions that have previously been identified as exhibiting warming holes, confirming the key importance of SM in dictating the partitioning of net radiation into sensible and latent heat and dictating trends in near-surface T and θe. Consistent with our a priori expectations, models built using artificial neural networks (ANNs) out-perform linear models that do not permit interaction of the predictor variables (global T, synoptic-scale meteorological conditions and SM). This is particularly marked in regions with high variability in minimum and maximum θe, where more complex models built using ANN with multiple hidden layers are better able to capture the day-to-day variability in θe and the occurrence of extreme maximum θe. Over the entire domain, the ANN with three hidden layers exhibits high accuracy in predicting maximum θe > 347 K. The median hit rate for maximum θe > 347 K is > 0.60, while the median false alarm rate is ≈ 0.08.
Low-temperature thermal conductivity of ferroelastic Gd 2(MoO 4) 3
NASA Astrophysics Data System (ADS)
Mielcarek, S.; Mróz, B.; Tylczyński, Z.; Piskunowicz, P.; Trybuła, Z.; Bromberek, M.
2001-05-01
Thermal conductivity, k, of GMO crystal has been measured in temperatures from 0.5 to 80 K. The maximum of k appears at 18 K and its value depends on the current domain state of the sample. The ferroelastic domain walls and antiphase boundaries, characterised by elastic inhomogeneities, are responsible for additional phonon scattering and a decrease in the thermal conductivity. The deviation of the temperature dependence of thermal conductivity from the classical Debye theory observed below 4 K is related to the anomalous behaviour of specific heat in the region of the antiferromagnetic transition at T N=0.3 K .
Boundary effects in a quasi-two-dimensional driven granular fluid.
Smith, N D; Smith, M I
2017-12-01
The effect of a confining boundary on the spatial variations in granular temperature of a driven quasi-two-dimensional layer of particles is investigated experimentally. The radial drop in the relative granular temperature ΔT/T exhibits a maximum at intermediate particle numbers which coincides with a crossover from kinetic to collisional transport of energy. It is also found that at low particle numbers, the distributions of radial velocities are increasingly asymmetric as one approaches the boundary. The radial and tangential granular temperatures split, and in the tails of the radial velocity distribution there is a higher population of fast moving particles traveling away rather than towards the boundary.
Chylek, Petr; Augustine, John A.; Klett, James D.; ...
2017-09-30
At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less
Howell, P.J.; Dunham, J.B.; Sankovich, P.M.
2010-01-01
Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chylek, Petr; Augustine, John A.; Klett, James D.
At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less
NASA Astrophysics Data System (ADS)
Cardoso, Rita M.; Soares, Pedro M. M.; Lima, Daniela C. A.; Miranda, Pedro M. A.
2018-02-01
Large temperature spatio-temporal gradients are a common feature of Mediterranean climates. The Portuguese complex topography and coastlines enhances such features, and in a small region large temperature gradients with high interannual variability is detected. In this study, the EURO-CORDEX high-resolution regional climate simulations (0.11° and 0.44° resolutions) are used to investigate the maximum and minimum temperature projections across the twenty-first century according to RCP4.5 and RCP8.5. An additional WRF simulation with even higher resolution (9 km) for RCP8.5 scenario is also examined. All simulations for the historical period (1971-2000) are evaluated against the available station observations and the EURO-CORDEX model results are ranked in order to build multi-model ensembles. In present climate models are able to reproduce the main topography/coast related temperature gradients. Although there are discernible differences between models, most present a cold bias. The multi-model ensembles improve the overall representation of the temperature. The ensembles project a significant increase of the maximum and minimum temperatures in all seasons and scenarios. Maximum increments of 8 °C in summer and autumn and between 2 and 4 °C in winter and spring are projected in RCP8.5. The temperature distributions for all models show a significant increase in the upper tails of the PDFs. In RCP8.5 more than half of the extended summer (MJJAS) has maximum temperatures exceeding the historical 90th percentile and, on average, 60 tropical nights are projected for the end of the century, whilst there are only 7 tropical nights in the historical period. Conversely, the number of cold days almost disappears. The yearly average number of heat waves increases by seven to ninefold by 2100 and the most frequent length rises from 5 to 22 days throughout the twenty-first century. 5% of the longest events will last for more than one month. The amplitude is overwhelming larger, reaching values which are not observed in the historical period. More than half of the heat waves will be stronger than the extreme heat wave of 2003 by the end of the century. The future heatwaves will also enclose larger areas, approximately 100 events in the 2071-2100 period (more than 3 per year) will cover the whole country. The RCP4.5 scenario has in general smaller magnitudes.
Mid-depth temperature maximum in an estuarine lake
NASA Astrophysics Data System (ADS)
Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.
2018-03-01
The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~< 2 m), transparent water, daytime maximum of wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.
Srivastava, Neha; Srivastava, Manish; Manikanta, Ambepu; Singh, Pardeep; Ramteke, P W; Mishra, P K; Malhotra, Bansi D
2017-10-01
Cellulase enzymes have versatile industrial applications. This study was directed towards the isolation, production, and characterization of cellulase enzyme system. Among the five isolated fungal cultures, Emericella variecolor NS3 showed maximum cellulase production using untreated orange peel waste as substrate using solid-state fermentation (SSF). Maximum enzyme production of 31 IU/gds (per gram of dry substrate) was noticed at 6.0 g concentration of orange peel. Further, 50 °C was recorded as the optimum temperature for cellulase activity and the thermal stability for 240 min was observed at this temperature. In addition, the crude enzyme was stable at pH 5.0 and held its complete relative activity in presence of Mn 2+ and Fe 3+ . This study explored the production of crude enzyme system using biological waste with future potential for research and industrial applications.
Free energy reconstruction from steered dynamics without post-processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athenes, Manuel, E-mail: Manuel.Athenes@cea.f; Condensed Matter and Materials Division, Physics and Life Sciences Directorate, LLNL, Livermore, CA 94551; Marinica, Mihai-Cosmin
2010-09-20
Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-{alpha}. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, wemore » accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.« less
Climatological variables and the incidence of Dengue fever in Barbados.
Depradine, Colin; Lovell, Ernest
2004-12-01
A retrospective study to determine relationships between the incidence of dengue cases and climatological variables and to obtain a predictive equation was carried out for the relatively small Caribbean island of Barbados which is divided into 11 parishes. The study used the weekly dengue cases and precipitation data for the years (1995 - 2000) that occurred in the small area of a single parish. Other climatological data were obtained from the local meteorological offices. The study used primarily cross correlation analysis and found the strongest correlation with the vapour pressure at a lag of 6 weeks. A weaker correlation occurred at a lag of 7 weeks for the precipitation. The minimum temperature had its strongest correlation at a lag of 12 weeks and the maximum temperature a lag of 16 weeks. There was a negative correlation with the wind speed at a lag of 3 weeks. The predictive models showed a maximum explained variance of 35%.
NASA Astrophysics Data System (ADS)
Fricke, Henry C.; Clyde, William C.; O'Neil, James R.; Gingerich, Philip D.
1998-07-01
Oxygen isotope records of Cenozoic sea water temperatures indicate that a rapid warming event known as the Latest Paleocene Thermal Maximum (LPTM) occurred during the otherwise gradual increase in world temperatures during the Late Paleocene and Early Eocene. Oxygen isotope analysis of the carbonate and phosphate components of hydroxyapatite found in mammalian tooth enamel and body scales of river-dwelling fish from the Bighorn Basin in Wyoming were made to investigate corresponding changes in the terrestrial climate. A comparison of carbonate and phosphate isotope data from modern and fossil material indicates that some diagenetic alteration of the fossil material has occurred, although systematically larger intra-tooth ranges in the oxygen isotope composition of carbonate indicate that it is more likely to have been affected than phosphate. Carbonate and phosphate from the ecologically diverse mammals and fishes both record a shift to higher oxygen isotope ratios at the same time and of the same duration as the LPTM. These shifts reflect a change in the isotopic composition of regional precipitation, which in turn provides the first evidence for continental climate change during the LPTM. Assuming the present-day relation between the oxygen isotope composition of precipitation and temperature applies to conditions in the past, and that animal physiology and behavior is relatively invariant over time, the isotopic shift is equivalent to an increase of surface temperature in western North America of several degrees. This result is consistent with the magnitude of high-latitude ocean warming, and provides a basis for relating marine and terrestrial oxygen isotope records to records of terrestrial biotic change.
Lavella, Mario; Botto, Daniele
2018-06-21
Slots in the disk of aircraft turbines restrain the centrifugal load of blades. Contact surfaces between the blade root and the disk slot undergo high contact pressure and relative displacement that is the typical condition in which fretting occurs. The load level ranges from zero to the maximum during take-off. This cycle is repeated for each mission. In this paper, a fretting fatigue analysis of additively manufactured blades is presented. Blades are made of an intermetallic alloy γTiAl. Fretting fatigue experiments were performed at a frequency of 0.5 Hz and at a temperature of 640 °C to match the operating condition of real blades. The minimum load was fixed at 0.5 KN and three maximum loads were applied, namely 16, 18 and 20 kN. Both an analytical and a two-dimensional finite element model were used to evaluate the state of stress at the contact interfaces. The results of the analytical model showed good agreement with the numerical model. Experiments showed that cracks nucleate where the analytical model predicts the maximum contact pressure and the numerical model predicts the maximum equivalent stress. A parametric analysis performed with the analytical model indicates that there exists an optimum geometry to minimize the contact pressure. Tests showed that the component life changed dramatically with the maximum load variation. Optical topography and scanning electron microscopy (SEM) analysis reveals information about the damage mechanism.
NASA Astrophysics Data System (ADS)
Khwarahm, Nabaz; Dash, Jadunandan; Atkinson, Peter M.; Newnham, R. M.; Skjøth, C. A.; Adams-Groom, B.; Caulton, Eric; Head, K.
2014-05-01
Constructing accurate predictive models for grass and birch pollen in the air, the two most important aeroallergens, for areas with variable climate conditions such as the United Kingdom, require better understanding of the relationships between pollen count in the air and meteorological variables. Variations in daily birch and grass pollen counts and their relationship with daily meteorological variables were investigated for nine pollen monitoring sites for the period 2000-2010 in the United Kingdom. An active pollen count sampling method was employed at each of the monitoring stations to sample pollen from the atmosphere. The mechanism of this method is based on the volumetric spore traps of Hirst design (Hirst in Ann Appl Biol 39(2):257-265,
Canadian crop calendars in support of the early warning project
NASA Technical Reports Server (NTRS)
Trenchard, M. H.; Hodges, T. (Principal Investigator)
1980-01-01
The Canadian crop calendars for LACIE are presented. Long term monthly averages of daily maximum and daily minimum temperatures for subregions of provinces were used to simulate normal daily maximum and minimum temperatures. The Robertson (1968) spring wheat and Williams (1974) spring barley phenology models were run using the simulated daily temperatures and daylengths for appropriate latitudes. Simulated daily temperatures and phenology model outputs for spring wheat and spring barley are given.
Weon, S Y; Lee, S I; Koopman, B
2004-11-01
Effect of temperature and dissolved oxygen concentration on nitrification rate were investigated with enrichment cultures of nitrifying bacteria. Values of specific nitrite oxidation rate in the absence of ammonia were 2.9-12 times higher than maximum specific ammonia oxidation rates at the same temperatures. The presence of high ammonia levels reversed this relationship, causing maximum specific nitrite oxidation rates to fall to 19 to 45% as high as maximum specific ammonia oxidation rates. This result suggests that nitrification at high ammonia levels will invariably result in nitrite accumulation. The K(O2) for nitrite oxidation in the presence of high ammonia levels was higher than the K(O2) for ammonia oxidation when temperature exceeded 18 degrees C, whereas the opposite was true at lower temperatures. These results indicate that low oxygen tensions will exacerbate nitrite accumulation when water temperature is high.
Extreme Maximum Land Surface Temperatures.
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1992-09-01
There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).
NASA Astrophysics Data System (ADS)
Webb, Mathew A.; Hall, Andrew; Kidd, Darren; Minansy, Budiman
2016-05-01
Assessment of local spatial climatic variability is important in the planning of planting locations for horticultural crops. This study investigated three regression-based calibration methods (i.e. traditional versus two optimized methods) to relate short-term 12-month data series from 170 temperature loggers and 4 weather station sites with data series from nearby long-term Australian Bureau of Meteorology climate stations. The techniques trialled to interpolate climatic temperature variables, such as frost risk, growing degree days (GDDs) and chill hours, were regression kriging (RK), regression trees (RTs) and random forests (RFs). All three calibration methods produced accurate results, with the RK-based calibration method delivering the most accurate validation measures: coefficients of determination ( R 2) of 0.92, 0.97 and 0.95 and root-mean-square errors of 1.30, 0.80 and 1.31 °C, for daily minimum, daily maximum and hourly temperatures, respectively. Compared with the traditional method of calibration using direct linear regression between short-term and long-term stations, the RK-based calibration method improved R 2 and reduced root-mean-square error (RMSE) by at least 5 % and 0.47 °C for daily minimum temperature, 1 % and 0.23 °C for daily maximum temperature and 3 % and 0.33 °C for hourly temperature. Spatial modelling indicated insignificant differences between the interpolation methods, with the RK technique tending to be the slightly better method due to the high degree of spatial autocorrelation between logger sites.
