Sample records for maximum total annual

  1. 24 CFR 884.105 - Maximum total ACC commitment and project account (private-owner/PHA projects).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Maximum total ACC commitment and..., Scope and Basic Policies § 884.105 Maximum total ACC commitment and project account (private-owner/PHA projects). (a) Maximum total ACC commitment. The maximum total annual contribution that may be contracted...

  2. 24 CFR 884.105 - Maximum total ACC commitment and project account (private-owner/PHA projects).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Maximum total ACC commitment and..., Scope and Basic Policies § 884.105 Maximum total ACC commitment and project account (private-owner/PHA projects). (a) Maximum total ACC commitment. The maximum total annual contribution that may be contracted...

  3. 24 CFR 883.604 - Maximum annual commitment and project account.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... annual commitment. The maximum annual contribution that may be contracted for in the ACC is the total of... annual commitment exceeds the amount actually paid out under the ACC each year. Payments will be made... specifically approved by the Secretary. (2) Whenever a HUD-approved estimate of required payments under the ACC...

  4. 24 CFR 883.604 - Maximum annual commitment and project account.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... annual commitment. The maximum annual contribution that may be contracted for in the ACC is the total of... annual commitment exceeds the amount actually paid out under the ACC each year. Payments will be made... specifically approved by the Secretary. (2) Whenever a HUD-approved estimate of required payments under the ACC...

  5. Extreme daily precipitation: the case of Serbia in 2014

    NASA Astrophysics Data System (ADS)

    Tošić, Ivana; Unkašević, Miroslava; Putniković, Suzana

    2017-05-01

    The extreme daily precipitation in Serbia was examined at 16 stations during the period 1961-2014. Two synoptic situations in May and September of 2014 were analysed, when extreme precipitation was recorded in western and eastern Serbia, respectively. The synoptic situation from 14 to 16 May 2014 remained nearly stationary over the western and central Serbia for the entire period. On 15 May 2014, the daily rainfall broke previous historical records in Belgrade (109.8 mm), Valjevo (108.2 mm) and Loznica (110 mm). Precipitation exceeded 200 mm in 72 h, producing the most catastrophic floods in the recent history of Serbia. In Negotin (eastern Serbia), daily precipitation of 161.3 mm was registered on 16 September 2014, which was the maximum value recorded during the period 1961-2014. The daily maximum in 2014 was registered at 6 out of 16 stations. The total annual precipitation for 2014 was the highest for the period 1961-2014 at almost all stations in Serbia. A non-significant positive trend was found for all precipitation indices: annual daily maximum precipitation, the total precipitation in consecutive 3 and 5 days, the total annual precipitation, and number of days with at least 10 and 20 mm of precipitation. The generalised extreme value distribution was fitted to the annual daily maximum precipitation. The estimated 100-year return levels were 123.4 and 147.4 mm for the annual daily maximum precipitation in Belgrade and Negotin, respectively.

  6. Biogeographical drivers of ragweed pollen concentrations in Europe

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Tusnády, Gábor; Csépe, Zoltán; Nyúl, László G.; Chapman, Daniel S.; Sümeghy, Zoltán; Szűcs, Gábor; Páldy, Anna; Magyar, Donát; Mányoki, Gergely; Erostyák, János; Bodnár, Károly; Bergmann, Karl-Christian; Deák, Áron József; Thibaudon, Michel; Albertini, Roberto; Bonini, Maira; Šikoparija, Branko; Radišić, Predrag; Gehrig, Regula; Rybníček, Ondřej; Severova, Elena; Rodinkova, Victoria; Prikhodko, Alexander; Maleeva, Anna; Stjepanović, Barbara; Ianovici, Nicoleta; Berger, Uwe; Seliger, Andreja Kofol; Weryszko-Chmielewska, Elżbieta; Šaulienė, Ingrida; Shalaboda, Valentina; Yankova, Raina; Peternel, Renata; Ščevková, Jana; Bullock, James M.

    2017-06-01

    The drivers of spatial variation in ragweed pollen concentrations, contributing to severe allergic rhinitis and asthma, are poorly quantified. We analysed the spatiotemporal variability in 16-year (1995-2010) annual total (66 stations) and annual total (2010) (162 stations) ragweed pollen counts and 8 independent variables (start, end and duration of the ragweed pollen season, maximum daily and calendar day of the maximum daily ragweed pollen counts, last frost day in spring, first frost day in fall and duration of the frost-free period) for Europe (16 years, 1995-2010) as a function of geographical coordinates. Then annual total pollen counts, annual daily peak pollen counts and date of this peak were regressed against frost-related variables, daily mean temperatures and daily precipitation amounts. To achieve this, we assembled the largest ragweed pollen data set to date for Europe. The dependence of the annual total ragweed pollen counts and the eight independent variables against geographical coordinates clearly distinguishes the three highly infected areas: the Pannonian Plain, Western Lombardy and the Rhône-Alpes region. All the eight variables are sensitive to longitude through its temperature dependence. They are also sensitive to altitude, due to the progressively colder climate with increasing altitude. Both annual total pollen counts and the maximum daily pollen counts depend on the start and the duration of the ragweed pollen season. However, no significant changes were detected in either the eight independent variables as a function of increasing latitude. This is probably due to a mixed climate induced by strong geomorphological inhomogeneities in Europe.

  7. 24 CFR 880.503 - Maximum annual commitment and project account.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... may be contracted for in the ACC is the total of the contract rents and utility allowances for all... commitment exceeds the amount actually paid out under the Contract or ACC each year. Payments will be made... the Contract or ACC for a fiscal year exceeds the maximum annual commitment and would cause the amount...

  8. 24 CFR 880.503 - Maximum annual commitment and project account.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... may be contracted for in the ACC is the total of the contract rents and utility allowances for all... commitment exceeds the amount actually paid out under the Contract or ACC each year. Payments will be made... the Contract or ACC for a fiscal year exceeds the maximum annual commitment and would cause the amount...

  9. 24 CFR 882.403 - ACC, housing assistance payments contract, and lease.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false ACC, housing assistance payments... Procedures for Moderate Rehabilitation-Basic Policies § 882.403 ACC, housing assistance payments contract, and lease. (a) Maximum Total ACC Commitments. The maximum total annual contribution that may be...

  10. 40 CFR 464.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... copper, lead, zinc, and total phenols. For non-continuous dischargers, annual average mass limitations....0771 0.0421 Lead (T) 0.0791 0.039 Zinc (T) 0.114 0.0431 Maximum for any 1 day Maximum for monthly average Annual average 1 (mg/l) 2 (mg/l) 2 Copper (T) 0.77 0.42 0.017 Lead (T) 0.79 0.39 0.022 Zinc (T) 1...

  11. 40 CFR 464.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... copper, lead, zinc, and total phenols. For non-continuous dischargers, annual average mass limitations....0771 0.0421 Lead (T) 0.0791 0.039 Zinc (T) 0.114 0.0431 Maximum for any 1 day Maximum for monthly average Annual average 1 (mg/l) 2 (mg/l) 2 Copper (T) 0.77 0.42 0.017 Lead (T) 0.79 0.39 0.022 Zinc (T) 1...

  12. How Should Dry Lightning be Defined to Best to Correlate to Wildfire Initiation?

    NASA Astrophysics Data System (ADS)

    Vant-Hull, B.; Koshak, W. J.

    2017-12-01

    Dry lightning can be defined by a maximum precipitation threshold, a dry period preceding a flash, and the spatial resolution used to relate a lightning flash to precipitation. Using data from most of CONUS from 2003-2015, the annual total of wildfires was compared to the annual number of dry flashes, with dry flash parameters adjusted to maximize the correlation between annual totals throughout the time period. A maximum correlation of 0.93 was found for a dry period of 36 hours, with no precipitation rates above 0.2 mm/hr during this time, on a 0.1 degree grid. Such a high correlation to wildfires on a climatic scale indicates a need to understand how changing weather patterns can influence the occurrence of properly defined dry lightning. Under this understanding dry lightning counts could qualify as a NCA indicator.

  13. Forecasting models for sugi (Cryptomeria japonica D. Don) pollen count showing an alternate dispersal rhythm.

    PubMed

    Ito, Yukiko; Hattori, Reiko; Mase, Hiroki; Watanabe, Masako; Shiotani, Itaru

    2008-12-01

    Pollen information is indispensable for allergic individuals and clinicians. This study aimed to develop forecasting models for the total annual count of airborne pollen grains based on data monitored over the last 20 years at the Mie Chuo Medical Center, Tsu, Mie, Japan. Airborne pollen grains were collected using a Durham sampler. Total annual pollen count and pollen count from October to December (OD pollen count) of the previous year were transformed to logarithms. Regression analysis of the total pollen count was performed using variables such as the OD pollen count and the maximum temperature for mid-July of the previous year. Time series analysis revealed an alternate rhythm of the series of total pollen count. The alternate rhythm consisted of a cyclic alternation of an "on" year (high pollen count) and an "off" year (low pollen count). This rhythm was used as a dummy variable in regression equations. Of the three models involving the OD pollen count, a multiple regression equation that included the alternate rhythm variable and the interaction of this rhythm with OD pollen count showed a high coefficient of determination (0.844). Of the three models involving the maximum temperature for mid-July, those including the alternate rhythm variable and the interaction of this rhythm with maximum temperature had the highest coefficient of determination (0.925). An alternate pollen dispersal rhythm represented by a dummy variable in the multiple regression analysis plays a key role in improving forecasting models for the total annual sugi pollen count.

  14. Nutrient input from the Loxahatchee River Environmental Control District sewage-treatment plant to the Loxahatchee River Estuary, southeastern Florida

    USGS Publications Warehouse

    Sonntag, W.H.; McPherson, B.F.

    1984-01-01

    Two test discharges of treated-sewage effluent were made to the Loxahatchee River in February and September 1981 from the ENCON sewage-treatment plant to document nutrient loading and downstream transport of the effluent to the estuary under maximum daily discharge allowable by law (4 million gallons per day). Concentrations of total nitrogen in the effluent exceeded background concentrations by as much as 7 times during the February test, while concentrations of total phosphorus exceeded background concentrations by as much as 112 times during the September test. The effluent was transported downstream to the estuary in less than 24 hours. Discharge of treated sewage effluent to the river-estuary system in the 1981 water year accounted for less than 0.5 percent of the total nitrogen and 8 percent of the total phosphorus discharged from the major tributaries to the estuary. If maximum discharges of effluent (4 million gallons per day) were sustained throughout the year, annual nitrogen loading from the effluent would account for 5 to 18 percent of the total nitrogen input by the major tributaries to the estuary. With maximum discharges of effluent, annual phosphorus loading would exceed the amount of phosphorus input by the major tributaries to the estuary by 54 to 167 percent. (USGS)

  15. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes

    USGS Publications Warehouse

    Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.

    2014-01-01

    Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.

  16. 78 FR 11652 - Agency Information Collection Activities; Proposed Collection; Comment Request; Evaluation of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... responses per Total annual Average burden Total hours respondents respondent responses per response Pretest... and maintenance costs associated with this collection of information. ERG will conduct a pretest of... complete the pretest, for a total of a maximum of 7.5 hours. We estimate that up to 135 [[Page 11654...

  17. 40 CFR 464.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting... copper, lead, zinc, and total phenols. For non-continuous dischargers, annual average mass limitations....0187 Lead (T) 0.0237 0.0116 Zinc (T) 0.0339 0.0129 Maximum for any 1 day Maximum for monthly average...

  18. 40 CFR 464.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting... copper, lead, zinc, and total phenols. For non-continuous dischargers, annual average mass limitations....0187 Lead (T) 0.0237 0.0116 Zinc (T) 0.0339 0.0129 Maximum for any 1 day Maximum for monthly average...

  19. Frequency of annual maximum precipitation in the City of Charlotte and Mecklenburg County, North Carolina, through 2004

    USGS Publications Warehouse

    Weaver, J. Curtis

    2006-01-01

    A study of annual maximum precipitation frequency in Mecklenburg County, North Carolina, was conducted to characterize the frequency of precipitation at sites having at least 10 years of precipitation record. Precipitation-frequency studies provide information about the occurrence of precipitation amounts for given durations (for example, 1 hour or 24 hours) that can be expected to occur within a specified recurrence interval (expressed in years). In this study, annual maximum precipitation totals were determined for durations of 15 and 30 minutes; 1, 2, 3, 6, 12, and 24 hours; and for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years. Precipitation data collected by the U.S. Geological Survey network of raingages in the city of Charlotte and Mecklenburg County were analyzed for this study. In September 2004, more than 70 precipitation sites were in operation; 27 of these sites had at least 10 years of record, which is the minimum record typically required in frequency studies. Missing record at one site, however, resulted in its removal from the dataset. Two datasets--the Charlotte Raingage Network (CRN) initial and CRN modified datasets--were developed from the U.S. Geological Survey data, which represented relatively short periods of record (10 and 11 years). The CRN initial dataset included very high precipitation totals from two storms that caused severe flooding in areas of the city and county in August 1995 and July 1997, which could significantly influence the statistical results. The CRN modified dataset excluded the highest precipitation totals from these two storms but included the second highest totals. More...

  20. Climate-change signals in national atmospheric deposition program precipitation data

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Mast, M. Alisa

    2016-01-01

    National Atmospheric Deposition Program (NADP)/National Trends Network precipitation type, snow-season duration, and annual timing of selected chemical wet-deposition maxima vary with latitude and longitude within a 35-year (1979–2013) data record for the contiguous United States and Alaska. From the NADP data collected within the region bounded by 35.6645°–48.782° north latitude and 124°–68° west longitude, similarities in latitudinal and longitudinal patterns of changing snow-season duration, fraction of annual precipitation recorded as snow, and the timing of chemical wet-deposition maxima, suggest that the chemical climate of the atmosphere is linked to physical changes in climate. Total annual precipitation depth has increased 4–6 % while snow season duration has decreased from approximately 7 to 21 days across most of the USA, except in higher elevation regions where it has increased by as much as 21 days. Snow-season precipitation is increasingly comprised of snow, but annually total precipitation is increasingly comprised of liquid precipitation. Meanwhile, maximum ammonium deposition occurs as much as 27 days earlier, and the maximum nitrate: sulfate concentration ratio in wet-deposition occurs approximately 10–21 days earlier in the year. The maximum crustal (calcium + magnesium + potassium) cation deposition occurs 2–35 days earlier in the year. The data suggest that these shifts in the timing of atmospheric wet deposition are linked to a warming climate, but the ecological consequences are uncertain.

  1. Extreme Precipitation in Poland in the Years 1951-2010

    NASA Astrophysics Data System (ADS)

    Malinowska, Miroslawa

    2017-12-01

    The characteristics of extreme precipitation, including the dominant trends, were analysed for eight stations located in different parts of Poland for the period 1951-2010. Five indices enabling the assessment of the intensity and frequency of both extremely dry and wet conditions were applied. The indices included the number of days with precipitation ≥10mm·d-1 (R10), maximum number of consecutive dry days (CDD), maximum 5-day precipitation total (R5d), simple daily intensity index (SDII), and the fraction of annual total precipitation due to events exceeding the 95th percentile calculated for the period 1961-1990. Annual trends were calculated using standard linear regression method, while the fit of the model was assessed with the F-test at the 95% confidence level. The analysed changes in extreme precipitation showed mixed patterns. A significant positive trend in the number of days with precipitation ≥10mm·d-1 (R10) was observed in central Poland, while a significant negative one, in south-eastern Poland. Based on the analysis of maximum 5-day precipitation totals (R5d), statistically significant positive trends in north-western, western and eastern parts of the country were detected, while the negative trends were found in the central and northeastern parts. Daily precipitation, expressed as single daily intensity index (SDII), increased over time in northern and central Poland. In southern Poland, the variation of SDII index showed non-significant negative tendencies. Finally, the fraction of annual total precipitation due to the events exceeding the 1961-1990 95th percentile increased at one station only, namely, in Warsaw. The indicator which refers to dry conditions, i.e. maximum number of consecutive dry days (CDD) displayed negative trends throughout the surveyed area, with the exception of Szczecin that is a representative of north-western Poland.

  2. Analysis of trends of water quality and streamflow in the Blackstone, Branch, Pawtuxet, and Pawcatuck Rivers, Massachusetts and Rhode Island, 1979 to 2015

    USGS Publications Warehouse

    Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.

    2017-02-21

    Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for the annual 7-day minimums, but only 3 of the 4 rivers had decreases that were significant (34 to 54 percent). The Branch River had decreasing annual mean daily streamflow (7.5 percent) and the largest decrease in the annual 7-day minimum streamflow. The Blackstone and Pawtuxet Rivers had the largest increases in annual maximum daily flows but had decreases in the annual 7-day minimum flows.

  3. 5 CFR 550.106 - Annual maximum earnings limitation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Annual maximum earnings limitation. 550... PAY ADMINISTRATION (GENERAL) Premium Pay Maximum Earnings Limitations § 550.106 Annual maximum... and premium pay for the calendar year to exceed the greater of— (1) The maximum annual rate of basic...

  4. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    NASA Technical Reports Server (NTRS)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  5. Annual Variation in the Sterol Content of Digitalis purpurea L. Seedlings 1

    PubMed Central

    Jacobsohn, Myra K.; Jacobsohn, Gert M.

    1976-01-01

    Seedings from a single lot of Digitalis purpurea L. seeds were germinated in batches over a period of 13 months. A total lipid extract was made which was resolved into esterified and unconjugated plus glycosylated sterol fractions. The amounts of sterol in each fraction and in the total were compared for seedlings germinated at different times of the year. The amount of esterified sterols reached a maximum value from March until June, and a low value from July until January. In January, a sharp increase began which lasted until March. Amounts of unconjugated and glycosylated sterols were elevated from March until June, low from July until October, and on the rise from November until March. These data correlate with an annual cycle in seed germination. The phase of maximum sterol content of seedlings is followed by a period of null germination. PMID:16659713

  6. Watershed Regressions for Pesticides (WARP) for Predicting Annual Maximum and Annual Maximum Moving-Average Concentrations of Atrazine in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.

    2008-01-01

    Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.

  7. Hydrothermal extremes at the South-West Pribaikalie during the current climate changes

    NASA Astrophysics Data System (ADS)

    Voropay, Nadezhda

    2017-04-01

    Climatic extremes of air temperature and precipitation were analyzed for the Tunka Intermountain Depression (South-West Pribaikalie, Buryatia, Russian Federation). Intermountain depressions occupy a quarter of the territory of the Baikal region. The specific climatic conditions in the depressions are formed due to the geographic location and the influence of latitudinal zonation and altitudinal gradients. Air temperature and precipitation data records from at weather stations for the period 1940-2015 were analyzed. Long-term average annual temperature is negative and varies from -0.8 °C to -2.4 °C. Air temperature absolute minimum is -48 °C, absolute maximum is +36 °C. The long-term average annual precipitation is 370-480 mm, but in some years annual precipitation reach 760 mm. The summer months have about 70% of the total annual precipitation, in July and August the sum may reach 340 mm. Maximum daily sum of rainfalls is 80 mm. The contribution of the global and regional circulation characteristics into the variability of regional climatic characteristics was estimated.

  8. Seasonal and intradiurnal variation of airborne pollen concentrations in Bodrum, SW Turkey.

    PubMed

    Tosunoglu, Aycan; Bicakci, Adem

    2015-04-01

    An aeropalynological study was performed in Bodrum, the famous tourism center in southwestern Turkey with a Hirst-type volumetric 7-day pollen and spore trap for 2 years (2007-2008). In Bodrum, 25,099 pollen grains as a mean value belonging to 41 taxa were recorded annually during the study period, and pollen grains from woody plant taxa had the largest atmospheric contribution of 86.99% and 24 taxa. However, 17 herbaceous plant taxa constituted 12.82% of the annual total pollen count, and 0.19% were unidentified. An average annual pollen index of 22.66% was recorded in March, despite differences from year to year. The highest pollen variability of 34 taxa was recorded in April and May. Predominant pollen types belonged to Cupressaceae/Taxaceae (42.73%), Quercus (15.95%), Pinus (9.78%), Olea europaea (9.04%), Poaceae (5.50%), Betula (1.82%), Pistacia (1.74%), Morus (1.72%), Urticaceae (1.46%), and Plantago (1.28%) and generated 91.03 of the annual total. In total, 32.59% of the mean annual total pollen index was recorded in the morning, and less pollen was recorded in the evening (18.71%). Maximum pollen concentration was recorded between 11:00 and 12:00 a.m.

  9. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets.

    PubMed

    Running, Steven W.; Gower, Stith T.

    1991-01-01

    A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.

  10. 24 CFR 886.308 - Maximum total annual contract commitment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF HOUSING AND URBAN DEVELOPMENT (SECTION 8 HOUSING ASSISTANCE PROGRAMS, SECTION 202 DIRECT LOAN PROGRAM, SECTION 202 SUPPORTIVE HOUSING FOR THE ELDERLY PROGRAM AND SECTION 811 SUPPORTIVE HOUSING FOR PERSONS WITH DISABILITIES PROGRAM) SECTION 8 HOUSING ASSISTANCE PAYMENTS PROGRAM-SPECIAL ALLOCATIONS...

  11. 24 CFR 886.308 - Maximum total annual contract commitment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF HOUSING AND URBAN DEVELOPMENT (SECTION 8 HOUSING ASSISTANCE PROGRAMS, SECTION 202 DIRECT LOAN PROGRAM, SECTION 202 SUPPORTIVE HOUSING FOR THE ELDERLY PROGRAM AND SECTION 811 SUPPORTIVE HOUSING FOR PERSONS WITH DISABILITIES PROGRAM) SECTION 8 HOUSING ASSISTANCE PAYMENTS PROGRAM-SPECIAL ALLOCATIONS...

  12. Rainfall-runoff-soil and nutrient loss relationships for plot size areas of bhetagad watershed in Central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Kothyari, B. P.; Verma, P. K.; Joshi, B. K.; Kothyari, U. C.

    2004-06-01

    The Bhetagad watershed in Kumaon Hills of Central Himalaya represents for hydro-meteorological conditions of the middle mountains over the Hindu Kush Himalayas. This study was conducted to assess the runoff, soil loss and subsequent nutrient losses from different prominent land uses in the Bhetagad watershed of Central Himalayas. Four experimental natural plots each of 20 m length and 5 m width were delineated on four most common land covers viz, pine forests, tea plantation, rainfed agricultural and degraded lands. Monthly values of runoff, soil loss and nutrient loss, for four successive years (1998-2001), from these land uses were quantified following standard methodologies. The annual runoff in these plots ranged between 51 and 3593 m 3/ha while the annual soil loss varied between 0.06 and 5.47 tonnes/ha during the entire study period. The loss of organic matter was found to be maximum in plot having pine forest followed by plot having tea plantation as the land cover. Annual loss of total N (6.24 kg/ha), total P (3.88 kg/ha) and total K (5.98 kg/ha),per unit loss of soil (tonnes/ha), was maximum from the plot having rainfed agricultural crop as the land cover. The loss of total N ranged between 0.30 and 21.27 kg/ha, total P ranged between 0.14 and 9.42 kg/ha, total K ranged from 0.12 to 11.31 kg/ha whereas organic matter loss varied between 3.65 and 255.16 kg/ha, from different experimental plots. The findings will lead towards devising better conservation/management options for mountain land use systems.

  13. The relative contribution of waves, tides, and nontidal residuals to extreme total water levels on U.S. West Coast sandy beaches

    USGS Publications Warehouse

    Serafin, Katherine A.; Ruggiero, Peter; Stockdon, Hilary F.

    2017-01-01

    To better understand how individual processes combine to cause flooding and erosion events, we investigate the relative contribution of tides, waves, and nontidal residuals to extreme total water levels (TWLs) at the shoreline of U.S. West Coast sandy beaches. Extreme TWLs, defined as the observed annual maximum event and the simulated 100 year return level event, peak in Washington, and are on average larger in Washington and Oregon than in California. The relative contribution of wave-induced and still water levels (SWL) to the 100 year TWL event is similar to that of the annual maximum event; however, the contribution of storm surge to the SWL doubles across events. Understanding the regional variability of TWLs will lead to a better understanding of how sea level rise, changes in storminess, and possible changes in the frequency of major El Niños may impact future coastal flooding and erosion along the U.S. West Coast and elsewhere.

  14. A comparison of extreme rainfall characteristics in the Brazilian Amazon derived from two gridded data sets and a national rain gauge network

    NASA Astrophysics Data System (ADS)

    Clarke, Robin T.; Bulhoes Mendes, Carlos Andre; Costa Buarque, Diogo

    2010-07-01

    Two issues of particular importance for the Amazon watershed are: whether annual maxima obtained from reanalysis and raingauge records agree well enough for the former to be useful in extending records of the latter; and whether reported trends in Amazon annual rainfall are reflected in the behavior of annual extremes in precipitation estimated from reanalyses and raingauge records. To explore these issues, three sets of daily precipitation data (1979-2001) from the Brazilian Amazon were analyzed (NCEP/NCAR and ERA-40 reanalyses, and records from the raingauge network of the Brazilian water resources agency - ANA), using the following variables: (1) mean annual maximum precipitation totals, accumulated over one, two, three and five days; (2) linear trends in these variables; (3) mean length of longest within-year "dry" spell; (4) linear trends in these variables. Comparisons between variables obtained from all three data sources showed that reanalyses underestimated time-trends and mean annual maximum precipitation (over durations of one to five days), and the correlations between reanalysis and spatially-interpolated raingauge estimates were small for these two variables. Both reanalyses over-estimated mean lengths of dry period relative to the mean length recorded by the raingauge network. Correlations between the trends calculated from all three data sources were small. Time-trends averaged over the reanalysis grid-squares, and spatially-interpolated time trends from raingauge data, were all clustered around zero. In conclusion, although the NCEP/NCAR and ERA-40 gridded data-sets may be valuable for studies of inter-annual variability in precipitation totals, they were found to be inappropriate for analysis of precipitation extremes.

  15. Spatial correlation in precipitation trends in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Buarque, Diogo Costa; Clarke, Robin T.; Mendes, Carlos Andre Bulhoes

    2010-06-01

    A geostatistical analysis of variables derived from Amazon daily precipitation records (trends in annual precipitation totals, trends in annual maximum precipitation accumulated over 1-5 days, trend in length of dry spell, trend in number of wet days per year) gave results that are consistent with those previously reported. Averaged over the Brazilian Amazon region as a whole, trends in annual maximum precipitations were slightly negative, the trend in the length of dry spell was slightly positive, and the trend in the number of wet days in the year was slightly negative. For trends in annual maximum precipitation accumulated over 1-5 days, spatial correlation between trends was found to extend up to a distance equivalent to at least half a degree of latitude or longitude, with some evidence of anisotropic correlation. Time trends in annual precipitation were found to be spatially correlated up to at least ten degrees of separation, in both W-E and S-N directions. Anisotropic spatial correlation was strongly evident in time trends in length of dry spell with much stronger evidence of spatial correlation in the W-E direction, extending up to at least five degrees of separation, than in the S-N. Because the time trends analyzed are shown to be spatially correlated, it is argued that methods at present widely used to test the statistical significance of climate trends over time lead to erroneous conclusions if spatial correlation is ignored, because records from different sites are assumed to be statistically independent.

  16. [Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015.

    PubMed

    Wang, Zhi Peng; Zhang, Xian Zhou; He, Yong Tao; Li, Meng; Shi, Pei Li; Zu, Jia Xing; Niu, Ben

    2018-01-01

    Precipitation change is an important factor in the inter-annual variation of grassland growth on the Tibetan Plateau. The total amount, distribution pattern and concentration time are three basic characteristics of precipitation change. The temporal and spatial characteristics of precipitation change were analyzed based on climate data of 145 meteorological stations on the Tibetan Plateau and nearby areas from 2000 to 2015. The total precipitation amount was characterized by annual precipitation, distribution pattern of precipitation during the year was characterized by improved precipitation concentration index (PCI), and precipitation centroid (PC) was defined to indicate the change in precipitation concentrated time. To better illustrate the response of grassland to precipitation change, vegetation growth status was characterized by the maximum value of normalized difference vegetation index (NDVI max ). Results indicated that the annual precipitation and PCI had an apparent gradient across the whole plateau and the latest PC occurred in the southern plateau. NDVI max of alpine shrub grassland was significantly correlated with the change of PCI,increased with even distribution of precipitation during growth period, and limited by the total annual precipitation. Alpine meadow did not show significantly correlations with these three indices. The inter-annual variability of NDVI max of steppe was controlled by both PCI and PC. NDVI max of alpine desert grassland was mainly controlled by annual precipitation. In addition to annual total amount of precipitation, the distribution characteristics of precipitation should be further considered when the influence of precipitation change on different types of vegetation on the Qinghai Tibet Plateau was studied.

  17. Factors driving spatial and temporal variation in production and production/biomass ratio of stream-resident brown trout (Salmo trutta) in Cantabrian streams

    USGS Publications Warehouse

    Lobon-Cervia, J.; Gonzalez, G.; Budy, P.

    2011-01-01

    1.The objective was to identify the factors driving spatial and temporal variation in annual production (PA) and turnover (production/biomass) ratio (P/BA) of resident brown trout Salmo trutta in tributaries of the Rio Esva (Cantabrian Mountains, Asturias, north-western Spain). We examined annual production (total production of all age-classes over a year) (PA) and turnover (P/BA) ratios, in relation to year-class production (production over the entire life time of a year-class) (PT) and turnover (P/BT) ratio, over 14years at a total of 12 sites along the length of four contrasting tributaries. In addition, we explored whether the importance of recruitment and site depth for spatial and temporal variations in year-class production (PT), elucidated in previous studies, extends to annual production. 2.Large spatial (among sites) and temporal (among years) variation in annual production (range 1.9-40.3gm-2 per year) and P/BA ratio (range 0.76-2.4per year) typified these populations, values reported here including all the variation reported globally for salmonids streams inhabited by one or several species. 3.Despite substantial differences among streams and sites in all production attributes, when all data were pooled, annual (PA) and year-class production (PT) and annual (P/BA) and year-class P/BT ratios were tightly linked. Annual (PA) and year-class production (PT) were similar but not identical, i.e. PT=0.94 PA, whereas the P/BT ratios were 4+P/BA ratios. 4.Recruitment (Rc) and mean annual density (NA) were major density-dependent drivers of production and their relationships were described by simple mathematical models. While year-class production (PT) was determined (R2=70.1%) by recruitment (Rc), annual production (PA) was determined (R2=60.3%) by mean annual density (NA). In turn, variation in recruitment explained R2=55.2% of variation in year-class P/BT ratios, the latter attaining an asymptote at P/BT=6 at progressively higher levels of recruitment. Similarly, variations in mean annual density (NA) explained R2=52.1% of variation in annual P/BA, the latter reaching an asymptote at P/BA=2.1. This explained why P/BT is equal to P/BA plus the number of year-classes at high but not at low densities. 5.Site depth was a major determinant of spatial (among sites) variation in production attributes. All these attributes described two-phase trajectories with site depth, reaching a maximum at sites of intermediate depth and declining at shallower and deeper sites. As a consequence, at sites where recruitment and mean annual density reached minimum or maximum values, annual (PA) and year-class production (PT) and annual (P/BA) and year-class P/BT ratios also reached minimum and maximum values. ?? 2011 Blackwell Publishing Ltd.

  18. Drought analysis in the Tons River Basin, India during 1969-2008

    NASA Astrophysics Data System (ADS)

    Meshram, Sarita Gajbhiye; Gautam, Randhir; Kahya, Ercan

    2018-05-01

    The primary focus of this study is the analysis of droughts in the Tons River Basin during the period 1969-2008. Precipitation data observed at four gauging stations are used to identify drought over the study area. The event of drought is derived from the standardized precipitation index (SPI) on a 3-month scale. Our results indicated that severe drought occurred in the Allahabad, Rewa, and Satna stations in the years 1973 and 1979. The droughts in this region had occurred mainly due to erratic behavior in monsoons, especially due to long breaks between monsoons. During the drought years, the deficiency of the annual rainfall in the analysis of annual rainfall departure had varied from -26% in 1976 to -60% in 1973 at Allahabad station in the basin. The maximum deficiency of annual and seasonal rainfall recorded in the basin is 60%. The maximum seasonal rainfall departure observed in the basin is in the order of -60% at Allahabad station in 1973, while maximum annual rainfall departure had been recorded as -60% during 1979 at the Satna station. Extreme dry events ( z score <-2) were detected during July, August, and September. Moreover, severe dry events were observed in August, September, and October. The drought conditions in the Tons River Basin are dominantly driven by total rainfall throughout the period between June and November.

  19. Nitrate leaching from winter cereal cover crops using undisturbed soil-column lysimeters

    USDA-ARS?s Scientific Manuscript database

    Cover crops are important management practices for reducing nitrogen (N) leaching in the Chesapeake Bay watershed, which is under Total Maximum Daily Load restraints. Cool-season annual grasses such as barley, rye, or wheat are common cover crops, but studies are needed to directly compare field ni...

  20. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Brooks, V.

    1997-01-01

    This paper describes the use of satellite data to calibrate a new climate-vegetation greenness relationship for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes If the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980's in order to refine our understanding of intra-annual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global 1o gridded data sets suggest that three climate indexes: degree days (growing/chilling), annual precipitation total, and an annual moisture index together can account to 70-80 percent of the geographic variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same annual climate index values from the previous year explains no substantial additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes is closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from lo grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI for several different years at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes are not accurately predicted are mainly high latitude zones, mixed and disturbed vegetation types, and other remote locations where climate station data are sparse.

  1. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.

    PubMed

    He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan

    2009-01-01

    Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.

  2. Spatial and temporal distributions of aerosol concentrations and depositions in Asia during the year 2010.

    PubMed

    Park, Soon-Ung; Lee, In-Hye; Joo, Seung Jin

    2016-01-15

    Aerosol Modeling System (AMS) that is consisted of the Asian Dust Aerosol Model2 (ADAM2) and the Community Multi-scale Air Quality (CMAQ) modeling system has been employed to document the spatial distributions of the monthly and the annual averaged concentration of both the Asian dust (AD) aerosol and the anthropogenic aerosol (AA), and their total depositions in the Asian region for the year 2010. It is found that the annual mean surface aerosol (PM10) concentrations in the Asian region affect in a wide region as a complex mixture of AA and AD aerosols; they are predominated by the AD aerosol in the AD source region of northern China and Mongolia with a maximum concentration exceeding 300 μg m(-3); AAs are predominated in the high pollutant emission regions of southern and eastern China and northern India with a maximum concentration exceeding 110 μg m(-3); while the mixture of AA and AD aerosols is dominated in the downwind regions extending from the Yellow Sea to the Northwest Pacific Ocean. It is also found that the annual total deposition of aerosols in the model domain is found to be 485 Tg (372 Tg by AD aerosol and 113 Tg by AA), of which 66% (319 Tg) is contributed by the dry deposition (305 Tg by AD aerosol and 14 Tg by AA) and 34% (166 Tg) by the wet deposition (66 Tg by AD aerosol and 100 Tg by AA), suggesting about 77% of the annual total deposition being contributed by the AD aerosol mainly through the dry deposition process and 24% of it by AA through the wet deposition process. The monthly mean aerosol concentration and the monthly total deposition show a significant seasonal variation with high in winter and spring, and low in summer. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Long-Term Simulation of Dust Distribution with the GOCART Model: Correlation with the North Atlantic Oscillation

    NASA Technical Reports Server (NTRS)

    Ginoux, P.; Prospero, J.; Torres, O.; Chin, M.

    2002-01-01

    Global distribution of aeolian dust is simulated from 1981 to 1996 with the Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. The results are assessed with in-situ measurements and the Total Ozone Mapping Spectrometer (TOMS) aerosol products. The annual budget over the different continents and oceans are analyzed. It is found that there is a maximum of 25% difference of global annual emission from the minimum in 1996 to the maximum in 1988. There is a downward trend of dust emission over Africa and East Asia, of 6 and 2 Tg/yr, respectively. The inter-annual variability of dust distribution is analyzed over the North Atlantic and Africa. It is found that in winter most of the North Atlantic and Africa dust loading is correlated with the North Atlantic Oscillation. The GOCART model indicates that a controlling factor of such correlation can be attributed to dust emission from the Sahel. The Bodele depression is the major dust source in winter and its inter-annual variability is highly correlated with the NAO. However, it is not possible to conclude without further analysis that the North Atlantic Oscillation is forcing the inter-annual variability of dust emission and in-turn dust concentration over the North Atlantic.

  4. The Optimal Forest Rotation: A Discussion and Annotated Bibliography

    Treesearch

    David H. Newman

    1988-01-01

    The literature contains six different criteria of the optimal forest rotation: (1) maximum single-rotation physical yield, (2) maximum single-rotation annual yield, (3) maximum single-rotation discounted net revenues, (4) maximum discounted net revenues from an infinite series of rotations, (5) maximum annual net revenues, and (6) maximum internal rate of return. First...

  5. Intra-annual variability of cloud cover over the Mediterranean region based on NCEP/NCAR, MODIS and ECAD data sets

    NASA Astrophysics Data System (ADS)

    Ioannidis, Eleftherios; Lolis, Christos J.; Papadimas, Christos D.; Hatzianastassiou, Nikolaos; Bartzokas, Aristides

    2017-04-01

    The seasonal variability of total cloud cover in the Mediterranean region is examined for the period 1948-2014 using a multivariate statistical methodology. The data used consist of: i) daily gridded (1.875°x1.905°) values of total cloud cover over the broader Mediterranean region for the 66-year period 1948-2014, obtained from NCEP/NCAR Reanalysis data set, ii) daily gridded (1°x1°) values of total cloud cover for the period 2003-2014 obtained from the Moderate resolution Imaging Spectroradiometer (MODIS) satellite data set and iii) daily station cloud cover data for the period 2003-2014 obtained from the European Climate Assessment & Dataset (ECA&D). At first, the multivariate statistical method of Factor Analysis (S-mode) with varimax rotation is applied as a dimensionality reduction tool on the mean day to day intra-annual variation of NCEP/NCAR cloud cover for the period 1948-2014. According to the results, three main modes of intra-annual variation of cloud cover are found. The first mode is characterized by a winter maximum and a summer minimum and prevails mainly over the sea; a weak see-saw teleconnection over the Alps represents the opposite intra-annual marching. The second mode presents maxima in early autumn and late spring, and minima in late summer and winter, and prevails over the SW Europe and NW Africa inland regions. The third mode shows a maximum in June and a minimum in October and prevails over the eastern part of central Europe. Next, the mean day to day intra-annual variation of NCEP/NCAR cloud cover over the core regions of the above factors is calculated for the entire period 1948-2014 and the three 22-year sub-periods 1948-70, 1970-92 and 1992-2014. A comparison is carried out between each of the three sub-periods and the total period in order to reveal possible long-term changes in seasonal march of total cloud cover. The results show that cloud cover was reduced above all regions during the last 22-year sub-period 1992-2014 throughout the year, but especially in winter. Finally, given the different nature of the utilized NCEP/NCAR (Reanalysis), MODIS (satellite) and ECAD (stations) cloud cover data sets, an inter-comparison is made among them as it concerns the intra-annual variation of cloud cover for the common period 2003-2014. The results show a nice similarity among the three datasets, with some differences in magnitude during the cold period of the year.

  6. Potentiometric surface in the Central Oklahoma (Garber-Wellington) aquifer, Oklahoma, 2009

    USGS Publications Warehouse

    Mashburn, Shana L.; Magers, Jessica

    2011-01-01

    A study of the hydrogeology of the Central Oklahoma aquifer was started in 2008 to provide the Oklahoma Water Resources Board (OWRB) hydrogeologic data and a groundwater flow model that can be used as a tool to help manage the aquifer. The 1973 Oklahoma water law requires the OWRB to do hydrologic investigations of Oklahoma's aquifers (termed 'groundwater basins') and to determine amounts of water that may be withdrawn by permitted water users. 'Maximum annual yield' is a term used by OWRB to describe the total amount of water that can be withdrawn from a specific aquifer in any year while allowing a minimum 20-year life of the basin (Oklahoma Water Resources Board, 2010). Currently (2010), the maximum annual yield has not been determined for the Central Oklahoma aquifer. Until the maximum annual yield determination is made, water users are issued a temporary permit by the OWRB for 2 acre-feet/acre per year. The objective of the study, in cooperation with the Oklahoma Water Resources Board, was to study the hydrogeology of the Central Oklahoma aquifer to provide information that will enable the OWRB to determine the maximum annual yield of the aquifer based on different proposed management plans. Groundwater flow models are typically used by the OWRB as a tool to help determine the maximum annual yield. This report presents the potentiometric surface of the Central Oklahoma aquifer based on water-level data collected in 2009 as part of the current (2010) hydrologic study. The U.S. Geological Survey (USGS) Hydrologic Investigations Atlas HA-724 by Christenson and others (1992) presents the 1986-87 potentiometric-surface map. This 1986-87 potentiometric-surface map was made as part of the USGS National Water-Quality Assessment pilot project for the Central Oklahoma aquifer that examined the geochemical and hydrogeological processes operating in the aquifer. An attempt was made to obtain water-level measurements for the 2009 potentiometric-surface map from the wells used for the 1986-87 potentiometric-surface map. Well symbols with circles on the 2009 potentiometric-surface map (fig. 1) indicate wells that were used for the 1986-87 potentiometric-surface map.

  7. Variation trend of snowfall in the Kamikochi region of the Japanese Alps

    NASA Astrophysics Data System (ADS)

    Suzuki, K.

    2017-12-01

    The Japanese Alps experience exceptionally heavy snowfall, extreme even by global standards, and in spring and summer the melting snow becomes a valuable water resource. The snow effectively acts as a natural dam when it accumulates in watersheds during winter. However, there have been no observations of the amount of snow in high-altitude regions of Japan. Therefore, we cannot discuss the effect of global warming on the change in the amount of snow in these regions based on direct observation data. We were, however, able to obtain climatic and hydrologic data for high-altitude sites in the Japanese Alps, and discuss the variations in these conditions in the Kamikochi region (altitude 1490 m-3190 m) of the Japanese Alps over a 68-year period using these observed data. No long-term trends are observed in the annual mean, maximum, or minimum temperatures at Taisho-ike from 1945 to 2012; the total annual precipitation shows a statistically significant decreasing trend. The annual total snowfall at Taisho-ike from 1969 to 2012 shows a statistically significant increasing trend. The annual total runoff of the Azusa River from 1945 to 2012 shows a statistically significant increasing trend, as does the snowmelt runoff to the river (which occurs from May to July). We can thus conclude that the annual snowfall in the Azusa River catchment has increased in recent years.

  8. The role of climate and socioeconomic factors on the spatiotemporal variability of cholera in Nigeria

    NASA Astrophysics Data System (ADS)

    Abdussalam, Auwal; Thornes, John; Leckebusch, Gregor

    2015-04-01

    Nigeria has a number of climate-sensitive infectious diseases; one of the most important of these diseases that remains a threat to public health is cholera. This study investigates the influences of both meteorological and socioeconomic factors on the spatiotemporal variability of cholera in Nigeria. A stepwise multiple regression models are used to estimate the influence of the year-to-year variations of cholera cases and deaths for individual states in the country and as well for three groups of states that are classified based on annual rainfall amount. Specifically, seasonal mean maximum and minimum temperatures and annual rainfall totals were analysed with annual aggregate count of cholera cases and deaths, taking into account of the socioeconomic factors that are potentially enhancing vulnerability such as: absolute poverty, adult literacy, access to pipe borne water and population density. Result reveals that the most important explanatory meteorological and socioeconomic variables in explaining the spatiotemporal variability of the disease are rainfall totals, seasonal mean maximum temperature, absolute poverty, and accessibility to pipe borne water. The influences of socioeconomic factors appeared to be more pronounced in the northern part of the country, and vice-versa in the case of meteorological factors. Also, cross validated models output suggests a strong possibility of disease prediction, which will help authorities to put effective control measures in place which depend on prevention, and or efficient response.

  9. Stochastic characteristics of different duration annual maximum rainfall and its spatial difference in China based on information entropy

    NASA Astrophysics Data System (ADS)

    Li, X.; Sang, Y. F.

    2017-12-01

    Mountain torrents, urban floods and other disasters caused by extreme precipitation bring great losses to the ecological environment, social and economic development, people's lives and property security. So there is of great significance to floods prevention and control by the study of its spatial distribution. Based on the annual maximum rainfall data of 60min, 6h and 24h, the paper generate long sequences following Pearson-III distribution, and then use the information entropy index to study the spatial distribution and difference of different duration. The results show that the information entropy value of annual maximum rainfall in the south region is greater than that in the north region, indicating more obvious stochastic characteristics of annual maximum rainfall in the latter. However, the spatial distribution of stochastic characteristics is different in different duration. For example, stochastic characteristics of 60min annual maximum rainfall in the Eastern Tibet is smaller than surrounding, but 6h and 24h annual maximum rainfall is larger than surrounding area. In the Haihe River Basin and the Huaihe River Basin, the stochastic characteristics of the 60min annual maximum rainfall was not significantly different from that in the surrounding area, and stochastic characteristics of 6h and 24h was smaller than that in the surrounding area. We conclude that the spatial distribution of information entropy values of annual maximum rainfall in different duration can reflect the spatial distribution of its stochastic characteristics, thus the results can be an importantly scientific basis for the flood prevention and control, agriculture, economic-social developments and urban flood control and waterlogging.

  10. EnviroAtlas - Biological nitrogen fixation in natural/semi-natural ecosystems by 12-digit HUC for the Conterminous United States, 2006

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains data on the mean biological nitrogen fixation in natural/semi-natural ecosystems per 12-digit Hydrologic Unit (HUC) in 2006. Biological N fixation (BNF) in natural/semi-natural ecosystems was estimated using a correlation with actual evapotranspiration (AET). This correlation is based on a global meta-analysis of BNF in natural/semi-natural ecosystems (Cleveland et al. 1999). AET estimates for 2006 were calculated using a regression equation describing the correlation of AET with climate (average annual daily temperature, average annual minimum daily temperature, average annual maximum daily temperature, and annual precipitation) and land use/land cover variables in the conterminous US (Sanford and Selnick 2013). Data describing annual average minimum and maximum daily temperatures and total precipitation for 2006 were acquired from the PRISM climate dataset (http://prism.oregonstate.edu). Average annual climate data were then calculated for individual 12-digit USGS Hydrologic Unit Codes (HUC12s; http://water.usgs.gov/GIS/huc.html; 22 March 2011 release) using the Zonal Statistics tool in ArcMap 10.0. AET for individual HUC12s was estimated using equations described in Sanford and Selnick (2013). BNF in natural/semi-natural ecosystems within individual HUC12s was modeled with an equation describing the statistical relationship between BNF (kg N ha-1 yr-1) and actual evapotranspiration (AET; cm yr-1) and scaled to the proportion

  11. Annual committed effective dose from olive oil (due to 238U, 232Th, and 222Rn) estimated for members of the Moroccan public from ingestion and skin application.

    PubMed

    Misdaq, M A; Touti, R

    2012-03-01

    Olive oil is traditionally refined and widely consumed by Moroccan rural populations. Uranium (238U), thorium (232Th), radon (222Rn), and thoron (220Rn) contents were measured in various locally produced olive oil samples collected in rural areas of Morocco. These radionuclides were also measured inside various bottled virgin olive oils consumed by the Moroccan populations. CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs) were used. Annual committed effective doses due to 238U, 232Th, and 222Rn from the ingestion of olive oil by the members of the general public were determined. The maximum total committed effective dose due to 238U, 232Th, and 222Rn from the ingestion of olive oil by adult members of Moroccan rural populations was found equal to 5.9 µSv y-1. The influence of pollution due to building material dusts and phosphates on the radiation dose to workers from the ingestion of olive oil was investigated, and it was found that the maximum total committed effective dose due to 238U, 232Th, and 222Rn was on the order of 0.22 mSy y-1. Committed effective doses to skin due to 238U, 232Th, and 222Rn from the application of olive oil masks by rural women were evaluated. The maximum total committed effective dose to skin due to 238U, 232Th, and 222Rn was found equal to 0.07 mSy y-1 cm-2.

  12. Identification of "ever-cropped" land (1984-2010) using Landsat annual maximum NDVI image composites: Southwestern Kansas case study.

    PubMed

    Maxwell, Susan K; Sylvester, Kenneth M

    2012-06-01

    A time series of 230 intra- and inter-annual Landsat Thematic Mapper images was used to identify land that was ever cropped during the years 1984 through 2010 for a five county region in southwestern Kansas. Annual maximum Normalized Difference Vegetation Index (NDVI) image composites (NDVI(ann-max)) were used to evaluate the inter-annual dynamics of cropped and non-cropped land. Three feature images were derived from the 27-year NDVI(ann-max) image time series and used in the classification: 1) maximum NDVI value that occurred over the entire 27 year time span (NDVI(max)), 2) standard deviation of the annual maximum NDVI values for all years (NDVI(sd)), and 3) standard deviation of the annual maximum NDVI values for years 1984-1986 (NDVI(sd84-86)) to improve Conservation Reserve Program land discrimination.Results of the classification were compared to three reference data sets: County-level USDA Census records (1982-2007) and two digital land cover maps (Kansas 2005 and USGS Trends Program maps (1986-2000)). Area of ever-cropped land for the five counties was on average 11.8 % higher than the area estimated from Census records. Overall agreement between the ever-cropped land map and the 2005 Kansas map was 91.9% and 97.2% for the Trends maps. Converting the intra-annual Landsat data set to a single annual maximum NDVI image composite considerably reduced the data set size, eliminated clouds and cloud-shadow affects, yet maintained information important for discriminating cropped land. Our results suggest that Landsat annual maximum NDVI image composites will be useful for characterizing land use and land cover change for many applications.

  13. Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model

    USGS Publications Warehouse

    Granato, Gregory; Jones, Susan Cheung

    2017-01-01

    The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.

  14. Observations and simulations of the ionospheric lunar tide: Seasonal variability

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.

    2014-07-01

    The seasonal variability of the ionospheric lunar tide is investigated using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. The present study focuses on the seasonal variability of the lunar tide in the ionosphere and its potential connection to the occurrence of stratosphere sudden warmings (SSWs). COSMIC maximum F region electron density (NmF2) and total electron content observations reveal a primarily annual variation of the ionospheric lunar tide, with maximum amplitudes occurring at low latitudes during December-February. Simulations of the lunar tide climatology in TIME-GCM display a similar annual variability as the COSMIC observations. This leads to the conclusion that the annual variability of the lunar tide in the ionosphere is not solely due to the occurrence of SSWs. Rather, the annual variability of the lunar tide in the ionosphere is generated by the seasonal variability of the lunar tide at E region altitudes. However, compared to the observations, the ionospheric lunar tide annual variability is weaker in the climatological simulations which is attributed to the occurrence of SSWs during the majority of the years included in the observations. Introducing a SSW into the TIME-GCM simulation leads to an additional enhancement of the lunar tide during Northern Hemisphere winter, increasing the lunar tide annual variability and resulting in an annual variability that is more consistent with the observations. The occurrence of SSWs can therefore potentially bias lunar tide climatologies, and it is important to consider these effects in studies of the lunar tide in the atmosphere and ionosphere.

  15. An analysis of effect of land use change on river flow variability

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Liu, Yuting; Yang, Xinyue; Wang, Xiang

    2018-02-01

    Land use scenario analysis, SWAT model, flow characteristic indices and flow variability technology were used to analyze the effect of land use quantity and location change on river flow. Results showed that river flow variation caused by land use change from forest to crop was larger than that caused by land use change from forest to grass; Land use change neither from upstream to downstream nor from downstream to upstream had little effect on annual average discharge and maximum annual average discharge. But it had obvious effect on maximum daily discharge; Land use change which occurred in upstream could lead to producing larger magnitude flood more easily; Land use change from forest to crop or grass could increase the number of large magnitude floods and their total duration. And it also could increase the number of small magnitude floods but decrease their duration.

  16. Economics of installation of solar heating plants

    NASA Astrophysics Data System (ADS)

    Popel, O. S.; Frid, S. Y.; Shpiltayn, E. E.

    1984-04-01

    An engineering-economic analysis of solar heating plants for determination of their cost effectiveness involves calculating the maximum economically feasibile extra capital investment on their installation and calculating the fraction of the total heat demand covered by such a plant which makes replacement of conventional heating plant maximally economical. The annual economic effect of solar heating is calculated in terms of normalized cost differential, as criterion for its competitiveness with conventional heating. Plant performance characteristics, namely dependence of both the percent demand coverage and the annual cost differential on the area of solar radiation collectors is then considered. Analysis of the cost equation, assuming that the extra fixed cost is proportional to the collector area, reveals the necessary and sufficient condition for decrease of annual operating cost.

  17. On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.

  18. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    NASA Technical Reports Server (NTRS)

    Potter, C. S.

    1997-01-01

    This study describes the use of satellite data to calibrate a new climate-vegetation greenness function for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our empirical understanding of intraannual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global l(sup o) gridded data sets suggest that three climate indexes: growing degree days, annual precipitation total, and an annual moisture index together can account to 70-80 percent of the variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same climate index values from the previous year explained no significant additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes was closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from l(sup o) grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes were not accurately predicted are mainly high latitude ecosystems and other remote locations where climate station data are sparse.

  19. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part II; Cloud Fraction and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Minnis, Patrick

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility are analyzed for determining the variability of cloud fraction and radiative forcing at several temporal scales between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layer low (0-3 km), middle (3-6 km), and high clouds (greater than 6 km) using ARM SGP ground-based paired lidar-radar measurements. Shortwave (SW), longwave (LW), and net cloud radiative forcings (CRF) are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements. The annual averages of total, and single-layer, nonoverlapped low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Total and low cloud amounts were greatest from December through March and least during July and August. The monthly variation of high cloud amount is relatively small with a broad maximum from May to August. During winter, total cloud cover varies diurnally with a small amplitude, mid-morning maximum and early evening minimum, and during summer it changes by more than 0.14 over the daily cycle with a pronounced early evening minimum. The diurnal variations of mean single-layer cloud cover change with season and cloud height. Annual averages of all-sky, total, and single-layer high, middle, and low LW CRFs are 21.4, 40.2, 16.7, 27.2, and 55.0 Wm(sup -2), respectively; and their SW CRFs are -41.5, -77.2, -37.0, -47.0, and -90.5 Wm(sup -2). Their net CRFs range from -20 to -37 Wm(sup -2). For all-sky, total, and low clouds, the maximum negative net CRFs of -40.1, -70, and -69.5 Wm(sup -2), occur during April; while the respective minimum values of -3.9, -5.7, and -4.6 Wm(sup -2), are found during December. July is the month having maximum negative net CRF of -46.2 Wm(sup -2) for middle clouds, and May has the maximum value of -45.9 Wm(sup -2) for high clouds. An uncertainty analysis demonstrates that the calculated CRFs are not significantly affected by the difference between clear-sky and cloudy conditions. A more comprehensive cloud fraction study from both surface and satellite observations will follow.

  20. Long-term variations of the riverine input of potentially toxic dissolved elements and the impacts on their distribution in Jiaozhou Bay, China.

    PubMed

    Wang, Changyou; Guo, Jinqiang; Liang, Shengkang; Wang, Yunfei; Yang, Yanqun; Wang, Xiulin

    2018-03-01

    The concentrations of the potentially toxic dissolved elements (PTEs) As, Hg, Cr, Pb, Cd, and Cu in the main rivers into Jiaozhou Bay (JZB) during 1981-2006 were measured, and the impact of the fluvial PTE fluxes on their distributions in the bay was investigated. The overall average concentration in the rivers into JZB ranged from 8.8 to 39.6 μg L -1 for As, 10.1 to 632.6 ng L -1 for Hg, 4.1 to 3003.6 μg L -1 for Cr, 8.5 to 141.9 μg L -1 for Pb, 1.1 to 34.2 μg L -1 for Cd, and 13.2 to 1042.8 μg L -1 for Cu. The interannual average concentration variations of the PTEs in these rivers were enormous, with maximum differences of 41-21,680 times, while their relative seasonal changes were far smaller with maximum differences of 3-12 times. The total annual fluvial fluxes for As, Hg, and Cr into JZB exhibited the inverse "U" pattern, while those for Pb and Cd showed the "N" pattern. As a whole, the total annual Cu flux presented a growing tendency from 1998 to 2006. In general, the changing trends of the PTE concentrations in JZB were similar to those of their annual fluxes from the rivers, indicating a great impact of their fluvial fluxes on their distributions in JZB. The annual concentration of Cd in the bay almost remained constant and differed from the fluvial flux of Cd. The diversified pattern of the environmental Kuznets curve (EKC) represented China's approach to industrialization as "improving while developing."

  1. Simulated natural hydrologic regime of an intermountain playa conservation site

    USGS Publications Warehouse

    Sanderson, J.S.; Kotliar, N.B.; Steingraeber, D.A.; Browne, C.

    2008-01-01

    An intermountain playa wetland preserve in Colorado's San Luis Valley was studied to assess how its current hydrologic function compares to its natural hydrologic regime. Current hydrologic conditions were quantified, and on-site effects of off-site water use were assessed. A water-budget model was developed to simulate an unaltered (i.e., natural) hydrologic regime, and simulated natural conditions were compared to observed conditions. From 1998-2002, observed stream inflows accounted for ??? 80% of total annual water inputs. No ground water discharged to the wetland. Evapotranspiration (ET) accounted for ??? 69% of total annual water loss. Simulated natural conditions differed substantially from current altered conditions with respect to depth, variability, and frequency of flooding. During 1998-2002, observed monthly mean surface-water depth was 65% lower than under simulated natural conditions. Observed monthly variability in water depth range from 129% greater (May) to 100% less (September and October) than simulated. As observed, the wetland dried completely (i.e., was ephemeral) in all years; as simulated, the wetland was ephemeral in two of five years. For the period 1915-2002, the simulated wetland was inundated continuously for as long as 16 years and nine months. The large differences in observed and simulated surface-water dynamics resulted from differences between altered and simulated unaltered stream inflows. The maximum and minimum annual total stream inflows observed from 1998-2005 were 3.1 ?? 106 m3 and 0 m3, respectively, versus 15.5 ?? 106 m3 and 3.2 ?? 106 m3 under simulated natural conditions from 1915-2002. The maximum simulated inflow was 484% greater than observed. These data indicate that the current hydrologic regime of this intermountain playa differs significantly from its natural hydrologic regime, which has important implications for planning and assessing conservation success. ?? 2008, The Society of Wetland Scientists.

  2. Evaporation from Pinus caribaea plantations on former grassland soils under maritime tropical conditions

    NASA Astrophysics Data System (ADS)

    Waterloo, M. J.; Bruijnzeel, L. A.; Vugts, H. F.; Rawaqa, T. T.

    1999-07-01

    Wet canopy and dry canopy evaporation from young and mature plantations of Pinus caribaea on former grassland soils under maritime tropical conditions in southwestern Viti Levu, Fiji, were determined using micrometeorological and hydrological techniques. Modeled annual evaporation totals (ET) of 1926 and 1717 mm were derived for the 6- and the 15-year-old stands, respectively. Transpiration made up 72% and 70% of annual ET, and modeled rainfall interception by the trees and litter layer was 20-22% and 8-9% in the young and the mature stands respectively. Monthly ET was related to forest leaf area index and was much higher than that for the kind of tall fire-climax Pennisetum polystachyon grassland replaced by the forests. Grassland reforestation resulted in a maximum decrease in annual water yield of 1180 mm on a plot basis, although it is argued that a reduction of (at least) 500-700 mm would be more realistic at the catchment scale. The impact of reforesting grassland on the water resources in southwest Viti Levu is enhanced by its location in a maritime, seasonal climate in the outer tropics, which favors a larger difference between annual forest and grassland evaporation totals than do equatorial regions.

  3. Lightning climatology in the Congo Basin: methodology and first results

    NASA Astrophysics Data System (ADS)

    Kigotsi, Jean; Soula, Serge; Georgis, Jean-François; Barthe, Christelle

    2016-04-01

    The global climatology of lightning issued from space observations (OTD and LIS) clearly showed the maximum of the thunderstorm activity is located in a large area of the Congo Basin, especially in the Democratic Republic of Congo (DRC). The first goal of the present study is to compare observations from the World Wide Lightning Location Network (WWLLN) from the Lightning Imaging Sensor (LIS) over a 9-year period (2005-2013) in this 2750 km × 2750 km area. The second goal is to analyse the lightning activity in terms of time and space variability. The detection efficiency (DE) of the WWLLN relative to LIS has increased between 2005 and 2013, typically from about 1.70 % to 5.90 %, in agreement with previous results for other regions of the world. The mean monthly flash rate describes an annual cycle with a maximum between November and March and a minimum between June and August, associated with the ICTZ migration but not exactly symmetrical on both sides of the equator. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, depending on the reference year, in agreement with previous works in other regions of the world. The annual flash density shows a sharp maximum localized in eastern DRC regardless of the reference year and the period of the year. This annual maximum systematically located west of Kivu Lake corresponds to that previously identified by many authors as the worldwide maximum which Christian et al. (2013) falsely attributed to Rwanda. Another more extended region within the Congo Basin exhibits moderately large values, especially during the beginning of the period analyzed. A comparison of both patterns of lightning density from the WWLLN and from LIS allows to validate the representativeness of this world network and to restitute the total lightning activity in terms of lightning density and rate.

  4. Analysis of trends in selected streamflow statistics for the Concho River Basin, Texas, 1916-2009

    USGS Publications Warehouse

    Barbie, Dana L.; Wehmeyer, Loren L.; May, Jayne E.

    2012-01-01

    Six U.S. Geological Survey streamflow-gaging stations were selected for analysis. Streamflow-gaging station 08128000 South Concho River at Christoval has downward trends for annual maximum daily discharge and annual instantaneous peak discharge for the combined period 1931-95, 2002-9. Streamflow-gaging station 08128400 Middle Concho River above Tankersley has downward trends for annual maximum daily discharge and annual instantaneous peak discharge for the combined period 1962-95, 2002-9. Streamflow-gaging station 08128500 Middle Concho River near Tankersley has no significant trends in the streamflow statistics considered for the period 1931-60. Streamflow-gaging station 08134000 North Concho River near Carlsbad has downward trends for annual mean daily discharge, annual 7-day minimum daily discharge, annual maximum daily discharge, and annual instantaneous peak discharge for the period 1925-2009. Streamflow-gaging stations 08136000 Concho River at San Angelo and 08136500 Concho River at Paint Rock have downward trends for 1916-2009 for all streamflow statistics calculated, but streamflow-gaging station 08136000 Concho River at San Angelo has an upward trend for annual maximum daily discharge during 1964-2009. The downward trends detected during 1916-2009 for the Concho River at San Angelo are not unexpected because of three reservoirs impounding and profoundly regulating streamflow.

  5. Increased baseflow in Iowa over the second half of the 20th Century

    USGS Publications Warehouse

    Schilling, K.E.; Libra, R.D.

    2003-01-01

    Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight-digit hydrologic unit code (HUC-8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual baseflow, annual minimum flow, and the annual baseflow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as baseflow than as stormflow in the second half of the 20th Century. Reasons for the observed streamflow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.

  6. Prediction possibilities of Arosa total ozone

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    1987-01-01

    Using the periodicities obtained by a Maximum Entropy Spectral Analysis (MESA) of the Arosa total ozone data ( CC') series for 1932 1971, the values predicted for 1972 onwards were compared with the observed values of the ( AD) series. A change of level was noticed, with the observed ( AD) values lower by about 7 D.U. Also, the matching was poor in 1980, 1981, 1982. In the monthly values, the most prominent periodicity was the annual wave, comprising some 80% variance. In the 12 month running averages, the annual wave was eliminated and the most prominent periodicity was T=3.7 years, encompassing roundly 20% variance. This and other periodicities at T=4.7, 5.4, 6.2, 10 and 16 years were all statistically significant at a 3.5δ a priori i.e., 2δ a posteriori level. However, the predictions from these were unsatisfactory, probably because some of these periodicities may be transient i.e., changing amplitudes and/or phases with time. Thus, no meaningful prediction seem possible for Arosa total ozone.

  7. Agricultural costs of the Chesapeake Bay total maximum daily load.

    PubMed

    Kaufman, Zach; Abler, David; Shortle, James; Harper, Jayson; Hamlett, James; Feather, Peter

    2014-12-16

    This study estimates costs to agricultural producers of the Watershed Implementation Plans (WIPs) developed by states in the Chesapeake Bay Watershed to comply with the Chesapeake Bay total maximum daily load (TMDL) and potential cost savings that could be realized by a more efficient selection of agricultural Best Management Practices (BMPs) and spatial targeting of BMP implementation. The cost of implementing the WIPs between 2011 and 2025 is estimated to be about $3.6 billion (in 2010 dollars). The annual cost associated with full implementation of all WIP BMPs from 2025 onward is about $900 million. Significant cost savings can be realized through careful and efficient BMP selection and spatial targeting. If retiring up to 25% of current agricultural land is included as an option, Bay-wide cost savings of about 60% could be realized compared to the WIPs.

  8. 7 CFR 4280.126 - Guarantee/annual renewal fee percentages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Guarantee/annual renewal fee percentages. 4280.126... renewal fee percentages. (a) Fee ceilings. The maximum guarantee fee that may be charged is 1 percent. The maximum annual renewal fee that may be charged is 0.5 percent. The Agency will establish each year the...

  9. Factors related to commercial production of the walleye in Red Lakes, Minnesota

    USGS Publications Warehouse

    Smith, Lloyd L.; Pycha, Richard L.

    1961-01-01

    Growth of the walleye (Stizostedion vitreum vitreum) in Red Lakes, Minnesota, over a 17-year period was slower than in other waters of the Great Lakes region and fluctuated annually from 30.7 percent above to 42.2 percent below mean growth. Individual year classes varied considerably in growth rate. Age distribution in 3 1/2-inch stretch-measure commercial nets varied extremely in 9 years' collections and was related to year-class strength and fishing intensity during periods when classes were available for catch. Abundance of different classes varied 23-fold. Annulus formation and resumption of growth occurred from mid-June to late July. Effective growing season did not exceed 4 months and for some individuals in some years was 2 months or less. The catch contained age-groups II-XII but consisted principally of groups IV-VIII. Seasonal changes in age distribution were dependent on growth rate and fishing effort. Total catch was strongly influenced by growth and seasonal distribution of fishing effort. Maximum availability to commercial nets was at a total length of 15.1 inches, but a large percentage of the catch was smaller fish. Total annual mortality rate after fish attained 15.1 inches total length was 0.66, but continued recruitment through group VIII caused apparent change in mortality rate with increasing age up to IX. Maximum harvest could be attained by concentrating fishing effort in the latter part of the growing season. Abundance indices derived from commercial catch will be strongly influenced by the seasonal pattern of fishing.

  10. Department of Defense Performance and Accountability Report, Fiscal Year 2006

    DTIC Science & Technology

    2006-11-15

    FY 2006 with a total of 35, resulting in a net gain of one material weakness over FY 2005. Each weakness and their corrective action plans are...held due to statutory requirements for use in national defense, conservation, or national emergencies. The Annual Materials Plan lists the maximum...of non- materiality instances where planning for periods of crisis were not fully developed. (Office of the Under Secretary of Defense

  11. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    PubMed

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source composition of TP (38.1 %) is rural life; the maximum contribution rates of TN and TP in Baota district are 36.26 and 39.26 %, respectively. Results may provide data support for NPS pollution prevention and control in the loess hilly and gully region and also provide scientific reference for the protection of ecological environment of the Loess Plateau in northern Shaanxi.

  12. Stratospheric ozone variations in the equatorial region as seen in Stratiospheric Aerosol and Gas Experiment data

    NASA Technical Reports Server (NTRS)

    Shiotani, Masato; Hasebe, Fumio

    1994-01-01

    An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric mode and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.

  13. Age structure and mortality of walleyes in Kansas reservoirs: Use of mortality caps to establish realistic management objectives

    USGS Publications Warehouse

    Quist, M.C.; Stephen, J.L.; Guy, C.S.; Schultz, R.D.

    2004-01-01

    Age structure, total annual mortality, and mortality caps (maximum mortality thresholds established by managers) were investigated for walleye Sander vitreus (formerly Stizostedion vitreum) populations sampled from eight Kansas reservoirs during 1991-1999. We assessed age structure by examining the relative frequency of different ages in the population; total annual mortality of age-2 and older walleyes was estimated by use of a weighted catch curve. To evaluate the utility of mortality caps, we modeled threshold values of mortality by varying growth rates and management objectives. Estimated mortality thresholds were then compared with observed growth and mortality rates. The maximum age of walleyes varied from 5 to 11 years across reservoirs. Age structure was dominated (???72%) by walleyes age 3 and younger in all reservoirs, corresponding to ages that were not yet vulnerable to harvest. Total annual mortality rates varied from 40.7% to 59.5% across reservoirs and averaged 51.1% overall (SE = 2.3). Analysis of mortality caps indicated that a management objective of 500 mm for the mean length of walleyes harvested by anglers was realistic for all reservoirs with a 457-mm minimum length limit but not for those with a 381-mm minimum length limit. For a 500-mm mean length objective to be realized for reservoirs with a 381-mm length limit, managers must either reduce mortality rates (e.g., through restrictive harvest regulations) or increase growth of walleyes. When the assumed objective was to maintain the mean length of harvested walleyes at current levels, the observed annual mortality rates were below the mortality cap for all reservoirs except one. Mortality caps also provided insight on management objectives expressed in terms of proportional stock density (PSD). Results indicated that a PSD objective of 20-40 was realistic for most reservoirs. This study provides important walleye mortality information that can be used for monitoring or for inclusion into population models; these results can also be combined with those of other studies to investigate large-scale differences in walleye mortality. Our analysis illustrates the utility of mortality caps for monitoring walleye populations and for establishing realistic management goals.

  14. Historical Sunshine and Cloud Data in the United States (revised 1991) (NDP-021)

    DOE Data Explorer

    Steurer, Peter M. [National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC (USA); Karl, Thomas R. [National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC (USA)

    2012-01-01

    This data base presents monthly sunshine data from 240 U.S. stations (including Puerto Rico and nine Pacific Islands) and monthly cloud amount data from 197 U.S. stations. The longest periods of record are 1891 through 1987 for the sunshine data and 1871 through 1987 for the cloud data. The sunshine data were derived from measurements taken by a variety of sunshine-recording instruments. The cloud data were derived from land-based estimates of fractional cloud amount, which were made with observation practices that have varied during the period of record. Station number, station name, latitude, and longitude are given for all stations in each network. The sunshine data include monthly and annual total hours of recorded sunshine, monthly and annual maximum possible hours of sunshine, monthly and annual percentages of possible sunshine (hours recorded/hours possible), and dates of use for specific types of sunshine recorders at each station. The cloud data contain monthly and annual cloud amount (in percent of sky cover).

  15. A Summary of Ambient Air at John F. Kennedy Space Center with a Comparison to Data from the Florida Statewide Monitoring Network (1983-1992)

    NASA Technical Reports Server (NTRS)

    Drese, John H.

