NASA Astrophysics Data System (ADS)
Oh, Soo Han; Lee, Byoung Wan; Ko, Jae-Hyeon; Lee, Hyeonju; Park, Jaehoon; Ko, Young Ho; Kim, Kwang Joo
2017-04-01
The acoustic properties of three polystyrene polymers with different molecular weights were investigated as a function of temperature by using Brillouin light scattering. The longitudinal sound velocity showed a change in the slope, which depended on the molecular weight, at the glass transition temperature. The absorption coefficient exhibited a maximum above the glass transition temperature, and the maximum temperature became higher as the molecular weight was increased. Comparison with previous acoustic studies on polystyrene indicate that a substantial frequency dispersion caused by strong coupling between the longitudinal acoustic waves and the segmental motions exists in the high-temperature range.
Exospheric temperature and composition from satellite beacon measurements
NASA Technical Reports Server (NTRS)
Titheridge, J. E.
1974-01-01
Routine measurements of the slab thickness of the ionosphere, from 1965 to 1971, are used to infer the changes in neutral temperature and ion composition at a mean latitude of 40 S. Values of neutral temperature at solar maximum are 5 to 10% above Northern Hemisphere backscatter results. The diurnal and seasonal changes agree closely with satellite drag and backscatter measurements, except that the maximum temperature occurs after sunset in winter. Winter night-time values of the O(+)/H(+) transition height were 500 km in 1965-1966, 800 km in 1968-1969, and 700 km in 1971. Changes in the transition height lag about six months behind the changes in solar flux. Diurnal variations have a minimum just before sunrise and a maximum 1 to 3 hr after noon. On winter nights the transition height descends to the level set by chemical equilibrium. On summer nights the transition height is always above this level, giving a continual production of H(+) which serves as an additional source for maintaining the night-time ionosphere in the winter hemisphere.
Thermal hysteresis of the phase-transition temperature of single-crystal GdB6
NASA Astrophysics Data System (ADS)
Reiffers, M.; Ebek, J.; Antavá, E.; Pristá, G.; Kunii, S.
2006-01-01
The phase transition of a single-crystal sample of GdB6, oriented along the 111 axis using the temperature dependence of electrical resistivity (T ), susceptibility (T ) and heat capacity C (T ) under an applied magnetic field was studied. ρ (T ) has shown 2 anomalies - a sharp drop at T N1 = 15.4 K and a small maximum at T N2 = 9.1 K with thermal hysteresis effect. χ (T ) shows the anomalies at both transition temperatures. C (T ) shows similar thermal hysteresis effect at T N2. The small maximum at T N2 decreases its position to lower temperatures with increasing magnetic field. The peak at T N1 is practically unaffected by an applied magnetic field up to 9 T.
Light-scattering study of the glass transition in lubricants
NASA Technical Reports Server (NTRS)
Alsaad, M. A.; Winer, W. O.; Medina, F. D.; Oshea, D. C.
1977-01-01
The sound velocity of four lubricants has been measured as a function of temperature and pressure using Brillouin scattering. A change in slope of the velocity as a function of temperature or pressure allowed the determination of the glass transition temperature and pressure. The glass transition data were used to construct a phase diagram for each lubricant. The data indicate that the glass transition temperature increased with pressure at a rate which ranged from 120 to 200 C/GPa. The maximum pressure attained was 0.69 GPa and the temperature range was from 25 to 100 C.
Accelerated Testing Of Photothermal Degradation Of Polymers
NASA Technical Reports Server (NTRS)
Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow
1989-01-01
Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.
NASA Astrophysics Data System (ADS)
Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen
2018-04-01
Based on theoretically tight-binding calculations considering nearest neighbors and Green's function technique, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons with width ranging from 9.83 Å to 69.3 Å would be observed in the presence of injecting electrons by doping. This transition is explained by the temperature-dependent static charge susceptibility through calculation of the correlation function of charge density operators. This work showed that charge concentration of dopants in such system plays a crucial role in determining the magnetic phase. A variety of multicritical points such as transition temperatures and maximum susceptibility are compared in undoped and doped cases. Our findings show that there exist two different transition temperatures and maximum susceptibility depending on the ribbon width in doped structures. Another remarkable point refers to the invalidity (validity) of the Fermi liquid theory in nanoribbons-based systems at weak (strong) concentration of dopants. The obtained interesting results of magnetic phase transition in such system create a new potential for magnetic graphene nanoribbon-based devices.
Determination of the ductile-brittle transition temperature from the microplastic-strain rate
NASA Astrophysics Data System (ADS)
Andreev, A. K.; Solntsev, Yu. P.
2008-04-01
The possibility of the determination of the tendency of cast and deformed steels to brittle fracture using the temperature dependence of the small-plastic-strain rate is studied. The temperature corresponding to the maximum in this curve is found to indicate an abrupt decrease in the steel plasticity, which makes it possible to interpret it as the ductile-brittle transition temperature depending only on the structure of a material.
NASA Astrophysics Data System (ADS)
Saberi-Pouya, S.; Zarenia, M.; Perali, A.; Vazifehshenas, T.; Peeters, F. M.
2018-05-01
Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to ˜90 K with onset carrier densities as high as 4 ×1012cm-2 . This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.
Reversible voltage dependent transition of abnormal and normal bipolar resistive switching.
Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu
2016-11-14
Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoO x layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoO x interface by the accumulation and depletion of oxygen vacancies.
Isothermal transitions of a thermosetting system
NASA Technical Reports Server (NTRS)
Gillham, J. K.; Benci, J. A.; Noshay, A.
1974-01-01
A study of the curing reactions of a cycloaliphatic epoxy resin/anhydride system by torsional braid analysis showed the existence of two critical isothermal temperatures - namely, the maximum glass transition temperature of the thermoset system and the glass transition temperature of the material at its gel point. Two rheologically active kinetic transitions occur during isothermal cure which correspond to gelation and vitrification. Three types of isothermal behavior occur. Methods for determining the time to gel and the time to vitrify, and also the two above-mentioned critical isothermal temperatures, have been developed. The time to gel obeyed the Arrhenius relationship, whereas the time to vitrify passed through a minimum. Application of these results to thermosetting systems in general is discussed in terms of the influence of molecular structure on the values of the critical isothermal temperatures.
Spin-glass polyamorphism induced by a magnetic field in LaMnO3 single crystal
NASA Astrophysics Data System (ADS)
Eremenko, V. V.; Sirenko, V. A.; Baran, A.; Čižmár, E.; Feher, A.