Analysis of Global Urban Temperature Trends and Urbanization Impacts
NASA Astrophysics Data System (ADS)
Lee, K. I.; Ryu, J.; Jeon, S. W.
2018-04-01
Due to urbanization, urban areas are shrinking green spaces and increasing concrete, asphalt pavement. So urban climates are different from non-urban areas. In addition, long-term macroscopic studies of urban climate change are becoming more important as global urbanization affects global warming. To do this, it is necessary to analyze the effect of urbanization on the temporal change in urban temperature with the same temperature data and standards for urban areas around the world. In this study, time series analysis was performed with the maximum, minimum, mean and standard values of surface temperature during the from 1980 to 2010 and analyzed the effect of urbanization through linear regression analysis with variables (population, night light, NDVI, urban area). As a result, the minimum value of the surface temperature of the urban area reflects an increase by a rate of 0.28K decade-1 over the past 31 years, the maximum value reflects an increase by a rate of 0.372K decade-1, the mean value reflects an increase by a rate of 0.208 decade-1, and the standard deviation reflects a decrease by rate of 0.023K decade-1. And the change of surface temperature in urban areas is affected by urbanization related to land cover such as decrease of greenery and increase of pavement area, but socioeconomic variables are less influential than NDVI in this study. This study are expected to provide an approach to future research and policy-planning for urban temperature change and urbanization impacts.
Geng, Guiqi; Chen, Yingjie; Liu, Hailian
2017-06-01
This study was designed to verify whether preheating could decrease the complications that may be associated with the use of streamlined liner of pharyngeal airway (SLIPA). We evaluated the incidence of sore throat, maximum sealing pressure, hoarseness and blood stains after preheating of SLIPA. Eighty patients scheduled for hysteroscopic surgery to whom the SLIPA was considered suitable were randomly allocated to preheating group or control group. The SLIPA in preheating group was placed in the incubator at 42 °C. The control group temperature was 24 °C. The mean maximum sealing pressure and duration of insertion were compared. Patients were interviewed at recovery room about sore throat and other complications. There were statistical differences in incidence of sore throat, severity of sore throat and blood stains between groups. However there was no statistical difference in the maximum sealing pressure. Our results suggest preheating of the SLIPA decreased the complications related with the insertion of SLIPA. Clinical Trials.gov Identifier NCT02539485.
Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J
2005-02-14
Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.
Heidari, Leila; Winquist, Andrea; Klein, Mitchel; O'Lenick, Cassandra; Grundstein, Andrew; Ebelt Sarnat, Stefanie
2016-10-02
Identification of populations susceptible to heat effects is critical for targeted prevention and more accurate risk assessment. Fluid and electrolyte imbalance (FEI) may provide an objective indicator of heat morbidity. Data on daily ambient temperature and FEI emergency department (ED) visits were collected in Atlanta, Georgia, USA during 1993-2012. Associations of warm-season same-day temperatures and FEI ED visits were estimated using Poisson generalized linear models. Analyses explored associations between FEI ED visits and various temperature metrics (maximum, minimum, average, and diurnal change in ambient temperature, apparent temperature, and heat index) modeled using linear, quadratic, and cubic terms to allow for non-linear associations. Effect modification by potential determinants of heat susceptibility (sex; race; comorbid congestive heart failure, kidney disease, and diabetes; and neighborhood poverty and education levels) was assessed via stratification. Higher warm-season ambient temperature was significantly associated with FEI ED visits, regardless of temperature metric used. Stratified analyses suggested heat-related risks for all populations, but particularly for males. This work highlights the utility of FEI as an indicator of heat morbidity, the health threat posed by warm-season temperatures, and the importance of considering susceptible populations in heat-health research.
Heidari, Leila; Winquist, Andrea; Klein, Mitchel; O’Lenick, Cassandra; Grundstein, Andrew; Ebelt Sarnat, Stefanie
2016-01-01
Identification of populations susceptible to heat effects is critical for targeted prevention and more accurate risk assessment. Fluid and electrolyte imbalance (FEI) may provide an objective indicator of heat morbidity. Data on daily ambient temperature and FEI emergency department (ED) visits were collected in Atlanta, Georgia, USA during 1993–2012. Associations of warm-season same-day temperatures and FEI ED visits were estimated using Poisson generalized linear models. Analyses explored associations between FEI ED visits and various temperature metrics (maximum, minimum, average, and diurnal change in ambient temperature, apparent temperature, and heat index) modeled using linear, quadratic, and cubic terms to allow for non-linear associations. Effect modification by potential determinants of heat susceptibility (sex; race; comorbid congestive heart failure, kidney disease, and diabetes; and neighborhood poverty and education levels) was assessed via stratification. Higher warm-season ambient temperature was significantly associated with FEI ED visits, regardless of temperature metric used. Stratified analyses suggested heat-related risks for all populations, but particularly for males. This work highlights the utility of FEI as an indicator of heat morbidity, the health threat posed by warm-season temperatures, and the importance of considering susceptible populations in heat-health research. PMID:27706089
Siqueira, Joseana C F; da Silva, Luiz Bueno; Coutinho, Antônio S; Rodrigues, Rafaela M
2017-01-01
The increase in air temperature has been associated with human deaths, some of which are related to cardiovascular dysfunctions, and with the reduction of physical and cognitive performance in humans. To analyze the relationship between blood pressure (BP) and heart rate (HR) and the cognitive performance of students who were submitted to temperature changes in classrooms. The university students answered a survey that was adapted from the Battery of Reasoning Tests over 3 consecutive days at different air temperatures while their thermal state and HR were measured. During those 3 days, BP and HR were evaluated before and after the cognitive test. The average and final HR increased at high temperatures; the tests execution time was reduced at high temperatures; and the cognitive tests was related to Mean BP at the beginning of the test, the maximum HR during the test and the air temperature. The cognitive performance of undergraduate students in the field of engineering and technology will increase while performing activities in a learning environment with an air temperature of approximately 23.3°C (according to their thermal perception), if students have an initial MBP of 93.33 mmHg and a 60 bpm HRmax.
NASA Astrophysics Data System (ADS)
Panagoulia, Dionysia; Vlahogianni, Eleni I.
2018-06-01
A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to effective proactive management of extreme phenomena. The impacts of the findings on the predictability of the extreme daily mean areal temperature patterns are also commented.
Effect of daily environmental temperature on farrowing rate and total born in dam line sows.
Bloemhof, S; Mathur, P K; Knol, E F; van der Waaij, E H
2013-06-01
Heat stress is known to adversely affect reproductive performance of sows. However, it is important to know on which days or periods during the reproduction cycle heat stress has the greatest effects for designing appropriate genetic or management strategies. Therefore, this study was conducted to identify days and periods that have greatest effects on farrowing rate and total born of sows using 5 different measures of heat stress. The data consisted of 22,750 records on 5024 Dutch Yorkshire dam line sows from 16 farms in Spain and Portugal. Heat stress on a given day was measured in terms of maximum temperature, diurnal temperature range and heat load. The heat load was estimated using 3 definitions considering different upper critical temperatures. Identification of days during the reproduction cycle that had maximum effect was based on the Pearson correlation between the heat stress variable and the reproduction trait, estimated for each day during the reproduction cycle. Polynomial functions were fitted to describe the trends of these correlations and the days with greatest negative correlation were considered as days with maximum effect. Correlations were greatest for maximum temperature, followed by those for heat load and diurnal temperature range. Correlations for both farrowing rate and total born were stronger in gilts than in sows. This implies that heat stress has a stronger effect on reproductive performance of gilts than of sows. Heat stress during the third week (21 to 14 d) before first insemination had largest effect on farrowing rate. Heat stress during the period between 7 d before successful insemination until 12 d after that had largest effect on total born. Correlations between temperatures on consecutive days during these periods were extremely high ( > 0.9). Therefore, for farrowing rate the maximum temperature on 21 d before first insemination and for total born the maximum temperature at day of successful insemination can be used as predictive measures of heat stress in commercial sow farms. Additionally, differences between daughter groups of sires were identified in response to high temperatures. This might indicate possibilities for genetic selection on heat tolerance.
NASA Astrophysics Data System (ADS)
Lim, Y. G.; Kim, W. J.
2017-03-01
The characteristics of the recovery stress and strain of an ultrafine-grained Ni-50.2 at% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined, and the factors that influence the recovery stress and strain and the relation between the two were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The subsequent annealing treatment at 673 K, however, reduced the shape recovery properties. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed. The recovery strain increased as the yield stress increased. Thus, the maximum recovery stress increased with an increase in yield stress. The recovery stress measured at room temperature (i.e., residual recovery stress) was, on the other hand, affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased.
Martínez, F; el-Dahs, A A
1993-12-01
The instant corn flour prepared by the hydrothermal process using corn grits soaked in water at room temperature (28-30 degrees C) for 5 hours and steaming for 1 minute at 118 degrees C presented characteristics similar to that of flours prepared with grits soaked in water at temperature higher than room temperature and different steaming time (5 and 15 minutes). The addition of instant corn flour up of a 25% mixture with wheat flour reduced the peak of maximum viscosity during the heating cycle; however, the final viscosity during the cooling cycle was increased. The water absorption was increased with the increase of substitution in the level of wheat flour. Extensibility, maximum resistance and values of area were reduced with an increase in the level of instant corn flour in the mixture. However, extension resistance and proportional number were increased. Bread prepared from a mixture of instant corn flour and wheat flour showed higher weight with low loaf volume, color and texture of the crumb related to bread wheat.
Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.
Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying
2015-10-01
Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.
Highs and lows, ups and downs: Meteorology and mood in bipolar disorder.
Bullock, Ben; Murray, Greg; Meyer, Denny
2017-01-01
Seasonal variation of manic and depressive symptoms is a controversial topic in bipolar disorder research. Several studies report seasonal patterns of hospital admissions for depression and mania and variation in symptoms that appear to follow a seasonal pattern, whereas others fail to report such patterns. Differences in research methodologies, data analysis strategies, and temporal resolution of data may partly explain the variation in findings between studies. The current study adds a novel perspective to the literature by investigating specific meteorological factors such as atmospheric pressure, hours of sunshine, relative humidity, and daily maximum and minimum temperatures as more proximal predictors of self-reported daily mood change in people diagnosed with bipolar disorder. The results showed that daily maximum temperature was the only meteorological variable to predict clinically-relevant mood change, with increases in temperature associated with greater odds of a transition into manic mood states. The mediating effects of sleep and activity were also investigated and suggest at least partial influence on the prospective relationship between maximum temperature and mood. Limitations include the small sample size and the fact that the number and valence of social interactions and exposure to natural light were not investigated as potentially important mediators of relationships between meteorological factors and mood. The current data make an important contribution to the literature, serving to clarify the specific meteorological factors that influence mood change in bipolar disorder. From a clinical perspective, greater understanding of seasonal patterns of symptoms in bipolar disorder will help mood episode prophylaxis in vulnerable individuals.
Ariafar, M Nima; Buzrul, Sencer; Akçelik, Nefise
2016-03-01
Biofilm formation of Salmonella Virchow was monitored with respect to time at three different temperature (20, 25 and 27.5 °C) and pH (5.2, 5.9 and 6.6) values. As the temperature increased at a constant pH level, biofilm formation decreased while as the pH level increased at a constant temperature, biofilm formation increased. Modified Gompertz equation with high adjusted determination coefficient (Radj(2)) and low mean square error (MSE) values produced reasonable fits for the biofilm formation under all conditions. Parameters of the modified Gompertz equation could be described in terms of temperature and pH by use of a second order polynomial function. In general, as temperature increased maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation decreased; whereas, as pH increased; maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation increased. Two temperature (23 and 26 °C) and pH (5.3 and 6.3) values were used up to 24 h to predict the biofilm formation of S. Virchow. Although the predictions did not perfectly match with the data, reasonable estimates were obtained. In principle, modeling and predicting the biofilm formation of different microorganisms on different surfaces under various conditions could be possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C. S.; Zhang, Hongbin
Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less
Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS
Brown, C. S.; Zhang, Hongbin
2016-05-24
Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less
Effects of EVA gloves on grip strength and fatigue under low temperature and low pressure.
Tian, Yinsheng; Ding, Li; Liu, Heqing; Li, Yan; Li, Deyu; Wang, Li
2016-03-01
To study the effects of wearing extravehicular activity (EVA) gloves on grip strength and fatigue in low temperature, low pressure and mixing of two factors (low temperature and low pressure). The maximum grip strength and fatigue tests were performed with 10 healthy male subjects wearing gloves in a variety of simulated environments. The data was analysed using the normalization method. The results showed that wearing gloves significantly affected the maximum grip strength and fatigue. Pressure (29.6, 39.2 kPa) had more influence on the maximum grip compared with control group while low temperatures (-50, -90, -110 °C) had no influence on grip but affected fatigue dramatically. The results also showed that the maximum grip strength and fatigue were influenced significantly in a compound environment. Space environment remarkably reduced strength and endurance of the astronauts. However, the effects brought by the compound environment cannot be understood as the superimposition of low temperature and pressure effects. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
42 CFR Appendix - Tables to Subpart I of Part 84
Code of Federal Regulations, 2014 CFR
2014-10-01
... Test condition Test atmosphere Gas or vapor Concentration (parts per million) Flow rate (liters per... indicated penetration. 2 Relative humidity of test atmosphere will be 95 ±3pct; temperature of test atmosphere will be 25 ±2.5 °C. 3 Maximum allowable CO penetration will be 385 cm 3 during the minimum life...