    1997-01-01

    The EPA criteria air pollutants were monitored at Kennedy Space Center (KSC) since 1983 to comply the prevention of significant deterioration requirements under the Clean Air Act amendments passed by Congress in 1977 and 1990. Monitoring results show that monthly maximum 24-hour total suspended particulates decreased from 144.6 micograms/cu m in 1988 to 73.0 micrograms/cu m in 1991 and increased to 149.3 micrograms/cu m in 1992. Inhalable particulates increased from 56.1 gg/M3 in 1983 to 131.4 micrograms/cu m in 1988, and then decreased to 38.5 micrograms/cu m in 1992. Sulfur dioxide monthly maximum 24-hour average concentrations decreased each year from 135.2 micrograms/cu m in 1983 to 33.8 micrograms/cu m in 1992. Nitrogen dioxide concentrations increased from 5.1 micrograms/cu m in 1983 to 5.9 micrograms/cu m in 1988, then decreased to 4.5 micrograms/cu m in 1992. Carbon monoxide annual average concentrations decreased from 6.2 micrograms/cu m in 1983 to 1.1 micrograms/cu m in 1988, and increased to 1.2 micrograms/cu m in 1992. Ozone maximum 1-hour concentrations increased from 98 parts per billion (ppb) in 1983 to 134 ppb in 1989, and then decreased to 80 ppb in 1992. Total annual rainfall ranged from 37.47 inches to 57.47 inches and shows a 6.6 percent increase over this same ten year period.

  16. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    USGS Publications Warehouse

    Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.

    2009-01-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.

  17. Annual, semi-annual and ter-annual variations of gravity wave momentum flux in 13 years of SABER data

    NASA Astrophysics Data System (ADS)

    Chen, Dan; Preusse, Peter; Ern, Manfred; Strube, Cornelia

    2017-04-01

    In this study, the variations at different time scales such as the annual cycle, the semiannual oscillation (SAO), the ter-annual cycle (about four monthly) and the quasi-biennial oscillation (QBO) in zonal mean GW amplitudes and GW momentum flux (GWMF) have been investigated using satellite observations from 2002-2014 and combining ECMWF high resolution data with the GORGRAT model. The global distribution (patterns) of spectral amplitudes of GW momentum flux in stratosphere and mesosphere (from 30 km to 90 km) show that the annual cycle is the most predominant variation, and then are SAO, ter-annual cycle and QBO. For annual components, two relatively isolated amplitude maxima appear in each hemisphere: a subtropical maximum is associated with convective sources in summer, a mid and high latitude maximum is associated with the polar vortex in winter. In the subtropics, GWs propagate upward obliquely to the higher latitudes. The winter maximum in the southern hemisphere has larger momentum flux than that one in the northern hemisphere. While on the SH the phase (i.e. time corresponding to the maximum GWMF) continuously descends with the maximum in July in the upper mesosphere and in September in the lower stratosphere, on the northern hemisphere, the phase has no visible altitude dependence with a maximum in December. For semiannual variations, in the MLT (70-80 km) region, there is an obvious enhancement of spectral amplitude at equatorial latitudes which relate to the dissipation of convectively forced GWs. The SAO in absolute momentum flux and the annual cycle in zonal momentum flux indicated that the variations at mid-latitudes (about from 30°-40°) are not a SAO signals but rather an annual cycle when the direction of GWMF is considered. The ter-annual cycle may be related to the duration of active convection in subtropical latitudes (from June to Sep. in north hemisphere) Indications for QBO are found latitude extension to mid-latitudes in stratosphere of both hemispheres and equatorial mesopause. Using these four dominant components of time scales and performing sinusoidal fits of GWMF we find that the patterns also at high latitudes are consistent with the range of 50°S to 50°N continuously covered by SABER.

  18. St. Louis Airport Site. Annual site environmental report, calendar year 1985. Formerly Utilized Sites Remedial Action Program (FUSRAP). Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    During 1985, the environmental monitoring program was continued at the St. Louis Airport Site (SLAPS) in St. Louis County, Missouri. The ditches north and south of the site have been designated for cleanup as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The monitoring program at the SLAPS measures radon gas concentrations in air; external gamma radiation dose rates; and uranium, thorium, and radium concentrations in surface water, groundwater, and sediment. Potential radiation doses to the public are also calculated. Because the site is not controlled or regulated by the DOE, the DOE Derived Concentration Guides (DCGs) aremore » not applicable to SLAPS, but are included only as a basis for comparison. The DOE DCGs and the DOE radiation protection standard have been revised. (Appendix B). During 1985, annual average radon levels in air at the SLAPS were below the DCG for uncontrolled areas. External gamma monitoring in 1985 showed measured annual gamma dose rates ranging from 3 to 2087 mrem/y, with the highest value occurring in an area known to be contaminated. The calculated maximum dose at the site boundary, assuming limited occupancy, would be 6 mrem/y. Average annual concentrations of /sup 230/Th, /sup 226/Ra, and total uranium in surface waters remained below the DOE DCG. The on-site groundwater measurements showed that average annual concentrations of /sup 230/Th, /sup 226/Ra and total uranium were within the DOE DCGs. Although there are no DCGs for sediments, all concentrations of total uraniu, /sup 230/Th, and /sup 226/Ra were below the FUSRAP Guidelines.« less

  19. Concentrations, and estimated loads and yields of nutrients and suspended sediment in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Nutrients, primarily nitrogen and phosphorus compounds, naturally occur but also are applied to land in the form of commercial fertilizers and livestock waste to enhance plant growth. Concentrations, estimated loads and yields, and sources of nitrite plus nitrate, total phosphorus, and orthophosphate were evaluated in streams of the Little River Basin to assist the Commonwealth of Kentucky in developing 'total maximum daily loads' (TMDLs) for streams in the basin. The Little River Basin encompasses about 600 square miles in Christian and Trigg Counties, and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. A total of 92 water samples were collected at four fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at five synoptic-network sites during the same period. Median concentrations of nitrogen, phosphorus, and suspended sediment varied spatially and seasonally. Concentrations of nitrogen were higher in the spring (March-May) after fertilizer application and runoff. The highest concentration of nitrite plus nitrate-5.7 milligrams per liter (mg/L)-was detected at the South Fork Little River site. The Sinking Fork near Cadiz site had the highest median concentration of nitrite plus nitrate (4.6 mg/L). The North Fork Little River site and the Little River near Cadiz site had higher concentrations of orthophosphate in the fall and lower concentrations in the spring. Concentrations of orthophosphate remained high during the summer (June-August) at the North Fork Little River site possibly because of the contribution of wastewater effluent to streamflow. Fifty-eight percent of the concentrations of total phosphorus at the nine sites exceeded the U.S. Environmental Protection Agency recommended maximum concentration limit of 0.1 mg/L. Concentrations of suspended sediment were highest in the spring during runoff and lowest in the fall. The highest concentration of suspended sediment (1,020 mg/L) was observed at the Sinking Fork near Cadiz site. The median concentration of suspended sediment for all sites sampled was 12 mg/L. A nonparameteric statistical test (Wilcoxson rank-sum) showed that the median concentrations of suspended sediment were not different among any of the fixed-network sites. The Little River near Cadiz site contributed larger estimated mean annual loads of nitrite plus nitrate (2,500,000 pounds per year (lb/yr)) and total phosphorus (160,000 lb/yr) than the other three fixed-network sites. Of the two main upstream tributaries from the Little River near Cadiz site, the North Fork Little River was the greatest contributor of total phosphorus to the study area with an estimated mean annual load of 107,000 lb/yr or about 64 percent of the total estimated mean annual load at the Little River near Cadiz site. The other main upstream tributary, South Fork Little River, had an estimated mean annual load of total phosphorus that was about 20 percent of the mean annual load at the Little River near Cadiz site. Estimated loads of suspended sediment were largest at the Little River near Cadiz site, where the estimated mean annual load for 2003-04 was about 84,000,000 lb/yr. The North Fork Little River contributed an estimated 36 percent of the mean annual load of suspended sediment at the Little River near Cadiz site, while the South Fork Little River contributed an estimated 18 percent of the mean annual load at the Little River near Cadiz site. The North Fork Little River site had the largest estimated mean annual yield of total phosphorus (1,600 pounds per year per square mile (lb/yr/mi2)) and orthophosphate (1,100 lb/yr/mi2). A principal source of phosphorus for the North Fork Little River is discharge from wastewater-treatment facilities. The largest estimated mean annual yield of nitrite plus nitrate was observed at the South Fork Little River site. The North Fork Little River site had the largest estimated mean annual yield of suspended sediment (450,000 lb/yr/mi2). Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the Little River Basin. Commercial fertilizer and livestock-waste applications on row crops are a principal source of nutrients for most of the Little River Basin. Sources of nutrients in the urban areas of the basin mainly are from effluent discharge from wastewater-treatment facilities and fertilizer applications to lawns and golf courses.

  20. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    PubMed

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  1. Periodic analysis of total ozone and its vertical distribution

    NASA Technical Reports Server (NTRS)

    Wilcox, R. W.; Nastrom, G. D.; Belmont, A. D.

    1975-01-01

    Both total ozone and vertical distribution ozone data from the period 1957 to 1972 are analyzed. For total ozone, improved monthly zonal means for both hemispheres are computed by weighting individual station monthly means by a factor which compensates for the close grouping of stations in certain regions of latitude bands. Longitudinal variability show maxima in summer in both hemispheres, but, in winter, only in the Northern Hemisphere. The geographical distributions of the long term mean, and the annual, quasibiennial and semiannual waves in total ozone over the Northern Hemisphere are presented. The extratropical amplitude of the annual wave is by far the largest of the three, as much as 120 m atm cm over northern Siberia. There is a tendency for all three waves to have maxima in high latitudes. Monthly means of the vertical distribution of ozone determined from 3 to 8 years of ozonesonde data over North America are presented. Number density is highest in the Arctic near 18 km. The region of maximum number density slopes upward toward 10 N, where the long term mean is 45 x 10 to the 11th power molecules cm/3 near 26 km.

  2. Changes in phosphorus concentrations and loads in the Assabet River, Massachusetts, October 2008 through April 2014

    USGS Publications Warehouse

    Savoie, Jennifer G.; DeSimone, Leslie A.; Mullaney, John R.; Zimmerman, Marc J.; Waldron, Marcus C.

    2016-10-24

    Treated effluent discharged from municipal wastewater-treatment plants to the Assabet River in central Massachusetts includes phosphorus, which leads to increased growth of nuisance aquatic plants that decrease the river’s water quality and aesthetics in impounded reaches during the growing season. To improve the river’s water quality and aesthetics, the U.S. Environmental Protection Agency approved a total maximum daily load for phosphorus in 2004 that directed the wastewater-treatment plants to reduce the amount of total phosphorus discharged to the river by 2012. The permitted total phosphorus monthly average of 0.75 milligrams per liter during the aquatic plant growing season (April 1 through October 31) was reduced by the total maximum daily load to a target of 0.1 milligrams per liter by 2012, and the nongrowing-season limit was unchanged at 1.0 milligrams per liter.From October 2008 through April 2014, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, measured streamflow and collected weekly flow-proportional, composite samples of water from the Assabet River for analysis of concentrations of total phosphorus and orthophosphate. Streamflow and concentration data were used to estimate total phosphorus and orthophosphate loads in the river. The purpose of this monitoring effort was to evaluate phosphorus concentrations and loads in the river before, during, and after the wastewater-treatment-plant upgrades and to assess the effects of seasonal differences in permitted discharges. The locations of water-quality-monitoring stations, with respect to the Hudson and Ben Smith impoundments, enabled examination of effects of phosphorus entering and leaving the impoundments.Annual median concentrations of total phosphorus in wastewater-treatment plants were reduced by more than 80 percent with the plant upgrades. Measured instream annual median concentrations of total phosphorus in the Assabet River decreased by about 38 to 50 percent at three of the four monitoring stations following the wastewater-treatment-plant upgrades. At the station farthest upstream, the median total phosphorus concentration remained unchanged throughout the study; this may be attributed to the site location and potential resuspension of particulate organic matter during periods of increased streamflow. Annual median loads from the wastewater-treatment plants were reduced by up to 91 percent following the upgrades, instream annual median total phosphorus loads at the three downstream stations decreased by 71 to 76 percent, and instream orthophosphate loads at the three downstream stations decreased by 79 to 87 percent.Seasonal fluctuations (growing versus nongrowing) of total phosphorus and orthophosphate were observed instream before the upgrades. However, after the upgrades, fluctuations in phosphorus released from the treatment plants were slight and seasonal changes were typically not observed instream.Annual loads entering and leaving the two impoundments were inconclusive in determining whether the impoundments were sources or sinks of total phosphorus during the study. Total phosphorus loads entering the Hudson impoundment were consistently greater than those leaving; however, there was uncertainty about the loads at the monitoring station upstream from this impoundment. At the Ben Smith impoundment, total phosphorus and orthophosphate loads downstream were slightly greater than those upstream from the impoundment, but the differences may reflect additions from tributaries and overland runoff.Estimated instream total phosphorus concentrations and loads indicated that the decreases in total phosphorus in wastewater-treatment-plant discharges were accompanied by reductions measured in the Assabet River. A statistical analysis which incorporates the effect of varying flow conditions demonstrated significant reductions in total phosphorus concentrations after the wastewater-treatment-plant upgrades at three of the four instream monitoring stations. No significant change was observed at the most upstream location, the Assabet River at Port Street at Hudson, Massachusetts (station number 01096835), which may have been affected by flow-related resuspension of particulate phosphorus.

  3. Investigation on the coloured noise in GPS-derived position with time-varying seasonal signals

    NASA Astrophysics Data System (ADS)

    Gruszczynska, Marta; Klos, Anna; Bos, Machiel Simon; Bogusz, Janusz

    2016-04-01

    The seasonal signals in the GPS-derived time series arise from real geophysical signals related to tidal (residual) or non-tidal (loadings from atmosphere, ocean and continental hydrosphere, thermo elastic strain, etc.) effects and numerical artefacts including aliasing from mismodelling in short periods or repeatability of the GPS satellite constellation with respect to the Sun (draconitics). Singular Spectrum Analysis (SSA) is a method for investigation of nonlinear dynamics, suitable to either stationary or non-stationary data series without prior knowledge about their character. The aim of SSA is to mathematically decompose the original time series into a sum of slowly varying trend, seasonal oscillations and noise. In this presentation we will explore the ability of SSA to subtract the time-varying seasonal signals in GPS-derived North-East-Up topocentric components and show properties of coloured noise from residua. For this purpose we used data from globally distributed IGS (International GNSS Service) permanent stations processed by the JPL (Jet Propulsion Laboratory) in a PPP (Precise Point Positioning) mode. After introducing a threshold of 13 years, 264 stations left with a maximum length reaching 23 years. The data was initially pre-processed for outliers, offsets and gaps. The SSA was applied to pre-processed series to estimate the time-varying seasonal signals. We adopted a 3-years window as the optimal dimension of its size determined with the Akaike's Information Criteria (AIC) values. A Fisher-Snedecor test corrected for the presence of temporal correlation was used to determine the statistical significance of reconstructed components. This procedure showed that first four components describing annual and semi-annual signals, are significant at a 99.7% confidence level, which corresponds to 3-sigma criterion. We compared the non-parametric SSA approach with a commonly chosen parametric Least-Squares Estimation that assumes constant amplitudes and phases over time. We noticed a maximum difference in seasonal oscillation of 3.5 mm and a maximum change in velocity of 0.15 mm/year for Up component (YELL, Yellowknife, Canada), when SSA and LSE are compared. The annual signal has the greatest influence on data variability in time series, while the semi-annual signal in Up component has much smaller contribution in the total variance of data. For some stations more than 35% of the total variance is explained by annual signal. According to the Power Spectral Densities (PSD) we proved that SSA has the ability to properly subtract the seasonals changing in time with almost no influence on power-law character of stochastic part. Then, the modified Maximum Likelihood Estimation (MLE) in Hector software was applied to SSA-filtered time series. We noticed a significant improvement in spectral indices and power-law amplitudes in comparison to classically determined ones with LSE, which will be the main subject of this presentation.

  4. Radiation dose to the global flying population.

    PubMed

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-03-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions.

  5. Flows, droughts, and aliens: factors affecting the fish assemblage in a Sierra Nevada, California, stream.

    PubMed

    Kiernan, Joseph D; Moyle, Peter B

    2012-06-01

    The fishes of Martis Creek, in the Sierra Nevada of California (USA), were sampled at four sites annually over 30 years, 1979-2008. This long-term data set was used to examine (1) the persistence and stability of the Martis Creek fish assemblage in the face of environmental stochasticity; (2) whether native and alien fishes responded differently to a natural hydrologic regime (e.g., timing and magnitude of high and low flows); and (3) the importance of various hydrologic and physical habitat variables in explaining the abundances of native and alien fish species through time. Our results showed that fish assemblages were persistent at all sample sites, but individual species exhibited marked interannual variability in density, biomass, and relative abundance. The density and biomass of native fishes generally declined over the period of study, whereas most alien species showed no significant long-term trends. Only alien rainbow trout increased in both density and biomass at all sites over time. Redundancy analysis identified three hydrologic variables (annual 7-day minimum discharge, maximum winter discharge, and number of distinct winter floods) and two habitat variables (percentage of pool habitat and percentage of gravel substrate) that each explained a significant portion of the annual variation in fish assemblage structure. For alien taxa, their proportional contribution to the total fish assemblage was inversely related to mean annual streamflow, one-day maximum discharge in both winter and spring, and the frequency of springtime floods. Results of this study highlight the need for continuous annual monitoring of streams with highly variable flow regimes to evaluate shifts in fish community structure. Apparent successes or failures in stream management may appear differently depending on the time series of available data.

  6. Combining Drought Survival via Summer Dormancy and Annual Biomass Productivity in Dactylis glomerata L.

    PubMed Central

    Kallida, Rajae; Zhouri, Latifa; Volaire, Florence; Guerin, Adrien; Julier, Bernadette; Shaimi, Naima; Fakiri, Malika; Barre, Philippe

    2016-01-01

    Under Mediterranean climates, the best strategy to produce rain-fed fodder crops is to develop perennial drought resistant varieties. Summer dormancy present in native germplasm has been shown to confer a high level of survival under severe drought. Nevertheless it has also been shown to be negatively correlated with annual biomass productivity. The aim of this study was to analyze the correlations between summer dormancy and annual biomass productivity related traits and to identify quantitative trait loci (QTL) for these traits in a progeny of a summer dormant cocksfoot parent (Kasbah) and a summer active parent (Medly). A total of 283 offspring and the parents were phenotyped for summer dormancy, plant growth rate (PGR) and heading date in Morocco and for maximum leaf elongation rate (LERm) in France. The individuals were genotyped with a total of 325 markers including 59 AFLP, 64 SSR, and 202 DArT markers. The offspring exhibited a large quantitative variation for all measured traits. Summer dormancy showed a negative correlation with both PGR (-0.34 p < 0.005) and LERm (-0.27 p < 0.005). However, genotypes with both a high level of summer dormancy and a high level of PGR were detected in the progeny. One genetic map per parent was built with a total length of 377 and 423 cM for Kasbah and Medly, respectively. Both different and co-localized QTL for summer dormancy and PGR were identified. These results demonstrate that it should be possible to create summer dormant cocksfoot varieties with a high annual biomass productivity. PMID:26904054

  7. Combining Drought Survival via Summer Dormancy and Annual Biomass Productivity in Dactylis glomerata L.

    PubMed

    Kallida, Rajae; Zhouri, Latifa; Volaire, Florence; Guerin, Adrien; Julier, Bernadette; Shaimi, Naima; Fakiri, Malika; Barre, Philippe

    2016-01-01

    Under Mediterranean climates, the best strategy to produce rain-fed fodder crops is to develop perennial drought resistant varieties. Summer dormancy present in native germplasm has been shown to confer a high level of survival under severe drought. Nevertheless it has also been shown to be negatively correlated with annual biomass productivity. The aim of this study was to analyze the correlations between summer dormancy and annual biomass productivity related traits and to identify quantitative trait loci (QTL) for these traits in a progeny of a summer dormant cocksfoot parent (Kasbah) and a summer active parent (Medly). A total of 283 offspring and the parents were phenotyped for summer dormancy, plant growth rate (PGR) and heading date in Morocco and for maximum leaf elongation rate (LERm) in France. The individuals were genotyped with a total of 325 markers including 59 AFLP, 64 SSR, and 202 DArT markers. The offspring exhibited a large quantitative variation for all measured traits. Summer dormancy showed a negative correlation with both PGR (-0.34 p < 0.005) and LERm (-0.27 p < 0.005). However, genotypes with both a high level of summer dormancy and a high level of PGR were detected in the progeny. One genetic map per parent was built with a total length of 377 and 423 cM for Kasbah and Medly, respectively. Both different and co-localized QTL for summer dormancy and PGR were identified. These results demonstrate that it should be possible to create summer dormant cocksfoot varieties with a high annual biomass productivity.

  8. Stratospheric ozone variations in the equatorial region as seen in Stratiospheric Aerosol and Gas Experiment data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiotani, M.; Hasebe, F.

    1994-07-01

    An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric modemore » and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.« less

  9. Stratospheric ozone variations in the equatorial region as seen in Stratospheric and Gas Experiment data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masato Shiotani; Fumio Hasebe

    1994-07-20

    An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric modemore » and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time. 28 refs., 13 figs.« less

  10. Temporal and spatial trends in nutrient and sediment loading to Lake Tahoe, California-Nevada, USA

    USGS Publications Warehouse

    Coats, Robert; Lewis, Jack; Alvarez, Nancy L.; Arneson, Patricia

    2016-01-01

    Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream-discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use-land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long-term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.

  11. A conjunctive use hydrologic model for a semi-arid region with irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Ruud, N. C.; Harter, T.

    2003-04-01

    A GIS-based sub-basin scale conjunctive use (CU) model is developed for a semi-arid agricultural area in the southern San Joaquin Valley, California. The study area is 2230 square kilometers, and consists of 9114 individual landuse units and 26 water service districts. The CU model consists of three sub-models: 1) a surface water supply (SWS) model, 2) an unsaturated zone water budget (UZWB) model, and 3) a groundwater flow model. The study period is 1970-99. For each modeled surface water channel, the SWS model computes monthly surface water deliveries to each district and conveyance losses due to evaporation and seepage. The UZWB model then calculates the monthly water storage changes in the soil root zone and deep vadose zone of each landuse unit. The UZWB model is driven by surface water applications, precipitation, and crop consumptive use (evapotranspiration) demands. Its outputs are the recharge to the unconfined aquifer and the groundwater pumping demand from the unconfined and confined aquifers. The transient recharge and pumping rates become input for the groundwater flow model which calculates changes in unconfined aquifer water levels and inter-district groundwater fluxes. The groundwater flow model was calibrated against data from 1970-85 and validated with data from 1986-99. From 1970-99, a total of 18500 million cubic meters (MCM) of surface water was applied to land units in the study area. Precipitation added from 219 MCM (1990) to 1200 MCM (1998) annually. The combined total annual agricultural and urban consumptive use ranged from 1070 MCM in 1970 to 1540 MCM in 1999. Total annual channel seepage varied over almost two orders of magnitude from a low of 10 MCM in 1977 to 576 MCM in 1983. Diffuse recharge from surface applied water ranged from 79.9 MCM in 1992 to 432 MCM in 1983. The estimated total pumping ranged from 183 MCM in 1978 to 703 MCM in 1990. As expected, pumping was heaviest during the droughts of 1975-77 and 1987-92, and lightest during the wet years of 1973, 1978, 1982-83, 1995, and 1998. The study area cumulative annual groundwater storage changes were computed by the CU model and compared against those of the water-table fluctuation (WTF) method. Relative to 1970, the maximum groundwater accumulation occurred in 1987 with the WTF method and the CU model estimating positive storage changes of 1410 MCM and 1110 MCM. The maximum groundwater overdraft (storage depletion) occurred in 1993 with the WTF method and the CU model estimating negative storage changes of 1990 MCM and 1500 MCM. Annual inter-district net groundwater fluxes ranged from negligibly small (<0.123 MCM) to as much as 98.7 MCM between some of the larger districts.

  12. 40 CFR 464.34 - New source performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...

  13. 40 CFR 464.34 - New source performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...

  14. 40 CFR 464.34 - New source performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...

  15. Have precipitation extremes and annual totals been increasing in the world's dry regions over the last 60 years?

    NASA Astrophysics Data System (ADS)

    Sippel, Sebastian; Zscheischler, Jakob; Heimann, Martin; Lange, Holger; Mahecha, Miguel D.; van Oldenborgh, Geert Jan; Otto, Friederike E. L.; Reichstein, Markus

    2017-01-01

    Daily precipitation extremes and annual totals have increased in large parts of the global land area over the past decades. These observations are consistent with theoretical considerations of a warming climate. However, until recently these trends have not been shown to consistently affect dry regions over land. A recent study, published by Donat et al. (2016), now identified significant increases in annual-maximum daily extreme precipitation (Rx1d) and annual precipitation totals (PRCPTOT) in dry regions. Here, we revisit the applied methods and explore the sensitivity of changes in precipitation extremes and annual totals to alternative choices of defining a dry region (i.e. in terms of aridity as opposed to precipitation characteristics alone). We find that (a) statistical artifacts introduced by data pre-processing based on a time-invariant reference period lead to an overestimation of the reported trends by up to 40 %, and that (b) the reported trends of globally aggregated extremes and annual totals are highly sensitive to the definition of a dry region of the globe. For example, using the same observational dataset, accounting for the statistical artifacts, and based on different aridity-based dryness definitions, we find a reduction in the positive trend of Rx1d from the originally reported +1.6 % decade-1 to +0.2 to +0.9 % decade-1 (period changes for 1981-2010 averages relative to 1951-1980 are reduced to -1.32 to +0.97 % as opposed to +4.85 % in the original study). If we include additional but less homogenized data to cover larger regions, the global trend increases slightly (Rx1d: +0.4 to +1.1 % decade-1), and in this case we can indeed confirm (partly) significant increases in Rx1d. However, these globally aggregated estimates remain uncertain as considerable gaps in long-term observations in the Earth's arid and semi-arid regions remain. In summary, adequate data pre-processing and accounting for uncertainties regarding the definition of dryness are crucial to the quantification of spatially aggregated trends in precipitation extremes in the world's dry regions. In view of the high relevance of the question to many potentially affected stakeholders, we call for a well-reflected choice of specific data processing methods and the inclusion of alternative dryness definitions to guarantee that communicated results related to climate change be robust.

  16. 50 CFR 259.34 - Minimum and maximum deposits; maximum time to deposit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... B objective. A time longer than 10 years, either by original scheduling or by subsequent extension... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES CAPITAL CONSTRUCTION FUND...) Minimum annual deposit. The minimum annual (based on each party's taxable year) deposit required by the...

  17. Evaluation of the solar conditions for the acquisitions of energy from renewable sources on the base of Sosnowiec city (Poland)

    NASA Astrophysics Data System (ADS)

    Sarapata, Sonia

    2014-09-01

    The country's energy security risk, as well as a desire to protect the environment from the pollution and degradation which are the results of conventional fuels acquisition - these was a motivation for intensive researches on the use of renewable energy sources in eco - innovative installations. Solar radiation is one of the self - renewable energy sources which can be used both as a source of electricity and heat. The area of research is Sosnowiec city located in the south of Poland in the eastern part of Silesia voivodeship. The solar radiation data covering the years 2003 to 2013 was used. The intra - annual variability of daily averaged solar radiation hesitated in a wide range from 0.6 kWh/m2 (December) to 5.2 kWh/m2 (June). Day duration varies on average from 10 hours in January, November and December to 17 hours in May, June and July. Day occupies 56% of the 8767 hours in year. On average the largest amount of energy reached the analyzed area in July: 157 kWh/m2 (15% of the annual average), while the smallest in December: 18 kWh/m2 (less than 2% of the annual average). The 75% of the average annual total of energy falls on the period from 1st March to 31th August (spring - summer). The range of the annual solar radiation was determined by the minimum of 980 kWh/m2 and the maximum of 1094 kWh/m2. In Sosnowiec the average annual irradiation total on the horizontal surface amounts to 1052 kWh/m2 (2003 - 2013)

  18. Evaluation of the Hydropower Generation Potential of a Dam Using Optimization Techniques: Application to Doma Dam, Nassarawa, in North Central Nigeria

    NASA Astrophysics Data System (ADS)

    Salami, Adebayo Wahab; Sule, Bolaji Fatai; Adunkpe, Tope Lacroix; Ayanshola, Ayanniyi Mufutau; Bilewu, Solomon Olakunle

    2017-03-01

    Optimization models have been developed to maximize annual energy generation from the Doma dam, subject to the constraint of releases for irrigation, ecological purposes, the water supply, the maximum yield from the reservoir and reservoir storage. The model was solved with LINGO software for various mean annual inflow exceedence probabilities. Two scenarios of hydropower retrofitting were considered. Scenario 1, with the reservoir inflows at 50%, 75%, and 90% probabilities of exceedence, gives the total annual hydropower as 0.531 MW, 0.450 MW and 0.291 MW, respectively. The corresponding values for scenario 2 were 0.615 MW, 0.507 MW, and 0.346 MW respectively. The study also considered increasing the reservoir's live storage to 32.63Mm3 by taking part of the flood storage so that the maximum draft increases to 7 Mm3. With this upper limit of storage and draft with reservoir inflows of 50%, 75% and 90% probabilities of exceedence, the hydropower generated increased to 0.609 MW, 0.540 MW, and 0.347 MW respectively for the scenario 1 arrangement, while those of scenario 2 increased to 0.699 MW, 0.579MW and 0.406 MW respectively. The results indicate that the Doma Dam is suitable for the production of hydroelectric power and that its generation potential is between 0.61 MW and 0.70 MW.

  19. Harmonic analysis of the ionospheric electron densities retrieved from FORMOSAT-3/COSMIC radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Masoumi, S.; Safari, A.; Sharifi, M.; Sam Khaniani, A.

    2011-12-01

    In order to investigate regular variations of the ionosphere, the least-squares harmonic estimation is applied to the time series of ionospheric electron densities in the region of Iran derived from about five years of Global Positioning System Radio Occultation (GPS RO) observations by FORMOSAT-3/COSMIC satellites. Although the obtained results are slightly different from the expected ones due to the low horizontal resolution of RO measurements, high vertical resolution of the observations enables us to detect not only the Total Electron Content (TEC) variations, but also periodic patterns of electron densities in different altitudes of the ionosphere. Dominant diurnal and annual signals, together with their Fourier series decompositions, and also periods close to 27 days are obtained, which is consistent with the previous analyses on TEC. In the equatorial anomaly band, the annual component is weaker than its Fourier decomposition periods. In particular, the semiannual period dominates the annual component, which is probably due to the effect of geomagnetic field. By the investigation of the frequencies at different local times, the semiannual signal is more significant than the annual one in the daytime, while the annual frequency is dominant at night. By the detection of the phases of the components, it is revealed that the annual signal has its maximum in summer at high altitudes, and in winter at lower altitudes. This suggests the effect of neutral compositions in the lower atmosphere. Further, the semiannual component peaks around equinox during the day, while its maximum mostly occurs in solstice at night. Since RO measurements can be used to derive TEC along the signal path between a GPS satellite and a receiver, study on the potentiality of using these observations for the prediction of electron densities and its application to the ionospheric correction of the single frequency receivers is suggested.

  20. Probabilistic properties of the date of maximum river flow, an approach based on circular statistics in lowland, highland and mountainous catchment

    NASA Astrophysics Data System (ADS)

    Rutkowska, Agnieszka; Kohnová, Silvia; Banasik, Kazimierz

    2018-04-01

    Probabilistic properties of dates of winter, summer and annual maximum flows were studied using circular statistics in three catchments differing in topographic conditions; a lowland, highland and mountainous catchment. The circular measures of location and dispersion were used in the long-term samples of dates of maxima. The mixture of von Mises distributions was assumed as the theoretical distribution function of the date of winter, summer and annual maximum flow. The number of components was selected on the basis of the corrected Akaike Information Criterion and the parameters were estimated by means of the Maximum Likelihood method. The goodness of fit was assessed using both the correlation between quantiles and a version of the Kuiper's and Watson's test. Results show that the number of components varied between catchments and it was different for seasonal and annual maxima. Differences between catchments in circular characteristics were explained using climatic factors such as precipitation and temperature. Further studies may include circular grouping catchments based on similarity between distribution functions and the linkage between dates of maximum precipitation and maximum flow.

  1. Analysis of water-level fluctuations of the US Highway 90 retention pond, Madison, Florida

    USGS Publications Warehouse

    Bridges, W.C.

    1985-01-01

    A closed basin stormwater retention pond, located 1 mile west of Madison, Florida, has a maximum storage capacity of 134.1 acre-feet at the overtopping altitude of 100.2 feet. The maximum observed altitude (July 1982 to March 1984) was 99.52 feet (126.7 acre-feet) on March 28, 1984. This report provides a technique for simulating net monthly change-in-altitude in response to rainfall and evaporation. A regression equation was developed which relates net monthly change in altitude (dependent variable) to rainfall and evaporation (independent variables). Rainfall frequency curves were developed using a log-Pearson Type III distribution of the annual, January through April, June through August, and July monthly rainfall totals for the years 1908-72, 1974, 1976-82. The altitude of the retention pond increased almost 7 feet during the 4-month period January through April 1983. The rainfall total was 35.1 inches, and the recurrence interval exceeded the 100-year January-April rainfall. (USGS)

  2. A phylogenetic approach to total evaporative water loss in mammals.

    PubMed

    Van Sant, Matthew J; Oufiero, Christopher E; Muñoz-Garcia, Agustí; Hammond, Kimberly A; Williams, Joseph B

    2012-01-01

    Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.

  3. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region

    NASA Technical Reports Server (NTRS)

    Nienow, J. A.; McKay, C. P.; Friedmann, E. I.

    1988-01-01

    The vertical zonation of the Antarctic cryptoendolithic community appears to form in response to the light regime in the habitat. However, because of the structure of the habitat, the light regime is difficult to study directly. Therefore, a mathematical model of the light regime was constructed, which was used to estimate the total photon flux in different zones of the community. Maximum fluxes range from about 150 micrometers photons m-2 s-1 at the upper boundary of the community to about 0.1 micrometer photons m-2 s-1. Estimates of the annual productivity in the community indicate that the lowest zone of the community is light limited, with the maximal annual carbon uptake equivalent to less than the carbon content of one algal (Hemichloris) cell.

  4. Current status of radiological protection at nuclear power stations in Japan.

    PubMed

    Suzuki, Akira; Hori, Shunsuke

    2011-07-01

    The radiation dose to workers at nuclear power stations (NPSs) in Japan was drastically reduced between the late-1970s and the early-1990s by continuous dose-reduction programmes. The total collective dose of radiation workers in FY 2008 was 84.04 person Sv, while the average collective dose was 1.5 person Sv per reactor. The average annual individual dose was 1.1 mSv and the maximum annual individual dose was 19.5 mSv. These values are sufficiently lower than the regulatory dose limits. Radioactive effluent released from NPSs is already so trivial that additional protective measures will not be necessary. Experience in radiation protection at NPSs has been accumulated over 40 y and will be very useful in establishing a rational radiation control system in the future.

  5. Solar UV-A and UV-B radiation fluxes at two Alpine stations at different altitudes

    NASA Astrophysics Data System (ADS)

    Blumthaler, M.; Ambach, W.; Rehwald, W.

    1992-03-01

    Daily totals of UV-A and UV-B radiation fluxes and global radiation were measured since 1981 at Jungfraujoch (3576 m) a.s.l.) and in Innsbruck (577 m a.s.l.) in their seasonal course. The altitude effect of annual totals yields 19%/1000 m (UV-B), 11%/1000 m (UV-A) and 9%/1000 m (global radiation) with reference to Innsbruck station. The ratio of the daily totals of UV-B/global radiation shows a significant seasonal course with the maximum in summer, whereas the ratio of the daily totals of UV-A/global radiation shows no significant seasonal variation. The biological effective doses of erythema reaction, delayed tanning and immediate tanning by UV-A and UV-B radiant exposure are reported in the seasonal course at Jungfraujoch and in Innsbruck.

  6. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  7. [Spatiotemporal characteristics of MODIS NDVI in Hulunber Grassland].

    PubMed

    Zhang, Hong-Bin; Yang, Gui-Xia; Wu, Wen-Bin; Li, Gang; Chen, Bao-Rui; Xin, Xiao-Ping

    2009-11-01

    Time-series MODIS NDVI datasets from 2000 to 2008 were used to study the spatial change trend, fluctuation degree, and occurrence time of the annual NDVImax of four typical grassland types, i.e., lowland meadow, temperate steppe, temperate meadow steppe, and upland meadow, in Hulunber Grassland. In 2000-2008, the vegetation in Hulunber Grassland presented an obvious deterioration trend. The mean annual NDVImax of the four grassland types had a great fluctuation, especially in temperate steppe where the maximum change in the mean value of annual NDVImax approximated to 50%. As for the area change of different grade grasslands, the areas with NDVImax between 0.4 and 1 accounted for about 91% of the total grassland area, which suggested the good vegetation coverage in the Grassland. However, though the areas with NDVImax values in (0.4, 0.8) showed an increasing trend, the areas with NDVImax values in (0.2, 0.4) and (0.8, 1) decreased greatly in the study period. Overall, the deteriorating grassland took up about 66.25% of the total area, and the restoring grassland took the rest. There was about 62.85% of the grassland whose NDVImax occurred between the 193rd day and the 225th day in each year, indicating that this period was the most important vegetation growth season in Hulunber Grassland.

  8. Effect of wildfire and fireline construction on the annual depth of thaw in a black spruce permafrost forest in interior Alaska: a 36-year record of recovery

    Treesearch

    Leslie A. Viereck; Nancy R. Werdin-Pfisterer; Phyllis C. Adams; Kenji Yoshikawa

    2008-01-01

    Maximum thaw depths were measured annually in an unburned stand, a heavily burned stand, and a fireline in and adjacent to the 1971 Wickersham fire. Maximum thaw in the unburned black spruce stand ranged from 36 to 52 cm. In the burned stand, thaw increased each year to a maximum depth of 302 cm in 1995. In 1996, the entire layer of seasonal frost remained, creating a...

  9. Harmonic analysis of the precipitation in Greece

    NASA Astrophysics Data System (ADS)

    Nastos, P. T.; Zerefos, C. S.

    2009-04-01

    Greece is a country with a big variety of climates due to its geographical position, to the many mountain ranges and also to the multifarious and long coastline. The mountainous volumes are of such orientation that influences the distribution of the precipitation, having as a result, Western Greece to present great differentiations from Central and Eastern Greece. The application of harmonic analysis to the annual variability of precipitation is the goal of this study, so that the components, which compose the annual variability, be elicited. For this purpose, the mean monthly precipitation data from 30 meteorological stations of National Meteorological Service were used for the time period 1950-2000. The initial target is to reduce the number of variables and to detect structure in the relationships between variables. The most commonly used technique for this purpose is the application of Factor Analysis to a table having as columns the meteorological stations-variables and rows the monthly mean precipitation, so that 2 main factors were calculated, which explain the 98% of total variability of precipitation in Greece. Factor 1, representing the so-called uniform field and interpreting the most of the total variance, refers in fact to the Mediterranean depressions, affecting mainly the West of Greece and also the East Aegean and the Asia Minor coasts. In the process, the Fourier Analysis was applied to the factor scores extracted from the Factor Analysis, so that 2 harmonic components are resulted, which explain above the 98% of the total variability of each main factor, and are due to different synoptic and thermodynamic processes associated with Greece's precipitation construction. Finally, the calculation of the time of occurrence of the maximum precipitation, for each harmonic component of each one of the two main factors, gives the spatial distribution of appearance of the maximum precipitation in the Hellenic region.

  10. Rainfall statistics changes in Sicily

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Pumo, D.; Viola, F.; Noto, L. V.; La Loggia, G.

    2013-07-01

    Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles that can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood-prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends, while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the nonparametric Mann-Kendall test. In particular, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration, while daily rainfall properties have been analyzed in terms of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for 1 h rainfall duration. Conversely, precipitation events of long durations have exhibited a decreased trend. Increase in short-duration precipitation has been observed especially in stations located along the coastline; however, no clear and well-defined spatial pattern has been outlined by the results. Outcomes of analysis for daily rainfall properties have showed that heavy-torrential precipitation events tend to be more frequent at regional scale, while light rainfall events exhibited a negative trend at some sites. Values of total annual precipitation events confirmed a significant negative trend, mainly due to the reduction during the winter season.

  11. 78 FR 19029 - Joint Industry Plan; Notice of Filing and Immediate Effectiveness of Amendment No. 27 to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... metric by which the Participants calculate the annual increase in the Enterprise Maximum. Pursuant to... the mechanisms of, a national market system or otherwise in furtherance of the purposes of the Act... metric by which the Participants calculate the annual increase in the Enterprise Maximum. Paragraph (e...

  12. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009

    USGS Publications Warehouse

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.

    2010-01-01

    The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological phosphorus removal process was not optimized until after the study was completed. Total nitrogen and phosphorus from the wastewater treatment facility contributed a relatively small percentage (14 to 15 percent) to the annual nutrient load in the upper Blue River, but contributed substantially (as much as 75 percent) to monthly loads during seasonal low-flows in winter and summer. During 2007 and 2008, annual discharge from the wastewater treatment facility was about one-half maximum capacity, and estimated potential maximum annual loads were 1.6 to 2.4 times greater than annual loads before capacity upgrades. Even when target nutrient concentrations are met, annual nutrient loads will increase when the wastewater treatment facility is operated at full capacity. Regardless of changes in annual nutrient loads, the reduction of nutrient concentrations in the Blue River Main wastewater effluent will help prevent further degradation of the upper Blue River. The Blue River Main Wastewater Treatment Facility wastewater effluent caused changes in concentrations of several water-quality constituents that may affect biological community structure and function including larger concentrations of bioavailable nutrients (nitrate and orthophosphorus) and smaller turbidities. Streambed-sediment conditions were similar along the upstream-downstream gradient and measured constituents did not exceed probable effect concentrations. Habitat conditions declined along the upstream-downstream gradient, largely because of decreased canopy cover and riparian buffer width and increased riffle-substrate fouling. Algal biomass, primary production, and the abundance of nutrient-tolerant diatoms substantially increased downstream from the wastewater treatment facility. Likewise, the abundance of intolerant macroinvertebrate taxa and Kansas Department of Health and Environment aquatic-life-support scores, derived from macroinvertebrate data, significantly decreased downstream from the wastewater

  13. [Estimation of dietary intake of radioactive materials by total diet methods].

    PubMed

    Uekusa, Yoshinori; Nabeshi, Hiromi; Tsutsumi, Tomoaki; Hachisuka, Akiko; Matsuda, Rieko; Teshima, Reiko

    2014-01-01

    Radioactive contamination in foods is a matter of great concern after the Tokyo Electric Power Company's Fukushima Daiichi nuclear power plant disaster caused by the Great East Japan Earthquake. In order to estimate human intake and annual committed effective dose of radioactive materials, market basket and duplicate diet samples from various areas in Japan were analyzed for cesium-134 ((134)Cs), -137 ((137)Cs), and natural radionuclide potassium-40 ((40)K) by γ-ray spectroscopy. Dietary intake of radioactive cesium around Fukushima area was somewhat higher than in other areas. However, maximum committed effective doses obtained by the market basket and duplicate diet samples were 0.0094 and 0.027 mSv/year, respectively, which are much lower than the maximum permissible dose (1 mSv/year) in foods in Japan.

  14. Links Between Flood Frequency and Annual Water Balance Behaviors: A Basis for Similarity and Regionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jiali; Li, Hongyi; Leung, Lai-Yung R.

    This paper presents the results of a data based comparative study of several hundred catchments across continental United States belonging to the MOPEX dataset, which systematically explored the connection between the flood frequency curve and measures of mean annual water balance. Two different measures of mean annual water balance are used: (i) a climatic aridity index, AI, which is a measure of the competition between water and energy availability at the annual scale; and, (ii) baseflow index, BFI, the ratio of slow runoff to total runoff also at the annual time scale, reflecting the role of geology, soils, topography andmore » vegetation. The data analyses showed that the aridity index, AI, has a first order control on both the mean and Cv of annual maximum floods. While mean annual flood decreases with increasing aridity, Cv increases with increasing aridity. BFI appeared to be a second order control on the magnitude and shape of the flood frequency curve. Higher BFI, meaning more subsurface flow and less surface flow leads to a decrease of mean annual flood whereas lower BFI leads to accumulation of soil moisture and increased flood magnitudes that arise from many events acting together. The results presented in this paper provide innovative means to delineate homogeneous regions within which the flood frequency curves can be assumed to be functionally similar. At another level, understanding the connection between annual water balance and flood frequency will be another building block towards developing comprehensive understanding of catchment runoff behavior in a holistic way.« less

  15. 20 CFR 211.14 - Maximum creditable compensation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Maximum creditable compensation. 211.14... CREDITABLE RAILROAD COMPENSATION § 211.14 Maximum creditable compensation. Maximum creditable compensation for calendar years after 1984 is the maximum annual taxable wage base defined in section 3231(e)(2)(B...

  16. [Temporal change in annual air temperature and heat island effect in a coastal city and an inland city at mid-latitude in China during 1956-1998].

    PubMed

    Chao, Lu-men; Sun, Jian-xin

    2009-12-01

    Temporal changes in air temperature and urban heat island (UHI) effects during 1956-1998 were compared between a coastal city, Ji' nan, and an inland city, Xi' an, which were similar in latitude, size and development. During 1956-1978, except that the annual mean minimum temperature in Ji' nan increased by 0.37 degrees C x 10 a(-1), the temperature variables in the two cities did not display any apparent trend. During 1979-1998, all temperature variables of the two cities showed an increasing trend. Comparing with that in Ji' nan, the increasing rate of annual mean maximum temperature and annual mean temperature in Xi' an was greater, but that of annual mean minimum temperature was smaller. In the two cities, heat island effect occurred during 1956-1978 but without any apparent trend, whereas during 1979-1998, this effect increased with time, especially in Xi' an where the annual mean minimum temperature and annual mean temperature increased by 0.22 degrees C x 10 a(-1) and 0.32 degrees C x 10 a(-1), respectively. Both the level and the inter-annual variation of the heat island effect were much greater in Ji' nan than in Xi' an, but the increasing rate of this effect was greater in Xi' an than in Ji' nan. Obvious differences were observed in the increasing rate of annual mean maximum air temperature, annual mean air temperature, and annual mean minimum temperature as well as the heat island effect in Ji' nan, whereas negligible differences were found in Xi' an. Among the three temperature variables, annual mean minimum temperature displayed the most obvious increasing trend and was most affected by heat island effect, while annual mean maximum temperature was most variable inter-annually. Geographical location not only affected the magnitude of urban warming, but also affected the mode of urban warming and the strength of heat island effect.

  17. Can increased nitrogen uptake at elevated CO2 be explained by an hypothesis of optimal root function?

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Näsholm, T.; Iversen, C.; Dewar, R. C.; Medlyn, B. E.

    2011-12-01

    Forest free-air CO2 enrichment (FACE) experiments have shown that annual nitrogen (N) uptake increases when trees are grown at elevated CO2 (eCO2) and that increased N uptake is critical for a sustained growth response to eCO2. Processes contributing to increased N uptake at eCO2 may include: accelerated decomposition of soil organic matter due to enhanced root carbon (C) exudation (so-called rhizosphere priming); increased C allocation to fine roots and increased root production at depth, both of which enhance N acquisition; differences in soil N availability with depth; changes in the abundance of N in chemical forms with differing mobility in soil; and reduced N concentrations, reduced maintenance respiration rates, and increased longevities of deeper roots. These processes have been synthesised in a model of annual N uptake in relation to the spatial distribution of roots. We hypothesise that fine roots are distributed spatially in order to maximise annual N uptake. The optimisation hypothesis leads to equations for the optimal vertical distribution of root biomass in relation to the distribution of available soil N and for maximum annual N uptake. We show how maximum N uptake and rooting depth are related to total root mass, and compare the optimal solution with an empirical function that has been fitted to root-distribution data from all terrestrial biomes. Finally, the model is used to explore the consequences of rhizosphere priming at eCO2 as observed at the Duke forest FACE experiment (Drake et al. 2011, Ecology Letters 14: 349-357) and of increasing N limitation over time as observed at the Oak Ridge FACE experiment (Norby et al. 2010, Proc. Nat. Acad. Sci. USA 107: 19368-19373).

  18. Floods of January-February 1957 in southeastern Kentucky and adjacent areas

    USGS Publications Warehouse

    ,

    1964-01-01

    Heavy rains over an extensive area on January 27-February 2, caused extreme flooding in southeastern Kentucky and adjacent areas in West Virginia, Virginia, and Tennessee. Total rainfall for the storm period ranged from 6-9 inches over most of the report area and was 12? inches at the eastern end of the Virginia-Kentucky State line. The principal basins affected by the storm were those of the Big Sandy, Kentucky, Cumberland, and Tennessee Rivers. Maximum discharge of record occurred in many streams. On Levisa Fork near Grundy, Va., the peak discharge of 33,200 cfs was 50 percent greater than the previous maximum in 17 years of record and was 3.3 times the mean annual flood. The peak discharges on-tributaries of the Kentucky River and on ,the Holston and Clinch Rivers were also the greatest of record and .those on the upper Cumberland River were nearly as great as .those during the historic floods of 1918 and 1946. Total flood damage was estimated at $61 million of which $39 million was in the Big Sandy River basin (mostly in Kentucky) and $15 million was in the Kentucky River basin--$52 million of the total damage was in Kentucky.

  19. 76 FR 79579 - Approval and Promulgation of Implementation Plans and Designation of Areas for Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... posting of the availability of the submittal on EPA's Adequacy Web site (at http://www.epa.gov/otaq... average annual fourth-highest daily maximum 8-hour average ozone concentration), if it had a 1-hour design... ozone standard is attained when the three-year average of the annual fourth-highest daily maximum 8-hour...

  20. Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic

    NASA Astrophysics Data System (ADS)

    Jammet, Mathilde; Dengel, Sigrid; Kettner, Ernesto; Parmentier, Frans-Jan W.; Wik, Martin; Crill, Patrick; Friborg, Thomas

    2017-11-01

    Lakes and wetlands, common ecosystems of the high northern latitudes, exchange large amounts of the climate-forcing gases methane (CH4) and carbon dioxide (CO2) with the atmosphere. The magnitudes of these fluxes and the processes driving them are still uncertain, particularly for subarctic and Arctic lakes where direct measurements of CH4 and CO2 emissions are often of low temporal resolution and are rarely sustained throughout the entire year. Using the eddy covariance method, we measured surface-atmosphere exchange of CH4 and CO2 during 2.5 years in a thawed fen and a shallow lake of a subarctic peatland complex. Gas exchange at the fen exhibited the expected seasonality of a subarctic wetland with maximum CH4 emissions and CO2 uptake in summer, as well as low but continuous emissions of CH4 and CO2 throughout the snow-covered winter. The seasonality of lake fluxes differed, with maximum CO2 and CH4 flux rates recorded at spring thaw. During the ice-free seasons, we could identify surface CH4 emissions as mostly ebullition events with a seasonal trend in the magnitude of the release, while a net CO2 flux indicated photosynthetic activity. We found correlations between surface CH4 emissions and surface sediment temperature, as well as between diel CO2 uptake and diel solar input. During spring, the breakdown of thermal stratification following ice thaw triggered the degassing of both CH4 and CO2. This spring burst was observed in 2 consecutive years for both gases, with a large inter-annual variability in the magnitude of the CH4 degassing. On the annual scale, spring emissions converted the lake from a small CO2 sink to a CO2 source: 80 % of total annual carbon emissions from the lake were emitted as CO2. The annual total carbon exchange per unit area was highest at the fen, which was an annual sink of carbon with respect to the atmosphere. Continuous respiration during the winter partly counteracted the fen summer sink by accounting for, as both CH4 and CO2, 33 % of annual carbon exchange. Our study shows (1) the importance of overturn periods (spring or fall) for the annual CH4 and CO2 emissions of northern lakes, (2) the significance of lakes as atmospheric carbon sources in subarctic landscapes while fens can be a strong carbon sink, and (3) the potential for ecosystem-scale eddy covariance measurements to improve the understanding of short-term processes driving lake-atmosphere exchange of CH4 and CO2.

  1. Current ozone levels threaten gross primary production and yield of Mediterranean annual pastures and nitrogen modulates the response

    NASA Astrophysics Data System (ADS)

    Calvete-Sogo, Héctor; Elvira, Susana; Sanz, Javier; González-Fernández, Ignacio; García-Gómez, Héctor; Sánchez-Martín, Laura; Alonso, Rocío; Bermejo-Bermejo, Victoria

    2014-10-01

    Pastures are among the most important ecosystems in Europe considering their biodiversity and distribution area. However, their response to increasing tropospheric ozone (O3) and nitrogen (N) deposition, two of the main drivers of global change, is still uncertain. A new Open-Top Chamber (OTC) experiment was performed in central Spain, aiming to study annual pasture response to O3 and N in close to natural growing conditions. A mixture of six species of three representative families was sowed in the field. Plants were exposed for 40 days to four O3 treatments: filtered air, non-filtered air (NFA) reproducing ambient levels and NFA supplemented with 20 and 40 nl l-1 O3. Three N treatments were considered to reach the N integrated doses of “background”, +20 or +40 kg N ha-1. Ozone significantly reduced green and total aboveground biomass (maximum reduction 25%) and increased the senescent biomass (maximum increase 40%). Accordingly, O3 decreased community Gross Primary Production due to both a global reduction of ecosystem CO2 exchange and an increase of ecosystem respiration. Nitrogen could partially counterbalance O3 effects on aboveground biomass when the levels of O3 were moderate, but at the same time O3 exposure reduced the fertilization effect of higher N availability. Therefore, O3 must be considered as a stress factor for annual pastures in the Mediterranean areas.

  2. Biomass and productivity of three phytoplankton size classes in San Francisco Bay.

    USGS Publications Warehouse

    Cole, B.E.; Cloern, J.E.; Alpine, A.E.

    1986-01-01

    The 5-22 mu m size accounted for 40-50% of annual production in each embayment, but production by phytoplanton >22 mu m ranged from 26% in the S reach to 54% of total phytoplankton production in the landward embayment of the N reach. A productivity index is derived that predicts daily productivity for each size class as a function of ambient irradiance and integrated chlorophyll a in the photic zone. For the whole phytoplankton community and for each size class, this index was constant at approx= 0.76 g C m-2 (g chlorophyll a Einstein)-1. The annual means of maximum carbon assimilation numbers were usually similar for the three size classes. Spatial and temporal variations in size-fractionated productivity are primarily due to differences in biomass rather than size-dependent carbon assimilation rates. -from Authors

  3. Statistical downscaling of CMIP5 outputs for projecting future maximum and minimum temperature over the Haihe River Bain, China

    NASA Astrophysics Data System (ADS)

    Yan, Tiezhu; Shen, Zhenyao; Heng, Lee; Dercon, Gerd

    2016-04-01

    Future climate change information is important to formulate adaptation and mitigation strategies for climate change. In this study, a statistical downscaling model (SDSM) was established using both NCEP reanalysis data and ground observations (daily maximum and minimum temperature) during the period 1971-2010, and then calibrated model was applied to generate the future maximum and minimum temperature projections using predictors from the two CMIP5 models (MPI-ESM-LR and CNRM-CM5) under two Representative Concentration Pathway (RCP2.6 and RCP8.5) during the period 2011-2100 for the Haihe River Basin, China. Compared to the baseline period, future change in annual and seasonal maximum and minimum temperature was computed after bias correction. The spatial distribution and trend change of annual maximum and minimum temperature were also analyzed using ensemble projections. The results shows that: (1)The downscaling model had a good applicability on reproducing daily and monthly mean maximum and minimum temperature over the whole basin. (2) Bias was observed when using historical predictors from CMIP5 models and the performance of CNRM-CM5 was a little worse than that of MPI-ESM-LR. (3) The change in annual mean maximum and minimum temperature under the two scenarios in 2020s, 2050s and 2070s will increase and magnitude of maximum temperature will be higher than minimum temperature. (4) The increase in temperature in the mountains and along the coastline is remarkably high than the other parts of the studies basin. (5) For annual maximum and minimum temperature, the significant upward trend will be obtained under RCP 8.5 scenario and the magnitude will be 0.37 and 0.39 ℃ per decade, respectively; the increase in magnitude under RCP 2.6 scenario will be upward in 2020s and then decrease in 2050s and 2070s, and the magnitude will be 0.01 and 0.01℃ per decade, respectively.

  4. Modelling of extreme rainfall events in Peninsular Malaysia based on annual maximum and partial duration series

    NASA Astrophysics Data System (ADS)

    Zin, Wan Zawiah Wan; Shinyie, Wendy Ling; Jemain, Abdul Aziz

    2015-02-01

    In this study, two series of data for extreme rainfall events are generated based on Annual Maximum and Partial Duration Methods, derived from 102 rain-gauge stations in Peninsular from 1982-2012. To determine the optimal threshold for each station, several requirements must be satisfied and Adapted Hill estimator is employed for this purpose. A semi-parametric bootstrap is then used to estimate the mean square error (MSE) of the estimator at each threshold and the optimal threshold is selected based on the smallest MSE. The mean annual frequency is also checked to ensure that it lies in the range of one to five and the resulting data is also de-clustered to ensure independence. The two data series are then fitted to Generalized Extreme Value and Generalized Pareto distributions for annual maximum and partial duration series, respectively. The parameter estimation methods used are the Maximum Likelihood and the L-moment methods. Two goodness of fit tests are then used to evaluate the best-fitted distribution. The results showed that the Partial Duration series with Generalized Pareto distribution and Maximum Likelihood parameter estimation provides the best representation for extreme rainfall events in Peninsular Malaysia for majority of the stations studied. Based on these findings, several return values are also derived and spatial mapping are constructed to identify the distribution characteristic of extreme rainfall in Peninsular Malaysia.

  5. Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year

    USGS Publications Warehouse

    March, Rod S.

    2003-01-01

    The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

  6. Wet and dry nitrogen deposition in the central Sichuan Basin of China

    NASA Astrophysics Data System (ADS)

    Kuang, Fuhong; Liu, Xuejun; Zhu, Bo; Shen, Jianlin; Pan, Yuepeng; Su, Minmin; Goulding, Keith

    2016-10-01

    Reactive nitrogen (Nr) plays a key role in the atmospheric environment and its deposition has induced large negative impacts on ecosystem health and services. Five-year continuous in-situ monitoring of N deposition, including wet (total nitrogen (WTN), total dissolved nitrogen (WTDN), dissolved organic nitrogen (WDON), ammonium nitrogen (WAN) and nitrate nitrogen (WNN)) and dry (DNH3, DHNO3, DpNH4+, DpNO3- and DNO2) deposition, had been conducted since August 2008 to December 2013 (wet) and May 2011 to December 2013 (dry) in Yan-ting, China, a typical agricultural area in the central Sichuan Basin. Mean annual total N deposition from 2011 to 2013 was 30.8 kg N ha-1 yr-1, and speculated that of 2009 and 2010 was averaged 28.2 kg N ha-1 yr-1, respectively. Wet and dry N deposition accounted for 76.3% and 23.7% of annual N deposition, respectively. Reduced N (WAN, DNH3 and DpNH4+) was 1.7 times of oxidized N (WNN, DHNO3, DNO2 and DpNO3-) which accounted for 50.9% and 30.3% of TN, respectively. Maximum loadings of all N forms of wet deposition, gaseous NH3, HNO3 and particulate NH4+ in dry deposition occurred in summer and minimum loadings in winter. Whether monthly, seasonal or annual averaged, dissolved N accounted for more than 70% of the total. N deposition in the central Sichuan Basin increased during the sampling period, especially that of ammonium compounds, and has become a serious threat to local aquatic ecosystems, the surrounding forest and other natural or semi-natural ecosystems in the upper reaches of the Yangtze River.

  7. On the consideration of scaling properties of extreme rainfall in Madrid (Spain) for developing a generalized intensity-duration-frequency equation and assessing probable maximum precipitation estimates

    NASA Astrophysics Data System (ADS)

    Casas-Castillo, M. Carmen; Rodríguez-Solà, Raúl; Navarro, Xavier; Russo, Beniamino; Lastra, Antonio; González, Paula; Redaño, Angel

    2018-01-01

    The fractal behavior of extreme rainfall intensities registered between 1940 and 2012 by the Retiro Observatory of Madrid (Spain) has been examined, and a simple scaling regime ranging from 25 min to 3 days of duration has been identified. Thus, an intensity-duration-frequency (IDF) master equation of the location has been constructed in terms of the simple scaling formulation. The scaling behavior of probable maximum precipitation (PMP) for durations between 5 min and 24 h has also been verified. For the statistical estimation of the PMP, an envelope curve of the frequency factor ( k m ) based on a total of 10,194 station-years of annual maximum rainfall from 258 stations in Spain has been developed. This curve could be useful to estimate suitable values of PMP at any point of the Iberian Peninsula from basic statistical parameters (mean and standard deviation) of its rainfall series. [Figure not available: see fulltext.

  8. 31 CFR 351.45 - What happens if I purchase definitive Series EE savings bonds in excess of the maximum annual...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false What happens if I purchase definitive Series EE savings bonds in excess of the maximum annual amount? 351.45 Section 351.45 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY...

  9. Variations of TEC near the Indian Equatorial Ionospheric anomaly (EIA) stations by GPS measurements during descending phase of solar activity (2005 -2009)

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Singh, Abhay Kumar

    The dual frequency Global Positioning System (GPS) data recorded at Varanasi (geographic latitude 250, 16 N longitude 820, 59 E) and Kanpur (geographic latitude 260, 30 N longitude 800, 12 E) stations, near the equatorial ionosphere anomaly (EIA) in India, have been analyzed to retrieve total electron content (TEC). The daily peak value of vertical total electron content (VTEC) has been utilized to study the variability of EIA. Present paper studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on EIA. It has been found that EIA yield their maximum values during the equinox months and minimum during summer and winter. The correlations of EIA with solar as well as geomagnetic indices have been also discussed. Key words: Total electron contents (TECs), EIA, GPS.

  10. 75 FR 71446 - Agency Information Collection Activities; Proposed Collection; Comment Request; Reports of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... information regarding these corrections and removals and to determine whether recall action is adequate... Annual Reporting Burden\\1\\ Annual 21 CFR section Number of frequency per Total annual Hours per Total... Average Annual Recordkeeping Burden \\1\\ Annual 21 CFR Section Number of frequency per Total annual Hours...

  11. Pharmaceuticals and illicit drugs - A new threat to the application of sewage sludge in agriculture.

    PubMed

    Ivanová, Lucia; Mackuľak, Tomáš; Grabic, Roman; Golovko, Oksana; Koba, Olga; Staňová, Andrea Vojs; Szabová, Petra; Grenčíková, Anna; Bodík, Igor

    2018-04-07

    The occurrence of 93 pharmaceuticals, illicit drugs and their metabolites has been investigated in stabilized sewage sludge from five municipal wastewater treatment plants (WWTPs) in the Slovak Republic. The total population connected to the tested WWTPs was approximately 600,000 p.e. which represents >20% of the Slovak population connected to public sewer systems. The sludge production from the five tested plants was >8100tons in 2016, which is approximately 15% of the total Slovak sewage sludge production in 2016. The highest total concentration of all pharmaceuticals was found in WWTP Bratislava Devínska Nová Ves (DNV) and Senec - 11,800 and 11,300ng/g dry matter (DM), respectively. Among individual pharmaceuticals, the highest concentrations were recorded for fexofenadine (mean 2340ng/g DM, maximum 5600ng/g DM in Bratislava DNV) and telmisartan (mean 1170ng/g DM, with a maximum of 3370ng/g DM in Senec). A principal component analysis revealed differences between pharmaceutical patterns in aerobically and anaerobically stabilized sludge. The worst-case scenario based on no further degradation of pharmaceuticals between sludge production and field application was used to predict pharmaceutical mass loads in agriculture. For the result, we estimated an annual load to soil in the Slovak Republic of up to several hundred kilograms of pharmaceuticals and drugs, with the maximum for fexofenadine (120kg/year) and verapamil (29kg/year). Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries.

    PubMed

    Last, Mark; Rabinowitz, Nitzan; Leonard, Gideon

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006-2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year.

  13. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries

    PubMed Central

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006–2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year. PMID:26812351

  14. Climate change impacts on rainfall and temperature in sugarcane growing Upper Gangetic Plains of India

    NASA Astrophysics Data System (ADS)

    Verma, Ram Ratan; Srivastava, Tapendra Kumar; Singh, Pushpa

    2018-01-01

    Assessment of variability in climate extremes is crucial for managing their aftermath on crops. Sugarcane (Saccharum officinarum L.), a major C4 crop, dominates the Upper Gangetic Plain (UGP) in India and is vulnerable to both direct and indirect effects of changes in temperature and rainfall. The present study was taken up to assess the weekly, monthly, seasonal, and annual trends of rainfall and temperature variability during the period 1956-2015 (60 years) for envisaging the probabilities of different levels of rainfall suitable for sugarcane in UGP in the present climate scenario. The analysis revealed that 87% of total annual rainfall was received during southwest monsoon months (June-September) while post-monsoon (October to February) and pre-monsoon months (March-May) accounted for only 9.4 and 3.6%, respectively. There was a decline in both monthly and annual normal rainfall during the period 1986-2015 as compared to 1956-1985, and an annual rainfall deficiency of 205.3 mm was recorded. Maximum monthly normal rainfall deficiencies of 52.8, 84.2, and 54.0 mm were recorded during the months of July, August, and September, respectively, while a minimum rainfall deficiency of 2.2 mm was observed in November. There was a decline by 196.3 mm in seasonal normal rainfall during June-September (kharif). The initial probability of a week going dry was higher (> 70%) from the 1st to the 25th week; however, standard meteorological weeks (SMW) 26 to 37 had more than 50% probability of going wet. The normal annual maximum temperature (Tmax) decreased by 0.4 °C while normal annual minimum temperatures (Tmin) increased by 0.21 °C. Analysis showed that there was an increase in frequency of drought from 1986 onwards in the zone and a monsoon rainfall deficit by about 21.25% during June-September which coincided with tillering and grand growth stage of sugarcane. The imposed drought during the growth and elongation phase is emerging as a major constraint in realizing high cane productivity in the zone. Strategies for mitigating the negative impacts of rainfall and temperature variability on sugarcane productivity through improvement in existing adaptation strategies are proposed.

  15. Storm Water Data 10-27-2016 for Upload to State Database.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Robert C.

    In the California Industrial General Permit (IGP) 2014-0057-DWQ for storm water monitoring, effective July 1, 2015, there are 21 contaminants that have been assigned NAL (Numeric Action Level) values, both annual and instantaneous. For annual NALs, an exceedance occurs when the average of all analytical results from all samples taken at a facility during a reporting year for a given parameter exceeds an annual NAL value listed in Table 2 of the General Permit. For instantaneous maximum NALs, an exceedance occurs when two or more analytical results from samples taken for any parameter within a reporting year exceed the instantaneousmore » maximum NAL value (for TSS and O&G), or are outside of the instantaneous maximum NAL range (for pH) listed in Table 2. Table 2 is attached here for your review.« less

  16. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design.

    PubMed

    Zeiger, Sean; Hubbart, Jason A

    2016-01-15

    Suspended sediment (SS) remains the most pervasive water quality problem globally and yet, despite progress, SS process understanding remains relatively poor in watersheds with mixed-land-use practices. The main objective of the current work was to investigate relationships between suspended sediment and land use types at multiple spatial scales (n=5) using four years of suspended sediment data collected in a representative urbanized mixed-land-use (forest, agriculture, urban) watershed. Water samples were analyzed for SS using a nested-scale experimental watershed study design (n=836 samples×5 gauging sites). Kruskal-Wallis and Dunn's post-hoc multiple comparison tests were used to test for significant differences (CI=95%, p<0.05) in SS levels between gauging sites. Climate extremes (high precipitation/drought) were observed during the study period. Annual maximum SS concentrations exceeded 2387.6 mg/L. Median SS concentrations decreased by 60% from the agricultural headwaters to the rural/urban interface, and increased by 98% as urban land use increased. Multiple linear regression analysis results showed significant relationships between SS, annual total precipitation (positive correlate), forested land use (negative correlate), agricultural land use (negative correlate), and urban land use (negative correlate). Estimated annual SS yields ranged from 16.1 to 313.0 t km(-2) year(-1) mainly due to differences in annual total precipitation. Results highlight the need for additional studies, and point to the need for improved best management practices designed to reduce anthropogenic SS loading in mixed-land-use watersheds. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Sediment transport and water-quality characteristics and loads, White River, northwestern Colorado, water years 1975-88

    USGS Publications Warehouse

    Tobin, R.L.

    1993-01-01

    Streamflow, sediment, and water-quality data are summarized for 6 sites on the White River, Colorado for water years 1975-88. Correlation techniques were used to estimate annual data for unmeasured years. Annual stream discharge in the main stem of the White River ranged from about 200,000 to about 1 million acre-feet. Generally, bedload was less than/= 3.3 percent of total sediment load. Annual suspended-sediment loads ranged from about 2,100 tons at the upstream sites on the North Fork and South Fork of the White River to about 2 million tons at the most downstream site. Average annual suspended-sediment loads ranged from about 11,000 tons at the upstream sites to about 705,000 tons at the most downstream site. Annual capacity losses in a 50,000 acre-ft reservoir could range from less than 0.01 percent near upstream sites to about 2.5 percent near downstream sites. Maximum water temperatures in the White River ranged from less than 20 to 25 C in summer. Specific conductance ranged from 200 to 1,000 microsiemens/cm. Generally, values of pH ranged from 7.6 to 8.8, and concentrations of dissolved oxygen were greater than 6.0 mg/L. In small streamflows, values of pH and dissolved oxygen were affected by biologic processes. Composition of dissolved solids in the White River was mostly calcium, bicarbonate, and(or) sulfate. Changes in the composition of dissolved solids caused by the changes in the concentrations of sodium and sulfate were greatest in small stream discharges. Annual loads of dissolved solids ranged from 21,100 tons in the South Fork to about 480,000 tons at the most downstream site. Total solids transport in the White River was mostly as dissolved solids at upstream sites and mostly as suspended sediment at downstream sites. Concentration ranges of nutrients and trace constituents were determined.

  18. The characterization of haboobs and the deposition of dust in Tempe, AZ from 2005 to 2014

    NASA Astrophysics Data System (ADS)

    Eagar, Jershon Dale; Herckes, Pierre; Hartnett, Hilairy Ellen

    2017-02-01

    Dust storms known as 'haboobs' occur in Tempe, AZ during the North American monsoon season. This work presents a catalog of haboob occurrence over the time period 2005-2014. A classification method based on meteorological and air quality measurements is described. The major factors that distinguish haboobs events from other dust events and from background conditions are event minimum visibility, maximum wind or gust speed, and maximum PM10 (particulate matter with aerodynamic diameters of 10 μm or less) concentration. We identified from 3 to 20 haboob events per year over the period from 2005 to 2014. The calculated annual TSP (total suspended particulate) dry deposition ranged from a low of 259 kg ha-1 in 2010 to a high of 2950 kg ha-1 in 2011 with a mean of 950 kg ha-1 yr-1. The deposition of large particles (PM>10) is greater than the deposition of PM10. The TSP dry deposition during haboobs is estimated to contribute 74% of the total particulate mass deposited in Tempe.