2018-05-01
We present experimental evidence of field-driven transition in spin-glass state, similar to pressure-induced transition between amorphous phases in structural and metallic glasses, attributed to the polyamorphism phenomena. Cusp in temperature dependences of ac magnetic susceptibility of weakly disordered LaMnO3 single crystal is registered below the temperature of magnetic ordering. Frequency dependence of the cusp temperature proves its spin-glass origin. The transition induced by a magnetic field in spin-glass state, is manifested by peculiarity in dependence of cusp temperature on applied magnetic field. Field dependent maximum of heat capacity is observed in the same magnetic field and temperature range.
Surface temperatures and glassy state investigations in tribology, part 1
NASA Technical Reports Server (NTRS)
Winer, W. O.; Sanborn, D. M.
1978-01-01
The research in this report is divided into two categories: (1) lubricant rheological behavior, and (2) thermal behavior of a simulated elastohydrodynamic contact. The studies of the lubricant rheological behavior consists of high pressure, low shear rate viscosity measurements, viscoelastic transition measurements, by volume dilatometry, dielectric transitions at atmospheric pressure and light scattering transitions. Lubricant shear stress-strain behavior in the amorphous glassy state was measured on several fluids. It appears clear from these investigations that many lubricants undergo viscoplastic transitions in typical EHD contacts and that the lubricant has a limiting maximum shear stress it can support which in turn will determine the traction in the contact except in cases of very low slide-roll ratio. Surface temperature measurements were made for a naphthenic mineral oil and a polyphenyl ether. The maximum surface temperature in these experiments was approximately symmetrical about the zero slide-roll ration except for absolute values of slide-roll ratio greater than about 0.9. Additional surface temperature measurements were made in contacts with rough surfaces where the composite surface roughness was approximately equal to the EHD film thickness. A regression analysis was done to obtain a predictive equation for surface temperatures as a function of pressure, sliding speed, and surface roughness. A correction factor for surface roughness effects to the typical flash temperature analysis was found.
High-temperature magnetostructural transition in van der Waals-layered α - MoCl 3
McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; ...
2017-11-07
Here, the crystallographic and magnetic properties of the cleavable 4d 3 transition metal compound α–MoCl 3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagneticmore » at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.« less
High-temperature magnetostructural transition in van der Waals-layered α -MoCl3
NASA Astrophysics Data System (ADS)
McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; May, Andrew F.; Cooper, Valentino R.; Lindsay, Lucas; Puretzky, Alexander; Liang, Liangbo; KC, Santosh; Cakmak, Ercan; Calder, Stuart; Sales, Brian C.
2017-11-01
The crystallographic and magnetic properties of the cleavable 4 d3 transition metal compound α -MoCl3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagnetic at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.
NASA Astrophysics Data System (ADS)
Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.
2010-05-01
In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.
NASA Technical Reports Server (NTRS)
Moshchalcov, V. V.; Zhukov, A. A.; Kuznetzov, V. D.; Metlushko, V. V.; Leonyuk, L. I.
1990-01-01
At the initial time intervals, preceding the thermally activated flux creep regime, fast nonlogarithmic relaxation is found. The fully magnetic moment Pm(t) relaxation curve is shown. The magnetic measurements were made using SQUID-magnetometer. Two different relaxation regimes exist. The nonlogarithmic relaxation for the initial time intervals may be related to the viscous Abrikosov vortices flow with j is greater than j(sub c) for high enough temperature T and magnetic field induction B. This assumption correlates with Pm(t) measurements. The characteristic time t(sub O) separating two different relaxation regimes decreases as temperature and magnetic field are lowered. The logarithmic magnetization relaxation curves Pm(t) for fixed temperature and different external magnetic field inductions B are given. The relaxation rate dependence on magnetic field, R(B) = dPm(B, T sub O)/d(1nt) has a sharp maximum which is similar to that found for R(T) temperature dependences. The maximum shifts to lower fields as temperature goes up. The observed sharp maximum is related to a topological transition in shielding critical current distribution and, consequently, in Abrikosov vortices density. The nonlogarithmic magnetization relaxation for the initial time intervals is found. This fast relaxation has almost an exponentional character. The sharp relaxation rate R(B) maximum is observed. This maximum corresponds to a topological transition in Abrikosov vortices distribution.
The existence of negative absolute temperatures in Axelrod’s social influence model
NASA Astrophysics Data System (ADS)
Villegas-Febres, J. C.; Olivares-Rivas, W.
2008-06-01
We introduce the concept of temperature as an order parameter in the standard Axelrod’s social influence model. It is defined as the relation between suitably defined entropy and energy functions, T=(. We show that at the critical point, where the order/disorder transition occurs, this absolute temperature changes in sign. At this point, which corresponds to the transition homogeneous/heterogeneous culture, the entropy of the system shows a maximum. We discuss the relationship between the temperature and other properties of the model in terms of cultural traits.
NASA Astrophysics Data System (ADS)
Kong, Lulu; Zhao, Zijian; He, Zhengbin; Yi, Songlin
To investigate the effects of steaming treatment on crystallinity and glass transition temperature, samples of Eucalyptuses grandis × E. urophylla with moisture content of 50%, 70%, and 90% were steamed in saturated steam at 100 °C for 2, 4, 6, and 8 h. The degree of crystallinity (CrI) and glass transition temperature (Tg) were measured via X-ray diffraction and dynamic mechanical analysis, respectively. Results revealed a crystallinity degree of Eucalyptus of 29.9%-34.2%, and a glass transition temperature of 80-94 °C with moisture contents of steamed samples of 20%. Furthermore, steaming was revealed to have an obvious effect on crystallization and glass transition. Values of CrI and Tg showed similar changing characteristics: increasing initially, followed by a decrease with increasing steaming time, reaching a maximum at 2 h. Water within the wood seemed to promote crystallization and glass transition during steaming. All steamed samples tested in this study reached glass transition temperature after 50 min of steaming, and the residual growth stress was released.
Magnetic and structural transitions in La1-xAxCoO3 ( A=Ca , Sr, and Ba)
NASA Astrophysics Data System (ADS)
Kriener, M.; Braden, M.; Kierspel, H.; Senff, D.; Zabara, O.; Zobel, C.; Lorenz, T.