42 CFR Appendix - Tables to Subpart I of Part 84
Code of Federal Regulations, 2013 CFR
2013-10-01
... Test condition Test atmosphere Gas or vapor Concentration (parts per million) Flow rate (liters per... indicated penetration. 2 Relative humidity of test atmosphere will be 95 ±3pct; temperature of test atmosphere will be 25 ±2.5 °C. 3 Maximum allowable CO penetration will be 385 cm 3 during the minimum life...
42 CFR Appendix - Tables to Subpart I of Part 84
Code of Federal Regulations, 2012 CFR
2012-10-01
... Test condition Test atmosphere Gas or vapor Concentration (parts per million) Flow rate (liters per... indicated penetration. 2 Relative humidity of test atmosphere will be 95 ±3pct; temperature of test atmosphere will be 25 ±2.5 °C. 3 Maximum allowable CO penetration will be 385 cm 3 during the minimum life...
Rachel Loehman
2009-01-01
Climate changes in the Prairie Potholes and Grasslands bioregion include increased seasonal, annual, minimum, and maximum temperature and changing precipitation patterns. Because the region is relatively dry with a strong seasonal climate, it is sensitive to climatic changes and vulnerable to changes in climatic regime. For example, model simulations show that regional...
Coolant and ambient temperature control for chillerless liquid cooled data centers
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.
2016-02-02
Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.
2011-01-01
Background and purpose We noticed that our instruments were often too hot to touch after preparing the femoral head for resurfacing, and questioned whether the heat generated could exceed temperatures known to cause osteonecrosis. Patients and methods Using an infra-red thermal imaging camera, we measured real-time femoral head temperatures during femoral head reaming in 35 patients undergoing resurfacing hip arthroplasty. 7 patients received an ASR, 8 received a Cormet, and 20 received a Birmingham resurfacing arthroplasty. Results The maximum temperature recorded was 89°C. The temperature exceeded 47°C in 28 patients and 70°C in 11. The mean duration of most stages of head preparation was less than 1 min. The mean time exceeded 1 min only on peripheral head reaming of the ASR system. At temperatures lower than 47°C, only 2 femoral heads were exposed long enough to cause osteonecrosis. The highest mean maximum temperatures recorded were 54°C when the proximal femoral head was resected with an oscillating saw and 47°C during peripheral reaming with the crown drill. The modified new Birmingham resurfacing proximal femoral head reamer substantially reduced the maximum temperatures generated. Lavage reduced temperatures to a mean of 18°C. Interpretation 11 patients were subjected to temperatures sufficient to cause osteonecrosis secondary to thermal insult, regardless of the duration of reaming. In 2 cases only, the length of reaming was long enough to induce damage at lower temperatures. Lavage and sharp instruments should reduce the risk of thermal insult during hip resurfacing. PMID:22066558
Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains.
Sun, Changfeng; Liu, Yu
2016-01-01
The analysis of the tree radial growth response to climate is crucial for dendroclimatological research. However, the response relationships between tree-ring indices and climatic factors at different timescales are not yet clear. In this study, the tree-ring width of Huashan pine (Pinus armandii) from Huashan in the Qinling Mountains, north-central China, was used to explore the response differences of tree growth to climatic factors at daily, pentad (5 days), dekad (10 days) and monthly timescales. Correlation function and linear regression analysis were applied in this paper. The tree-ring width showed a more sensitive response to daily and pentad climatic factors. With the timescale decreasing, the absolute value of the maximum correlation coefficient between the tree-ring data and precipitation increases as well as temperature (mean, minimum and maximum temperature). Compared to the other three timescales, pentad was more suitable for analysing the response of tree growth to climate. Relative to the monthly climate data, the association between the tree-ring data and the pentad climate data was more remarkable and accurate, and the reconstruction function based on the pentad climate was also more reliable and stable. We found that the major climatic factor limiting Huashan pine growth was the precipitation of pentads 20-35 (from April 6 to June 24) rather than the well-known April-June precipitation. The pentad was also proved to be a better timescale for analysing the climate and tree growth in the western and eastern Qinling Mountains. The formation of the earlywood density of Chinese pine (Pinus tabulaeformis) from Shimenshan in western Qinling was mainly affected by the maximum temperature of pentads 28-32 (from May 16 to June 9). The maximum temperature of pentads 28-33 (from May 16 to June 14) was the major factor affecting the ring width of Chinese pine from Shirenshan in eastern Qinling.
Nuclear relaxation and critical fluctuations in membranes containing cholesterol
NASA Astrophysics Data System (ADS)
McConnell, Harden
2009-04-01
Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.
NASA Astrophysics Data System (ADS)
Wang, Peng; Hu, Zhenwei; Xie, Zhi; Yan, Ming
2018-05-01
An experimental apparatus has been designed for measuring the emissivity of a steel surface in both vacuum and oxidation atmosphere. The sample is heated with the method of electromagnetic induction in order to ensure the temperature uniformity. The radiance emitted from a sample is measured using a fiber-optic Fourier transform infrared spectrometer. Using this unique apparatus, we investigated the spectral (2-6 μm) and directional (0°-86°) emissivity of stainless steel 304 with different degrees of surface oxidation at temperatures ranging from 800 to 1100 °C. The experimental results show that the emissivity increases slightly with increasing temperature, which accords with the Hagen-Rubens relation. The emissivity increases rapidly at the initial stage of oxidation, but gradually reaches to a constant value after 20 min. In addition, the directional emissivity has a maximum value at the measuring angle of about 75°. The maximum uncertainty of emissivity is only 3.0% over all the measuring ranges, indicating that this experimental apparatus has a high reliability. In order to measure the surface temperature of casting billets based on multi-wavelength thermometry, the bivariate emissivity function with the two variables, wavelength and temperature, is determined. Temperature measurement results based on our technique are compared with those from common dual-wavelength radiation thermometry. Our approach reduces the measured temperature fluctuation from ±20.7 °C to ±2.8 °C and reflects the temperature variation with the changes of production parameters in real time.
Utilizing Ocean Thermal Energy in a Submarine Robot
NASA Technical Reports Server (NTRS)
Jones, Jack; Chao, Yi
2009-01-01
A proposed system would exploit the ocean thermal gradient for recharging the batteries in a battery-powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. The proposed system is related to, but not the same as, previously reported ocean thermal energy conversion (OTEC) systems that exploit the ocean thermal gradient but consist of stationary apparatuses that span large depth ranges. The system would include a turbine driven by working fluid subjected to a thermodynamic cycle. CO2 has been provisionally chosen as the working fluid because it has the requisite physical properties for use in the range of temperatures expected to be encountered in operation, is not flammable, and is much less toxic than are many other commercially available refrigerant fluids. The system would be housed in a pressurized central compartment in a UUV equipped with a double hull (see figure). The thermodynamic cycle would begin when the UUV was at maximum depth, where some of the CO2 would condense and be stored, at relatively low temperature and pressure, in the annular volume between the inner and outer hulls. The cycle would resume once the UUV had ascended to near the surface, where the ocean temperature is typically greater than or equals 20 C. At this temperature, the CO2 previously stored at depth in the annular volume between the inner and outer hulls would be pressurized to approx. equals 57 bar (5.7 MPa). The pressurized gaseous CO2 would flow through a check valve into a bladder inside the pressurized compartment, thereby storing energy of the relatively warm, pressurized CO2 for subsequent use after the next descent to maximum depth.
Heat and health in Antwerp under climate change: Projected impacts and implications for prevention.
Martinez, Gerardo Sanchez; Diaz, Julio; Hooyberghs, Hans; Lauwaet, Dirk; De Ridder, Koen; Linares, Cristina; Carmona, Rocio; Ortiz, Cristina; Kendrovski, Vladimir; Aerts, Raf; Van Nieuwenhuyse, An; Dunbar, Maria Bekker-Nielsen
2018-02-01
Excessive summer heat is a serious environmental health problem in several European cities. Heat-related mortality and morbidity is likely to increase under climate change scenarios without adequate prevention based on locally relevant evidence. We modelled the urban climate of Antwerp for the summer season during the period 1986-2015, and projected summer daily temperatures for two periods, one in the near (2026-2045) and one in the far future (2081-2100), under the Representative Concentration Pathway (RCP) 8.5. We then analysed the relationship between temperature and mortality, as well as with hospital admissions for the period 2009-2013, and estimated the projected mortality in the near future and far future periods under changing climate and population, assuming alternatively no acclimatization and acclimatization based on a constant threshold percentile temperature. During the sample period 2009-2013 we observed an increase in daily mortality from a maximum daily temperature of 26°C, or the 89th percentile of the maximum daily temperature series. The annual average heat-related mortality in this period was 13.4 persons (95% CI: 3.8-23.4). No effect of heat was observed in the case of hospital admissions due to cardiorespiratory causes. Under a no acclimatization scenario, annual average heat-related mortality is multiplied by a factor of 1.7 in the near future (24.1deaths/year CI 95%: 6.78-41.94) and by a factor of 4.5 in the far future (60.38deaths/year CI 95%: 17.00-105.11). Under a heat acclimatization scenario, mortality does not increase significantly in the near or in the far future. These results highlight the importance of a long-term perspective in the public health prevention of heat exposure, particularly in the context of a changing climate, and the calibration of existing prevention activities in light of locally relevant evidence. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Müller, Eva; Pfister, Angela; Gerd, Büger; Maik, Heistermann; Bronstert, Axel
2015-04-01
Hydrological extreme events can be triggered by rainfall on different spatiotemporal scales: river floods are typically caused by event durations of between hours and days, while urban flash floods as well as soil erosion or contaminant transport rather result from storms events of very short duration (minutes). Still, the analysis of climate change impacts on rainfall-induced extreme events is usually carried out using daily precipitation data at best. Trend analyses of extreme rainfall at sub-daily or even sub-hourly time scales are rare. In this contribution two lines of research are combined: first, we analyse sub-hourly rainfall data for several decades in three European regions.Second, we investigate the scaling behaviour of heavy short-term precipitation with temperature, i.e. the dependence of high intensity rainfall on the atmospheric temperature at that particular time and location. The trend analysis of high-resolution rainfall data shows for the first time that the frequency of short and intensive storm events in the temperate lowland regions in Germany has increased by up to 0.5 events per year over the last decades. I.e. this trend suggests that the occurrence of these types of storms have multiplied over only a few decades. Parallel to the changes in the rainfall regime, increases in the annual and seasonal average temperature and changes in the occurrence of circulation patterns responsible for the generation of high-intensity storms have been found. The analysis of temporally highly resolved rainfall records from three European regions further indicates that extreme precipitation events are more intense with warmer temperatures during the rainfall event. These observations follow partly the Clausius-Clapeyron relation. Based on this relation one may derive a general rule of maximum rainfall intensity associated to the event temperature, roughly following the Clausius-Clapeyron (CC) relation. This rule might be used for scenarios of future maximum rainfall intensities under a warming climate.
Chen, H S; Yang, L; Huang, L F; Wang, W L; Hu, Y; Jiang, J J; Zhou, Z S
2015-08-01
Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), a worldwide distributive invasive pest, originated from the United States, and it was first reported in Guangdong province, China, in 2008. The effects of temperature and relative humidity (RH) on the life history traits of P. solenopsis on Hibiscus rosa-sinensis L. (Malvales: Malvaceae) were studied at seven constant temperatures (15, 20, 25, 27.5, 30, 32.5, and 35°C) and three RHs (45, 60, and 75%). The results showed that temperature, RH, and their interactions significantly influenced the life history traits of P. solenopsis. First instar was the most sensitive stage to extreme temperatures with very low survival rates at 15 and 35°C. At 25-32.5°C and the three RHs, the developmental periods of entire immature stage were shorter with values between 12.5-18.6 d. The minimum threshold temperature and the effective accumulative temperature for the pest to complete one generation were 13.2°C and 393.7 degree-days, respectively. The percentage and longevity of female adults significantly differed among different treatments. It failed to complete development at 15 or 35°C and the three RHs. Female fecundity reached the maximum value at 27.5°C and 45% RH. The intrinsic rate for increase (r), the net reproductive rate (R0), and the finite rate of increase (λ) reached the maximum values at 27.5°C and 45% RH (0.22 d(-1), 244.6 hatched eggs, and 1.25 d(-1), respectively). Therefore, we conclude that 27.5°C and 45% RH are the optimum conditions for the population development of the pest. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
O'Sullivan, Louise A; Roussel, Erwan G; Weightman, Andrew J; Webster, Gordon; Hubert, Casey RJ; Bell, Emma; Head, Ian; Sass, Henrik; Parkes, R John
2015-01-01
Bacterial spores are widespread in marine sediments, including those of thermophilic, sulphate-reducing bacteria, which have a high minimum growth temperature making it unlikely that they grow in situ. These Desulfotomaculum spp. are thought to be from hot environments and are distributed by ocean currents. Their cells and spores upper temperature limit for survival is unknown, as is whether they can survive repeated high-temperature exposure that might occur in hydrothermal systems. This was investigated by incubating estuarine sediments significantly above (40–80 °C) maximum in situ temperatures (∼23 °C), and with and without prior triple autoclaving. Sulphate reduction occurred at 40–60 °C and at 60 °C was unaffected by autoclaving. Desulfotomaculum sp. C1A60 was isolated and was most closely related to the thermophilic D. kuznetsoviiT (∼96% 16S rRNA gene sequence identity). Cultures of Desulfotomaculum sp. C1A60, D. kuznetsoviiTand D. geothermicum B2T survived triple autoclaving while other related Desulfotomaculum spp. did not, although they did survive pasteurisation. Desulfotomaculum sp. C1A60 and D. kuznetsovii cultures also survived more extreme autoclaving (C1A60, 130 °C for 15 min; D. kuznetsovii, 135 °C for 15 min, maximum of 154 °C reached) and high-temperature conditions in an oil bath (C1A60, 130° for 30 min, D. kuznetsovii 140 °C for 15 min). Desulfotomaculum sp. C1A60 with either spores or predominantly vegetative cells demonstrated that surviving triple autoclaving was due to spores. Spores also had very high culturability compared with vegetative cells (∼30 × higher). Combined extreme temperature survival and high culturability of some thermophilic Desulfotomaculum spp. make them very effective colonisers of hot environments, which is consistent with their presence in subsurface geothermal waters and petroleum reservoirs. PMID:25325382
Spatial statistical network models for stream and river temperature in New England, USA
NASA Astrophysics Data System (ADS)
Detenbeck, Naomi E.; Morrison, Alisa C.; Abele, Ralph W.; Kopp, Darin A.