  19. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    USGS Publications Warehouse

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, J. LaRue; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation component of 0.5 foot, is estimated to be about 6,000 acre-feet. Annual subsurface outflow from Oasis Valley into the Amargosa Desert is estimated to be between 30 and 130 acre-feet. Estimates of total annual ground-water withdrawal from Oasis Valley by municipal and non-municipal users in 1996 and 1999 are 440 acre-feet and 210 acre-feet, respectively. Based on these values, natural annual ground-water discharge from Oasis Valley is about 6,100 acre-feet. Total annual discharge was 6,500 acre-ft in 1996 and 6,300 acre-ft in 1999. This quantity of natural ground-water discharge from Oasis Valley exceeds the previous estimate made in 1962 by a factor of about 2.5. Water levels were measured in Oasis Valley to gain additional insight into the ET process. In shallow wells, water levels showed annual fluctuations as large as 7 feet and daily fluctuations as large as 0.2 foot. These fluctuations may be attributed to water loss associated with evapotranspiration. In shallow wells affected by ET, annual minimum depths to water generally occurred in winter or early spring shortly after daily ET reached minimum rates. Annual maximum depths to water generally occurred in late summer or fall shortly after daily ET reached maximum rates. The magnitude of daily water-level fluctuations generally increased as ET increased and decreased as depth to water increased.

  20. Analysis of the high water wave volume for the Sava River near Zagreb

    NASA Astrophysics Data System (ADS)

    Trninic, Dusan

    2010-05-01

    The paper analyses volumes of the Sava River high water waves near Zagreb during the period: 1926-2008 (N = 83 years), which is needed for more efficient control of high and flood waters. The primary Sava flood control structures in the City of Zagreb are dikes built on both riverbanks, and the Odra Relief Canal with lateral spillway upstream from the City of Zagreb. Intensive morphological changes in the greater Sava area near Zagreb, and anthropological and climate variations and changes at the Sava catchment up to the Zagreb area require detailed analysis of the water wave characteristics. In one analysis, maximum annual volumes are calculated for high water waves with constant duration of: 10, 20, 30, 40, 50 and 60 days. Such calculations encompass total quantity of water (basic and surface runoff). The log Pearson III distribution is adapted for this series of maximum annual volumes. Based on the results obtained, the interrelations are established between the wave volume as function of duration and occurrence probability. In addition to the analysis of maximum volumes of constant duration, it is interesting to carry out the analyses of maximum volume in excess of the reference discharge since it is very important for the flood control. To determine the reference discharges, a discharge of specific duration is used from an average discharge duration curve. The adopted reference discharges have durations of 50, 40, 30, 20 and 10%. Like in the previous case, log Pearson III distribution is adapted to the maximum wave data series. For reference discharge Q = 604 m3/s (duration 10%), a linear trend is calculated of maximum annual volumes exceeding the reference discharge for the Sava near Zagreb during the analyzed period. The analysis results show a significant decrease trend. A similar analysis is carried out for the following three reference discharges: regular flood control measures at the Sava near Zagreb, which are proclaimed when the water level is 350 cm (Q = 2114 m3/s), extraordinary flood control measures taken when the water level is 450 cm (Q = 2648 m3/s), and the discharge at the deterministic inlet into the Odra Canal of approximately Q = 2300 m3/s. The results of these analyses have shown that water wave volumes higher than the reference discharges occurred in a comparatively small number of years, and that their duration was one to two days.

  1. 40 CFR Appendix to Subpart G of... - Applicant Questionnaire for Modification of Secondary Treatment Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...

  2. 40 CFR Appendix to Subpart G of... - Applicant Questionnaire for Modification of Secondary Treatment Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...

  3. 75 FR 62136 - Notice of Maximum Amount of Assistance Under the Individuals and Households Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency Notice of Maximum Amount of.... ACTION: Notice. SUMMARY: FEMA gives notice of the maximum amount for assistance under the Individuals and.... 5174, prescribes that FEMA must annually adjust the maximum amounts for assistance provided under the...

  4. 34 CFR 682.204 - Maximum loan amounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Maximum loan amounts. 682.204 Section 682.204 Education..., DEPARTMENT OF EDUCATION FEDERAL FAMILY EDUCATION LOAN (FFEL) PROGRAM General Provisions § 682.204 Maximum... a full academic year, the maximum annual amount that the student may receive may not exceed the...

  5. 78 FR 64523 - Notice of Maximum Amount of Assistance Under the Individuals and Households Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency Notice of Maximum Amount of.... ACTION: Notice. SUMMARY: FEMA gives notice of the maximum amount for assistance under the Individuals and....C. 5174, prescribes that FEMA must annually adjust the maximum amount for assistance provided under...

  6. 34 CFR 674.12 - Loan maximums.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Loan maximums. 674.12 Section 674.12 Education..., DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM General Provisions § 674.12 Loan maximums. (a) The maximum annual amount of Federal Perkins Loans and NDSLs an eligible student may borrow is— (1) $5,500 for...

  7. 77 FR 61425 - Notice of Maximum Amount of Assistance Under the Individuals and Households Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency Notice of Maximum Amount of.... ACTION: Notice. SUMMARY: FEMA gives notice of the maximum amount for assistance under the Individuals and....C. 5174, prescribes that FEMA must annually adjust the maximum amount for assistance provided under...

  8. 36 CFR 20.3 - Maximum number of permittees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Maximum number of permittees... INTERIOR ISLE ROYALE NATIONAL PARK; COMMERCIAL FISHING § 20.3 Maximum number of permittees. Commercial fishermen to whom the annual revocable permits may be granted shall not exceed the maximum number of persons...

  9. 75 FR 30030 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Governments; Number of Respondents: 51; Total Annual Responses: 51; Total Annual Hours: 102. (For policy... dialysis facilities are required to report. Form Number: CMS-265-94 (OMB : 0938-0236); Frequency: Yearly...,508; Total Annual Responses: 5,508; Total Annual Hours: 275,400. (For policy questions regarding this...

  10. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data

    PubMed Central

    Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area. PMID:28817731

  11. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.

    PubMed

    Espindola, Rafael Luz; Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.

  12. Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India

    NASA Astrophysics Data System (ADS)

    Sharma, Priyank J.; Loliyana, V. D.; S. R., Resmi; Timbadiya, P. V.; Patel, P. L.

    2017-12-01

    The flood risk across the globe is intensified due to global warming and subsequent increase in extreme temperature and precipitation. The long-term trends in extreme rainfall (1944-2013) and temperature (1969-2012) indices have been investigated at annual, seasonal, and monthly time scales using nonparametric Mann-Kendall (MK), modified Mann-Kendall (MMK), and Sen's slope estimator tests. The extreme rainfall and temperature indices, recommended by the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI), have been analyzed at finer spatial scales for trend detection. The results of trend analyses indicate decreasing trend in annual total rainfall, significant decreasing trend in rainy days, and increasing trend in rainfall intensity over the basin. The seasonal rainfall has been found to decrease for all the seasons except postmonsoon, which could affect the rain-fed agriculture in the basin. The 1- and 5-day annual maximum rainfalls exhibit mixed trends, wherein part of the basin experiences increasing trend, while other parts experience a decreasing trend. The increase in dry spells and concurrent decrease in wet spells are also observed over the basin. The extreme temperature indices revealed increasing trends in hottest and coldest days, while decreasing trends in coldest night are found over most parts of the basin. Further, the diurnal temperature range is also found to increase due to warming tendency in maximum temperature (T max) at a faster rate compared to the minimum temperature (T min). The increase in frequency and magnitude of extreme rainfall in the basin has been attributed to the increasing trend in maximum and minimum temperatures, reducing forest cover, rapid pace of urbanization, increase in human population, and thereby increase in the aerosol content in the atmosphere. The findings of the present study would significantly help in sustainable water resource planning, better decision-making for policy framework, and setting up infrastructure against flood disasters in Upper Tapi Basin, India.

  13. Future Extreme Event Vulnerability in the Rural Northeastern United States

    NASA Astrophysics Data System (ADS)

    Winter, J.; Bowen, F. L.; Partridge, T.; Chipman, J. W.

    2017-12-01

    Future climate change impacts on humans will be determined by the convergence of evolving physical climate and socioeconomic systems. Of particular concern is the intersection of extreme events and vulnerable populations. Rural areas of the Northeastern United States have experienced increased temperature and precipitation extremes, especially over the past three decades, and face unique challenges due to their physical isolation, natural resources dependent economies, and high poverty rates. To explore the impacts of future extreme events on vulnerable, rural populations in the Northeast, we project extreme events and vulnerability indicators to identify where changes in extreme events and vulnerable populations coincide. Specifically, we analyze future (2046-2075) maximum annual daily temperature, minimum annual daily temperature, maximum annual daily precipitation, and maximum consecutive dry day length for Representative Concentration Pathways (RCP) 4.5 and 8.5 using four global climate models (GCM) and a gridded observational dataset. We then overlay those projections with estimates of county-level population and relative income for 2060 to calculate changes in person-events from historical (1976-2005), with a focus on Northeast counties that have less than 250,000 people and are in the bottom income quartile. We find that across the rural Northeast for RCP4.5, heat person-events per year increase tenfold, far exceeding decreases in cold person-events and relatively small changes in precipitation and drought person-events. Counties in the bottom income quartile have historically (1976-2005) experienced a disproportionate number of heat events, and counties in the bottom two income quartiles are projected to experience a greater heat event increase by 2046-2075 than counties in the top two income quartiles. We further explore the relative contributions of event frequency, population, and income changes to the total and geographic distribution of climate change impacts on rural, vulnerable areas of the Northeast.

  14. 47 annual records of allergenic fungi spore: predictive models from the NW Iberian Peninsula.

    PubMed

    Aira, M Jesus; Rodriguez-Rajo, F; Jato, Victoria

    2008-01-01

    An analysis was carried out of the atmospheric representivity of Cladosporium and Alternaria spores in the north-western Iberian Peninsula, registering mean annual concentrations in excess of 300,000 spores/m(3). During the main sporulation period, the highest average daily concentrations corresponded to Cladosporium herbarum type (1,197 spores/m(3)) while the highest daily value was 7,556 spores/m(3) (Cladosporium cladosporioides type). Alternaria only represents between 0.1-1% of the total spores identified. In these spore types, the intraday variation was more acute inland than along the coastline due to oceanic influence. In the predictive models proposed that use the meteorological parameters with which a higher correlation was obtained (mean and maximum temperature) as predictive variables, it was seen that the predicted values did not reveal any significant differences as compared to those observed in 2006, data that was only used for verification purposes.

  15. Scarcity of ecosystem services: an experimental manipulation of declining pollination rates and its economic consequences for agriculture.

    PubMed

    Sandhu, Harpinder; Waterhouse, Benjamin; Boyer, Stephane; Wratten, Steve

    2016-01-01

    Ecosystem services (ES) such as pollination are vital for the continuous supply of food to a growing human population, but the decline in populations of insect pollinators worldwide poses a threat to food and nutritional security. Using a pollinator (honeybee) exclusion approach, we evaluated the impact of pollinator scarcity on production in four brassica fields, two producing hybrid seeds and two producing open-pollinated ones. There was a clear reduction in seed yield as pollination rates declined. Open-pollinated crops produced significantly higher yields than did the hybrid ones at all pollination rates. The hybrid crops required at least 0.50 of background pollination rates to achieve maximum yield, whereas in open-pollinated crops, 0.25 pollination rates were necessary for maximum yield. The total estimated economic value of pollination services provided by honeybees to the agricultural industry in New Zealand is NZD $1.96 billion annually. This study indicates that loss of pollination services can result in significant declines in production and have serious implications for the market economy in New Zealand. Depending on the extent of honeybee population decline, and assuming that results in declining pollination services, the estimated economic loss to New Zealand agriculture could be in the range of NZD $295-728 million annually.

  16. Scarcity of ecosystem services: an experimental manipulation of declining pollination rates and its economic consequences for agriculture

    PubMed Central

    Waterhouse, Benjamin; Wratten, Steve

    2016-01-01

    Ecosystem services (ES) such as pollination are vital for the continuous supply of food to a growing human population, but the decline in populations of insect pollinators worldwide poses a threat to food and nutritional security. Using a pollinator (honeybee) exclusion approach, we evaluated the impact of pollinator scarcity on production in four brassica fields, two producing hybrid seeds and two producing open-pollinated ones. There was a clear reduction in seed yield as pollination rates declined. Open-pollinated crops produced significantly higher yields than did the hybrid ones at all pollination rates. The hybrid crops required at least 0.50 of background pollination rates to achieve maximum yield, whereas in open-pollinated crops, 0.25 pollination rates were necessary for maximum yield. The total estimated economic value of pollination services provided by honeybees to the agricultural industry in New Zealand is NZD $1.96 billion annually. This study indicates that loss of pollination services can result in significant declines in production and have serious implications for the market economy in New Zealand. Depending on the extent of honeybee population decline, and assuming that results in declining pollination services, the estimated economic loss to New Zealand agriculture could be in the range of NZD $295–728 million annually. PMID:27441108

  17. Formation, distribution and variability in snow cover on the Asian territory of the USSR

    NASA Technical Reports Server (NTRS)

    Pupkov, V. N.

    1985-01-01

    A description is given of maps compiled for annual and average multiple-year water reserves. The annual and average multiple-year maximum snow cover height for winter, extreme values of maximum snow reserves, and the average height and snow reserves at the end of each decade are shown. These maps were made for the entire Asian territory of the USSR, excluding Central Asia, Kamchatka Peninsula, and the Sakhalin Islands.

  18. Dynamics of storage of organochlorine pollutants in herring gulls

    USGS Publications Warehouse

    Anderson, D.W.; Hickey, J.J.

    1976-01-01

    Several organochlorine pollutants were studied over the period of one annual cycle in caged juvenile and wild-collected adult herring gulls (Lagus argentatus) from Lake Michigan. Fish, mostly alewives (Alosa pseudoharengus), comprised the major year-round food items in the wild; alewives were also fed to the caged juveniles. Fish residues averaged around 3 mg/kg of p,p'-DDE, 2 mg/kg p,p'DDT + p,p'-TDE, and 2 mg/kg apparent PCBs. Juvenile body-burdens of DDE and PCBs showed a continual buildup after fledging, then a temporary dynamic equilibrium, related only in part to annual lipid deposition. Maximum body-burdens were reached in both juveniles and adults when winter fat deposits were declining prior to the breeding season?followed by a return to dynamic equilibrium. Residues of DDT and TDE followed closely the annual pattern of lipid deposition in both juveniles and adults. Total body-burdens in both age classes were similar after the buildups to equilibrium in juveniles in their eighth month after fledging. Seasonal variations of residues of DDE and PCBs were characterised by two phases in adults and three in juveniles, which gradually assumed the adult cyclic pattern. The maximum body-burdens attained by caged juveniles fed a diet of Lake Michigan alewives were 290 mg/kg DDE, 19 mg/kg DDT + TDE, and 200 mg/kg apparent PCBs. Residues in wild adults at the same time were 300, 4, and 200 mg/kg of the same residues. Apparent PCBs and DDE were highly accumulative, although DDE levels resulted from dietary DDE, as well as conversion from DDT.

  19. Simulation of extreme rainfall and projection of future changes using the GLIMCLIM model

    NASA Astrophysics Data System (ADS)

    Rashid, Md. Mamunur; Beecham, Simon; Chowdhury, Rezaul Kabir

    2017-10-01

    In this study, the performance of the Generalized LInear Modelling of daily CLImate sequence (GLIMCLIM) statistical downscaling model was assessed to simulate extreme rainfall indices and annual maximum daily rainfall (AMDR) when downscaled daily rainfall from National Centers for Environmental Prediction (NCEP) reanalysis and Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCM) (four GCMs and two scenarios) output datasets and then their changes were estimated for the future period 2041-2060. The model was able to reproduce the monthly variations in the extreme rainfall indices reasonably well when forced by the NCEP reanalysis datasets. Frequency Adapted Quantile Mapping (FAQM) was used to remove bias in the simulated daily rainfall when forced by CMIP5 GCMs, which reduced the discrepancy between observed and simulated extreme rainfall indices. Although the observed AMDR were within the 2.5th and 97.5th percentiles of the simulated AMDR, the model consistently under-predicted the inter-annual variability of AMDR. A non-stationary model was developed using the generalized linear model for local, shape and scale to estimate the AMDR with an annual exceedance probability of 0.01. The study shows that in general, AMDR is likely to decrease in the future. The Onkaparinga catchment will also experience drier conditions due to an increase in consecutive dry days coinciding with decreases in heavy (>long term 90th percentile) rainfall days, empirical 90th quantile of rainfall and maximum 5-day consecutive total rainfall for the future period (2041-2060) compared to the base period (1961-2000).

  20. 78 FR 45569 - Agency Information Collection Activities: Submission to OMB for Reinstatement, With Change, of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... chartered FCUs: Respondents/record-keepers: 2 per year. Estimated annual burden: 20 hours. Total annual... application. Total annual hours: 365,334. ICR: Membership denial. Respondents/record-keepers: 1055 [[frac14.../record-keepers: All FCUs (4,220). Estimated annual burden: 1 hour. Total annual hours: 4,220. Article V...

  1. 24 CFR 982.151 - Annual contributions contract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Contract and PHA Administration of Program § 982.151 Annual contributions contract. (a) Nature of ACC. (1) An annual contributions contract (ACC) is a written contract between HUD and a PHA. Under the ACC... owners and for the PHA administrative fee. The ACC specifies the maximum payment over the ACC term. The...

  2. 24 CFR 982.151 - Annual contributions contract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Contract and PHA Administration of Program § 982.151 Annual contributions contract. (a) Nature of ACC. (1) An annual contributions contract (ACC) is a written contract between HUD and a PHA. Under the ACC... owners and for the PHA administrative fee. The ACC specifies the maximum payment over the ACC term. The...

  3. Seasonal soil VOC exchange rates in a Mediterranean holm oak forest and their responses to drought conditions

    NASA Astrophysics Data System (ADS)

    Asensio, Dolores; Peñuelas, Josep; Ogaya, Romà; Llusià, Joan

    Available information on soil volatile organic compound (VOC) exchange, emissions and uptake, is very scarce. We here describe the amounts and seasonality of soil VOC exchange during a year in a natural Mediterranean holm oak forest growing in Southern Catalonia. We investigated changes in soil VOC dynamics in drought conditions by decreasing the soil moisture to 30% of ambient conditions by artificially excluding rainfall and water runoff, and predicted the response of VOC exchange to the drought forecasted in the Mediterranean region for the next decades by GCM and ecophysiological models. The annual average of the total (detected) soil VOC and total monoterpene exchange rates were 3.2±3.2 and -0.4±0.3 μg m -2 h -1, respectively, in control plots. These values represent 0.003% of the total C emitted by soil at the study site as CO 2 whereas the annual mean of soil monoterpene exchange represents 0.0004% of total C. Total soil VOC exchange rates in control plots showed seasonal variations following changes in soil moisture and phenology. Maximum values were found in spring (17±8 μg m -2 h -1). Although there was no significant global effect of drought treatment on the total soil VOC exchange rates, annual average of total VOC exchange rates in drought plots resulted in an uptake rate (-0.5±1.8 μg m -2 h -1) instead of positive net emission rates. Larger soil VOC and monoterpene exchanges were measured in drought plots than in control plots in summer, which might be mostly attributable to autotrophic (roots) metabolism. The results show that the diversity and magnitude of monoterpene and VOC soil emissions are low compared with plant emissions, that they are driven by soil moisture, that they represent a very small part of the soil-released carbon and that they may be strongly reduced or even reversed into net uptakes by the predicted decreases of soil water availability in the next decades. In all cases, it seems that VOC fluxes in soil might have greater impact on soil ecology than on atmospheric chemistry.

  4. The Significance of the Record Length in Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Senarath, S. U.

    2013-12-01

    Of all of the potential natural hazards, flood is the most costly in many regions of the world. For example, floods cause over a third of Europe's average annual catastrophe losses and affect about two thirds of the people impacted by natural catastrophes. Increased attention is being paid to determining flow estimates associated with pre-specified return periods so that flood-prone areas can be adequately protected against floods of particular magnitudes or return periods. Flood frequency analysis, which is conducted by using an appropriate probability density function that fits the observed annual maximum flow data, is frequently used for obtaining these flow estimates. Consequently, flood frequency analysis plays an integral role in determining the flood risk in flood prone watersheds. A long annual maximum flow record is vital for obtaining accurate estimates of discharges associated with high return period flows. However, in many areas of the world, flood frequency analysis is conducted with limited flow data or short annual maximum flow records. These inevitably lead to flow estimates that are subject to error. This is especially the case with high return period flow estimates. In this study, several statistical techniques are used to identify errors caused by short annual maximum flow records. The flow estimates used in the error analysis are obtained by fitting a log-Pearson III distribution to the flood time-series. These errors can then be used to better evaluate the return period flows in data limited streams. The study findings, therefore, have important implications for hydrologists, water resources engineers and floodplain managers.

  5. Latitudinal dependence of variations in stratospheric NO2 content

    NASA Astrophysics Data System (ADS)

    Gruzdev, A. N.

    2008-06-01

    Diurnal and annual variations in the NO2 total content (TC), the effect of its decrease owing to the products of the eruption of Mt. Pinatubo, its variations during an 11-year cycle of solar activity, and its linear trends are analyzed on the basis of data obtained from the ground-based spectrometric measurements of the NO2 TC in stratospheric vertical columns over the stations of the Network for the Detection of Atmospheric Composition Change. Latitudinal dependence of the indicated variations and trends is revealed. The annual estimates of the linear trends of the NO2 TC are found to be mostly positive for the middle and low latitudes of the Southern Hemisphere and negative for the middle and low latitudes of the Northern Hemisphere. The maximum values of the positive and negative trends amount to ˜10% per ten years. In the high and polar latitudes of both hemispheres, the annual trend estimates are statistically insignificant. Seasonal estimates of the trends may differ from their annual estimates. The trends and solar-activity effect in the NO2 TC, which were estimated by using the two-dimensional model SOCRATES, as well as the analytical estimates of a zonal mean trend of the NO2 TC, on the whole, significantly differ from the estimates obtained from the measurements.

  6. 50 CFR 403.02 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... largest supportable within the ecosystem to the population level that results in maximum net productivity. Maximum net productivity is the greatest net annual increment in population numbers or biomass resulting...

  7. The impact of inter-annual variability of annual cycle on long-term persistence of surface air temperature in long historical records

    NASA Astrophysics Data System (ADS)

    Deng, Qimin; Nian, Da; Fu, Zuntao

    2018-02-01

    Previous studies in the literature show that the annual cycle of surface air temperature (SAT) is changing in both amplitude and phase, and the SAT departures from the annual cycle are long-term correlated. However, the classical definition of temperature anomalies is based on the assumption that the annual cycle is constant, which contradicts the fact of changing annual cycle. How to quantify the impact of the changing annual cycle on the long-term correlation of temperature anomaly variability still remains open. In this paper, a recently developed data adaptive analysis tool, the nonlinear mode decomposition (NMD), is used to extract and remove time-varying annual cycle to reach the new defined temperature anomalies in which time-dependent amplitude of annual cycle has been considered. By means of detrended fluctuation analysis, the impact induced by inter-annual variability from the time-dependent amplitude of annual cycle has been quantified on the estimation of long-term correlation of long historical temperature anomalies in Europe. The results show that the classical climatology annual cycle is supposed to lack inter-annual fluctuation which will lead to a maximum artificial deviation centering around 600 days. This maximum artificial deviation is crucial to defining the scaling range and estimating the long-term persistence exponent accurately. Selecting different scaling range could lead to an overestimation or underestimation of the long-term persistence exponent. By using NMD method to extract the inter-annual fluctuations of annual cycle, this artificial crossover can be weakened to extend a wider scaling range with fewer uncertainties.

  8. Temporal variations in the potential hydrological performance of extensive green roof systems

    NASA Astrophysics Data System (ADS)

    De-Ville, Simon; Menon, Manoj; Stovin, Virginia

    2018-03-01

    Existing literature provides contradictory information about variation in potential green roof hydrological performance over time. This study has evaluated a long-term hydrological monitoring record from a series of extensive green roof test beds to identify long-term evolutions and sub-annual (seasonal) variations in potential hydrological performance. Monitoring of nine differently-configured extensive green roof test beds took place over a period of 6 years in Sheffield, UK. Long-term evolutions and sub-annual trends in maximum potential retention performance were identified through physical monitoring of substrate field capacity over time. An independent evaluation of temporal variations in detention performance was undertaken through the fitting of reservoir-routing model parameters. Aggregation of the resulting retention and detention variations permitted the prediction of extensive green roof hydrological performance in response to a 1-in-30-year 1-h summer design storm for Sheffield, UK, which facilitated the comparison of multi and sub-annual hydrological performance variations. Sub-annual (seasonal) variation was found to be significantly greater than long-term evolution. Potential retention performance increased by up to 12% after 5-years, whilst the maximum sub-annual variation in potential retention was 27%. For vegetated roof configurations, a 4% long-term improvement was observed for detention performance, compared to a maximum 63% sub-annual variation. Consistent long-term reductions in detention performance were observed in unvegetated roof configurations, with a non-standard expanded-clay substrate experiencing a 45% reduction in peak attenuation over 5-years. Conventional roof configurations exhibit stable long-term hydrological performance, but are nonetheless subject to sub-annual variation.

  9. Semi-annual Sq-variation in solar activity cycle

    NASA Astrophysics Data System (ADS)

    Pogrebnoy, V.; Malosiev, T.

    The peculiarities of semi-annual variation in solar activity cycle have been studied. The data from observatories having long observational series and located in different latitude zones were used. The following observatories were selected: Huancayo (magnetic equator), from 1922 to 1959; Apia (low latitudes), from 1912 to 1961; Moscow (middle latitudes), from 1947 to 1965. Based on the hourly values of H-components, the average monthly diurnal amplitudes (a difference between midday and midnight values), according to five international quiet days, were computed. Obtained results were compared with R (relative sunspot numbers) in the ranges of 0-30R, 40-100R, and 140-190R. It was shown, that the amplitude of semi-annual variation increases with R, from minimum to maximum values, on average by 45%. At equatorial Huancayo observatory, the semi-annual Sq(H)-variation appears especially clearly: its maximums take place at periods of equinoxes (March-April, September-October), and minimums -- at periods of solstices (June-July, December-January). At low (Apia observatory) and middle (Moscow observatory) latitudes, the character of semi-annual variation is somewhat different: it appears during the periods of equinoxes, but considerably less than at equator. Besides, with the growth of R, semi-annual variation appears against a background of annual variation, in the form of second peaks (maximum in June). At observatories located in low and middle latitudes, second peaks become more appreciable with an increase of R (March-April and September-October). During the periods of low solar activity, they are insignificant. This work has been carried out with the support from International Scientific and Technology Center (Project #KR-214).

  10. Ground-water development and the effects on ground-water levels and water quality in the town of Atherton, San Mateo County, California

    USGS Publications Warehouse

    Metzger, Loren F.; Fio, John L.

    1997-01-01

    The installation of at least 100 residential wells in the town of Atherton, California, during the 198792 drought has raised concerns about the increased potential for land subsidence and salt water intrusion. Data were collected and monitor ing networks were established to assess current processes and to monitor future conditions affect ing these processes. Data include recorded pump age, recorded operation time, and measured pumpage rates from 38 wells; water levels from 49 wells; water chemistry samples from 20 wells, and land-surface elevation data from 22 survey sites, including one National Geodetic Survey estab lished bench mark. Geologic, lithologic, climato logic, well construction, well location, and historical information obtained from available reports and local, state, and Federal agencies were used in this assessment. Estimates of annual residential pumpage from 269 assumed active residential wells in the study area indicate that the average annual total pumping rate is between 395 and 570 acre-feet per year. The nine assumed active institutional wells are estimated to pump a total of about 200 acre- feet per year, or 35 to 50 percent of the total resi dential pumpage. Assuming that 510 acre-feet per year is the best estimate of annual residential pumpage, total pumpage of 710 acre-feet per year would represent about 19 percent of the study area's total water supply, as estimated. Depth-to-water-level measurements in wells during April 1993 through September 1995 typically ranged from less than 20 feet below land surface nearest to San Francisco Bay to more than 70 feet below land surface in upslope areas near exposed bedrock, depending on the season. This range, which is relatively high historically, is attributed to above normal rainfall between 1993 and 1995. Water levels expressed as hydraulic heads indicate the presence of three different hydrologic subareas on the basis of hydraulic-head contour configurations and flow direction. That all measured hydraulic heads in the study area from April 1993 through September 1995 were above sea level indicates that saltwater intrusion was unlikely during this period. The chemistry of 20 well-water samples is characterized as a calcium magnesium carbonate bicarbonate type water. There is no evidence of saltwater intrusion from San Francisco Bay; how ever, water samples from wells nearest the bay and bedrock assemblages indicate a greater concentra tion of dissolved constituents and salinity. Dissolved-solids concentrations of water samples from wells in these areas exceeded 1,000 milli grams per liter, and several samples contained a substantial fraction of sodium and chloride. Water hardness for the 20 wells sampled averaged 471 milligrams per liter as calcium carbonate, which is classified as very hard. One well sample exceeded the primary maximum contaminant level for drinking water in nitrate, several wells exceeded the secondary maximum contaminant level for chloride and sulfate, and all wells sampled exceeded the secondary maximum contaminant level for total dissolved solids. Land-subsidence and the resultant damage because of excessive ground-water pumping, in combination with periodic drought, have a well- documented history in the south San Francisco Bay area. Land-elevation surveying data from 1934 to 1967 indicate that subsidence ranged from 0.1 to approximately 0.5 foot in the vicinity of the study area. It could not be determined from land- surface elevation surveying data from 1993 whether subsidence is currently occurring in the study area.

  11. Estimates of ground-water pumpage from the Yakima River Basin aquifer system, Washington, 1960-2000

    USGS Publications Warehouse

    Vaccaro, J.J.; Sumioka, S.S.

    2006-01-01

    Ground-water pumpage in the Yakima River Basin, Washington, was estimated for eight categories of use for 1960-2000 as part of an investigation to assess groundwater availability in the basin. Methods used, pumpage estimates, reliability of the estimates, and a comparison with appropriated quantities are described. The eight categories of pumpage were public water supply, self-supplied domestic (exempt wells), irrigation, frost protection, livestock and dairy operations, industrial and commercial, fish and wildlife propagation, and ground-water claims. Pumpage estimates were based on methods that varied by the category and primarily represent pumpage for groundwater rights. Washington State Department of Ecology’s digital database has 2,874 active ground-water rights in the basin that can withdraw an annual quantity of about 529,231 acre-feet during dry years. Irrigation rights are for irrigation of about 129,570 acres. All but 220 of the rights were associated with well drillers’ logs, allowing for a spatial representation of the pumpage. Five-hundred and sixty of the irrigation rights were estimated to be standby/reserve rights. During this study, another 30 rights were identified that were not in the digital database. These rights can withdraw an annual quantity of about 20,969 acre-feet; about 6,700 acre-feet of these rights are near but outside the basin. In 1960, total annual pumpage in the basin, excluding standby/reserve pumpage, was about 115,776 acre-feet. By 2000, total annual pumpage was estimated to be 395,096 acre-feet, and excluding the standby/reserve rights, the total was 312,284 acre-feet. Irrigation accounts for about 60 percent of the pumpage, followed by public water supply at about 12 percent. The smallest category of pumpage was for livestock use with pumpage estimated to be 6,726 acre-feet. Total annual pumpage in 2000 was about 430 cubic feet per second, which is about 11 percent of the surface-water demand. Maximum pumpage is in July and August and during 2000, was about 100 cubic feet per second each month averaged over the Yakima River Basin aquifer system. During 2000, non-standby/reserve pumpage associated with ground-water rights was estimated to total 253,454 acre-feet, or about 198,290 acre-feet less than the appropriated quantity. The unused part of the appropriated value is about equivalent to the irrigation pumpage for primary rights.

  12. Seat Capacity Selection for an Advanced Short-Haul Aircraft Design

    NASA Technical Reports Server (NTRS)

    Marien, Ty V.

    2016-01-01

    A study was performed to determine the target seat capacity for a proposed advanced short-haul aircraft concept projected to enter the fleet by 2030. This analysis projected the potential demand in the U.S. for a short-haul aircraft using a transportation theory approach, rather than selecting a target seat capacity based on recent industry trends or current market demand. A transportation systems model was used to create a point-to-point network of short-haul trips and then predict the number of annual origin-destination trips on this network. Aircraft of varying seat capacities were used to meet the demand on this network, assuming a single aircraft type for the entire short-haul fleet. For each aircraft size, the ticket revenue and operational costs were used to calculate a total market profitability metric for all feasible flights. The different aircraft sizes were compared, based on this market profitability metric and also the total number of annual round trips and markets served. Sensitivity studies were also performed to determine the effect of changing the aircraft cruise speed and maximum trip length. Using this analysis, the advanced short-haul aircraft design team was able to select a target seat capacity for their design.

  13. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2013–October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Permit required groundwater monitoring data; Status of compliance activities; Noncompliance issues; and Discussion of the facility’s environmental impacts. During the 2014 permit year, approximately 238 million gallons of wastewater were discharged to the Cold Waste Pond. Thismore » is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the downgradient monitoring wells.« less

  14. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Coldmore » Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.« less

  15. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This ismore » well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.« less

  16. Special Analysis for the Disposal of the Sandia National Laboratory Classified Macroencapsulated Mixed Waste at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Louis B.

    This special analysis evaluates whether the Sandia National Laboratory (SNL) Classified Macroencapsulated Mixed Waste stream (ASLA000001007, Revision 4) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The SNL Classified Macroencapsulated Mixed Waste stream consists of debris from classified nuclear weapons components (SNL 2015). The SNL Classified Macroencapsulated Mixed Waste stream required a special analysis due to tritium (3H) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The SNL Classifiedmore » Macroencapsulated Mixed Waste stream had no significant effect on the maximum mean and 95th percentile results for the resident air pathway and all-pathways annual total effective dose (TED). The SNL Classified Macroencapsulated Mixed Waste stream increases the mean air pathway and all-pathways annual TED from approximately 100 to 200 years after closure. Addition of the SNL Classified Macroencapsulated Mixed Waste stream inventory shifts the maximum TED to approximately 100 years after closure and increases the TED for several alternative exposure scenarios. The maximum mean and the 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The SNL Classified Macroencapsulated Mixed Waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less

  17. Trends in precipitation, streamflow, reservoir pool elevations, and reservoir releases in Arkansas and selected sites in Louisiana, Missouri, and Oklahoma, 1951–2011

    USGS Publications Warehouse

    Wagner, Daniel M.; Krieger, Joshua D.; Merriman, Katherine R.

    2014-01-01

    The U.S. Geological Survey (USGS) and the U.S. Army Corps of Engineers (USACE) conducted a statistical analysis of trends in precipitation, streamflow, reservoir pool elevations, and reservoir releases in Arkansas and selected sites in Louisiana, Missouri, and Oklahoma for the period 1951–2011. The Mann-Kendall test was used to test for trends in annual and seasonal precipitation, annual and seasonal streamflows of 42 continuous-record USGS streamflow-gaging stations, annual pool elevations and releases from 16 USACE reservoirs, and annual releases from 11 dams on the Arkansas River. A statistically significant (p≤0.10) upward trend was observed in annual precipitation for the State, with a Sen slope of approximately 0.10 inch per year. Autumn and winter were the only seasons that had statistically significant trends in precipitation. Five of six physiographic sections and six of seven 4-digit hydrologic unit code (HUC) regions in Arkansas had statistically significant upward trends in autumn precipitation, with Sen slopes of approximately 0.06 to 0.10 inch per year. Sixteen sites had statistically significant upward trends in the annual mean daily streamflow and were located on streams that drained regions with statistically significant upward trends in annual precipitation. Expected annual rates of change corresponding to statistically significant trends in annual mean daily streamflows, which ranged from 0.32 to 0.88 percent, were greater than those corresponding to regions with statistically significant upward trends in annual precipitation, which ranged from 0.19 to 0.28 percent, suggesting that the observed trends in regional annual precipitation do not fully account for the observed trends in annual mean daily streamflows. Trends in annual maximum daily streamflows were similar to trends in the annual mean daily streamflows but were only statistically significant at seven sites. There were more statistically significant trends (28 of 42 sites) in the annual minimum daily streamflows than in the annual means or maximums. Statistically significant trends in the annual minimum daily streamflows were upward at 18 sites and downward at 10 sites. Despite autumn being the only season that had statistically significant upward trends in seasonal precipitation, statistically significant upward trends in seasonal mean streamflows occurred in every season but spring. Trends in the annual mean, maximum, and minimum daily pool elevations of USACE reservoirs were consistent between metrics for reservoirs in the White, Arkansas, and Ouachita River watersheds, while trends varied between metrics at DeQueen Lake, Millwood Lake, and Lake Chicot. Most of the statistically significant trends in pool elevation metrics were upward and gradual—Sen slopes were less than 0.37 foot per year—and were likely the result of changes in reservoir regulation plans. Trends in the annual mean and maximum daily releases from USACE reservoirs were generally upward in all HUC regions. There were few statistically significant trends in the annual mean daily releases because the reservoirs are operated to maintain a regulation stage at a downstream site according to guidelines set forth in the regulation plans of the reservoirs. The annual number of low-flow days was both increasing and decreasing for reservoirs in northern Arkansas and southern Missouri and generally increasing for reservoirs in southern Arkansas.

  18. Trends in total ozone over southern African stations between 1979 and 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalicharran, S.; Diab, R.D.; Sokolic, F.

    1993-12-01

    Trends in total ozone for the period 1979 to 1991 over the southern African subcontinent and the southern ocean islands of Marion and Gough and the South African Antarctic base of SANAE are examined. Version 6 Total Ozone Mapping Spectrometer (TOMS) data are used. With the exception of the low latitude stations (Nairobi and Harare), where a marginally increasing trend (+0.2% and +0.3%, respectively) was observed, the other stations all exhibited a decreasing trend in total ozone over the 13 year period, ranging between -1.1 and -2.6% over most of South Africa, increasing with latitude to reach -20.6% at SANAE.more » Inter-annual fluctuations at Nairobi are dominated by a Quasi-Biennial Oscillation (QBO), with maximum ozone occurring during the westerly phase of the QBO. At the extratropical locations, ozone peaks and troughs are anti-correlated with those at Nairobi and the QBO signal is less well developed and modulated by the seasonal cycle.« less

  19. Using regression methods to estimate stream phosphorus loads at the Illinois River, Arkansas

    USGS Publications Warehouse

    Haggard, B.E.; Soerens, T.S.; Green, W.R.; Richards, R.P.

    2003-01-01

    The development of total maximum daily loads (TMDLs) requires evaluating existing constituent loads in streams. Accurate estimates of constituent loads are needed to calibrate watershed and reservoir models for TMDL development. The best approach to estimate constituent loads is high frequency sampling, particularly during storm events, and mass integration of constituents passing a point in a stream. Most often, resources are limited and discrete water quality samples are collected on fixed intervals and sometimes supplemented with directed sampling during storm events. When resources are limited, mass integration is not an accurate means to determine constituent loads and other load estimation techniques such as regression models are used. The objective of this work was to determine a minimum number of water-quality samples needed to provide constituent concentration data adequate to estimate constituent loads at a large stream. Twenty sets of water quality samples with and without supplemental storm samples were randomly selected at various fixed intervals from a database at the Illinois River, northwest Arkansas. The random sets were used to estimate total phosphorus (TP) loads using regression models. The regression-based annual TP loads were compared to the integrated annual TP load estimated using all the data. At a minimum, monthly sampling plus supplemental storm samples (six samples per year) was needed to produce a root mean square error of less than 15%. Water quality samples should be collected at least semi-monthly (every 15 days) in studies less than two years if seasonal time factors are to be used in the regression models. Annual TP loads estimated from independently collected discrete water quality samples further demonstrated the utility of using regression models to estimate annual TP loads in this stream system.

  20. Occurrence and distribution of fecal indicator bacteria, and physical and chemical indicators of water quality in streams receiving discharge from Dallas/Fort Worth International Airport and vicinity, North-Central Texas, 2008

    USGS Publications Warehouse

    Harwell, Glenn R.; Mobley, Craig A.

    2009-01-01

    This report, done by the U.S. Geological Survey in cooperation with Dallas/Fort Worth International (DFW) Airport in 2008, describes the occurrence and distribution of fecal indicator bacteria (fecal coliform and Escherichia [E.] coli), and the physical and chemical indicators of water quality (relative to Texas Surface Water Quality Standards), in streams receiving discharge from DFW Airport and vicinity. At sampling sites in the lower West Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts for five of the eight West Fork Trinity River watershed sampling sites exceeded the Texas Commission on Environmental Quality E. coli criterion, thus not fully supporting contact recreation. Two of the five sites with geometric means that exceeded the contact recreation criterion are airport discharge sites, which here means that the major fraction of discharge at those sites is from DFW Airport. At sampling sites in the Elm Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts exceeded the geometric mean contact recreation criterion for seven (four airport, three non-airport) of 13 sampling sites. Under low-flow conditions in the lower West Fork Trinity River watershed, E. coli counts for airport discharge sites were significantly different from (lower than) E. coli counts for non-airport sites. Under low-flow conditions in the Elm Fork Trinity River watershed, there was no significant difference between E. coli counts for airport sites and non-airport sites. During stormflow conditions, fecal indicator bacteria counts at the most downstream (integrator) sites in each watershed were considerably higher than counts at those two sites during low-flow conditions. When stormflow sample counts are included with low-flow sample counts to compute a geometric mean for each site, classification changes from fully supporting to not fully supporting contact recreation on the basis of the geometric mean contact recreation criterion. All water temperature measurements at sampling sites in the lower West Fork Trinity River watershed were less than the maximum criterion for water temperature for the lower West Fork Trinity segment. Of the measurements at sampling sites in the Elm Fork Trinity River watershed, 95 percent were less than the maximum criterion for water temperature for the Elm Fork Trinity River segment. All dissolved oxygen concentrations were greater than the minimum criterion for stream segments classified as exceptional aquatic life use. Nearly all pH measurements were within the pH criterion range for the classified segments in both watersheds, except for those at one airport site. For sampling sites in the lower West Fork Trinity River watershed, all annual average dissolved solids concentrations were less than the maximum criterion for the lower West Fork Trinity segment. For sampling sites in the Elm Fork Trinity River, nine of the 13 sites (six airport, three non-airport) had annual averages that exceeded the maximum criterion for that segment. For ammonia, 23 samples from 12 different sites had concentrations that exceeded the screening level for ammonia. Of these 12 sites, only one non-airport site had more than the required number of exceedances to indicate a screening level concern. Stormflow total suspended solids concentrations were significantly higher than low-flow concentrations at the two integrator sites. For sampling sites in the lower West Fork Trinity River watershed, all annual average chloride concentrations were less than the maximum annual average chloride concentration criterion for that segment. For the 13 sampling sites in the Elm Fork Trinity River watershed, one non-airport site had an annual average concentration that exceeded the maximum annual average chloride concentration criterion for that segment.

  1. Statistical summaries of streamflow data for selected gaging stations on and near the Idaho National Engineering Laboratory, Idaho, through September 1990

    USGS Publications Warehouse

    Stone, M.A.J.; Mann, Larry J.; Kjelstrom, L.C.

    1993-01-01

    Statistical summaries and graphs of streamflow data were prepared for 13 gaging stations with 5 or more years of continuous record on and near the Idaho National Engineering Laboratory. Statistical summaries of streamflow data for the Big and Little Lost Rivers and Birch Creek were analyzed as a requisite for a comprehensive evaluation of the potential for flooding of facilities at the Idaho National Engineering Laboratory. The type of statistical analyses performed depended on the length of streamflow record for a gaging station. Streamflow statistics generated for stations with 5 to 9 years of record were: (1) magnitudes of monthly and annual flows; (2) duration of daily mean flows; and (3) maximum, median, and minimum daily mean flows. Streamflow statistics generated for stations with 10 or more years of record were: (1) magnitudes of monthly and annual flows; (2) magnitudes and frequencies of daily low, high, instantaneous peak (flood frequency), and annual mean flows; (3) duration of daily mean flows; (4) exceedance probabilities of annual low, high, instantaneous peak, and mean annual flows; (5) maximum, median, and minimum daily mean flows; and (6) annual mean and mean annual flows.

  2. Stream gage descriptions and streamflow statistics for sites in the Tigris River and Euphrates River Basins, Iraq

    USGS Publications Warehouse

    Saleh, Dina K.

    2010-01-01

    Statistical summaries of streamflow data for all long-term streamflow-gaging stations in the Tigris River and Euphrates River Basins in Iraq are presented in this report. The summaries for each streamflow-gaging station include (1) a station description, (2) a graph showing annual mean discharge for the period of record, (3) a table of extremes and statistics for monthly and annual mean discharge, (4) a graph showing monthly maximum, minimum, and mean discharge, (5) a table of monthly and annual mean discharges for the period of record, (6) a graph showing annual flow duration, (7) a table of monthly and annual flow duration, (8) a table of high-flow frequency data (maximum mean discharge for 3-, 7-, 15-, and 30-day periods for selected exceedance probabilities), and (9) a table of low-flow frequency data (minimum mean discharge for 3-, 7-, 15-, 30-, 60-, 90-, and 183-day periods for selected non-exceedance probabilities).

  3. Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida

    USGS Publications Warehouse

    Turner, J.F.

    1979-01-01

    A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)

  4. [The epidemiological validation of the MPEL for grain dust in the atmosphere].

    PubMed

    Pinigin, M A; Cherepov, E M; Safiulin, A A; Petrova, I V; Mukhambetova, L Kh; Osipova, E M; Veselov, A P

    1998-01-01

    The use of calculating and gravimetric methods for examining the grain dust pollution of the ambient air at the site of an elevator determined the maximum single, mean daily, and mean annual concentrations at different distances from the source of dust emission. The mean ratio of these concentrations was 12.1:4.3:1, respectively. The calculated concentration-effect and concentration-time relationships provided evidence for the maximum single, mean daily, and mean annual allowable concentrations for grain dust in the ambient air.

  5. Regional peculiarities in the inter-annual distribution of the red 630.0 nm line nightglow intensities over Abastumani

    NASA Astrophysics Data System (ADS)

    Toriashvili, L.; Didebulidze, G. G.; Todua, M.

    2017-12-01

    Peculiarities of the inter-annual distribution of atomic oxygen red OI 630.0 nm line nightglow intensity observed from Abastumani Astrophysical Observatory (41.75 N; 42.82 E) are considered, using the long-term dataset. This distribution demonstrates semi-annual and annual-like variations which occur during solar minimum, as well as maximum phases. The maximum values of the red line intensities are in Summer, however in June it is lower than in May and July, which may be due to regional effects. This phenomenon is considered as a the possible result of regional dynamical processes influencing the behavior of the ionosphere F2 layer which cause changes of electrons/ions densities in the 630.0 nm line luminous region (maximum luminous layer is at about 230-280 km). Using the red line intensities and ionosphere F2 layer electron density data of the IRI-12 model, the changes of meridional thermospheric wind velocities are estimated for this mid-latitude region. These meridional and vertical wind field changes causes of variations of the red line intensities in June can be caused by tidal wind and accompanied by atmospheric gravity waves activities.

  6. Floodplain ecosystem processes

    NASA Astrophysics Data System (ADS)

    Melack, John M.; Novo, Evlyn M. L. M.; Forsberg, Bruce R.; Piedade, Maria T. F.; Maurice, Laurence

    Floodplains represent a major component of the central Amazon Basin and influence the hydrology, ecology, and biogeochemistry. Hess et al. (2003) used a classification of synthetic aperture radar data with 100 m resolution for a 1.77 million km2 quadrat in central Amazonia and identified 17% as wetland most of which was inundated a portion of each year. Total net production attributed to flooded forests (excluding wood increments), aquatic macrophytes, phytoplankton, and periphyton for the 1.77 million km2 quadrat was estimated to be about 300 Tg C a-1. Flooded forests accounted for 62% of the total, aquatic macrophytes accounted for 34%, and the remaining 4% was associated with periphyton and phytoplankton. Approximately 10% of the total is the amount of organic carbon exported annually by the Amazon River according to Richey et al. (1990), methane emission is about 2.5% according to Melack et al. (2004), and a similar percent is estimated to be buried in sediments. The remaining portion is close to being sufficient to fuel the respiration that results in the degassing of 210 ± 60 Tg C a-1 as carbon dioxide from the rivers and floodplains according to Richey et al. (2002). Variations in the distribution and inundation of floodplain habitats play a key role in the ecology and production of many commercially important freshwater fish. A significant relationship exists between maximum inundated area lagged by 5 years and annual yield of omnivores.

  7. Effects of Potential Future Warming on Runoff in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Mastin, Mark C.

    2008-01-01

    The Bureau of Reclamation has implemented a long-term planning study of potential water-storage alternatives in the Yakima River Basin, which includes planning for climate change effects on available water resources in the basin. Previously constructed watershed models for the Yakima River Basin were used to simulate changes in unregulated streamflow under two warmer climate scenarios, one representing a 1 degree C increase in the annual air temperature over current conditions (plus one scenario) and one representing a 2 degree C increase in the annual air temperature over current conditions (plus two scenario). Simulations were done for water years 1981 through 2005 and the results were compared to simulated unregulated runoff for the same period using recorded daily precipitation, and minimum and maximum air temperatures (base conditions). Precipitation was not altered for the two warmer climate change scenarios. Simulated annual runoff for the plus one and plus two scenarios decreased modestly from the base conditions, but the seasonal distribution and the general pattern of runoff proved to be highly sensitive to temperature changes throughout the basin. Seasonally increased runoff was simulated during the late autumn and winter months for both the plus one and plus two scenarios compared to base conditions. Comparisons at six principal regulatory locations in the basin showed that the maximum percentage increases in runoff over the base conditions during December to March varied from 24 to 48 percent for the plus one scenario and 59 to 94 percent for the plus two scenario. During late spring and summer months, significantly decreased runoff was simulated at these sites for both scenarios compared to base conditions. Simulated maximum decreases in runoff occurred during June and July, and the changes ranged from -22 to -51 percent for the plus one scenario and -44 to -76 percent for the plus two scenario. Differences in total annual runoff at these sites ranged from -1.4 to -3.9 percent for the plus one scenario and from -2.5 to -8.2 percent for the plus two scenario. The percent change of the monthly mean runoff for both scenarios from the base conditions at many points in the basin will be used in a water-management model developed by the Bureau of Reclamation to assess various storage alternatives.

  8. 34 CFR 674.12 - Loan maximums.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM General Provisions § 674.12 Loan maximums. (a) The maximum annual amount of Federal Perkins Loans and NDSLs an eligible student may borrow is— (1) $5,500 for... professional student. (b) The aggregate unpaid principal amount of all Federal Perkins Loans and NDSLs received...

  9. Annual maximum and minimum lake levels for Indiana, 1942-85

    USGS Publications Warehouse

    Fowler, Kathleen K.

    1988-01-01

    Indiana has many natural and manmade lakes. Lake-level data are available for 217 lakes. These data were collected during water years 1942-85 by use of staff gages and, more recently, continuous recorders. The period of record at each site ranges from 1 to 43 years. Data from the lake stations have been compiled, and maximum and minimum lake levels for each year of record are reported. In addition to annual maximum and minimum lake levels, each lake station is described by gage location, surface area, drainage area, period of record, datum of gage, gage type, established legal level, lake level control, inlets and outlets, and extremes for the period of record. 

  10. Floods in Central Texas, September 7-14, 2010

    USGS Publications Warehouse

    Winters, Karl E.

    2012-01-01

    Severe flooding occurred near the Austin metropolitan area in central Texas September 7–14, 2010, because of heavy rainfall associated with Tropical Storm Hermine. The U.S. Geological Survey, in cooperation with the Upper Brushy Creek Water Control and Improvement District, determined rainfall amounts and annual exceedance probabilities for rainfall resulting in flooding in Bell, Williamson, and Travis counties in central Texas during September 2010. We documented peak streamflows and the annual exceedance probabilities for peak streamflows recorded at several streamflow-gaging stations in the study area. The 24-hour rainfall total exceeded 12 inches at some locations, with one report of 14.57 inches at Lake Georgetown. Rainfall probabilities were estimated using previously published depth-duration frequency maps for Texas. At 4 sites in Williamson County, the 24-hour rainfall had an annual exceedance probability of 0.002. Streamflow measurement data and flood-peak data from U.S. Geological Survey surface-water monitoring stations (streamflow and reservoir gaging stations) are presented, along with a comparison of September 2010 flood peaks to previous known maximums in the periods of record. Annual exceedance probabilities for peak streamflow were computed for 20 streamflow-gaging stations based on an analysis of streamflow-gaging station records. The annual exceedance probability was 0.03 for the September 2010 peak streamflow at the Geological Survey's streamflow-gaging stations 08104700 North Fork San Gabriel River near Georgetown, Texas, and 08154700 Bull Creek at Loop 360 near Austin, Texas. The annual exceedance probability was 0.02 for the peak streamflow for Geological Survey's streamflow-gaging station 08104500 Little River near Little River, Texas. The lack of similarity in the annual exceedance probabilities computed for precipitation and streamflow might be attributed to the small areal extent of the heaviest rainfall over these and the other gaged watersheds.

  11. Estimation and prediction of maximum daily rainfall at Sagar Island using best fit probability models

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Choudhury, B. U.

    2015-07-01

    Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.

  12. 78 FR 18249 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Annual Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... limit (ACL), harvest guideline (HG), annual catch target (ACT) and associated annual reference points... Coastal Pelagic Species (CPS) Fishery Management Plan (FMP). The 2012-2013 ACL or maximum HG for Pacific... difference between the ACL and ACT (10,128 mt) as a set aside for incidental landings in other CPS fisheries...

  13. 77 FR 36192 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Annual Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... limit (ACL), harvest guideline (HG), annual catch target (ACT) and associated annual reference points... year season of July 1, 2011, through June 30, 2012. NMFS establishes the ACL, HG, and ACT under the... off the Pacific coast. The ACL (or maximum HG) for the 2011- 2012 Pacific mackerel fishing year is 40...

  14. Collective dose estimates by the marine food pathway from liquid radioactive wastes dumped in the Sea of Japan.

    PubMed

    Togawa, O; Povinec, P P; Pettersson, H B

    1999-09-30

    IAEA-MEL has been engaged in an assessment programme related to radioactive waste dumping by the former USSR and other countries in the western North Pacific Ocean and its marginal seas. This paper focuses on the Sea of Japan and on estimation of collective doses from liquid radioactive wastes. The results from the Japanese-Korean-Russian joint expeditions are summarized, and collective doses for the Japanese population by the marine food pathway are estimated from liquid radioactive wastes dumped in the Sea of Japan and compared with those from global fallout and natural radionuclides. The collective effective dose equivalents by the annual intake of marine products caught in each year show a maximum a few years after the disposals. The total dose from all radionuclides reaches a maximum of 0.8 man Sv in 1990. Approximately 90% of the dose derives from 137Cs, most of which is due to consumption of fish. The total dose from liquid radioactive wastes is approximately 5% of that from global fallout, the contribution of which is below 0.1% of that of natural 210Po.

  15. An analysis of annual maximum streamflows in Terengganu, Malaysia using TL-moments approach

    NASA Astrophysics Data System (ADS)

    Ahmad, Ummi Nadiah; Shabri, Ani; Zakaria, Zahrahtul Amani

    2013-02-01

    TL-moments approach has been used in an analysis to determine the best-fitting distributions to represent the annual series of maximum streamflow data over 12 stations in Terengganu, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: generalized pareto (GPA), generalized logistic, and generalized extreme value distribution. The influence of TL-moments on estimated probability distribution functions are examined by evaluating the relative root mean square error and relative bias of quantile estimates through Monte Carlo simulations. The boxplot is used to show the location of the median and the dispersion of the data, which helps in reaching the decisive conclusions. For most of the cases, the results show that TL-moments with one smallest value was trimmed from the conceptual sample (TL-moments (1,0)), of GPA distribution was the most appropriate in majority of the stations for describing the annual maximum streamflow series in Terengganu, Malaysia.

  16. Airborne pollen of Olea in five regions of Portugal.

    PubMed

    Ribeiro, Helena; Cunha, Mário; Abreu, Ilda

    2005-01-01

    The aim of this work was to study spatial and temporal distribution of Olea europeae airborne pollen in different Portuguese regions: Reguengos de Monsaraz (south); Bairrada (west); Braga (northwest); Valença do Douro and Foz Côa (north-east). Airborne pollen sampling was conducted from 1998-2003 using "Cour" type samplers located in each region. The main pollen season (MPS) of Olea lasted on average 36 days and occurred from late April until middle-to-end of June. During the studied period, inter-annual variations among and within regions, concerning the total annual pollen counts and the beginning, peak and ending dates of the MPS, were reported. Reguengos de Monsaraz and Bairrada registered the earliest MPS starting date, followed by Valença do Douro and Foz-Côa, and the latest date was verified in Braga that also had the shortest MPS. Reguengos de Monsaraz presented the longest MPS with the highest differences in the beginning and ending dates, but minimum differences in the dates of the maximum pollen peak. Our results showed an increase in the Olea annual pollen index, from north to south, and from the west to the east regions of the country.

  17. MOnthly TEmperature DAtabase of Spain 1951-2010: MOTEDAS. (1) Quality control

    NASA Astrophysics Data System (ADS)

    Peña-Angulo, Dhais; Cortesi, Nicola; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; González-Hidalgo, José Carlos

    2014-05-01

    The HIDROCAES project (Impactos Hidrológicos del Calentamiento Global en España, Spanish Ministery of Research CGL2011-27574-C02-01) is focused on the high resolution in the Spanish continental land of the warming processes during the 1951-2010. To do that the Department of Geography (University of Zaragoza, Spain), the Hydrometeorological Service (Brno Division, Chezck Republic) and the ISAC-CNR (Bologna, Italy) are developing the new dataset MOTEDAS (MOnthly TEmperature DAtabase of Spain), from which we present a collection of poster to show (1) the general structure of dataset and quality control; (2) the analyses of spatial correlation of monthly mean values of maximum (Tmax) and minimum (Tmin temperature; (3) the reconstruction processes of series and high resolution grid developing; (4) the first initial results of trend analyses of annual, seasonal and monthly range mean values. MOTEDAS has been created after exhaustive analyses and quality control of the original digitalized data of the Spanish National Meteorological Agency (Agencia Estatal de Meteorología, AEMET). Quality control was applied without any prior reconstruction, i.e. on original series. Then, from the total amount of series stored at AEMet archives (more than 4680) we selected only those series with at least 10 years of data (i.e. 120 months, 3066 series) to apply a quality control and reconstruction processes (see Poster MOTEDAS 3). Length of series was Tmin, upper and lower thresholds of absolute data, etc), and by comparison with reference series (see Poster MOTEDAS 3, about reconstruction). Anomalous data were considered when difference between Candidate and Reference series were higher than three times the interquartile distance. The total amount of monthly suspicious data recognized and discarded at the end of this analyses was 7832 data for Tmin, and 8063 for Tmax data; they represent less than 0,8% of original total monthly data, for both Tmax and Tmin. No spatial pattern was detected in the suspicious data; month by month Tmin shows maximum detection in summer months, while Tmax does not show any monthly pattern. Secondly, the homogeneity analyses was performed on the list of series free of anomalous data by using an arrays of test (SNHT, Bivariate, T de Student and Pettit) after new reference series calculated with data free of anomalous. The tests were applied at monthly, seasonal and annual scale (i.e. 17 times per method). Statistical inhomogeneity detections were accepted as follows: Three annual detections (monthly, seasonal, annual) must be found in SNHT or Bivariate test. The total amount of detections by the four tests was greater than 5% of the total possible detection per year. Before any correction we examined the Candidate and reference series chart. Proclim and Anclim software were used during all the processes The total amount of series affected by inhomogeneities was 1013 (Tmax) and 1011 (Tmin), i.e. 1/3 of original series was considered as inhomogeneous. We notice that identified inhomogeneous series in Tmax and Tmin usually do not coincide. This apparently small amount of series compared with previous work could be originated because of the mean length of series is around 15-20 years. References. Stepánek P. 2008a. AnClim - software for time series analysis (for Windows 95/NT). Department of Geography, Faculty of Natural Sciences, MU, Brno, 1.47 B. Stepánek P.. 2008b. ProClimDB - Software for Processing Climatological Datasets. CHMI, Regional office, Brno.

  18. Constraining continuous rainfall simulations for derived design flood estimation

    NASA Astrophysics Data System (ADS)

    Woldemeskel, F. M.; Sharma, A.; Mehrotra, R.; Westra, S.

    2016-11-01

    Stochastic rainfall generation is important for a range of hydrologic and water resources applications. Stochastic rainfall can be generated using a number of models; however, preserving relevant attributes of the observed rainfall-including rainfall occurrence, variability and the magnitude of extremes-continues to be difficult. This paper develops an approach to constrain stochastically generated rainfall with an aim of preserving the intensity-durationfrequency (IFD) relationships of the observed data. Two main steps are involved. First, the generated annual maximum rainfall is corrected recursively by matching the generated intensity-frequency relationships to the target (observed) relationships. Second, the remaining (non-annual maximum) rainfall is rescaled such that the mass balance of the generated rain before and after scaling is maintained. The recursive correction is performed at selected storm durations to minimise the dependence between annual maximum values of higher and lower durations for the same year. This ensures that the resulting sequences remain true to the observed rainfall as well as represent the design extremes that may have been developed separately and are needed for compliance reasons. The method is tested on simulated 6 min rainfall series across five Australian stations with different climatic characteristics. The results suggest that the annual maximum and the IFD relationships are well reproduced after constraining the simulated rainfall. While our presentation focusses on the representation of design rainfall attributes (IFDs), the proposed approach can also be easily extended to constrain other attributes of the generated rainfall, providing an effective platform for post-processing of stochastic rainfall generators.

  19. Validation of Globsnow-2 Snow Water Equivalent Over Eastern Canada

    NASA Technical Reports Server (NTRS)

    Larue, Fanny; Royer, Alain; De Seve, Danielle; Langlois, Alexandre; Roy, Alexandre R.; Brucker, Ludovic

    2017-01-01

    In Qubec, Eastern Canada, snowmelt runoff contributes more than 30% of the annual energy reserve for hydroelectricity production, and uncertainties in annual maximum snow water equivalent (SWE) over the region are one of the main constraints for improved hydrological forecasting. Current satellite-based methods for mapping SWE over Qubec's main hydropower basins do not meet Hydro-Qubec operational requirements for SWE accuracies with less than 15% error. This paper assesses the accuracy of the GlobSnow-2 (GS-2) SWE product, which combines microwave satellite data and in situ measurements, for hydrological applications in Qubec. GS-2 SWE values for a 30-year period (1980 to 2009) were compared with space- and time-matched values from a comprehensive dataset of in situ SWE measurements (a total of 38,990 observations in Eastern Canada). The root mean square error (RMSE) of the GS-2 SWE product is 94.1+/- 20.3 mm, corresponding to an overall relative percentage error (RPE) of 35.9%. The main sources of uncertainty are wet and deep snow conditions (when SWE is higher than 150 mm), and forest cover type. However, compared to a typical stand-alone brightness temperature channel difference algorithm, the assimilation of surface information in the GS-2 algorithm clearly improves SWE accuracy by reducing the RPE by about 30%. Comparison of trends in annual mean and maximum SWE between surface observations and GS-2 over 1980-2009 showed agreement for increasing trends over southern Qubec, but less agreement on the sign and magnitude of trends over northern Qubec. Extended at a continental scale, the GS-2 SWE trends highlight a strong regional variability.

  20. Trends and annual cycles in soundings of Arctic tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Christiansen, Bo; Jepsen, Nis; Kivi, Rigel; Hansen, Georg; Larsen, Niels; Smith Korsholm, Ulrik

    2017-08-01

    Ozone soundings from nine Nordic stations have been homogenized and interpolated to standard pressure levels. The different stations have very different data coverage; the longest period with data is from the end of the 1980s to 2014. At each pressure level the homogenized ozone time series have been analysed with a model that includes both low-frequency variability in the form of a polynomial, an annual cycle with harmonics, the possibility for low-frequency variability in the annual amplitude and phasing, and either white noise or noise given by a first-order autoregressive process. The fitting of the parameters is performed with a Bayesian approach not only giving the mean values but also confidence intervals. The results show that all stations agree on a well-defined annual cycle in the free troposphere with a relatively confined maximum in the early summer. Regarding the low-frequency variability, it is found that Scoresbysund, Ny Ålesund, Sodankylä, Eureka, and Ørland show similar, significant signals with a maximum near 2005 followed by a decrease. This change is characteristic for all pressure levels in the free troposphere. A significant change in the annual cycle was found for Ny Ålesund, Scoresbysund, and Sodankylä. The changes at these stations are in agreement with the interpretation that the early summer maximum is appearing earlier in the year. The results are shown to be robust to the different settings of the model parameters such as the order of the polynomial, number of harmonics in the annual cycle, and the type of noise.

  1. 5 CFR 9701.312 - Maximum rates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Maximum rates. 9701.312 Section 9701.312... MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may not pay any employee an annual rate of basic pay in excess of the rate for level III of the Executive...

  2. 5 CFR 9701.312 - Maximum rates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Maximum rates. 9701.312 Section 9701.312... MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may not pay any employee an annual rate of basic pay in excess of the rate for level III of the Executive...

  3. 5 CFR 9701.312 - Maximum rates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Maximum rates. 9701.312 Section 9701.312... MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may not pay any employee an annual rate of basic pay in excess of the rate for level III of the Executive...

  4. Variability of maximum systolic amplitude of ΔZ/Δt curve in pregnancy. Perennial observations

    NASA Astrophysics Data System (ADS)

    Ilyin, I.; Karpov, A.; Korotkova, M.

    2010-04-01

    Maximum systolic amplitude is quite an important component of the impedance cardiogram ΔZ/Δt curve. Its values make it possible to calculate many hemodynamic indices. Therefore it is necessary to keep informed about monthly, annual and perennial maximum systolic amplitude trend. We can produce the measuring data of the maximum systolic amplitude for a fifteen-year period (from 1994 to 2009). The impedance cardiograms were obtained with the help of an electric impedance analyzer "RA-5" (1 mA, 70 kHz) with disk ECG electrodes. The data analyzed were taken from the pregnant women with non-complicated pregnancy (n=5709). We have analyzed the average monthly and annual changes of the maximum systolic amplitude ΔZ/Δt curve. It allowed us to reveal the six-year periodicity of the maximum systolic amplitude changes. There were discovered statistically significant peak values difference of the amplitude (p>0.001). The data obtained should be taken into consideration when using impedance cardiography in clinical practice. The article is supplied with tables and diagrams.

  5. 75 FR 71716 - Agency Information Collection Activities: Proposed Collection; Comment Request, OMB No. 1660-0004...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    .... Estimated Annualized Burden Hours and Costs Number of Avg. burden Total Total Number of responses Total per annual Avg. annual Type of respondent Form name/ form No. respondents per number of response burden (in...

  6. Response of Vegetation Greenness to Climate Change in Meadows of the Sierra Nevada Mountains

    NASA Astrophysics Data System (ADS)

    von Kaenel, M.

    2016-12-01

    Wet meadows in the Sierra Nevada Mountain Range provide crucial ecological and hydrological services such as groundwater recharge and habitat to both wildlife and human communities, yet they are one of the most at-risk landscapes of the Sierra Nevada, with 40-60% of meadows impacted by degradation. These meadows also face the threat of global climate warming, which will bring earlier snowmelt and a greater proportion of precipitation as rain rather than snow in the Sierra Nevada, leading to shifts in the hydrology that governs meadow health and function. To assess the vulnerability of meadows to potential climate-driven degradation, this research relied on remote sensing to track maximum annual vegetation greenness as an indicator for vegetation health and consequentially meadow function in 2,512 Sierra Nevada meadows from 1989 to 2015, and correlated these fluctuations with changes in local climate. Peak snow water content, April 1st snowpack depth, and total annual precipitation are all positively correlated with maximum meadow greenness, with precipitation being the best predictor of greenness. The extent to which meadow greenness varies with changes in climate differs significantly across elevation, latitude, vegetation type, and dominant rock type. Based on data-derived sensitivities, I conclude that restoration should be prioritized in grassland meadows and meadows at high elevations, due to their high vulnerability to changes in climate and a high risk of global warming induced hydrological shifts.

  7. Mercury in Indiana watersheds: retrospective for 2001-2006

    USGS Publications Warehouse

    Risch, Martin R.; Baker, Nancy T.; Fowler, Kathleen K.; Egler, Amanda L.; Lampe, David C.

    2010-01-01

    Information about total mercury and methylmercury concentrations in water samples and mercury concentrations in fish-tissue samples was summarized for 26 watersheds in Indiana that drain most of the land area of the State. Mercury levels were interpreted with information on streamflow, atmospheric mercury deposition, mercury emissions to the atmosphere, mercury in wastewater, and landscape characteristics. Unfiltered total mercury concentrations in 411 water samples from streams in the 26 watersheds had a median of 2.32 nanograms per liter (ng/L) and a maximum of 28.2 ng/L. When these concentrations were compared to Indiana water-quality criteria for mercury, 5.4 percent exceeded the 12-ng/L chronic-aquatic criterion, 59 percent exceeded the 1.8-ng/L Great Lakes human-health criterion, and 72.5 percent exceeded the 1.3-ng/L Great Lakes wildlife criterion. Mercury concentrations in water were related to streamflow, and the highest mercury concentrations were associated with the highest streamflows. On average, 67 percent of total mercury in streams was in a particulate form, and particulate mercury concentrations were significantly lower downstream from dams than at monitoring stations not affected by dams. Methylmercury is the organic fraction of total mercury and is the form of mercury that accumulates and magnifies in food chains. It is made from inorganic mercury by natural processes under specific conditions. Unfiltered methylmercury concentrations in 411 water samples had a median of 0.10 ng/L and a maximum of 0.66 ng/L. Methylmercury was a median 3.7 percent and maximum 64.8 percent of the total mercury in 252 samples for which methylmercury was reported. The percentages of methylmercury in water samples were significantly higher downstream from dams than at other monitoring stations. Nearly all of the total mercury detected in fish tissue was assumed to be methylmercury. Fish-tissue samples from the 26 watersheds had wet-weight mercury concentrations that exceeded the 0.3 milligram per kilogram (mg/kg) U.S. Environmental Protection Agency (USEPA) methylmercury criterion in 12.4 percent of the 1,731 samples. The median wet-weight concentration in the fish-tissue samples was 0.13 mg/kg, and the maximum was 1.07 mg/kg. A coarse-scale analysis of all fish-tissue data in each watershed and a fine-scale analysis of data within 5 kilometers (km) of the downstream end of each watershed showed similar results overall. Mercury concentrations in fish-tissue samples were highest in the White River watershed in southern Indiana and the Fall Creek watershed in central Indiana. In fish-tissue samples within 5 km of the downstream end of a watershed, the USEPA methylmercury criterion was exceeded by 45 percent of mercury concentrations from the White River watershed and 40 percent of the mercury concentration from the Fall Creek watershed. A clear relation between mercury concentrations in fish-tissue samples and methylmercury concentrations in water was not observed in the data from watersheds in Indiana. Average annual atmospheric mercury wet-deposition rates were mapped with data at 156 locations in Indiana and four surrounding states for 2001-2006. These maps revealed an area in southeastern Indiana with high mercury wet-deposition rates-from 15 to 19 micrograms per square meter per year (ug/m2/yr). Annual atmospheric mercury dry-deposition rates were estimated with an inferential method by using concentrations of mercury species in air samples at three locations in Indiana. Mercury dry deposition-rates were 5.6 to 13.6 ug/m2/yr and were 0.49 to 1.4 times mercury wet-deposition rates. Total mercury concentrations were detected in 96 percent of 402 samples of wastewater effluent from 50 publicly owned treatment works in the watersheds; the median concentration was 3.0 ng/L, and the maximum was 88 ng/L. When these concentrations were compared to Indiana water-quality criteria for mercury, 12 percent exceeded the 12-n

  8. Wood Energy Potential in Northwestern South Carolina

    Treesearch

    James W. McMinn

    1986-01-01

    The quantity of unused wood in an Ill-county area in northwestern South Carolina was projected to be more than 16 million tons annually. Wood that is unsuitable for products other than fuel amounts to nearly 9 million tons annually.The most likely energy demand by industrial plants that are good candidates for wood fuel systems is 1.5 million tons annually.Maximum...