2009-06-01
We report thermal-expansion, lattice-constant, and specific-heat data of the series La1-xAxCoO3 for 0≤x≤0.30 with A=Ca , Sr, and Ba. For the undoped compound LaCoO3 , the thermal-expansion coefficient α(T) exhibits a pronounced maximum around T=50K caused by a temperature-driven spin-state transition from a low-spin state of the Co3+ ions at low temperatures toward a higher spin state at higher temperatures. The partial substitution of the La3+ ions by divalent Ca2+ , Sr2+ , or Ba2+ ions causes drastic changes in the macroscopic properties of LaCoO3 . The large maximum in α(T) is suppressed and completely vanishes for x≳0.125 . For A=Ca three different anomalies develop in α(T) with further increasing x , which are visible in specific-heat data as well. Together with temperature-dependent x-ray data, we identify several phase transitions as a function of the doping concentration x and temperature. From these data we propose an extended phase diagram for La1-xCaxCoO3 .
Trepakov, V. A.; Kvyatkovskii, O. E.; Savinov, M. E.; ...
2016-10-01
The unusual behavior of the low-frequency (10 Hz–1 MHz) permittivity in single crystals of ferroelectric multiferroic TbMnO3 has been experimentally and theoretically studied in detail in the region of the narrow temperature peak of the permittivity, associated with the ferroelectric phase transition (T C ~ 27.4 K). It has been found that the ε c(ω, T) maximum sharply decreases with increasing measured field frequency, while the temperature position of the maximum is independent of frequency. It has been shown that the observed features of the polarization response can be satisfactorily described within the Landau–Khalatnikov polarization relaxation theory.
Wang, Lang; Wang, Zheng; Jiang, Run; Yin, Yuhua; Li, Baohui
2017-03-15
The thermodynamic behaviors of a strongly charged polyelectrolyte chain in a poor solvent are studied using replica-exchange Monte-Carlo simulations on a lattice model, focusing on the effects of finite chain length and the solvent quality on the chain conformation and conformation transitions. The neutralizing counterions and solvent molecules are considered explicitly. The thermodynamic quantities that vary continuously with temperature over a wide range are computed using the multiple histogram reweighting method. Our results suggest that the strength of the short-range hydrophobic interaction, the chain length, and the temperature of the system, characterized by ε, N, and T, respectively, are important parameters that control the conformations of a charged chain. When ε is moderate, the competition between the electrostatic energy and the short-range hydrophobic interaction leads to rich conformations and conformation transitions for a longer chain with a fixed length. Our results have unambiguously demonstrated the stability of the n-pearl-necklace structures, where n has a maximum value and decreases with decreasing temperature. The maximum n value increases with increasing chain length. Our results have also demonstrated the first-order nature of the conformation transitions between the m-pearl and the (m-1)-pearl necklaces. With the increase of ε, the transition temperature increases and the first-order feature becomes more pronounced. It is deduced that at the thermodynamic limit of infinitely long chain length, the conformational transitions between the m-pearl and the (m-1)-pearl necklaces may remain first order when ε > 0 and m = 2 or 3. Pearl-necklace conformations cannot be observed when either ε is too large or N is too small. To observe a pearl-necklace conformation, the T value needs to be carefully chosen for simulations performed at only a single temperature.
Relationship between input power and power density of SMA spring
NASA Astrophysics Data System (ADS)
Park, Cheol Hoon; Ham, Sang Yong; Son, Young Su
2016-04-01
The important required characteristics of an artificial muscle for a human arm-like manipulator are high strain and high power density. From this viewpoint, an SMA (shape memory alloy) spring is a good candidate for the actuator of a robotic manipulator that utilizes an artificial muscle. In this study, the maximum power density of an SMA spring was evaluated with respect to the input power. The spring samples were fabricated from SMA wires of different diameters ranging between 0.1 and 0.3 mm. For each diameter, two types of wires with different transition temperatures were used. The relationship between the transition temperature and maximum power density was also evaluated. Each SMA spring was stretched downward by an attached weight and the temperature was increased through the application of an electric current. The displacement, velocity, and temperature of the SMA spring were measured by laser displacement sensors and a thermocouple. Based on the experimental data, it was determined that the maximum power densities of the different SMA springs ranged between 1,300 and 5,500 W/kg. This confirmed the applicability of an SMA spring to human arm-like robotic manipulators. The results of this study can be used as reference for design.
Characteristics of Mach 10 transitional and turbulent boundary layers
NASA Technical Reports Server (NTRS)
Watson, R. D.
1978-01-01
Measurements of the mean flow properties of transitional and turbulent boundary layers in helium on 4 deg and 5 deg wedges were made for flows with edge Mach numbers from 9.5 to 11.3, ratios of wall temperature to total temperature of 0.4 to 0.95, and maximum length Reynolds numbers of one hundred million. The data include pitot and total temperature surveys and measurements of heat transfer and surface shear. In addition, with the assumption of local similarity, turbulence quantities such as the mixing length were derived from the mean flow profiles. Low Reynolds number and precursor transition effects were significant factors at these test conditions and were included in finite difference boundary layer predictions.
Twin solution calorimeter determines heats of formation of alloys at high temperatures
NASA Technical Reports Server (NTRS)
Darby, J. B., Jr.; Kleb, R.; Kleppa, O. J.
1968-01-01
Calvert-type, twin liquid metal solution calorimeter determines the heats of formation of transition metal alloys at high temperatures. The twin differential calorimeter measures the small heat effects generated over extended periods of time, has maximum operating temperature of 1073 degrees K and an automatic data recording system.