2016-08-01
Watershed managers are challenged by the need for predictive temperature models with sufficient accuracy and geographic breadth for practical use. We described thermal regimes of New England rivers and streams based on a reduced set of metrics for the May-September growing season (July or August median temperature, diurnal rate of change, and magnitude and timing of growing season maximum) chosen through principal component analysis of 78 candidate metrics. We then developed and assessed spatial statistical models for each of these metrics, incorporating spatial autocorrelation based on both distance along the flow network and Euclidean distance between points. Calculation of spatial autocorrelation based on travel or retention time in place of network distance yielded tighter-fitting Torgegrams with less scatter but did not improve overall model prediction accuracy. We predicted monthly median July or August stream temperatures as a function of median air temperature, estimated urban heat island effect, shaded solar radiation, main channel slope, watershed storage (percent lake and wetland area), percent coarse-grained surficial deposits, and presence or maximum depth of a lake immediately upstream, with an overall root-mean-square prediction error of 1.4 and 1.5°C, respectively. Growing season maximum water temperature varied as a function of air temperature, local channel slope, shaded August solar radiation, imperviousness, and watershed storage. Predictive models for July or August daily range, maximum daily rate of change, and timing of growing season maximum were statistically significant but explained a much lower proportion of variance than the above models (5-14% of total).
Kakitsuba, Naoshi; Mekjavic, Igor B; Katsuura, Tetsuo
2009-11-01
For evaluating the effect of body physique, somatotype, and physical constitution on individual variability in the core interthreshold zone (CIZ), data from 22 healthy young Japanese male subjects were examined. The experiment was carried out in a climatic chamber in which air temperature was maintained at 20-24 degrees C. The subjects' body physique and the maximum work load were measured. Somatotype was predicted from the Heath-Carter Somatotype method. In addition, factors reflecting physical constitution, for example, susceptibility to heat and cold, and quality of sleep were obtained by questionnaire. The subjects wore a water-perfused suit which was perfused with water at a temperature of 25 degrees C and at a rate of 600 cc/min, and exercised on an ergometer at 50% of their maximum work rate for 10-15 min until their sweating rate increased. They then remained continuously seated without exercise until shivering increased. Rectal temperature (T(re)) and skin temperatures at four sites were monitored by thermistors, and sweating rate was measured at the forehead with a sweat rate monitor. Oxygen uptake was monitored with a gas analyzer. The results showed individual variability in the CIZ. According to the reciprocal cross-inhibition (RCI) theory, thermoafferent information from peripheral and core sensors is activated by T(re), mean skin temperature (T(sk)), and their changes. Since T(sk) was relatively unchanged, the data were selected to eliminate the influence of the core cooling rate on the sensor-to-effector pathway before RCI, and the relationship between the CIZ and the various factors was then analyzed. The results revealed that susceptibility to heat showed a good correlation with the CIZ, indicating that individual awareness of heat may change the CIZ due to thermoregulatory behavior.
NASA Astrophysics Data System (ADS)
Gupta, R. K.; Vijayan, D.
Gir wildlife sanctuary located between 20 r 57 to 21 r 20 N and 70 r 28 to 71 r 13 E is the last home of Asiatic lions Its biodiversity comprises of 450 recorded flowering plant species 32 species of mammals 26 species of reptiles about 300 species of birds and more than 2000 species of insects As per 1995 census it has 304 lions and 268 leopards The movement of wildlife to thermally comfortable zones to reduce stress conditions forces the changes in management plan with reference to change in localized water demand This necessitates the use of space based thermal data available from AVHRR MODIS etc to monitor temperature of Gir-ecosystem for meso-scale level operational utility As the time scale of the variability of NDVI parameter is much higher than that for lower boundary temperature LBT the dense patch in riverine forest having highest NDVI value would not experience change in its vigour with the change in the season NDVI value of such patch would be near invariant over the year and temperature of this pixel could serve as reference temperature for developing the concept of relative thermal stress index RTSI which is defined as RTSI T p -T r T max -T r wherein T r T max and T p refer to LBT over the maximum NDVI reference point maximum LBT observed in the Gir ecosystem and the temperature of the pixel in the image respectively RTSI images were computed from AVHRR images for post-monsoon leaf-shedded and summer seasons Scatter plot between RTSI and NDVI for summer seasons
Daily Temperature and Precipitation Data for 223 Former-USSR Stations (NDP-040)
Razuvaev, V. N. [Russian Research Institute of Hydrometeorological Information-World Data Centre; Apasova, E. B. [Russian Research Institute of Hydrometeorological Information-World Data Centre; Martuganov, R. A. [Russian Research Institute of Hydrometeorological Information-World Data Centre
1990-01-01
The stations in this dataset are considered by RIHMI to comprise one of the best networks suitable for temperature and precipitation monitoring over the the former-USSR. Factors involved in choosing these 223 stations included length or record, amount of missing data, and achieving reasonably good geographic coverage. There are indeed many more stations with daily data over this part of the world, and hundreds more station records are available through NOAA's Global Historical Climatology Network - Daily (GHCND) database. The 223 stations comprising this database are included in GHCND, but different data processing, updating, and quality assurance methods/checks mean that the agreement between records will vary depending on the station. The relative quality and accuracy of the common station records in the two databases also cannot be easily assessed. As of this writing, most of the common stations contained in the GHCND have more recent records, but not necessarily records starting as early as the records available here. This database contains four variables: daily mean, minimum, and maximum temperature, and daily total precipitation (liquid equivalent). Temperature were taken three times a day from 1881-1935, four times a day from 1936-65, and eight times a day since 1966. Daily mean temperature is defined as the average of all observations for each calendar day. Daily maximum/minimum temperatures are derived from maximum/minimum thermometer measurements. See the measurement description file for further details. Daily precipitation totals are also available (to the nearest tenth of a millimeter) for each station. Throughout the record, daily precipitation is defined as the total amount of precipitation recorded during a 24-h period, snowfall being converted to a liquid total by melting the snow in the gauge. From 1936 on, rain gauges were checked several times each day; the cumulative total of all observations during a calendar day was presumably used as the daily total. Again, see the measurement description file for further details.
NASA Astrophysics Data System (ADS)
Rifai, S. W.; Anderson, L. O.; Bohlman, S.
2015-12-01
Blowdowns, which are large tree mortality events caused by downbursts, create large pulses of carbon emissions in the short term and alter successional dynamics and species composition of forests, thus affecting long term biogeochemical cycling of tropical forests. Changing climate, especially increasing temperatures and frequency of extreme climate events, may cause changes in the frequency of blowdowns, but there has been little spatiotemporal analysis to associate the interannual variation in the frequency of blowdowns with annual climate parameters. We mapped blowdowns greater than 25 ha using a time series of Landsat images from 1984-2012 in the northwestern Amazon to estimate the annual size distribution of these blowdowns. The difference in forest area affected by blowdowns between the years with the highest and lowest blowdown activity were on the order of 10 - 30 times greater depending on location. Spatially, we found the probability of large blowdowns to be higher in regions with higher annual rainfall. Temporally, we found a positive correlation between the probability of large blowdown events and maximum dry season air temperature (R2 = 0.1-0.46). Mean and maximum blowdown size also increased with maximum dry season air temperature. The strength of these relationships varied between scene locations which may be related to cloud cover obscuring the land surface in the satellite images, or biophysical characteristics of the sites. Potentially, elevated dry season temperatures during the transition from the dry season to the wet season (October - December) may exacerbate atmospheric instabilities, which promote downburst occurrences. Most global circulation models predict dry season air temperatures to increase 2-5 ℃ in the northwestern Amazon by 2050. Should the blowdown disturbance regime continue increasing with elevated dry season temperatures, the northwestern Amazon is likely to experience more catastrophic tree mortality events which has direct consequences for both the carbon emissions and carbon storage capacity of the northwestern Amazon.
Evaluation of extreme temperature events in northern Spain based on process control charts
NASA Astrophysics Data System (ADS)
Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.
2018-02-01
Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.
The Effects of Engine Speed and Mixture Temperature on the Knocking Characteristics of Several Fuels
NASA Technical Reports Server (NTRS)
Lee, Dana W
1940-01-01
Six 100-octane and two 87-octane aviation engine fuels were tested in a modified C.F.R. variable-compression engine at 1,500, 2,000 and 2,500 rpm. The mixture temperature was raised from 50 to 300 F in approximately 50 degree steps and, at each temperature, the compression ratio was adjusted to give incipient knock as shown by a cathode ray indicator. The results are presented in tabular form. The results are analyzed on the assumption that the conditions which determine whether a given fuel will knock are the maximum values of density and temperature reached by the burning gases. A maximum permissible density factor, proportional to the maximum density of the burning gases just prior to incipient knock, and the temperature of the burning gases at that time were computed for each of the test conditions. Values of the density factors were plotted against the corresponding end-gas temperatures for the three engine speeds and also against engine speed for several and end-gas temperatures. The maximum permissible density factor varied only slightly with engine speed but decreased rapidly with an increase in the end-gas temperature. The effect of changing the mixture temperature was different for fuels of different types. The results emphasize the desirability of determining the anti knock values of fuels over a wide range of engine and intake-air conditions rather that at a single set of conditions.
Calibration of mass transfer-based models to predict reference crop evapotranspiration
NASA Astrophysics Data System (ADS)
Valipour, Mohammad
2017-05-01
The present study aims to compare mass transfer-based models to determine the best model under different weather conditions. The results showed that the Penman model estimates reference crop evapotranspiration better than other models in most provinces of Iran (15 provinces). However, the values of R 2 were less than 0.90 for 24 provinces of Iran. Therefore, the models were calibrated, and precision of estimation was increased (the values of R 2 were less than 0.90 for only ten provinces in the modified models). The mass transfer-based models estimated reference crop evapotranspiration in the northern (near the Caspian Sea) and southern (near the Persian Gulf) Iran (annual relative humidity more than 65 %) better than other provinces. The best values of R 2 were 0.96 and 0.98 for the Trabert and Rohwer models in Ardabil (AR) and Mazandaran (MZ) provinces before and after calibration, respectively. Finally, a list of the best performances of each model was presented to use other regions and next studies according to values of mean, maximum, and minimum temperature, relative humidity, and wind speed. The best weather conditions to use mass transfer-based equations are 8-18 °C (with the exception of Ivanov), <25.5 °C, <15 °C, >55 % for mean, maximum, and minimum temperature, and relative humidity, respectively.
NASA Astrophysics Data System (ADS)
Gómez, I.; Estrela, M.
2009-09-01
Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).
NASA Astrophysics Data System (ADS)
Vajed Samiei, Jahangir; Saleh, Abolfazl; Shirvani, Arash; Sheijooni Fumani, Neda; Hashtroudi, Mehri; Pratchett, Morgan Stuart
2016-12-01
There is a strong interest in understanding how coral calcification varies with changing environmental conditions, especially given the projected changes in temperature and aragonite saturation due to climate change. This study explores in situ variation in calcification rates of Acropora downingi in the northeastern Persian Gulf relative to seasonal changes in temperature, irradiance and aragonite saturation state ( Ω arag). Calcification rates of A. downingi were highest in the spring and lowest in the winter, and intra-annual variation in calcification rate was significantly related to temperature ( r 2 = 0.30) and irradiance ( r 2 = 0.36), but not Ω arag ( r 2 = 0.02). Seasonal differences in temperature are obviously confounded by differences in other environmental conditions and vice versa. Therefore, we used published relationships from experimental studies to establish which environmental parameter(s) (temperature, irradiance, and/or Ω arag) placed greatest constraints on calcification rate (relative to the maximum spring rate) in each season. Variation in calcification rates was largely attributable to seasonal changes in irradiance and temperature (possibly 57.4 and 39.7% respectively). Therefore, we predict that ocean warming may lead to increased rates of calcification during winter, but decelerate calcification during spring, fall and especially summer, resulting in net deceleration of calcification for A. downingi in the Persian Gulf.