  9. Historical view and future demand for knee arthroplasty in Sweden

    PubMed Central

    Rolfson, Ola; W-Dahl, Annette; Garellick, Göran; Sundberg, Martin; Kärrholm, Johan; Robertsson, Otto

    2015-01-01

    Background and purpose The incidence of knee osteoarthritis will most likely increase. We analyzed historical trends in the incidence of knee arthroplasty in Sweden between 1975 and 2013, in order to be able to provide projections of future demand. Patients and methods We obtained information on all knee arthroplasties in Sweden in the period 1975–2013 from the Swedish Knee Arthroplasty Register, and used public domain data from Statistics Sweden on the evolution of and forecasts for the Swedish population. We forecast the incidence, presuming the existence of a maximum incidence. Results We found that the incidence of knee arthroplasty will continue to increase until a projected upper incidence level of about 469 total knee replacements per 105 Swedish residents aged 40 years and older is reached around the year 2130. In 2020, the estimated incidence of total knee arthroplasties per 105 Swedish residents aged 40 years and older will be 334 (95% prediction interval (PI): 281–374) and in 2030 it will be 382 (PI: 308–441). Using officially forecast population growth data, around 17,500 operations would be expected to be performed in 2020 and around 21,700 would be expected to be performed in 2030. Interpretation Today’s levels of knee arthroplasty are well below the expected maximum incidence, and we expect a continued annual increase in the total number of knee arthroplasties performed. PMID:25806653

  10. 78 FR 56995 - Proposed Agency Information Collection Activities; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ...: Businesses. Respondent Universe: 763 railroads. Frequency of Submission: On occasion. Reporting Burden Total annual Average time per Total annual CFR Section Respondent universe responses response burden hours 225... Universe: 763 railroads. Frequency of Submission: On occasion; annually. Reporting Burden Respondent Total...

  11. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    NASA Astrophysics Data System (ADS)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  12. Doses of external exposure in Jordan house due to gamma-emitting natural radionuclides in building materials.

    PubMed

    Al-Jundi, J; Ulanovsky, A; Pröhl, G

    2009-10-01

    The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.

  13. A Simulation of Biological Prosesses in the Equatorial Pacific Warm Pool at 165 deg E

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Murtugudde, Ragu; Signorini, Sergio

    1998-01-01

    A nine-year simulation (1984-1992) of biological processes in the equatorial Pacific Warm Pool is presented. A modified version of the 4-component (phytoplankton, zooplankton, nitrate and ammonium) ecosystem model by McClain et al. (1996) is used. Modifications include use of a spectral model for computation of PAR and inclusion of fecal pellet remineralization and ammonium nitrification. The physical parameters (horizontal and vertical velocities and temperature) required by the ecosystem model were derived from an improved version of the Gent and Cane (1990) ocean general circulation model (Murtugudde and Busalacchi, 1997). Surface downwelling spectral irradiance was estimated using the clear-sky models of Frouin et al. (1989) and Gregg and Carder (1990) and cloud cover information from the International Satellite Cloud Climatology Project (ISCCP). The simulations indicate considerable variability on interannual time scales in all four ecosystem components. In particular, surface chlorophyll concentrations varied by an order of magnitude with maximum values exceeding 0.30 mg/cu m in 1988, 1989, and 1990, and pronounced minimums during 1987 and 1992. The deep chlorophyll maximum ranged between 75 and 125 meters with values occasionally exceeding 0.40 mg/cu m. With the exception of the last half of 1988, surface nitrate was always near depletion. Ammonium exhibited a subsurface maximum just below the DCM with concentrations as high as 0.5 mg-atN/cu m . Total integrated annual primary production varied between 40 and 250 gC/sq m/yr with an annual average of 140 gC/sq m/yr. Finally, the model is used to estimate the mean irradiance at the base of the mixed layer, i.e., the penetration irradiance, which was 18 Watts/sq m over the nine year period. The average mixed layer depth was 42 m.

  14. Wind power as an electrical energy source in Illinois

    NASA Astrophysics Data System (ADS)

    Wendland, W. M.

    1982-03-01

    A preliminary estimate of the total wind power available in Illinois was made using available historical data, and projections of cost savings due to the presence of wind-generated electricity were attempted. Wind data at 10 m height were considered from nine different sites in the state, with three years data nominally being included. Wind-speed frequency histograms were developed for day and night periods, using a power law function to extrapolate the 10 m readings to 20 m. Wind speeds over the whole state were found to average over 8 mph, the cut-in point for most wind turbines, for from 40-63% of the time. A maximum of 75% run-time was determined for daylight hours in April-May. A reference 1.8 kW windpowered generator was used in annual demand projections for a reference one family home, using the frequency histograms. The small generator was projected to fulfill from 25-53% of the annual load, and, based on various cost assumptions, exhibited paybacks taking from 14-27 yr.

  15. Occurrence of 222Rn in irrigation water from Wadi Al-Rummah Qassim province, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Taher, Atef; Alashrah, Saleh

    2015-08-01

    Naturally accruing radioactive materials in the environment have received attention since they may be present in high level and pose risk to human health. The present work deals with measuring of 222Rn in irrigation water samples from Wadi Al-Rummah, Qassim province, in central of Saudi Arabia. 222Rn concentrations were measured by RAD7. It was found that the concentration of 222Rn ranged from 2.1 ± 1.2 to 7.2 ± 1.5 BqL-1. These values are below 11.1 BqL-1 the maximum contamination level recommended from the U.S. Environmental Protection Agency. The calculated annual effective dose (AED) ranging from 7.5 to 26.1 µSv/y. It was evident that the total annual effective dose resulting from radon in irrigation groundwater in Wadi Al-Rummah in Qassim area were significantly lower than the recommended limit 1 mSv/y for the public.

  16. Occurrence of {sup 222}Rn in irrigation water from Wadi Al-Rummah Qassim province, Saudi Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Taher, Atef; Alashrah, Saleh

    Naturally accruing radioactive materials in the environment have received attention since they may be present in high level and pose risk to human health. The present work deals with measuring of {sup 222}Rn in irrigation water samples from Wadi Al-Rummah, Qassim province, in central of Saudi Arabia. {sup 222}Rn concentrations were measured by RAD7. It was found that the concentration of {sup 222}Rn ranged from 2.1 ± 1.2 to 7.2 ± 1.5 BqL{sup −1}. These values are below 11.1 BqL{sup −1} the maximum contamination level recommended from the U.S. Environmental Protection Agency. The calculated annual effective dose (AED) ranging frommore » 7.5 to 26.1 µSv/y. It was evident that the total annual effective dose resulting from radon in irrigation groundwater in Wadi Al-Rummah in Qassim area were significantly lower than the recommended limit 1 mSv/y for the public.« less

  17. 75 FR 63889 - Proposed Agency Information Collection Activities; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ...: Railroads. Respondent Universe: Class I Railroads. Frequency of Submission: On occasion. Average time per Total annual Total annual CFR Section Respondent universe Total annual responses response burden hours.... Form Number(s): N/A. Affected Public: Railroads. Respondent Universe: 685 railroads/ 4 locomotive...

  18. 78 FR 18672 - Proposed Agency Information Collection Activities; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... monitoring regulatory compliance. Form Number(s): N/A. Affected Public: Businesses. Respondent Universe: 728 railroads. Frequency of Submission: On occasion. Average time CFR section Respondent universe Total annual... time CFR section Respondent universe Total annual per response Total annual responses (minutes) burden...

  19. An ecosystem-based assessment of hairtail ( Trichiurus lepturus) harvested by multi-gears and management implications in Korean waters

    NASA Astrophysics Data System (ADS)

    Kang, Hee Joong; Zhang, Chang Ik; Lee, Eun Ji; Seo, Young Il

    2015-06-01

    Hairtail ( Trichiurus lepturus) has been traditionally harvested by multi-gear types in the Yellow Sea and the East China Sea, except for the East Sea (Sea of Japan) in Korean waters. Six different fishery types such as offshore stownet fishery, offshore longline fishery, large pair-trawl fishery, large purse seine fishery, large otter trawl fishery and offshore angling fishery target to harvest the hairtail stock accounting for about 90% of the total annual catch. We attempted to develop an ecosystem-based fisheries assessment approach, which determines the optimal allocation of catch quotas and fishing efforts for major fisheries. We conducted standardization of fishing effort for six types of hairtail fisheries using a general linear model (GLM), and then estimated maximum sustainable yield (MSY) and maximum economic yield (MEY). Estimated MSY and MEY for the hairtail stock were estimated as 100,151 mt and 97,485 mt, respectively. In addition, we carried out an ecosystem-based risk analysis to obtain species risk index (SRI), which was applied to adjusting the optimal proportion of fishing effort for six hairtail fisheries as a penalty or an incentive. As a result, fishing effort ratios were adjusted by SRI for the six fisheries types. Also, the total allowable catch (TAC) was estimated as 97,485 mt and the maximum net profit at TAC by the hairtail fisheries was estimated as 778 billion won (USD 765 million).

  20. Behavior of total tropospheric ozone, nitrogen oxide and carbon monoxide column over western Indian region by exploring space based satellite observations

    NASA Astrophysics Data System (ADS)

    Vyas, B. M.; Saxena, Abhishek; Shekhawat, M. S.

    2018-05-01

    Monthly, seasonal and annual variation of major atmospheric pollutant levels, such as Total Tropospheric Ozone (TO), Total NO2 columnar content (TNO2) and Total CO columnar content (TCO) have been presented first time for eleven district sites of Rajasthan state located in the western tropical Indian region. The study is based on collection of above air pollutant data retrieved from space based satellite measurements by exploring OMI and MOPITT data for a three year period from Jan 2009 to December 2012. A clear, distinct seasonal dependence in TO, TCO and TNO2 column content values have been noticed all over selected measuring location. The maximum average seasonal TO is observed in pre-monsoon and their minimum value in the monsoon months. However, in TCO and TNO2 case, the highest TCO and TNO2 level is seen rather in the winter and their respective lowest value in monsoon season. Thus, their seasonal variability of TNO2 and TCO in their ranges have been systematically found to be reduced and obeyed the following descending order, i.e., winter> post-monsoon> pre-monsoon> monsoon seasons. As far as concerned with their annual values, the observed values of all considered atmospheric pollutants are almost found in the same levels with slight discrepancies over their lower air pollutant levels recorded in hot, arid, rural as compared to the prevailing elevated value at urban region. The more detail investigation of comparison of present observations with earlier reported similar studies over other Indian regions and their possible explanation is also discussed.

  1. Seasonality of Carbonate Chemistry and CO2 Flux in a Northwestern Gulf of Mexico estuary

    NASA Astrophysics Data System (ADS)

    Yao, H.; Hu, X.

    2016-02-01

    Estuaries are important CO2 source to the atmosphere and exhibit significant spatial and temporal variability. Currently, relatively little is known regarding the role of subtropical semiarid estuaries in the carbon cycle and their carbonate chemistry. In this study we examined seasonality of carbonate system and CO2 flux in the Mission-Aransas estuary, a shallow subtropical semiarid estuary in the Northwestern Gulf of Mexico, during a one-year period (05/2014-04/2015). This estuary includes three interconnected coastal bays (Aransas, Copano, and Mesquite) that have little direct freshwater input from rivers. Average pH (total scale) was 8.017±0.096 and varied between 7.515 and 8.317. Annual mean total dissolved inorganic carbon (DIC) and total alkalinity (TA) were 2183.2±180.4 µmol kg-1 and 2467.2±206.7 µmol·kg-1, respectively. Both DIC and TA decreased from June to October, 2014 with increasing salinity, then started to increase when salinity decreased after heavy precipitation evens in November, 2014. Contrary to DIC and TA patterns, the highest carbonate saturation state (4.89) with respect to aragonite (Ωaragonite) was observed in August 2014, and the lowest (0.20) in March 2015. Overall, high Ωaragonite (>4.0) occurred in hypersaline seawater (salinity>35). Calculated annual average pCO2 was 487±138 µatm, with the annual high occurring in early summer (May to June, 2014, 544±76 µatm) and annual low at 352±33 µatm in winter (January to February, 2015). During the flooding period from January to April, 2015, DIC and TA decreased dramatically while pCO2 first decreased to below the atmosphere level and then increased with maximum level reaching nearly 1700 µatm, indicating a trophic state transition during the development and relaxation periods of the flood. Average annual CO2 flux in this estuary was estimated to be 7.0±2.0 109g-C·yr-1. The highest CO2 efflux (20.6±10.9 mmol·m-2·d-1) occurred in August, 2014, and this estuary turned to a CO2 sink (-1.9±0.6 mmol·m-2·d-1) briefly in February, 2015.

  2. Water-quality and amphibian population data for Maryland, Washington, D.C., and Virginia, 2001-2004

    USGS Publications Warehouse

    Rice, K.C.; Jung, R.E.

    2004-01-01

    Data on the chemical composition of water and on amphibian populations were collected at least annually from vernal pool and stream sites in Maryland, Washington, D.C., and Virginia, from 2001 through 2004. The data were collected as part of long-term monitoring projects of the Northeast Region of the Amphibian Research and Monitoring Initiative (ARMI) of the U.S. Geological Survey. Water samples were analyzed for temperature, specific conductance, pH, dissolved-oxygen concentration, acid-neutralizing capacity, and concentrations of total Kjeldahl nitrogen and total phosphorus; in 2004, samples also were analyzed for nitrite plus nitrate concentrations and total nitrogen concentrations. Field and laboratory analytical results of water samples and quality-assurance information are presented. Amphibian population data include the presence of amphibian species and the maximum number of egg masses of wood frogs and spotted salamanders at vernal pools, and counts of amphibians made during stream transect and stream quadrat surveys.

  3. Perspectives on pasture versus indoor feeding of dairy cows.

    PubMed

    Knaus, Wilhelm

    2016-01-15

    The dairy industry in many regions of the world has moved towards a high-input/high-output system maximising annual milk production per cow, primarily through increasing concentrate-based total mixed rations fed indoors year round, as opposed to allowing cows to feed on pasture. Pasture-based dairy systems in regions like New Zealand and Ireland are oriented towards maximum milk yield per unit of pasture, which has led to Holstein strains that are 50 to 100 kg lighter, exhibit a higher body condition score, and produce roughly half the annual amount of milk as compared to their Holstein counterparts kept in confinement in North America and Europe. Freedom from hunger might not be guaranteed when high-yielding dairy cows are kept on pasture without any supplemental feed, but at the same time no access to pasture can be considered an animal welfare concern, because pasturing is generally beneficial to the animals' health. On pasture, lighter-weight dairy cows with a medium milk production potential have proven to be superior with regard to feed efficiency and fertility. The year-round indoor feeding of high-yielding dairy cows with total mixed rations containing substantial amounts of human-edible crops from arable land puts global food security at risk and fails to utilise the evolutionary advantages of ruminants. © 2015 Society of Chemical Industry.

  4. Seasonal patterns of weight, hematology, and serum characteristics of free-ranging female white-tailed deer in Minnesota

    USGS Publications Warehouse

    DelGiudice, G.D.; Mech, L.D.; Kunkel, K.E.; Gese, E.M.; Seal, U.S.

    1992-01-01

    Weights, hematology, and serum profIles of white-tailed does in the central Superior National Forest of northeastern Minnesota were examined year-around to determine seasonal patterns of nutritional condition and metabolism. Deer were initially captured by Clover trap or rocket net. Between 15 February 1989 and 23 January 1990, we recaptured 12 adult (> 1.5 years) female deer 1-9 times each (a total of 59 recaptures) using a radio-controlled capture collar. Monthly weights of deer exhibited a cyclic seasonal pattern. Mean weight declined 22 % from February to an annual minimum during May, then steadily increased 45 % to a maximum in October. Seasonal patterns were most evident for hemoglobin concentration, red blood cells, packed cell volume, serum total protein, urea nitrogen, creatinine, the urea N to creatinine ratio, triiodothyronine, cortisol, and potassium. Wide seasonal variations of these characteristics were indicative of shifts in the deer's metabolic physiology. Although seasonal metabolic shifts are partially attributable to an endogenous rhythm, the intensity of, their expression was most likely affected by nutritional changes and concomitant alterations of body condition. Annual changes in seasonal trends of blood characteristics may be useful in investigating nutritional effects of specific environmental and demographic factors. We compare our findings with those reported for deer on ranges farther south.

  5. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.

    PubMed

    Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin

    2018-05-01

    Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km 2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization approach provide a capable method for predicting the aquatic exposure required to support pesticide regulatory decision making. Integr Environ Assess Manag 2018;14:358-368. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  6. 26 CFR 1.457-4 - Annual deferrals, deferral limitations, and deferral agreements under eligible plans.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the next, so that in any single year an employee may have a maximum of four weeks' vacation time. At... agreement providing for the deferral), the value of any unused vacation time from the prior year in excess... amount is the lesser of two times the basic annual limitation ($30,000) or the sum of the basic annual...

  7. 26 CFR 1.457-4 - Annual deferrals, deferral limitations, and deferral agreements under eligible plans.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the next, so that in any single year an employee may have a maximum of four weeks' vacation time. At... agreement providing for the deferral), the value of any unused vacation time from the prior year in excess... amount is the lesser of two times the basic annual limitation ($30,000) or the sum of the basic annual...

  8. 5 CFR 575.507 - What is the maximum extended assignment incentive that may be paid for a period of service?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... greater of— (1) An amount equal to 25 percent of the annual rate of basic pay of the employee at the... periods equals 546 days, and 546 days divided by 365 days equals 1.50 years. ... rate employees who do not have a scheduled annual rate of basic pay, the annual rate in paragraph (a...

  9. Variation of maximum tree height and annual shoot growth of Smith fir at various elevations in the Sygera Mountains, southeastern Tibetan Plateau.

    PubMed

    Wang, Yafeng; Čufar, Katarina; Eckstein, Dieter; Liang, Eryuan

    2012-01-01

    Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan Qi; Saunders, Samuel E.; Bartelt-Hunt, Shannon L., E-mail: sbartelt2@unl.edu

    Highlights: Black-Right-Pointing-Pointer This study evaluates methane and carbon dioxide production after land burial of cattle carcasses. Black-Right-Pointing-Pointer Disposal of animal mortalities is often overlooked in evaluating the environmental impacts of animal production. Black-Right-Pointing-Pointer we quantify annual emissions from cattle carcass disposal in the United States as 1.6 Tg CO{sub 2} equivalents. - Abstract: Approximately 2.2 million cattle carcasses require disposal annually in the United States. Land burial is a convenient disposal method that has been widely used in animal production for disposal of both daily mortalities as well as during catastrophic mortality events. To date, greenhouse gas production after mortalitymore » burial has not been quantified, and this study represents the first attempt to quantify greenhouse gas emissions from land burial of animal carcasses. In this study, anaerobic decomposition of both homogenized and unhomogenized cattle carcass material was investigated using bench-scale reactors. Maximum yields of methane and carbon dioxide were 0.33 and 0.09 m{sup 3}/kg dry material, respectively, a higher methane yield than that previously reported for municipal solid waste. Variability in methane production rates were observed over time and between reactors. Based on our laboratory data, annual methane emissions from burial of cattle mortalities in the United States could total 1.6 Tg CO{sub 2} equivalents. Although this represents less than 1% of total emissions produced by the agricultural sector in 2009, greenhouse gas emissions from animal carcass burial may be significant if disposal of swine and poultry carcasses is also considered.« less

  11. 20 CFR 226.52 - Total annuity subject to maximum.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Total annuity subject to maximum. 226.52... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Railroad Retirement Family Maximum § 226.52 Total annuity subject to maximum. The total annuity amount which is compared to the maximum monthly amount to...

  12. The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999-March 2001). A maximum in water vapor abundance is observed at high latitudes during mid-summer in both hemispheres, reaching a maximum value of approximately 100 pr-micrometer in the north and approximately 50 pr-micrometer in the south. Low water vapor abundance (<5 pr-micrometer) is observed at middle and high latitudes in the fall and winter of both hemispheres. There are large differences in the hemispheric (north versus south) and seasonal (perihelion versus aphelion) behavior of water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually-averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments shows some similar features, but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD and the large latitudinal gradient in annually-averaged water vapor observed by MAWD does not appear in the TES results.

  13. NPP estimation and seasonal change research of Gansu province in northwest China

    NASA Astrophysics Data System (ADS)

    Han, Tao; Wang, Dawei; Hao, Xiaocui; Jiang, Youyan

    2018-03-01

    Based on GIS and remote sensing technology, this paper estimates the NPP of the 2015 year-round and every season of Gansu province in northwest China by using the CASA(Carnegie Ames Stanford Approach) light energy utilization model. The result shows that the total annual NPP of Gansu province gradually decline from southeast to northwest in the space, which is in accordance with the water and heat condition in Gansu province. The results show that the summer NPP in Gansu Province is the maximum in each season. The maximum value of summer NPP in Gansu Province reached 695 (gCm-2•season-1), and the maximum value was 473 in spring, and 288 in the autumn, and the NPP in the winter in Gansu province were under 60. The fluctuation range of NPP value is large, this is due to the diversity of ecosystem types in Gansu province, including desert, grassland, farmland and forest, among them, the grassland area is the largest, and the grassland type is very diverse, the grassland coverage is obviously different, especially the low coverage grassland growth is affected by precipitation and temperature and other meteorological factors obviously.

  14. Stature and body weight growth during adolescence based on longitudinal data of Japanese children born during World War II.

    PubMed

    Ashizawa, K; Takahashi, C; Yanagisawa, S

    1978-09-01

    Longitudinal survey data of stature and body weight from age 7 to 17 were obtained for 100 boys and 100 girls during World War II. The growth rates and the average annual increments were compared with those of children born after the war. Growth attained at age 7 as a percentage of that at age 17 is larger in children of the control group, presumably as a result of an improved environment affecting the growth increment. The age at maximum velocity is six months to one year earlier for the current group of children. Although the maximum velocities for both items and sexes are nearly the same in the groups compared, the total increments are larger in the current group of children. Age, distance, and maximum velocity at adolescent growth spurt were obtained for each child. The mean values were compared according to growth patterns and growth attained at age 7. The "increasing type" growth group has the highest velocity at the greatest distance and the oldest age for stature. Children who were taller or heavier at age 7 have velocity peaks with greater distances.

  15. ASSESSMENT OF RADON IN SOIL AND WATER IN DIFFERENT REGIONS OF KOLHAPUR DISTRICT, MAHARASHTRA, INDIA.

    PubMed

    Raste, P M; Sahoo, B K; Gaware, J J; Sharma, Anil; Waikar, M R; Shaikh, A A; Sonkawade, R G

    2018-03-19

    Researchers have already established that inhalation of high radon concentration is hazardous to human health. Radon concentration has been measured in water and soil, in various part of Kolhapur district has been carried out by the AQTEK Smart RnDuo which is an active device technique. The observed minimum value of the radon mass exhalation rate of the soil is 13.16 ± 0.83 mBq/kg/h and maximum is 35.11 ± 1.84 mBq/kg/h. The minimum value of the Radon concentration in water is 0.33 ± 0.052 Bq/L and maximum is 7.32 ± 0.078 Bq/L. These values of radon concentration are below the action of recommended level by the USEPA, which is set as the maximum contaminant level of 11.1-148 Bq/L of radon in drinking water. Total annual effective dose rate of water is 11 μSv/y. The purpose of present study is to assess radiological risk from consumption of water that provide in Kolhapur district and to evaluate the radon mass exhalation rate of soil in few places of Kolhapur district.

  16. 2016 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2015–October 31, 2016. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019. This report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Permit required groundwater monitoring data • Status of compliance activities • Issues • Discussion of the facility’s environmental impacts. Duringmore » the 2016 permit year, 180.99 million gallons of wastewater were discharged to the Cold Waste Ponds. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest in well USGS-065, which is the closest downgradient well to the Cold Waste Ponds. Sulfate and total dissolved solids concentrations decrease rapidly as the distance downgradient from the Cold Waste Ponds increases. Although concentrations of sulfate and total dissolved solids are significantly higher in well USGS-065 than in the other monitoring wells, both parameters remained below the Ground Water Quality Rule Secondary Constituent Standards in well USGS-065. The facility was in compliance with the Reuse Permit during the 2016 permit year.« less

  17. Diagnostic reliability of the cervical vertebral maturation method and standing height in the identification of the mandibular growth spurt.

    PubMed

    Perinetti, Giuseppe; Contardo, Luca; Castaldo, Attilio; McNamara, James A; Franchi, Lorenzo

    2016-07-01

    To evaluate the capability of both cervical vertebral maturation (CVM) stages 3 and 4 (CS3-4 interval) and the peak in standing height to identify the mandibular growth spurt throughout diagnostic reliability analysis. A previous longitudinal data set derived from 24 untreated growing subjects (15 females and nine males,) detailed elsewhere were reanalyzed. Mandibular growth was defined as annual increments in Condylion (Co)-Gnathion (Gn) (total mandibular length) and Co-Gonion Intersection (Goi) (ramus height) and their arithmetic mean (mean mandibular growth [mMG]). Subsequently, individual annual increments in standing height, Co-Gn, Co-Goi, and mMG were arranged according to annual age intervals, with the first and last intervals defined as 7-8 years and 15-16 years, respectively. An analysis was performed to establish the diagnostic reliability of the CS3-4 interval or the peak in standing height in the identification of the maximum individual increments of each Co-Gn, Co-Goi, and mMG measurement at each annual age interval. CS3-4 and standing height peak show similar but variable accuracy across annual age intervals, registering values between 0.61 (standing height peak, Co-Gn) and 0.95 (standing height peak and CS3-4, mMG). Generally, satisfactory diagnostic reliability was seen when the mandibular growth spurt was identified on the basis of the Co-Goi and mMG increments. Both CVM interval CS3-4 and peak in standing height may be used in routine clinical practice to enhance efficiency of treatments requiring identification of the mandibular growth spurt.

  18. Reduced mercury deposition in New Hampshire from 1996 to 2002 due to changes in local sources.

    PubMed

    Han, Young-Ji; Holsen, Thomas M; Evers, David C; Driscoll, Charles T

    2008-12-01

    Changes in deposition of gaseous divalent mercury (Hg(II)) and particulate mercury (Hg(p)) in New Hampshire due to changes in local sources from 1996 to 2002 were assessed using the Industrial Source Complex Short Term (ISCST3) model (regional and global sources and Hg atmospheric reactions were not considered). Mercury (Hg) emissions in New Hampshire and adjacent areas decreased significantly (from 1540 to 880 kg yr(-1)) during this period, and the average annual modeled deposition of total Hg also declined from 17 to 7.0 microg m(-2) yr(-1) for the same period. In 2002, the maximum amount of Hg deposition was modeled to be in southern New Hampshire, while for 1996 the maximum deposition occurred farther north and east. The ISCST3 was also used to evaluate two future scenarios. The average percent difference in deposition across all cells was 5% for the 50% reduction scenario and 9% for the 90% reduction scenario.

  19. Cloth media filtration and membrane microfiltration: serial operation.

    PubMed

    Tooker, Nicholas Brewster; Darby, Jeannie L

    2007-02-01

    A combined system comprised of a cloth media filter and a membrane microfilter operated in series was used to treat secondary effluent. The study objective was to investigate the effect of premembrane filtration on the maximum sustainable membrane flux, transmembrane pressure, and effluent quality. The maximum sustainable time-averaged flux under predefined operating conditions (i.e., 15-minute process cycle, 24-hour chemical cleaning cycle, and 30-day intensive cleaning cycle) was 127 L/m(2)x h. Typical flux rates for secondary effluent ranged from 40 to 55 L/m(2) x h. Effluent water quality from the combined system was high and independent of membrane flux and influent quality. Average membrane effluent water quality values were 0.04 NTU for turbidity and 1.4 mg/L for 5-day biochemical oxygen demand. Neither total nor fecal coliforms were detected. Based on the results presented herein, prefiltration would provide an annualized cost savings of approximately 12% over microfiltration alone for a 3.8 x 10(3) m(3)/d treatment facility.

  20. Sustainable biochar to mitigate global climate change

    PubMed Central

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen

    2010-01-01

    Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722

  1. Role of resolution in regional climate change projections over China

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Wang, Guiling; Gao, Xuejie

    2017-11-01

    This paper investigates the sensitivity of projected future climate changes over China to the horizontal resolution of a regional climate model RegCM4.4 (RegCM), using RCP8.5 as an example. Model validation shows that RegCM performs better in reproducing the spatial distribution and magnitude of present-day temperature, precipitation and climate extremes than the driving global climate model HadGEM2-ES (HadGEM, at 1.875° × 1.25° degree resolution), but little difference is found between the simulations at 50 and 25 km resolutions. Comparison with observational data at different resolutions confirmed the added value of the RCM and finer model resolutions in better capturing the probability distribution of precipitation. However, HadGEM and RegCM at both resolutions project a similar pattern of significant future warming during both winter and summer, and a similar pattern of winter precipitation changes including dominant increase in most areas of northern China and little change or decrease in the southern part. Projected precipitation changes in summer diverge among the three models, especially over eastern China, with a general increase in HadGEM, little change in RegCM at 50 km, and a mix of increase and decrease in RegCM at 25 km resolution. Changes of temperature-related extremes (annual total number of daily maximum temperature > 25 °C, the maximum value of daily maximum temperature, the minimum value of daily minimum temperature in the three simulations especially in the two RegCM simulations are very similar to each other; so are the precipitation-related extremes (maximum consecutive dry days, maximum consecutive 5-day precipitation and extremely wet days' total amount). Overall, results from this study indicate a very low sensitivity of projected changes in this region to model resolution. While fine resolution is critical for capturing the spatial variability of the control climate, it may not be as important for capturing the climate response to homogeneous forcing (in this case greenhouse gas concentration changes).

  2. Rectification of Atmospheric Intraseasonal Oscillations on Seasonal to Interannual Sea Surface Temperature in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Duncan, B.; Han, W.

    2010-12-01

    An ocean general circulation model (the Hybrid Coordinate Ocean Model, HYCOM) is used to examine the rectification of atmospheric intraseasonal oscillations (ISOs) on lower-frequency seasonal to interannual sea surface temperatures (SSTs) in the Indian Ocean (IO). Existing studies have shown that ISOs rectify on low-frequency equatorial surface currents, suggesting that they may also have important impacts on low-frequency SST variability. To evaluate these impacts, a hierarchy of experiments is run with HYCOM that isolates the ocean response to atmospheric forcing by 10-30 day (submonthly), 30-90 day (dominated by the Madden-Julian Oscillation), and 10-90 day (all ISO) events. Other experiments isolate the ocean response to a range of forcing processes including shortwave radiation, precipitation, and winds. Results indicate that ISOs have a non-negligible effect on the seasonal and annual cycles of SST in the Arabian Sea. The maximum seasonal SST variability in the Arabian Sea is 1.6°C, while the ISO-forced seasonal SST variability has a maximum of 0.4°C. Because SSTs in the Arabian Sea are already warm (>28°C), a change of 0.4°C can affect convection there. ISOs also have non-negligible effects on the seasonal variability of SST in the south- and west- equatorial IO. The ISO contribution to the seasonal cycle of mixed layer thickness (hmix) in the eastern equatorial IO has a maximum of 9m, while the total hmix seasonal cycle has a maximum of 14m. ISOs affect the hmix seasonal cycle by up to 10m in the Arabian Sea, where the total seasonal cycle has a maximum of 75m. Further work will seek to explain the causes of this observed rectification of ISOs on seasonal SST and mixed layer variability, and to extend our results to include interannual timescales.

  3. 78 FR 4458 - Proposed Information Collection Request Submitted for Public Comment; Survey Regarding Pension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... for how long they will need to keep working, their financial goals for retirement, the basis for... information. OMB Number: 1210-NEW. Respondents: 2,950. Number of Annual Responses: 2,950. Total Burden Hours: 945 hours. Total Annualized Capital/Startup Costs: $0. Total Annual Costs: $244,800. Description: The...

  4. Twenty years of radiation sterilization in Croatia

    NASA Astrophysics Data System (ADS)

    Ražem, Dus̆an

    2004-09-01

    The development of radiation processing in Croatia is described from its inception 20 years ago up to the present time. Annual throughputs of treated materials are given by the categories of materials and pertaining volumes. The pasteurization of hard gelatine capsules occured during the early stages, while sterilization of disposable medical supplies has been dominant in the later stages. Irradiation of foods and of cosmetics and toiletries has been a minor fraction of the total throughput. Since the recovery of everyday life and economy of the country after the war, the total throughput has increased steadily to reach 13,000 m 3 kGy in 2002, 90% of which are medical supplies. Estimates of the present maximum capacity of 30,000 m 3 kGy and of future needs indicate that the present rate of growth could be sustained for the next several years only, unless a major upgrading is undertaken. An estimate of potential future needs is made.

  5. Summary of annual mean, maximum, minimum, and L-scale statistics of daily mean streamflow for 712 U.S. Geological Survey streamflow-gaging Stations in Texas Through 2003

    USGS Publications Warehouse

    Asquith, William H.; Vrabel, Joseph; Roussel, Meghan C.

    2007-01-01

    Analysts and managers of surface-water resources might have interest in selected statistics of daily mean streamflow for U.S. Geological Survey (USGS) streamflow-gaging stations in Texas. The selected statistics are the annual mean, maximum, minimum, and L-scale of daily meanstreamflow. Annual L-scale of streamflow is a robust measure of the variability of the daily mean streamflow for a given year. The USGS, in cooperation with the Texas Commission on Environmental Quality, initiated in 2006a data and reporting process to generate annual statistics for 712 USGS streamflow-gaging stations in Texas. A graphical depiction of the history of the annual statistics for most active and inactive, continuous-record gaging stations in Texas provides valuable information by conveying the historical perspective of streamflow for the watershed. Each figure consists off our time-series plots of the annual statistics of daily mean streamflow for each streamflow-gaging station. Each of the four plots is augmented with horizontal lines that depict the mean and median annual values of the corresponding statistic for the period of record. Monotonic trends for each of the four annual statistics also are identified using Kendall's T. The history of one or more streamflow-gaging stations could be used in a watershed, river basin, or other regional context by analysts and managers of surface-water resources to guide scientific, regulatory, or other inquiries of streamflow conditions in Texas.

  6. Spatiotemporal distribution and mass loadings of perfluoroalkyl substances in the Yangtze River of China.

    PubMed

    Pan, Chang-Gui; Ying, Guang-Guo; Zhao, Jian-Liang; Liu, You-Sheng; Jiang, Yu-Xia; Zhang, Qian-Qian

    2014-09-15

    A systematic investigation into contamination profiles of eighteen perfluoroalkyl substances (PFASs) in both surface water and sediments of Yangtze River was carried out by using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in summer and winter of 2013. The total concentrations of the PFASs in the water and sediment of Yangtze River ranged from 2.2 to 74.56 ng/L and 0.05 to 1.44 ng/g dry weights (dw), respectively. The PFAS concentrations were correlated to some selected water quality parameters such as pH, total phosphorus (TP), total nitrogen (TN) and conductivity in water, and some sediment properties, such as total organic carbon (TOC), TP, and TN in sediment. The monitoring results for the water and sediment samples showed no obvious seasonal variations. Among the selected 18 PFASs, perfluorooctanoic acid (PFOA) was the dominant PFAS compound found both in water and sediment for the two seasons with its maximum concentration of 18.03 ng/L in water and 0.72 ng/g in sediment, followed by perfluorobutane sulfonic acid (PFBS) with its maximum concentration of 41.9 ng/L in water in Wuhan, whereas the lowest concentrations of PFASs were observed at Poyang lake. The annual loadings of PFOA, perfluorohexanoic acid (PFHxA), PFBS, perfluorooctane sulfonic acid (PFOS) and the total PFASs in the Yangtze River were 6.8 tons, 2.2 tons, 8.2 tons, 0.88 tons, and 20.7 tons, respectively. Wuhan and Er'zhou of Hubei contributed the most amounts of PFASs into the Yangtze River. A correlation was found between some PFASs, for example PFBS and PFOS, which suggests that both of these PFASs originate from common sources in the region. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. User’s manual to update the National Wildlife Refuge System Water Quality Information System (WQIS)

    USGS Publications Warehouse

    Chojnacki, Kimberly A.; Vishy, Chad J.; Hinck, Jo Ellen; Finger, Susan E.; Higgins, Michael J.; Kilbride, Kevin

    2013-01-01

    National Wildlife Refuges may have impaired water quality resulting from historic and current land uses, upstream sources, and aerial pollutant deposition. National Wildlife Refuge staff have limited time available to identify and evaluate potential water quality issues. As a result, water quality–related issues may not be resolved until a problem has already arisen. The National Wildlife Refuge System Water Quality Information System (WQIS) is a relational database developed for use by U.S. Fish and Wildlife Service staff to identify existing water quality issues on refuges in the United States. The WQIS database relies on a geospatial overlay analysis of data layers for ownership, streams and water quality. The WQIS provides summary statistics of 303(d) impaired waters and total maximum daily loads for the National Wildlife Refuge System at the national, regional, and refuge level. The WQIS allows U.S. Fish and Wildlife Service staff to be proactive in addressing water quality issues by identifying and understanding the current extent and nature of 303(d) impaired waters and subsequent total maximum daily loads. Water quality data are updated bi-annually, making it necessary to refresh the WQIS to maintain up-to-date information. This manual outlines the steps necessary to update the data and reports in the WQIS.

  8. Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Saito, Riki J.; Veilleux, Andrea G.; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey L.

    2016-06-28

    This report provides two sets of equations for estimating peak discharge quantiles at annual exceedance probabilities (AEPs) of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for watersheds in Illinois based on annual maximum peak discharge data from 117 watersheds in and near northeastern Illinois. One set of equations was developed through a temporal analysis with a two-step least squares-quantile regression technique that measures the average effect of changes in the urbanization of the watersheds used in the study. The resulting equations can be used to adjust rural peak discharge quantiles for the effect of urbanization, and in this study the equations also were used to adjust the annual maximum peak discharges from the study watersheds to 2010 urbanization conditions.The other set of equations was developed by a spatial analysis. This analysis used generalized least-squares regression to fit the peak discharge quantiles computed from the urbanization-adjusted annual maximum peak discharges from the study watersheds to drainage-basin characteristics. The peak discharge quantiles were computed by using the Expected Moments Algorithm following the removal of potentially influential low floods defined by a multiple Grubbs-Beck test. To improve the quantile estimates, regional skew coefficients were obtained from a newly developed regional skew model in which the skew increases with the urbanized land use fraction. The drainage-basin characteristics used as explanatory variables in the spatial analysis include drainage area, the fraction of developed land, the fraction of land with poorly drained soils or likely water, and the basin slope estimated as the ratio of the basin relief to basin perimeter.This report also provides the following: (1) examples to illustrate the use of the spatial and urbanization-adjustment equations for estimating peak discharge quantiles at ungaged sites and to improve flood-quantile estimates at and near a gaged site; (2) the urbanization-adjusted annual maximum peak discharges and peak discharge quantile estimates at streamgages from 181 watersheds including the 117 study watersheds and 64 additional watersheds in the study region that were originally considered for use in the study but later deemed to be redundant.The urbanization-adjustment equations, spatial regression equations, and peak discharge quantile estimates developed in this study will be made available in the web application StreamStats, which provides automated regression-equation solutions for user-selected stream locations. Figures and tables comparing the observed and urbanization-adjusted annual maximum peak discharge records by streamgage are provided at https://doi.org/10.3133/sir20165050 for download.

  9. Spatial-temporal changes of maximum and minimum temperatures in the Wei River Basin, China: Changing patterns, causes and implications

    NASA Astrophysics Data System (ADS)

    Liu, Saiyan; Huang, Shengzhi; Xie, Yangyang; Huang, Qiang; Leng, Guoyong; Hou, Beibei; Zhang, Ying; Wei, Xiu

    2018-05-01

    Due to the important role of temperature in the global climate system and energy cycles, it is important to investigate the spatial-temporal change patterns, causes and implications of annual maximum (Tmax) and minimum (Tmin) temperatures. In this study, the Cloud model were adopted to fully and accurately analyze the changing patterns of annual Tmax and Tmin from 1958 to 2008 by quantifying their mean, uniformity, and stability in the Wei River Basin (WRB), a typical arid and semi-arid region in China. Additionally, the cross wavelet analysis was applied to explore the correlations among annual Tmax and Tmin and the yearly sunspots number, Arctic Oscillation, Pacific Decadal Oscillation, and soil moisture with an aim to determine possible causes of annual Tmax and Tmin variations. Furthermore, temperature-related impacts on vegetation cover and precipitation extremes were also examined. Results indicated that: (1) the WRB is characterized by increasing trends in annual Tmax and Tmin, with a more evident increasing trend in annual Tmin, which has a higher dispersion degree and is less uniform and stable than annual Tmax; (2) the asymmetric variations of Tmax and Tmin can be generally explained by the stronger effects of solar activity (primarily), large-scale atmospheric circulation patterns, and soil moisture on annual Tmin than on annual Tmax; and (3) increasing annual Tmax and Tmin have exerted strong influences on local precipitation extremes, in terms of their duration, intensity, and frequency in the WRB. This study presents new analyses of Tmax and Tmin in the WRB, and the findings may help guide regional agricultural production and water resources management.

  10. The flushing and exchange of the South China Sea derived from salt and mass conservation

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Bye, John A. T.; You, Yuzhu; Bao, Xianwen; Wu, Dexing

    2010-07-01

    In this paper, we use two kinds of hydrographic data, historical cruise data, Array for Real-time Geostrophic Oceanography (Argo) float data, and atmospheric data to study the water exchange between the South China Sea (SCS) and the Pacific Ocean through the Luzon Strait. The annual mean distributions of temperature and salinity at five different levels in the SCS and the adjacent Pacific Ocean are presented, which indicate the occurrence of active water exchange through the Luzon Strait. The flushing and exchange of the SCS are then determined by the application of salt and mass conservation in a multi-layered thermohaline system, using an estimate of the net rainfall obtained from reanalysis data. The results show that the annual mean flushing time is 44±8 months with an inflow rate of 11±2 Sv (1 Sv=10 6 m 3 s -1), part of which recirculates at a deeper level through the Luzon Strait, the remainder (6±2 Sv) forming the SCS throughflow. The diffusive influx of salt is also estimated and accounts for about 10% of the total influx, and hence advection dominates over diffusion in the water exchange through the Luzon Strait. The seasonal cycle of exchange shows a maximum in autumn and winter of about twice the annual mean rate.

  11. A further contribution to the seasonal variation of weighted mean temperature

    NASA Astrophysics Data System (ADS)

    Ding, Maohua; Hu, Wusheng

    2017-12-01

    The weighted mean temperature Tm is a variable parameter in the Global Navigation Satellite System (GNSS) meteorology and the Askne-Nordius zenith wet delay (ZWD) model. Some parameters about the Tm seasonal variation (e.g. the annual mean value, the annual range, the annual and semi-annual amplitudes, and the long-term trend) were discussed before. In this study, some additional results about the Tm seasonal variation on a global scale were found by using the Tm time series at 309 global radiosonde sites. Periodic signals of the annual and semi-annual variations were detected in these Tm time series by using the Lomb-Scargle periodogram. The annual variation is the main component of the periodic Tm in non-tropical regions, while the annual variation or the semiannual variation can be the main component of the periodic Tm in tropics. The mean annual Tm almost keeps constant with the increasing latitude in tropics, while it decreases with the increasing latitude in non-tropical regions. From a global perspective, Tm has an increasing trend of 0.22 K/decade on average, which may be caused by the global warming effects. The annual phase is almost found in about January for the non-tropical regions of the Southern Hemisphere and in about July for the non-tropical regions of the Northern Hemisphere, but it has no clear symmetry in tropics. Unlike the annual phase, the geographical distributions of semi-annual phase do not follow obvious rules. In non-tropical regions, the maximum and minimum Tm of the seasonal model are usually found in respective summer and winter days while the maximum and minimum Tm are distributed over a whole year but not in any fixed seasons for tropical regions. The seasonal model errors increase with the increasing value of annual amplitude. A primary reason for the irregular seasonal variation in tropics is that Tm has rather small variations in this region.

  12. AN ANNUAL EVALUATION OF THE 2005 RELEASE OF MODELS-3 CMAQ

    EPA Science Inventory

    An annual operation performance evaluation of the 2005 release of Models-3 CMAQ v4.5 has been performed. The poster presented results from the winter and summer season for sulfate, nitrate, ammonium, elemental carbon, organic carbon, PM2.5 mass and AQS 8-hr maximum ozone. Stati...

  13. Descriptive Statistics and Cluster Analysis for Extreme Rainfall in Java Island

    NASA Astrophysics Data System (ADS)

    E Komalasari, K.; Pawitan, H.; Faqih, A.

    2017-03-01

    This study aims to describe regional pattern of extreme rainfall based on maximum daily rainfall for period 1983 to 2012 in Java Island. Descriptive statistics analysis was performed to obtain centralization, variation and distribution of maximum precipitation data. Mean and median are utilized to measure central tendency data while Inter Quartile Range (IQR) and standard deviation are utilized to measure variation of data. In addition, skewness and kurtosis used to obtain shape the distribution of rainfall data. Cluster analysis using squared euclidean distance and ward method is applied to perform regional grouping. Result of this study show that mean (average) of maximum daily rainfall in Java Region during period 1983-2012 is around 80-181mm with median between 75-160mm and standard deviation between 17 to 82. Cluster analysis produces four clusters and show that western area of Java tent to have a higher annual maxima of daily rainfall than northern area, and have more variety of annual maximum value.

  14. Estimation of Reineke and Volume-Based Maximum Size-Density Lines For Shortleaf Pine

    Treesearch

    Thomas B. Lynch; Robert F. Wittwer; Douglas J. Stevenson

    2004-01-01

    Maximum size-density relationships for Reineke's stand density index as well as for a relationship based on average tree volume were fitted to data from more than a decade of annual remeasurements of plots in unthinned naturally occurring shor tleaf pine in southeaster n Oklahoma. Reineke's stand density index is based on a maximum line of the form log(N) = a...

  15. A U.S. Multicenter Study of Recorded Occupational Radiation Badge Doses in Nuclear Medicine.

    PubMed

    Villoing, Daphnée; Yoder, R Craig; Passmore, Christopher; Bernier, Marie-Odile; Kitahara, Cari M

    2018-05-01

    Purpose To summarize occupational badge doses recorded for a sample of U.S. nuclear medicine technologists. Materials and Methods Nine large U.S. medical institutions identified 208 former and current nuclear medicine technologists certified after 1979 and linked these individuals to historic badge dose records maintained by a commercial dosimetry company (Landauer), yielding a total of 2618 annual dose records. The distributions of annual and cumulative occupational doses were described by using summary statistics. Results Between 1992 and 2015, the median annual personal dose equivalent per nuclear medicine technologist was 2.18 mSv (interquartile range [IQR], 1.25-3.47 mSv; mean, 2.69 mSv). Median annual personal dose equivalents remained relatively constant over this period (range, 1.40-3.30 mSv), while maximum values generally increased over time (from 8.00 mSv in 1992 to 13.9 mSv in 2015). The median cumulative personal dose equivalent was 32.9 mSv (IQR, 18.1-65.5 mSv; mean, 51.4 mSv) for 45 technologists who had complete information and remained employed through 2015. Conclusion Occupational radiation doses were well below the established occupational limits and were consistent with those observed for nuclear medicine technologists worldwide and were greater than those observed for nuclear and general medical workers in the United States These results should be informative for radiation monitoring and safety efforts in nuclear medicine departments. © RSNA, 2018 Online supplemental material is available for this article.

  16. Report of the annual yield of the Arkansas River basin for the Arkansas River Basin Compact, Arkansas-Oklahoma,1983 water year

    USGS Publications Warehouse

    Moore, M.A.; Lamb, T.E.

    1984-01-01

    The computed annual yield and deficiency of the subbasins as defined in the Arkansas River Compact, Arkansas-Oklahoma, are given in tables. Actual runoff from the subbasins and depletion caused by major reservoirs in the compact area are also given in tabular form. Monthly, maximum, minimum, and mean discharges are shown for the 14 streamflow stations used in computing annual yield. (USGS)

  17. Funding anatomic pathology research: a retrospective analysis of an intramural funding mechanism.

    PubMed

    McDaniel, Andrew; Fullen, Douglas R; Cho, Kathleen R; Lucas, David R; Giordano, Thomas J; Greenson, Joel; Lieberman, Andrew P; Kunju, Lakshmi P; Myers, Jeffrey L; Roh, Michael H

    2013-09-01

    In 2006, the department of pathology at our institution established an intramural research funding mechanism to support anatomic pathology research projects for faculty and trainee development. A review committee consisting of faculty members with diverse academic interests evaluated applications; proposals were eligible for a maximum award amount of $30 000 per project with a maximum program cost of $150 000 annually. To report our experience based on a retrospective review of the research proposals submitted to the committee since the inception of the Anatomic Pathology Research Fund and evaluate the outcomes of the funded projects. We retrospectively analyzed all project applications that were received by the committee. Outcome data were collected by reviewing progress reports, abstracts for national and international meetings, PubMed search results, and/or direct communication with investigators. To date, a total of 59 individual projects have been awarded funding, for a total amount of $349 792, with an average award amount of $5381 per project. A total of 26 faculty members have secured funding for projects through this mechanism, and 27 resident and fellow trainees have been engaged in the funded projects. Spanning 11 subspecialty disciplines in anatomic pathology, 32 abstracts (54%) have been presented at national meetings and 26 (44%) have been published in the peer-reviewed literature to date. One project generated data used to secure an extramural (R01) grant. Our funding mechanism could serve as a model used by other academic departments to support research activities, thereby fostering faculty development through scholarly activities.

  18. Analysis of meteorological droughts and dry spells in semiarid regions: a comparative analysis of probability distribution functions in the Segura Basin (SE Spain)

    NASA Astrophysics Data System (ADS)

    Pérez-Sánchez, Julio; Senent-Aparicio, Javier

    2017-08-01

    Dry spells are an essential concept of drought climatology that clearly defines the semiarid Mediterranean environment and whose consequences are a defining feature for an ecosystem, so vulnerable with regard to water. The present study was conducted to characterize rainfall drought in the Segura River basin located in eastern Spain, marked by the self seasonal nature of these latitudes. A daily precipitation set has been utilized for 29 weather stations during a period of 20 years (1993-2013). Furthermore, four sets of dry spell length (complete series, monthly maximum, seasonal maximum, and annual maximum) are used and simulated for all the weather stations with the following probability distribution functions: Burr, Dagum, error, generalized extreme value, generalized logistic, generalized Pareto, Gumbel Max, inverse Gaussian, Johnson SB, Log-Logistic, Log-Pearson 3, Triangular, Weibull, and Wakeby. Only the series of annual maximum spell offer a good adjustment for all the weather stations, thereby gaining the role of Wakeby as the best result, with a p value means of 0.9424 for the Kolmogorov-Smirnov test (0.2 significance level). Probability of dry spell duration for return periods of 2, 5, 10, and 25 years maps reveal the northeast-southeast gradient, increasing periods with annual rainfall of less than 0.1 mm in the eastern third of the basin, in the proximity of the Mediterranean slope.

  19. 2015 Arctic Sea Ice Maximum Annual Extent Is Lowest On Record

    NASA Image and Video Library

    2015-03-19

    The sea ice cap of the Arctic appeared to reach its annual maximum winter extent on Feb. 25, according to data from the NASA-supported National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.61 million square miles (14.54 million square kilometers), this year’s maximum extent was the smallest on the satellite record and also one of the earliest. Read more: 1.usa.gov/1Eyvelz Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. 12 CFR Appendix K to Part 226 - Total Annual Loan Cost Rate Computations for Reverse Mortgage Transactions

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 3 2014-01-01 2014-01-01 false Total Annual Loan Cost Rate Computations for Reverse Mortgage Transactions K Appendix K to Part 226 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED..., App. K Appendix K to Part 226—Total Annual Loan Cost Rate Computations for Reverse Mortgage...

  1. 12 CFR Appendix K to Part 226 - Total Annual Loan Cost Rate Computations for Reverse Mortgage Transactions

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 3 2013-01-01 2013-01-01 false Total Annual Loan Cost Rate Computations for Reverse Mortgage Transactions K Appendix K to Part 226 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED..., App. K Appendix K to Part 226—Total Annual Loan Cost Rate Computations for Reverse Mortgage...

  2. Concentrations, loads, and yields of total phosphorus, total nitrogen, and suspended sediment and bacteria concentrations in the Wister Lake Basin, Oklahoma and Arkansas, 2011-13

    USGS Publications Warehouse

    Buck, Stephanie D.

    2014-01-01

    The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.

  3. Selected approaches to estimate water-budget components of the High Plains, 1940 through 1949 and 2000 through 2009

    USGS Publications Warehouse

    Stanton, Jennifer S.; Qi, Sharon L.; Ryter, Derek W.; Falk, Sarah E.; Houston, Natalie A.; Peterson, Steven M.; Westenbroek, Stephen M.; Christenson, Scott C.

    2011-01-01

    The High Plains aquifer, underlying almost 112 million acres in the central United States, is one of the largest aquifers in the Nation. It is the primary water supply for drinking water, irrigation, animal production, and industry in the region. Expansion of irrigated agriculture throughout the past 60 years has helped make the High Plains one of the most productive agricultural regions in the Nation. Extensive withdrawals of groundwater for irrigation have caused water-level declines in many parts of the aquifer and increased concerns about the long-term sustainability of the aquifer. Quantification of water-budget components is a prerequisite for effective water-resources management. Components analyzed as part of this study were precipitation, evapotranspiration, recharge, surface runoff, groundwater discharge to streams, groundwater fluxes to and from adjacent geologic units, irrigation, and groundwater in storage. These components were assessed for 1940 through 1949 (representing conditions prior to substantial groundwater development and referred to as "pregroundwater development" throughout this report) and 2000 through 2009. Because no single method can perfectly quantify the magnitude of any part of a water budget at a regional scale, results from several methods and previously published work were compiled and compared for this study when feasible. Results varied among the several methods applied, as indicated by the range of average annual volumes given for each component listed in the following paragraphs. Precipitation was derived from three sources: the Parameter-Elevation Regressions on Independent Slopes Model, data developed using Next Generation Weather Radar and measured precipitation from weather stations by the Office of Hydrologic Development at the National Weather Service for the Sacramento-Soil Moisture Accounting model, and precipitation measured at weather stations and spatially distributed using an inverse-distance-weighted interpolation method. Precipitation estimates using these sources, as a 10-year average annual total volume for the High Plains, ranged from 192 to 199 million acre-feet (acre-ft) for 1940 through 1949 and from 185 to 199 million acre-ft for 2000 through 2009. Evapotranspiration was obtained from three sources: the National Weather Service Sacramento-Soil Moisture Accounting model, the Simplified-Surface-Energy-Balance model using remotely sensed data, and the Soil-Water-Balance model. Average annual total evapotranspiration estimated using these sources was 148 million acre-ft for 1940 through 1949 and ranged from 154 to 193 million acre-ft for 2000 through 2009. The maximum amount of shallow groundwater lost to evapotranspiration was approximated for areas where the water table was within 5 feet of land surface. The average annual total volume of evapotranspiration from shallow groundwater was 9.0 million acre-ft for 1940 through 1949 and ranged from 9.6 to 12.6 million acre-ft for 2000 through 2009. Recharge was estimated using two soil-water-balance models as well as previously published studies for various locations across the High Plains region. Average annual total recharge ranged from 8.3 to 13.2 million acre-ft for 1940 through 1949 and from 15.9 to 35.0 million acre-ft for 2000 through 2009. Surface runoff and groundwater discharge to streams were determined using discharge records from streamflow-gaging stations near the edges of the High Plains and the Base-Flow Index program. For 1940 through 1949, the average annual net surface runoff leaving the High Plains was 1.9 million acre-ft, and the net loss from the High Plains aquifer by groundwater discharge to streams was 3.1 million acre-ft. For 2000 through 2009, the average annual net surface runoff leaving the High Plains region was 1.3 million acre-ft and the net loss by groundwater discharge to streams was 3.9 million acre-ft. For 2000 through 2009, the average annual total estimated groundwater pumpage volume from two soil-water-balance models ranged from 8.7 to 16.2 million acre-ft. Average annual irrigation application rates for the High Plains ranged from 8.4 to 16.2 inches per year. The USGS Water-Use Program published estimated total annual pumpage from the High Plains aquifer for 2000 and 2005. Those volumes were greater than those estimated from the two soil-water-balance models. Total groundwater in storage in the High Plains aquifer was estimated as 3,173 million acre-ft prior to groundwater development and 2,907 million acre-ft in 2007. The average annual decrease of groundwater in storage between 2000 and 2007 was 10 million acre-ft per year.

  4. Global-scale high-resolution ( 1 km) modelling of mean, maximum and minimum annual streamflow

    NASA Astrophysics Data System (ADS)

    Barbarossa, Valerio; Huijbregts, Mark; Hendriks, Jan; Beusen, Arthur; Clavreul, Julie; King, Henry; Schipper, Aafke

    2017-04-01

    Quantifying mean, maximum and minimum annual flow (AF) of rivers at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. AF metrics can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict AF metrics based on climate and catchment characteristics. Yet, so far, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. We developed global-scale regression models that quantify mean, maximum and minimum AF as function of catchment area and catchment-averaged slope, elevation, and mean, maximum and minimum annual precipitation and air temperature. We then used these models to obtain global 30 arc-seconds (˜ 1 km) maps of mean, maximum and minimum AF for each year from 1960 through 2015, based on a newly developed hydrologically conditioned digital elevation model. We calibrated our regression models based on observations of discharge and catchment characteristics from about 4,000 catchments worldwide, ranging from 100 to 106 km2 in size, and validated them against independent measurements as well as the output of a number of process-based global hydrological models (GHMs). The variance explained by our regression models ranged up to 90% and the performance of the models compared well with the performance of existing GHMs. Yet, our AF maps provide a level of spatial detail that cannot yet be achieved by current GHMs.

  5. Actividad solar del ciclo 23. Predicción del máximo y fase decreciente utilizando redes neuronales

    NASA Astrophysics Data System (ADS)

    Parodi, M. A.; Ceccatto, H. A.; Piacentini, R. D.; García, P. J.

    Different methods have been proposed in order to predict the maximum amplitude of solar cycles, either as a consequence of the intrinsic importance of this event and because of its relation with solar storms and possible effects upon satellites, communication systems, etc. In this work, a neural network solar activity prediction is presented, measured through the sunspot number (SSN). The 16-units neural network, with a 12:3:1 architecture, was trained in a ``feed-forward" propagation way and learning by the so called ``back propagation rule". The annual mean SSN data in the 1700-1975 and 1987-1998 periods were used as the training set. The solar cycle 21 (1976-1986) was taken as the cross-validation data set. After performing the network training we obtained a prediction of the maximum annual mean for the current solar cycle 23, SSNmax= 135 ±17 at the year 2000, which is 13% smaller than the International Consensus Commitee's mean maximum prediction obtained through ``precursor techniques". On the other hand, our prediction is only about 4% smaller than the Consensus's neural network mean prediction. A ``multiple step" prediction technique was also performed and SSN annual mean predicted values for the near-maximum (from the present year 1999 to beyond the maximum) and the declining activity of solar cycle 23 are presented in this work. The sensibility of predictions is also tested. To do so, we changed the interval width and comparated our results with those of a previous neural network prediction and those of others authors using differents methods.

  6. OCCURRENCE OF HIGH-SPEED SOLAR WIND STREAMS OVER THE GRAND MODERN MAXIMUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mursula, K.; Holappa, L.; Lukianova, R., E-mail: kalevi.mursula@oulu.fi

    2015-03-01

    In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculatemore » the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.« less

  7. 38 CFR 3.27 - Automatic adjustment of benefit rates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.27 Automatic... pension. (Authority: 38 U.S.C. 5312(a)) (b) Parents' dependency and indemnity compensation—maximum annual... the maximum monthly rates of dependency indemnity compensation for parents. (Authority: 38 U.S.C. 5312...

  8. 38 CFR 3.27 - Automatic adjustment of benefit rates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.27 Automatic... pension. (Authority: 38 U.S.C. 5312(a)) (b) Parents' dependency and indemnity compensation—maximum annual... the maximum monthly rates of dependency indemnity compensation for parents. (Authority: 38 U.S.C. 5312...

  9. 38 CFR 3.27 - Automatic adjustment of benefit rates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.27 Automatic... pension. (Authority: 38 U.S.C. 5312(a)) (b) Parents' dependency and indemnity compensation—maximum annual... the maximum monthly rates of dependency indemnity compensation for parents. (Authority: 38 U.S.C. 5312...

  10. 38 CFR 3.27 - Automatic adjustment of benefit rates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.27 Automatic... pension. (Authority: 38 U.S.C. 5312(a)) (b) Parents' dependency and indemnity compensation—maximum annual... the maximum monthly rates of dependency indemnity compensation for parents. (Authority: 38 U.S.C. 5312...

  11. 38 CFR 3.27 - Automatic adjustment of benefit rates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.27 Automatic... pension. (Authority: 38 U.S.C. 5312(a)) (b) Parents' dependency and indemnity compensation—maximum annual... the maximum monthly rates of dependency indemnity compensation for parents. (Authority: 38 U.S.C. 5312...

  12. Age and growth of the mutton hamlet Alphestes afer, with a review of the size and age of sex change among epinephelids.

    PubMed

    Marques, S; Ferreira, B P

    2016-07-01

    This paper presents results on the age, growth and population structure of a small grouper, the mutton hamlet Alphestes afer, and discusses the observed size and age structure patterns in relation to reproductive strategies among the epinephelids. Ages were determined by examination of sectioned otoliths, which showed a distinct pattern of alternating translucent and opaque zones that formed annually, as validated with tetracycline labelling. The von Bertalanffy growth function was adjusted to the length-at-age data of the males and females, but no significant differences were observed between the resulting parameters. The females, however, were older at given sizes and attained larger sizes and ages, with a maximum observed longevity of 13 years and a total length (LT ) of 26 cm, while the males attained maximum longevities of only 10 years and a 22 cm maximum LT . The LT and age range for the sex change was 16-25 cm and 3-11 years. The total mortality rate (Z) was estimated to be 0·55 for females and 0·82 for males. With the males younger and smaller than the females, this species differed from the pattern commonly observed for protogynous epinephelids. Males had slower growth after maturation, probably due to energy allocation to sperm production during sexual development. This study shows that demography is an important tool to understand the pathways for reproductive strategies in grouper populations. © 2016 The Fisheries Society of the British Isles.

  13. Annual Costs of Care for Pediatric Irritable Bowel Syndrome, Functional Abdominal Pain, and Functional Abdominal Pain Syndrome.

    PubMed

    Hoekman, Daniël R; Rutten, Juliette M T M; Vlieger, Arine M; Benninga, Marc A; Dijkgraaf, Marcel G W

    2015-11-01

    To estimate annual medical and nonmedical costs of care for children diagnosed with irritable bowel syndrome (IBS) or functional abdominal pain (syndrome; FAP/FAPS). Baseline data from children with IBS or FAP/FAPS who were included in a multicenter trial (NTR2725) in The Netherlands were analyzed. Patients' parents completed a questionnaire concerning usage of healthcare resources, travel costs, out-of-pocket expenses, productivity loss of parents, and supportive measures at school. Use of abdominal pain related prescription medication was derived from case reports forms. Total annual costs per patient were calculated as the sum of direct and indirect medical and nonmedical costs. Costs of initial diagnostic investigations were not included. A total of 258 children, mean age 13.4 years (±5.5), were included, and 183 (70.9%) were female. Total annual costs per patient were estimated to be €2512.31. Inpatient and outpatient healthcare use were major cost drivers, accounting for 22.5% and 35.2% of total annual costs, respectively. Parental productivity loss accounted for 22.2% of total annual costs. No difference was found in total costs between children with IBS or FAP/FAPS. Pediatric abdominal pain related functional gastrointestinal disorders impose a large economic burden on patients' families and healthcare systems. More than one-half of total annual costs of IBS and FAP/FAPS consist of inpatient and outpatient healthcare use. Netherlands Trial Registry: NTR2725. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Lake Roosevelt Fisheries Evaluation Program; Limnological and Fisheries Monitoring, Annual Report 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chuck; Scofield, Ben; Pavlik, Deanne

    2003-03-01

    A slightly dryer than normal year yielded flows in Lake Roosevelt that were essentially equal to the past ten year average. Annual mean inflow and outflow were 3,160.3 m3/s and 3,063.4 m3/s respectively. Mean reservoir elevation was 387.2 m above sea level at the Grand Coulee Dam forebay. The forebay elevation was below the mean elevation for a total of 168 days. During the first half of the 2000 forebay elevation changed at a rate of 0.121 m/d and during the last half changed at a rate of 0.208 m/d. The higher rate of elevation change earlier in the yearmore » is due to the drawdown to accommodate spring runoff. Mean annual water retention time was 40 days. Annual mean total dissolved gas was 108%. Total dissolved gas was greatest at upriver locations (110% = US/Canada Border annual mean) and decreased moving toward Grand Coulee Dam (106% = Grand Coulee Dam Forebay annual mean). Total dissolved gas was greatest in May (122% reservoir wide monthly mean). Gas bubble trauma was observed in 16 fish primarily largescale suckers and was low in severity. Reservoir wide mean temperatures were greatest in August (19.5 C) and lowest in January (5.5 C). The Spokane River and Sanpoil River Arms experienced higher temperatures than the mainstem reservoir. Brief stratification was observed at the Sanpoil River shore location in July. Warm water temperatures in the Spokane Arm contributed to low dissolved oxygen concentrations in August (2.6 mg/L at 33 m). However, decomposition of summer algal biomass was likely the main cause of depressed dissolved oxygen concentrations. Otherwise, dissolved oxygen profiles were relatively uniform throughout the water column across other sampling locations. Annual mean Secchi depth throughout the reservoir was 5.7 m. Nutrient concentrations were generally low, however, annual mean total phosphorus (0.016 mg/L) was in the mesotrophic range. Annual mean total nitrogen was in the meso-oligotrophic range. Total nitrogen to total phosphorus ratios were large (31:1 annual mean) likely indicating phosphorus limitations to phytoplankton.« less

  15. Summary of Optical-Backscatter and Suspended-Sediment Data, Tomales Bay Watershed, California, Water Years 2004, 2005, and 2006

    USGS Publications Warehouse

    Curtis, Jennifer A.

    2007-01-01

    The U.S. Geological Survey, in cooperation with Point Reyes National Seashore, is studying suspended-sediment transport dynamics in the two primary tributaries to Tomales Bay, Lagunitas Creek and Walker Creek. Suspended-sediment samples and continuous optical backscatter (turbidity) data were collected at three locations during water years 2004?06 (October 1, 2003?September 30, 2006): at two sites in the Lagunitas Creek watershed and at one site in the Walker Creek watershed. Sediment samples were analyzed for suspended-sediment concentration, grain size, and turbidity. Data were used to estimate mean daily and annual seasonal suspended-sediment discharge, which were published in U.S. Geological Survey Annual Water-Data Reports. Data were utilized further in this report to develop field-based optical-backscatter calibration equations, which then were used to derive a continuous time series (15-minute interval) of suspended-sediment concentrations. Sensor fouling and aggradation of the channel bed occurred periodically throughout the project period, resulting in data loss. Although periods of data loss occurred, collection of optical sensor data improved our understanding of suspended-sediment dynamics in the Lagunitas Creek and Walker Creek watersheds by providing continuous time-series storm event data that were analyzed to determine durations of elevated sediment concentrations (periods of time when suspended-sediment concentration was greater than 100 mg/L). Data derived from this project contributed baseline suspended-sediment transport information that will be used to develop and implement sediment total maximum daily loads for Tomales Bay and its tributary watersheds, and provides supporting information for additional total maximum daily loads (pathogens, nutrients, and mercury) and restoration efforts for four federally listed aquatic species that are affected directly by sediment loading in the Tomales Bay watershed. In addition, this project provided an opportunity to evaluate the suitability of using optical data as a surrogate for more traditional labor-intensive methods of measuring suspended-sediment transport in steep coastal watersheds.

  16. FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015

    NASA Astrophysics Data System (ADS)

    Barbarossa, Valerio; Huijbregts, Mark A. J.; Beusen, Arthur H. W.; Beck, Hylke E.; King, Henry; Schipper, Aafke M.

    2018-03-01

    Streamflow data is highly relevant for a variety of socio-economic as well as ecological analyses or applications, but a high-resolution global streamflow dataset is yet lacking. We created FLO1K, a consistent streamflow dataset at a resolution of 30 arc seconds (~1 km) and global coverage. FLO1K comprises mean, maximum and minimum annual flow for each year in the period 1960-2015, provided as spatially continuous gridded layers. We mapped streamflow by means of artificial neural networks (ANNs) regression. An ensemble of ANNs were fitted on monthly streamflow observations from 6600 monitoring stations worldwide, i.e., minimum and maximum annual flows represent the lowest and highest mean monthly flows for a given year. As covariates we used the upstream-catchment physiography (area, surface slope, elevation) and year-specific climatic variables (precipitation, temperature, potential evapotranspiration, aridity index and seasonality indices). Confronting the maps with independent data indicated good agreement (R2 values up to 91%). FLO1K delivers essential data for freshwater ecology and water resources analyses at a global scale and yet high spatial resolution.

  17. Estimating distribution parameters of annual maximum streamflows in Johor, Malaysia using TL-moments approach

    NASA Astrophysics Data System (ADS)

    Mat Jan, Nur Amalina; Shabri, Ani

    2017-01-01

    TL-moments approach has been used in an analysis to identify the best-fitting distributions to represent the annual series of maximum streamflow data over seven stations in Johor, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: Three-parameter lognormal (LN3) and Pearson Type III (P3) distribution. The main objective of this study is to derive the TL-moments ( t 1,0), t 1 = 1,2,3,4 methods for LN3 and P3 distributions. The performance of TL-moments ( t 1,0), t 1 = 1,2,3,4 was compared with L-moments through Monte Carlo simulation and streamflow data over a station in Johor, Malaysia. The absolute error is used to test the influence of TL-moments methods on estimated probability distribution functions. From the cases in this study, the results show that TL-moments with four trimmed smallest values from the conceptual sample (TL-moments [4, 0]) of LN3 distribution was the most appropriate in most of the stations of the annual maximum streamflow series in Johor, Malaysia.

  18. A Closer Look at the Congo and the Lightning Maximum on Earth

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Buechler, D. E.; Lavreau, Johan; Goodman, Steven J.