Isotropic–Nematic Phase Transitions in Gravitational Systems. II. Higher Order Multipoles
NASA Astrophysics Data System (ADS)
Takács, Ádám; Kocsis, Bence
2018-04-01
The gravitational interaction among bodies orbiting in a spherical potential leads to the rapid relaxation of the orbital planes’ distribution, a process called vector resonant relaxation. We examine the statistical equilibrium of this process for a system of bodies with similar semimajor axes and eccentricities. We extend the previous model of Roupas et al. by accounting for the multipole moments beyond the quadrupole, which dominate the interaction for radially overlapping orbits. Nevertheless, we find no qualitative differences between the behavior of the system with respect to the model restricted to the quadrupole interaction. The equilibrium distribution resembles a counterrotating disk at low temperature and a spherical structure at high temperature. The system exhibits a first-order phase transition between the disk and the spherical phase in the canonical ensemble if the total angular momentum is below a critical value. We find that the phase transition erases the high-order multipoles, i.e., small-scale structure in angular momentum space, most efficiently. The system admits a maximum entropy and a maximum energy, which lead to the existence of negative temperature equilibria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xiudi; Zhang, Hua; Chai, Guanqi
2014-03-01
Graphical abstract: Combining codeposition and short time post annealing, VO{sub 2} (M) with high quality and excellent phase transition performance is obtained. After mixing the VO{sub 2} powder with acrylic resin, the composite films deposited on glass show superior visible transmission and solar modulation, which can be used as an excellent candidate of low cost smart window in energy saving field. - Highlights: • The VO{sub 2} powder obtained by short time thermolysis method is high purity and crystallinity with superior phase transition performance. • The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w =more » 0.4 at%. • After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite films is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. • Though the phase transition performance is weakened by tungsten doping, the film prepared by 1.3 at% tungsten doped VO{sub 2} still show superior transmission modulation about 26.4%, which means that it is a potential candidate as smart windows. - Abstract: VO{sub 2} powder with superior phase transition performance was prepared by convenient thermolysis method. The results illustrated that VO{sub 2} powder show high purity and crystallinity. VO{sub 2} particles are transformed from cluster to quasi-sphere with the increase of annealing temperature. The DSC analysis proves that VO{sub 2} show superior phase transition performance around 68 °C. The phase transition temperature can be reduced to 33.5 °C by 1.8 at% tungsten doping. The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w = 0.4 at%. After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite thin films on glass is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. Though the phase transition performance is weakened by tungsten doping, the film prepared by 1.3 at% tungsten doped VO{sub 2} still show superior transmission modulation about 26.4% at 2000 nm, which means that it is a potential candidate as smart windows.« less
Thermopower and magnetocaloric properties in NdSrMnO/CrO3 composites
NASA Astrophysics Data System (ADS)
Ahmed, A. M.; Mohamed, H. F.; Paixão, J. A.; Mohamed, Sara A.
2018-06-01
The thermoelectric power (TEP) and magnetocaloric effect (MCE) for (Nd0.6Sr0.4MnO3)1-x/(CrO3)x composites have been measured. The TEP measurements show a negative sign value of the Seebeck coefficient (S), in microvolts. TEP data construe in the low range of temperature by the magnon and phonon drag model, whereas at high temperature by small polaron conduction mechanism. Magnetic measurements exhibit that all composites show a paramagnetic-ferromagnetic transition with decreasing temperature. The Arrott plots of composites reveal the occurrence of a second order phase transition. The maximum value of magnetic entropy change (ΔS) is 2.37 J kg-1 K-1, achieved fore the composite with x = 0.015. Moreover, the maximum value of relative cooling power (RCP) is 122.1 J kg-1, achieved for the composite with x = 0.020. These composites may be appropriate for magnetic application near room temperature.
On the location of the maximum homogeneous crystal nucleation temperature
NASA Technical Reports Server (NTRS)
Weinberg, Michael C.
1986-01-01
Detailed considerations are given to the location of the temperature of maximum homogeneous nucleation as predicted by classical nucleation theory. It is shown quite generally that this maximum temperature, T-asterisk, must occur above the Kauzmann temperature and that the T-asterisk is such that T-asterisk is greater than T(m)/3, where T(m) is the melting temperature. Also, it is demonstrated tha T-asterisk may be considered to be approximately dependent upon two parameters: gamma, the ratio of the difference in specific heat between the crystal and liquid divided by the entropy of fusion, and E, a reduced activation energy for viscous flow. The variation of T-asterisk with these parameters is described. The relationship of the relative location of T-asterisk to the glass transition temperature, is discussed too. This discussion is couched within the framework of the strong and fragile liquid notion introduced by Angell (1981) and coworkers. Finally, the question of the ultimate limits to the undercooling of liquid metals is considered and its relationhsip to computations of the maximum nucleation temperature in such systems.
NASA Astrophysics Data System (ADS)
Hébert, Charles-David; Sémon, Patrick; Tremblay, A.-M. S.
2015-11-01
Layered organic superconductors of the BEDT family are model systems for understanding the interplay of the Mott transition with superconductivity, magnetic order, and frustration, ingredients that are essential to understand superconductivity also in the cuprate high-temperature superconductors. Recent experimental studies on a hole-doped version of the organic compounds reveals an enhancement of superconductivity and a rapid crossover between two different conducting phases above the superconducting dome. One of these phases is a Fermi liquid, the other not. Using plaquette cellular dynamical mean field theory with state-of-the-art continuous-time quantum Monte Carlo calculations, we study this problem with the two-dimensional Hubbard model on the anisotropic triangular lattice. Phase diagrams as a function of temperature T and interaction strength U /t are obtained for anisotropy parameters t'=0.4 t ,t'=0.8 t and for various fillings. As in the case of the cuprates, we find, at finite doping, a first-order transition between two normal-state phases. One of theses phases has a pseudogap while the other does not. At temperatures above the critical point of the first-order transition, there is a Widom line where crossovers occur. The maximum (optimal) superconducting critical temperature Tcm at finite doping is enhanced by about 25% compared with its maximum at half filling and the range of U /t where superconductivity appears is greatly extended. These results are in broad agreement with experiment. Also, increasing frustration (larger t'/t ) significantly reduces magnetic ordering, as expected. This suggests that for compounds with intermediate to high frustration, very light doping should reveal the influence of the first-order transition and associated crossovers. These crossovers could possibly be even visible in the superconducting phase through subtle signatures. We also predict that destroying the superconducting phase by a magnetic field should reveal the first-order transition between metal and pseudogap. Finally, we predict that electron doping should also lead to an increased range of U /t for superconductivity but with a reduced maximum Tc. This work also clearly shows that the superconducting dome in organic superconductors is tied to the Mott transition and its continuation as a transition separating pseudogap phase from correlated metal in doped compounds, as in the cuprates. Contrary to heavy fermions for example, the maximum Tc is definitely not attached to an antiferromagnetic quantum critical point. That can also be verified experimentally.
Magnetization of Paraffin-Based Magnetic Nanocolloids
NASA Astrophysics Data System (ADS)
Dikanskii, Yu. I.; Ispiryan, A. G.; Kunikin, S. A.; Radionov, A. V.