Thermoelectric Properties of Cu-doped Bi0.4Sb1.6Te3 Prepared by Hot Extrusion
NASA Astrophysics Data System (ADS)
Jung, Woo-Jin; Kim, Il-Ho
2018-06-01
Cu0.003Bi0.4Sb1.6Te3 alloys were prepared by using encapsulated melting and hot extrusion (HE). The hot-extruded specimens had the relative average density of 98%. The ( 00l) planes were preferentially oriented parallel to the extrusion direction, but the specimens showed low crystallographic anisotropy with low orientation factors. The specimens were hot-extruded at 698 K, and they showed excellent mechanical properties with a Vickers hardness of 76 Hv and a bending strength of 59 MPa. However, as the HE temperature increased, the mechanical properties degraded due to grain growth. The hot-extruded specimens showed positive Seebeck coefficients, indicating that the specimens have p-type conduction. These specimens exhibited negative temperature dependences of electrical conductivity, and thus behaved as degenerate semiconductors. The Seebeck coefficient reached the maximum value at 373 K and then decreased with increasing temperature due to intrinsic conduction. Cu-doped specimens exhibited high power factors due to relatively higher electrical conductivities and Seebeck coefficients than those of undoped specimens. A thermal conductivity of 1.00 Wm-1 K-1 was obtained at 373 K for Cu0.003Bi0.4Sb1.6Te3 hot-extruded at 723 K. A maximum dimensionless figure of merit, ZT max = 1.05, and an average dimensionless figure of merit, ZT ave = 0.98, were achieved at 373 K.
Biophysics of Cold Adaptation and Acclimatization: Microbial Decomposition.
1984-03-01
plant communities. Parameters such as temperature, precipitation and relative humidity, as they are related to winds and sea ice, interact to produce the...predictable pattern, 9 the occurrence of clouds, precipitation and heavy fogs build to a maximum as the number of daily sunshine hours increases. At 12...August 2, the sun finally sets for 1 hour and 25 minutes. Climatic records kept since 1934 show low precipitation levels with a 40 year mean of 11.5 cm/yr
NASA Astrophysics Data System (ADS)
Stooksbury, David E.; Idso, Craig D.; Hubbard, Kenneth G.
1999-05-01
Gaps in otherwise regularly scheduled observations are often referred to as missing data. This paper explores the spatial and temporal impacts that data gaps in the recorded daily maximum and minimum temperatures have on the calculated monthly mean maximum and minimum temperatures. For this analysis 138 climate stations from the United States Historical Climatology Network Daily Temperature and Precipitation Data set were selected. The selected stations had no missing maximum or minimum temperature values during the period 1951-80. The monthly mean maximum and minimum temperatures were calculated for each station for each month. For each month 1-10 consecutive days of data from each station were randomly removed. This was performed 30 times for each simulated gap period. The spatial and temporal impact of the 1-10-day data gaps were compared. The influence of data gaps is most pronounced in the continental regions during the winter and least pronounced in the southeast during the summer. In the north central plains, 10-day data gaps during January produce a standard deviation value greater than 2°C about the `true' mean. In the southeast, 10-day data gaps in July produce a standard deviation value less than 0.5°C about the mean. The results of this study will be of value in climate variability and climate trend research as well as climate assessment and impact studies.
Preparation, optimization and property of PVA-HA/PAA composite hydrogel.
Chen, Kai; Liu, Jinlong; Yang, Xuehui; Zhang, Dekun
2017-09-01
PVA-HA/PAA composite hydrogel is prepared by freezing-thawing, PEG dehydration and annealing method. Orthogonal design method is used to choose the optimization combination. Results showed that HA and PVA have the maximum effect on water content. PVA and freezing-thawing cycles have the maximum effect on creep resistance and stress relaxation rate of hydrogel. Annealing temperature and freezing-thawing cycles have the maximum effect on compressive elastic modulus of hydrogel. Comparing with the water content and mechanical properties of 16 kinds of combination, PVA-HA/PAA composite hydrogel with freezing-thawing cycles of 3, annealing temperature of 120°C, PVA of 16%, HA of 2%, PAA of 4% has the optimization comprehensive properties. PVA-HA/PAA composite hydrogel has a porous network structure. There are some interactions between PVA, HA and PAA in hydrogel and the properties of hydrogel are strengthened. The annealing treatment improves the crystalline and crosslinking of hydrogel. Therefore, the annealing PVA-HA/PAA composite hydrogel has good thermostability, strength and mechanical properties. It also has good lubrication property and its friction coefficient is relative low. Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, Shi-qin; Ji, Xi-bin; Jin, Bo-wen
2016-02-01
Independent measurements of stem sap flow in stems of Calligonum mongolicum and environmental variables using commercial sap flow gauges and a micrometeorological monitoring system, respectively, were made to simulate the variation of sap flow density in the middle range of Hexi Corridor, Northwest China during June to September, 2014. The results showed that the diurnal process of sap flow density in C. mongolicum showed a broad unimodal change, and the maximum sap flow density reached about 30 minutes after the maximum of photosynthetically active radiation (PAR) , while about 120 minutes before the maximum of temperature and vapor pressure deficit (VPD). During the studying period, sap flow density closely related with atmosphere evapor-transpiration demand, and mainly affected by PAR, temperature and VPD. The model was developed which directly linked the sap flow density with climatic variables, and good correlation between measured and simulated sap flow density was observed in different climate conditions. The accuracy of simulation was significantly improved if the time-lag effect was taken into consideration, while this model underestimated low and nighttime sap flow densities, which was probably caused by plant physiological characteristics.
Lefebvre, Sébastien; Mouget, Jean-Luc; Loret, Pascale; Rosa, Philippe; Tremblin, Gérard
2007-02-01
This study reports comparison of two techniques measuring photosynthesis in the ubiquitous diatom Skeletonema costatum, i.e., the classical oximetry and the recent modulated fluorimetry. Microalgae in semi-continuous cultures were exposed to five different environmental conditions simulating a seasonal effect with co-varying temperature, photoperiod and incident light. Photosynthesis was assessed by gross rate of oxygen evolution (P(B)) and the electron transport rate (ETR) measurements. The two techniques were linearly related within seasonal treatments along the course of the P/E curves. The light saturation intensity parameters (Ek and Ek(ETR)), and the maximum electron transport rate increased significantly with the progression of the season while the maximum light utilization efficiency for ETR (alpha(ETR)) was constant. By contrast, the maximum gross oxygen photosynthetic capacity (Pmax(B)) and the maximum light utilization efficiency for P(B) (alpha(B)) increased from December to May treatment but decreased from May to July treatment. Both techniques showed clear photoacclimation in microalgae with the progression of the season, as illustrated by changes in photosynthetic parameters. The relationship between the two techniques changed when high temperature, photoperiod and incident light were combined, possibly due to an overestimation of the PAR--averaged chlorophyll-specific absorption cross-section. Despite this change, our results illustrate the strong suitability of in vivo chlorophyll fluorimetry to estimate primary production in the field.
NASA Astrophysics Data System (ADS)
Craciun, F.
2010-05-01
A sudden increase in the electrostrictive coefficient Q13 when temperature decreases is seen in three different types of ferroelectric relaxors (PLZT 9/65/35, PLZT 22/20/80, and PMN-PT) starting from ˜50K above the dielectric permittivity maximum temperature, Tm . The temperature dependence is attributed to the softening of the quasilocal mode occurring near dopants or charge-transfer sites. The steep increase when the temperature decreases could be related to the transition of polar nanoregions from dynamic to quasistatic regime, which introduces an intermediate temperature scale T∗ [W. Dmowski, S. B. Vakhrushev, I.-K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami, Phys. Rev. Lett. 100, 137602 (2008); B. Dkhil, P. Gemeiner, A. Al-Barakaty, L. Bellaiche, E. Dul’kin, E. Mojaev, and M. Roth, Phys. Rev. B 80, 064103 (2009)], besides Burns temperature TB and freezing temperature Tf . Possible consequences for nonequilibrium phenomena, including high-temperature memory found in relaxors, are conjectured.
Alfaro, Eric J.; Gershunov, Alexander; Cayan, Daniel R.
2006-01-01
A statistical model based on canonical correlation analysis (CCA) was used to explore climatic associations and predictability of June–August (JJA) maximum and minimum surface air temperatures (Tmax and Tmin) as well as the frequency of Tmax daily extremes (Tmax90) in the central and western United States (west of 90°W). Explanatory variables are monthly and seasonal Pacific Ocean SST (PSST) and the Climate Division Palmer Drought Severity Index (PDSI) during 1950–2001. Although there is a positive correlation between Tmax and Tmin, the two variables exhibit somewhat different patterns and dynamics. Both exhibit their lowest levels of variability in summer, but that of Tmax is greater than Tmin. The predictability of Tmax is mainly associated with local effects related to previous soil moisture conditions at short range (one month to one season), with PSST providing a secondary influence. Predictability of Tmin is more strongly influenced by large-scale (PSST) patterns, with PDSI acting as a short-range predictive influence. For both predictand variables (Tmax and Tmin), the PDSI influence falls off markedly at time leads beyond a few months, but a PSST influence remains for at least two seasons. The maximum predictive skill for JJA Tmin, Tmax, and Tmax90 is from May PSST and PDSI. Importantly, skills evaluated for various seasons and time leads undergo a seasonal cycle that has maximum levels in summer. At the seasonal time frame, summer Tmax prediction skills are greatest in the Midwest, northern and central California, Arizona, and Utah. Similar results were found for Tmax90. In contrast, Tmin skill is spread over most of the western region, except for clusters of low skill in the northern Midwest and southern Montana, Idaho, and northern Arizona.
NASA Astrophysics Data System (ADS)
Xu, Ying; Gao, Xuejie; Giorgi, Filippo; Zhou, Botao; Shi, Ying; Wu, Jie; Zhang, Yongxiang
2018-04-01
Future changes in the 50-yr return level for temperature and precipitation extremes over mainland China are investigated based on a CMIP5 multi-model ensemble for RCP2.6, RCP4.5 and RCP8.5 scenarios. The following indices are analyzed: TXx and TNn (the annual maximum and minimum of daily maximum and minimum surface temperature), RX5day (the annual maximum consecutive 5-day precipitation) and CDD (maximum annual number of consecutive dry days). After first validating the model performance, future changes in the 50-yr return values and return periods for these indices are investigated along with the inter-model spread. Multi-model median changes show an increase in the 50-yr return values of TXx and a decrease for TNn, more specifically, by the end of the 21st century under RCP8.5, the present day 50-yr return period of warm events is reduced to 1.2 yr, while extreme cold events over the country are projected to essentially disappear. A general increase in RX5day 50-yr return values is found in the future. By the end of the 21st century under RCP8.5, events of the present RX5day 50-yr return period are projected to reduce to < 10 yr over most of China. Changes in CDD-50 show a dipole pattern over China, with a decrease in the values and longer return periods in the north, and vice versa in the south. Our study also highlights the need for further improvements in the representation of extreme events in climate models to assess the future risks and engineering design related to large-scale infrastructure in China.
A study of temperature-related non-linearity at the metal-silicon interface
NASA Astrophysics Data System (ADS)
Gammon, P. M.; Donchev, E.; Pérez-Tomás, A.; Shah, V. A.; Pang, J. S.; Petrov, P. K.; Jennings, M. R.; Fisher, C. A.; Mawby, P. A.; Leadley, D. R.; McN. Alford, N.
2012-12-01
In this paper, we investigate the temperature dependencies of metal-semiconductor interfaces in an effort to better reproduce the current-voltage-temperature (IVT) characteristics of any Schottky diode, regardless of homogeneity. Four silicon Schottky diodes were fabricated for this work, each displaying different degrees of inhomogeneity; a relatively homogeneous NiV/Si diode, a Ti/Si and Cr/Si diode with double bumps at only the lowest temperatures, and a Nb/Si diode displaying extensive non-linearity. The 77-300 K IVT responses are modelled using a semi-automated implementation of Tung's electron transport model, and each of the diodes are well reproduced. However, in achieving this, it is revealed that each of the three key fitting parameters within the model display a significant temperature dependency. In analysing these dependencies, we reveal how a rise in thermal energy "activates" exponentially more interfacial patches, the activation rate being dependent on the carrier concentration at the patch saddle point (the patch's maximum barrier height), which in turn is linked to the relative homogeneity of each diode. Finally, in a review of Tung's model, problems in the divergence of the current paths at low temperature are explained to be inherent due to the simplification of an interface that will contain competing defects and inhomogeneities.
40 CFR 60.116b - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... range. (e) Available data on the storage temperature may be used to determine the maximum true vapor...: (i) Available data on the Reid vapor pressure and the maximum expected storage temperature based on... Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction...
Designing Ground Antennas for Maximum G/T: Cassegrain or Gregorian?
NASA Technical Reports Server (NTRS)
Imbriale, William A.
2005-01-01
For optimum performance, a ground antenna system must maximize the ratio of received signal to the receiving system noise power, defined as the ratio of antenna gain to system-noise temperature (G/T). The total system noise temperature is the linear combination of the receiver noise temperature (including the feed system losses) and the antenna noise contribution. Hence, for very low noise cryogenic receiver systems, antenna noise-temperature properties are very significant contributors to G/T.It is well known that, for dual reflector systems designed for maximum gain, the gain performance of the antenna system is the same for both Cassegrain and Gregorian configurations. For a12-meter antenna designed to be part of the large array based Deep Space Network, a Cassegrain configuration designed for maximum G/T at X-band was 0.7 dB higher than the equivalent Gregorian configuration. This study demonstrates that, for maximum GIT, the dual shaped Cassegrain design is always better than the Gregorian.