    2008-01-01

    The global maps of maximum mean annual flash density derived from a decade of observations from the Lightning Imaging Sensor on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite show that a 0.5 degree x 0.5 degree pixel west of Bukavu, Democratic Republic of Congo (latitude 2S, longitude 28E) has the most frequent lightning activity anywhere on earth with an average value in excess of 157 fl/sq km/yr. This pixel has a flash density that is much greater than even its surrounding neighbors. By contrast the maximum mean annual flash rate for North America located in central Florida is only 33 fl/sq km/yr. Previous studies have shown that monthly-seasonal-annual lightning maxima on earth occur in regions dominated by coastal (land-sea breeze interactions) or topographic influences (elevated heat sources, enhanced convergence). Using TRMM, Landsat Enhanced Thematic Mapper, and Shuttle Imaging Radar imagery we further examine the unique features of this region situated in the deep tropics and dominated by a complex topography having numerous mountain ridges and valleys to better understand why this pixel, unlike any other, has the most active lightning on the planet.

  19. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P.W.

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less

  20. Precipitation Extremes in Dynamically Downscaled Climate Scenarios over the Greater Horn of Africa

    NASA Astrophysics Data System (ADS)

    Shiferaw, A. S.; Tadesse, T.; Oglesby, R. J.; Rowe, C. M.

    2017-12-01

    The precipitation extremes were generated over the Greater Horn of Africa (GHA) using the Regional Climate Models (RCMs) simulations from the Coordinated Regional Downscaling Experiment (CORDEX). To assess how well the RCM simulations are capturing the historical observed precipitation extremes, they were compared with the precipitation extremes derived from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS v2). The result shows that RCM simulations have reasonably captured observed patterns of the precipitation extremes (i.e., the pattern correlation is greater than 0.5). However, significant overestimations or underestimations were observed over some localized areas in the region. The study then assessed the projected changes in these precipitation extremes during 2069-2098 and compared to the 1976-2005 period that were both derived from the RCM simulations. Projected changes in total annual precipitation (PRCPTOT), annual number of heavy (>10mm) and very heavy (>20mm) precipitation days by 2069-2098 show a general north-south pattern with a decrease over southern-half and increase over the northern-half of GHA. These changes are often greatest over parts of Somalia, Eritrea, Ethiopian highlands and southern Tanzania. Maximum 1 and 5-day total precipitation in a year and "Simple Daily Precipitation Intensity Index" (ratio of PRCPTOT to rainy days) are projected to increase over majority of GHA, including areas where PRCPTOT is projected to decrease, suggesting fewer but heavier rainy days in the future. Changes in annual sum of daily precipitation above 95th and 99th percentile are not statistically significant except Eritrea and northwestern Sudan/Somalia. Projected changes in consecutive dry days (CDD) suggest longer periods of dryness over majority of GHA. Among these areas, a substantial increases in CDD are located over southern Tanzania and Ethiopian highlands.

  1. Discrepancies between meeting abstracts and subsequent full text publications in hand surgery.

    PubMed

    Theman, Todd A; Labow, Brian I; Taghinia, Amir

    2014-08-01

    Research abstracts presented during the proceedings of an annual meeting are often cited and can influence clinical practice. Prior studies show that roughly 50% of abstracts at American Society for Surgery of the Hand meetings are eventually published. Yet, it is unknown how often the results or conclusions of published studies differ from the podium presentation. The objective of this study was to quantify the differences between abstracts presented during the annual meeting of the American Society for Surgery of the Hand and the resulting manuscripts. We retrospectively reviewed every abstract delivered as a podium presentation at the American Society for Surgery of the Hand annual meeting from 2000 to 2010. We searched the PubMed database for matching publications and compared authorship, country of origin, hypothesis, study design and methodology, changes in study groups or populations, results, and conclusions. Of 798 total abstracts, we analyzed 719 involving the hand, wrist, and brachial plexus. Fifty-six different journals published 393 of the abstracts, for a 49% publication rate. Mean time to publication was 18 months with a median of 14 and maximum of 122 months. There were inconsistencies between the results and/or conclusions in 14% of full-length articles compared with the abstract presented at the meeting. A total of 9% of articles were published with fewer subjects. Authorships changes were noted in 54% of publications. Abstracts represent preliminary investigations and major and minor changes occur before subsequent publication. Caution should be exercised in referencing abstracts or altering clinical practice based on their content. Economic/decision analysis IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. 12 CFR Appendix K to Part 1026 - Total Annual Loan Cost Rate Computations for Reverse Mortgage Transactions

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Total Annual Loan Cost Rate Computations for Reverse Mortgage Transactions K Appendix K to Part 1026 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION TRUTH IN LENDING (REGULATION Z) Pt. 1026, App. K Appendix K to Part 1026—Total Annual Loan Cost...

  3. 12 CFR Appendix K to Part 1026 - Total Annual Loan Cost Rate Computations for Reverse Mortgage Transactions

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Total Annual Loan Cost Rate Computations for Reverse Mortgage Transactions K Appendix K to Part 1026 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION TRUTH IN LENDING (REGULATION Z) Pt. 1026, App. K Appendix K to Part 1026—Total Annual Loan Cost...

  4. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As the magnitude of air temperatures increase in the four basins, peak flows decrease by larger amounts. If precipitation is held constant (no change from historical values), 17 to 26 percent decreases in peak flow occur at the four basins when temperature is increased by 7.2°F. If temperature is held constant, 26 to 38 percent increases in peak flow result from a 15-percent increase in precipitation. The largest decreases in peak flows at the four basins result from 15-percent decreases in precipitation combined with temperature increases of 10.8°F. The largest increases in peak flows generally result from 30-percent increases in precipitation combined with 3.6 °F decreases in temperatures. In many cases when temperature and precipitation both increase, small increases or decreases in annual daily maximum peak flows result. For likely changes projected for the northeastern United States for the middle of the 21st century (temperature increase of 3.6 °F and precipitation increases of 0 to 15 percent), peak-flow changes at the four coastal Maine basins in this study are modeled to be evenly distributed between increases and decreases of less than 25 percent. Peak flows with 50-percent and 1-percent AEPs (equivalent to 2-year and 100-year recurrence interval peak flows, respectively) were calculated for the four basins in the study using the PRMS-modeled annual daily maximum peak flows. Modeled peak flows with 50-percent and 1-percent AEPs with adjusted temperatures and precipitation were compared to unadjusted (historical) modeled values. Changes in peak flows with 50-percent AEPs are similar to changes in annual daily maximum peak flow; changes in peak flows with 1-percent AEPs are similar in pattern to changes in annual daily maximum peak flow, but some of the changes associated with increasing precipitation are much larger than changes in annual daily maximum peak flow. Substantial decreases in maximum annual winter snowpack water equivalent are modeled to occur with increasing air temperatures at the four basins in the study. (Snowpack is the snow on the ground that accumulates during a winter, and water equivalent is the amount of water in a snowpack if it were melted.) The decrease in modeled peak flows with increasing air temperature, given no change in precipitation amount, is likely caused by these decreases in winter snowpack and resulting decreases in snowmelt runoff. This Scientific Investigations Report, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Fact Sheet (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/fs/2013/3021/.

  5. 77 FR 73005 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Annual Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... (NOAA), Commerce. ACTION: Proposed rule. SUMMARY: NMFS proposes to implement the annual catch limit (ACL...) Fishery Management Plan (FMP). The proposed 2012-2013 ACL or maximum HG for Pacific mackerel is 40,514... the fishery attains the ACT, the directed fishery will close, reserving the difference between the ACL...

  6. Flood frequency analysis for a braided river catchment in New Zealand: Comparing annual maximum and partial duration series with varying record lengths

    NASA Astrophysics Data System (ADS)

    Nagy, B. K.; Mohssen, M.; Hughey, K. F. D.

    2017-04-01

    This study addresses technical questions concerning the use of the partial duration series (PDS) within the domain of flood frequency analysis. The recurring questions which often prevent the standardised use of the PDS are peak independence and threshold selection. This paper explores standardised approaches to peak and threshold selection to produce PDS samples with differing average annual exceedances, using six theoretical probability distributions. The availability of historical annual maximum (AMS) data (1930-1966) in addition to systemic AMS data (1967-2015) enables a unique comparison between the performance of the PDS sample and the systemic AMS sample. A recently derived formula for the translation of the PDS into the annual domain, simplifying the use of the PDS, is utilised in an applied case study for the first time. Overall, the study shows that PDS sampling returns flood magnitudes similar to those produced by AMS series utilising historical data and thus the use of the PDS should be preferred in cases where historical flood data is unavailable.

  7. Hydrologic effects of annually diverting 131,000 acre-feet of water from Dillon Reservoir, central Colorado

    USGS Publications Warehouse

    Alley, William M.; Bauer, D.P.; Veenhuis, J.E.; Brennan, Robert

    1979-01-01

    Because of the increased demands for water in eastern Colorado, principally in the urbanizing Denver metropolitan area, increased diversions of water from Dillon Reservoir are planned. Estimates of end-of-month storage in Dillon Reservoir, assuming the reservoir was in place and 131,000 acre-feet of water were diverted from the reservoir each year, were reconstructed by mass balance for the 1931-77 water years. Based on the analysis, the annual maximum end-of-month drawdown below the elevation at full storage would have averaged 54 feet. The maximum end-of-month drawdown below the elevation at full storage would have been 171 feet. The mean-annual discharge-weighted dissolved-solids concentrations in the Colorado River near Glenwood Springs and Cameo, Colo., and Cisco, Utah, for the 1942-77 water years, were computed assuming an annual diversion of 131,000 acre-feet of water from Dillon Reservoir. The average increases in the dissolved-solids concentrations with the 131 ,000-acre-foot diversion were 15 to 16 milligrams per liter at the three sites. (Woodard-USGS)

  8. 50 CFR 679.81 - Rockfish Program annual harvester privileges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Maximum retainable amount (MRA) limits—(1) Rockfish cooperative. A vessel assigned to a rockfish... those species as established in Table 10 to this part. (4) Maximum retainable amount (MRA) calculation and limits—catcher vessels. (i) The MRA for an incidental catch species for vessels fishing under the...

  9. 50 CFR 679.81 - Rockfish Program annual harvester privileges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Maximum retainable amount (MRA) limits—(1) Rockfish cooperative. A vessel assigned to a rockfish... those species as established in Table 10 to this part. (4) Maximum retainable amount (MRA) calculation and limits—catcher vessels. (i) The MRA for an incidental catch species for vessels fishing under the...

  10. 50 CFR 679.81 - Rockfish Program annual harvester privileges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Maximum retainable amount (MRA) limits—(1) Rockfish cooperative. A vessel assigned to a rockfish... those species as established in Table 10 to this part. (4) Maximum retainable amount (MRA) calculation and limits—catcher vessels. (i) The MRA for an incidental catch species for vessels fishing under the...

  11. Effects of Wildfire on the Hydrology of Capulin and Rito de los Frijoles canyons, Bandelier National Monument, New Mexico

    USGS Publications Warehouse

    Veenhuis, Jack E.

    2002-01-01

    In June of 1977, the La Mesa wildfire burned 15,270 acres in and around Frijoles Canyon in Bandelier National Monument and the adjacent Santa Fe National Forest, New Mexico. The Dome wildfire in April of 1996 in Bandelier National Monument burned 16,516 acres in Capulin Canyon and the surrounding Dome Wilderness area. Both watersheds are characterized by abundant and extensive archeological sites that could be affected by increased runoff and accelerated rates of erosion, which typically occur after a wildfire. The U.S. Geological Survey in cooperation with the National Park Service monitored the wildfires' effects on streamflow in both canyons. The magnitude of large stormflows increased dramatically after these wildfires; peak flows at the most downstream streamflow-gaging station in Frijoles and Capulin Canyons increased to about 160 times the maximum recorded flood prior to the fire. Maximum peak flow was 3,030 cubic feet per second at the gaging station in Frijoles Canyon (drainage area equals 18.1 square miles) and 3,630 cubic feet per second at the most downstream crest-stage gage in Capulin Canyon (drainage area equals 14.1 square miles). The pre-fire maximum peak flow recorded in these two canyons was 19 and an estimated 25 cubic feet per second, respectively. As vegetation reestablished itself during the second year, the post-fire annual maximum peak flow decreased to about 10 to 15 times the pre-fire annual maximum peak flow. During the third year, maximum annual peak flows decreased to about three to five times the pre-fire maximum peak flow. In the 22 years since the La Mesa wildfire, flood magnitudes have not completely returned to pre-fire size. Post-fire flood magnitudes in Frijoles and Capulin Canyons do not exceed the maximum floods per drainage area for physiographic regions 5 and 6 in New Mexico. For a burned watershed, however, the peak flows that occur after a wildfire are several orders of magnitude larger than normal forested watershed peak flows. The frequency of larger stormflows also increased in response to the effects of the wildfires in both canyons. In Frijoles Canyon, the number of peak stormflows greater than the pre-fire maximum flow of 19 cubic feet per second was 15 in 1977, 9 in 1978, and 5 in 1979, which is about the magnitude of the maximum pre-fire peak flow in both canyons. Again the hydrologic effects of a wildfire seem to be more pronounced for the 3 years following the date of the fire. Likewise, larger peakflows occurred more frequently in Capulin Canyon for the first 3 years after the 1996 wildfire. Median suspended-sediment concentrations in samples collected in Frijoles Canyon in 1977 were 1,330 milligrams per liter; median concentrations were 16 milligrams per liter after the watershed stabilized in 1993-95. The annual load calculated from regression equations for load compared to flow for the first year after the wildfire was 220 times the annual load for the post-recovery period. To convey the increased frequency and magnitude of average flows in Capulin Canyon after the 1996 Dome wildfire, the stream channel in Capulin Canyon increased in flow capacity by widening and downcutting. As Capulin Canyon peak flows have decreased in both magnitude and frequency with vegetative recovery, the stream channel also has slowly begun to readjust. The channel at the most downstream crest-stage gage, which has the shallowest initial valley slope, is showing the first signs of aggradation.

  12. Temporal and spatial variability of groundwater recharge on Jeju Island, Korea

    USGS Publications Warehouse

    Mair, Alan; Hagedorn, Benjamin; Tillery, Suzanne; El-Kadi, Aly I.; Westenbroek, Stephen M.; Ha, Kyoochul; Koh, Gi-Won

    2013-01-01

    Estimates of groundwater recharge spatial and temporal variability are essential inputs to groundwater flow models that are used to test groundwater availability under different management and climate conditions. In this study, a soil water balance analysis was conducted to estimate groundwater recharge on the island of Jeju, Korea, for baseline, drought, and climate-land use change scenarios. The Soil Water Balance (SWB) computer code was used to compute groundwater recharge and other water balance components at a daily time step using a 100 m grid cell size for an 18-year baseline scenario (1992–2009). A 10-year drought scenario was selected from historical precipitation trends (1961–2009), while the climate-land use change scenario was developed using late 21st century climate projections and a change in urban land use. Mean annual recharge under the baseline, drought, and climate-land use scenarios was estimated at 884, 591, and 788 mm, respectively. Under the baseline scenario, mean annual recharge was within the range of previous estimates (825–959 mm) and only slightly lower than the mean of 902 mm. As a fraction of mean annual rainfall, mean annual recharge was computed as only 42% and less than previous estimates of 44–48%. The maximum historical reported annual pumping rate of 241 × 106 m3 equates to 15% of baseline recharge, which is within the range of 14–16% computed from earlier studies. The model does not include a mechanism to account for additional sources of groundwater recharge, such as fog drip, irrigation, and artificial recharge, and may also overestimate evapotranspiration losses. Consequently, the results presented in this study represent a conservative estimate of total recharge.

  13. Hydroclimate temporal variability in a coastal Mediterranean watershed: the Tafna basin, North-West Algeria

    NASA Astrophysics Data System (ADS)

    Boulariah, Ouafik; Longobardi, Antonia; Meddi, Mohamed

    2017-04-01

    One of the major challenges scientists, practitioners and stakeholders are nowadays involved in, is to provide the worldwide population with reliable water supplies, protecting, at the same time, the freshwater ecosystems quality and quantity. Climate and land use changes undermine the balance between water demand and water availability, causing alteration of rivers flow regime. Knowledge of hydro-climate variables temporal and spatial variability is clearly helpful to plan drought and flood hazard mitigation strategies but also to adapt them to future environmental scenarios. The present study relates to the coastal semi-arid Tafna catchment, located in the North-West of Algeria, within the Mediterranean basin. The aim is the investigation of streamflow and rainfall indices temporal variability in six sub-basins of the large catchment Tafna, attempting to relate streamflow and rainfall changes. Rainfall and streamflow time series have been preliminary tested for data quality and homogeneity, through the coupled application of two-tailed t test, Pettitt test and Cumsum tests (significance level of 0.1, 0.05 and 0.01). Subsequently maximum annual daily rainfall and streamflow and average daily annual rainfall and streamflow time series have been derived and tested for temporal variability, through the application of the Mann Kendall and Sen's test. Overall maximum annual daily streamflow time series exhibit a negative trend which is however significant for only 30% of the station. Maximum annual daily rainfall also e exhibit a negative trend which is intend significant for the 80% of the stations. In the case of average daily annual streamflow and rainfall, the tendency for decrease in time is unclear and, in both cases, appear significant for 60% of stations.

  14. Radiological assessment of Abu-Tartur phosphate, Western Desert Egypt.

    PubMed

    Uosif, M A M; El-Taher, A

    2008-01-01

    The contents of natural radionuclides ((226)Ra, (232)Th and (40)K) were measured in sedimentary phosphate rock samples (Abu-Tartur phosphate, Western Desert Egypt) by using gamma spectrometry (NaI (Tl) 3"x 3"). Phosphate and environmental samples were collected from Abu-Tartur phosphate mine and the surrounding region. The results are discussed and compared with the levels in phosphate rocks from different countries. The activities of (226)Ra, (232)Th series and (40)K are between (14.9 +/- 0.8 and 302.4 +/- 15.2), (2.6 +/- 1.0 and 154.9 +/- 7.8) and (10.0 +/- 0.5 and 368.4 +/- 18.4) Bq kg(-1), respectively. The Abu-Tartur phosphate deposit was found to have lower activity than many others exploited phosphate sedimentary deposits, with its average total annual dose being only 114.6 microSv y(-1). This value is about 11.46% of the 1.0 mSv y(-1) recommended by the International Commission on Radiological Protection (ICRP-60, 1990) as the maximum annual dose to members of the public.

  15. Dust emission inventory in Northern China

    NASA Astrophysics Data System (ADS)

    Xuan, Jie; Liu, Guoliang; Du, Ke

    This paper deals with mineral dust emission inventory from surfaces of Northern China. The inventory was calculated with a US EPA formula by inputting the pre-processed Chinese data of pedology and climatology. Mainly, the emission factor (emission rate) of the dust particles whose diameters are less than 0.03 mm increases from east to west of the area by five orders of magnitude and there are two strong emission regions, one is in Takelamagan desert, Xinjiang Province, and the other in Central Gobi-desert, western part of inner-Mongolia plateau. The maximum rate is at center of the Takelamagan desert, i.e., 1.5 ton ha yr -1. Also, the total annual emission amount of the area is equal to some 25 million tons, and spring is the worst dust-emitting season in the area, which takes more than half of the annual emission amount. The results are in good agreement with the previous calculations using a different US EPA formula (Xuan, J., 1999. Dust emission factors for environment of Northern China. Atmospheric Environment 33, 1767-1776).

  16. Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River basin, North Viet Nam

    NASA Astrophysics Data System (ADS)

    Nguyen, Huong Thi Mai; Le, Quynh Thi Phuong; Garnier, J.; Janeau, J.-L.; Rochelle-Newall, E.

    2016-02-01

    The Red River is the second largest river in Viet Nam and constitutes the main water source for a large percentage of the population of North Viet Nam. Here we present the results of an annual survey of Escherichia coli (EC) and Total Coliforms (TC) in the Red River basin, North Viet Nam. The objective of this work was to obtain information on faecal indicator bacteria (FIB) numbers over an annual cycle and, secondly, to determine the die-off rates of these bacterial indicators. Monthly observations at 10 stations from July 2013-June 2014 showed that TC and EC reached as high as 39100 cfu (colony forming units) 100 ml-1 and 15300 colonies 100 ml-1, respectively. We observed a significant seasonal difference for TC (p < 0.05) with numbers being higher during the wet season. In contrast, no significant seasonal difference was found for EC. The FIB die-off rates ranged from 0.01 d-1 to a maximum of 1.13 d-1 for EC and from 0.17 d-1 to 1.33 d-1 for TC. Die-off rates were significantly higher for free bacteria than for total (free + particle attached) bacteria, suggesting that particle attachment provided a certain level of protection to FIB in this system.

  17. Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River basin, North Viet Nam.

    PubMed

    Nguyen, Huong Thi Mai; Le, Quynh Thi Phuong; Garnier, J; Janeau, J-L; Rochelle-Newall, E

    2016-02-12

    The Red River is the second largest river in Viet Nam and constitutes the main water source for a large percentage of the population of North Viet Nam. Here we present the results of an annual survey of Escherichia coli (EC) and Total Coliforms (TC) in the Red River basin, North Viet Nam. The objective of this work was to obtain information on faecal indicator bacteria (FIB) numbers over an annual cycle and, secondly, to determine the die-off rates of these bacterial indicators. Monthly observations at 10 stations from July 2013-June 2014 showed that TC and EC reached as high as 39100 cfu (colony forming units) 100 ml(-1) and 15300 colonies 100 ml(-1), respectively. We observed a significant seasonal difference for TC (p < 0.05) with numbers being higher during the wet season. In contrast, no significant seasonal difference was found for EC. The FIB die-off rates ranged from 0.01 d(-1) to a maximum of 1.13 d(-1) for EC and from 0.17 d(-1) to 1.33 d(-1) for TC. Die-off rates were significantly higher for free bacteria than for total (free + particle attached) bacteria, suggesting that particle attachment provided a certain level of protection to FIB in this system.

  18. Movements and distribution of polar bears in the Beaufort sea

    USGS Publications Warehouse

    Amstrup, Steven C.; Durner, George M.; Stirling, I.; Lunn, N.J.; Messier, F.

    2000-01-01

    We fitted 173 satellite radio collars (platform transmitter terminals) to 121 adult female polar bears in the Beaufort Sea and relocated the bears 44 736 times between 1985 and 1995. We regularly resighted many instrumented bears so that we could ascertain whether changes in movements or distribution were related to reproductive status. Mean short-term movement rates were less than 2 km/h for all classes of bears. Maximum movement rates occurred in winter and early summer. In the southern Beaufort Sea (SBS), net geographic movements from the beginning to the end of each month were smaller for females with cubs of the year than for solitary females, and larger in November than in April, May, or July. In May, June, July, and August, radio-collared bears in the SBS moved north. They moved south in October. In the northern Beaufort Sea (NBS), bears moved north in June and south in March and September. Total annual movements ranged from 1406 to 6203 km. Mean total distances moved each month ranged from 79 to 420 km. Total monthly movements by SBS bears were largest in early winter and smallest in early spring. In the NBS, movements were largest in summer and smallest in winter. In the SBS, females with cubs moved less each month than other females. Annual activity areas ranged from 7264 to 596 800 km2. Monthly activity areas ranged from 88 to 9760 km2. Seasonal fidelity to activity areas of bears captured in all parts of the Beaufort Sea was strongest in summer and weakest in spring.

  19. Equatorial Ionospheric Anomaly (EIA) and comparison with IRI model during descending phase of solar activity (2005-2009)

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Singh, A. K.; Lee, Jiyun

    2014-03-01

    The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005-2009 only except during the deep solar minimum year 2007-2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during the year 2005.

  20. Terrigenous fluxes of pollen, insect scale and land plant palynodebris observed by sediment traps deployed in the subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Tsutsui, H.; Takahashi, K.; Matsuoka, K.; Jordan, R. W.; Yamamoto, S.

    2016-02-01

    From 1990 to 2009, sediment traps were deployed and recovered in the subarctic Pacific (Station SA; 49°N, 174°W) during each summer, allowing the long-term observation of particle fluxes. As the Pacific Decadal Oscillation index changed in 1999 while air temperatures cooled, this study focused on pollen, land plant debris and insect scale fluxes during 1994 to 2009 at Station SA. The maximum pollen and fern spores flux was 644 grains m2 d-1, with a mean of 74 grains m2 d-1and the following details: 65% of the total pollen counts represented by wind-pollinated trees (e.g., alder, birch and pine), 24% by the herbaceous plants, and 11% by fern spores. Spore, herbaceous and wind-pollinated tree pollen fluxes peaked primarily in May (and sporadically also in April and June) and September-October. The annual flux peaks of insect scales (of unknown origin) and land-plant debris were in May and September, but over the entire study period the maximum insect scale flux of 161 scales m2 d-1 was in August 2002, with a mean of 16 scales m2 d-1. Furthermore, the maximum (in August 2004) and mean land-plant debris fluxes were 107 and 10 plant fragments m2 d-1, respectively. The sediment traps were situated at southern side of the Aleutian Islands, where snow and ice occurred for six months from October to May. The ice-snow season accounts for 25% of the total annual particle flux, with 75% throughout the rest of the year. The correlation coefficient among pollen, insect scales and land plant debris are: 1) 0.58 (probability <1%) between wind-pollinated plant pollen and insect scales, and 2) 0.75 (probability <5%) between herbaceous plant pollen and land plant debris. The production locations, residence time, routes and mode of transport of the particles are important factors. The pollen fluxes observed during April to June appeared to have originated from the Western Alaska, but during the rest of years they appeared to have been from the eastern Russia. That pollen and other organic debris were conveyed by wind over long distance across the ocean.

  1. Decadal trend of precipitation and temperature patterns and impacts on snow-related variables in a semiarid region, Sierra Nevada, Spain.

    NASA Astrophysics Data System (ADS)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    In the current context of global change, mountainous areas constitute singular locations in which these changes can be traced. Early detection of significant shifts of snow state variables in semiarid regions can help assess climate variability impacts and future snow dynamics in northern latitudes. The Sierra Nevada mountain range, in southern Spain, is a representative example of snow areas in Mediterranean-climate regions and both monitoring and modelling efforts have been performed to assess this variability and its significant scales. This work presents a decadal trend analysis throughout the 50-yr period 1960-2010 performed on some snow-related variables over Sierra Nevada, in Spain, which is included in the global climate change observatories network around the world. The study area comprises 4583 km2 distributed throughout the five head basins influenced by these mountains, with altitude values ranging from 140 to 3479 m.a.s.l., just 40 km from the Mediterranean coastline. Meteorological variables obtained from 44 weather stations from the National Meteorological Agency were studied and further used as input to the distributed hydrological model WiMMed (Polo et al., 2010), operational at the study area, to obtain selected snow variables. Decadal trends were obtained, together with their statistical significance, over the following variables, averaged over the whole study area: (1) annual precipitation; (2) annual snowfall; annual (3) mean, (4) maximum and (5) minimum daily temperature; annual (6) mean and (7) maximum daily fraction of snow covered areas; (8) annual number of days with snow cover; (9) mean and (10) maximum daily snow water equivalent; (11) annual number of extreme precipitation events; and (12) mean intensity of the annual extreme precipitation events. These variables were also studied over each of the five regions associated to each basin in the range. Globally decreasing decadal trends were obtained for all the meteorological variables, with the exception of the average annual mean and maximum daily temperature. In the case of the snow-related variables, no significant trends are observed at this time scale; nonetheless, a global decreasing rate is predominant in most of the variables. The torrential events are more frequent in the last decades of the study period, with an apparently increasing associated dispersion. This study constitutes a first sound analysis of the long-term observed trends of the snow regime in this area under the context of increasing temperature and decreasing precipitation regimes. The results highlight the complexity of non-linearity in environmental processes in Mediterranean regions, and point out to a significant shift in the precipitation and temperature regime, and thus on the snow-affected hydrological variables in the study area.

  2. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.

    PubMed

    Koch, George W; Sillett, Stephen C; Antoine, Marie E; Williams, Cameron B

    2015-02-01

    Structural and physiological changes that occur as trees grow taller are associated with increased hydraulic constraints on leaf gas exchange, yet it is unclear if leaf-level constraints influence whole-tree growth as trees approach their maximum size. We examined variation in leaf physiology, leaf area to sapwood area ratio (L/S), and annual aboveground growth across a range of tree heights in Eucalyptus regnans. Leaf photosynthetic capacity did not differ among upper crown leaves of individuals 61.1-92.4 m tall. Maximum daily and integrated diurnal stomatal conductance (g s) averaged 36 and 34% higher, respectively, in upper crown leaves of ~60-m-tall, 80-year-old trees than in ~90-m-tall, 300-year-old trees, with larger differences observed on days with a high vapor pressure deficit (VPD). Greater stomatal regulation in taller trees resulted in similar minimum daily leaf water potentials (Ψ L) in shorter and taller trees over a broad range of VPDs. The long-term stomatal limitation on photosynthesis, as inferred from leaf δ (13)C composition, was also greater in taller trees. The δ (13)C of wood indicated that the bulk of photosynthesis used to fuel wood production in the main trunk and branches occurred in the upper crown. L/S increased with tree height, especially after accounting for size-independent variation in crown structure across 27 trees up to 99.8 m tall. Despite greater stomatal limitation of leaf photosynthesis in taller trees, total L explained 95% of the variation in annual aboveground biomass growth among 15 trees measured for annual biomass growth increment in 2006. Our results support a theoretical model proposing that, in the face of increasing hydraulic constraints with height, whole-tree growth is maximized by a resource trade-off that increases L to maximize light capture rather than by reducing L/S to sustain g s.

  3. Evaluation of the effects of Middleton's stormwater-management activities on streamflow and water-quality characteristics of Pheasant Branch, Dane County, Wisconsin 1975-2008

    USGS Publications Warehouse

    Gebert, Warren A.; Rose, William J.; Garn, Herbert S.

    2012-01-01

    Few long-term data sets are available for evaluating the effects of urban stormwater-management practices. Over 30 years of data are available for evaluating the effectiveness of such practices by the city of Middleton, Wis. Analysis of streamflow and water-quality data collected on Pheasant Branch, demonstrates the relation between the changes in the watershed to the structural and nonstructural best management practices put in place during 1975-2008. A comparison of the data from Pheasant Branch with streamflow and water-quality data (suspended sediment and total phosphorus) collected at other nearby streams was made to assist in the determination of the possible causes of the changes in Pheasant Branch. Based on 34 years of streamflow data collected at the Pheasant Branch at Middleton streamflow-gaging station, flood peak discharges increased 37 percent for the 2-year flood and 83 percent for the 100-year flood. A comparison of data for the same period from an adjacent rural stream, Black Earth at Black Earth had a 43 percent increase in the 2-year flood peak discharge and a 140-percent increase in the 100-year flood peak discharge. Because the flood peak discharges on Pheasant Branch have not increased as much as Black Earth Creek it appears that the stormwater management practices have been successful in mitigating the effects of urbanization. Generally urbanization results in increased flood peak discharges. The overall increase in flood peak discharges seen in both streams probably is the result of the substantial increase in precipitation during the study period. Average annual runoff in Pheasant Branch has also been increasing due to increasing average annual precipitation and urbanization. The stormwater-management practices in Middleton have been successful in decreasing the suspended-sediment and total phosphorus loads to Lake Mendota from the Pheasant Branch watershed. These loads decreased in spite of increased annual runoff and flood peaks, which are often expected to produce higher sediment and phosphorus loads. The biggest decreases in sediment and phosphorus loads occurred after 2001 when a large detention pond, the Confluence Pond, began operation. Since 2001, the annual suspended-sediment load has decreased from 2,650 tons per year to 1,450 tons per year for a 45-percent decrease. The annual total phosphorus load has decreased from 12,200 pounds per year to 6,300 pounds per year for a 48-percent decrease. A comparison of Pheasant Branch at Middleton with two other streams, Spring Harbor Storm Sewer and Yahara River at Windsor, that drain into Lake Mendota shows that suspended-sediment and total phosphorus load decreases were greatest at Pheasant Branch at Middleton. Prior to the construction of the Confluence Pond, annual suspended-sediment yield and total phosphorus yield from Pheasant Branch watershed was the largest of the three watersheds. After 2001, suspended-sediment yield was greatest at Spring Harbor Storm Sewer, and lowest at Yahara at Windsor; annual total phosphorus yield was greater at Yahara River at Windsor than that of Pheasant Branch. The stormwater-quality plan for Middleton shows that the city has met the present State of Wisconsin Administrative Code chap. NR216/NR151 requirements of reducing total suspended solids by 20 percent for the developed area in Middleton. In addition, the city already has met the 40-percent reduction in total suspended solids required by 2013. Snow and ice melt runoff from road surfaces and parking lots following winter storms can effect water quality because the runoff contains varying amounts of road salt. To evaluate the effect of road deicing on stream water quality in Pheasant Branch, specific conductance and chloride were monitored during two winter seasons. The maximum estimated concentration of chloride during the monitoring period was 931 milligrams per liter, which exceeded the U.S. Environmental Protection Agency acute criterion of 860 milligrams per liter. Chloride concentrations exceeded the U.S. Environmental Protection Agency chronic criterion of 230 milligrams per liter for at least 10 days during February and March 2007 and for 45 days during the 2007-8 winter seasons. The total sodium chloride load for the monitoring period was 1,720 tons and the largest sodium chloride load occurred in March and April of each year.

  4. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts.

    PubMed

    Good, Stephen P; Moore, Georgianne W; Miralles, Diego G

    2017-12-01

    Biome function is largely governed by how efficiently available resources can be used and yet for water, the ratio of direct biological resource use (transpiration, E T ) to total supply (annual precipitation, P) at ecosystem scales remains poorly characterized. Here, we synthesize field, remote sensing and ecohydrological modelling estimates to show that the biological water use fraction (E T /P) reaches a maximum under mesic conditions; that is, when evaporative demand (potential evapotranspiration, E P ) slightly exceeds supplied precipitation. We estimate that this mesic maximum in E T /P occurs at an aridity index (defined as E P /P) between 1.3 and 1.9. The observed global average aridity of 1.8 falls within this range, suggesting that the biosphere is, on average, configured to transpire the largest possible fraction of global precipitation for the current climate. A unimodal E T /P distribution indicates that both dry regions subjected to increasing aridity and humid regions subjected to decreasing aridity will suffer declines in the fraction of precipitation that plants transpire for growth and metabolism. Given the uncertainties in the prediction of future biogeography, this framework provides a clear and concise determination of ecosystems' sensitivity to climatic shifts, as well as expected patterns in the amount of precipitation that ecosystems can effectively use.

  5. 75 FR 27358 - Information Collection Sent to the Office of Management and Budget (OMB) for Approval; OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... retain a benefit. Frequency of Collection: Ongoing. Estimated Annual Number of Respondents: 750. Estimated Total Annual Responses: 750. Estimated Time Per Response: 1 hour Estimated Total Annual Burden..., purchased, sold, or otherwise transferred; and (2) the dates of these transactions. Accredited wildlife...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Narendra; Solanki, Raman; Ojha, N.

    We present the measurements of cloud-base height variations over Aryabhatta Research Institute of Observational Science, Nainital (79.45 degrees E, 29.37 degrees N, 1958 m amsl) obtained from Vaisala Ceilometer, during the nearly year-long Ganges Valley Aerosol Experiment (GVAX). The cloud-base measurements are analysed in conjunction with collocated measurements of rainfall, to study the possible contributions from different cloud types to the observed monsoonal rainfall during June to September 2011. The summer monsoon of 2011 was a normal monsoon year with total accumulated rainfall of 1035.8 mm during June-September with a maximum during July (367.0 mm) and minimum during September (222.3more » mm). The annual mean monsoon rainfall over Nainital is 1440 +/- 430 mm. The total rainfall measured during other months (October 2011-March 2012) was only 9% of that observed during the summer monsoon. The first cloud-base height varied from about 31 m above ground level (AGL) to a maximum of 7.6 km AGL during the summer monsoon period of 2011. It is found that about 70% of the total rain is observed only when the first cloud-base height varies between surface and 2 km AGL, indicating that most of the rainfall at high altitude stations such as Nainital is associated with stratiform low-level clouds. However, about 25% of the total rainfall is being contributed by clouds between 2 and 6 km. The occurrences of high-altitude cumulus clouds are observed to be only 2-4%. This study is an attempt to fill a major gap of measurements over the topographically complex and observationally sparse northern Indian region providing the evaluation data for atmospheric models and therefore, have implications towards the better predictions of monsoon rainfall and the weather components over this region.« less

  7. 75 FR 24732 - Agency Information Collection Activities: Proposed Collection; Comment Request, 1660-0026; State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Costs Number of Avg. burden per Total annual Type of respondent Form name/Form No. Number of responses per Total number of response (in burden (in Avg. hourly Total annual respondents respondent responses...

  8. Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Jin, Jiming

    2017-11-01

    Projected hydrological variability is important for future resource and hazard management of water supplies because changes in hydrological variability can cause more disasters than changes in the mean state. However, climate change scenarios downscaled from Earth System Models (ESMs) at single sites cannot meet the requirements of distributed hydrologic models for simulating hydrological variability. This study developed multisite multivariate climate change scenarios via three steps: (i) spatial downscaling of ESMs using a transfer function method, (ii) temporal downscaling of ESMs using a single-site weather generator, and (iii) reconstruction of spatiotemporal correlations using a distribution-free shuffle procedure. Multisite precipitation and temperature change scenarios for 2011-2040 were generated from five ESMs under four representative concentration pathways to project changes in streamflow variability using the Soil and Water Assessment Tool (SWAT) for the Jing River, China. The correlation reconstruction method performed realistically for intersite and intervariable correlation reproduction and hydrological modeling. The SWAT model was found to be well calibrated with monthly streamflow with a model efficiency coefficient of 0.78. It was projected that the annual mean precipitation would not change, while the mean maximum and minimum temperatures would increase significantly by 1.6 ± 0.3 and 1.3 ± 0.2 °C; the variance ratios of 2011-2040 to 1961-2005 were 1.15 ± 0.13 for precipitation, 1.15 ± 0.14 for mean maximum temperature, and 1.04 ± 0.10 for mean minimum temperature. A warmer climate was predicted for the flood season, while the dry season was projected to become wetter and warmer; the findings indicated that the intra-annual and interannual variations in the future climate would be greater than in the current climate. The total annual streamflow was found to change insignificantly but its variance ratios of 2011-2040 to 1961-2005 increased by 1.25 ± 0.55. Streamflow variability was predicted to become greater over most months on the seasonal scale because of the increased monthly maximum streamflow and decreased monthly minimum streamflow. The increase in streamflow variability was attributed mainly to larger positive contributions from increased precipitation variances rather than negative contributions from increased mean temperatures.

  9. Speciated mercury at marine, coastal, and inland sites in New England - Part 1: Temporal variability

    NASA Astrophysics Data System (ADS)

    Mao, H.; Talbot, R.

    2011-12-01

    A comprehensive analysis was conducted using long-term continuous measurements of gaseous elemental mercury (Hgo), reactive mercury (RGM), and particulate phase mercury (HgP) at coastal (Thompson Farm, denoted as TF), marine (Appledore Island, denoted as AI), and elevated inland (Pac Monadnock, denoted as PM) sites from the AIRMAP Observatories. Decreasing trends in background Hgo were identified in the 7- and 5-yr records at TF and PM with decline rates of 3.3 parts per quadrillion by volume (ppqv) yr-1 and 6.3 ppqv yr-1, respectively. Common characteristics at these sites were the reproducible annual cycle of Hgo with its maximum in winter-spring and minimum in fall as well as a decline/increase trend in the warm/cool season. The coastal site TF differed from the other two sites with its exceptionally low levels (as low as below 50 ppqv) in the nocturnal inversion layer probably due to dissolution in dew water. Year-to-year variability was observed in the warm season decline in Hgo at TF varying from a minimum total seasonal loss of 20 ppqv in 2010 to a maximum of 92 ppqv in 2005, whereas variability remained small at AI and PM. Measurements of Hgo at PM, an elevated inland rural site, exhibited the smallest diurnal to annual variability among the three environments, where peak levels rarely exceeded 250 ppqv and the minimum was typically 100 ppqv. It should be noted that summertime diurnal patterns at TF and AI are opposite in phase indicating strong sink(s) for Hgo during the day in the marine boundary layer, which is consistent with the hypothesis of Hgo oxidation by halogen radicals there. Mixing ratios of RGM in the coastal and marine boundary layers reached annual maximum in spring and minimum in fall, whereas at PM levels were generally below the limit of detection (LOD) except in spring. RGM levels at AI were higher than at TF and PM indicating a stronger source strength(s) in the marine environment. Mixing ratios of HgP at AI and TF were close in magnitude to RGM levels and were mostly below 1 ppqv. Diurnal variation in HgP was barely discernible at TF and AI in spring and summer with higher levels during the day and smaller but above the LOD at night.

  10. Fifteen-Year Growth of a Thinned White Spruce Plantation

    Treesearch

    Robert F. Wambach; John H. Cooley

    1969-01-01

    Mean annual increment at age 38 in a thinned white spruce plantation was 102 cubic feet or 0.85 cords per acre per year. Periodic annual increment during the 15 years after thinning seemed to be maximum for residual basal areas between 100 and 120 square feet per acre. OXFORD: 562.2:174.7 Picca glauca: (775):242

  11. 29 CFR 2590.712 - Parity in mental health and substance use disorder benefits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Affordable Care Act section 1302(c), which establish limitations on annual deductibles for non-grandfathered health plans in the small group market and annual limitations on out-of-pocket maximums for all non... brand name”, “non-preferred brand name”, or “specialty” complies with the rules of paragraph (c)(4)(i...

  12. 45 CFR 146.136 - Parity in mental health and substance use disorder benefits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Affordable Care Act section 1302(c), which establish limitations on annual deductibles for non-grandfathered health plans in the small group market and annual limitations on out-of-pocket maximums for all non... brand name”, “non-preferred brand name”, or “specialty” complies with the rules of paragraph (c)(4)(i...

  13. Vulnerabilities and adaptive capacities of selected southwestern crops to climate change

    USDA-ARS?s Scientific Manuscript database

    By the middle of the 21st Century, maximum annual temperatures in the Southwest (SW) are expected to increase by 2-4 C with the highest increases occurring in the summer months of Jun-Aug. While annual precipitation may remain similar to 1971-2000 values, Mar-May precipitation in the SW may decline ...

  14. 5 CFR 531.606 - Maximum limits on locality rates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... than or equal to the maximum payable scheduled annual rate of pay for GS-15; or (ii) The rate for level... Section 531.606 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY... of basic pay payable for level IV of the Executive Schedule. (b)(1) A locality rate for an employee...

  15. [Live birth distribution by time and place from 1981 to 1998 in Japan].

    PubMed

    Matsushima, Noriko; Morita, Noriko; Ogata, Nozomi; Saeki, Keigo; Matsuda, Ryozo; Kurumatani, Norio

    2003-01-01

    To investigate the diurnal rhythm of live births labored spontaneously, and the effects of obstetric intervention on birth time distributions. The data of live births tabulated by time (one-hour intervals), date and birthplace throughout Japan between 1981 and 1998 were obtained with permission from the former Ministry of Health and Welfare. Together with an investigation of hourly birth numbers by place in each year, an annual transition of hourly birth rates in medical institutions and the diurnal rhythm of birth numbers in maternity homes and at home were analyzed using regression analysis. In every calendar year studied the hourly live birth numbers at hospitals showed a single-peak distribution pattern with maximum values at 13:00-15:00. The annual transition of hourly birth rates showed a 10% (birth numbers base) decrease in the 11:00-13:00 period in 1998 as compared with that in 1981, while there was a corresponding increase of 8% in the 13:00-15:00 period. Hourly birth numbers at clinics showed a double-peak distribution pattern with maximum values during the 11:00-12:00 and 14:00-15:00 periods in early 1980, while a single-peak distribution with a maximum value during the 13:00-15:00 period appeared in 1989 and has remained thereafter. Hourly birth rates (birth numbers base) increased by over 6% in the 13:00-15:00 and 17:00-20:00 periods over the past 18 years, while they decreased by 10% in the 9:00-13:00 period. The results at maternity homes were clearly different from those at hospitals and clinics. The live birth numbers totaled for the 18 years showed a double-phase distribution with a maximum value in the 6:00-7:00 period and a minimum value in the 19:00-20:00 period. The best-fit regression model for the obtained data was a sine curve with a maximum value at 6:00 (coefficient of determination 0.97). Hourly distributions of live births at home also fitted best to a since curve with the maximum value again at 6:00 (coefficient of determination 0.95). The results suggested that the timing of spontaneous live births follows a circadian rhythm and that obstetric intervention affects time distributions of live births by shifting over 10% of births during the night and early morning to a working day service time (9:00-17:00).

  16. Defining trade-offs among conservation, profitability, and food security in the California current bottom-trawl fishery.

    PubMed

    Hilborn, Ray; Stewart, Ian J; Branch, Trevor A; Jensen, Olaf P

    2012-04-01

    Although it is recognized that marine wild-capture fisheries are an important source of food for much of the world, the cost of sustainable capture fisheries to species diversity is uncertain, and it is often questioned whether industrial fisheries can be managed sustainably. We evaluated the trade-off among sustainable food production, profitability, and conservation objectives in the groundfish bottom-trawl fishery off the U.S. West Coast, where depletion (i.e., reduction in abundance) of six rockfish species (Sebastes) is of particular concern. Trade-offs are inherent in this multispecies fishery because there is limited capacity to target species individually. From population models and catch of 34 stocks of bottom fish, we calculated the relation between harvest rate, long-term yield (i.e., total weight of fish caught), profit, and depletion of each species. In our models, annual ecosystem-wide yield from all 34 stocks was maximized with an overall 5.4% harvest rate, but profit was maximized at a 2.8% harvest rate. When we reduced harvest rates to the level (2.2% harvest rate) at which no stocks collapsed (<10% of unfished levels), biomass harvested was 76% of the maximum sustainable yield and profit 89% of maximum. A harvest rate under which no stocks fell below the biomass that produced maximum sustainable yield (1% harvest rate), resulted in 45% of potential yield and 67% of potential profit. Major reductions in catch in the late 1990s led to increase in the biomass of the most depleted stocks, but this rebuilding resulted in the loss of >30% of total sustainable yield, whereas yield lost from stock depletion was 3% of total sustainable yield. There are clear conservation benefits to lower harvest rates, but avoiding overfishing of all stocks in a multispecies fishery carries a substantial cost in terms of lost yield and profit. ©2011 Society for Conservation Biology.

  17. Trend analysis of hydro-climatic variables in the north of Iran

    NASA Astrophysics Data System (ADS)

    Nikzad Tehrani, E.; Sahour, H.; Booij, M. J.

    2018-04-01

    Trend analysis of climate variables such as streamflow, precipitation, and temperature provides useful information for understanding the hydrological changes associated with climate change. In this study, a nonparametric Mann-Kendall test was employed to evaluate annual, seasonal, and monthly trends of precipitation and streamflow for the Neka basin in the north of Iran over a 44-year period (1972 to 2015). In addition, the Inverse Distance Weight (IDW) method was used for annual seasonal, monthly, and daily precipitation trends in order to investigate the spatial correlation between precipitation and streamflow trends in the study area. Results showed a downward trend in annual and winter precipitation (Z < -1.96) and an upward trend in annual maximum daily precipitation. Annual and monthly mean flows for most of the months in the Neka basin decreased by 14% significantly, but the annual maximum daily flow increased by 118%. Results for the trend analysis of streamflow and climatic variables showed that there are statistically significant relationships between precipitation and streamflow (p value < 0.05). Correlation coefficients for Kendall, Spearman's rank and linear regression are 0.43, 0.61, and 0.67, respectively. The spatial presentation of the detected precipitation and streamflow trends showed a downward trend for the mean annual precipitation observed in the upstream part of the study area which is consistent with the streamflow trend. Also, there is a good correlation between monthly and seasonal precipitation and streamflow for all sub-basins (Sefidchah, Gelvard, Abelu). In general, from a hydro-climatic point of view, the results showed that the study area is moving towards a situation with more severe drought events.

  18. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China.

    PubMed

    Qin, Yue; Yang, Dawen; Gao, Bing; Wang, Taihua; Chen, Jinsong; Chen, Yun; Wang, Yuhan; Zheng, Guanheng

    2017-12-15

    The Yellow River source region is located in the transition region between permafrost and seasonally frozen ground on the northeastern Qinghai-Tibet Plateau. The region has experienced severe climate change, especially air temperature increases, in past decades. In this study, we employed a geomorphology-based eco-hydrological model (GBEHM) to assess the impacts of climate change on the frozen ground and eco-hydrological processes in the region. Based on a long-term simulation from 1981 to 2015, we found that the areal mean maximum thickness of seasonally frozen ground ranged from 1.1-1.8m and decreased by 1.2cm per year. Additionally, the ratio of the permafrost area to the total area decreased by 1.1% per year. These decreasing trends are faster than the average in China because the study area is on the sensitive margin of the Qinghai-Tibet Plateau. The annual runoff exhibited variations similar to those of the annual precipitation (R 2 =0.85), although the annual evapotranspiration (ET) exhibited an increasing trend (14.3mm/10a) similar to that of the annual mean air temperature (0.66°C/10a). The runoff coefficient (annual runoff divided by annual precipitation) displayed a decreasing trend because of the increasing ET, and the vegetation responses to climate warming and permafrost degradation were manifested as increases in the leaf area index (LAI) and ET at the start of the growing season. Furthermore, the results showed that changes to the frozen ground depth affected vegetation growth. Notably, a rapid decrease in the frozen ground depth (< -3.0cm/a) decreased the topsoil moisture and then decreased the LAI. This study showed that the eco-hydrological processes in the headwater area of the Yellow River have changed because of permafrost degradation, and these changes could further influence the water resources availability in the middle and lower reaches of the basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. What drives productivity loss in chronic rhinosinusitis? A SNOT-22 subdomain analysis.

    PubMed

    Chowdhury, Naweed I; Mace, Jess C; Smith, Timothy L; Rudmik, Luke

    2018-01-01

    Previous studies have shown declines in productivity due to chronic rhinosinusitis (CRS) are correlated with disease-specific quality-of-life (QOL) measures. However, it is unclear which symptom domains contribute primarily to productivity loss. This investigation sought to assess the association between CRS-specific QOL subdomain impairment and productivity loss. Prospective, multi-institutional, observational cohort study. There were 198 patients with refractory CRS enrolled between August 2012 and June 2015. Baseline QOL measures were obtained across five subdomains of the 22-item SinoNasal Outcome Test (SNOT-22). Lost productivity time was determined from patient-reported measures of annual absenteeism, presenteeism, and lost leisure time, and then monetized using annual daily wage rates from the 2012 US National Census and 2013 Department of Labor statistics. Productivity losses correlated with impairments in both SNOT-22 psychological dysfunction (Spearman correlation coefficient [Rs] = 0.428, P < .001), and sleep dysfunction domain scores (Rs = 0.355, P < .001). Higher SNOT-22 total scores also significantly correlated with increased monetized productivity losses (Rs = 0.366, P < .001). The mean annual productivity cost was $11,820/patient, whereas patients with comorbid immunodeficiency ($23,285/patient), tobacco use ($23,195/patient), and steroid dependency ($18,910/patient) reported higher than average annual productivity costs. Multivariate linear regression found maximum annual productivity costs in adjusted psychological ($13,300/patient, P < .001) and sleep dysfunction ($9,275/patient, P < .001) domains. Impairments in sleep and psychological SNOT-22 domains correlate with productivity losses. Patients with comorbid immunodeficiency, smoking, and steroid dependency had higher than average productivity losses. Targeted management of psychological and sleep dysfunction in combination with standard symptom control may improve patient-centered care and reduce the annual economic burden of CRS. 2c. Laryngoscope, 128:23-30, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Seasonal variation in composition and abundance of harmful dinoflagellates in Yemeni waters, southern Red Sea.

    PubMed

    Alkawri, Abdulsalam

    2016-11-15

    General abundance and species composition of a dinoflagellate community in Yemeni coastal waters of Al Salif (southern Red Sea) were studied with a view to understand the annual variations in particular the toxic species. Dinoflagellates were more abundant among phytoplankton. Thirty five dinoflagellate taxa were identified, among which 12 were reported as potentially toxic species. A significant change in seasonal abundance was recorded with the maximum (2.27∗10 6 cellsl -1 ) in May, and the minimum (2.50∗10 2 cellsl -1 ) recorded in January. Kryptoperidinium foliaceum, which was reported for the first time from the Red Sea, was the most abundant species with a maximum in May 2013 (2.26∗10 6 cellsl -1 ). Spearman's rank correlation analysis indicates that, total harmful dinoflagellate cells, K. foliaceum, Prorocentrum gracile and Prorocentrum micans were significantly correlated with temperature. This study suggests that Yemeni waters should be monitored to investigate harmful species and to identify areas and seasons at higher risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Annual variation in reproductive success and biomass of the major macrozoobenthic species living in a tidal flat area of the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Beukema, J. J.

    Annual variation in recruitment and biomass was studied during 13 years for the 5 species contributing most to total zoobenthic biomass in a tidal flat area in the westernmost part of the Wadden Sea. In all of these species annual biomass values tended to be more stable than numbers of recruits. In Cerastoderma edule and in Mytilus edulis recruitment variability was high, and was passed on almost completely to biomass, probably as a consequence of rapid juvenile growth and a high mortality, also in the adult stage, leaving few year-classes in the population. In Arenicola marina and in Mya arenaria biomass values varied much less than recruit numbers. Both species showed a low adult mortality rate with many year-classes present in the population, holding many old and heavy specimens that dominated biomass. Macoma balathica took an intermediate position in these respects. Recruitment was relatively stable in Arenicola and was probably controlled by the high numbers of adults. Recruitment variability was fairly low too in Macoma, but in this species juvenile mortality appeared to be directly related to their own density. Successful and poor years for recruitment were roughly the same for the 4 bivalve species. Particularly heavy spatfall was found during the summer following the severe 1978-1979 winter. Such synchronized recruitment does not fully add to variability in annual biomass values as the time needed for the recruted cohorts to reach maximum biomass values differs greatly between most of the high-biomass species.

  2. ISKANDARnet IOMOS: Near real-time equatorial space weather monitoring and alert system in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Musa, Tajul Ariffin; Leong, Shien Kwun; Abdullah, Khairul Anuar; Othman, Rusli

    2012-11-01

    This work proposes ISKANDARnet Ionospheric Outburst MOnitoring and alert System (IOMOS), along with Ionospheric Outburst Index (IOX) to develop an operational near real-time space weather service for Malaysia. The IOMOS is based on Global Positioning System (GPS) Network-based Real-Time Kinematic (NRTK) concept which is by nature for atmospheric (ionosphere and troposphere) modeling within the network coverage. The elegance of this solution lies in the fact that IOMOS utilize differential ionospheric residual from network of GPS baselines which incur no additional cost for operation. Users will be informed about the ionospheric perturbation through Short Message Service (SMS), email or Twitter®. This approach will ultimately beneficial for the navigation and satellite positioning communities, particularly during the coming Solar Cycle 24. In addition, a combination of local and global GPS network has been employed to study the equatorial ionosphere geomorphology and climatology in the Malaysian sector. Equatorial Total Electron Content (TEC) over Malaysia shows semi-annual, annual, and seasonal variations with maximum values appearing during equinoctial months and minimum during solstices months. The TEC value during vernal equinox is about 21% higher than autumnal equinox, and December solstice exceeds that at the June solstice by around 14%. It is also found that semi-annual variation is present at all levels of solar activity, whereas June solstice predominates December solstice during high solar activity for annual and seasonal variations. In near future, a near real-time TEC derivation system will be developed to support equatorial ionosphere modeling to enhance space weather service for Malaysia.

  3. Teledermatology in the United States: An Update in a Dynamic Era.

    PubMed

    Yim, Kaitlyn M; Florek, Aleksandra G; Oh, Dennis H; McKoy, Karen; Armstrong, April W

    2018-01-22

    Teledermatology is rapidly advancing in the United States. The last comprehensive survey of U.S. teledermatology programs was conducted in 2011. This article provides an update regarding the state of teledermatology programs in the United States. Active programs were identified and surveyed from November 2014 to January 2017. Findings regarding practice settings, consult volumes, payment methods, and delivery modalities were compared to those from the 2011 survey. Findings from the Veterans Affairs (VA) were reported as an aggregate. There were 40 active nongovernmental programs, amounting to a 48% increase and 30% discontinuation rate over five years. Academia remained the most common practice setting (50%). Median annual consultation volume was comparable with 263 consultations, but maximum annual consultation volume increased (range: 20-20,000). The most frequent payment method was self-pay (53%). Store-and-forward continued to be the most common delivery modality. In Fiscal Year 2016, the VA System consisted of 62 consultation sites and performed a total of 101,507 consultations. The limitations of this study were that consult volume and payment methods were not available from all programs. U.S. teledermatology programs have increased in number and annual consultation volume. Academia is the most prevalent practice setting, and self-pay is the dominant accepted payment method. Innovative platforms and the provision of direct-to-patient care are changing the practice of teledermatology.

  4. Climatic factors associated with amyotrophic lateral sclerosis: a spatial analysis from Taiwan.

    PubMed

    Tsai, Ching-Piao; Tzu-Chi Lee, Charles

    2013-11-01

    Few studies have assessed the spatial association of amyotrophic lateral sclerosis (ALS) incidence in the world. The aim of this study was to identify the association of climatic factors and ALS incidence in Taiwan. A total of 1,434 subjects with the primary diagnosis of ALS between years 1997 and 2008 were identified in the national health insurance research database. The diagnosis was also verified by the national health insurance programme, which had issued and providing them with "serious disabling disease (SDD) certificates". Local indicators of spatial association were employed to investigate spatial clustering of age-standardised incidence ratios in the townships of the study area. Spatial regression was utilised to reveal any association of annual average climatic factors and ALS incidence for the 12-year study period. The climatic factors included the annual average time of sunlight exposure, average temperature, maximum temperature, minimum temperature, atmospheric pressure, rainfall, relative humidity and wind speed with spatial autocorrelation controlled. Significant correlations were only found for exposure to sunlight and rainfall and it was similar in both genders. The annual average of the former was found to be negatively correlated with ALS, while the latter was positively correlated with ALS incidence. While accepting that ALS is most probably multifactorial, it was concluded that sunlight deprivation and/or rainfall are associated to some degree with ALS incidence in Taiwan.

  5. Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile.

    PubMed

    Meza, Francisco J; Montes, Carlo; Bravo-Martínez, Felipe; Serrano-Ortiz, Penélope; Kowalski, Andrew S

    2018-06-05

    Biosphere-atmosphere water and carbon fluxes depend on ecosystem structure, and their magnitudes and seasonal behavior are driven by environmental and biological factors. We studied the seasonal behavior of net ecosystem CO 2 exchange (NEE), Gross Primary Productivity (GPP), Ecosystem Respiration (RE), and actual evapotranspiration (ETa) obtained by eddy covariance measurements during two years in a Mediterranean Acacia savanna ecosystem (Acacia caven) in Central Chile. The annual carbon balance was -53 g C m -2 in 2011 and -111 g C m -2 in 2012, showing that the ecosystem acts as a net sink of CO 2 , notwithstanding water limitations on photosynthesis observed in this particularly dry period. Total annual ETa was of 128 mm in 2011 and 139 mm in 2012. Both NEE and ETa exhibited strong seasonality with peak values recorded in the winter season (July to September), as a result of ecosystem phenology, soil water content and rainfall occurrence. Consequently, the maximum carbon assimilation rate occurred in wintertime. Results show that soil water content is a major driver of GPP and RE, defining their seasonal patterns and the annual carbon assimilation capacity of the ecosystem, and also modulating the effect that solar radiation and air temperature have on NEE components at shorter time scales.

  6. Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain

    NASA Astrophysics Data System (ADS)

    Galán, C.; Cariñanos, Paloma; García-Mozo, Herminia; Alcázar, Purificación; Domínguez-Vilches, Eugenio

    Data on predicted average and maximum airborne pollen concentrations and the dates on which these maximum values are expected are of undoubted value to allergists and allergy sufferers, as well as to agronomists. This paper reports on the development of predictive models for calculating total annual pollen output, on the basis of pollen and weather data compiled over the last 19 years (1982-2000) for Córdoba (Spain). Models were tested in order to predict the 2000 pollen season; in addition, and in view of the heavy rainfall recorded in spring 2000, the 1982-1998 data set was used to test the model for 1999. The results of the multiple regression analysis show that the variables exerting the greatest influence on the pollen index were rainfall in March and temperatures over the months prior to the flowering period. For prediction of maximum values and dates on which these values might be expected, the start of the pollen season was used as an additional independent variable. Temperature proved the best variable for this prediction. Results improved when the 5-day moving average was taken into account. Testing of the predictive model for 1999 and 2000 yielded fairly similar results. In both cases, the difference between expected and observed pollen data was no greater than 10%. However, significant differences were recorded between forecast and expected maximum and minimum values, owing to the influence of rainfall during the flowering period.

  7. Spatio-temporal Trends of Climate Variability in North Carolina

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, Mohammad

    Climatic trends in spatial and temporal variability of maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean) and precipitation were evaluated for 249 ground-based stations in North Carolina for 1950-2009. The Mann-Kendall (MK), the Theil-Sen Approach (TSA) and the Sequential Mann-Kendall (SQMK) tests were applied to quantify the significance of trend, magnitude of trend and the trend shift, respectively. The lag-1 serial correlation and double mass curve techniques were used to address the data independency and homogeneity. The pre-whitening technique was used to eliminate the effect of auto correlation of the data series. The difference between minimum and maximum temperatures, and so the diurnal temperature range (DTR), at some stations was found to be decreasing on both an annual and a seasonal basis, with an overall increasing trend in the mean temperature. For precipitation, a statewide increasing trend in fall (highest in November) and decreasing trend in winter (highest in February) were detected. No pronounced increasing/decreasing trends were detected in annual, spring, and summer precipitation time series. Trend analysis on a spatial scale (for three physiographic regions: mountain, piedmont and coastal) revealed mixed results. Coastal zone exhibited increasing mean temperature (warming) trend as compared to other locations whereas mountain zone showed decreasing trend (cooling). Three main moisture components (precipitation, total cloud cover, and soil moisture) and the two major atmospheric circulation modes (North Atlantic Oscillation and Southern Oscillation) were used for correlative analysis purposes with the temperature (specifically with DTR) and precipitation trends. It appears that the moisture components are associated with DTR more than the circulation modes in North Carolina.

  8. Assessment of conservation easements, total phosphorus, and total suspended solids in West Fork Beaver Creek, Minnesota, 1999-2012

    USGS Publications Warehouse

    Christensen, Victoria G.; Kieta, Kristen A.

    2014-01-01

    This study examined conservation easements and their effectiveness at reducing phosphorus and solids transport to streams. The U.S. Geological Survey cooperated with the Minnesota Board of Water and Soil Resources and worked collaboratively with the Hawk Creek Watershed Project to examine the West Fork Beaver Creek Basin in Renville County, which has the largest number of Reinvest In Minnesota land retirement contracts in the State (as of 2013). Among all conservation easement programs, a total of 24,218 acres of agricultural land were retired throughout Renville County, and 2,718 acres were retired in the West Fork Beaver Creek Basin from 1987 through 2012. Total land retirement increased steadily from 1987 until 2000. In 2000, land retirement increased sharply because of the Minnesota River Conservation Reserve Enhancement Program, then leveled off when the program ended in 2002. Streamflow data were collected during 1999 through 2011, and total phosphorus and total suspended solids data were collected during 1999 through 2012. During this period, the highest peak streamflow of 1,320 cubic feet per second was in March 2010. Total phosphorus and total suspended solids are constituents that tend to increase with increases in streamflow. Annual flow-weighted mean total-phosphorus concentrations ranged from 0.140 to 0.759 milligrams per liter, and annual flow-weighted mean total suspended solids concentrations ranged from 21.3 to 217 milligrams per liter. Annual flow-weighted mean total phosphorus and total suspended solids concentrations decreased steadily during the first 4 years of water-quality sample collection. A downward trend in flow-weighted mean total-phosphorus concentrations was significant from 1999 through 2008; however, flow-weighted total-phosphorus concentrations increased substantially in 2009, and the total phosphorus trend was no longer significant. The high annual flow-weighted mean concentrations for total phosphorus and total suspended solids in 2009 were affected by outlier concentrations documented in March 2009. Agricultural land-retirement data only were available through 2008; therefore, it was not possible to compare total phosphorus and total suspended solids concentrations to agricultural land-retirement data for 2009–11. A downward trend in annual flow-weighted mean total-phosphorus concentrations was related significantly to annual land retirement for 1999–2008. The relation between annual flow-weighted mean total suspended solids concentration and annual land retirement was not statistically significant for 1999–2008. If land-retirement data had been available for 2009–11, it is possible that the relation between total phosphorus and land retirement would no longer be evident because of the marked increase in flow-weighted concentrations during 2009. Alternatively, the increase in annual flow-weighted mean total-phosphorus concentrations during 2009–11 may be because of other factors, including industrial discharges, increases in drain tile installation, changes in land use including decreases in agricultural land retirement after 2008, increases in erosion, increases in phosphorus applications to fields, or unknown causes. Inclusion of land-retirement effects in agency planning along with other factors adds perspective with regard to the broader picture of interdependent systems and allows agencies to make informed decisions on the benefits of perpetual easements compared to limited duration easements.

  9. Variations and trends of Fagaceae pollen in Northern Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Canu, Annalisa; Pellizzaro, Grazia; Arca, Bachisio; Vargiu, Arnoldo

    2016-04-01

    The aim of this study is to analyze variations in the start and the end dates of pollen season, date of maximum concentration peak, pollen season duration, pollen concentration value and Seasonal Pollen Index of airborne Fagaceae pollen series recorded in Sassari, Northern Italy, and to evaluate their relation to meteorological data. Daily pollen concentration data were measured from 1986 to 2008 in a urban area of northern Sardinia (Italy) using a Burkard seven-day recording volumetric spore trap. The date of the peak occurrence was defined as the day when the cumulated daily pollen values reached the 50 % of the total annual pollen concentration. Meteorological data were recorded during the same period by an automatic weather station. Cumulative Degree days were calculated, for each year, from different starting dates using the daily averaging method. The correlation between meteorological variables and the different characteristics of pollen seasons was analyzed using Spearman's correlation tests. In the city of Sassari the Fagaceae airborne pollen content was mainly due to Quercus. The main pollen season took place from April to June. The longest pollen season appeared in the year 2002. The cumulative counts varied over the years, with a mean value of 5,336 pollen grains, a lowest total of 550 in 1986 and a highest total of 8,678 in 2001. Daily pollen concentrations presented positive correlation with temperature, and negative with relative humidity (p<0,0001) and with rainfall. In addition, Cumulative Degree days were significantly correlated with the dates of maximum concentration peak (p<0,0001).

  10. Examining variation in treatment costs: a cost function for outpatient methadone treatment programs.

    PubMed

    Dunlap, Laura J; Zarkin, Gary A; Cowell, Alexander J

    2008-06-01

    To estimate a hybrid cost function of the relationship between total annual cost for outpatient methadone treatment and output (annual patient days and selected services), input prices (wages and building space costs), and selected program and patient case-mix characteristics. Data are from a multistate study of 159 methadone treatment programs that participated in the Center for Substance Abuse Treatment's Evaluation of the Methadone/LAAM Treatment Program Accreditation Project between 1998 and 2000. Using least squares regression for weighted data, we estimate the relationship between total annual costs and selected output measures, wages, building space costs, and selected program and patient case-mix characteristics. Findings indicate that total annual cost is positively associated with program's annual patient days, with a 10 percent increase in patient days associated with an 8.2 percent increase in total cost. Total annual cost also increases with counselor wages (p<.01), but no significant association is found for nurse wages or monthly building costs. Surprisingly, program characteristics and patient case mix variables do not appear to explain variations in methadone treatment costs. Similar results are found for a model with services as outputs. This study provides important new insights into the determinants of methadone treatment costs. Our findings concur with economic theory in that total annual cost is positively related to counselor wages. However, among our factor inputs, counselor wages are the only significant driver of these costs. Furthermore, our findings suggest that methadone programs may realize economies of scale; however, other important factors, such as patient access, should be considered.

  11. Conservation Tillage on the Loess Plateau, China: Food security, Yes; Carbon sequestration, No?

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; Hu, Yaxian; Xiao, Liangang; Greenwood, Phil; Bloemertz, Lena

    2015-04-01

    Climate change is expected to affect food security globally and increase the variability in food supply. At the same time, agricultural practices offer a great potential for mitigating and adapting to climate change. In China, food security has increased in the last decades with the number of undernourished people declining from 21% in 1990 to 12% today. However, the limited relative amount of arable land and scarce water supplies will remain a challenge. The Loess Plateau of China, located in the mid-upper reaches of the Yellow River and has an area of some 630000 km2 with a high agricultural potential. However, due to heavy summer rainstorms, steep slopes, low vegetation cover, and highly erodible soils, the Loess Plateau has become one of the most severely eroded areas in the world. Up to 70% of arable land is affected by an annual soil loss of 20-25 ton ha-1, far exceeding the threshold for sustainable use (10 ton ha-1). Rainfed farming systems are dominant on the Loess Plateau, and the farmers in this area have been exposed to a steadily increasing temperature as well as an erratic, but slightly decreasing rainfall since 1970. Therefore, adaptation of the regional agriculture is required to adapt to climate change and may be even engaged in mitigation. This study analyzed the potential contribution of conservation tillage to adaptation and mitigation of climate change on the Loess Plateau. In total, 15 papers published in English were reviewed, comparing two tillage practices, conventional tillage (CT) and conservation tillage typically represented by no-tillage (NT). Soil organic carbon (SOC) stock across soil depths as well yields and the inter-annual variations with regards to and their annual rainfall precipitation were compared for NT and CT. Our results show that: 1) The benefit of NT compared to CT in terms of increasing total SOC stocks diminishes with soil depth, questioning the use of average SOC stocks observed in topsoil to estimate the potential of NT in increasing SOC stocks to reduce net CO2 emissions. 2) In each soil layer, the total SOC stocks also declined over time. Such a decreasing trend suggests that the SOC sink was approaching its maximum capacity. This implies that the overall potential of NT in improving SOC stocks is apt to be over-estimated, if annual increases derived from short-term observation are linearly extrapolated to a long-term estimation. 3) Yields of NT increased evidently by 11.07% compared to CT. In particular, during years with precipitation <500 mm, NT yields are 18% higher than for conventional tillage. Such greater yields reduce the probability of food production falling below minimum thresholds to meet subsistence requirements, thereby increasing resilience to famine. Overall, conservation tillage (no-till) has great potential in stabilizing crop yield and thus ensuring local subsistence requirements on the China Loess Plateau. However, the potential of NT to sequestrate SOC is limited than often reported and has maximum capacity, and thus cannot be linearly extrapolated to estimate its effects on mitigating climate change.

  12. Nitrogen and phosphorus loading from drained wetlands adjacent to Upper Klamath and Agency lakes, Oregon

    USGS Publications Warehouse

    Snyder, Daniel T.; Morace, Jennifer L.

    1997-01-01

    The results of this study could be useful in helping to prioritize which drained wetlands may provide the greatest benefits with regard to reducing nutrient loads to the lake if restoration or land-use modifications are instituted. Recent acquisition and planned restoration of drained wetland areas at the Wood River and Williamson River North properties may produce significant reduction in the quantity of nutrients released by the decomposition of peat soils of these areas. If the water table rises to predrainage levels, the peats soils may become inundated most of the year, resulting in the continued long-term storage of nutrients within the peat soils by reducing aerobic decomposition. The maximum benefit, in terms of decreasing potential nutrient loss due to peat decomposition, could be the reduction of total nitrogen and total phosphorus loss to about one-half that of the 1994–95 annual loss estimated for all the drained wetlands sampled for this study.