2018-01-01
Using paraffin-based magnetic nanocolloids as an example, the reasons for maxima in the temperature dependence of the magnetic susceptibility of magnetic colloids have been discussed. The behavior of these dependences in a wide temperature interval has been analyzed for colloids in solid and liquid states. It has been concluded that the maximum observed at the melting point of paraffin can be attributed to freezing Brownian degrees of freedom in magnetite coarse particles, the magnetic moment of which is intimately related to the solid matrix. The second main maximum, which arises in the solid state, is explained by the superparamagnetic-magnetically hard transition of most fine particles at lower temperatures. It has been noted that the flatness of this maximum results from the polydispersity of the magnetic nanoparticle ensemble.
NASA Astrophysics Data System (ADS)
Zhang, Zhang; Chen, Jianwei; Xu, Jialin; Li, Xiaobing; Luo, Haosu
2017-12-01
The temperature and electric-field induced phase transition behavior and dielectric, piezoelectric, and ferroelectric properties of [001]-oriented 0.23Pb(In1/2Nb1/2)O3-0.47Pb(Mg1/3Nb2/3)O3-0.3PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. Dielectric performance analysis and temperature-dependent Raman spectra show three apparent ferroelectric phase transition temperatures around 120 °C(TR-M),145 °C(TM-T), and 170 °C(TT-C), respectively. In addition, the temperature dependence of the relative Raman intensities of Lorentzian peaks indicates the poled PIMNT-Mn single crystals exhibit rhombohedral(R) → monoclinic(M) → tetragonal(T) → cubic(C) phase transition path. The electrical properties of the PIMNT-Mn single crystals such as the longitudinal electrostrictive coefficient (Q), the converse piezoelectric constant (d33), and the maximum strain value (Smax%) have changed abnormally around the phase transition temperatures (TR-M and TM-T).
A Liquid-Liquid Transition in an Undercooled Ti-Zr-Ni Liquid
NASA Technical Reports Server (NTRS)
Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.
2003-01-01
If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, TI, finally freezing into a glass below a characteristic temperature called the glass transition temperature, T,. In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of HzO and Si4. Such phase transitions have been predicted in some stable liquids, i.e. above TI at atmospheric pressure, for Si02 and BeF;, but these have not been verified experimentally. They have been observed in liquids of P7, Sis and C9, but only under high pressure. All of these transitions are driven by an anomalous density change, i.e. change in local structure, with temperature or pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity liquid that is not driven by an anomalous density change, but by an approach to a constant configuration state. A maximum in the specific heat at constant pressure, similar to what is normally observed near T,, is reported here for undercooled low viscosity liquids of quasicrystal- forming Ti-Zr-Ni alloys. that includes cooperativity, by incorporating a temperature dependent excitation energy fits the data well, signaling a phase transition.
NASA Astrophysics Data System (ADS)
Zu, Mengjie; Liu, Jun; Tong, Hua; Xu, Ning
2016-08-01
We find that both continuous and discontinuous hexatic-liquid transitions can happen in the melting of two-dimensional solids of soft-core disks. For three typical model systems, Hertzian, harmonic, and Gaussian-core models, we observe the same scenarios. These systems exhibit reentrant crystallization (melting) with a maximum melting temperature Tm happening at a crossover density ρm. The hexatic-liquid transition at a density smaller than ρm is discontinuous. Liquid and hexatic phases coexist in a density interval, which becomes narrower with increasing temperature and tends to vanish approximately at Tm. Above ρm, the transition is continuous, in agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young theory. For these soft-core systems, the nature of the hexatic-liquid transition depends on density (pressure), with the melting at ρm being a plausible transition point from discontinuous to continuous hexatic-liquid transition.
NASA Astrophysics Data System (ADS)
Woodward, C. A.; Shulmeister, J.
2007-01-01
We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 °C cooler, with a maximum inferred cooling of 3.7 °C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000-18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP). The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (<20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (<5 °C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.
NASA Astrophysics Data System (ADS)
Govatski, J. A.; da Luz, M. G. E.; Koehler, M.
2015-01-01
We study the geminated pair dissociation probability φ as function of applied electric field and temperature in energetically disordered nD media. Regardless nD, for certain parameters regions φ versus the disorder degree (σ) displays anomalous minimum (maximum) at low (moderate) fields. This behavior is compatible with a transport energy which reaches a maximum and then decreases to negative values as σ increases. Our results explain the temperature dependence of the persistent photoconductivity in C60 single crystals going through order-disorder transitions. They also indicate how an energetic disorder spatial variation may contribute to higher exciton dissociation in multicomponent donor/acceptor systems.
Room temperature ferromagnetism in transition metal-doped black phosphorous
NASA Astrophysics Data System (ADS)
Jiang, Xiaohong; Zhang, Xinwei; Xiong, Fang; Hua, Zhenghe; Wang, Zhihe; Yang, Shaoguang
2018-05-01
High pressure high temperature synthesis of transition metal (TM = V, Cr, Mn, Fe, Co, Ni, and Cu) doped black phosphorus (BP) was performed. Room temperature ferromagnetism was observed in Cr and Mn doped BP samples. X-ray diffraction and Raman measurements revealed pure phase BP without any impurity. Transport measurements showed us semiconducting character in 5 at. % doped BP samples Cr5%P95% and Mn5%P95%. The magnetoresistance (MR) studies presented positive MR in the relatively high temperature range and negative MR in the low temperature range. Compared to that of pure BP, the maximum MR was enhanced in Cr5%P95%. However, paramagnetism was observed in V, Fe, Co, Ni, and Cu doped BP samples.
Mechanical properties of electron-beam-melted molybdenum and dilute molybdenum-rhenium alloys
NASA Technical Reports Server (NTRS)
Klopp, W. D.; Witzke, W. R.
1972-01-01
A study of molybdenum and three dilute molybdenum-rhenium alloys was undertaken to determine the effects of rhenium on the low temperature ductility and other mechanical properties of molybdenum. Alloys containing 3.9, 5.9, and 7.7 atomic percent rhenium exhibited lower ductile-brittle transition temperatures than did the unalloyed molybdenum. The maximum improvement in the annealed condition was observed for molybdenum - 7.7 rhenium, which had a ductile-brittle transition temperature approximately 200 C (360 F) lower than that for unalloyed molybdenum. Rhenium additions also increased the low and high temperature tensile strengths and the high temperature creep strength of molybdenum. The mechanical behavior of dilute molybdenum-rhenium alloys is similar to that observed for dilute tungsten-rhenium alloys.