Climate change and heat-related mortality in six cities Part 1: model construction and validation
NASA Astrophysics Data System (ADS)
Gosling, Simon N.; McGregor, Glenn R.; Páldy, Anna
2007-08-01
Heat waves are expected to increase in frequency and magnitude with climate change. The first part of a study to produce projections of the effect of future climate change on heat-related mortality is presented. Separate city-specific empirical statistical models that quantify significant relationships between summer daily maximum temperature ( T max) and daily heat-related deaths are constructed from historical data for six cities: Boston, Budapest, Dallas, Lisbon, London, and Sydney. ‘Threshold temperatures’ above which heat-related deaths begin to occur are identified. The results demonstrate significantly lower thresholds in ‘cooler’ cities exhibiting lower mean summer temperatures than in ‘warmer’ cities exhibiting higher mean summer temperatures. Analysis of individual ‘heat waves’ illustrates that a greater proportion of mortality is due to mortality displacement in cities with less sensitive temperature-mortality relationships than in those with more sensitive relationships, and that mortality displacement is no longer a feature more than 12 days after the end of the heat wave. Validation techniques through residual and correlation analyses of modelled and observed values and comparisons with other studies indicate that the observed temperature-mortality relationships are represented well by each of the models. The models can therefore be used with confidence to examine future heat-related deaths under various climate change scenarios for the respective cities (presented in Part 2).
NASA Astrophysics Data System (ADS)
Schwartz, R. E.; Iacobellis, S.; Gershunov, A.; Williams, P.; Cayan, D. R.
2014-12-01
Summertime low cloud intrusion into the terrestrial west coast of North America impacts human, ecological, and logistical systems. Over a broad region of the West Coast, summer (May - September) coastal low cloudiness (CLC) varies coherently on interannual to interdecadal timescales and has been found to be organized by North Pacific sea surface temperature. Broad-scale studies of low stratiform cloudiness over ocean basins also find that the season of maximum low stratus corresponds to the season of maximum lower tropospheric stability (LTS) or estimated inversion strength. We utilize a 18-summer record of CLC derived from NASA/NOAA Geostationary Operational Environmental Satellite (GOES) at 4km resolution over California (CA) to make a more nuanced spatial and temporal examination of intra-summer variability in CLC and its drivers. We find that uniform spatial coherency over CA is not apparent for intra-summer variability in CLC. On monthly to daily timescales, at least two distinct subregions of coastal California (CA) can be identified, where relationships between meteorology and stratus variability appear to change throughout summer in each subregion. While north of Point Conception and offshore the timing of maximum CLC is closely coincident with maximum LTS, in the Southern CA Bight and northern Baja region, maximum CLC occurs up to about a month before maximum LTS. It appears that summertime CLC in this southern region is not as strongly related as in the northern region to LTS. In particular, although the relationship is strong in May and June, starting in July the daily relationship between LTS and CLC in the south begins to deteriorate. Preliminary results indicate a moderate association between decreased CLC in the south and increased precipitable water content above 850 hPa on daily time scales beginning in July. Relationships between daily CLC variability and meteorological variables including winds, inland temperatures, relative humidity, and geopotential heights within and above the marine boundary layer are investigated and dissected by month, CA subregion, and cloud height. The rich spatial detail of the satellite derived CLC record is utilized to examine the propagation in time and space of CLC on synoptic scales within and among subregions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawarada, H., E-mail: kawarada@waseda.jp; Institute of Nano-Science and Nano-Engineering, Waseda University, Shinjuku, Tokyo 169-8555; Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Shinjuku, Tokyo 169-0051
2014-07-07
By forming a highly stable Al{sub 2}O{sub 3} gate oxide on a C-H bonded channel of diamond, high-temperature, and high-voltage metal-oxide-semiconductor field-effect transistor (MOSFET) has been realized. From room temperature to 400 °C (673 K), the variation of maximum drain-current is within 30% at a given gate bias. The maximum breakdown voltage (V{sub B}) of the MOSFET without a field plate is 600 V at a gate-drain distance (L{sub GD}) of 7 μm. We fabricated some MOSFETs for which V{sub B}/L{sub GD} > 100 V/μm. These values are comparable to those of lateral SiC or GaN FETs. The Al{sub 2}O{sub 3} was deposited on the C-Hmore » surface by atomic layer deposition (ALD) at 450 °C using H{sub 2}O as an oxidant. The ALD at relatively high temperature results in stable p-type conduction and FET operation at 400 °C in vacuum. The drain current density and transconductance normalized by the gate width are almost constant from room temperature to 400 °C in vacuum and are about 10 times higher than those of boron-doped diamond FETs.« less
Fekete, Szabolcs; Guillarme, Davy
2015-05-08
The goal of this work was to evaluate the changes in retention induced by frictional heating, pressure and temperature under ultra high pressure liquid chromatography (UHPLC) conditions, for four model proteins (i.e. lysozyme, myoglobin, fligrastim and interferon alpha-2A) possessing molecular weights between 14 and 20kDa. First of all, because the decrease of the molar volume upon adsorption onto a hydrophobic surface was more pronounced for large molecules such as proteins, the impact of pressure appears to overcome the frictional heating effects. Nevertheless, we have also demonstrated that the retention decrease due to frictional heating was not negligible with such large biomolecules in the variable inlet pressure mode. Secondly, it is clearly shown that the modification of retention under various pressure and temperature conditions cannot be explained solely by the frictional heating and pressure effects. Indeed, some very uncommon van't Hoff plots (concave plots with a maximum) were recorded for our model/therapeutic proteins. These maximum retention factors values on the van't Hoff plots indicate a probable change of secondary structure/conformation with pressure and temperature. Based on these observations, it seems that the combination of pressure and temperature causes the protein denaturation and this folding-unfolding procedure is clearly protein dependent. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Stearns, C. A.; Kohl, F. J.
1974-01-01
The high temperature vaporization of the metal-carbon systems TiC, ZrC, HfC, and ThC was studied by the Knudsen effusion - mass spectrometric method. For each system the metal dicarbide and tetracarbide molecular species were identified in the gas phase. Relative ion currents of the carbides and metals were measured as a function of temperature. Second- and third-law methods were used to determine enthalpies. Maximum values were established for the dissociation energies of the metal monocarbide molecules TiC, ZrC, HfC, and ThC. Thermodynamic functions used in the calculations are discussed in terms of assumed molecular structures and electronic contributions to the partition functions. The trends shown by the dissociation energies of the carbides of Group 4B are compared with those of neighboring groups and discussed in relation to the corresponding oxides and chemical bonding. The high temperature molecular beam inlet system and double focusing mass spectrometer are described.
Chemical Diversity as a Function of Temperature in Six Northern Diatom Species
Huseby, Siv; Degerlund, Maria; Eriksen, Gunilla K.; Ingebrigtsen, Richard A.; Eilertsen, Hans Chr.; Hansen, Espen
2013-01-01
In this study, we investigate how metabolic fingerprints are related to temperature. Six common northern temperate diatoms (Attheya longicornis, Chaetoceros socialis, Chaetoceros furcellatus, Porosira glacialis, Skeletonema marinoi, and Thalassiosira gravida) were cultivated at two different temperatures, 0.5 and 8.5 °C. To exclude metabolic variations due to differences in growth rates, the growth rates were kept similar by performing the experiments under light limited conditions but in exponential growth phase. Growth rates and maximum quantum yield of photosynthesis were measured and interpreted as physiological variables, and metabolic fingerprints were acquired by high-resolution mass spectrometry. The chemical diversity varied substantially between the two temperatures for the tested species, ranging from 31% similarity for C. furcellatus and P. glacialis to 81% similarity for A. longicornis. The chemical diversity was generally highest at the lowest temperature. PMID:24177671
NASA Astrophysics Data System (ADS)
Zhou, Yu; Duan1, Xiaoming; Jia, Dechang; Yang, Zhihua; Meng, Qingchang; Yu, Yang; Yu, Daren; Ding, Yongjie
2011-10-01
ZrO2p(3Y)/BN-SiO2 ceramic composites were hot pressed under different sintering temperature. The ceramic composites were composed by BN, m-ZrO2, t-ZrO2 and SiO2. The relative density, bending strength, elastic modulus and fracture toughness increase with the sintering temperature increasing, the maximum value of which at the sintering temperature of 1800°C are 97.5%, 229.9MPa, 60.8GPa and 3.55MPam1/2, respectively. The erosion resistance ability of ZrO2p(3Y)/BN-SiO2 ceramic composites rise gradually with the sintering temperature increasing, and the erosion rate of the ceramic composite sintered at 1800°C is 8.03×10-3mm/h.
Oceanic Volcanism from the Low-Velocity Zone - Without Mantle Plumes (Invited)
NASA Astrophysics Data System (ADS)
Presnall, D. C.; Gudfinnsson, G. H.
2010-12-01
The existence of hot mantle plumes is addressed by using a combination of regional and global shear-wave data, major-element compositions of Hawaiian and MORB glasses (including Iceland), and phase relations for natural lherzolite and the systems CaO-MgO-Al2O3-SiO2-CO2 and CaO-MgO-Al2O3-SiO2-Na2O-FeO. At the East Pacific Rise, the depth of minimum shear wave velocity (Vsv), which we interpret to be the depth of maximum melting, occurs at ~65 km (Webb & Forsyth, 1998, Science, 280, 1229; Conder et al., 2002, JGR, 107, 2344)). This depth increases with lithospheric age and stabilizes at ~150 km (~5 GPa) for ages > ~75 my (Maggi et al., 2006, GJI, 166, 1384). Variations in shear wave anisotropy follow the same pattern (Ekström, 2000, Geophys. Mon. 121, 239) but with a slightly shallower depth of ~130 km for the maximum shear wave anisotropy of the mature Pacific. For a given volcano, the classical Hawaiian sequence of volcanism is early alkalic lavas extracted at ~3 GPa, 1350°C (Sisson et al., 2009, CMP, 158, 803), then voluminous tholeiitic lavas at ~ 4-5 GPa, 1450-1560°C (~150 km), and final alkalic lavas that contain, on Oahu, nanodiamond-bearing xenoliths (Wirth & Rocholl, 2003, EPSL, 211, 357; Frezotti & Peccerillo, 2007, EPSL, 262, 273) and require melt extraction at a pressure slightly > 6 GPa. This progressive increase in P-T conditions of the Hawaiian source matches the equilibrium magma-stratigraphy vs depth indicated by phase relations along a mature-ocean geotherm. This consistency indicates that Hawaiian volcanism occurs by progressively deeper extraction of magmas from a mature LVZ by fracturing of the overlying LID. No decompression melting or enhanced temperature is indicated. At spreading ridges, including Iceland, the absence of glass compositions that define olivine-controlled crystallization trends and the phase equilibrium constraint that all MORBs are extracted at ~1250-1280°C, 1.2-1.5 GPa (Presnall & Gudfinnsson, 2008, JPet., 49, 615) are in excellent agreement with the seismic observation of minimum shear-wave velocity and maximum shear-wave anisotropy (maximum melting) beneath ridges at ~ 65 km. Thus, all MORBs, including those at Iceland, are extracted within the thermal boundary layer along a perturbed geotherm at temperatures cooler than magma-extraction temperatures at Hawaii. This requires a steepened dT/dP slope of the conductive portion of the geotherm at ridges, which is consistent with oceanic heat-flow data vs crustal age. Mantle temperatures for the strongest plume candidate, Hawaii, are consistent with temperatures of oceanic mantle elsewhere of a corresponding age. Temperatures of magma-extraction along all oceanic ridges are far below temperatures consistent with hot mantle plumes.
Seel, Waldemar; Derichs, Julia; Lipski, André
2016-07-01
Five isolates from chilled food and refrigerator inner surfaces and closely related reference strains of the species Escherichia coli, Listeria monocytogenes, Staphylococcus xylosus, Bacillus cereus, Pedobacter nutrimenti, and Pedobacter panaciterrae were tested for the effect of growth temperature (30°C and 10°C) on biomass formation. Growth was monitored via optical density, and biomass formation was measured at the early stationary phase based on the following parameters in complex and defined media: viable cell count, total cell count, cell dry weight, whole-cell protein content, and cell morphology. According to the lack of growth at 1°C, all strains were assigned to the thermal class of mesophiles. Glucose and ammonium consumption related to cell yield were analyzed in defined media. Except for the protein content, temperature had a significant (t test, P < 0.05) effect on all biomass formation parameters for each strain. The results show a significant difference between the isolates and the related reference strains. Isolates achieved an increase in biomass production between 20% and 110% at the 10°C temperature, which is 15 to 25°C lower than their maximum growth rate temperatures. In contrast, reference strains showed a maximum increase of only about 25%, and some reference strains showed no increase or a decrease of approximately 25%. As expected, growth rates for all strains were higher at 30°C than at 10°C, while biomass production for isolates was higher at 10°C than at 30°C. In contrast, the reference strains showed similar growth yields at the two temperatures. This also demonstrates for mesophilic bacterial strains more efficient nutrient assimilation during growth at low temperatures. Until now, this characteristic was attributed only to psychrophilic microorganisms. For several psychrophilic species, increased biomass formation was described at temperatures lower than optimum growth temperatures, which are defined by the highest growth rate. This work shows increased biomass formation at low growth temperatures for mesophilic isolates. A comparison with closely related reference strains from culture collections showed a significantly smaller increase or no increase in biomass formation. This indicates a loss of specific adaptive mechanisms (e.g., cold adaptation) for mesophiles during long-term cultivation. The increased biomass production for mesophiles under low-temperature conditions opens new avenues for a more efficient biotechnological transformation of nutrients to microbial biomass. These findings may also be important for risk assessment of cooled foods since risk potential is often correlated with the cell numbers present in food samples. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Is applicable thermodynamics of negative temperature for living organisms?