  13. Evaluation of temperature differences for paired stations of the U.S. Climate Reference Network

    USGS Publications Warehouse

    Gallo, K.P.

    2005-01-01

    Adjustments to data observed at pairs of climate stations have been recommended to remove the biases introduced by differences between the stations in time of observation, temperature instrumentatios, latitude, and elevation. A new network of climate stations, located in rural settings, permits comparisons of temperatures for several pairs of stations without two of the biases (time of observation and instrurtientation). The daily, monthly, and annual minimum, maximum, and mean temperatures were compared for five pairs of stations included in the U.S. Climate Reference Network. Significant differences were found between the paired stations in the annual minimum, maximum, and mean temperatures for all five pairs of stations. Adjustments for latitude and elevation differences contributed to greater differences in mean annual temperature for four of the five stations. Lapse rates computed from the mean annual temperature differences between station pairs differed from a constant value, whether or not latitude adjustments were made to the data. The results suggest that microclimate influences on temperatures observed at nearby (horizontally and vertically) stations are potentially much greater than influences that might be due to latitude or elevation differences between the stations. ?? 2005 American Meteorological Society.

  14. On the suitability of the copula types for the joint modelling of flood peaks and volumes along the Danube River

    NASA Astrophysics Data System (ADS)

    Kohnová, Silvia; Papaioannou, George; Bacigál, Tomáš; Szolgay, Ján; Hlavčová, Kamila; Loukas, Athanasios; Výleta, Roman

    2017-04-01

    Flood frequency analysis is often performed as a univariate analysis of flood peaks using a suitable theoretical probability distribution of the annual maximum flood peaks or peak over threshold values. However, also other flood attributes, such as flood volume and duration, are often necessary for the design of hydrotechnical structures and projects. In this study, the suitability of various copula families for a bivariate analysis of peak discharges and flood volumes has been tested on the streamflow data from gauging stations along the whole Danube River. Kendall's rank correlation coefficient (tau) quantifies the dependence between flood peak discharge and flood volume settings. The methodology is tested on two different data samples: 1) annual maximum flood (AMF) peaks with corresponding flood volumes, which is a typical choice for engineering studies and 2). annual maximum flood (AMF) peaks combined with annual maximum flow volumes of fixed durations at 5, 10, 15, 20, 25, 30 and 60 days, which can be regarded as a regime analysis of the dependence between the extremes of both variables in a given year. The bivariate modelling of the peak discharge - flood volume couples is achieved with the use of the the following copulas: Ali-Mikhail-Haq (AMH), Clayton, Frank, Joe, Gumbel, HuslerReiss, Galambos, Tawn, Normal, Plackett and FGM, respectively. Scatterplots of the observed and simulated peak discharge - flood volume pairs and goodness-of-fit tests have been used to assess the overall applicability of the copulas as well as observing any changes in suitable models along the Danube River. The results indicate that, almost all of the considered Archimedean class copulas (e.g. Frank, Clayton and Ali-Mikhail-Haq) perform better than the other copula families selected for this study, and that for the second data samples mostly the upper-tail-flat copulas were suitable.

  15. Hydrologic and climatic changes in three small watersheds after timber harvest.

    Treesearch

    W.B. Fowler; J.D. Helvey; E.N. Felix

    1987-01-01

    No significant increases in annual water yield were shown for three small watersheds in northeastern Oregon after shelterwood cutting (30-percent canopy removal, 50-percent basal area removal) and clearcutting. Average maximum air temperature increased after harvest and average minimum air temperature decreased by up to 2.6 °C. Both maximum and minimum water...

  16. 77 FR 47318 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Annual Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... (CPS) Fishery Management Plan (FMP). The 2012 maximum HG for Pacific sardine is 109,409 metric tons (mt... framework in the FMP. This framework includes a harvest control rule that determines the maximum HG, the... 109,409 metric tons (mt) for the 2012 Pacific sardine fishing year. These catch specifications are...

  17. 78 FR 49321 - Proposed Agency Information Collection Activities; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    .... Residents. Respondent Universe: 1,000 individuals. Frequency of Submission: On occasion. Respondent Total annual Average time per Total annual Form number universe responses response burden hours Alleged...

  18. 77 FR 77181 - Proposed Agency Information Collection Activities; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ...: Railroad Employees. Respondent Universe: 11,000 Railroad Employees. Frequency of Submission: On occasion. Reporting Burden: Total Respondent Total annual Average Time annual CFR section universe responses per...

  19. Relation of watershed setting and stream nutrient yields at selected sites in central and eastern North Carolina, 1997-2008

    USGS Publications Warehouse

    Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.

    2013-01-01

    Data collected between 1997 and 2008 at 48 stream sites were used to characterize relations between watershed settings and stream nutrient yields throughout central and eastern North Carolina. The focus of the investigation was to identify environmental variables in watersheds that influence nutrient export for supporting the development and prioritization of management strategies for restoring nutrient-impaired streams. Nutrient concentration data and streamflow data compiled for the 1997 to 2008 study period were used to compute stream yields of nitrate, total nitrogen (N), and total phosphorus (P) for each study site. Compiled environmental data (including variables for land cover, hydrologic soil groups, base-flow index, streams, wastewater treatment facilities, and concentrated animal feeding operations) were used to characterize the watershed settings for the study sites. Data for the environmental variables were analyzed in combination with the stream nutrient yields to explore relations based on watershed characteristics and to evaluate whether particular variables were useful indicators of watersheds having relatively higher or lower potential for exporting nutrients. Data evaluations included an examination of median annual nutrient yields based on a watershed land-use classification scheme developed as part of the study. An initial examination of the data indicated that the highest median annual nutrient yields occurred at both agricultural and urban sites, especially for urban sites having large percentages of point-source flow contributions to the streams. The results of statistical testing identified significant differences in annual nutrient yields when sites were analyzed on the basis of watershed land-use category. When statistical differences in median annual yields were noted, the results for nitrate, total N, and total P were similar in that highly urbanized watersheds (greater than 30 percent developed land use) and (or) watersheds with greater than 10 percent point-source flow contributions to streamflow had higher yields relative to undeveloped watersheds (having less than 10 and 15 percent developed and agricultural land uses, respectively) and watersheds with relatively low agricultural land use (between 15 and 30 percent). The statistical tests further indicated that the median annual yields for total P were statistically higher for watersheds with high agricultural land use (greater than 30 percent) compared to the undeveloped watersheds and watersheds with low agricultural land use. The total P yields also were higher for watersheds with low urban land use (between 10 and 30 percent developed land) compared to the undeveloped watersheds. The study data indicate that grouping and examining stream nutrient yields based on the land-use classifications used in this report can be useful for characterizing relations between watershed settings and nutrient yields in streams located throughout central and eastern North Carolina. Compiled study data also were analyzed with four regression tree models as a means of determining which watershed environmental variables or combination of variables result in basins that are likely to have high or low nutrient yields. The regression tree analyses indicated that some of the environmental variables examined in this study were useful for predicting yields of nitrate, total N, and total P. When the median annual nutrient yields for all 48 sites were evaluated as a group (Model 1), annual point-source flow yields had the greatest influence on nitrate and total N yields observed in streams, and annual streamflow yields had the greatest influence on yields of total P. The Model 1 results indicated that watersheds with higher annual point-source flow yields had higher annual yields of nitrate and total N, and watersheds with higher annual streamflow yields had higher annual yields of total P. When sites with high point-source flows (greater than 10 percent of total streamflow) were excluded from the regression tree analyses (Models 2–4), the percentage of forested land in the watersheds was identified as the primary environmental variable influencing stream yields for both total N and total P. Models 2, 3 and 4 did not identify any watershed environmental variables that could adequately explain the observed variability in the nitrate yields among the set of sites examined by each of these models. The results for Models 2, 3, and 4 indicated that watersheds with higher percentages of forested land had lower annual total N and total P yields compared to watersheds with lower percentages of forested land, which had higher median annual total N and total P yields. Additional environmental variables determined to further influence the stream nutrient yields included median annual percentage of point-source flow contributions to the streams, variables of land cover (percentage of forested land, agricultural land, and (or) forested land plus wetlands) in the watershed and (or) in the stream buffer, and drainage area. The regression tree models can serve as a tool for relating differences in select watershed attributes to differences in stream yields of nitrate, total N, and total P, which can provide beneficial information for improving nutrient management in streams throughout North Carolina and for reducing nutrient loads to coastal waters.

  20. 77 FR 8297 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... account for an 1800-hour work year and multiplied by 2.93 to account for bonuses, firm size, employee... for each of approximately 2400 purchasers annually (at an estimated $67 per hour),\\1\\ for a total annual burden of 120 hours (at a total annual cost of $8,040). \\1\\ $67/hour figure for a Compliance Clerk...

  1. The composition of bulk precipitation on a coastal island with agriculture compared to an urban region

    NASA Astrophysics Data System (ADS)

    Weijers, E. P.; Vugts, H. F.

    Results of chemical analyses of monthly bulk samples from Schiermonnikoog, one of the islands in the northern part of The Netherlands, are interpreted. The continuous record covers a period of more than 15 years. A comparison (10 years) is made with Ouderkerk, a village near Amsterdam. Non-sea salt contributions, relations between ion species, long-time trends, annual cycles and meteorological influence are discussed. The study reveals enhanced levels of ammonium in the Schiermonnikoog samples with respect to Ouderkerk. Also, concentrations of sulfate and nitrate were higher. The high concentrations of ammonium are ascribed to dry-deposited NH 3 caused by cattle breeding, the only economical activity on the island. A significant positive trend reflects its intensifying nature. Annual cycles and statistical computations indicate prior combination of parts of ammonium and excess sulfate as ammonium sulfate. The nitrate content appears to be strongly related to ammonium ( r = 079). In the Ouderkerk dataset this correspondence is much weaker (0.37), whereas its pH values are systematically lower. It is therefore believed that on Schiermonnikoog concentrations of nitrate are increased by nitrification of ammonium in the collector. Annual cycles of sodium, magnesium and chloride, and to a lesser extent potassium, are very similar (maximum concentrations in November, December and January, and a relative maximum in April). The other annual patterns peak in the first half of the year: maximum concentrations are found in February (ammonium, excess sulfate), June (nitrate), January (potassium) and in April (excess calcium). A combination of frequently occurring offshore winds and low precipitation amounts will account for this behavior.

  2. Phosphorus and nitrogen in runoff after phosphorus- or nitrogen-based manure applications.

    PubMed

    Miller, Jim J; Chanasyk, David S; Curtis, Tony W; Olson, Barry M

    2011-01-01

    Application of beef cattle () manure based on nitrogen (N) requirements of crops has resulted in elevated concentrations of soil test phosphorus (P) in surface soils, and runoff from this cropland can contribute to eutrophication of surface waters. We conducted a 3-yr field study (2005-2007) on a Lethbridge loam soil cropped to dryland barley () in southern Alberta, Canada to evaluate the effect of annual and triennial P-based and annual N-based feedlot manure on P and N in runoff. The manure was spring applied and incorporated. There was one unamended control plot. A portable rainfall simulator was used to generate runoff in the spring of each year after recent manure incorporation, and the runoff was analyzed for total P, total dissolved P, total particulate P, dissolved reactive P, total N, total dissolved N, total particulate N, NO-N, and NH-N. Annual or triennial P-based application resulted in significantly ( ≤ 0.05) lower (by 50 to 94%) concentrations or loads of mainly dissolved P fractions in runoff for some years compared with annual N-based application, and this was related to lower rates of annual manure P applied. For example, mean dissolved reactive P concentrations in 2006 and 2007 were significantly lower for the annual P-based (0.12-0.20 mg L) than for the annual N-based application (0.24-0.48 mg L), and mean values were significantly lower for the triennial P-based (0.06-0.13 mg L) than for the annual N-based application. In contrast, other P fractions in runoff were unaffected by annual P-based application. Our findings suggested no environmental benefit of annual P-based application over triennial P-based application with respect to P and N in runoff. Similar concentrations and loads of N fractions in runoff for the P- and N-based applications indicated that shifting to a P-based application would not significantly influence N in runoff. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  3. The Eocene climate of China, the early elevation of the Tibetan Plateau and the onset of the Asian Monsoon.

    PubMed

    Wang, Qing; Spicer, Robert A; Yang, Jian; Wang, Yu-Fei; Li, Cheng-Sen

    2013-12-01

    Eocene palynological samples from 37 widely distributed sites across China were analysed using co-existence approach to determine trends in space and time for seven palaeoclimate variables: Mean annual temperature, mean annual precipitation, mean temperature of the warmest month, mean temperature of the coldest month, mean annual range of temperature, mean maximum monthly precipitation and mean minimum monthly precipitation. Present day distributions and observed climates within China of the nearest living relatives of the fossil forms were used to find the range of a given variable in which a maximum number of taxa can coexist. Isotherm and isohyet maps for the early, middle and late Eocene were constructed. These illustrate regional changing patterns in thermal and precipitational gradients that may be interpreted as the beginnings of the modern Asian Monsoon system, and suggest that the uplift of parts of the Tibetan Plateau appear to have taken place by the middle to late Eocene. © 2013 John Wiley & Sons Ltd.

  4. Spatial distribution of temperature trends and extremes over Maharashtra and Karnataka States of India

    NASA Astrophysics Data System (ADS)

    Dhorde, Amit G.; Korade, Mahendra S.; Dhorde, Anargha A.

    2017-10-01

    Earth surface temperatures are changing worldwide together with the changes in the extreme temperatures. The present study investigates trends and variations of monthly maximum and minimum temperatures and their effects on seasonal fluctuations at different climatological stations of Maharashtra and Karnataka states of India. Trend analysis was performed on annual and seasonal mean maximum temperature (TMAX) and mean minimum temperature (TMIN) for the period 1969 to 2006. During the last 38 years, an increase in annual TMAX and TMIN has occurred. At most of the locations, the increase in TMAX was faster than the TMIN, resulting in an increase in diurnal temperature range. At the same time, annual mean temperature (TM) showed a significant increase over the study area. Percentiles were used to identify extreme temperature indices. An increase in occurrence of warm extremes was observed at southern locations, and cold extremes increased over the central and northeastern part of the study area. Occurrences of cold wave conditions have decreased rapidly compared to heat wave conditions.

  5. Adjusted monthly temperature and precipitation values for Guinea Conakry (1941-2010) using HOMER.

    NASA Astrophysics Data System (ADS)

    Aguilar, Enric; Aziz Barry, Abdoul; Mestre, Olivier

    2013-04-01

    Africa is a data sparse region and there are very few studies presenting homogenized monthly records. In this work, we introduce a dataset consisting of 12 stations spread over Guinea Conakry containing daily values of maximum and minimum temperature and accumulated rainfall for the period 1941-2010. The daily values have been quality controlled using R-Climdex routines, plus other interactive quality control applications, coded by the authors. After applying the different tests, more than 200 daily values were flagged as doubtful and carefully checked against the statistical distribution of the series and the rest of the dataset. Finally, 40 values were modified or set to missing and the rest were validated. The quality controlled daily dataset was used to produce monthly means and homogenized with HOMER, a new R-pacakge which includes the relative methods that performed better in the experiments conducted in the framework of the COST-HOME action. A total number of 38 inhomogeneities were found for temperature. As a total of 788 years of data were analyzed, the average ratio was one break every 20.7 years. The station with a larger number of inhomogeneities was Conakry (5 breaks) and one station, Kissidougou, was identified as homogeneous. The average number of breaks/station was 3.2. The mean value of the monthly factors applied to maximum (minimum) temperature was 0.17 °C (-1.08 °C) . For precipitation, due to the demand of a denser network to correctly homogenize this variable, only two major inhomogeneities in Conakry (1941-1961, -12%) and Kindia (1941-1976, -10%) were corrected. The adjusted dataset was used to compute regional series for the three variables and trends for the 1941-2010 period. The regional mean has been computed by simply averaging anomalies to 1971-2000 of the 12 time series. Two different versions have been obtained: a first one (A) makes use of the missing values interpolation made by HOMER (so all annual values in the regional series are an average of 12 anomalies); the second one (B) removes the missing values, and each value of the regional series is an average of 5 to 12 anomalies. In this case, a variance stabilization factor has been applied. As a last step a trend analysis has been applied over the regional series. This has been done using two different approaches: standard least squares regression (LS) and the implementation by Zhang of the Sen slope estimator (SEN), applied using the zyp R-package. The results for the A & B series and the different trend calculations are very similar, in terms of slopes and signification. All the identified trends are significant at the 95% confidence level or better. Using the A series and the SEN slope, the annual regional mean of maximum temperatures has increased 0.135 °C/decade (95% confidence interval: 0.087 / 0.173) and the annual regional mean of minimum temperatures 0.092 °C/decade (0.050/0.135). Maximum temperatures present high values in the 1940s to 1950s and a large increase in the last decades. In contrast, minimum temperatures were relatively cooler in the 1940s and 1950s and the increase in the last decades is more moderate. Finally, the regional mean of annual accumulated precipitation decreased between 1941 and 2010 by -2.20 mm (-3.82/-0.64). The precipitation series are dominated by the high values before 1970, followed by a well known decrease in rainfall. This homogenized monthly series will improve future analysis over this portion of Western Africa.

  6. Estimated nitrogen loads from selected tributaries in Connecticut draining to Long Island Sound, 1999–2009

    USGS Publications Warehouse

    Mullaney, John R.; Schwarz, Gregory E.

    2013-01-01

    The total nitrogen load to Long Island Sound from Connecticut and contributing areas to the north was estimated for October 1998 to September 2009. Discrete measurements of total nitrogen concentrations and continuous flow data from 37 water-quality monitoring stations in the Long Island Sound watershed were used to compute total annual nitrogen yields and loads. Total annual computed yields and basin characteristics were used to develop a generalized-least squares regression model for use in estimating the total nitrogen yields from unmonitored areas in coastal and central Connecticut. Significant variables in the regression included the percentage of developed land, percentage of row crops, point-source nitrogen yields from wastewater-treatment facilities, and annual mean streamflow. Computed annual median total nitrogen yields at individual monitoring stations ranged from less than 2,000 pounds per square mile in mostly forested basins (typically less than 10 percent developed land) to more than 13,000 pounds per square mile in urban basins (greater than 40 percent developed) with wastewater-treatment facilities and in one agricultural basin. Medians of computed total annual nitrogen yields for water years 1999–2009 at most stations were similar to those previously computed for water years 1988–98. However, computed medians of annual yields at several stations, including the Naugatuck River, Quinnipiac River, and Hockanum River, were lower than during 1988–98. Nitrogen yields estimated for 26 unmonitored areas downstream from monitoring stations ranged from less than 2,000 pounds per square mile to 34,000 pounds per square mile. Computed annual total nitrogen loads at the farthest downstream monitoring stations were combined with the corresponding estimates for the downstream unmonitored areas for a combined estimate of the total nitrogen load from the entire study area. Resulting combined total nitrogen loads ranged from 38 to 68 million pounds per year during water years 1999–2009. Total annual loads from the monitored basins represent 63 to 74 percent of the total load. Computed annual nitrogen loads from four stations near the Massachusetts border with Connecticut represent 52 to 54 percent of the total nitrogen load during water years 2008–9, the only years with data for all the border sites. During the latter part of the 1999–2009 study period, total nitrogen loads to Long Island Sound from the study area appeared to increase slightly. The apparent increase in loads may be due to higher than normal streamflows, which consequently increased nonpoint nitrogen loads during the study, offsetting major reductions of nitrogen from wastewater-treatment facilities. Nitrogen loads from wastewater treatment facilities declined as much as 2.3 million pounds per year in areas of Connecticut upstream from the monitoring stations and as much as 5.8 million pounds per year in unmonitored areas downstream in coastal and central Connecticut.

  7. 75 FR 50780 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... the following public information collection request (ICR) to the Office of Management and Budget (OMB... things, a description of the likely respondents, proposed frequency of response, and estimated total... of Respondents: 53. Total Annual Number of Responses: 1,437,897. Total Annual Burden Hours: 23,964...

  8. Sources of phosphorus to the Carson River upstream from Lahontan Reservoir, Nevada and California, Water Years 2001-02

    USGS Publications Warehouse

    Alvarez, Nancy L.; Seiler, Ralph L.

    2004-01-01

    Discharge of treated municipal-sewage effluent to the Carson River in western Nevada and eastern California ceased by 1987 and resulted in a substantial decrease in phosphorus concentrations in the Carson River. Nonetheless, concentrations of total phosphorus and suspended sediment still commonly exceed beneficial-use criteria established for the Carson River by the Nevada Division of Environmental Protection. Potential sources of phosphorus in the study area include natural inputs from undisturbed soils, erosion of soils and streambanks, construction of low-head dams and their destruction during floods, manure production and grazing by cattle along streambanks, drainage from fields irrigated with streamwater and treated municipal-sewage effluent, ground-water seepage, and urban runoff including inputs from golf courses. In 2000, the U.S. Geological Survey (USGS), in cooperation with Carson Water Subconservancy District, began an investigation with the overall purpose of providing managers and regulators with information necessary to develop and implement total maximum daily loads for the Carson River. Two specific goals of the investigation were (1) to identify those reaches of the Carson River upstream from Lahontan Reservoir where the greatest increases in phosphorus and suspended-sediment concentrations and loading occur, and (2) to identify the most important sources of phosphorus within the reaches of the Carson River where the greatest increases in concentration and loading occur. Total-phosphorus concentrations in surface-water samples collected by USGS in the study area during water years 2001-02 ranged from <0.01 to 1.78 mg/L and dissolved-orthophosphate concentrations ranged from <0.01 to 1.81 mg/L as phosphorus. In streamflow entering Carson Valley from headwater areas in the East Fork Carson River, the majority of samples exceeding the total phosphorus water-quality standard of 0.1 mg/L occur during spring runoff (March, April, and May) when suspended-sediment concentrations are high. Downstream from Carson Valley, almost all samples exceed the water-quality standard, with the greatest concentrations observed during spring and summer months. Estimated annual total-phosphorus loads ranged from 1.33 tons at the West Fork Carson River at Woodfords to 43.41 tons at the Carson River near Carson City during water years 2001-02. Loads are greatest during spring runoff, followed by fall and winter, and least during the summer, which corresponds to the amount of streamflow in the Carson River. The estimated average annual phosphorus load entering Carson Valley was 21.9 tons; whereas, the estimated average annual phosphorus load leaving Carson Valley was 37.8 tons, for an annual gain in load across Carson Valley of 15.9 tons. Thus, about 58 percent of the total-phosphorus load leaving Carson Valley on an annual basis could be attributed to headwater reaches upstream from Carson Valley. During spring and summer (April 1-September 30) an average of 85 percent of the total-phosphorus load leaving Carson Valley could be attributed to headwater reaches. During fall and winter (October 1-March 31) only 17 percent of the phosphorus load leaving Carson Valley could be attributed to headwater reaches. The composition of the phosphorus changes during summer from particulate phosphorus entering Carson Valley to dissolved orthophosphate leaving Carson Valley. Particulate phosphorus entering Carson Valley could be settling out when water is applied to fields and be replaced by dissolved orthophosphate from other sources. Alternatively, the particulate phosphorus could be converted to dissolved orthophosphate as it travels across Carson Valley. Data collected during the study are not sufficient to distinguish between the two possibilities. Eagle Valley and Dayton-Churchill Valleys may act as sinks for phosphorus. On an annual basis, during water years 2001-02, about 90 percent of the phosphorus entering Eagle Valley left the

  9. Seasonal and weekly variability of Atlantic inflow into the northern North Sea

    NASA Astrophysics Data System (ADS)

    Sheehan, Peter; Berx, Bee; Gallego, Alejandro; Hall, Rob; Heywood, Karen

    2017-04-01

    Quantifying the variability of Atlantic inflow is necessary for managing the North Sea ecosystem and for producing accurate models for forecasting, for example, oil spill trajectories. The JONSIS hydrographic section (2.23°W to 0° at 59.28°N) crosses the path of the main inflow of Atlantic water into the northwestern North Sea. 122 occupations between 1989 and 2015 are examined to determine the annual cycle of thermohaline-driven volume transport into the North Sea. Thermohaline transport is at a minimum (0.1 Sv) during winter when it is driven by a horizontal salinity gradient across a zonal bottom front; it is at a maximum (0.35 Sv) in early autumn when it is driven by a horizontal temperature gradient that develops across the same front. The amplitude of the annual cycle of temperature-driven transport (0.15 Sv) is bigger than the amplitude of the annual cycle of salinity-driven transport (0.025 Sv). The annual cycles are approximately six months out of phase. Our quantitative results are the first to be based on a long-term dataset, and we advance previous understanding by identifying a salinity-driven flow in winter. Week-to-week variability of the Atlantic inflow is examined from ten Seaglider occupations of the JONSIS section in October and November 2013. Tidal ellipses produced from glider dive-average current observations are in good agreement with ellipses produced from tide model predictions. Total transport is derived by referencing geostrophic shear to dive-average-current observations once the tidal component of the flow has been removed. Total transport through the section during the deployment (0.5-1 Sv) is bigger than the thermohaline component (0.1-0.2 Sv), suggesting non-thermohaline forcings (e.g. wind forcing) are important at that time of year. Thermohaline transport during the glider deployment is in agreement with the annual cycle derived from the long-term observations. The addition of the glider-derived barotropic current permits a more accurate estimate of the transport than is possible from long-term hydrographic monitoring, and enables the separation of barotropic and depth-varying components. These results refine our understanding of the variability of Atlantic inflow into the North Sea on key timescales, and of the contribution of frontal flow to shelf sea circulation.

  10. Limnological study of Lake Shastina, Siskiyou County, California

    USGS Publications Warehouse

    Dong, Alex E.; Beatty, Kenneth W.; Averett, Robert C.

    1974-01-01

    Lake Shastina provides water for irrigation in Shasta Valley, as well as recreation. Presently, its shoreline is being developed for summer homes. Surface water constituted more than 90 percent of the approximately 50,000 acre-foot (62-cubic hectometre) inflow to Lake Shastina in the 1972 water year. Controlled outflow is via the Montague Main Canal; however, leakage from the lake through volcanic rocks to the northwest was estimated to be greater than the measured outflow. Appreciable annual changes in the quantity of water in storage in the lake are related mainly to variations in annual inflow.From June through August the lake was thermally stratified. In the spring and summer the epilimnion was often supersaturated with oxygen, while at the same time the hypolimnion was undersaturated and 'often devoid of dissolved oxygen. Vertical stratification of carbon dioxide, carbonate, bicarbonate, hydrogen ion, nitrogen, and phosphorus was also recorded during the spring and summer. Orthophosphate, total phosphorus, and total nitrogen concentrations (organic, ammonium, and nitrate) were highest in the hypolimnion during the period of thermal stratification.Ten-inch (25-centimetre) core samples from the reservoir bottom were chemically analyzed at 0.8-inch (2-centimetre) intervals. The concentrations ranged from 6.3 to 28.9 milligrams per gram of iron, 0.07 to 0.43 milligrams per gram of manganese, 0.4 to 2.7 milligrams per gram of organic nitrogen plus ammonium, and 0.06 to 1.3 milligrams per gram of total phosphorus. Organic matter in the cores ranged from 4 to 14 percent.Green algae and diatoms were the dominant algal types, reaching maximum concentrations of about 7 and 30 million cells per litre, respectively. These phytoplankton occurred near the surface during thermally stratified periods, but were distributed at greater depths during nonthermally stratified periods. Blue-green algae were present only in the spring samples, and reached a maximum concentration of about 5 million cells per litre.Zooplankton numbers were greatest in March, July, and September, with lesser concentrations in June. Three major zooplankton groups, Cladocera, Copepoda, and Rotifera, were present. The major groups of benthic organisms were Oligochaeta, Chironomidae, and Chaoborus, with numbers ranging from 3350, 890, and 8450 per square metre, respectively.A discussion on algal control is included.

  11. 12 CFR Appendix L to Part 226 - Assumed Loan Periods for Computations of Total Annual Loan Cost Rates

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Annual Loan Cost Rates L Appendix L to Part 226 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z) Pt. 226, App. L Appendix L to Part 226—Assumed Loan Periods for Computations of Total Annual Loan Cost Rates (a) Required...

  12. Are equilibrium multichannel networks predictable? The case of the regulated Indus River, Pakistan

    NASA Astrophysics Data System (ADS)

    Carling, P. A.; Trieu, H.; Hornby, D. D.; Huang, He Qing; Darby, S. E.; Sear, D. A.; Hutton, C.; Hill, C.; Ali, Z.; Ahmed, A.; Iqbal, I.; Hussain, Z.

    2018-02-01

    Arguably, the current planform behaviour of the Indus River is broadly predictable. Between Chashma and Taunsa, Pakistan, the Indus is a 264-km-long multiple-channel reach. Remote sensing imagery, encompassing major floods in 2007 and 2010, shows that the Indus has a minimum of two and a maximum of nine channels, with on average four active channels during the dry season and five during the annual monsoon. Thus, the network structure, if not detailed planform, remains stable even for the record 2010 flood (27,100 m3 s- 1; recurrence interval > 100 years). Bankline recession is negligible for discharges less than a peak annual discharge of 6000 m3 s- 1 ( 80% of mean annual flood). The Maximum Flow Efficiency (MFE) principle demonstrates that the channel network is insensitive to the monsoon floods, which typically peak at 13,200 m3 s- 1. Rather, the network is in near-equilibrium with the mean annual flood (7530 m3 s- 1). The MFE principle indicates that stable networks have three to four channels, thus the observed stability in the number of active channels accords with the presence of a near-equilibrium reach-scale channel network. Insensitivity to the annual hydrological cycle demonstrates that the timescale for network adjustment is much longer than the timescale of the monsoon hydrograph, with the annual excess water being stored on floodplains rather than being conveyed in an enlarged channel network. The analysis explains the lack of significant channel adjustment following the largest flood in 40 years and the extensive Indus flooding experienced on an annual basis, with its substantial impacts on the populace and agricultural production.

  13. The influence of intra- and inter-annual meteorological variability on dengue transmission: a multi-level modeling analysis

    NASA Astrophysics Data System (ADS)

    Wen, Tzai-Hung; Chen, Tzu-Hsin

    2017-04-01

    Dengue fever is one of potentially life-threatening mosquito-borne diseases and IPCC Fifth Assessment Report (AR5) has confirmed that dengue incidence is sensitive to the critical weather conditions, such as effects of temperature. However, previous literature focused on the effects of monthly or weekly average temperature or accumulative precipitation on dengue incidence. The influence of intra- and inter-annual meteorological variability on dengue outbreak is under investigated. The purpose of the study focuses on measuring the effect of the intra- and inter-annual variations of temperature and precipitation on dengue outbreaks. We developed the indices of intra-annual temperature variability are maximum continuity, intermittent, and accumulation of most suitable temperature (MST) for dengue vectors; and also the indices of intra-annual precipitation variability, including the measure of continuity of wetness or dryness during a pre-epidemic period; and rainfall intensity during an epidemic period. We used multi-level modeling to investigate the intra- and inter-annual meteorological variations on dengue outbreaks in southern Taiwan from 1998-2015. Our results indicate that accumulation and maximum continuity of MST are more significant than average temperature on dengue outbreaks. The effect of continuity of wetness during the pre-epidemic period is significantly more positive on promoting dengue outbreaks than the rainfall effect during the epidemic period. Meanwhile, extremely high or low rainfall density during an epidemic period do not promote the spread of dengue epidemics. Our study differentiates the effects of intra- and inter-annual meteorological variations on dengue outbreaks and also provides policy implications for further dengue control under the threats of climate change. Keywords: dengue fever, meteorological variations, multi-level model

  14. Estimating the required logistical resources to support the development of a sustainable corn stover bioeconomy in the USA

    DOE PAGES

    Ebadian, Mahmood; Sokhansanj, Shahabaddine; Webb, Erin

    2016-11-23

    In this paper, the logistical resources required to develop a bioeconomy based on corn stover in the USA are quantified, including field equipment, storage sites, transportation and handling equipment, workforce, corn growers, and corn lands. These resources are essential to mobilize large quantities of corn stover from corn fields to biorefineries. The logistical resources are estimated over the lifetime of the biorefineries. Seventeen corn-growing states are considered for the logistical resource assessment. Over 6.8 billion gallons of cellulosic ethanol can be produced annually from 108 million dry tons of corn stover in these states. The maximum number of required fieldmore » equipment (i.e., choppers, balers, collectors, loaders, and tractors) is estimated to be 194 110 units with a total economic value of about 26 billion dollars. In addition, 40 780 trucks and flatbed trailers would be required to transport bales from corn fields and storage sites to biorefineries with a total economic value of 4.0 billion dollars. About 88 899 corn growers need to be contracted with an annual net income of over 2.1 billion dollars. About 1903 storage sites would be required to hold 53.1 million dry tons of inventory after the harvest season. These storage sites would take up about 35 320.2 acres and 4077 loaders with an economic value of 0.4 billion dollars would handle this inventory. The total required workforce to run the logistics operations is estimated to be 50 567. Furthermore, the magnitude of the estimated logistical resources demonstrates the economic and social significance of the corn stover bioeconomy in rural areas in the USA.« less

  15. Estimating the required logistical resources to support the development of a sustainable corn stover bioeconomy in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebadian, Mahmood; Sokhansanj, Shahabaddine; Webb, Erin

    In this paper, the logistical resources required to develop a bioeconomy based on corn stover in the USA are quantified, including field equipment, storage sites, transportation and handling equipment, workforce, corn growers, and corn lands. These resources are essential to mobilize large quantities of corn stover from corn fields to biorefineries. The logistical resources are estimated over the lifetime of the biorefineries. Seventeen corn-growing states are considered for the logistical resource assessment. Over 6.8 billion gallons of cellulosic ethanol can be produced annually from 108 million dry tons of corn stover in these states. The maximum number of required fieldmore » equipment (i.e., choppers, balers, collectors, loaders, and tractors) is estimated to be 194 110 units with a total economic value of about 26 billion dollars. In addition, 40 780 trucks and flatbed trailers would be required to transport bales from corn fields and storage sites to biorefineries with a total economic value of 4.0 billion dollars. About 88 899 corn growers need to be contracted with an annual net income of over 2.1 billion dollars. About 1903 storage sites would be required to hold 53.1 million dry tons of inventory after the harvest season. These storage sites would take up about 35 320.2 acres and 4077 loaders with an economic value of 0.4 billion dollars would handle this inventory. The total required workforce to run the logistics operations is estimated to be 50 567. Furthermore, the magnitude of the estimated logistical resources demonstrates the economic and social significance of the corn stover bioeconomy in rural areas in the USA.« less

  16. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama

    USGS Publications Warehouse

    Ogden, Fred L.; Crouch, Trey D.; Stallard, Robert F.; Hall, Jefferson S.

    2013-01-01

    A paired catchment methodology was used with more than 3 years of data to test whether forests increase base flow in the dry season, despite reduced annual runoff caused by evapotranspiration (the “sponge-effect hypothesis”), and whether forests reduce maximum runoff rates and totals during storms. The three study catchments were: a 142.3 ha old secondary forest, a 175.6 ha mosaic of mixed age forest, pasture, and subsistence agriculture, and a 35.9 ha actively grazed pasture subcatchment of the mosaic catchment. The two larger catchments are adjacent, with similar morphology, soils, underlying geology, and rainfall. Annual water balances, peak runoff rates, runoff efficiencies, and dry season recessions show significant differences. Dry season runoff from the forested catchment receded more slowly than from the mosaic and pasture catchments. The runoff rate from the forest catchment was 1–50% greater than that from the similarly sized mosaic catchment at the end of the dry season. This observation supports the sponge-effect hypothesis. The pasture and mosaic catchment median runoff efficiencies were 2.7 and 1.8 times that of the forest catchment, respectively, and increased with total storm rainfall. Peak runoff rates from the pasture and mosaic catchments were 1.7 and 1.4 times those of the forest catchment, respectively. The forest catchment produced 35% less total runoff and smaller peak runoff rates during the flood of record in the Panama Canal Watershed. Flood peak reduction and increased streamflows through dry periods are important benefits relevant to watershed management, payment for ecosystem services, water-quality management, reservoir sedimentation, and fresh water security in the Panama Canal watershed and similar tropical landscapes.

  17. Health care resource use, health care expenditures and absenteeism costs associated with osteoarthritis in US healthcare system.

    PubMed

    Menon, J; Mishra, P

    2018-04-01

    We determined incremental health care resource utilization, incremental health care expenditures, incremental absenteeism, and incremental absenteeism costs associated with osteoarthritis. Medical Expenditure Panel Survey (MEPS) for 2011 was used as data source. Individuals 18 years or older and employed during 2011 were eligible for inclusion in the sample for analyses. Individuals with osteoarthritis were identified based on ICD-9-CM codes. Incremental health care resource utilization included annual hospitalization, hospital days, emergency room visits and outpatient visits. Incremental health expenditures included annual inpatient, outpatient, emergency room, medications, miscellaneous and annual total expenditures. Of the total sample, 1354 were diagnosed with osteoarthritis, and compared to non osteoarthritis individuals. Incremental resource utilization, expenditures, absenteeism and absenteeism costs were estimated using regression models, adjusting for age, gender, sex, region, marital status, insurance coverage, comorbidities, anxiety, asthma, hypertension and hyperlipidemia. Regression models revealed incremental mean annual resource use associated with osteoarthritis of 0.07 hospitalizations, equal to 70 additional hospitalizations per 100 osteoarthritic patients annually, and 3.63 outpatient visits, equal to 363 additional visits per 100 osteoarthritic patients annually. Mean annual incremental total expenditures associated with osteoarthritis were $2046. Annually, mean incremental expenditures were largest for inpatient expenditures at $826, followed by mean incremental outpatient expenditures of $659, and mean incremental medication expenditures of $325. Mean annual incremental absenteeism was 2.2 days and mean annual incremental absenteeism costs were $715.74. Total direct expenditures were estimated at $41.7 billion. Osteoarthritis was associated with significant incremental health care resource utilization, expenditures, absenteeism and absenteeism costs. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Thermal effects of dams in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2010-01-01

    Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm

  19. Indian community health insurance schemes provide partial protection against catastrophic health expenditure

    PubMed Central

    Devadasan, Narayanan; Criel, Bart; Van Damme, Wim; Ranson, Kent; Van der Stuyft, Patrick

    2007-01-01

    Background More than 72% of health expenditure in India is financed by individual households at the time of illness through out-of-pocket payments. This is a highly regressive way of financing health care and sometimes leads to impoverishment. Health insurance is recommended as a measure to protect households from such catastrophic health expenditure (CHE). We studied two Indian community health insurance (CHI) schemes, ACCORD and SEWA, to determine whether insured households are protected from CHE. Methods ACCORD provides health insurance cover for the indigenous population, living in Gudalur, Tamil Nadu. SEWA provides insurance cover for self employed women in the state of Gujarat. Both cover hospitalisation expenses, but only upto a maximum limit of US$23 and US$45, respectively. We reviewed the insurance claims registers in both schemes and identified patients who were hospitalised during the period 01/04/2003 to 31/03/2004. Details of their diagnoses, places and costs of treatment and self-reported annual incomes were obtained. There is no single definition of CHE and none of these have been validated. For this research, we used the following definition; "annual hospital expenditure greater than 10% of annual income," to identify those who experienced CHE. Results There were a total of 683 and 3152 hospital admissions at ACCORD and SEWA, respectively. In the absence of the CHI scheme, all of the patients at ACCORD and SEWA would have had to pay OOP for their hospitalisation. With the CHI scheme, 67% and 34% of patients did not have to make any out-of-pocket (OOP) payment for their hospital expenses at ACCORD and SEWA, respectively. Both CHI schemes halved the number of households that would have experienced CHE by covering hospital costs. However, despite this, 4% and 23% of households with admissions still experienced CHE at ACCORD and SEWA, respectively. This was related to the following conditions: low annual income, benefit packages with low maximum limits, exclusion of some conditions from the benefit package, and use of the private sector for admissions. Conclusion CHI appears to be effective at halving the incidence of CHE among hospitalised patients. This protection could be further enhanced by improving the design of the CHI schemes, especially by increasing the upper limits of benefit packages, minimising exclusions and controlling costs. PMID:17362506

  20. Indian community health insurance schemes provide partial protection against catastrophic health expenditure.

    PubMed

    Devadasan, Narayanan; Criel, Bart; Van Damme, Wim; Ranson, Kent; Van der Stuyft, Patrick

    2007-03-15

    More than 72% of health expenditure in India is financed by individual households at the time of illness through out-of-pocket payments. This is a highly regressive way of financing health care and sometimes leads to impoverishment. Health insurance is recommended as a measure to protect households from such catastrophic health expenditure (CHE). We studied two Indian community health insurance (CHI) schemes, ACCORD and SEWA, to determine whether insured households are protected from CHE. ACCORD provides health insurance cover for the indigenous population, living in Gudalur, Tamil Nadu. SEWA provides insurance cover for self employed women in the state of Gujarat. Both cover hospitalisation expenses, but only upto a maximum limit of US$23 and US$45, respectively. We reviewed the insurance claims registers in both schemes and identified patients who were hospitalised during the period 01/04/2003 to 31/03/2004. Details of their diagnoses, places and costs of treatment and self-reported annual incomes were obtained. There is no single definition of CHE and none of these have been validated. For this research, we used the following definition; "annual hospital expenditure greater than 10% of annual income," to identify those who experienced CHE. There were a total of 683 and 3152 hospital admissions at ACCORD and SEWA, respectively. In the absence of the CHI scheme, all of the patients at ACCORD and SEWA would have had to pay OOP for their hospitalisation. With the CHI scheme, 67% and 34% of patients did not have to make any out-of-pocket (OOP) payment for their hospital expenses at ACCORD and SEWA, respectively. Both CHI schemes halved the number of households that would have experienced CHE by covering hospital costs. However, despite this, 4% and 23% of households with admissions still experienced CHE at ACCORD and SEWA, respectively. This was related to the following conditions: low annual income, benefit packages with low maximum limits, exclusion of some conditions from the benefit package, and use of the private sector for admissions. CHI appears to be effective at halving the incidence of CHE among hospitalised patients. This protection could be further enhanced by improving the design of the CHI schemes, especially by increasing the upper limits of benefit packages, minimising exclusions and controlling costs.

  1. Intercomparison and Uncertainty Assessment of Nine Evapotranspiration Estimates Over South America

    NASA Astrophysics Data System (ADS)

    Sörensson, Anna A.; Ruscica, Romina C.

    2018-04-01

    This study examines the uncertainties and the representations of anomalies of a set of evapotranspiration products over climatologically distinct regions of South America. The products, coming from land surface models, reanalysis, and remote sensing, are chosen from sources that are readily available to the community of users. The results show that the spatial patterns of maximum uncertainty differ among metrics, with dry regions showing maximum relative uncertainties of annual mean evapotranspiration, while energy-limited regions present maximum uncertainties in the representation of the annual cycle and monsoon regions in the representation of anomalous conditions. Furthermore, it is found that land surface models driven by observed atmospheric fields detect meteorological and agricultural droughts in dry regions unequivocally. The remote sensing products employed do not distinguish all agricultural droughts and this could be attributed to the forcing net radiation. The study also highlights important characteristics of individual data sets and recommends users to include assessments of sensitivity to evapotranspiration data sets in their studies, depending on region and nature of study to be conducted.

  2. Contributing recharge areas, groundwater travel time, and groundwater water quality of the Missouri River alluvial aquifer near the City of Independence, Missouri, well field, 1997-2008

    USGS Publications Warehouse

    Kelly, Brian P.

    2011-01-01

    The City of Independence, Missouri, operates a well field in the Missouri River alluvial aquifer. Contributing recharge areas (CRA) were last determined for the well field in 1996. Since that time, eight supply wells have been installed in the area north of the Missouri River and well pumpage has changed for the older supply wells. The change in pumping has altered groundwater flow and substantially changed the character of the CRA and groundwater travel times to the supply wells. The U.S Geological Survey, in a cooperative study with the City of Independence, Missouri, simulated steady-state groundwater flow for 2007 well pumpage, average annual river stage, and average annual recharge. Particle-tracking analysis was used to determine the CRA for supply wells and monitoring wells, and the travel time from recharge areas to supply wells, recharge areas to monitoring wells, and monitoring wells to supply wells. The simulated CRA for the well field is elongated in the upstream direction and extends to both sides of the Missouri River. Groundwater flow paths and recharge areas estimated for monitoring wells indicate the origin of water to each monitoring well, the travel time of that water from the recharge area, the flow path from the vicinity of each monitoring well to a supply well, and the travel time from the monitoring well to the supply well. Monitoring wells 14a and 14b have the shortest groundwater travel time from their contributing recharge area of 0.30 years and monitoring well 29a has the longest maximum groundwater travel time from its contributing recharge area of 1,701 years. Monitoring well 22a has the shortest groundwater travel time of 0.5 day to supply well 44 and monitoring well 3b has the longest maximum travel time of 31.91 years to supply well 10. Water-quality samples from the Independence groundwater monitoring well network were collected from 1997 to 2008 by USGS personnel during ongoing annual sampling within the 10-year contributing recharge area (CRA) of the Independence well field. Statistical summaries and the spatial and temporal variability of water quality in the Missouri River alluvial aquifer near the Independence well field were characterized from analyses of 598 water samples. Water-quality constituent groups include dissolved oxygen and physical properties, nutrients, major ions and trace elements, wastewater indicator compounds, fuel compounds, and total benzene, toluene, ethylbenzene, and xylene (BTEX), alachlor, and atrazine. The Missouri Secondary Maximum Contaminant Level (SMCL) for iron was exceeded in almost all monitoring wells. The Missouri Maximum Contaminant Level (MCL) for arsenic was exceeded 32 times in samples from monitoring wells. The MCL for barium was exceeded five times in samples from one monitoring well. The SMCL for manganese was exceeded 160 times in samples from all monitoring wells and the combined well-field sample. The most frequently detected wastewater indicator compounds were N,N-diethyl-meta-toluamide (DEET), phenol, caffeine, and metolachlor. The most frequently detected fuel compounds were toluene and benzene. Alachlor was detected in 22 samples and atrazine was detected in 37 samples and the combined well-field sample. The MCL for atrazine was exceeded in one sample from one monitoring well. Samples from monitoring wells with median concentrations of total inorganic nitrogen larger than 1 milligram per liter (mg/L) are located near agricultural land and may indicate that agricultural land practices are the source of nitrogen to groundwater. Largest median values of specific conductance; total inorganic nitrogen; dissolved calcium, magnesium, sodium, iron, arsenic, manganese, bicarbonate, and sulfate and detections of wastewater indicator compounds generally were in water samples from monitoring wells with CRAs that intersect the south bank of the Missouri River. Zones of higher specific conductance were located just upstream from the Independen

  3. Global Positioning System Total Electron Content Variation over King Sejong Station in Antarctic under the Solar Minimum Condition Between 2005 and 2009

    NASA Astrophysics Data System (ADS)

    Chung, Jong-Kyun; Jee, Geonhwa; Lee, Chi-Na

    2011-12-01

    The total electron content (TEC) using global positioning system (GPS) is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude 62°13' S, longitude 58° 47' W, corrected geomagnetic latitude 48° S) in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February), the seasonal mean TEC values have the maximum of 26.2 ± 2.4 TEC unit (TECU) in 2005 and the minimum of 16.5 ± 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006) to 1.4 TECU (2008-2009). However, on November 2010, it significantly increases to 22.3 ± 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August), the seasonal mean TEC slightly decreases from 13.7 ± 4.5 TECU in 2005 to 8.9 ± 0.6 TECU in 2008, and the a! nnual difference is constantly about 1.6 TECU, and increases to 10.3 ± 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT). The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.

  4. Recent trends in rainfall and temperature over North West India during 1871-2016

    NASA Astrophysics Data System (ADS)

    Saxena, Rani; Mathur, Prasoon

    2018-03-01

    Rainfall and temperature are the most important environmental factors influencing crop growth, development, and yield. The northwestern (NW) part of India is one of the main regions of food grain production of the country. It comprises of six meteorological subdivisions (Haryana, Punjab, West Rajasthan, East Rajasthan, Gujarat and Saurashtra, Kutch and Diu). In this study, attempts were made to study variability and trends in rainfall and temperature during 30-year climate normal periods (CN) and 10-year decadal excess or deficit rainfall frequency during the historical period from 1871 to 2016. The Mann-Kendall and Spearman's rank correlation (Spearman's rho) tests were used to determine significance of trends. Least square linear fitting method was adopted to find out the slopes of the trend lines. The long-term mean annual rainfall over North West India is 587.7 mm (standard deviation of 153.0 mm and coefficient of variation 26.0). There was increasing trend in minimum and maximum temperatures during post monsoon season in entire study period and current climate normal period (1991-2016) due to which the sowing of rabi season crops may be delayed and there may be germination problem too. There was a non-significant decreasing trend in rainfall during monsoon season and an increasing trend in rainfall during post monsoon over North West India during entire study period. During current CN5 (1991-2016), all the subdivision (except the Saurashtra region) showed a decreasing trend in rainfall during monsoon season which is a matter of concern for kharif crops and those rabi crops which are grown as rainfed on conserved soil moisture. The decadal annual and seasonal frequencies of excess and deficit years results revealed that the annual total deficit rainfall years (24) exceeded total excess rainfall years (22) in North West India during the entire study period. While during the current decadal period (2011 to 2016), single year was the excess year and 2 years were deficit rainfall years in all subdivisions (except East Rajasthan) on annual basis.

  5. Annual Changes in Forst Floor Weights Under a Southeast Missouri Oak Stand

    Treesearch

    Robert M. Loomis

    1975-01-01

    Amount of organic matter on the forest floor under a typical southeast Missouri oak stand varies about 2.1 tons/acre from season of greatest to season to least accumulation. This also corresponds to the amount of annual litter fall. Maximum accumulation of 7.5 tons/acre occured in Novermber after leaf-fall. Summer decomposition is rapid; minimumof 5.4 tons/acre was...

  6. Mean annual, seasonal, and monthly precipitation and runoff in Arkansas, 1951-2011

    USGS Publications Warehouse

    Pugh, Aaron L.; Westerman, Drew A.

    2014-01-01

    This report describes long-term annual, seasonal, and monthly means for precipitation and runoff in Arkansas for the period from 1951 through 2011. Precipitation means were estimated using data from the Parameter-elevation Regressions on Independent Slopes Model database; while total runoff, groundwater runoff, and surface runoff means were estimated using data from 123 active and inactive U.S. Geological Survey continuous-record streamflow-gaging stations located in Arkansas and surrounding States. Annual precipitation in Arkansas for the period from 1951 through 2011 had a mean of 49.8 inches. Of the six physiographic sections in Arkansas, the Ouachita Mountains had the largest mean annual precipitation at 53.0 inches, while the Springfield-Salem plateaus had the smallest mean annual precipitation at 45.5 inches. The mean annual total runoff for Arkansas was 17.8 inches. The Ouachita Mountains had the largest mean annual total runoff at 20.4 inches, while the Springfield-Salem plateaus had the smallest mean annual total runoff at 15.0 inches. Runoff is diminished during the dry season, which is attributed to increased losses from evapotranspiration, consumptive uses including irrigation, and increased withdrawals for public and private water supplies. The decline in runoff during the dry season is observed across the State in all physiographic sections. Spatial results for precipitation and runoff are presented in a series of maps that are available for download from the publication Web page in georeferenced raster formats.

  7. Occurrence of phosphorus, other nutrients, and triazine herbicides in water from the Hillsdale Lake basin, Northeast Kansas, May 1994 through May 1995

    USGS Publications Warehouse

    Putnam, J.E.

    1997-01-01

    An investigation of the occurrence of phosporus, other nutrients, and triazine herbicides in water samples from the Hillsdale Lake Basin in northeast Kansas was conducted from May 1994 through May 1995. Point-source and nonpoint-source contributions of these water-quality constituents were estimated by conducting synoptic sampling at 48 sites in the basin during five periods of low- flow conditions. Samples were collected for the determination of nutrients, including total phosphorus as phosphorus, dissolved orthophosphate as phosphorus, total nitrite plus nitrate as nitrogen, and total ammonia plus organic nitrogen as nitrogen, and for selected triazine herbicides. On the basis of criteria developed by the Kansas Department of Health and Environment, the Hillsdale Water-Quality Protection Project established a goal to maintain water quality in the tributaries of the Hillsdale Lake Basin at a mean annual low-flow total phosphorus concentration of 0.05 mg/L (milligrams per liter). The mean low- flow total phosphorus concentration of water samples collected in the Big Bull Creek (which includes drainage from Martin Creek), Rock Creek, Little Bull Creek, Wade Branch, and Smith Branch subbasins during low-flow conditions ranged from 0.05 to 4.9 mg/L during this study. Of the 44 sites sampled during low flow, 95 percent had low-flow total phosphorus concentrations larger than the 0.05-mg/L criterion. Discharges from wastewater- treatment plants located in Big Bull Creek and Martin Creek subbasins and the Little Bull Creek subbasin affected nutrient concentrations. Nutrient concentrations in water samples collected from the subbasins not affected by point-source discharges generally were smaller than those in the Big Bull Creek and Little Bull Creek subbasins. Estimated annual low-flow phosphorus loads computed at sampling sites located at the outlet of the subbasins show that the Big Bull Creeksubbasin, which includes drainage from the Martin Creek subbasin, had the largest estimate annual low-flow load, 2,740 kg/yr (kilograms per year).Rock Creek, Little Bull Creek, Wade Branch, and Smith Branch subbasins contributed less annual low-flow phosphorus load, 175, 161, 234, and 22kg/yr, respectively. With the exception of the Smith Branch subbasin, the largest triazine herbicide concentrations occurred in water samples collectedduring May 1994 and May 1995. During May 1994, 10 of 17 sampling sites in the Big Bull Creek and Martin Creek subbasins, 5 of 6 sites in theRock Creek subbasin, and 4 of 10 sites in the Little Bull Creek subbasin had triazine herbicide concentrations in water larger than the U.S.Environmental Protection Agency's Maximum Contaminant Level (MCL), which is an annual mean 3.0 ug/L (micrograms per liter) for atrazine indrinking water. During May 1995, 7 of 19 sites in the Big Bull Creek and Martin Creek subbasins, 5 of 6 sites in the Rock Creek subbasin, 1 of 12 sites in the Little Bull Creek subbasin, and 2 of 4 sites in the Wade Branch subbasin had samples with trazine herbicide concentrations larger than the MCL.Water samples collected in the Rock Creek subbasins had the largest mean triazine herbicide concentrations during May 1994 and May 1995, 6.4 and 4.5 ug/L, respectively.

  8. Dynamics of Phosphorus export from small forested catchments in low mountain ranges in Germany

    NASA Astrophysics Data System (ADS)

    Julich, Stefan; Julich, Dorit; Benning, Raphael; Feger, Karl-Heinz

    2017-04-01

    Phosphorus (P) plays an important role in the nutrition of forest ecosystem. The transport of P in forest soils predominantly occurs along preferential water flow pathways bypassing large parts of the soil matrix. Therefore, rapid flow processes by preferential flow and/or during storm events may lead to significant P losses from forest soils. However only little knowledge about the dynamics, magnitude and driving processes of P exports into surface water exist. In this contribution, we present the results of two studies where two small forested catchments have been monitored for a period around 3 years. Both catchments are situated in low mountain ranges in Saxony (catchment size 21 ha) and Thuringia (catchment size 5 ha) representing medium P contents in the topsoil of 1142 mg kg-1 and 834 mg kg-1 respectively. During the regular sampling (monthly to weekly sampling frequency), the mean Total-P concentrations of 23 μg L-1(Thuringian Site) and 8 μg L-1(Saxonian Site) have been measured. However, during single storm events Total-P concentrations increased considerably with maximum concentrations of 134 μg L-1(Thuringian Site) and 203 μg L-1(Saxonian Site). Our findings indicate that during storm events, especially after longer dry periods, significant amounts of phosphorus can be exported from forest ecosystems. Comparison of discharge-concentration patterns of Total-P, Nitrogen and DOC, as well as dye tracer experiments, suggest that preferential flow along biopores and stone surfaces, and the interface between mineral soil and litter layer are main pathways of export from forests. For the site in Saxony we calculated mean annual export rates of 32.8 to 33.5 g ha-1 a-1 based on the weekly sampling with different load calculation methods (flow weighted methods up to linear regression models). If the events are included into the annual load calculation the mean annual export fluxes increase from 47.8 to 58.6 g ha-1 a-1 based on the different load calculation methods. This implies that the estimation of P-exports from forested catchments need to be based on appropriate monitoring schemes and load estimation methods.

  9. Optimization of conventional water treatment plant using dynamic programming.

    PubMed

    Mostafa, Khezri Seyed; Bahareh, Ghafari; Elahe, Dadvar; Pegah, Dadras

    2015-12-01

    In this research, the mathematical models, indicating the capability of various units, such as rapid mixing, coagulation and flocculation, sedimentation, and the rapid sand filtration are used. Moreover, cost functions were used for the formulation of conventional water and wastewater treatment plant by applying Clark's formula (Clark, 1982). Also, by applying dynamic programming algorithm, it is easy to design a conventional treatment system with minimal cost. The application of the model for a case reduced the annual cost. This reduction was approximately in the range of 4.5-9.5% considering variable limitations. Sensitivity analysis and prediction of system's feedbacks were performed for different alterations in proportion from parameters optimized amounts. The results indicated (1) that the objective function is more sensitive to design flow rate (Q), (2) the variations in the alum dosage (A), and (3) the sand filter head loss (H). Increasing the inflow by 20%, the total annual cost would increase to about 12.6%, while 20% reduction in inflow leads to 15.2% decrease in the total annual cost. Similarly, 20% increase in alum dosage causes 7.1% increase in the total annual cost, while 20% decrease results in 7.9% decrease in the total annual cost. Furthermore, the pressure decrease causes 2.95 and 3.39% increase and decrease in total annual cost of treatment plants. © The Author(s) 2013.

  10. Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles.

    PubMed

    Cronn, Richard; Dolan, Peter C; Jogdeo, Sanjuro; Wegrzyn, Jill L; Neale, David B; St Clair, J Bradley; Denver, Dee R

    2017-07-24

    Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 10 9 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably, thousands of genes reach their annual peak activity during winter dormancy. Our study establishes the fine-scale timing of daily and annual maximum gene expression for diverse needle genes in Douglas-fir, and it highlights the potential for using this information for evaluating hypotheses concerning the daily or seasonal timing of gene activity in temperate-zone conifers, and for identifying cyclic transcriptome components in other conifer species.

  11. 16 CFR 801.11 - Annual net sales and total assets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Annual net sales and total assets. 801.11 Section 801.11 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND... person; and (2) The total assets of a person shall be as stated on the last regularly prepared balance...

  12. 76 FR 39981 - Agency Information Collection Activities; Submission for OMB Review; Joint Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... for the first year to convert systems and conduct training. Estimated Total Annual Burden: National... 124,832 burden hours for the first year to convert systems and conduct training. Total: 571,302 burden... 188 burden hours for the first year to convert systems and conduct training. Estimated Total Annual...

  13. 77 FR 52322 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... under the Resource Conservation and recovery Act (RCRA); employees working at routine hazardous waste... 10.69 hours per response. Burden means the total time, effort, or financial resources expended by...: Annually. Estimated Total Average Number of Responses for Each Respondent: 1. Estimated Total Annual Hour...

  14. Quantifying the intra-annual uncertainties in climate change assessment over 10 sub-basins across the Pacific Northwest US

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, Ali; Moradkhani, Hamid; Rana, Arun

    2017-04-01

    Uncertainty is an inevitable feature of climate change impact assessments. Understanding and quantifying different sources of uncertainty is of high importance, which can help modeling agencies improve the current models and scenarios. In this study, we have assessed the future changes in three climate variables (i.e. precipitation, maximum temperature, and minimum temperature) over 10 sub-basins across the Pacific Northwest US. To conduct the study, 10 statistically downscaled CMIP5 GCMs from two downscaling methods (i.e. BCSD and MACA) were utilized at 1/16 degree spatial resolution for the historical period of 1970-2000 and future period of 2010-2099. For the future projections, two future scenarios of RCP4.5 and RCP8.5 were used. Furthermore, Bayesian Model Averaging (BMA) was employed to develop a probabilistic future projection for each climate variable. Results indicate superiority of BMA simulations compared to individual models. Increasing temperature and precipitation are projected at annual timescale. However, the changes are not uniform among different seasons. Model uncertainty shows to be the major source of uncertainty, while downscaling uncertainty significantly contributes to the total uncertainty, especially in summer.

  15. Structure and sources of the sporadic meteor background from video observations

    NASA Astrophysics Data System (ADS)

    Jakšová, Ivana; Porubčan, Vladimír; Klačka, Jozef

    2015-10-01

    We investigate and discuss the structure of the sporadic meteor background population in the near-Earth space based on video meteor orbits from the SonotaCo database (SonotaCo 2009, WGN, 37, 55). The selection of the shower meteors was done by the Southworth-Hawkins streams-search criterion (Southworth & Hawkins 1963, Smithson. Contr. Astrophys., 7, 261). Of a total of 117786 orbits, 69.34% were assigned to sporadic background meteors. Our analysis revealed all the known sporadic sources, such as the dominant apex source which is splitting into the northern and southern branch. Part of a denser ring structure about the apex source connecting the antihelion and north toroidal sources is also evident. We showed that the annual activity of the apex source is similar to the annual variation in activity of the whole sporadic background. The antihelion source exhibits a very broad maximum from July until January and the north toroidal source shows three maxima similar to the radar observations by the Canadian Meteor Orbit Radar (CMOR). Potential parent bodies of the sporadic population were searched for by comparison of the distributions of the orbital elements of sporadic meteors, minor planets and comets.

  16. 78 FR 68023 - Annual Surveys in the Manufacturing Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... Manufacturing Area. The 2014 Annual Surveys consist of the Annual Survey of Manufactures, the Business R&D and... economic census will be conducted for the year 2017. Annual Survey of Manufactures The Annual Survey of Manufactures collects industry statistics, such as total value of shipments, employment, payroll, workers...

  17. Amtrak annual report, 2007

    DOT National Transportation Integrated Search

    2007-01-01

    In FY 2007, Amtrak earned approximately : $2.15 billion in total revenue and incurred about : $3.18 billion in expenses. Amtrak relies on an : annual federal appropriation, which in FY 2007 : totaled $1.294 billion, including $521 million in : operat...

  18. Amtrak annual report, 2008

    DOT National Transportation Integrated Search

    2008-01-01

    In FY 2008, Amtrak earned approximately $2.45 billion in total revenue and incurred about $3.41 billion in : expenses. The annual federal appropriation on which Amtrak relies : totaled $1.325 billion in FY 2008, comprising $475 million in : operating...

  19. Effects of alternative instream-flow criteria and water-supply demands on ground-water development options in the Big River Area, Rhode Island

    USGS Publications Warehouse

    Granato, Gregory E.; Barlow, Paul M.

    2005-01-01

    Transient numerical ground-water-flow simulation and optimization techniques were used to evaluate potential effects of instream-flow criteria and water-supply demands on ground-water development options and resultant streamflow depletions in the Big River Area, Rhode Island. The 35.7 square-mile (mi2) study area includes three river basins, the Big River Basin (30.9 mi2), the Carr River Basin (which drains to the Big River Basin and is 7.33 mi2 in area), the Mishnock River Basin (3.32 mi2), and a small area that drains directly to the Flat River Reservoir. The overall objective of the simulations was to determine the amount of ground water that could be withdrawn from the three basins when constrained by streamflow requirements at four locations in the study area and by maximum rates of withdrawal at 13 existing and hypothetical well sites. The instream-flow requirement for the outlet of each basin and the outfall of Lake Mishnock were the primary variables that limited the amount of ground water that could be withdrawn. A requirement to meet seasonal ground-water-demand patterns also limits the amount of ground water that could be withdrawn by up to about 50 percent of the total withdrawals without the demand-pattern constraint. Minimum water-supply demands from a public water supplier in the Mishnock River Basin, however, did not have a substantial effect on withdrawals in the Big River Basin. Hypothetical dry-period instream-flow requirements and the effects of artificial recharge also affected the amount of ground water that could be withdrawn. Results of simulations indicate that annual average ground-water withdrawal rates that range up to 16 million gallons per day (Mgal/d) can be withdrawn from the study area under simulated average hydrologic conditions depending on instream-flow criteria and water-supply demand patterns. Annual average withdrawals of 10 to 12 Mgal/d are possible for proposed demands of 3.4 Mgal/d in the Mishnock Basin, and for a constant annual instream-flow criterion of 0.5 cubic foot per second per square mile (ft3/s/mi2) at the four streamflow-constraint locations. An average withdrawal rate of 10 Mgal/d can meet estimates of future (2020) water-supply needs of surrounding communities in Rhode Island. This withdrawal rate represents about 13 percent of the average 2002 daily withdrawal from the Scituate Reservoir (76 Mgal/d), the State?s largest water supply. Average annual withdrawal rates of 6 to 7 Mgal/d are possible for more stringent instream-flow criteria that might be used during dry-period hydrologic conditions. Two example scenarios of dry-period instream-flow constraints were evaluated: first, a minimum instream flow of 0.1 cubic foot per second at any of the four constraint locations; and second, a minimum instream flow of 10 percent of the minimum monthly streamflow estimate for each streamflow-constraint location during the period 1961?2000. The State of Rhode Island is currently (2004) considering methods for establishing instream-flow criteria for streams within the State. Twelve alternative annual, seasonal, or monthly instream-flow criteria that have been or are being considered for application in southeastern New England were used as hypothetical constraints on maximum ground-water-withdrawal rates in management-model calculations. Maximum ground-water-withdrawal rates ranged from 5 to 16 Mgal/d under five alternative annual instream-flow criteria. Maximum ground-water-withdrawal rates ranged from 0 to 13.6 Mgal/d under seven alternative seasonal or monthly instream-flow criteria. The effect of ground-water withdrawals on seasonal variations in monthly average streamflows under each criterion also were compared. Evaluation of management-model results indicates that a single annual instream-flowcriterion may be sufficient to preserve seasonal variations in monthly average streamflows and meet water-supply demands in the Big River Area, because withdrawals from wells in the Big

  20. Cabauw experimental results from the Project for Intercomparison of Land-Surface Parameterization Schemes

    USGS Publications Warehouse

    Chen, T.H.; Henderson-Sellers, A.; Milly, P.C.D.; Pitman, A.J.; Beljaars, A.C.M.; Polcher, J.; Abramopoulos, F.; Boone, A.; Chang, S.; Chen, F.; Dai, Y.; Desborough, C.E.; Dickinson, R.E.; Dumenil, L.; Ek, M.; Garratt, J.R.; Gedney, N.; Gusev, Y.M.; Kim, J.; Koster, R.; Kowalczyk, E.A.; Laval, K.; Lean, J.; Lettenmaier, D.; Liang, X.; Mahfouf, Jean-Francois; Mengelkamp, H.-T.; Mitchell, Ken; Nasonova, O.N.; Noilhan, J.; Robock, A.; Rosenzweig, C.; Schaake, J.; Schlosser, C.A.; Schulz, J.-P.; Shao, Y.; Shmakin, A.B.; Verseghy, D.L.; Wetzel, P.; Wood, E.F.; Xue, Y.; Yang, Z.-L.; Zeng, Q.

    1997-01-01

    In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m-2 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (±10 W m-2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models' neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of 30 W m-2 and 25 W m-2, respectively. Annual totals of evapotranspiration and runoff, into which the precipitation is partitioned, both have ranges of 315 mm. These ranges in annual heat and water fluxes were approximately halved upon exclusion of the three schemes that have no stomatal resistance under non-water-stressed conditions. Many schemes tend to underestimate latent heat flux and overestimate sensible heat flux in summer, with a reverse tendency in winter. For six schemes, root-mean-square deviations of predictions from monthly observations are less than the estimated upper bounds on observation errors (5 W m-2 for sensible heat flux and 10 W m-2 for latent heat flux). Actual runoff at the site is believed to be dominated by vertical drainage to groundwater, but several schemes produced significant amounts of runoff as overland flow or interflow. There is a range across schemes of 184 mm (40% of total pore volume) in the simulated annual mean root-zone soil moisture. Unfortunately, no measurements of soil moisture were available for model evaluation. A theoretical analysis suggested that differences in boundary conditions used in various schemes are not sufficient to explain the large variance in soil moisture. However, many of the extreme values of soil moisture could be explained in terms of the particulars of experimental setup or excessive evapotranspiration.

  1. Cabauw Experimental Results from the Project for Intercomparison of Land-Surface Parameterization Schemes.

    NASA Astrophysics Data System (ADS)

    Chen, T. H.; Henderson-Sellers, A.; Milly, P. C. D.; Pitman, A. J.; Beljaars, A. C. M.; Polcher, J.; Abramopoulos, F.; Boone, A.; Chang, S.; Chen, F.; Dai, Y.; Desborough, C. E.; Dickinson, R. E.; Dümenil, L.; Ek, M.; Garratt, J. R.; Gedney, N.; Gusev, Y. M.;  Kim, J.;  Koster, R.;  Kowalczyk, E. A.;  Laval, K.;  Lean, J.;  Lettenmaier, D.;  Liang, X.;  Mahfouf, J.-F.;  Mengelkamp, H.-T.;  Mitchell, K.;  Nasonova, O. N.;  Noilhan, J.;  Robock, A.;  Rosenzweig, C.;  Schaake, J.;  Schlosser, C. A.;  Schulz, J.-P.;  Shao, Y.;  Shmakin, A. B.;  Verseghy, D. L.;  Wetzel, P.;  Wood, E. F.;  Xue, Y.;  Yang, Z.-L.;  Zeng, Q.

    1997-06-01

    In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m2 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (±10 W m2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models' neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of30 W m2 and 25 W m2, respectively. Annual totals of evapotranspiration and runoff, into which the precipitation is partitioned, both have ranges of 315 mm. These ranges in annual heat and water fluxes were approximately halved upon exclusion of the three schemes that have no stomatal resistance under non-water-stressed conditions. Many schemes tend to underestimate latent heat flux and overestimate sensible heat flux in summer, with a reverse tendency in winter. For six schemes, root-mean-square deviations of predictions from monthly observations are less than the estimated upper bounds on observation errors (5 W m2 for sensible heat flux and 10 W m2 for latent heat flux). Actual runoff at the site is believed to be dominated by vertical drainage to groundwater, but several schemes produced significant amounts of runoff as overland flow or interflow. There is a range across schemes of 184 mm (40% of total pore volume) in the simulated annual mean root-zone soil moisture. Unfortunately, no measurements of soil moisture were available for model evaluation. A theoretical analysis suggested that differences in boundary conditions used in various schemes are not sufficient to explain the large variance in soil moisture. However, many of the extreme values of soil moisture could be explained in terms of the particulars of experimental setup or excessive evapotranspiration.

  2. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana

    NASA Astrophysics Data System (ADS)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.

    2018-03-01

    Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.

  3. Secular Trend of Surface Temperature at an Elevated Observatory in the Pyrenees.

    NASA Astrophysics Data System (ADS)

    Bücher, A.; Dessens, J.