Inferring thermodynamic stability relationship of polymorphs from melting data.
Yu, L
1995-08-01
This study investigates the possibility of inferring the thermodynamic stability relationship of polymorphs from their melting data. Thermodynamic formulas are derived for calculating the Gibbs free energy difference (delta G) between two polymorphs and its temperature slope from mainly the temperatures and heats of melting. This information is then used to estimate delta G, thus relative stability, at other temperatures by extrapolation. Both linear and nonlinear extrapolations are considered. Extrapolating delta G to zero gives an estimation of the transition (or virtual transition) temperature, from which the presence of monotropy or enantiotropy is inferred. This procedure is analogous to the use of solubility data measured near the ambient temperature to estimate a transition point at higher temperature. For several systems examined, the two methods are in good agreement. The qualitative rule introduced this way for inferring the presence of monotropy or enantiotropy is approximately the same as The Heat of Fusion Rule introduced previously on a statistical mechanical basis. This method is applied to 96 pairs of polymorphs from the literature. In most cases, the result agrees with the previous determination. The deviation of the calculated transition temperatures from their previous values (n = 18) is 2% on average and 7% at maximum.
Magnetization at high pressure in CeP
NASA Astrophysics Data System (ADS)
Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.
1995-02-01
We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.
Žoldák, Gabriel; Jancura, Daniel; Sedlák, Erik
2017-06-01
Monitoring the fluorescence of proteins, particularly the fluorescence of intrinsic tryptophan residues, is a popular method often used in the analysis of unfolding transitions (induced by temperature, chemical denaturant, and pH) in proteins. The tryptophan fluorescence provides several suitable parameters, such as steady-state fluorescence intensity, apparent quantum yield, mean fluorescence lifetime, position of emission maximum that are often utilized for the observation of the conformational/unfolding transitions of proteins. In addition, the fluorescence intensities ratio at different wavelengths (usually at 330 nm and 350 nm) is becoming an increasingly popular parameter for the evaluation of thermal transitions. We show that, under certain conditions, the use of this parameter for the analysis of unfolding transitions leads to the incorrect determination of thermodynamic parameters characterizing unfolding transitions in proteins (e.g., melting temperature) and, hence, can compromise the hit identification during high-throughput drug screening campaigns. © 2017 The Protein Society.
Infrared spectroscopic study of super-critical water across the Widom line
NASA Astrophysics Data System (ADS)
Samanta, Tuhin; Dutta, Rajesh; Biswas, Rajib; Bagchi, Biman
2018-06-01
When density is varied at a constant temperature just above the gas-liquid critical temperature, the system is found to exhibit large scale density fluctuations which are often rationalized in terms of crossing of a Widom line. We use the discrete variable representation (DVR) scheme to construct the spectroscopic maps for transition frequencies and transition dipoles, and obtain the infrared spectrum of the Osbnd H stretch in the said temperature-density region of the phase diagram. The infrared lineshape shows a crossover from Lorentzian to Gaussian as we approach the Widom line. The width of the lineshape displays a pronounced maximum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gargarella, P., E-mail: piter@ufscar.br; Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo; Pauly, S.
The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.
Nickel-titanium alloys: stress-related temperature transitional range.
Santoro, M; Beshers, D N
2000-12-01
The inducement of mechanical stress within nickel-titanium wires can influence the transitional temperature range of the alloy and therefore the expression of the superelastic properties. An analogous variation of the transitional temperature range may be expected during orthodontic therapy, when the archwires are engaged into the brackets. To investigate this possibility, samples of currently used orthodontic nickel-titanium wires (Sentalloy, GAC; Copper Ni-Ti superelastic at 27 degrees C, 35 degrees C, 40 degrees C, Ormco; Nitinol Heat-Activated, 3M-Unitek) were subjected to temperature cycles ranging between 4 degrees C and 60 degrees C. The wires were mounted in a plexiglass loading device designed to simulate clinical situations of minimum and severe dental crowding. Electrical resistivity was used to monitor the phase transformations. The data were analyzed with paired t tests. The results confirmed the presence of displacements of the transitional temperature ranges toward higher temperatures when stress was induced. Because nickel-titanium wires are most commonly used during the aligning stage in cases of severe dental crowding, particular attention was given to the performance of the orthodontic wires under maximum loading. An alloy with a stress-related transitional temperature range corresponding to the fluctuations of the oral temperature should express superelastic properties more consistently than others. According to our results, Copper Ni-Ti 27 degrees C and Nitinol Heat-Activated wires may be considered suitable alloys for the alignment stage.
NASA Astrophysics Data System (ADS)
Tempel, M.; Isenberg, G.; Sackmann, E.
1996-08-01
We have studied the sol-gel transition, the viscoelastic and the structural properties of networks constituted of semiflexible actin filaments cross-linked by α-actinin. Cross-linking was regulated in a reversible way by varying the temperature through the association-dissociation equilibrium of the actin-α-actinin system. Viscoelastic parameters [shear storage modulus G'(ω), phase shift tan(Φ)(ω), creep compliance J(t)] were measured as a function of temperature and actin-to-cross-linker ratio by a magnetically driven rotating disc rheometer. G'(ω) and tan(Φ)(ω) were studied at a frequency ω corresponding to the elastic plateau regime of the G'(ω) versus ω spectrum of the purely entangled solution. The microstructure of the networks was viewed by negative staining electron microscopy (EM). The phase shift tan(Φ) (or equivalently the viscosity η) diverges and reaches a maximum when approaching the apparent gel point from lower and higher temperatures, and the maximum defines the gel point (temperature Tg). The elastic plateau modulus G'N diverges at temperatures beyond this gel point T
Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa
2016-12-01
The origin of two maxima in specific heat observed at the higher and the lower temperatures in the glass-transition region in the heating process has been studied for polymethyl methacrylate and polyvinyl chloride using differential scanning calorimetry, and the calculation was done using the phenomenological model equation under a thermal history of the typical annealing experiment composed of cooling, annealing, and heating. The higher maximum is observed above the glass-transition temperature, and it remains almost unchanged independent of annealing time t_{a}, while the lower one is observed above an annealing temperature T_{a} and shifts toward the higher one, increasing its magnitude with t_{a}. The analysis by the phenomenological model equation proposed in order to interpret the memory effect in the glassy state clarifies that under a typical annealing history, two maxima in specific heat essentially appear. The shift of the lower maximum toward higher temperatures from above T_{a} is caused by an increase in the amount of relaxation during annealing with t_{a}. The annealing temperature and the amount of relaxation during annealing play a major role in the determination of the number of maxima in the specific heat.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Gang; Abe, Tomohiro; Moriyoshi, Chikako; Tanaka, Hiroshi; Kuroiwa, Yoshihiro
2018-07-01
Synchrotron-radiation X-ray diffraction studies as a function of temperature reveal the structural origin of the spontaneous polarization and related lattice strains in stoichiometric LiTaO3. Electron charge density distribution maps visualized by the maximum entropy method clearly demonstrate that ordering of the disordered Li ion in the polar direction accompanied by deformation of the oxygen octahedra lead to the ferroelectric phase transition. The ionic polarization attributed to the ionic displacements is dominant in the polar structure. The structural change occurs continuously at the phase transition temperature, which suggests a second-order phase transition.