NASA Astrophysics Data System (ADS)
Atanasov, Atanas Todorov
2017-11-01
During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature
Tuning the electrocaloric effect by varying Sr concentration in ferroelectric Ba1 -xSrxTiO3
NASA Astrophysics Data System (ADS)
Lisenkov, S.; Ponomareva, I.
2018-05-01
The electrocaloric effect is investigated systematically in Ba1 -xSrxTiO3 ferroelectrics using a semiclassical direct computational approach. The data are reported for the technologically important range of Sr concentrations of 0.0-0.6, electric fields up to 1000 kV/cm, and temperatures ranging from 5 to 600 K. A detailed comparison of computational data with experimental data from the literature reveals semiquantitative agreement and suggests the origin of discrepancies. The electrocaloric change in temperature Δ T shows strong dependence on Sr concentration which offers a way to tune electrocaloric response. In particular, the maximum electrocaloric Δ T is found to decrease with the increase in Sr concentration, whereas the location of the maximum shifts towards lower temperatures following the Curie point of the ferroelectric. Surprisingly, the width of the peak in the dependence of Δ T on the initial temperature is independent of the Sr concentration but shows a strong dependence on the applied electric field. Computational data are used to propose a compositionally graded ferroelectric Ba0.70Sr0.30TiO3/Ba0.55Sr0.45TiO3/Ba0.50Sr0.50TiO3/Ba0.45Sr0.55TiO3 whose Δ T shows almost no temperature dependence in the technologically important range of temperatures and electric fields. Such a desirable feature could potentially lead to the enhancement of relative cooling power.
Strength of initially virgin martensites at - 196 °C after aging and tempering
NASA Astrophysics Data System (ADS)
Eldis, George T.; Cohen, Morris
1983-06-01
The compressive strength at -196°C of martensites in Fe-0.26 pct C-24 pct Ni, Fe-0.4 pct C-21 pct Ni, and Fe-0.4 pct C-18 pct Ni-3 pct Mo alloys, all with subzero M temperatures, has been determined in the virgin condition and after one hour at temperatures from -80 to +400 °C. The effects of ausforming (20 pct reduction in area of the austenite by swaging at room temperature prior to the martensitic transformation) were also investigated. For the unausformed martensites, aging at temperatures up to 0 °C results in relatively small increases in strength. Above 0 °C, the age hardening increment increases rapidly, reaching a maximum at 100 °C. Above 100 °C, the strength decreases continuously with increasing tempering temperature except for the molybdenum-containing alloy, which exhibits secondary hardening on tempering at 400 °C. For the ausformed martensites, the response to aging at subzero temperatures is greater than for unausformed material. Strength again passes through a maximum on aging at 100 °C. However, on tempering just above 100 °C, the ausformed materials show a slower rate of softening than the unausformed martensites. The strengthening produced by the ausforming treatment is largest for the Fe-0.4 pct C-18 pct Ni-3 pct Mo alloy, but there is no evidence of carbide precipitation in the deformed austenite to a°Count for this effect of molybdenum.
Polgar, Gianluca; Khang, Tsung Fei; Chua, Teddy; Marshall, David J
2015-01-01
The relationship between acute thermal tolerance and habitat temperature in ectotherm animals informs about their thermal adaptation and is used to assess thermal safety margins and sensitivity to climate warming. We studied this relationship in an equatorial freshwater snail (Clea nigricans), belonging to a predominantly marine gastropod lineage (Neogastropoda, Buccinidae). We found that tolerance of heating and cooling exceeded average daily maximum and minimum temperatures, by roughly 20°C in each case. Because habitat temperature is generally assumed to be the main selective factor acting on the fundamental thermal niche, the discordance between thermal tolerance and environmental temperature implies trait conservation following 'in situ' environmental change, or following novel colonisation of a thermally less-variable habitat. Whereas heat tolerance could relate to an historical association with the thermally variable and extreme marine intertidal fringe zone, cold tolerance could associate with either an ancestral life at higher latitudes, or represent adaptation to cooler, higher-altitudinal, tropical lotic systems. The broad upper thermal safety margin (difference between heat tolerance and maximum environmental temperature) observed in this snail is grossly incompatible with the very narrow safety margins typically found in most terrestrial tropical ectotherms (insects and lizards), and hence with the emerging prediction that tropical ectotherms, are especially vulnerable to environmental warming. A more comprehensive understanding of climatic vulnerability of animal ectotherms thus requires greater consideration of taxonomic diversity, ecological transition and evolutionary history. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stachowicz, John J; Terwin, Jeffrey R; Whitlatch, Robert B; Osman, Richard W
2002-11-26
The spread of exotic species and climate change are among the most serious global environmental threats. Each independently causes considerable ecological damage, yet few data are available to assess whether changing climate might facilitate invasions by favoring introduced over native species. Here, we compare our long-term record of weekly sessile marine invertebrate recruitment with interannual variation in water temperature to assess the likely effect of climate change on the success and spread of introduced species. For the three most abundant introduced species of ascidian (sea squirt), the timing of the initiation of recruitment was strongly negatively correlated with winter water temperature, indicating that invaders arrived earlier in the season in years with warmer winters. Total recruitment of introduced species during the following summer also was positively correlated with winter water temperature. In contrast, the magnitude of native ascidian recruitment was negatively correlated with winter temperature (more recruitment in colder years) and the timing of native recruitment was unaffected. In manipulative laboratory experiments, two introduced compound ascidians grew faster than a native species, but only at temperatures near the maximum observed in summer. These data suggest that the greatest effects of climate change on biotic communities may be due to changing maximum and minimum temperatures rather than annual means. By giving introduced species an earlier start, and increasing the magnitude of their growth and recruitment relative to natives, global warming may facilitate a shift to dominance by nonnative species, accelerating the homogenization of the global biota.
Estimating surface temperature in forced convection nucleate boiling - A simplified method
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Papell, S. S.
1977-01-01
A simplified expression to estimate surface temperatures in forced convection boiling was developed using a liquid nitrogen data base. Using the principal of corresponding states and the Kutateladze relation for maximum pool boiling heat flux, the expression was normalized for use with other fluids. The expression was applied also to neon and water. For the neon data base, the agreement was acceptable with the exclusion of one set suspected to be in the transition boiling regime. For the water data base at reduced pressure greater than 0.05 the agreement is generally good. At lower reduced pressures, the water data scatter and the calculated temperature becomes a function of flow rate.
Problems with the Baade-Wesselink method
NASA Technical Reports Server (NTRS)
Bohm-Vitense, E.; Garnavich, P.; Lawler, M.; Mena-Werth, J.; Morgan, S.
1989-01-01
The discrepancy noted in radii obtained by the Baade-Wesselink method when different colors are used to determine the effective temperatures is explored. The discrepancy is found to be due to an inconsistency in the applied temperature-color calibrations. The assumption of the maximum likelihood method that beta (the effective temperature + 0.1 times the bolometric correction) is a linear function of the color is valid for the B-V and V-I colors, but not for the V-R colors. It is suggested that the errors introduced by the nonlinearity in the relation between beta and the V-R colors will produce radii which are too large. The radii derived from the V-B colors appear to be too small.
Handeland, S.O.; Wilkinson, E.; Sveinsbo, B.; McCormick, S.D.; Stefansson, S.O.
2004-01-01
Development of hypo-osmoregulatory ability, gill Na+,K +-ATPase activity, condition factor and growth in Atlantic salmon during parr-smolt transformation was studied in a 2??3 factorial design with three temperatures (12.0, 8.9??C and ambient, 2.4-11.9??C, mean: 6.0??C) and two farmed strains of smolts (Mowi and AquaGen). The development of hypo-osmoregulatory ability and gill Na+,K+-ATPase activity were significantly influenced by freshwater temperature. In smolts raised at 12.0??C, maximum gill Na+,K+-ATPase activity was reached in late April, compared with late May and mid-June in the 8.9??C and ambient groups, respectively. In all groups, peak gill Na+,K +-ATPase activity was seen 350 degree days (d??C) after the onset of the smolt-related increase in enzyme activity (30 March) The period of high enzyme activity (>90% of maximum) lasted approximately 250 d??C. No distinct peak level in gill Na+,K+-ATPase activity was seen in the AquaGen strain at ambient temperature. Elevated temperatures also accelerated the loss of hypo-osmoregulatory capacity. In all groups, gill Na+,K+-ATPase activity reached pre-smolt levels approximately 500 d??C after the calculated peak level. Growth rate in freshwater was influenced by strain, temperature and their interaction, with the Mowi strain showing a higher growth rate than the AquaGen strain at 8.9??C and ambient temperatures. Following transfer to seawater, a higher growth rate was recorded in smolts from the Mowi strain than the AquaGen strain from the ambient temperature regime. Temperature influences the development and loss of smolt characteristics in both strains, and has long-term effects on post-smolt performance in seawater. ?? 2004 Elsevier B.V. All rights reserved.
Marchin, Renée M; Dunn, Robert R; Hoffmann, William A
2014-12-01
In the eastern United States, winter temperature has been increasing nearly twice as fast as summer temperature, but studies of warming effects on plants have focused on species that are photosynthetically active in summer. The terrestrial orchid Tipularia discolor is leafless in summer and acquires C primarily in winter. The optimum temperature for photosynthesis in T. discolor is higher than the maximum temperature throughout most of its growing season, and therefore growth can be expected to increase with warming. Contrary to this hypothesis, experimental warming negatively affected reproductive fitness (number of flowering stalks, flowers, fruits) and growth (change in leaf area from 2010 to 2012) in T. discolor. Temperature in June-July was critical for flowering, and mean July temperature greater than 29 °C (i.e., 2.5 °C above ambient) eliminated reproduction. Warming of 1.2 °C delayed flowering by an average of 10 days and fruiting by an average of 5 days. Warming of 4.4 °C reduced relative growth rates by about 60%, which may have been partially caused by the direct effects of temperature on photosynthesis and respiration. Warming indirectly increased vapor pressure deficit (VPD) by 0.2-0.5 kPa, and leaf-to-air VPD over 1.3 kPa restricted stomatal conductance of T. discolor to 10-40% of maximum conductance. These results highlight the need to account for changes in VPD when estimating temperature responses of plant species under future warming scenarios. Increasing temperature in the future will likely be an important limiting factor to the distribution of T. discolor, especially along the southern edge of its range.
NASA Astrophysics Data System (ADS)
Taboada, J. J.; Cabrejo, A.; Guarin, D.; Ramos, A. M.
2009-04-01
It is now very well established that yearly averaged temperatures are increasing due to anthropogenic climate change. In the area of Galicia (NW Spain) this trend has also been determined. Rainfall does not show a clear tendency in its yearly accumulated values. The aim of this work is to study different extreme indices of rainfall and temperatures analysing variability and possible trends associated to climate change. Station data for the study was provided by the CLIMA database of the regional government of Galicia (NW Spain). The definition of the extreme indices was taken from the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) This group has defined a set of standard extreme values to simplify intercomparison of data from different regions of the world. For the temperatures in the period 1960-2006, results show a significant increase of the number of days with maximum temperatures above the 90th percentile. Furthermore, a significant decrease of the days with maximum temperatures below the 10th percentile has been found. The tendencies of minimum temperatures are reverse: fewer nights with minimum temperatures below 10th percentile, and more with minimum temperatures above 90th percentile. Those tendencies can be observed all over the year, but are more pronounced in summer. This trend is expected to continue in the next decades because of anthropogenic climate change. We have also calculated the relationship between the above mentioned extreme values and different teleconnection patterns appearing in the North Atlantic area. Results show that local tendencies are associated with trends of EA (Eastern Atlantic) and SCA (Scandinavian) patterns. NAO (North Atlantic Oscillation) has also some relationship with these tendencies, but only related with cold days and nights in winter. Rainfall index do not show any clear tendency on the annual scale. Nevertheless, the count of days when precipitation is greater than 20mm (R20mm) and the total precipitation when rainfall is greater than 95th percentile (R95pTOT) diminishes in winter and spring, but increases in autumn. This trend is related with NAO in winter and spring and with SCA in autumn.