    1991-08-01

    Surface temperature was measured at the Pic du Midi de Bigorre, 2862 m MSL, from the foundation of the Observatory in 1878 until the closing of the meteorological station in 1984. After testing the homogeneity of the series with the annual mean temperatures in western Europe and in southwestern France, the period 1882-1970 was retained for trend analysis.The mean annual temperature increased 0.83°C during the 89-yr period. This increase is the sum of a very significant increase in the daily minimum temperature (+ 2.11°C) and a decrease in the maximum temperature ( 0.45°C). In consequence, the most dramatic change in the temperature regime was the difference between maximum and minimum; this decreased from 8.05°C in 1882 to 5.49°C in 1970. A mean increase is observed in all seasons, but, as for western Europe, it is stronger in spring and fall than in winter and summer.Analysis of cloudiness data for the same period shows a 15% increase in annual mean cloudiness and also significant year-to-year correlations between cloudiness and the maximum and minimum temperature. In consequence, the change in the temperature regime observed at the Pic du Midi since the end of last century is most probably the result of a climatic change involving an increase in cloud cover and, maybe, an increasing greenhouse effect.

  4. Hydrologic analysis of the proposed Badger-Beaver Creeks Artificial-Recharge Project : Morgan County, Colorado

    USGS Publications Warehouse

    Burns, Alan W.

    1980-01-01

    A hydrologic analysis of the proposed Badger-Beaver Creeks artificial-recharge project in Morgan County, Colo., was made with the aid of three digital computer models: A canal-distribution model, a ground-water flow model, and a stream-aquifer model. Statistical summaries of probable diversions from the South Platte River based on a 27-year period of historical flows indicate that an average-annual diversion of 96,000 acre-feet and a median-annual diversion of 43,000 acre-feet would be available. Diversions would sustain water in ponds for waterfowl habitat for an average of about five months per year, with a miximum pond surface area of about 300 acres with the median diversions and a maximum pond surface area of about 1,250 acres at least one-half of the years with the historic diversions. If the annual diversion were 43,000 acre-feet, recharge to the two alluvial aquifers would raise water levels sufficiently to create flowing streams in the channels of Beaver and Badger Creeks while allowing an increase in current ground-water pumping. The only area of significant waterlogging would be along the proposed delivery canal on the west edge of Badger Creek valley. If the total water available were diverted, the aquifer system could not transmit the water fast enough to the irrigation areas to avoid considerable waterlogging in the recharge areas. The impact of the proposed project on the South Platte River basin would be minimal once the ground-water system attained steady-state conditions, but that may take decades with a uniform diversion of the 43,000 acre-feet annually. (USGS)

  5. Potential for energy generation from anaerobic digestion of food waste in Australia.

    PubMed

    Lou, Xian Fang; Nair, Jaya; Ho, Goen

    2013-03-01

    Published national and state reports have revealed that Australia deposits an average of 16 million Mg of solid waste into landfills yearly, of which approximately 12.6% is comprised of food. Being highly biodegradable and possessing high energy content, anaerobic digestion offers an attractive treatment option alternative to landfilling. The present study attempted to identify the theoretical maximum benefit of food waste digestion in Australia with regard to energy recovery and waste diversion from landfills. The study also assessed the scope for anaerobic process to utilize waste for energy projects through various case study scenarios. Results indicated anaerobic digestion of total food waste generated across multiple sites in Australia could generate 558 453 dam(3) of methane which translated to 20.3 PJ of heating potential or 1915 GWe in electricity generation annually. This would contribute to 3.5% of total current energy supply from renewable sources. Energy contribution from anaerobic digestion of food waste to the total energy requirement in Australia remains low, partially due to the high energy consumption of the country. However its appropriateness in low density regions, which are prevalent in Australia, may allow digesters to have a niche application in the country.

  6. Effects of Climate Change on Flood Frequency in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Gergel, D. R.; Stumbaugh, M. R.; Lee, S. Y.; Nijssen, B.; Lettenmaier, D. P.

    2014-12-01

    A key concern about climate change as related to water resources is the potential for changes in hydrologic extremes, including flooding. We explore changes in flood frequency in the Pacific Northwest using downscaled output from ten Global Climate Models (GCMs) from the Coupled Model Inter-Comparison Project 5 (CMIP5) for historical forcings (1950-2005) and future Representative Concentration Pathways (RCPs) 4.5 and 8.5 (2006-2100). We use archived output from the Integrated Scenarios Project (ISP) (http://maca.northwestknowledge.net/), which uses the Multivariate Adaptive Constructed Analogs (MACA) method for statistical downscaling. The MACA-downscaled GCM output was then used to force the Variable Infiltration Capacity (VIC) hydrology model with a 1/16th degree spatial resolution and a daily time step. For each of the 238 HUC-08 areas within the Pacific Northwest (USGS Hydrologic Region 15), we computed, from the ISP archive, the series of maximum daily runoff values (surrogate for the annual maximum flood), and then the mean annual flood. Finally, we computed the ratios of the RCP4.5 and RCP8.5 mean annual floods to their corresponding values for the historical period. We evaluate spatial patterns in the results. For snow-dominated watersheds, the changes are dominated by reductions in flood frequency in basins that currently have spring-dominant floods, and increases in snow affected basins with fall-dominant floods. In low elevation basins west of the Cascades, changes in flooding are more directly related to changes in precipitation extremes. We further explore the nature of these effects by evaluating the mean Julian day of the annual maximum flood for each HUC-08 and how this changes between the historical and RCP4.5 and RCP8.5 scenarios.

  7. Amtrak annual report, 2009

    DOT National Transportation Integrated Search

    2009-01-01

    In FY 2009, Amtrak earned just over $2.35 billion in total revenue and incurred $3.5 billion in expenses. The annual federal : appropriation on which Amtrak relies totaled $1.49 billion in FY 2009, comprising $475 million in operating funds, $75 : mi...

  8. 75 FR 5945 - Proposed Information Collection; Comment Request; Alaska Cooperatives in the Bering Sea and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... rational manner, and to protect non-AFA participants in other fisheries. In addition, a voluntary civil... appeals. Estimated Total Annual Burden Hours: 470. Estimated Total Annual Cost to Public: $225. IV...

  9. 77 FR 2512 - Proposed Information Collection; Comment Request; U.S. Fishermen Fishing in Russian Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... information is sent to the National Marine Fisheries Service (NMFS) for transmission to Russia. If Russian... Time per Response: 30 minutes. Estimated Total Annual Burden Hours: 1. Estimated Total Annual Cost to...

  10. Modelling and Evaluation of Environmental Impact due to Continuous Emissions of the Severonickel Plant (Kola Peninsula)

    NASA Astrophysics Data System (ADS)

    Mahura, A.; Gonzalez-Aparicio, I.; Nuterman, R.; Baklanov, A.

    2012-04-01

    In this study, evaluation of potential impact - through concentration, deposition and loadings patterns - on population and environment due to continuous anthropogenic emissions (on example of sulfates) of the Cu-Ni smelters of the Russian North is given. To estimate impact, the Danish Emergency Response Model for Atmosphere (DERMA) was employed to perform long-term simulations of air concentration, time integrated air concentration (TIAC), dry (DD) and wet (WD) deposition patterns resulting from continuous emissions of the Severonickel smelters located on the Kola Peninsula (Murmansk region, Russia). To perform such simulations the 3D meteorological fields (from the European Center for Medium-Range Weather Forecasts, ECMWF) for the year 2000 were used as input. For simplicity, it has been assumed that normalized releases of sulfates from smelters location occurred at a constant rate every day. For each daily release the atmospheric transport, dispersion, dry and wet deposition due to removal processes were estimated during 10 day interval. Output from these long-term simulations is an essential input for evaluation of impact, doses, risks, and short- and long-term consequences, etc. Detailed analyses of simulated concentration and deposition fields allowed evaluating the spatial and temporal variability of resulted patterns on different scales. Temporal variability of both wet and dry deposition as well as their contribution into total deposition have been estimated. On an annual scale, the concentration and deposition patterns were estimated for the most populated cities of the North-West Russia. The modeled annual fields were also integrated into GIS environment as well as layers with population density (from the Center for International Earth Science Information Network, CIESIN) and standard administrative division of the North-West Russia and bordering countries. Furthermore, the estimation of deposited amounts (loadings) of sulfates for selected regions of Russia and border countries has been performed. It has been found that for the "mild emission scenario" (i.e. approx. 31.6 ths. ton), for the Severonickel smelters, the annual average daily dry deposition value is 5.79 ton (with the highest - 10.4 ton - in September, and the lowest - 2.9 ton - in March). The annual average daily wet deposition is 22.7 tons, and a strong month-to-month variability is seen compared with dry deposition. The highest average WD (46.3 ton) is in January, and the lowest - 5.5 ton - in July. There are also differences in amount deposited in total from daily releases. On an annual scale, on average, 32.9% of emitted amount could be deposited at the surface during the considered duration (i.e. 10 days) of atmospheric transport. The highest deposited amount of 57.2% is observed in January and the lowest of 14.3% - in July. Taking into account actual annual (on example of year 2000) emissions of sulfur dioxide as 45.3 ths. ton (Severonickel smelters, city of Monchegorsk), the summary annual time integrated air concentration, dry and wet deposition were re-scaled and these have been estimated for most populated cities (Arkhangelsk, Petrozavodsk, Sankt-Petersburg, Syktyvkar, Pskov, and Vologda) of the North-West Russia. It was found that among these cities, the TIAC is the highest - 86 μg•h/m3 - for Arkhangelsk and the lowest - 4 μg•h/m3 - for Pskov. Both dry and wet depositions were also the highest for Arkhangelsk - 0.5 and 2.2 mg/m2, respectively. Detailed analysis also showed that for regions surrounding the Kola Peninsula, on average (maximum), the total (dry plus wet) deposition was 0.6 (3.0), 1.8 (5.1), and 28.3 (122) mg/m2 for the territories of the Arkhangelsk, Karelia, and Murmansk regions of Russia. For border regions with Scandinavian countries, on average (maximum), the total deposition was 2.2 (6.7) mg/m2 in Finnmark (Norway); 0.2 (0.4) in Norrbotten and 0.03 (0.1) mg/m2 in Vsterbotten counties (Sweden); 0.6 (1.2) in Eastern Finland, 2.2 (7.2) in Lapland, and 1.4 (2.9) mg/m2 in Oulu provinces of Finland. For urban population living in the central and northern territories of the Kola Peninsula the yearly loading due to deposition of sulfates could be more than 40 kg/person. For bordering territories with the Murmansk region such loadings are less than 5 kg/person for the Eastern Finland, Karelia, and Arkhangelsk regions; and up to 15 kg/person - for the Northern Norway.

  11. Microbiological Quality of Panicum maximum Grass Silage with Addition of Lactobacillus sp. as Starter

    NASA Astrophysics Data System (ADS)

    Sumarsih, S.; Sulistiyanto, B.; Utama, C. S.

    2018-02-01

    The aim of the research was to evaluate microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp as starter. The completely randomized design was been used on this research with 4 treaments and 3 replications. The treatments were P0 ( Panicum maximum grass silage without addition Lactobacillus sp ), P1 ( Panicum maximum grass silage with 2% addition Lactobacillus sp), P2 (Panicum maximum grass silage with 4% addition Lactobacillus sp) and P3 (Panicum maximum grass silage with 6% addition Lactobacillus sp).The parameters were microbial populations of Panicum maximum grass silage (total lactic acid bacteria, total bacteria, total fungi, and Coliform bacteria. The data obtained were analyzed variance (ANOVA) and further tests performed Duncan’s Multiple Areas. The population of lactic acid bacteria was higher (P<0.05) and the total bacteria, fungi and Coliform were lower (P<0.05) with addition Lactobacillus sp. Microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp was better than no addition Lactobacillus sp.

  12. Models for estimating daily rainfall erosivity in China

    NASA Astrophysics Data System (ADS)

    Xie, Yun; Yin, Shui-qing; Liu, Bao-yuan; Nearing, Mark A.; Zhao, Ying

    2016-04-01

    The rainfall erosivity factor (R) represents the multiplication of rainfall energy and maximum 30 min intensity by event (EI30) and year. This rainfall erosivity index is widely used for empirical soil loss prediction. Its calculation, however, requires high temporal resolution rainfall data that are not readily available in many parts of the world. The purpose of this study was to parameterize models suitable for estimating erosivity from daily rainfall data, which are more widely available. One-minute resolution rainfall data recorded in sixteen stations over the eastern water erosion impacted regions of China were analyzed. The R-factor ranged from 781.9 to 8258.5 MJ mm ha-1 h-1 y-1. A total of 5942 erosive events from one-minute resolution rainfall data of ten stations were used to parameterize three models, and 4949 erosive events from the other six stations were used for validation. A threshold of daily rainfall between days classified as erosive and non-erosive was suggested to be 9.7 mm based on these data. Two of the models (I and II) used power law functions that required only daily rainfall totals. Model I used different model coefficients in the cool season (Oct.-Apr.) and warm season (May-Sept.), and Model II was fitted with a sinusoidal curve of seasonal variation. Both Model I and Model II estimated the erosivity index for average annual, yearly, and half-month temporal scales reasonably well, with the symmetric mean absolute percentage error MAPEsym ranging from 10.8% to 32.1%. Model II predicted slightly better than Model I. However, the prediction efficiency for the daily erosivity index was limited, with the symmetric mean absolute percentage error being 68.0% (Model I) and 65.7% (Model II) and Nash-Sutcliffe model efficiency being 0.55 (Model I) and 0.57 (Model II). Model III, which used the combination of daily rainfall amount and daily maximum 60-min rainfall, improved predictions significantly, and produced a Nash-Sutcliffe model efficiency for daily erosivity index prediction of 0.93. Thus daily rainfall data was generally sufficient for estimating annual average, yearly, and half-monthly time scales, while sub-daily data was needed when estimating daily erosivity values.

  13. Summary statistics and graphical comparisons of historical hydrologic and water-quality data, Seco Creek Watershed, South-Central Texas

    USGS Publications Warehouse

    Brown, David W.; Slattery, Richard N.; Gilhousen, Jon R.

    1998-01-01

    The U.S. Geological Survey collected hydrologic (rainfall, streamflow, and reservoir content) and water-quality data in the Seco Creek watershed, south-central Texas. Most of the data from 15 sites were collected as part of a study in cooperation with the U.S. Department of Agriculture and the Texas State Soil and Water Conservation Board to evaluate the effects of agricultural best-management practices on surface- and ground-water quantity and quality in the 255-square-mile watershed. Nearly 400 best-management practices at 58 sites were implemented by landowners in the watershed during March 1990-September 1995. Most of the data are from the early 1990s, the period during and after implementation of best-management practices. Data from five sites include water quality and are summarized in tables and graphics in the text; and data from all 15 sites are summarized on a diskette. Maximum annual rainfall among the sites for which data are presented in the text (excluding one site) for the during-and-after-implementation period (March 1990-September 1995) was 53.27 inches in water year 1992. Maximum annual total streamflow among the sites for the period was 63,400 acre-feet, also in water year 1992. At the one site with water-quality data (under base-flow conditions) for both the before-implementation period and the during-and-after implementation period of best-management practices, percentiles (5, 25, 50, 75, 95) for specific conductance, nitrate concentration, and fecal coliform density were less for the during-and-after-implementation period than for the before-implementation period.

  14. Evaposublimation from the snow in the Mediterranean mountains of Sierra Nevada (Spain)

    NASA Astrophysics Data System (ADS)

    Herrero, Javier; José Polo, María

    2016-12-01

    In this study we quantify the evaposublimation and the energy balance of the seasonal snowpack in the Mediterranean semiarid region of Sierra Nevada, Spain (37° N). In these kinds of regions, the incidence of this return of water to the atmosphere is particularly important to the hydrology and water availability. The analysis of the evaposublimation from snow allows us to deduct the losses of water expected in the short and medium term and is critical for the efficient planning of this basic and scarce resource. To achieve this, we performed 10 field campaigns from 2009 to 2015, during which detailed measurements of mass fluxes of a controlled volume of snow were recorded using a modified version of an evaporation pan with lysimeter. Meteorological data at the site of the snow control volume were extensively monitored during the tests. With these data, a point energy balance snowmelt model was validated for the area. This model, fed with the complete meteorological data set available at the Refugio Poqueira Station (2500 m a.s.l.), let us estimate that evaposublimation losses for this site can range from 24 to 33 % of total annual ablation. This ratio is very variable throughout the year and between years, depending on the particular occurrence of snowfall and mild weather events, which is generally quite erratic in this semiarid region. Evaposublimation proceeds at maximum rates of up to 0.49 mm h-1, an order of magnitude less than maximum melt rates. However, evaposublimation occurs during 60 % of the time that snow lies, while snowmelt only takes up 10 % of this time. Hence, both processes remain close in magnitude on the annual scale.

  15. The NIH must reduce disparities in funding to maximize its return on investments from taxpayers.

    PubMed

    Wahls, Wayne P

    2018-03-23

    New data from the NIH reveal that the scientific return on its sponsored research reaches a maximum at around $400,000 of annual support per principal investigator. We discuss the implications of this 'sweet spot' for funding policy, and propose that the NIH should limit both the minimum and maximum amount of funding per researcher. © 2018, Wahls et al.

  16. 31 CFR 351.67 - What happens if any person purchases book-entry Series EE savings bonds in excess of the maximum...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... bonds in excess of the maximum annual amount? We reserve the right to take any action we deem necessary to adjust the excess, including the right to remove the excess bonds from your New Treasury Direct account and refund the payment price to your bank account of record using the ACH method of payment. ...

  17. The NIH must reduce disparities in funding to maximize its return on investments from taxpayers

    PubMed Central

    2018-01-01

    New data from the NIH reveal that the scientific return on its sponsored research reaches a maximum at around $400,000 of annual support per principal investigator. We discuss the implications of this 'sweet spot' for funding policy, and propose that the NIH should limit both the minimum and maximum amount of funding per researcher. PMID:29570053

  18. Spatial distribution of impacts to channel bed mobility due to flow regulation, Kootenai River, USA

    Treesearch

    Michael Burke; Klaus Jorde; John M. Buffington; Jeffrey H. Braatne; Rohan Benjakar

    2006-01-01

    The regulated hydrograph of the Kootenai River between Libby Dam and Kootenay Lake has altered the natural flow regime, resulting in a significant decrease in maximum flows (60% net reduction in median 1-day annual maximum, and 77%-84% net reductions in median monthly flows for the historic peak flow months of May and June, respectively). Other key hydrologic...

  19. [Clustering Sugi-pollen dispersal patterns for the past 26 years].

    PubMed

    Ito, Yukiko

    2014-05-01

    Pollinosis caused by the pollen of Sugi (Cryptopmeria japonica) trees is the most significant allergic disease occurring in the spring in Japan. For pollinosis patients and medical staff, it is important to know when the pollen dispersion would reach maximum or when the pollen count would decrease as well as knowing what would the total density of pollen grains be. These sorts of information could be useful for the purpose of disease prevention and deciding on the therapeutic regimen. In this study, we presented the sugi-dispersal patterns and cited several examples of the dispersal pattern. Airborne pollen grains were collected using a Durham sampler. Total annual pollen counts/cm2 were examined. The sugi-dispersal patterns were classified into several groups by cluster analysis using variables of ten days pollen counts distribution from February to April for the past 26 years. (1987-2012). The annual pollen count revealed an alternate rhythm consisting of an "on" year (high pollen count) and an "off" year (low pollen count). The results of the cluster analysis showed eleven off-years classified as one group (group 1), and fifteen on-years classified into three groups (groups 2A, 2B, and 2C). The dispersal pattern in group 1 was almost symmetrical with the pollen count rapidly decreasing until late-March. On the other hand, the patterns in group 2 were asymmetrical. In group 2A and 2B a high rate of dispersion was indicated after maximum dispersion, whereas in group 2C the high rate of dispersion was indicated before maximum dispersion. In group 2A, a major dispersion of almost 3000 grains was noted in late-March, and immediately proceeded to the cypress (Chamaecyparis) pollen season without any decrease seen in pollen dispersion. The periods of dispersion of over 10 pollen grains/cm2 per day were 38, 47, 47 and 51 days in groups 1, 2A, 2B and 2C, respectively. That in group 2 was significantly longer than that in group 1, but there was no significant differences between groups 2A, 2B and 2C. In conclusion, in the dispersal pattern whereby a major dispersion was seen in late-March and proceeded to the cypress pollen season such as in group 2A, patients' symptoms might be prolonged or be more serious. This new concept of dispersal pattern could very well be useful for clinical management of pollinosis.

  20. Lake Roosevelt Fisheries Evaluation Program, Part B; Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington, 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shields, John; Spotts, Jim; Underwood, Keith

    2002-11-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. The 1998 Annual Report, Part B. Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington examined the limnology, primary production, and zooplankton at eleven locations throughout the reservoir. The 1998 research protocol required a continuation of the more complete examinationmore » of limnological parameters in Lake Roosevelt that began in 1997. Phytoplankton and periphyton speciation, phytoplankton and periphyton chlorophyll a analysis, complete zooplankton biomass analysis by taxonomic group, and an increased number of limnologic parameters (TDG, TDS, etc.) were examined and compared with 1997 results. Total dissolved gas levels were greatly reduced in 1998, compared with 1997, likely resulting from the relatively normal water year experienced in 1998. Mean water temperatures were similar to what was observed in past years, with a maximum of 22.7 C and a minimum of 2.6 C. Oxygen concentrations were also relatively normal, with a maximum of 16.6 mg/L, and a minimum of 0.9 mg/L. Phytoplankton in Lake Roosevelt was primarily composed of microplankton (29.6%), Cryptophyceae (21.7%), and Bacillriophyceae (17.0 %). Mean total phytoplankton chlorophyll a maximum concentration occurred in May (3.53 mg/m{sup 3}), and the minimum in January (0.39 mg/m{sup 3}). Phytoplankton chlorophyll a concentrations appear to be influenced by hydro-operations and temperature. Trophic status as indicated by phytoplankton chlorophyll a concentrations place Lake Roosevelt in the oligomesotrophic range. Periphyton colonization rates and biovolume were significantly greater at a depth of 1.5 m (5 ft) when compared with a 4.6 m (15 ft) depth, and during the shorter incubation periods (two and four weeks). Mean zooplankton densities were greatest for Copepoda (88 %), then Daphnia spp. (10%) and other Cladocera (2.1%), while the zooplankton biomass assessment indicated Daphnia spp. had the greatest biomass (53.6%), then Copepoda (44.0%) and other Cladocera (2.5%). Mean overall zooplankton densities were the lowest observed since 1991. The cause was unclear, but may have been an artifact of human error. It seems unlikely that hydro-operations played a significant part in the reduction of zooplankton in light of the relatively friendly water year of 1998.« less

  1. Multichannel Singular Spectrum Analysis in the Estimates of Common Environmental Effects Affecting GPS Observations

    NASA Astrophysics Data System (ADS)

    Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Gruszczynski, Maciej; Bogusz, Janusz

    2018-03-01

    We described a spatio-temporal analysis of environmental loading models: atmospheric, continental hydrology, and non-tidal ocean changes, based on multichannel singular spectrum analysis (MSSA). We extracted the common annual signal for 16 different sections related to climate zones: equatorial, arid, warm, snow, polar and continents. We used the loading models estimated for a set of 229 ITRF2014 (International Terrestrial Reference Frame) International GNSS Service (IGS) stations and discussed the amount of variance explained by individual modes, proving that the common annual signal accounts for 16, 24 and 68% of the total variance of non-tidal ocean, atmospheric and hydrological loading models, respectively. Having removed the common environmental MSSA seasonal curve from the corresponding GPS position time series, we found that the residual station-specific annual curve modelled with the least-squares estimation has the amplitude of maximum 2 mm. This means that the environmental loading models underestimate the seasonalities observed by the GPS system. The remaining signal present in the seasonal frequency band arises from the systematic errors which are not of common environmental or geophysical origin. Using common mode error (CME) estimates, we showed that the direct removal of environmental loading models from the GPS series causes an artificial loss in the CME power spectra between 10 and 80 cycles per year. When environmental effect is removed from GPS series with MSSA curves, no influence on the character of spectra of CME estimates was noticed.

  2. Multichannel Singular Spectrum Analysis in the Estimates of Common Environmental Effects Affecting GPS Observations

    NASA Astrophysics Data System (ADS)

    Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Gruszczynski, Maciej; Bogusz, Janusz

    2018-05-01

    We described a spatio-temporal analysis of environmental loading models: atmospheric, continental hydrology, and non-tidal ocean changes, based on multichannel singular spectrum analysis (MSSA). We extracted the common annual signal for 16 different sections related to climate zones: equatorial, arid, warm, snow, polar and continents. We used the loading models estimated for a set of 229 ITRF2014 (International Terrestrial Reference Frame) International GNSS Service (IGS) stations and discussed the amount of variance explained by individual modes, proving that the common annual signal accounts for 16, 24 and 68% of the total variance of non-tidal ocean, atmospheric and hydrological loading models, respectively. Having removed the common environmental MSSA seasonal curve from the corresponding GPS position time series, we found that the residual station-specific annual curve modelled with the least-squares estimation has the amplitude of maximum 2 mm. This means that the environmental loading models underestimate the seasonalities observed by the GPS system. The remaining signal present in the seasonal frequency band arises from the systematic errors which are not of common environmental or geophysical origin. Using common mode error (CME) estimates, we showed that the direct removal of environmental loading models from the GPS series causes an artificial loss in the CME power spectra between 10 and 80 cycles per year. When environmental effect is removed from GPS series with MSSA curves, no influence on the character of spectra of CME estimates was noticed.

  3. Limits to CO2-Neutrality of Burning Wood. (Review)

    NASA Astrophysics Data System (ADS)

    Abolins, J.; Gravitis, J.

    2016-08-01

    Consumption of wood as a source of energy is discussed with respect to efficiency and restraints to ensure sustainability of the environment on the grounds of a simple analytical model describing dynamics of biomass accumulation in forest stands - a particular case of the well-known empirical Richards' equation. Amounts of wood harvested under conditions of maximum productivity of forest land are presented in units normalised with respect to the maximum of the mean annual increment and used to determine the limits of CO2-neutrality. The ecological "footprint" defined by the area of growing stands necessary to absorb the excess amount of CO2 annually released from burning biomass is shown to be equal to the land area of a plantation providing sustainable supply of fire-wood.

  4. Interaction between air pollution dispersion and residential heating demands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipfert, F.W.; Moskowitz, P.D.; Dungan, J.

    The effect of the short-term correlation of a specific emission (sulfur dioxide) from residential space heating, with air pollution dispersion rates on the accuracy of model estimates of urban air pollution on a seasonal or annual basis is analyzed. Hourly climatological and residential emission estimates for six U.S. cities and a simplified area source-dispersion model based on a circular receptor grid are used. The effect on annual average concentration estimations is found to be slight (approximately + or - 12 percent), while the maximum hourly concentrations are shown to vary considerably more, since maximum heat demand and worst-case dispersion aremore » not coincident. Accounting for the correlations between heating demand and dispersion makes possible a differentiation in air pollution potential between coastal and interior cities.« less

  5. Early warming of tropical South America at the last glacial-interglacial transition.

    PubMed

    Seltzer, G O; Rodbell, D T; Baker, P A; Fritz, S C; Tapia, P M; Rowe, H D; Dunbar, R B

    2002-05-31

    Glaciation in the humid tropical Andes is a sensitive indicator of mean annual temperature. Here, we present sedimentological data from lakes beyond the glacial limit in the tropical Andes indicating that deglaciation from the Last Glacial Maximum led substantial warming at high northern latitudes. Deglaciation from glacial maximum positions at Lake Titicaca, Peru/Bolivia (16 degrees S), and Lake Junin, Peru (11 degrees S), occurred 22,000 to 19,500 calendar years before the present, several thousand years before the Bølling-Allerød warming of the Northern Hemisphere and deglaciation of the Sierra Nevada, United States (36.5 degrees to 38 degrees N). The tropical Andes deglaciated while climatic conditions remained regionally wet, which reflects the dominant control of mean annual temperature on tropical glaciation.

  6. Climatic controls of vegetation vigor in four contrasting forest types of India--evaluation from National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer datasets (1990-2000).

    PubMed

    Prasad, V Krishna; Anuradha, E; Badarinath, K V S

    2005-09-01

    Ten-day advanced very high resolution radiometer images from 1990 to 2000 were used to examine spatial patterns in the normalized difference vegetation index (NDVI) and their relationships with climatic variables for four contrasting forest types in India. The NDVI signal has been extracted from homogeneous vegetation patches and has been found to be distinct for deciduous and evergreen forest types, although the mixed-deciduous signal was close to the deciduous ones. To examine the decadal response of the satellite-measured vegetation phenology to climate variability, seven different NDVI metrics were calculated using the 11-year NDVI data. Results suggested strong spatial variability in forest NDVI metrics. Among the forest types studied, wet evergreen forests of north-east India had highest mean NDVI (0.692) followed by evergreen forests of the Western Ghats (0.529), mixed deciduous forests (0.519) and finally dry deciduous forests (0.421). The sum of NDVI (SNDVI) and the time-integrated NDVI followed a similar pattern, although the values for mixed deciduous forests were closer to those for evergreen forests of the Western Ghats. Dry deciduous forests had higher values of inter-annual range (RNDVI) and low mean NDVI, also coinciding with a high SD and thus a high coefficient of variation (CV) in NDVI (CVNDVI). SNDVI has been found to be high for wet evergreen forests of north-east India, followed by evergreen forests of the Western Ghats, mixed deciduous forests and dry deciduous forests. Further, the maximum NDVI values of wet evergreen forests of north-east India (0.624) coincided with relatively high annual total precipitation (2,238.9 mm). The time lags had a strong influence in the correlation coefficients between annual total rainfall and NDVI. The correlation coefficients were found to be comparatively high (R2=0.635) for dry deciduous forests than for evergreen forests and mixed deciduous forests, when the precipitation data with a lag of 30 days was correlated against NDVI. Using multiple regression approach models were developed for individual forest types using 16 different climatic indices. A high proportion of the temporal variance (>90%) has been accounted for by three of the precipitation parameters (maximum precipitation, precipitation of the wettest quarter and driest quarter) and two of the temperature parameters (annual mean temperature and temperature of the coldest quarter) for mixed deciduous forests. Similarly, in the case of deciduous forests, four precipitation parameters and three temperature parameters explained nearly 83.6% of the variance. These results suggest differences in the relationship between NDVI and climatic variables based upon the time of growing season, time interval and climatic indices over which they were summed. These results have implications for forest cover mapping and monitoring in tropical regions of India.

  7. Population characteristics and assessment of overfishing for an exploited paddlefish population in the lower Tennessee River

    USGS Publications Warehouse

    Scholten, G.D.; Bettoli, P.W.

    2005-01-01

    Paddlefish Polyodon spathula (n = 576) were collected from Kentucky Lake, Kentucky-Tennessee, with experimental gill nets in 2003-2004 to assess population characteristics and the potential for commercial overfishing. Additional data were collected from 1,039 paddlefish caught by commercial gillnetters in this impoundment. Since the most recent study in 1991, size and age structure have been reduced and annual mortality has tripled. In the 1991 study, 37% of the fish collected were older than the maximum age we observed (age 11), and in 2003 annual mortality for paddlefish age 7 and older was high (A = 68%). Natural mortality is presumably low (<10%) for paddlefish; therefore, exploitation in recent years is high. Estimates of total annual mortality were negatively related to river discharge in the years preceding each estimate. The number of paddlefish harvested since 1999 was also negatively related to river discharge because gill nets cannot be easily deployed when discharge exceeds approximately 850 m3/s. Large females spawn annually because all females longer than 1,034 mm eye-fork length (EFL) were gravid. No mature females were protected by the current 864-mm minimum EFL limit. At a low natural mortality rate, higher size limits when exploitation was high (40-70%) increased simulated flesh yields by 10-20%. Even at low levels of exploitation (21%), spawning potential ratios (SPRs) under the current 864-mm minimum EFL size limit fell below 20%. If the size limit was raised to 1,016 mm EFL, the population could withstand up to 62% exploitation before the SPR falls below 20%. An analysis of annual mortality caps indicated that the best way to increase the average size of harvested fish is to increase the minimum size limit. Recruitment overfishing probably occurs during drought years; however, variation in river discharge has prevented the population from being exploited at unsustainable rates in the past. ?? Copyright by the American Fisheries Society 2005.

  8. Digital-map grids of mean-annual precipitation for 1961-90, and generalized skew coefficients of annual maximum streamflow for Oklahoma

    USGS Publications Warehouse

    Rea, A.H.; Tortorelli, R.L.

    1997-01-01

    This digital report contains two digital-map grids of data that were used to develop peak-flow regression equations in Tortorelli, 1997, 'Techniques for estimating peak-streamflow frequency for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 97-4202. One data set is a grid of mean annual precipitation, in inches, based on the period 1961-90, for Oklahoma. The data set was derived from the PRISM (Parameter-elevation Regressions on Independent Slopes Model) mean annual precipitation grid for the United States, developed by Daly, Neilson, and Phillips (1994, 'A statistical-topographic model for mapping climatological precipitation over mountainous terrain:' Journal of Applied Meteorology, v. 33, no. 2, p. 140-158). The second data set is a grid of generalized skew coefficients of logarithms of annual maximum streamflow for Oklahoma streams less than or equal to 2,510 square miles in drainage area. This grid of skew coefficients is taken from figure 11 of Tortorelli and Bergman, 1985, 'Techniques for estimating flood peak discharges for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 84-4358. To save disk space, the skew coefficient values have been multiplied by 100 and rounded to integers with two significant digits. The data sets are provided in an ASCII grid format.

  9. A Bayesian analysis of trends in ozone sounding data series from 9 Nordic stations

    NASA Astrophysics Data System (ADS)

    Christiansen, Bo; Jepsen, Nis; Larsen, Niels; Korsholm, Ulrik S.

    2016-04-01

    Ozone soundings from 9 Nordic stations have been homogenized and interpolated to standard pressure levels. The different stations have very different data coverage; the longest period with data is from the end of the 1980ies to 2013. We apply a model which includes both low-frequency variability in form of a polynomial, an annual cycle with harmonics, the possibility for low-frequency variability in the annual amplitude and phasing, and either white noise or AR1 noise. The fitting of the parameters is performed with a Bayesian approach not only giving the posterior mean values but also credible intervals. We find that all stations agree on an well-defined annual cycle in the free troposphere with a relatively confined maximum in the early summer. Regarding the low-frequency variability we find that Scoresbysund, Ny Aalesund, and Sodankyla show similar structures with a maximum near 2005 followed by a decrease. However, these results are only weakly significant. A significant change in the amplitude of the annual cycle was only found for Ny Aalesund. Here the peak-to-peak amplitude changes from 0.9 to 0.8 mhPa between 1995-2000 and 2007-2012. The results are shown to be robust to the different settings of the model parameters (order of the polynomial, number of harmonics in the annual cycle, type of noise, etc). The results are also shown to be characteristic for all pressure levels in the free troposphere.

  10. Projected Changes in Temperature and Precipitation Extremes over China as Measured by 50-yr Return Values and Periods Based on a CMIP5 Ensemble

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Gao, Xuejie; Giorgi, Filippo; Zhou, Botao; Shi, Ying; Wu, Jie; Zhang, Yongxiang

    2018-04-01

    Future changes in the 50-yr return level for temperature and precipitation extremes over mainland China are investigated based on a CMIP5 multi-model ensemble for RCP2.6, RCP4.5 and RCP8.5 scenarios. The following indices are analyzed: TXx and TNn (the annual maximum and minimum of daily maximum and minimum surface temperature), RX5day (the annual maximum consecutive 5-day precipitation) and CDD (maximum annual number of consecutive dry days). After first validating the model performance, future changes in the 50-yr return values and return periods for these indices are investigated along with the inter-model spread. Multi-model median changes show an increase in the 50-yr return values of TXx and a decrease for TNn, more specifically, by the end of the 21st century under RCP8.5, the present day 50-yr return period of warm events is reduced to 1.2 yr, while extreme cold events over the country are projected to essentially disappear. A general increase in RX5day 50-yr return values is found in the future. By the end of the 21st century under RCP8.5, events of the present RX5day 50-yr return period are projected to reduce to < 10 yr over most of China. Changes in CDD-50 show a dipole pattern over China, with a decrease in the values and longer return periods in the north, and vice versa in the south. Our study also highlights the need for further improvements in the representation of extreme events in climate models to assess the future risks and engineering design related to large-scale infrastructure in China.

  11. Evaluating Ultraviolet Radiation Exposures Determined from TOMS Satellite Data at Sites of Amphibian Declines in Central and South America

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Smith, David E. (Technical Monitor)

    2000-01-01

    Many amphibian species have experienced substantial population declines, or have disappeared altogether, during the last several decades at a number of amphibian census sites in Central and South America. This study addresses the use of satellite-derived trends in solar ultraviolet-B (UV-B; 280-320 nm) radiation exposures at these sites over the last two decades, and is intended to demonstrate a role for satellite observations in determining whether UV-B radiation is a contributing factor in amphibian declines. UV-B radiation levels at the Earth's surface were derived from the Total Ozone Mapping Spectrometer (TOMS) satellite data, typically acquired daily since 1979. These data were used to calculate the daily erythemal (sunburning) UV-B, or UV-B(sub ery), exposures at the latitude, longitude, and elevation of each of 20 census sites. The annually averaged UV-B(sub ery) dose, as well as the maximum values, have been increasing in both Central and South America, with higher levels received at the Central American sites. The annually averaged UV-B(sub ery) exposures increased significantly from 1979-1998 at all 11 Central American sites examined (r(exp 2) = 0.60 - 0.79; P<=0.015), with smaller but significant increases at five of the nine South American sites (r(exp 2) = 0.24-0.42; P<=0.05). The contribution of the highest UV-B(sub ery) exposure levels (>= 6750 J/sq m*d) to the annual UV-B(sub ery) total has increased from approx. 5% to approx. 15% in Central America over the 19 year period, but actual daily exposures for each species are unknown. Synergy among UV-B radiation and other factors, especially those associated with alterations of water chemistry (e.g., acidification) in aqueous habitats is discussed. These findings justify further research concerning whether UV-B(sub ery) radiation plays a role in amphibian population declines and extinctions.

  12. 75 FR 60121 - Notice of Public Information Collection(s) Being Reviewed by the Federal Communications...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... [email protected] . SUPPLEMENTARY INFORMATION: OMB Control Number: 3060-1060. Title: Wireless E911....C. sections 1, and 4(i). Total Annual Burden: 38 hours. Total Annual Cost: N/A. Privacy Act Impact...

  13. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations.

    PubMed

    Goor, François; Thiry, Yves

    2004-06-05

    In a large forested area affected by the Chernobyl radioactive fallout, especially in CIS, the lasting recycling of radiocaesium (137Cs) by the trees is a source of long-term contamination of woody products. The quantitative description of the 137Cs dynamics in contaminated forest is a prerequisite to predictive modelling and further management of such territories. Three even-aged mono-specific Scots pine stands (17, 37 and 57 years old) were selected in a contaminated woodland in southeastern Belarus to constitute an adequate chronosequence. We determined the potassium and radiocaesium annual fluxes involved in the biological cycling in each stand using a well-documented calculation methodology. Qualitatively, 137Cs was shown to be rapidly recycled in trees through the same pathways as K and to redistribute similarly between the tree components. Compared to K, a higher fraction of 137Cs, corresponding to about the half of the annual uptake, is immobilised in perennial organs. With tree development, trunk wood and bark become prevailing sinks for 137Cs since they represent an increasing pool of biomass. In the pine chronosequence, the current root absorption, respectively, mobilizes 0.53, 0.32 and 0.31% year(-1) of the total 137Cs pool in soil. Variations in the 137Cs uptake do not reflect differences in the 137Cs balance between stands. In the two older stands, 51 and 71% of the current tree contamination are related to earlier accumulation subsequent to the initial fallout interception and recycling. The soil is the dominant source of long-term tree contamination. A simple modelling based on the measured 137Cs fluxes indicates that, for young stands, radioactive decay-corrected contamination would stabilize after reaching a maximum of 25 years after the 137Cs deposition. Stemwood presents a maximum of 15 years after the deposition and decrease afterwards mainly through radioactive decay. In the older stands, the decontamination is constant without local maximum of 137Cs level in the wood. The 137Cs contamination of tree components is the result of different influential processes like root uptake, internal translocation and immobilisation. For more accurate predictions, the calibration of existing models would be benefited by comparing with the 137Cs annual fluxes instead of the simple transfer factor coefficients. In the perspective of other applications, there is a need of such data for other radionuclides as well as for heavy metals. Copryright 2003 Elsevier B.V.

  14. Long-term tropospheric and lower stratospheric ozone variations from ozonesonde observations

    NASA Technical Reports Server (NTRS)

    London, J.; Liu, S. C.

    1992-01-01

    An analysis is presented of the long-term mean pressure-latitude seasonal distribution of tropospheric and lower stratospheric ozone for the four seasons covering, in part, over 20 years of ozonesonde data. The observed patterns show minimum ozone mixing ratios in the equatorial and tropical troposphere except in regions where net photochemical production is dominant. In the middle and upper troposphere, and low stratosphere to 50 mb, ozone increases from the tropics to subpolar latitudes of both hemispheres. In mid stratosphere, the ozone mixing ratio is a maximum over the tropics. The observed vertical ozone gradient is small in the troposphere but increases rapidly above the tropopause. The amplitude of the annual variation increases from a minimum in the tropics to a maximum in polar regions. Also, the amplitude increases with height at all latitudes up to about 30 mb where the phase of the annual variation changes abruptly. The phase of the annual variation is during spring in the boundary layer, summer in mid troposphere, and spring in the upper troposhere and lower stratosphere.

  15. Expanding the dairy herd in pasture-based systems: The role of sexed semen within alternative breeding strategies.

    PubMed

    Murphy, C; Shalloo, L; Hutchinson, I A; Butler, S T

    2016-08-01

    A simulation model was developed to determine the effects of sexed semen use in heifers and lactating cows on replacement heifer numbers and rate of herd expansion in a seasonal dairy production system. Five separate artificial insemination (AI) protocols were established according to the type of semen used: (1) conventional frozen-thawed semen (CONV); (2) sexed semen in heifers and conventional semen used in cows (SS-HEIFER); (3) sexed semen in heifers and a targeted group of cows (body condition score ≥3 and calved ≥63 d), with conventional semen used in the remainder of cows (SS-CONV); (4) sexed semen in heifers and a targeted group of cows, with conventional semen in the remainder of cows for the first AI and conventional beef semen used for the second AI (SS-BEEF); or (5) sexed semen in heifers and a targeted group of cows, with conventional semen in the remainder of cows for the first AI and short gestation length semen used for the second AI (SS-SGL). Each AI protocol was assessed under 3 scenarios of sexed semen conception rate (SS-CR): 100, 94, and 87% relative to that of conventional semen. Artificial insemination was used on heifers for the first 3 wk and on cows for the first 6 wk of the 12-wk breeding season. The initial herd size was 100 cows, and all available replacement heifers were retained to facilitate herd expansion, up to a maximum herd size of 300 cows. Once maximum herd size was reached, all excess heifer calves were sold at 1 mo old. All capital expenditure associated with expansion was financed with a 15-yr loan. Each AI protocol was evaluated in terms of annual farm profit, annual cash flow, and total discounted net profit. The SS-CONV protocol generated more replacement heifers than all other AI protocols, facilitating faster expansion, and reached maximum herd size in yr 9, 9, and 10 for 100, 94, and 87% SS-CR, respectively. All AI protocols, except SS-BEEF and SS-SGL at 87% SS-CR, reached maximum herd size within the 15-yr period. Negative profit margins were experienced for SS-CONV in the first 5, 4, and 3 yr of expansion for 100, 94, and 87% SS-CR, respectively. Total discounted net profit was greater in all sexed semen AI protocols compared with CONV. This study demonstrated that, for each SS-CR, the greatest rate of expansion is achieved when using sexed and conventional semen (SS-CONV). The combined use of sexed semen and beef (SS-BEEF) or SGL (SS-SGL) semen resulted in greater discounted net profit at 100, 94, and 87% SS-CR compared with CONV, but a similar net worth change at 87% SS-CR due to a lower inventory change because SS-BEEF and SS-SGL reached maximum herd size within 15 yr. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. The Estimated Annual Cost of Uterine Leiomyomata in the United States

    PubMed Central

    CARDOZO, Eden R.; CLARK, Andrew D.; BANKS, Nicole K.; HENNE, Melinda B.; STEGMANN, Barbara J.; SEGARS, James H.

    2011-01-01

    Objective To estimate the total annual societal cost of uterine fibroids in the United States, based on direct and indirect costs, including associated obstetric complications. Study Design A systematic review of the literature was conducted to estimate the number of women seeking treatment for symptomatic fibroids annually, the costs of medical and surgical treatment, work lost and obstetric complications attributable to fibroids. Total annual costs were converted to 2010 U.S. dollars. A sensitivity analysis was performed. Results The estimated annual direct costs (surgery, hospital admissions, outpatient visits, medications) were $4.1 to $9.4 billion. Estimated lost work costs ranged from $1.55 to $17.2 billion annually. Obstetric outcomes attributed to fibroids resulted in a cost of $238 million to $7.76 billion annually. Uterine fibroids were estimated to cost the US $5.9 to $34.4 billion annually. Conclusions Obstetric complications associated with fibroids contributed significantly to their economic burden. Lost work costs may account for the largest proportion of societal costs due to fibroids. PMID:22244472

  17. Age, differential growth and mortality rates in unexploited populations of Florida gar, an apex predator in the Florida Everglades

    USGS Publications Warehouse

    Murie, D.J.; Parkyn, D.C.; Nico, L.G.; Herod, J.J.; Loftus, W.F.

    2009-01-01

    Florida gar, Lepisosteus platyrhincus DeKay, were sampled in two canal systems in south Florida during 2000-2001 to estimate age, growth and mortality as part of the Everglades ecosystem-restoration effort. Tamiami (C-4) and L-31W canal systems had direct connections to natural wetlands of the Everglades and harboured large Florida gar populations. Of 476 fish aged, maximum ages were 19 and 10years for females and males, respectively. Maximum sizes were also larger for females compared with males (817 vs 602 mm total length). Overall, female Florida gar from both Tamiami and L-31W were larger at age than males from L-31W that, in turn, were larger at any given age than males from Tamiami. Females also had lower rates of annual mortality (Z = 0.21) than males from L-31W (Z = 0.31) or males from Tamiami (Z = 0.54). As a large and long-lived apex predator in the Everglades, Florida gar may structure lower trophic levels. Regional- and sex-specific population parameters for Florida gar will contribute to the simulation models designed to evaluate Everglades restoration alternatives. ?? 2009 Blackwell Publishing Ltd.

  18. Spatial analysis of malaria in Anhui province, China

    PubMed Central

    Zhang, Wenyi; Wang, Liping; Fang, Liqun; Ma, Jiaqi; Xu, Youfu; Jiang, Jiafu; Hui, Fengming; Wang, Jianjun; Liang, Song; Yang, Hong; Cao, Wuchun

    2008-01-01

    Background Malaria has re-emerged in Anhui Province, China, and this province was the most seriously affected by malaria during 2005–2006. It is necessary to understand the spatial distribution of malaria cases and to identify highly endemic areas for future public health planning and resource allocation in Anhui Province. Methods The annual average incidence at the county level was calculated using malaria cases reported between 2000 and 2006 in Anhui Province. GIS-based spatial analyses were conducted to detect spatial distribution and clustering of malaria incidence at the county level. Results The spatial distribution of malaria cases in Anhui Province from 2000 to 2006 was mapped at the county level to show crude incidence, excess hazard and spatial smoothed incidence. Spatial cluster analysis suggested 10 and 24 counties were at increased risk for malaria (P < 0.001) with the maximum spatial cluster sizes at < 50% and < 25% of the total population, respectively. Conclusion The application of GIS, together with spatial statistical techniques, provide a means to quantify explicit malaria risks and to further identify environmental factors responsible for the re-emerged malaria risks. Future public health planning and resource allocation in Anhui Province should be focused on the maximum spatial cluster region. PMID:18847489

  19. 78 FR 77550 - Proposed Agency Information Collection Activities; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... Universe: 693 railroads. Frequency of Submission: On occasion. Reporting Burden: Total annual Average time per Total annual CFR Section Respondent universe responses response burden hours 237.3 Notifications... Universe: 685 railroads and 4 Locomotive Manufacturers. Frequency of Submission: On occasion. Reporting...

  20. 77 FR 68203 - Proposed Agency Information Collection Activities; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    .... Affected Public: Businesses. Respondent Universe: 5 Manufacturers. Total annual Average time per Total annual CFR section Respondent universe responses response burden hours 223.17--Identification of 4... Number(s): N/A. Affected Public: Railroad Employees. Respondent Universe: 40,000 Locomotive Engineers...

  1. 78 FR 32005 - Agency Information Collection Activities; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ...; SF-270. Affected Public: Businesses. Respondent Universe: 7 Railroads. Frequency of Submission: On occasion. Reporting Burden: Total annual Average time per Total annual Grant program Respondent universe... Number(s): N/A. Affected Public: States. Respondent Universe: 10 States. Frequency of Submission: On...

  2. 47 CFR 101.1417 - Annual report.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Annual report. Each MVDDS licensee shall file with the Broadband Division of the Wireless... the calendar year; (2) The total hours of transmission service rendered during the calendar year to all subscribers; (3) The total hours of transmission service rendered during the calendar year...

  3. 78 FR 19262 - Notice of Annual Adjustment of the Cap on Average Total Assets That Defines Community Financial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... FEDERAL HOUSING FINANCE AGENCY [No. 2013-N-04] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... Federal Deposit Insurance Corporation and that has average total assets below a statutory cap.\\2\\ The Bank...

  4. 75 FR 9601 - Notice of Annual Adjustment of the Cap on Average Total Assets That Defines Community Financial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... FEDERAL HOUSING FINANCE AGENCY [No. 2010-N-01] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... Deposit Insurance Corporation and that has average total assets below a statutory cap. See 12 U.S.C. 1422...

  5. Are Equilibrium Multichannel Networks Predictable? the Case of the Indus River, Pakistan

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Carling, P. A.

    2017-12-01

    Focusing on the specific case of the Indus River, we argue that the equilibrium planform network structure of large, multi-channel, rivers is predictable. Between Chashma and Taunsa, Pakistan, the Indus is a 264 km long multiple-channel reach. Remote sensing imagery, including a period of time that encompasses the occurrence of major floods in 2007 and 2010, shows that Indus has a minimum of two and a maximum of nine channels, with on average four active channels during the dry season and five during the monsoon. We show that the network structure, if not detailed planform, remains stable, even for the record 2010 flood (27,100 m3s-1; recurrence interval > 100 years). Bankline recession is negligible for discharges less than a peak annual discharge of 6,000 m3s-1 ( 80% of mean annual flow). Maximum Flow Efficiency (MFE) principle demonstrates the channel network is insensitive to the monsoon floods, which typically peak at 13,200 m3s-1. Rather, the network is in near-equilibrium with the mean annual flood (7,530 m3s-1). MFE principle indicates stable networks have three to four channels, thus the observed stability in the number of active channels accords with the presence of a near-equilibrium reach-scale channel network. Insensitivity to the annual hydrological cycle demonstrates that the time-scale for network adjustment is much longer than the time-scale of the monsoon hydrograph, with the annual excess water being stored on floodplains, rather than being conveyed in an enlarged channel network. The analysis explains the lack of significant channel adjustment following the largest flood in 40 years and the extensive Indus flooding experienced on an annual basis, with its substantial impacts on the populace and agricultural production.

  6. Effect of elevation on extreme precipitation of short durations: evidences of orographic signature on the parameters of Depth-Duration-Frequency curves

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; De Michele, Carlo; Gabriele, Salvatore; Ghezzi, Antonio; Rosso, Renzo

    2015-04-01

    Here, we show how atmospheric circulation and topography rule the variability of depth-duration-frequency (DDF) curves parameters, and we discuss how this variability has physical implications on the formation of extreme precipitations at high elevations. A DDF is a curve ruling the value of the maximum annual precipitation H as a function of duration D and the level of probability F. We consider around 1500 stations over the Italian territory, with at least 20 years of data of maximum annual precipitation depth at different durations. We estimated the DDF parameters at each location by using the asymptotic distribution of extreme values, i.e. the so-called Generalized Extreme Value (GEV) distribution, and considering a statistical simple scale invariance hypothesis. Consequently, a DDF curve depends on five different parameters. A first set relates H with the duration (namely, the mean value of annual maximum precipitation depth for unit duration and the scaling exponent), while a second set links H to F (namely, a scale, position and shape parameter). The value of the shape parameter has consequences on the type of random variable (unbounded, upper or lower bounded). This extensive analysis shows that the variability of the mean value of annual maximum precipitation depth for unit duration obeys to the coupled effect of topography and modal direction of moisture flux during extreme events. Median values of this parameter decrease with elevation. We called this phenomenon "reverse orographic effect" on extreme precipitation of short durations, since it is in contrast with general knowledge about the orographic effect on mean precipitation. Moreover, the scaling exponent is mainly driven by topography alone (with increasing values of this parameter at increasing elevations). Therefore, the quantiles of H(D,F) at durations greater than unit turn to be more variable at high elevations than at low elevations. Additionally, the analysis of the variability of the shape parameter with elevation shows that extreme events at high elevations appear to be distributed according to an upper bounded probability distribution. These evidences could be a characteristic sign of the formation of extreme precipitation events at high elevations.

  7. Climate-simulated raceway pond culturing: quantifying the maximum achievable annual biomass productivity of Chlorella sorokiniana in the contiguous USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, M.; Chavis, A.; Edmundson, S.

    Chlorella sorokiniana (DOE 1412) emerged as one of the most promising microalgae strains from the NAABB consortium project, with a remarkable doubling time under optimal conditions of 2.57 hr-1. However, its maximum achievable annual biomass productivity in outdoor ponds in the contiguous United States remained unknown. In order to address this knowledge gap, this alga was cultured in indoor LED-lighted and temperature-controlled raceways in nutrient replete freshwater (BG-11) medium at pH 7 under conditions simulating the daily sunlight intensity and water temperature fluctuations during three seasons in Southern Florida, an optimal outdoor pond culture location for this organism identified bymore » biomass growth modeling. Prior strain characterization indicated that the average maximum specific growth rate (µmax) at 36 ºC declined continuously with pH, with µmax corresponding to 5.92, 5.83, 4.89, and 4.21 day-1 at pH 6, 7, 8, and 9, respectively. In addition, the maximum specific growth rate declined nearly linearly with increasing salinity until no growth was observed above 35 g/L NaCl. In the climate-simulated culturing studies, the volumetric ash-free dry weight-based biomass productivities during the linear growth phase were 57, 69, and 97 mg/L-day for 30-year average light and temperature simulations for January (winter), March (spring), and July (summer), respectively, which corresponds to average areal productivities of 11.6, 14.1, and 19.9 g/m2-day at a constant pond depth of 20.5 cm. The photosynthetic efficiencies (PAR) in the three climate-simulated pond culturing experiments ranged from 4.1 to 5.1%. The annual biomass productivity was estimated as ca. 15 g/m2-day, nearly double the U.S. Department of Energy (DOE) 2015 State of Technology annual cultivation productivity of 8.5 g/m2-day, but this is still significantly below the projected 2022 target of ca. 25 g/m2-day (U.S. DOE, 2016) for economic microalgal biofuel production, indicating the need for additional research in strain biology and system engineering.« less

  8. Rural and Urban Differences in Air Quality, 2008–2012, and Community Drinking Water Quality, 2010–2015 — United States

    PubMed Central

    Kennedy, Caitlin; Monti, Michele; Yip, Fuyuen

    2017-01-01

    Problem/Condition The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. Reporting Period 2008–2012 for air quality and 2010–2015 for water quality. Description of System Since 2002, CDC’s National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008–2012 and one water-quality measure for 26 states during 2010–2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM2.5) levels greater than the U.S. Environmental Protection Agency’s (EPA’s) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM2.5 (PM2.5 days); 2) mean annual average ambient concentrations of PM2.5 in micrograms per cubic meter (mean PM2.5); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean concentration for a community water system (CWS) to the maximum contaminant level (MCL) defined by EPA for 10 contaminants: arsenic, atrazine, di(2-ethylhexyl) phthalate (DEHP), haloacetic acids (HAA5), nitrate, perchloroethene (PCE), radium, trichloroethene (TCE), total trihalomethanes (TTHM), and uranium. Findings are presented by urban-rural classification scheme: four metropolitan (large central metropolitan, large fringe metropolitan, medium metropolitan, and small metropolitan) and two nonmetropolitan (micropolitan and noncore) categories. Regression modeling was used to determine whether differences in the measures by urban-rural categories were statistically significant. Results Patterns for all three air-quality measures suggest that air quality improves as areas become more rural (or less urban). The mean total number of ozone days decreased from 47.54 days in large central metropolitan counties to 3.81 days in noncore counties, whereas the mean total number of PM2.5 days decreased from 11.21 in large central metropolitan counties to 0.95 in noncore counties. The mean average annual PM2.5 concentration decreased from 11.15 μg/m3 in large central metropolitan counties to 8.87 μg/m3 in noncore counties. Patterns for the water-quality measure suggest that water quality improves as areas become more urban (or less rural). Overall, 7% of CWSs reported at least one annual mean concentration greater than the MCL for all 10 contaminants combined. The percentage increased from 5.4% in large central metropolitan counties to 10% in noncore counties, a difference that was significant, adjusting for U.S. region, CWS size, water source, and potential spatial correlation. Similar results were found for two disinfection by-products, HAA5 and TTHM. Arsenic was the only other contaminant with a significant result. Medium metropolitan counties had 3.1% of CWSs reporting at least one annual mean greater than the MCL, compared with 2.4% in large central counties. Interpretation Noncore (rural) counties experienced fewer unhealthy air-quality days than large central metropolitan counties, likely because of fewer air pollution sources in the noncore counties. All categories of counties had a mean annual average PM2.5 concentration lower than the EPA standard. Among all CWSs analyzed, the number reporting one or more annual mean contaminant concentrations greater the MCL was small. The water-quality measure suggests that water quality worsens as counties become more rural, in regards to all contaminants combined and for the two disinfection by-products individually. Although significant differences were found for the water-quality measure, the odds ratios were very small, making it difficult to determine whether these differences have a meaningful effect on public health. These differences might be a result of variations in water treatment practices in rural versus urban counties. Public Health Action Understanding the differences between rural and urban areas in air and water quality can help public health departments to identify, monitor, and prioritize potential environmental public health concerns and opportunities for action. These findings suggest a continued need to develop more geographically targeted, evidence-based interventions to prevent morbidity and mortality associated with poor air and water quality. PMID:28640797

  9. Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015 - United States.

    PubMed

    Strosnider, Heather; Kennedy, Caitlin; Monti, Michele; Yip, Fuyuen

    2017-06-23

    The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. 2008-2012 for air quality and 2010-2015 for water quality. Since 2002, CDC's National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008-2012 and one water-quality measure for 26 states during 2010-2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM 2.5 ) levels greater than the U.S. Environmental Protection Agency's (EPA's) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM 2.5 (PM 2.5 days); 2) mean annual average ambient concentrations of PM 2.5 in micrograms per cubic meter (mean PM 2.5 ); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean concentration for a community water system (CWS) to the maximum contaminant level (MCL) defined by EPA for 10 contaminants: arsenic, atrazine, di(2-ethylhexyl) phthalate (DEHP), haloacetic acids (HAA5), nitrate, perchloroethene (PCE), radium, trichloroethene (TCE), total trihalomethanes (TTHM), and uranium. Findings are presented by urban-rural classification scheme: four metropolitan (large central metropolitan, large fringe metropolitan, medium metropolitan, and small metropolitan) and two nonmetropolitan (micropolitan and noncore) categories. Regression modeling was used to determine whether differences in the measures by urban-rural categories were statistically significant. Patterns for all three air-quality measures suggest that air quality improves as areas become more rural (or less urban). The mean total number of ozone days decreased from 47.54 days in large central metropolitan counties to 3.81 days in noncore counties, whereas the mean total number of PM 2.5 days decreased from 11.21 in large central metropolitan counties to 0.95 in noncore counties. The mean average annual PM 2.5 concentration decreased from 11.15 μg/m 3 in large central metropolitan counties to 8.87 μg/m 3 in noncore counties. Patterns for the water-quality measure suggest that water quality improves as areas become more urban (or less rural). Overall, 7% of CWSs reported at least one annual mean concentration greater than the MCL for all 10 contaminants combined. The percentage increased from 5.4% in large central metropolitan counties to 10% in noncore counties, a difference that was significant, adjusting for U.S. region, CWS size, water source, and potential spatial correlation. Similar results were found for two disinfection by-products, HAA5 and TTHM. Arsenic was the only other contaminant with a significant result. Medium metropolitan counties had 3.1% of CWSs reporting at least one annual mean greater than the MCL, compared with 2.4% in large central counties. Noncore (rural) counties experienced fewer unhealthy air-quality days than large central metropolitan counties, likely because of fewer air pollution sources in the noncore counties. All categories of counties had a mean annual average PM 2.5 concentration lower than the EPA standard. Among all CWSs analyzed, the number reporting one or more annual mean contaminant concentrations greater the MCL was small. The water-quality measure suggests that water quality worsens as counties become more rural, in regards to all contaminants combined and for the two disinfection by-products individually. Although significant differences were found for the water-quality measure, the odds ratios were very small, making it difficult to determine whether these differences have a meaningful effect on public health. These differences might be a result of variations in water treatment practices in rural versus urban counties. Understanding the differences between rural and urban areas in air and water quality can help public health departments to identify, monitor, and prioritize potential environmental public health concerns and opportunities for action. These findings suggest a continued need to develop more geographically targeted, evidence-based interventions to prevent morbidity and mortality associated with poor air and water quality.

  10. Long-term dynamics of winter and summer annual communities in the Chihuahuan Desert

    USGS Publications Warehouse

    Guo, Q.; Brown, J.H.; Valone, T.J.

    2002-01-01

    Using 15 years of census data from permanent quadrats, this paper compared the characteristics and temporal dynamics of these two distinct, spatially coexistent but temporally segregated communities. Although the total number of summer annual species recorded during our 15 years observation was higher than winter annuals, the average number of species observed each year was higher in the winter community. The winter community exhibited lower temporal variation in total plant abundance and populations of individual species, lower species turnover rate and higher evenness than the summer community. The higher seasonal species diversity (i.e., number of species observed in each season) in winters rather than the overall special pool (over 15 yrs) may be responsible for the greater community stability of winter annuals. The difference in long-term community dynamics between the two communities of annuals plants are likely due to the differences in total species pool, life history traits (e.g., seed size), and seasonal climatic regimes.

  11. 28 CFR 16.208 - Annual report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Annual report. 16.208 Section 16.208... Observation of Parole Commission Meetings § 16.208 Annual report. The Commission shall report annually to Congress regarding its compliance with Sunshine Act requirements, including a tabulation of the total...

  12. 28 CFR 16.208 - Annual report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Annual report. 16.208 Section 16.208... Observation of Parole Commission Meetings § 16.208 Annual report. The Commission shall report annually to Congress regarding its compliance with Sunshine Act requirements, including a tabulation of the total...

  13. 28 CFR 16.208 - Annual report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Annual report. 16.208 Section 16.208... Observation of Parole Commission Meetings § 16.208 Annual report. The Commission shall report annually to Congress regarding its compliance with Sunshine Act requirements, including a tabulation of the total...

  14. 28 CFR 16.208 - Annual report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Annual report. 16.208 Section 16.208... Observation of Parole Commission Meetings § 16.208 Annual report. The Commission shall report annually to Congress regarding its compliance with Sunshine Act requirements, including a tabulation of the total...

  15. 21 CFR 1315.11 - Assessment of annual needs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Assessment of annual needs. 1315.11 Section 1315... QUOTAS FOR EPHEDRINE, PSEUDOEPHEDRINE, AND PHENYLPROPANOLAMINE Assessment of Annual Needs § 1315.11 Assessment of annual needs. (a) The Administrator shall determine the total quantity of ephedrine...

  16. 21 CFR 1315.11 - Assessment of annual needs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Assessment of annual needs. 1315.11 Section 1315... QUOTAS FOR EPHEDRINE, PSEUDOEPHEDRINE, AND PHENYLPROPANOLAMINE Assessment of Annual Needs § 1315.11 Assessment of annual needs. (a) The Administrator shall determine the total quantity of ephedrine...

  17. 21 CFR 1315.11 - Assessment of annual needs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Assessment of annual needs. 1315.11 Section 1315... QUOTAS FOR EPHEDRINE, PSEUDOEPHEDRINE, AND PHENYLPROPANOLAMINE Assessment of Annual Needs § 1315.11 Assessment of annual needs. (a) The Administrator shall determine the total quantity of ephedrine...

  18. 21 CFR 1315.11 - Assessment of annual needs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Assessment of annual needs. 1315.11 Section 1315... QUOTAS FOR EPHEDRINE, PSEUDOEPHEDRINE, AND PHENYLPROPANOLAMINE Assessment of Annual Needs § 1315.11 Assessment of annual needs. (a) The Administrator shall determine the total quantity of ephedrine...

  19. Quantifying annual changes in built-up area in complex urban-rural landscapes from analyses of PALSAR and Landsat images

    NASA Astrophysics Data System (ADS)

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Chen, Bangqian; Liu, Fang; Zhang, Geli; Zhang, Yao; Wang, Jie; Wu, Xiaocui

    2017-02-01

    Built-up area supports human settlements and activities, and its spatial distribution and temporal dynamics have significant impacts on ecosystem services and global environment change. To date, most of urban remote sensing has generated the maps of impervious surfaces, and limited effort has been made to explicitly identify the area, location and density of built-up in the complex and fragmented landscapes based on the freely available datasets. In this study, we took the lower Yangtze River Delta (Landsat Path/Row: 118/038), China, where extensive urbanization and industrialization have occurred, as a case study site. We analyzed the structure and optical features of typical land cover types from (1) the HH and HV gamma-naught imagery from the Advanced Land Observation Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR), and (2) time series Landsat imagery. We proposed a pixel- and rule-based decision tree approach to identify and map built-up area at 30-m resolution from 2007 to 2010, using PALSAR HH gamma-naught and Landsat annual maximum Normalized Difference Vegetation Index (NDVImax). The accuracy assessment showed that the resultant annual maps of built-up had relatively high user (87-93%) and producer accuracies (91-95%) from 2007 to 2010. The built-up area was 2805 km2 in 2010, about 16% of the total land area of the study site. The annual maps of built-up in 2007-2010 show relatively small changes in the urban core regions, but large outward expansion along the peri-urban regions. The average annual increase of built-up areas was about 80 km2 per year from 2007 to 2010. Our annual maps of built-up in the lower Yangtze River Delta clearly complement the existing maps of impervious surfaces in the region. This study provides a promising new approach to identify and map built-up area, which is critical to investigate the interactions between human activities and ecosystem services in urban-rural systems.

  20. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schleimer, G.E.

    1983-04-01

    In order to establish whether LBL research activities produces any impact on the population surrounding the Laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1982, as in the previous several years, doses attributable to LBL radiological operations were a small fraction of the relevant radiation protection guidelines (RPG). The maximum perimeter dose equivalent was less than or equal to 24.0 mrem (the 1982 dose equivalent measured at the Building 88 monitoring station B-13A, about 5% of the RPG). The total population dose equivalent attributable to LBL operations duringmore » 1982 was less than or equal to 16 man-rem, about 0.002% of the RPG of 170 mrem/person to a suitable sample of the population.« less

  1. Does extreme precipitation intensity depend on the emissions scenario?

    NASA Astrophysics Data System (ADS)

    Pendergrass, Angeline; Lehner, Flavio; Sanderson, Benjamin; Xu, Yangyang

    2016-04-01

    The rate of increase of global-mean precipitation per degree surface temperature increase differs for greenhouse gas and aerosol forcings, and therefore depends on the change in composition of the emissions scenario used to drive climate model simulations for the remainder of the century. We investigate whether or not this is also the case for extreme precipitation simulated by a multi-model ensemble driven by four realistic emissions scenarios. In most models, the rate of increase of maximum annual daily rainfall per degree global warming in the multi-model ensemble is statistically indistinguishable across the four scenarios, whether this extreme precipitation is calculated globally, over all land, or over extra-tropical land. These results indicate that, in most models, extreme precipitation depends on the total amount of warming and does not depend on emissions scenario, in contrast to mean precipitation.

  2. The gamma-ray spectrometer experiment on the solar maximum mission satellite

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1988-01-01

    The major activities (through 15 November l987) of the Solar Maximum Mission Gamma-Ray Spectrometer (SMM GRS) team members at the University of New Hampshire and the Naval Research Laboratory and the work of the Guest Investigators since the last Semi-Annual Report are summarized. In addition, an updated list of published papers and invited papers or papers presented at scientific meetings is provided.

  3. Using the Maximum Entropy Principle as a Unifying Theory Characterization and Sampling of Multi-Scaling Processes in Hydrometeorology

    DTIC Science & Technology

    2015-08-20

    evapotranspiration (ET) over oceans may be significantly lower than previously thought. The MEP model parameterized turbulent transfer coefficients...fluxes, ocean freshwater fluxes, regional crop yield among others. An on-going study suggests that the global annual evapotranspiration (ET) over...Bras, Jingfeng Wang. A model of evapotranspiration based on the theory of maximum entropy production, Water Resources Research, (03 2011): 0. doi

  4. 76 FR 61347 - Notice of Proposed Information Collection Requests

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ..., middle and high schools). Total Estimated Number of Annual Responses: 413. Total Estimated Annual Burden..., middle and high schools where students achieve at high levels or where the achievement gap is narrowing... information technology. Dated: September 29, 2011. Darrin King, Director, Information Collection Clearance...

  5. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Maximum anhydrous citric acid permissible for... Sinensis (l) Osbeck) § 51.1178 Maximum anhydrous citric acid permissible for corresponding total soluble solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in...

  6. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Maximum anhydrous citric acid permissible for... Sinensis (l) Osbeck) § 51.1178 Maximum anhydrous citric acid permissible for corresponding total soluble solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in...

  7. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates.

    PubMed

    Manter, Daniel K; Kavanagh, Kathleen L; Rose, Cathy L

    2005-08-01

    High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in 1-year-old Douglas-fir seedlings. After 1 year of N fertilization, total seedling biomass increased with each successive increase in N fertilizer concentration, except in the highest N fertilization treatment. Of the many physiological responses that were analyzed, only photosynthetic capacity (i.e., Vcmax), respiration rates and leaf specific conductance (KL) differed significantly between N treatments. Photosynthetic capacity showed a curvilinear relationship with foliar [N], reaching an apparent maximum rate when needle N concentrations exceeded about 12 mg g(-1). In vitro measurements of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity suggested that photosynthetic capacity was best related to activated, not total, Rubisco content. Rubisco activation state declined as foliar [N] increased, and based on its significant correlation (r2= 0.63) with foliar Mn:Mg ratios, it may be related to Mn inactivation of Rubisco. Respiration rates increased linearly as foliar N concentration increased (r2= 0.84). The value of K(L) also increased as foliar [N] increased, reaching a maximum when foliar [N] exceeded about 10 mg g(-1). Changes in K(L) were unrelated to changes in leaf area or sapwood area because leaf area to sapwood area ratios remained constant. Cumulative effects of the observed physiological responses to N fertilization were analyzed by modeling annual net CO2 assimilation (Anet) based on treatment specific values of Vcmax, dark respiration (Rdark) and KL. Estimates of Anet were highly correlated with measured total seedling biomass (r2= 0.992), suggesting that long-term, cumulative effects of maximum Rubisco carboxylation, Rdark and KL responses to N fertilization may limit seedling production when foliar N exceeds about 13 mg g(-1) or is reduced to less than about 11 mg g(-1).