The energy balance of the solar transition region
NASA Technical Reports Server (NTRS)
Jordan, C.
1980-01-01
It is shown how the observed distribution of the emission measure with temperature can be used to limit the range of energy deposition functions suitable for heating the solar transition region and inner corona. The minimum energy loss solution is considered in view of the work by Hearn (1975) in order to establish further scaling laws between the transition region pressure, the maximum coronal temperature and the parameter giving the absolute value of the emission measure. Also discussed is the absence of a static energy balance at the base of the transition region in terms of measurable atmospheric parameters, and the condition for a static energy balance is given. In addition, the possible role of the emission from He II in stabilizing the atmosphere by providing enhanced radiation loss is considered.
NASA Astrophysics Data System (ADS)
Tournier, Robert F.
2014-12-01
An undercooled liquid is unstable. The driving force of the glass transition at Tg is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change -Vm×Δp at Tg where Vm is the molar volume. A stable glass-liquid transition model predicts the specific heat jump of fragile liquids at T≤Tg, the Kauzmann temperature TK where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between TK and Tg, the maximum nucleation rate at TK of superclusters containing magic atom numbers, and the equilibrium latent heats at Tg and TK. Strong-to-fragile and strong-to-strong liquid transitions at Tg are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid-liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at TK of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at Tg without stable-glass formation while a strong glass is stable after transition.
NASA Technical Reports Server (NTRS)
Bond, Aleck C.; Rumsey, Charles B.
1957-01-01
Skin temperatures and surface pressures have been measured on a slightly blunted cone-cylinder-flare configuration to a maximum Mach number of 9.89 with a rocket-propelled model. The cone had a t o t a l angle of 25 deg and the flare had a 10 deg half-angle. Temperature data were obtained at eight cone locations, four cylinder locations, and seven flare locations; pressures were measured at one cone location, one cylinder location, and three flare locations. Four stages of propulsion were utilized and a reentry type of trajectory was employed in which the high-speed portion of flight was obtained by firing the last two stages during the descent of the model from a peak altitude of 99,400 feet. The Reynolds number at peak Mach number was 1.2 x 10(exp 6) per foot of model length. The model length was 6.68 feet. During the higher speed portions of flight, temperature measurements along one element of the nose cone indicated that the boundary layer was probably laminar, whereas on the opposite side of the nose the measurements indicated transitional or turbulent flow. Temperature distributions along one meridian of the model showed the flare to have the highest temperatures and the cylinder generally to have the lowest. A maximum temperature of 970 F was measured on the cone element showing the transitional or turbulent flow; along the opposite side of the model, the maximum temperatures of the cone, cylinder, and flare were 545 F, 340 F, and 680 F, respectively, at the corresponding time.
Boundaries for martensitic transition of 7Li under pressure
Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; ...
2015-08-14
We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressuremore » dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.« less
NASA Astrophysics Data System (ADS)
Suchanicz, J.; Bovtun, V.; Dutkiewicz, E. M.; Konieczny, K.; Sitko, D.; Kluczewska, K.; Wajda, A.; Kalvane, A.; Sternberg, A.
2016-08-01
Lead-free (Na0.5Bi0.5)1-xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics with relative densities above 97% were prepared by solid-state synthesis process. Their dielectric, thermal and Raman properties were studied. X-ray diffraction analysis shows perovskite structure with rhombohedral symmetry at room temperature. Sr doping of Na0.5Bi0.5TiO3 (NBT) results in an increase of the dielectric permittivity, diffusing of the permittivity maximum and its shift toward lower temperatures. The temperature of the rhombohedral-tetragonal phase transition indicated by the differential scanning calorimetry (DSC) peak and relaxational dielectric anomaly near the depolarization temperature are also shifted toward lower temperatures. The observed increase and broadening of the permittivity maximum, enhancement of the dielectric relaxation near the depolarization temperature, broadening of the DSC anomaly related to the rhombohedral-tetragonal phase transition and broadening of the Raman bands with increasing Sr content are attributed to the increase of the degree of cationic disorder and evident enhancement of the relaxor-like features in NBT-xST. This enhancement could play a positive role in the improvement of the piezoelectric performance of NBT-based ceramics.
NASA Astrophysics Data System (ADS)
Ho, Kar Wei; Ariffin, A.
2016-12-01
Four tetraphenylsilane-carbazole derivatives with wide bandgaps (3.38-3.55 eV) were synthesized. The effects of the substitution position and of the presence of naphthalene groups on the photophysical, electrochemical and thermal properties were investigated. The derivatives exhibited maximum absorption peaks ranging from 293 to 304 nm and maximum emission peaks ranging from 347 to 386 nm. Changing the carbazole substitution position on the tetraphenylsilane did not significantly change the photophysical and electrochemical properties. However, p-substituted compounds exhibited higher glass transition temperatures than m-substituted compounds. Naphthalene groups with bulky structures had extended the conjugation lengths that red-shifted both the absorption and emission spectra. The LUMO level was decreased, which reduced the optical bandgap and triplet energy level. However, the naphthalene groups significantly improved the thermal stability by increasing the glass transition temperature of the compounds.
[In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].
Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei
2015-08-01
In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.
Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide
NASA Astrophysics Data System (ADS)
Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea; Shukla, Abhay
2015-11-01
Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 1014 cm-2 in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ~10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach.
Surface temperatures and glassy state investigations in tribology, part 2
NASA Technical Reports Server (NTRS)
Bair, S. S.; Winer, W. O.