Heat waves according to warm spell duration index in Slovakia during 1901-2016
NASA Astrophysics Data System (ADS)
Bochníček, Oliver; Faško, Pavel; Markovič, Ladislav
2017-04-01
A heat wave is a prolonged period of extremely high temperatures for a particular region. However, there exist no universal definitions for a heat wave as it is relative to a specific area and to a certain time of year. In fact, average temperatures in one region may be considered heat wave conditions in another. For instance, an average day in the Mediterranean would be regarded as heat wave conditions in Northern Europe. We have known that World Meteorological Organization definition of a heatwave which is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5 °C, the normal period being 1961-1990". This rule has been accepted in contribution Heat waves and warm periods in Slovakia (Oliver Bochníček - Pavol Fa\\vsko - Ladislav Markovič) published (presented) in EGU 2016. To move on we have tried another criterion for heat waves evaluation (according to warm spell duration index, WSDI) and period since 1901 (1951) to 2016. Important for many sectors (hydrology, agriculture, transportation and tourism) is, that heat waves have been expected during the whole year and period, that is why it can have various impacts. Heat waves occurrence gave us interesting results especially after the 1990.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, M.A.; Kueppers, L.M.; Sloan, L.C.
In the western United States, more than 30,500 square miles has been converted to irrigated agriculture and urban areas. This study compares the climate responses of four regional climate models (RCMs) to these past land-use changes. The RCMs used two contrasting land cover distributions: potential natural vegetation, and modern land cover that includes agriculture and urban areas. Three of the RCMs represented irrigation by supplementing soil moisture, producing large decreases in August mean (-2.5 F to -5.6 F) and maximum (-5.2 F to -10.1 F) 2-meter temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture alsomore » resulted in large increases in relative humidity (9 percent 36 percent absolute change). Only one of the RCMs produced increases in summer minimum temperature. Converting natural vegetation to urban land cover produced modest but discernable climate effects in all models, with the magnitude of the effects dependent upon the preexisting vegetation type. Overall, the RCM results indicate that land use change impacts are most pronounced during the summer months, when surface heating is strongest and differences in surface moisture between irrigated land and natural vegetation are largest. The irrigation effect on summer maximum temperatures is comparable in magnitude (but opposite in sign) to predicted future temperature change due to increasing greenhouse gas concentrations.« less
14 CFR 33.84 - Engine overtorque test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... turbine entry gas temperature equal to the maximum steady state temperature approved for use during...
NASA Astrophysics Data System (ADS)
Oh, Soo Han; Lee, Byoung Wan; Ko, Jae-Hyeon; Lee, Hyeonju; Park, Jaehoon; Ko, Young Ho; Kim, Kwang Joo
2017-04-01
The acoustic properties of three polystyrene polymers with different molecular weights were investigated as a function of temperature by using Brillouin light scattering. The longitudinal sound velocity showed a change in the slope, which depended on the molecular weight, at the glass transition temperature. The absorption coefficient exhibited a maximum above the glass transition temperature, and the maximum temperature became higher as the molecular weight was increased. Comparison with previous acoustic studies on polystyrene indicate that a substantial frequency dispersion caused by strong coupling between the longitudinal acoustic waves and the segmental motions exists in the high-temperature range.
Coolant and ambient temperature control for chillerless liquid cooled data centers
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.
2017-08-29
Cooling control methods and systems include measuring a temperature of air provided to one or more nodes by an air-to-liquid heat exchanger; measuring a temperature of at least one component of the one or more nodes and finding a maximum component temperature across all such nodes; comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold; and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the one or more nodes based on the comparisons.
Impacts of Future Climate Change on Ukraine Transportation System
NASA Astrophysics Data System (ADS)
Khomenko, Inna
2016-04-01
Transportation not only affects climate, but are strongly influenced with the climate conditions, and key hubs of the transportation sector are cities. Transportation decision makers have an opportunity now to prepare for projected climate changes owing to development of emission scenarios. In the study impact of climate change on operation of road transport along highways are analyzed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean and maximum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 8 cities (Dnipropetrovsk, Khmelnytskyi, Kirovohrad, Kharkiv, Odesa, Ternopil, Vinnytsia and Voznesensk) situated down the highways. The highways of 'Odesa-Voznesensk-Dnipropetrovsk-Kharkiv' and 'Dnipropetrovsk-Kirovohrad-Vinnytsia-Khmelnytskyi-Ternopil' are considered. The first highway goes across the Black Sea Lowland, the Dnieper Upland and Dnieper Lowland, the other passes through the Dnieper and Volhynia-Podillia Uplands. The both highways are situated in steppe and forest-steppe native zones. For both scenarios, significant climate warming is registered; it is revealed in significant increase of average monthly and yearly temperature by 2-3°C in all cities in questions, and also, in considerable increment of frequency of days with maximum temperature higher than +30 and 35°C, except Kharkiv, where decrease number of days with such temperatures is observed. On the contrary, number of days with daily mean temperature being equal to or below 0°C decreases in the south of steppe, is constant in the north of steppe and increases in the forest-steppe native zone. Extreme negative temperatures don't occur in the steppe zone, but takes place in the forest-steppe zone. Results obtained shows that road surface must hold in extreme maximum temperature, and in the forest-steppe zone hazards of extreme negative temperatures must be considered. Frequency of winter events that make road surface worse such as glaze-clear ice, frozen snow that had initially melted on a warm road surface, ice and snow slippery coats etc., are high enough, especially in the forest-steppe zone. In the Black Sea Lowland among winter events the frozen snow that had initially melted on a warm road surface is most commonly observed, that is connected with high occurrence of the thaws. Because of increase in frequency of shower precipitation in all cities wet road surface is observed most frequently, especially in May and June; it must be taken into account for construction of roads, too. Monthly mean wind speed shows that in Odesa and Kharkiv significant increase in average monthly and yearly wind speeds are observed, by 0,5-1 m/s in comparison with the period of 1961 to 1990. On the contrary, in Dnipropetrovsk, wind speed decreases by 0,7 m/s. Frequency distribution of maximum wind speed shows that high wind speeds are more frequent in the winter months.
Relations of Tualatin River water temperatures to natural and human-caused factors
Risley, John C.
1997-01-01
Aquatic research has long shown that the survival of cold-water fish, such as salmon and trout, decreases markedly as water temperatures increase above a critical threshold, particularly during sensitive life stages of the fish. In an effort to improve the overall health of aquatic ecosystems, the State of Oregon in 1996 adopted a maximum water-temperature standard of 17.8 degrees Celsius (68 degrees Fahrenheit), based on a 7-day moving average of daily maximum temperatures, for most water bodies in the State. Anthropogenic activities are not permitted to raise the temperature of a water body above this level. In the Tualatin River, a tributary of the Willamette River located in northwestern Oregon, water temperatures periodically surpass this threshold during the low-flow summer and fall months.An investigation by the U.S. Geological Survey quantified existing seasonal, diel, and spatial patterns of water temperatures in the main stem of the river, assessed the relation of water temperatures to natural climatic conditions and anthropogenic factors (such as wastewater-treatment-plant effluent and modification of riparian shading), and assessed the impact of various flow management practices on stream temperatures. Half-hourly temperature measurements were recorded at 13 monitoring sites from river mile (RM) 63.9 to RM 3.4 from May to November of 1994. Four synoptic water- temperature surveys also were conducted in the upstream and downstream vicinities of two wastewater-treatment-plant outfalls. Temperature and streamflow time-series data were used to calibrate two dynamic-flow heat-transfer models, DAFLOW-BLTM (RM 63.9-38.4) and CE-QUAL-W2 (RM 38.4-3.4). Simulations from the models provided a basis for approximating 'natural' historical temperature patterns, performing effluent and riparian-shading sensitivity analyses, and evaluating mitigation management scenarios under 1994 climatic conditions. Findings from the investigation included (1) under 'natural' conditions the temperature of the river would exceed the State standard of 17.8 degrees Celsius at many locations during the low-flow season, (2) current operation of wastewater-treatment plants increases the temperature of the river downstream of the plants under low-flow conditions, (3) river temperature is significantly affected by riparian shade variations along both the tributaries and the main stem, (4) flow releases during the low-flow season from the Henry Hagg Lake reservoir decrease the river temperature in the upper section, and (5) removal of a low diversion dam at RM 3.4 would slightly decrease temperatures below RM 10.0.
NASA Astrophysics Data System (ADS)
Veettil, Bijeesh Kozhikkodan; Wang, Shanshan; Bremer, Ulisses Franz; de Souza, Sergio Florêncio; Simões, Jefferson Cardia
2017-07-01
This paper describes the changes in the annual maximum snowlines of a selected set of mountain glaciers at the southern end of the Cordillera Blanca between 1984 and 2015 using satellite images. Furthermore, we analysed the existing glacier records in the Cordillera Blanca since the last glacial maximum to understand the evolution of glaciers in this region over a few centuries. There was a rise in the snowline altitude of glaciers in this region since the late 1990s with a few small glacier advances. Historical to the present El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) records were also analysed to understand whether there was a teleconnection between the glacier fluctuations in the region and the phase changes of ENSO and PDO. We also assessed the variations in three important climatic parameters that influence the glacier retreat—temperature, precipitation, and relative humidity—over a few decades. We calculated the anomalies as well as the seasonal changes in these variables since the mid-twentieth century. There was an increase in temperature during this period, and the decrease in precipitation was not so prominent compared with the temperature rise. There was an exceptionally higher increase in relative humidity since the early 2000s, which is relatively higher than that expected due to the observed rate of warming, and this increase in humidity is believed to be the reason behind the unprecedented rise in the snowline altitudes since the beginning of the twenty-first century.
Zhou, Hongxuan; Hu, Dan; Wang, Xiaolin; Han, Fengsen; Li, Yuanzheng; Wu, Xiaogang; Ma, Shengli
2016-01-01
The temperature of the surface soil layer around different orientation walls was investigated horizontally along several construction-soil micro-gradients in Beijing, China. On a diurnal scale, similar fluctuating trends in T0 and T50 (temperature of surface soil layer, 0 and 0.5 m from the building baseline) adjacent to the external walls of buildings with the same orientation usually appeared under similar micrometeorological conditions. The difference between T0 and T50 (ΔT0–50) can be considered an indicator of the intensity of the horizontal heat effects: higher ΔT0–50 values correspond to greater intensities. The values of ΔT0–50 for south-, north-, east- and west-facing sides of buildings were highest on sunny days in summer and exhibited values of 6.61 K, 1.64 K, 5.93 K and 2.76 K, respectively. The scope of horizontal heat impacts (Sh) changed on a diurnal scale between zero and the maximum, which fluctuated with the micrometeorological conditions. The maximum values of Sh were 0.30, 0.15, 0.20 and 0.20 m for south-, north-, east-, and west-facing walls. The ΔT0–50 was related to solar radiation, horizontal heat flux, relative humidity, wind speed, soil moisture differences and air temperature; the relative importance of these factors was 36.22%, 31.80%, 19.19%, 2.67%, 3.68% and 6.44%, respectively. PMID:26728627
Maximum Temperature Detection System for Integrated Circuits
NASA Astrophysics Data System (ADS)
Frankiewicz, Maciej; Kos, Andrzej
2015-03-01
The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.
Temperature effects on gallium arsenide 63Ni betavoltaic cell.
Butera, S; Lioliou, G; Barnett, A M
2017-07-01
A GaAs 63 Ni radioisotope betavoltaic cell is reported over the temperature range 70°C to -20°C. The temperature effects on the key cell parameters were investigated. The saturation current decreased with decreased temperature; whilst the open circuit voltage, the short circuit current, the maximum power and the internal conversion efficiency values decreased with increased temperature. A maximum output power and an internal conversion efficiency of 1.8pW (corresponding to 0.3μW/Ci) and 7% were observed at -20°C, respectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of a Statistical Validation Methodology for Fire Weather Indices
Brian E. Potter; Scott Goodrick; Tim Brown
2003-01-01
Fire managers and forecasters must have tools, such as fire indices, to summarize large amounts of complex information. These tools allow them to identify and plan for periods of elevated risk and/or wildfire potential. This need was once met using simple measures like relative humidity or maximum daily temperature (e.g., Gisborne, 1936) to describe fire weather, and...
Habitat suitability and nest survival of white-headed woodpeckers in unburned forests of Oregon
Jeff P. Hollenbeck; Vicki Saab; Richard W. Frenzel
2011-01-01
We evaluated habitat suitability and nest survival of breeding white-headed woodpeckers (Picoides albolarvatus) in unburned forests of central Oregon, USA. Daily nest-survival rate was positively related to maximum daily temperature during the nest interval and to density of large-diameter trees surrounding the nest tree. We developed a niche-based habitat suitability...
Optimation of cooled shields in insulations
NASA Technical Reports Server (NTRS)
Chato, J. C.; Khodadadi, J. M.; Seyed-Yagoobi, J.
1984-01-01
A method to optimize the location, temperature, and heat dissipation rate of each cooled shield inside an insulation layer was developed. The method is based on the minimization of the entropy production rate which is proportional to the heat leak across the insulation. It is shown that the maximum number of shields to be used in most practical applications is three. However, cooled shields are useful only at low values of the overall, cold wall to hot wall absolute temperature ratio. The performance of the insulation system is relatively insensitive to deviations from the optimum values of the temperature and location of the cooling shields. Design curves for rapid estimates of the locations and temperatures of cooling shields in various types of insulations, and an equation for calculating the cooling loads for the shields are presented.
Refractory metal alloys and composites for space nuclear power systems
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.
1988-01-01
Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.
Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning
NASA Astrophysics Data System (ADS)
Majidi, Pasha; Pickup, Peter G.
2014-12-01
An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.