  8. The seasonal cycle revisited: interannual variation and ecosystem consequences

    NASA Astrophysics Data System (ADS)

    Bertram, Douglas F.; Mackas, David L.; McKinnell, Stewart M.

    The annual seasonal cycle accounts for much of the total temporal variability of mid- and high-latitude marine ecosystems. Although the general pattern of the seasons repeats each year, climatic variability of the atmosphere and the ocean produce detectable changes in intensity and onset timing. We use a combination of time series data from oceanographic, zooplankton and seabird breeding data to ask if and how these variations in the timing of the spring growing season affect marine populations. For the physical environment, we develop an annual index of spring timing by fitting a non-linear 2-parameter periodic function to the average weekly SST data observed in British Columbia from 1 January to the end of August each year. For each year, the phase parameter describes the timing of seasonal warming (the timing index) and the amplitude parameter describes the magnitude of the temperature increase between the fitted winter minimum and summer maximum. For the zooplankton, which have annual and strongly synchronous cycles of biomass, productivity, and developmental sequence, we use copepodite stage composition to index the timing of the annual maximum. For seabirds, we examine (1975-1999) the timing of hatching, nestling growth performance, and diet for four species of alcids at Triangle Island, British Columbia's largest seabird colony and the world's largest population of the planktivorous Cassin's auklet. Temperature, zooplankton, and seabirds have all shown recent decadal trends toward ‘earlier spring’, but the magnitudes of the timing perturbations have differed from variable to variable and from year to year. Recent (1996-1999) extreme interannual variation in spring timing and April SST helped to facilitate a mechanistic investigation of oceanographic features that affect the reproductive performance of seabirds. Our results demonstrate a significant negative relationship between the annual spring timing index (and April mean SST) and nestling growth rates for both Cassin's auklet and rhinoceros auklet. Nestling growth rates were significantly lower in early, warm years. We demonstrate that low growth rates of Cassin's auklet occurred when copepod composition in nestling diet was low overall and copepods were scarce or absent in samples collected later in the season. We propose that when spring is early and warm, the duration of overlap of seabird breeding and copepod availability in surface waters becomes reduced, effectively creating a seasonal mismatch of prey and predator populations. Such a mismatch could explain the reduced reproductive performance of seabirds compared to years when spring was later and colder. The relationships we develop here can be used as simple predictive models to examine the effects of ocean climate change on seabird reproductive performance within our region.

  9. Summary Report of the Seventh Annual NASA/Contractors Conference on Quality and Productivity: "Total Quality Leadership"

    NASA Technical Reports Server (NTRS)

    1991-01-01

    More than 750 NASA, government, contractor, and academic representatives attended the Seventh Annual NASA/Contractors Conference on Quality and Productivity on October 12-13, 1990, in Grenelefe, Florida. The panel presentations and keynote speeches revolving around the theme of 'Total Quality Leadership" provided a solid base of understanding of the importance, benefits, and principles of total quality management. The implementation of these strategies is critical if we are to effectively pursue our mission of continuous quality improvement and reliability in our products, processes, and services. The annual NASA/contractors conferences serve as catalysts for achieving success in this mission.

  10. 76 FR 3142 - Notice of Annual Adjustment of the Cap on Average Total Assets That Defines Community Financial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... FEDERAL HOUSING FINANCE AGENCY [No. 2011-N-01] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... average total assets below a statutory cap. See 12 U.S.C. 1422(10)(A); 12 CFR 1263.1. The Bank Act was...

  11. Foreword: Proceedings From the First Annual Lumbar Total Disc Replacement Summit.

    PubMed

    Blumenthal, Scott; Buttermann, Glenn; Garcia, Rolando; Gornet, Matthew; Grunch, Betsy; Guyer, Richard; Janssen, Michael; Kimball, Brent; Lewis, Adam; Mesiwala, Ali; Miller, Lynn; Morreale, Joseph; Reed, William; Sandhu, Faheem; Shackleford, Ian; Yue, James; Zigler, Jack; OConnell, Brent; Ferko, Nicole; Hollmann, Sarah

    2017-12-15

    : This publication focuses on proceedings from the First Annual Lumbar Total Disc Replacement Summit, held October 25, 2016 in Boston, MA. The Summit brought together 17 thought leading surgeons who employed a modified-Delphi method to determine where consensus existed pertaining to the utilization of lumbar total disc replacement as a standard of care for a subpopulation of patients suffering from degenerative disc disease.

  12. Projecting the spatiotemporal carbon dynamics of the Greater Yellowstone Ecosystem from 2006 to 2050

    USGS Publications Warehouse

    Huang, Shengli; Liu, Shuguang; Liu, Jinxun; Dahal, Devendra; Young, Claudia; Davis, Brian; Sohl, Terry L.; Hawbaker, Todd J.; Sleeter, Benjamin M.; Zhu, Zhiliang

    2015-01-01

    BackgroundClimate change and the concurrent change in wildfire events and land use comprehensively affect carbon dynamics in both spatial and temporal dimensions. The purpose of this study was to project the spatial and temporal aspects of carbon storage in the Greater Yellowstone Ecosystem (GYE) under these changes from 2006 to 2050. We selected three emission scenarios and produced simulations with the CENTURY model using three General Circulation Models (GCMs) for each scenario. We also incorporated projected land use change and fire occurrence into the carbon accounting.ResultsThe three GCMs showed increases in maximum and minimum temperature, but precipitation projections varied among GCMs. Total ecosystem carbon increased steadily from 7,942 gC/m2 in 2006 to 10,234 gC/m2 in 2050 with an annual rate increase of 53 gC/m2/year. About 56.6% and 27% of the increasing rate was attributed to total live carbon and total soil carbon, respectively. Net Primary Production (NPP) increased slightly from 260 gC/m2/year in 2006 to 310 gC/m2/year in 2050 with an annual rate increase of 1.22 gC/m2/year. Forest clear-cutting and fires resulted in direct carbon removal; however, the rate was low at 2.44 gC/m2/year during 2006–2050. The area of clear-cutting and wildfires in the GYE would account for 10.87% of total forested area during 2006–2050, but the predictive simulations demonstrated different spatial distributions in national forests and national parks.ConclusionsThe GYE is a carbon sink during 2006–2050. The capability of vegetation is almost double that of soil in terms of sequestering extra carbon. Clear-cutting and wildfires in GYE will affect 10.87% of total forested area, but direct carbon removal from clear-cutting and fires is 109.6 gC/m2, which accounts for only 1.2% of the mean ecosystem carbon level of 9,056 gC/m2, and thus is not significant.

  13. Projecting the spatiotemporal carbon dynamics of the Greater Yellowstone Ecosystem from 2006 to 2050.

    PubMed

    Huang, Shengli; Liu, Shuguang; Liu, Jinxun; Dahal, Devendra; Young, Claudia; Davis, Brian; Sohl, Terry L; Hawbaker, Todd J; Sleeter, Ben; Zhu, Zhiliang

    2015-12-01

    Climate change and the concurrent change in wildfire events and land use comprehensively affect carbon dynamics in both spatial and temporal dimensions. The purpose of this study was to project the spatial and temporal aspects of carbon storage in the Greater Yellowstone Ecosystem (GYE) under these changes from 2006 to 2050. We selected three emission scenarios and produced simulations with the CENTURY model using three General Circulation Models (GCMs) for each scenario. We also incorporated projected land use change and fire occurrence into the carbon accounting. The three GCMs showed increases in maximum and minimum temperature, but precipitation projections varied among GCMs. Total ecosystem carbon increased steadily from 7,942 gC/m 2 in 2006 to 10,234 gC/m 2 in 2050 with an annual rate increase of 53 gC/m 2 /year. About 56.6% and 27% of the increasing rate was attributed to total live carbon and total soil carbon, respectively. Net Primary Production (NPP) increased slightly from 260 gC/m 2 /year in 2006 to 310 gC/m 2 /year in 2050 with an annual rate increase of 1.22 gC/m 2 /year. Forest clear-cutting and fires resulted in direct carbon removal; however, the rate was low at 2.44 gC/m 2 /year during 2006-2050. The area of clear-cutting and wildfires in the GYE would account for 10.87% of total forested area during 2006-2050, but the predictive simulations demonstrated different spatial distributions in national forests and national parks. The GYE is a carbon sink during 2006-2050. The capability of vegetation is almost double that of soil in terms of sequestering extra carbon. Clear-cutting and wildfires in GYE will affect 10.87% of total forested area, but direct carbon removal from clear-cutting and fires is 109.6 gC/m 2 , which accounts for only 1.2% of the mean ecosystem carbon level of 9,056 gC/m 2 , and thus is not significant.

  14. Improved vegetation parameterization for hydrological model and assessment of land cover change impacts on flow regime of the Upper Bhima basin, India

    NASA Astrophysics Data System (ADS)

    Mohaideen, M. M. Diwan; Varija, K.

    2018-05-01

    This study investigates the potential and applicability of variable infiltration capacity (VIC) hydrological model to simulate different hydrological components of the Upper Bhima basin under two different Land Use Land Cover (LULC) (the year 2000 and 2010) conditions. The total drainage area of the basin was discretized into 1694 grids of about 5.5 km by 5.5 km: accordingly the model parameters were calibrated at each grid level. Vegetation parameters for the model were prepared using temporal profile of Leaf Area Index (LAI) from Moderate-Resolution Imaging Spectroradiometer and LULC. This practice provides a methodological framework for the improved vegetation parameterization along with region-specific condition for the model simulation. The calibrated and validated model was run using the two LULC conditions separately with the same observed meteorological forcing (1996-2001) and soil data. The change in LULC has resulted to an increase in the average annual evapotranspiration over the basin by 7.8%, while the average annual surface runoff and baseflow decreased by 18.86 and 5.83%, respectively. The variability in hydrological components and the spatial variation of each component attributed to LULC were assessed at the basin grid level. It was observed that 80% of the basin grids showed an increase in evapotranspiration (ET) (maximum of 292 mm). While the majority of the grids showed a decrease in surface runoff and baseflow, some of the grids showed an increase (i.e. 21 and 15% of total grids—surface runoff and baseflow, respectively).

  15. Historic change in catchment land use and metal loading to Sydney estuary, Australia (1788-2010).

    PubMed

    Birch, G F; Lean, J; Gunns, T

    2015-09-01

    Sydney estuary has a long history of environmental degradation and is one of the most modified water ways in Australia due to a highly urbanised catchment (~77 %) and a high population (4.6 million). The objectives of the present study were to map historical land use change from European settlement (1788) to 2010 to determine catchment evolutionary pathways and to estimate catchment loading (total suspended solids, Cu, Pb and Zn) to the estuary over this period. Land use distribution in Sydney catchment, determined for seven time horizons over this period, indicated that a substantial increase in residential land use through subdivision of large estates and an increase in road area resulted in a marked increase in metal loading to Sydney estuary between 1892 and 1936. The decline in industrial activity from a maximum in 1978 (3.9 %) to 1.8 % in 2010 and the introduction of unleaded fuel during this time was accompanied by reduction in metal loading to the estuary. Land use time horizon maps enabled the creation of novel, ternary diagrams to represent temporal evolution in catchment land use. The 15 sub-catchments of Sydney estuary were combined into three major catchment categories, i.e., urban, dense urban and commercial. Present-day annual discharge of stormwater from the Sydney catchment was calculated to be 466,000 ML and annual loadings of total suspended sediment (TSS), Cu, Pb and Zn in tonnes were 49,239, 27, 37 and 57, respectively. Stormwater has superseded industry as the main source of anthropogenic metals to this estuary in recent times.

  16. Cost minimisation analysis of fingolimod vs natalizumab as a second line of treatment for relapsing-remitting multiple sclerosis.

    PubMed

    Crespo, C; Izquierdo, G; García-Ruiz, A; Granell, M; Brosa, M

    2014-05-01

    At present, there is a lack of economic assessments of second-line treatments for relapsing-recurring multiple sclerosis. The aim of this study was to compare the efficiency between fingolimod and natalizumab in Spain. A cost minimisation analysis model was developed for a 2-year horizon. The same relapse rate was applied to both treatment arms and the cost of resources was calculated using Spain's stipulated rates for 2012 in euros. The analysis was conducted from the perspective of Spain's national health system and an annual discount rate of 3% was applied to future costs. A sensitivity analysis was performed to validate the robustness of the model. Indirect comparison of fingolimod with natalizumab revealed no significant differences (hazard ratio between 0.82 and 1.07). The total direct cost, considering a 2-year analytical horizon, a 7.5% discount stipulated by Royal Decree, and a mean annual relapse rate of 0.22, was € 40914.72 for fingolimod and € 45890.53 for natalizumab. Of the total direct costs that were analysed, the maximum cost savings derived from prescribing fingolimod prescription was € 4363.63, corresponding to lower administration and treatment maintenance costs. Based on the sensitivity analysis performed, fingolimod use was associated with average savings of 11% (range 3.1%-18.7%). Fingolimod is more efficient than natalizumab as a second-line treatment option for relapsing-remitting multiple sclerosis and it generates savings for the Spanish national health system. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  17. Impact of reduced anthropogenic emissions and century flood on the phosphorus stock, concentrations and loads in the Upper Danube

    PubMed Central

    Zoboli, Ottavia; Viglione, Alberto; Rechberger, Helmut; Zessner, Matthias

    2015-01-01

    Patterns of changes in the concentration of total and soluble reactive phosphorus (TP, SRP) and suspended sediments at different flow levels from 1991 to 2013 in the Austrian Danube are statistically analyzed and related to point and diffuse emissions, as well as to extreme hydrological events. Annual loads are calculated with three methods and their development in time is examined taking into consideration total emissions and hydrological conditions. The reduction of point discharges achieved during the 1990s was well translated into decreasing TP and SRP baseflow concentrations during the same period, but it did not induce any change in the concentrations at higher flow levels nor in the annual transport of TP loads. A sharp and long-lasting decline in TP concentration, affecting all flow levels, took place after a major flood in 2002. It was still visible during another major flood in 2013, which recorded lower TP concentrations than its predecessor. Such decline could not be linked to changes in point or diffuse emissions. This suggests that, as a result of the flood, the river system experienced a significant depletion of its in-stream phosphorus stock and a reduced mobilization of TP rich sediments afterwards. This hypothesis is corroborated by the decoupling of peak phosphorus loads from peak maximum discharges after 2002. These results are highly relevant for the design of monitoring schemes and for the correct interpretation of water quality data in terms of assessing the performance of environmental management measures. PMID:25747371

  18. Changes of Climate Extremes in Urmia Lake Basin: Observations and Multimodel Ensemble Projections

    NASA Astrophysics Data System (ADS)

    Ashraf, B.; AghaKouchak, A.

    2017-12-01

    This study presents an analysis of the changes in temperature and precipitation extremes in Urmia Lake Basin, in Iran in 21th century. The latest observations in the past three decades and multimodel ensemble projections from eleven General Circulation Models (GCMs) under the three Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 scenarios are employed for analysis in this study. The twenty-seven indicative temperature and precipitation indices recommended by the joint World Meteorological Organization CCL/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI) were used for assessing changes in extremes. Results indicate that most warm (cold) extreme temperature indices have shown significantly positive (negative) trends in the Urmia Lake Basin in past three decades, while only slight changes in precipitation extremes can be observed. Ensemble projection from Bayesian Model Averaging (BMA) of Phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests that the increasing consecutive dry days (CDD), together with the decreasing frost day (FD) and increasing warm nights frequency (TN90) contribute to more frequent/severe droughts in Urmia Lake Basin. Meanwhile, the results show slight increase of annual count of days with precipitation of more than 10 mm (R10), maximum 5-day precipitation total (R5D), simple daily intensity index (SDII), and annual total precipitation with precipitation >95th percentile (R95) in projections. Our finding provides information on how extremes might change in the future from a wide range of scenarios that can potentially be sued for water resource and eco-environmental planning and adaptation strategies.

  19. Modeling annual extreme temperature using generalized extreme value distribution: A case study in Malaysia

    NASA Astrophysics Data System (ADS)

    Hasan, Husna; Salam, Norfatin; Kassim, Suraiya

    2013-04-01

    Extreme temperature of several stations in Malaysia is modeled by fitting the annual maximum to the Generalized Extreme Value (GEV) distribution. The Augmented Dickey Fuller (ADF) and Phillips Perron (PP) tests are used to detect stochastic trends among the stations. The Mann-Kendall (MK) test suggests a non-stationary model. Three models are considered for stations with trend and the Likelihood Ratio test is used to determine the best-fitting model. The results show that Subang and Bayan Lepas stations favour a model which is linear for the location parameters while Kota Kinabalu and Sibu stations are suitable with a model in the logarithm of the scale parameters. The return level is the level of events (maximum temperature) which is expected to be exceeded once, on average, in a given number of years, is obtained.

  20. Area and Carbon Content of Sphagnum Since Last Glacial Maximum

    DOE Data Explorer

    Gajewski, K. [University of Ottawa, Ottawa, Ontario (Canada); Viau, A. [University of Ottawa, Ottawa, Ontario (Canada); Sawada, M. [University of Ottawa, Ottawa, Ontario (Canada); Atkinson, D. [University of Ottawa, Ottawa, Ontario (Canada); Wilson, S. [University of Ottawa, Ottawa, Ontario (Canada)

    2002-01-01

    The distribution and abundance of Sphagnum spores in North America and Eurasia are mapped for the past 21ka, as described in Gajewski et al. (2002). In summary, spore data were taken from existing pollen data bases, as were radiocarbon chronologies. The abundance of Sphagnum spores was mapped at 2000-year intervals beginning 21000 years BP (before present). The present-day distribution of abundant Sphagnum spores corresponds closely to areas with peatland development, with maximum Sphagnum abundance between 630 and 1300 mm annual precipitation and between -2° and 60°C mean annual air temperature. Carbon content of peatlands was generated from estimated peatland area, calculated values of peat thickness, and specified values of bulk density (112 × 103 g m-3) and fraction of carbon (51.7%).

  1. Preliminary flood-duration frequency estimates using naturalized streamflow records for the Willamette River Basin, Oregon

    USGS Publications Warehouse

    Lind, Greg D.; Stonewall, Adam J.

    2018-02-13

    In this study, “naturalized” daily streamflow records, created by the U.S. Army Corps of Engineers and the Bureau of Reclamation, were used to compute 1-, 3-, 7-, 10-, 15-, 30-, and 60-day annual maximum streamflow durations, which are running averages of daily streamflow for the number of days in each duration. Once the annual maximum durations were computed, the floodduration frequencies could be estimated. The estimated flood-duration frequencies correspond to the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent probabilities of their occurring or being exceeded each year. For this report, the focus was on the Willamette River Basin in Oregon, which is a subbasin of the Columbia River Basin. This study is part of a larger one encompassing the entire Columbia Basin.

  2. Analysis of Nitrogen Dioxide and Sulphur Dioxide in Lima, Peru: Trends and Seasonal Variations

    NASA Astrophysics Data System (ADS)

    Pacsi, S.; Rappenglueck, B.

    2007-12-01

    This research was carried out to show a general analysis of the monthly and yearly variation (1996-2002) and the tendency of the nitrogen dioxide (NO2) and sulfur dioxide (SO2) for the 5 stations of the air quality network of Lima. The SO2 and NO2 concentrations were measured by the Dirección General de Salud Ambiental (DIGESA), using the active sampling method and the chemical analysis has been determined by Turbidimetry and Colorimetry for the SO2 and NO2 respectively. The monthly average variation (1996-2001) of SO2 in the Lima Center station has a small annual range (32,4 mikrograms/m3) with maximum values in autumn (April) and minimum in winter (June). The NO2 presents a higher annual range (128,2 mikrograms/m3) and its minimum values occur in the summer and the maximum in spring. The annual averages analysis (2000-2002) of the air quality monitoring network of Lima shows that the SO2 and NO2 values are maximum in the Lima Center station and exceed the Peruvian air quality standard (ECAs) in 30% and 75% respectively. The yearly variation (1996-2001) in the Lima Center station show an increasing tendency in the SO2 (significant) and NO2 (not significant) values, which indicates the critical level of the air quality in Lima, therefore the implementation of the air pollution control programs is urgent.

  3. [An investigation of ionizing radiation dose in a manufacturing enterprise of ion-absorbing type rare earth ore].

    PubMed

    Zhang, W F; Tang, S H; Tan, Q; Liu, Y M

    2016-08-20

    Objective: To investigate radioactive source term dose monitoring and estimation results in a manufacturing enterprise of ion-absorbing type rare earth ore and the possible ionizing radiation dose received by its workers. Methods: Ionizing radiation monitoring data of the posts in the control area and supervised area of workplace were collected, and the annual average effective dose directly estimated or estimated using formulas was evaluated and analyzed. Results: In the control area and supervised area of the workplace for this rare earth ore, α surface contamination activity had a maximum value of 0.35 Bq/cm 2 and a minimum value of 0.01 Bq/cm 2 ; β radioactive surface contamination activity had a maximum value of 18.8 Bq/cm 2 and a minimum value of 0.22 Bq/cm 2 . In 14 monitoring points in the workplace, the maximum value of the annual average effective dose of occupational exposure was 1.641 mSv/a, which did not exceed the authorized limit for workers (5 mSv/a) , but exceeded the authorized limit for general personnel (0.25 mSv/a) . The radionuclide specific activity of ionic mixed rare earth oxides was determined to be 0.9. Conclusion: The annual average effective dose of occupational exposure in this enterprise does not exceed the authorized limit for workers, but it exceeds the authorized limit for general personnel. We should pay attention to the focus of the radiation process, especially for public works radiation.

  4. Systems Engineering-Based Tool for Identifying Critical Research Systems

    ERIC Educational Resources Information Center

    Abbott, Rodman P.; Stracener, Jerrell

    2016-01-01

    This study investigates the relationship between the designated research project system independent variables of Labor, Travel, Equipment, and Contract total annual costs and the dependent variables of both the associated matching research project total annual academic publication output and thesis/dissertation number output. The Mahalanobis…

  5. 47 CFR 36.601 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-income consumers, schools and libraries, and heath care providers. The expense adjustment calculated... pursuant to § 36.612(a). (c) Until June 30, 2001, the annual amount of the total nationwide expense... calculated pursuant to this subpart F. The annual amount of the total nationwide loop cost expense adjustment...

  6. Ohio Department of Transportation State Infrastructure Bank Annual Financial Report : Federal Fiscal Year 2009

    DOT National Transportation Integrated Search

    2009-01-01

    The Ohio Department of Transportation is pleased to present the Federal : Fiscal Year (FFY) 2009 State Infrastructure Bank (SIB) Annual Financial : Report. : The portfolio of the FFY 2009 SIB had a total of nine loans totaling $9.0 : million and one ...

  7. Streamflow and nutrient data for the Yazoo River below Steele Bayou near Long Lake, Mississippi, 1996-2000

    USGS Publications Warehouse

    Runner, Michael S.; Turnipseed, D. Phil; Coupe, Richard H.

    2002-01-01

    Increased nutrient loading to the Gulf of Mexico from off-continent flux has been identified as contributing to the increase in the areal extent of the low dissolved-oxygen zone that develops annually off the Louisiana and Texas coast. The proximity of the Yazoo River Basin in northwestern Mississippi to the Gulf of Mexico, and the intensive agricultural activities in the basin have led to speculation that the Yazoo River Basin contributes a disproportionate amount of nitrogen and phosphorus to the Mississippi River and ultimately to the Gulf of Mexico. An empirical measurement of the flux of nitrogen and phosphorus from the Yazoo Basin has not been possible due to the hydrology of the lower Yazoo River Basin. Streamflow for the Yazoo River below Steele Bayou is affected by backwater from the Mississippi River. Flow at the gage is non-uniform and varying, with bi-directional and reverse flows possible. Streamflow was computed by using remote sensing and acoustic and conventional discharge and velocity measurement techniques. Streamflow from the Yazoo River for the 1996-2000 period accounted for 2.8 percent of the flow of the Mississippi River for the same period. Water samples from the Yazoo River were collected from February 1996 through December 2000 and were analyzed for total nitrogen, nitrate, total phosphorus, and orthophosphorus as part of the U.S. Geological Survey National Water-Quality Assessment Program. These data were used to compute annual loads of nitrogen and phosphorus discharged from the Yazoo River for the period 1996-2000. Annual loads of nitrogen and phosphorus were calculated by two methods. The first method used multivariate regression and the second method multiplied the mean annual concentration by the total annual flow. Load estimates based on the product of the mean annual concentration and the total annual flow were within the 95 percent confidence interval for the load calculated by multivariate regression in 10 of 20 cases. The Yazoo River loads, compared to average annual loads in the Mississippi River, indicated that the Yazoo River was contributing 1.4 percent of the total nitrogen load, 0.7 percent of the nitrate load, 3.4 percent of the total phosphorus load, and 1.6 percent of the orthophosphorus load during 1996 - 2000. The total nitrogen, nitrate, and orthophosphorus loads in the Yazoo River Basin were less than expected, whereas the total phosphorus load was slightly higher than expected based on discharge.

  8. Wind extremes in the North Sea basin under climate change: an ensemble study of 12 CMIP5 GCMs

    NASA Astrophysics Data System (ADS)

    de Winter, R.; Ruessink, G.; Sterl, A.

    2012-12-01

    Coastal safety may be influenced by climate change, as changes in extreme surge levels and wave extremes may increase the vulnerability of dunes and other coastal defenses. In the North Sea, an area already prone to severe flooding, these high surge levels and waves are generated by severe wind speeds during storm events. As a result of the geometry of the North Sea, not only the maximum wind speed is relevant, but also wind direction. Analyzing changes in a changing climate implies that several uncertainties need to be taken into account. First, there is the uncertainty in climate experiments, which represents the possible development of the emission of greenhouse gases. Second, there is uncertainty between the climate models that are used to analyze the effect of different climate experiments. The third uncertainty is the natural variability of the climate. When this system variability is large, small trends will be difficult to detect. The natural variability results in statistical uncertainty, especially for events with high return values. We addressed the first two types of uncertainties for extreme wind conditions in the North Sea using 12 CMIP5 GCMs. To evaluate the differences between the climate experiments, two climate experiments (rcp4.5 and rcp8.5) from 2050-2100 are compared with historical runs, running from 1950-2000. Rcp4.5 is considered to be a middle climate experiment and rcp8.5 represents high-end climate scenarios. The projections of the 12 GCMs for a given scenario illustrate model uncertainty. We focus on the North Sea basin, because changes in wind conditions could have a large impact on safety of the densely populated North Sea coast, an area that has already a high exposure to flooding. Our results show that, consistent with ERA-Interim results, the annual maximum wind speed in the historical run demonstrates large interannual variability. For the North Sea, the annual maximum wind speed is not projected to change in either rcp4.5 or rcp8.5. In fact, the differences in the 12 GCMs are larger than the difference between the three experiments. Furthermore, our results show that, the variation in direction of annual maximum wind speed is large and this precludes a firm statement on climate-change induced changes in these directions. Nonetheless, most models indicate a decrease in annual maximum wind speed from south-eastern directions and an increase from south-western and western directions. This might be caused by a poleward shift of the storm track. The amount of wind from north-west and north-north-west, wind directions that are responsible for the development of extreme storm surges in the southern part of the North Sea, are not projected to change. However, North Sea coasts that have the longest fetch for western direction, e.g. the German Bight, may encounter more often high storm surge levels and extreme waves when the annual maximum wind will indeed be more often from western direction.

  9. Development and Application of Regression Models for Estimating Nutrient Concentrations in Streams of the Conterminous United States, 1992-2001

    USGS Publications Warehouse

    Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.

    2010-01-01

    Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding the criteria in more than half of the stream miles. Dividing calibration sites into agricultural and nonagricultural groups did not improve the explanatory capability for total phosphorus models. The group of explanatory variables that yielded the lowest model error for mean annual total phosphorus concentrations includes phosphorus input from manure, population density, amounts of range land and forest land, percent sand in soil, and percent base flow. However, the large unexplained variability and associated model error precluded the use of the total phosphorus model for nationwide extrapolations.

  10. Further Evaluation of an Emperical Equation for Annual Total Evaporation

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    1999-01-01

    An empirical equation for annual total evaporation based on annual precipitation and net radiation was found to provide evaporation within 10% of the observed values at seven locations within temperate and tropical regions, but it overestimated evaporation by 90% at one location within the tundra region. A synthesis of observations at two other locations within the tundra region gives overestimates of about 65%. A general analysis of observed precipitation, net radiation, and runoff within the tundra region shows that the empirical equation is generally biased to overestimate annual evaporation within the tundra region. A theoretical analysis is being done to understand the reason behind this bias.

  11. The Regional Differences of Gpp Estimation by Solar Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Wang, X.; Lu, S.

    2018-04-01

    Estimating gross primary productivity (GPP) at large spatial scales is important for studying the global carbon cycle and global climate change. In this study, the relationship between solar-induced chlorophyll fluorescence (SIF) and GPP is analysed in different levels of annual average temperature and annual total precipitation respectively using simple linear regression analysis. The results showed high correlation between SIF and GPP, when the area satisfied annual average temperature in the range of -5 °C to 15 °C and the annual total precipitation is higher than 200 mm. These results can provide a basis for future estimation of GPP research.

  12. Proceedings of the Annual Gravity Gradiometer Conference (17th) Held in Hanscom AFB, Massachusetts on 12-13 October 1989

    DTIC Science & Technology

    1990-03-28

    D’IC FILE COpY G---90-0067 ENVIRONMENTAL RESEARCH PAPERS , NO. 1059 AD-A223 568 PROCEEDINGS OF THE SEVENTEENTH ANNUAL GRAVITY GRADIOICET CONFERENCE 12...AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for Public Release; Distribution Unlimited 13. ABSTRACT (Maximu&m 200 words)/ Fourteen papers were...instrumentation * and applications. The technical papers covered test program results, applications to gravity field mapping, gravity signal processing

  13. An assessment of the industrial cogeneration market for parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Doane, J. W.

    1981-01-01

    The value analysis technique used is straightforward. Maximum allowable life-cycle system cost for the cogeneration system is determined as the sum of the present value of fuels displaced plus the present value of revenues from exported power. Each conventional fuel displaced is described by a unit cost in the first year, a uniform annual consumption rate, and a uniform annual escalation rate for unit cost. Exported energy flows are treated the same as displaced energy.

  14. Analysis of flood-magnitude and flood-frequency data for streamflow-gaging stations in the Delaware and North Branch Susquehanna River Basins in Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Stuckey, Marla H.

    2007-01-01

    The Delaware and North Branch Susquehanna River Basins in Pennsylvania experienced severe flooding as a result of intense rainfall during June 2006. The height of the flood waters on the rivers and tributaries approached or exceeded the peak of record at many locations. Updated flood-magnitude and flood-frequency data for streamflow-gaging stations on tributaries in the Delaware and North Branch Susquehanna River Basins were analyzed using data through the 2006 water year to determine if there were any major differences in the flood-discharge data. Flood frequencies for return intervals of 2, 5, 10, 50, 100, and 500 years (Q2, Q5, Q10, Q50, Q100, and Q500) were determined from annual maximum series (AMS) data from continuous-record gaging stations (stations) and were compared to flood discharges obtained from previously published Flood Insurance Studies (FIS) and to flood frequencies using partial-duration series (PDS) data. A Wilcoxon signed-rank test was performed to determine any statistically significant differences between flood frequencies computed from updated AMS station data and those obtained from FIS. Percentage differences between flood frequencies computed from updated AMS station data and those obtained from FIS also were determined for the 10, 50, 100, and 500 return intervals. A Mann-Kendall trend test was performed to determine statistically significant trends in the updated AMS peak-flow data for the period of record at the 41 stations. In addition to AMS station data, PDS data were used to determine flood-frequency discharges. The AMS and PDS flood-frequency data were compared to determine any differences between the two data sets. An analysis also was performed on AMS-derived flood frequencies for four stations to evaluate the possible effects of flood-control reservoirs on peak flows. Additionally, flood frequencies for three stations were evaluated to determine possible effects of urbanization on peak flows. The results of the Wilcoxon signed-rank test showed a significant difference at the 95-percent confidence level between the Q100 computed from AMS station data and the Q100 determined from previously published FIS for 97 sites. The flood-frequency discharges computed from AMS station data were consistently larger than the flood discharges from the FIS; mean percentage difference between the two data sets ranged from 14 percent for the Q100 to 20 percent for the Q50. The results of the Mann-Kendall test showed that 8 stations exhibited a positive trend (i.e., increasing annual maximum peaks over time) over their respective periods of record at the 95-percent confidence level, and an additional 7 stations indicated a positive trend, for a total of 15 stations, at a confidence level of greater than or equal to 90 percent. The Q2, Q5, Q10, Q50, and Q100 determined from AMS and PDS data for each station were compared by percentage. The flood magnitudes for the 2-year return period were 16 percent higher when partial-duration peaks were incorporated into the analyses, as opposed to using only the annual maximum peaks. The discharges then tended to converge around the 5-year return period, with a mean collective difference of only 1 percent. At the 10-, 50-, and 100-year return periods, the flood magnitudes based on annual maximum peaks were, on average, 6 percent higher compared to corresponding flood magnitudes based on partial-duration peaks. Possible effects on flood peaks from flood-control reservoirs and urban development within the basin also were examined. Annual maximum peak-flow data from four stations were divided into pre- and post-regulation periods. Comparisons were made between the Q100 determined from AMS station data for the periods of record pre- and post-regulation. Two stations showed a nearly 60- and 20-percent reduction in the 100-year discharges; the other two stations showed negligible differences in discharges. Three stations within urban basins were compared to 38 stations

  15. 77 FR 14598 - Proposed Information Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Respondent: 15 hours 12 minutes. Estimated Total Annual Burden Hours: 7,560,000. Title: Information Return of..., 35 minutes. Estimated Total Annual Burden Hours: 158,800. Title: Information Return for Real Estate... may not receive a Form 1099 and other information necessary to prepare their tax return in a timely...

  16. 33rd Annual Official Education Construction Report

    ERIC Educational Resources Information Center

    Agron, Joe

    2007-01-01

    Construction spending by education institutions topped $36 billion in 2006. While strong by historical standards, it represents the third consecutive year that total spending on construction dropped from the year before. According to the "American School & University" 33rd annual Official Education Construction Report, total spending on new,…

  17. Ohio Department of Transportation State Infrastructure Bank Annual Financial Report : Federal Fiscal Year 2008

    DOT National Transportation Integrated Search

    2008-01-01

    The Ohio Department of Transportation is pleased to present the Federal Fiscal Year (FFY) 2008 State Infrastructure Bank (SIB) Annual Financial Report. The portfolio of the FFY 2008 SIB had a total of five loans totaling $22.1 million. Since the begi...

  18. 75 FR 52934 - Notice of Submission for OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    .... OMB Control Number: 1840-0564. Agency Form Number(s): N/A. Frequency of Responses: Annually. Affected Public: Not-for-profit institutions. Total Estimated Number of Annual Responses: 500. Total Estimated... at http://www.reginfo.gov/public/do/PRAMain or from the Department's website at http://edicsweb.ed...

  19. Hydrology and water quality of Elkhead Creek and Elkhead Reservoir near Craig, Colorado, July 1995-September 2001

    USGS Publications Warehouse

    Kuhn, Gerhard; Stevens, Michael R.; Elliott, John G.

    2003-01-01

    The U.S. Geological Survey, in cooperation with the Colorado River Water Conservation District, collected and analyzed baseline streamflow and water-quality information for Elkhead Creek and water-quality and trophic-state information for Elkhead Reservoir from July 1995 through September 2001. In the study area, Elkhead Creek is a meandering, alluvial stream dominated by snowmelt in mountainous headwaters that produces most of the annual discharge volume and discharge peaks during late spring and early summer. During most of water year 1996 (a typical year), daily mean discharge at station 09246400 (downstream from the reservoir) was similar to daily mean discharge at station 09246200 (upstream from the reservoir). Flow-duration curves for stations 09246200 and 09246400 were nearly identical, except for discharges less than about 10 cubic feet per second. Specific conductance generally had an inverse relation to discharge in Elkhead Creek. During late fall and winter when discharge was small and derived mostly from ground water, specific conductance was high, whereas during spring and early summer, when discharge was large and derived mostly from snowmelt, specific conductance was low. Water temperatures in Elkhead Creek were smallest during winter, about 0.0 degrees Celsius (oC), and largest during summer, about 20?25oC. Concentrations of major ions, nutrients, trace elements, organic carbon, and suspended sediment in Elkhead Creek indicated no substantial within-year variability and no substantial differences in variability from one year to the next. A seasonal pattern in the concentration data was evident for most constituents. The seasonal concentration pattern for most of the dissolved constituents followed the seasonal pattern of specific conductance, whereas some nutrients, some trace elements, and suspended sediment followed the seasonal pattern of discharge. Statistical differences between station 09246200 (upstream from the reservoir) and station 09246400 (downstream from the reservoir) were indicated for specific conductance, dissolved calcium, magnesium, sodium, and sulfate, acid-neutralizing capacity, and dissolved solids. Trend analysis indicated upward temporal trends for pH, dissolved ammonia plus organic nitrogen, total nitrogen, and total phosphorus at station 09246200; upward temporal trends for dissolved and total ammonia plus organic nitrogen, total nitrogen, and total phosphorus were indicated at station 09246400. No downward trends were indicated for any constituents. Annual loads for dissolved constituents during water years 1996?2001 were consistently larger at station 09246400 than at station 09246200, except for silica and sulfate. Mean monthly loads for dissolved constituents followed the seasonal pattern of discharge, indicating that most of the annual loads were transported during March?June. Annual dissolved nutrient loads at stations 09246400 and 09246200 were not substantially different, except for total phosphorus and total nitrogen loads, which were smaller at the downstream station than at the upstream station, most likely due to biological uptake and settling in the reservoir. Mean annual suspended-sediment load during water years 1996?2001 was about 87-percent smaller at the downstream station than at the upstream station. Temperature in Elkhead Reservoir varied seasonally, from about 0oC during winter when ice develops on the reservoir to about 20oC during summer. Specific conductance varied from minimums of 138 to 169 microsiemens per centimeter at 25oC (?S/cm) during snowmelt inflow to maximums of 424 to 610 ?S/cm during early spring low flow (April). Median pH in the reservoir ranged from 7.2 to 8.0 at all sites near the surface. Median dissolved oxygen ranged from 7.1 to 7.2 milligrams per liter (mg/L) in near-surface samples and from 4.8 to 5.6 mg/L in near-bottom samples. During reservoir stratification, specific conductance generally was largest in the e

  20. 49 CFR 219.800 - Annual reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Annual reports. 219.800 Section 219.800 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Annual Report § 219.800 Annual reports. (a) Each railroad that has a total of 400,000 or more...

  1. Evaluation of long-term trends in hydrologic and water-quality conditions, and estimation of water budgets through 2013, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Reif, Andrew G.

    2017-06-02

    An evaluation of trends in hydrologic and water quality conditions and estimation of water budgets through 2013 was done by the U.S. Geological Survey in cooperation with the Chester County Water Resources Authority. Long-term hydrologic, meteorologic, and biologic data collected in Chester County, Pennsylvania, which included streamflow, groundwater levels, surface-water quality, biotic integrity, precipitation, and air temperature were analyzed to determine possible trends or changes in hydrologic conditions. Statistically significant trends were determined by applying the Kendall rank correlation test; the magnitudes of the trends were determined using the Sen slope estimator. Water budgets for eight selected watersheds were updated and a new water budget was developed for the Marsh Creek watershed. An average water budget for Chester County was developed using the eight selected watersheds and the new Marsh Creek water budget.Annual and monthly mean streamflow, base flow, and runoff were analyzed for trends at 10 streamgages. The periods of record at the 10 streamgages ranged from 1961‒2013 to 1988‒2013. The only statistically significant trend for annual mean streamflow was for West Branch Brandywine Creek near Honey Brook, Pa. (01480300) where annual mean streamflow increased 1.6 cubic feet per second (ft3/s) per decade. The greatest increase in monthly mean streamflow was for Brandywine Creek at Chadds Ford, Pa. (01481000) for December; the increase was 47 ft3/s per decade. No statistically significant trends in annual mean base flow or runoff were determined for the 10 streamgages. The greatest increase in monthly mean base flow was for Brandywine Creek at Chadds Ford, Pa. (01481000) for December; the increase was 26 ft3/s per decade.The magnitude of peaks greater than a base streamflow was analyzed for trends for 12 streamgages. The period of record at the 12 stream gages ranged from 1912‒2012 to 2004–11. Fifty percent of the streamgages showed a small statistically significant increase in peaks greater than the base streamflow. The greatest increase was for Brandywine Creek at Chadds Ford, Pa. (01481000) during 1962‒2012; the increase was 1.8 ft3/s per decade. There were no statistically significant trends in the number of floods equal to or greater than the 2-year recurrence interval flood flow.Twenty‒one monitoring wells were evaluated for statistically significant trends in annual mean water level, minimum annual water level, maximum annual water level, and annual range in water-level fluctuations. For four wells, a small statistically significant increase in annual mean water level was determined that ranged from 0.16 to 0.7 feet per decade. There was poor or no correlation between annual mean groundwater levels and annual mean streamflow and base flow. No correlation was determined between annual mean groundwater level and annual precipitation. Despite rapid population growth and land-use change since 1950, there appears to have been little or no detrimental effects on groundwater levels in 21 monitoring wells.Long-term precipitation and temperature data were available from the West Chester (1893‒2013) and Phoenixville, Pa. (1915‒2013) National Oceanic and Atmospheric Administration (NOAA) weather stations. No statistically significant trends in annual mean precipitation or annual mean temperature were determined for either station. Both weather stations had a significant decrease in the number of days per year with precipitation greater than or equal to 0.1 inch. Annual mean minimum and maximum temperatures from the NOAA Southeastern Piedmont Climate Division increased 0.2 degrees Fahrenheit (F) per decade between 1896 and 2014. The number of days with a maximum temperature equal to or greater than 90 degrees F increased at West Chester and decreased at Phoenixville. No statistically significant trend was determined for annual snowfall amounts.Data from 1974 to 2013 for three stream water-quality monitors in the Brandywine Creek watershed were evaluated. The monitors are on the West Branch Brandywine Creek at Modena, Pa. (01480617), East Branch Brandywine Creek below Downingtown, Pa. (01480870), and Brandywine Creek at Chadds Ford, Pa. (01481000). Statistically significant upward trends were determined for annual mean specific conductance at all three stations, indicating the total dissolved solids load has been increasing. If the current trend continues, the annual mean specific conductance could almost double from 1974 to 2050. The increase in specific conductance likely is due to increases in chloride concentrations, which have been increasing steadily over time at all three stations. No correlation was found between monthly mean specific conductance and monthly mean streamflow or base flow. Statistically significant upward trends in pH were determined for all three stations. Statistically significant upward trends in stream temperature were determined for East Branch Brandywine Creek below Downingtown, Pa. (01480870) and Brandywine Creek at Chadds Ford, Pa. (01481000). The stream water-quality data indicate substantial increases in the minimum daily dissolved oxygen concentrations in the Brandywine Creek over time.The Chester County Index of Biotic Integrity (CC-IBI) determined for 1998‒2013 was evaluated for the five biological sampling sites collocated with streamgages. CC-IBI scores are based on a 0‒100 scale with higher scores indicating better stream quality. Statistically significant upward trends in the CC-IBI were determined for West Branch Brandywine Creek at Modena, Pa. (01480617) and East Branch Brandywine Creek below Downingtown, Pa. (01480870). No correlation was found between the CC-IBI and streamflow, precipitation, or stream specific conductance, pH, temperature, or dissolved oxygen concentration.A Chester County average water budget was developed using the nine estimated watershed water budgets. Average precipitation was 48.4 inches, and average streamflow was 21.4 inches. Average runoff and base flow were 8.3 and 13.1 inches, respectively, and average evapotranspiration and estimation of errors was 27.2 inches."

  2. 2008 annual merit review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-01-18

    The 2008 DOE Vehicle Technologies Program Annual Merit Review was held February 25-28, 2008 in Bethesda, Maryland. The review encompassed all of the work done by the Vehicle Technologies Program: a total of 280 individual activities were reviewed, by a total of just over 100 reviewers. A total of 1,908 individual review responses were received for the technical reviews, and an additional 29 individual review responses were received for the plenary session review.

  3. Mercury Loads in the South River and Simulation of Mercury Total Maximum Daily Loads (TMDLs) for the South River, South Fork Shenandoah River, and Shenandoah River: Shenandoah Valley, Virginia

    USGS Publications Warehouse

    Eggleston, Jack

    2009-01-01

    Due to elevated levels of methylmercury in fish, three streams in the Shenandoah Valley of Virginia have been placed on the State's 303d list of contaminated waters. These streams, the South River, the South Fork Shenandoah River, and parts of the Shenandoah River, are downstream from the city of Waynesboro, where mercury waste was discharged from 1929-1950 at an industrial site. To evaluate mercury contamination in fish, this total maximum daily load (TMDL) study was performed in a cooperative effort between the U.S. Geological Survey, the Virginia Department of Environmental Quality, and the U.S. Environmental Protection Agency. The investigation focused on the South River watershed, a headwater of the South Fork Shenandoah River, and extrapolated findings to the other affected downstream rivers. A numerical model of the watershed, based on Hydrological Simulation Program-FORTRAN (HSPF) software, was developed to simulate flows of water, sediment, and total mercury. Results from the investigation and numerical model indicate that contaminated flood-plain soils along the riverbank are the largest source of mercury to the river. Mercury associated with sediment accounts for 96 percent of the annual downstream mercury load (181 of 189 kilograms per year) at the mouth of the South River. Atmospherically deposited mercury contributes a smaller load (less than 1 percent) as do point sources, including current discharge from the historic industrial source area. In order to determine how reductions of mercury loading to the stream could reduce methylmercury concentrations in fish tissue below the U.S. Environmental Protection Agency criterion of 0.3 milligrams per kilogram, multiple scenarios were simulated. Bioaccumulation of mercury was expressed with a site-specific exponential relation between aqueous total mercury and methylmercury in smallmouth bass, the indicator fish species. Simulations indicate that if mercury loading were to decrease by 98.9 percent from 189 to 2 kilograms per year, fish tissue methylmercury concentrations would drop below 0.3 milligrams per kilogram. Based on the simulations, the estimated maximum load of total mercury that can enter the South River without causing fish tissue methylmercury concentrations to rise above 0.3 milligrams per kilogram is 2.03 kilograms per year for the South River, and 4.12 and 6.06 kilograms per year for the South Fork Shenandoah River and Shenandoah River, respectively.

  4. Climatic variability of the column ozone over the Iranian plateau

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyyed Shafi; Farajzadeh, Manuchehr; Rahimi, Yousef Ghavidel; Bidokhti, Abbasali Aliakbari

    2017-06-01

    This study analyzes the total ozone column (TOC) variability over the Iranian plateau (Esfahan) from 1978 to 2011. Results show that the annual average of TOC in Esfahan tends to decrease with time, which is strongly dependent on the season, with maximum values during the winter-spring months (more than 2.2 %/decade). By applying a defined threshold that includes the TOC monthly -2 σ, it is found that the maximum occurrence of low ozone events (LOEs) tends to be more frequent in the second half of year with about four-fifth of the observed LOEs (last summer, autumn, and early winter). During two cases of LOE, the tropopause height (TH) was uplifted 2-4 km with temperature of 10 °C colder than the long-term mean, and the synoptic pattern was characterized by high-pressure systems in UTLS region. The extreme LOEs were consistent with the horizontal transport of ozone-poor air toward the Iranian plateau and vertical advection in UTLS region. The former mechanism plays a primary role in formation of extreme LOEs based on the observed TOC reductions during previous days over the source regions (Sahara desert and Himalaya region). Day-to-day variations of maximum UV index during LOEs show that by a decrease in TOC 14 %, while the aerosol optical depth (AOD) in the cloudless condition reach their lowest rates (lower than 0.3), UV radiation exceeds very high and extreme levels in late winter and mid-spring, respectively.

  5. Summary of floods in the United States during 1959

    USGS Publications Warehouse

    Hendricks, E.L.

    1964-01-01

    This report describes the most outstanding floods that occurred in the United States during 1959.The floods of January-February in Ohio and adjacent States were the most outstanding floods of the year 1959 with respect to area affected, number of streams having maximum discharge of record, rare occurrence of peaks, and great amount of damage caused.Floods in the Rock River basin in southern Wisconsin and northern Illinois during late March and early April produced maximum stages and discharges on many streams. The Rock River at Watertown, Wisc., was the highest in 40 years and Lake Mendota at Madison, Wisc., reached its maximum stage since 1916. Many towns were flooded and thousands of persons were forced from their homes.What is possibly the greatest 24-hour rainfall ever to be noted in Iowa fell August 5-6. The resulting floods inundated an 80-block area in Fort Madison, Iowa, and caused damage estimated at $600,000 in the city. A total of 130,000 acres of land was inundated.Major floods occurred in Texas in the upper Trinity, middle Brazos, middle Colorado, upper Guadalupe, and upper Nueces River basins in early October, following heavy general rains that covered most of Texas. The peak stage on North Bosque River near Clifton was the highest known since 1887. More than \\$1 million in damage was reported for Houston.In addition to the 4 floods mentioned above, 22 others of lesser magnitude are considered important enough to report in this annual summary.

  6. Solar Activity, Ultraviolet Radiation and Consequences in Birds in Mexico City, 2001- 2002

    NASA Astrophysics Data System (ADS)

    Valdes, M.; Velasco, V.

    2008-12-01

    Anomalous behavior in commercial and pet birds in Mexico City was reported during 2002 by veterinarians at the Universidad Nacional Autonoma de Mexico. This was attributed to variations in the surrounding luminosity. The solar components, direct, diffuse, global, ultraviolet band A and B, as well as some meteorological parameters, temperature, relative humidity, and precipitation, were then analyzed at the Solar Radiation Laboratory. Although the total annual radiance of the previously mentioned radiation components did not show important changes, ultraviolet Band-B solar radiation did vary significantly. During 2001 the total annual irradiance , 61.05 Hjcm² to 58.32 Hjcm², was 1.6 standard deviations lower than one year later, in 2002 and increased above the mean total annual irradiance, to 65.75 Hjcm², 2.04 standard deviations, giving a total of 3.73 standard deviations for 2001-2002. Since these differences did not show up clearly in the other solar radiation components, daily extra-atmosphere irradiance was analyzed and used to calculate the total annual extra-atmosphere irradiance, which showed a descent for 2001. Our conclusions imply that Ultraviolet Band-B solar radiation is representative of solar activity and has an important impact on commercial activity related with birds.

  7. The rise and fall of tuberculosis in Malawi: associations with HIV infection and antiretroviral therapy.

    PubMed

    Kanyerere, Henry; Harries, Anthony D; Tayler-Smith, Katie; Jahn, Andreas; Zachariah, Rony; Chimbwandira, Frank M; Mpunga, James

    2016-01-01

    Since 1985, Malawi has experienced a dual epidemic of HIV and tuberculosis (TB) which has been moderated recently by the advent of antiretroviral therapy (ART). The aim of this study was to describe the association over several decades between HIV/AIDS, the scale-up of ART and TB case notifications. Aggregate data were extracted from annual reports of the National TB Control Programme, the Ministry of Health HIV Department and the National Statistics Office. ART coverage was calculated using the total HIV population as denominator (derived from UNAIDS Spectrum software). In 1970, there were no HIV-infected persons but numbers had increased to a maximum of 1.18 million by 2014. HIV prevalence reached a maximum of 10.8% in 2000, thereafter decreasing to 7.5% by 2014. Numbers alive on ART increased from 2586 in 2003 to 536 527 (coverage 45.3%) by 2014. In 1985, there were 5286 TB cases which reached a maximum of 28 234 in 2003 and then decreased to 17 723 by 2014 (37% decline from 2003). There were increases in all types of new TB between 1998-2003 which then declined by 30% for extrapulmonary TB, by 37% for new smear-positive PTB and by 50% for smear-negative PTB. Previously treated TB cases reached a maximum of 3443 in 2003 and then declined by 42% by 2014. The rise and fall of TB in Malawi between 1985 and 2014 was strongly associated with HIV infection and ART scale-up; this has implications for ending the TB epidemic in high HIV-TB burden countries. © 2015 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  8. An empirical model of ionospheric total electron content (TEC) near the crest of the equatorial ionization anomaly (EIA)

    NASA Astrophysics Data System (ADS)

    Hajra, Rajkumar; Chakraborty, Shyamal Kumar; Tsurutani, Bruce T.; DasGupta, Ashish; Echer, Ezequiel; Brum, Christiano G. M.; Gonzalez, Walter D.; Sobral, José Humberto Andrade

    2016-07-01

    We present a geomagnetic quiet time (Dst > -50 nT) empirical model of ionospheric total electron content (TEC) for the northern equatorial ionization anomaly (EIA) crest over Calcutta, India. The model is based on the 1980-1990 TEC measurements from the geostationary Engineering Test Satellite-2 (ETS-2) at the Haringhata (University of Calcutta, India: 22.58° N, 88.38° E geographic; 12.09° N, 160.46° E geomagnetic) ionospheric field station using the technique of Faraday rotation of plane polarized VHF (136.11 MHz) signals. The ground station is situated virtually underneath the northern EIA crest. The monthly mean TEC increases linearly with F10.7 solar ionizing flux, with a significantly high correlation coefficient (r = 0.89-0.99) between the two. For the same solar flux level, the TEC values are found to be significantly different between the descending and ascending phases of the solar cycle. This ionospheric hysteresis effect depends on the local time as well as on the solar flux level. On an annual scale, TEC exhibits semiannual variations with maximum TEC values occurring during the two equinoxes and minimum at summer solstice. The semiannual variation is strongest during local noon with a summer-to-equinox variability of ~50-100 TEC units. The diurnal pattern of TEC is characterized by a pre-sunrise (0400-0500 LT) minimum and near-noon (1300-1400 LT) maximum. Equatorial electrodynamics is dominated by the equatorial electrojet which in turn controls the daytime TEC variation and its maximum. We combine these long-term analyses to develop an empirical model of monthly mean TEC. The model is validated using both ETS-2 measurements and recent GNSS measurements. It is found that the present model efficiently estimates the TEC values within a 1-σ range from the observed mean values.

  9. The space radiation environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, D E

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u{sup -1} to over a GeV u{sup -1}. These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d{sup -1} depending on the altitude and flight inclination (angle of orbitmore » with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d{sup -1}. In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d{sup -1}. Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h{sup -1}. For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y{sup -1} at solar maximum and 580 mSv y{sup -1} at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv.« less

  10. Budget Impact Analysis of PCSK9 Inhibitors for the Management of Adult Patients with Heterozygous Familial Hypercholesterolemia or Clinical Atherosclerotic Cardiovascular Disease.

    PubMed

    Mallya, Usha G; Boklage, Susan H; Koren, Andrew; Delea, Thomas E; Mullins, C Daniel

    2018-01-01

    The aim of this study was to assess the budget impact of introducing the proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) alirocumab and evolocumab to market for the treatment of adults with heterozygous familial hypercholesterolemia or clinical atherosclerotic cardiovascular (CV) disease requiring additional lowering of low-density lipoprotein cholesterol (LDL-C). A 3-year model estimated the costs of lipid-modifying therapy (LMT) and CV events to a hypothetical US health plan of 1 million members, comparing two scenarios-with and without the availability of PCSK9i as add-on therapy to statins. Proportions of patients with uncontrolled LDL-C despite receiving statins, and at risk of CV events, were estimated from real-world data. Total undiscounted annual LMT costs (2017 prices, including PCSK9i costs of $14,563.50), dispensing and healthcare costs, including the costs of CV events, were estimated for all prevalent patients in the target population, based on baseline risk factors. Maximum PCSK9i utilization of 1-5% over 3 years according to risk group (following the same pattern as current ezetimibe use), and 5-10% as a secondary scenario, were assumed. Total healthcare budget impacts per target patient (and per member) per month for years 1, 2 and 3 were $3.62($0.10), $7.22($0.20) and $10.79($0.30), respectively, assuming 1-5% maximum PCSK9i utilization, and $15.81($0.44), $31.52($0.88) and $47.12($1.31), respectively, assuming 5-10% utilization. Results were sensitive to changes in model timeframe, years to maximum PCSK9i utilization and PCSK9i costs. The budget impact of PCSK9i as add-on therapy to statins for patients with hypercholesterolemia is relatively low compared with published estimates for other specialty biologics. Drug cost rebates and discounts are likely to further reduce budget impact.

  11. Trends in precipitation and streamflow and changes in stream morphology in the Fountain Creek watershed, Colorado, 1939-99

    USGS Publications Warehouse

    Stogner, Sr., Robert W.

    2000-01-01

    The Fountain Creek watershed, located in and along the eastern slope of the Front Range section of the southern Rocky Mountains, drains approximately 930 square miles of parts of Teller, El Paso, and Pueblo Counties in eastern Colorado. Streamflow in the watershed is dominated by spring snowmelt runoff and storm runoff during the summer monsoon season. Flooding during the 1990?s has resulted in increased streambank erosion. Property loss and damage associated with flooding and bank erosion has cost area residents, businesses, utilities, municipalities, and State and Federal agencies millions of dollars. Precipitation (4 stations) and streamflow (6 stations) data, aerial photographs, and channel reconnaissance were used to evaluate trends in precipitation and streamflow and changes in channel morphology. Trends were evaluated for pre-1977, post-1976, and period-of-record time periods. Analysis revealed the lack of trend in total annual and seasonal precipitation during the pre-1977 time period. In general, the analysis also revealed the lack of trend in seasonal precipitation for all except the spring season during the post-1976 time period. Trend analysis revealed a significant upward trend in long-term (period of record) total annual and spring precipitation data, apparently due to a change in total annual precipitation throughout the Fountain Creek watershed. During the pre-1977 time period, precipitation was generally below average; during the post- 1976 time period, total annual precipitation was generally above average. During the post- 1976 time period, an upward trend in total annual and spring precipitation was indicated at two stations. Because two of four stations evaluated had upward trends for the post-1976 period and storms that produce the most precipitation are isolated convection storms, it is plausible that other parts of the watershed had upward precipitation trends that could affect trends in streamflow. Also, because of the isolated nature of convection storms that hit some areas of the watershed and not others, it is difficult to draw strong conclusions on relations between streamflow and precipitation. Trends in annual instantaneous peak streamflow, 70th percentile, 90th percentile, maximum daily-mean streamflow (100th percentile), 7-, 14-, and 30-day high daily-mean stream- flow duration, minimum daily-mean streamflow (0th percentile), 10th percentile, 30th percentile, and 7-, 14-, 30-day low daily-mean streamflow duration were evaluated. In general, instantaneous peak streamflow has not changed significantly at most of the stations evaluated. Trend analysis revealed the lack of a significant upward trend in streamflow at all stations for the pre-1977 time period. Trend tests indicated a significant upward trend in high and low daily-mean streamflow statistics for the post-1976 period. Upward trends in high daily-mean streamflow statistics may be an indication that changes in land use within the watershed have increased the rate and magnitude of runoff. Upward trends in low daily-mean 2 Trends in Precipitation and Streamflow and Changes in Stream Morphology in the Fountain Creek Watershed, Colorado, 1939-99 streamflow statistics may be related to changes in water use and management. An analysis of the relation between streamflow and precipitation indicated that changes in water management have had a marked effect on streamflow. Observable change in channel morphology and changes in distribution and density of vegetation varied with magnitude, duration, and frequency of large streamflow events, and increases in the magnitude and duration of low streamflows. Although more subtle, low stream- flows were an important component of day-to-day channel erosion. Substantial changes in channel morphology were most often associated with infrequent large or catastrophic streamflow events that erode streambed and banks, alter stream course, and deposit large amounts of sediment in the flood plain.

  12. Annual variations in the Martian bow shock location as observed by the Mars Express mission

    NASA Astrophysics Data System (ADS)

    Hall, B. E. S.; Lester, M.; Sánchez-Cano, B.; Nichols, J. D.; Andrews, D. J.; Edberg, N. J. T.; Opgenoorth, H. J.; Fränz, M.; Holmström, M.; Ramstad, R.; Witasse, O.; Cartacci, M.; Cicchetti, A.; Noschese, R.; Orosei, R.

    2016-11-01

    The Martian bow shock distance has previously been shown to be anticorrelated with solar wind dynamic pressure but correlated with solar extreme ultraviolet (EUV) irradiance. Since both of these solar parameters reduce with the square of the distance from the Sun, and Mars' orbit about the Sun increases by ˜0.3 AU from perihelion to aphelion, it is not clear how the bow shock location will respond to variations in these solar parameters, if at all, throughout its orbit. In order to characterize such a response, we use more than 5 Martian years of Mars Express Analyser of Space Plasma and EneRgetic Atoms (ASPERA-3) Electron Spectrometer measurements to automatically identify 11,861 bow shock crossings. We have discovered that the bow shock distance as a function of solar longitude has a minimum of 2.39RM around aphelion and proceeds to a maximum of 2.65RM around perihelion, presenting an overall variation of ˜11% throughout the Martian orbit. We have verified previous findings that the bow shock in southern hemisphere is on average located farther away from Mars than in the northern hemisphere. However, this hemispherical asymmetry is small (total distance variation of ˜2.4%), and the same annual variations occur irrespective of the hemisphere. We have identified that the bow shock location is more sensitive to variations in the solar EUV irradiance than to solar wind dynamic pressure variations. We have proposed possible interaction mechanisms between the solar EUV flux and Martian plasma environment that could explain this annual variation in bow shock location.

  13. Regionalization of monthly rainfall erosivity patternsin Switzerland

    NASA Astrophysics Data System (ADS)

    Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin

    2016-10-01

    One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of the total annual rainfall erosivity is identified within four months only (June-September). The highest erosion risk can be expected in July, where not only rainfall erosivity but also erosivity density is high. In addition to the intra-annual temporal regime, a spatial variability of this seasonality was detectable between different regions of Switzerland. The assessment of the dynamic behavior of the R-factor is valuable for the identification of susceptible seasons and regions.

  14. Fluvial responses to land-use changes and climatic variations within the Drury Creek watershed, southern Illinois

    NASA Astrophysics Data System (ADS)

    Miller, Suzanne Orbock; Ritter, Dale F.; Kochel, R. Craig; Miller, Jerry R.

    1993-04-01

    Fluvial responses to climatic variation and Anglo-American settlement were documented for the Drury Creek watershed, southern Illinois by examining stratigraphic, geomorphic, climatic, and historical data. Regional analyses of long-term precipitation records document a period of decreasing mean annual precipitation from 1904 to about 1945, and an increasing trend in annual precipitation from 1952 to the present. The period between 1945 and 1951 experienced a large number of intense storms that resulted in high annual precipitation totals. Statistical relationships illustrate that changes in precipitation totals are transferred to the hydrologic system as fluctuations in stream discharge. Historical records of southern Illinois show that a maximum period of settlement and deforestation occurred between the 1860s and 1920s. This era ended in the 1940s when large tracts of land were revegetated in an attempt to curtail erosion which had caused extensive upland degradation. In response to hillslope erosion at least two meters of fine-grained sediments were deposited on valley floors. Average sedimentation rates, determined using decdrochronologic techniques, are estimated to be 2.11 cm/yr for the period between 1890 and 1988; rates that are 1 to 2 orders of magnitude greater than pre-settlement values calculated for other areas of the midwest. However, botanical data suggest that aggradation was episodic, possibly occurring during three periods characterized by greater annual precipitation. Since the 1940s, sedimentation rates have declined. Reduced rates of sedimentation are related to an episode of channel entrenchment that reduced overbank flooding. Entrenchment coincided with a period of: (1) reduced sediment yields associated with watershed revegetation and the introduction of soil conservation practices, and (2) intense storm activity that resulted in long periods of high discharge. As a result of channel incision and hillslope erosion, newly exposed bedrock in upstream areas currently provides a source of gravel load to the channels. The distribution of coarse bedload material along tributary streams combined with downstream decreases in width:depth ratios and tractive force estimates suggest that channels in the Drury Creek watershed are slowly adjusting their configuration to transport coarse bedload material. The fluvial response to the increased influx of coarse sediment began more than 45 years ago and continues today.

  15. Probabilistic assessment of precipitation-triggered landslides using historical records of landslide occurence, Seattle, Washington

    USGS Publications Warehouse

    Coe, J.A.; Michael, J.A.; Crovelli, R.A.; Savage, W.Z.; Laprade, W.T.; Nashem, W.D.

    2004-01-01

    Ninety years of historical landslide records were used as input to the Poisson and binomial probability models. Results from these models show that, for precipitation-triggered landslides, approximately 9 percent of the area of Seattle has annual exceedance probabilities of 1 percent or greater. Application of the Poisson model for estimating the future occurrence of individual landslides results in a worst-case scenario map, with a maximum annual exceedance probability of 25 percent on a hillslope near Duwamish Head in West Seattle. Application of the binomial model for estimating the future occurrence of a year with one or more landslides results in a map with a maximum annual exceedance probability of 17 percent (also near Duwamish Head). Slope and geology both play a role in localizing the occurrence of landslides in Seattle. A positive correlation exists between slope and mean exceedance probability, with probability tending to increase as slope increases. Sixty-four percent of all historical landslide locations are within 150 m (500 ft, horizontal distance) of the Esperance Sand/Lawton Clay contact, but within this zone, no positive or negative correlation exists between exceedance probability and distance to the contact.

  16. Water-quality conditions near the confluence of the Snake and Boise Rivers, Canyon County, Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Etheridge, Alexandra

    2011-01-01

    Total Maximum Daily Loads (TMDLs) have been established under authority of the Federal Clean Water Act for the Snake River-Hells Canyon reach, on the border of Idaho and Oregon, to improve water quality and preserve beneficial uses such as public consumption, recreation, and aquatic habitat. The TMDL sets targets for seasonal average and annual maximum concentrations of chlorophyll-a at 14 and 30 micrograms per liter, respectively. To attain these conditions, the maximum total phosphorus concentration at the mouth of the Boise River in Idaho, a tributary to the Snake River, has been set at 0.07 milligrams per liter. However, interactions among chlorophyll-a, nutrients, and other key water-quality parameters that may affect beneficial uses in the Snake and Boise Rivers are unknown. In addition, contributions of nutrients and chlorophyll-a loads from the Boise River to the Snake River have not been fully characterized. To evaluate seasonal trends and relations among nutrients and other water-quality parameters in the Boise and Snake Rivers, a comprehensive monitoring program was conducted near their confluence in water years (WY) 2009 and 2010. The study also provided information on the relative contribution of nutrient and sediment loads from the Boise River to the Snake River, which has an effect on water-quality conditions in downstream reservoirs. State and site-specific water-quality standards, in addition to those that relate to the Snake River-Hells Canyon TMDL, have been established to protect beneficial uses in both rivers. Measured water-quality conditions in WY2009 and WY2010 exceeded these targets at one or more sites for the following constituents: water temperature, total phosphorus concentrations, total phosphorus loads, dissolved oxygen concentration, pH, and chlorophyll-a concentrations (WY2009 only). All measured total phosphorus concentrations in the Boise River near Parma exceeded the seasonal target of 0.07 milligram per liter. Data collected during the study show seasonal differences in all measured parameters. In particular, surprisingly high concentrations of chlorophyll-a were measured at all three main study sites in winter and early spring, likely due to changes in algal populations. Discharge conditions and dissolved orthophosphorus concentrations are key drivers for chlorophyll-a on a seasonal and annual basis on the Snake River. Discharge conditions and upstream periphyton growth are most likely the key drivers for chlorophyll-a in the Boise River. Phytoplankton growth is not limited or driven by nutrient availability in the Boise River. Lower discharges and minimal substrate disturbance in WY2010 in comparison with WY2009 may have caused prolonged and increased periphyton and macrophyte growth and a reduced amount of sloughed algae in suspension in the summer of WY2010. Chlorophyll-a measured in samples commonly is used as an indicator of sestonic algae biomass, but chlorophyll-a concentrations and fluorescence may not be the most appropriate surrogates for algae growth, eutrophication, and associated effects on beneficial uses. Assessment of the effects of algae growth on beneficial uses should evaluate not only sestonic algae, but also benthic algae and macrophytes. Alternatively, continuous monitoring of dissolved oxygen detects the influence of aquatic plant respiration for all types of algae and macrophytes and is likely a more direct measure of effects on beneficial uses such as aquatic habitat. Most measured water-quality parameters in the Snake River were statistically different upstream and downstream of the confluence with the Boise River. Higher concentrations and loads were measured at the downstream site (Snake River at Nyssa) than the upstream site (Snake River near Adrian) for total phosphorus, dissolved orthophosphorus, total nitrogen, dissolved nitrite and nitrate, suspended sediment, and turbidity. Higher dissolved oxygen concentrations and pH were measured at the upstream site (Snake River near Adrian) than the downstream site (Snake River at Nyssa). Contributions from the Boise River measured at Parma do not constitute all of the increase in nutrient and sediment loads in the Snake River between the upstream and downstream sites. Surrogate models were developed using a combination of continuously monitored variables to estimate concentrations of nutrients and suspended sediment when samples were not possible. The surrogate models explained from 66 to 95 percent of the variability in nutrient and suspended sediment concentrations, depending on the site and model. Although the surrogate models could not always represent event-based changes in modeled parameters, they generally were successful in representing seasonal and annual patterns. Over a longer period, the surrogate models could be a useful tool for measuring compliance with state and site-specific water-quality standards and TMDL targets, for representing daily and seasonal variability in constituents, and for assessing effects of phosphorus reduction measures within the watershed.

  17. 77 FR 62396 - Annual Company-Run Stress Test Requirements for Banking Organizations With Total Consolidated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... in the stress test, for each quarter of the planning horizon, aggregate losses, pre-provision net... Company-Run Stress Test Requirements for Banking Organizations With Total Consolidated Assets Over $10... regulatory agency to conduct stress tests on an annual basis. The Board is adopting this final rule to...

  18. 75 FR 382 - Proposed Collection; Comment Request; Process Evaluation of the NIH's Roadmap Interdisciplinary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... submitted to the Office of Management and Budget (OMB) for review and approval. Proposed Collection: The... Investigators, 1; Trainees, 1; Average burden hours per response: 30 minutes; and Estimated total annual burden hours requested: 250 hours. The total annualized cost to respondents (calculated as the number of...

  19. 78 FR 76312 - Information Collection Approved by the Office of Management and Budget (OMB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ...). Total Annual Burden: 7,924 hours for in-house work for large incumbent local exchange carriers. Total.... OMB Approval Date: July 31, 2013. OMB Expiration Date: July 31, 2016. Title: Study Area Boundary Data...,443 responses. Estimated Time per Response: 26 hours. Frequency of Response: Annually if changes to...

  20. 78 FR 26088 - Agency Information Collection Activities: Submission to OMB for a New Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... form relates to a budget or estimate of the legal fees, costs, and expenses that outside counsel would... average number of respondents, burden, and total annual cost appear below. The estimated number of... and the representations and certifications form. The NCUA estimated the total annual cost by...

Top