1979-01-01
Measurements of lubricant shear rheological behavior in the amorphous solid region and near the liquid solid transition are reported. Elastic, plastic and viscous behavior was observed. The maximum yield shear stress (limiting shear stress) is a function of temperature and pressure and is believed to be the property which determines the maximum traction in elastohydrodynamic contacts such as traction drives. A shear rheological model based on primary laboratory data is proposed for concentrated contact lubrication. The model is Maxwell model modified with a limiting shear stress. Three material properties are required: low shear stress viscosity, limiting elastic shear modulus, and the limiting shear stress the material can withstand. All three are functions of temperature and pressure.
Temporal Variation of NDVI and the Drivers of Climate Variables in the Arctic Tundra Transition Zone
NASA Astrophysics Data System (ADS)
Lee, J.; Ryu, Y.; Lee, Y. K.
2016-12-01
The Arctic is a sensitive region to temperature, which is drastically increasing with climate change. Vegetation in transition zones of the sub-arctic tundra biome are most sensitive to the warming climate, as temperature in the Arctic ecosystem is one of important limiting factors of vegetation growth and decomposition. Previous research in the transition zone show that there is a difference of sensible heat flux (21 Wm-2), Leaf Area Index increase from 0.58 - 2.76 and canopy height from 0.1 - 6.1m across dwarf and tall shrubs to forest, however, we lack understanding of NDVI trend of this zone. To better understand the vegetation in transition zones of the arctic ecosystem, we analyze the long-term trend of NDVI (AVHRR 3g GIMMs data), temperature and precipitation (Climate Research Unit data) trend from 1982 - 2010 in Council, Alaska that is a region where arctic tundra is transitioning to boreal forest. We also analyze how the climatic factors, temperature or precipitation, affect NDVI. Annual precipitation had the highest interannual variability compared to temperature and NDVI. There was an overall decreasing trend of annual maximum NDVI (y = -0.0019x+4.7). During 1982 to 2003, NDVI and temperature had a similar pattern, but when temperature suddenly jumped to 13.2°C in 2004, NDVI and precipitation declined. This study highlights that temperature increase does not always lead to greening, but after a certain threshold they may cause damage to sub-arctic tundra vegetation.
Superconducting properties of ion-implanted gold-silicon thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jisrawi, N.M.
The superconducting properties of thin Au{sub x}Si{sub 1{minus}x}, films prepared by ion beam implantation and ion beam mixing are studied. The films are prepared by evaporation of single Au layers on Si substrates and mixing them with Si, Ar, or Xe, or by Xe beam mixing of alternate multilayers of Au and Si sputtered on Al{sub 2}O{sub 3} substrates. The superconducting transition temperature and upper critical fields are determined by measuring the temperature and magnetic field dependence of resistivity. Temperatures as low as 20mK and magnetic fields as high as 8 T were used. Superconductivity in these films is discussedmore » in connection with metastable metallic phases that are reportedly produced in the Au-Si system by high quenching rate preparation techniques like quenching from the vapor or the melt or ion implantation. Preliminary structural studies provide evidence for the existence of these phases and near-edge X-ray absorption and X-ray photoelectron spectroscopy measurements indicate a metallic type of bonding from which compound formation is inferred. The quality of the films is strongly dependent on the conditions of implantation. The maximum superconducting transition temperature attained is about 1.2 K. The upper critical fields have a maximum of 6T. An unusual double transition in the field dependence of resistivity is observed at low temperatures. The effect is very pronounced at compositions near x = 0.5 where the maximum {Tc} occurs. A model is presented to explain this result which invokes the properties of the metastable metallic phases and assumes the formation of more than two such phases in the same sample as the implantation dose increases. The Si-Au interface plays an important role in understanding the model and in interpreting the results of this thesis in general.« less
NASA Astrophysics Data System (ADS)
Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi
2012-12-01
We have performed the first-principles calculations about the superconducting transition temperature Tc of hole-doped delafossite CuAlO2, AgAlO2 and AuAlO2. Calculated Tc are about 50 K (CuAlO2), 40 K (AgAlO2) and 3 K(AuAlO2) at maximum in the optimum hole-doping concentration. The low Tc of AuAlO2 is attributed to the weak electron-phonon interaction caused by the low covalency and heavy atomic mass.
2016-01-01
We report a complete structural and magneto-thermodynamic characterization of four samples of the Heusler alloy Ni-Co-Mn-Ga-In, characterized by similar compositions, critical temperatures and high inverse magnetocaloric effect across their metamagnetic transformation, but different transition widths. The object of this study is precisely the sharpness of the martensitic transformation, which plays a key role in the effective use of materials and which has its origin in both intrinsic and extrinsic effects. The influence of the transition width on the magnetocaloric properties has been evaluated by exploiting a phenomenological model of the transformation built through geometrical considerations on the entropy versus temperature curves. A clear result is that a large temperature span of the transformation is unfavourable to the magnetocaloric performance of a material, reducing both isothermal entropy change and adiabatic temperature change obtainable in a given magnetic field and increasing the value of the maximum field needed to fully induce the transformation. The model, which is based on standard magnetometric and conventional calorimetric measurements, turns out to be a convenient tool for the determination of the optimum values of transformation temperature span in a trade-off between sheer performance and amplitude of the operating range of a material. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402934
Shear induced phase transitions induced in edible fats
NASA Astrophysics Data System (ADS)
Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.
2003-03-01
The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.
Sunspot Oscillations From The Chromosphere To The Corona
NASA Astrophysics Data System (ADS)
Brynildsen, N.; Maltby, P.; Fredvik, T.; Kjeldseth-Moe, O.
The behavior of the 3 minute sunspot oscillations is studied as a function of temper- ature through the transition region using observations with CDS/SOHO and TRACE. The oscillations occur above the umbra, with amplitudes increasing to a maximum near 200 000 K, then decreasing towards higher temperatures. Deviations from pure linear oscillations are present in several cases. Power spectra of the oscillations are remarkably similar in the chromosphere and through the transition region in contra- diction to the predictions of the sunspot filter theory. The 3 minute oscillations pene- trate to the low temperature end of the corona, where they are channeled into smaller areas coinciding with the endpoints of sunspot coronal loops. This differs from the transition zone where the oscillating region covers the umbra.
A Novel Liquid-Liquid Transition in Undercooled Ti-Zr-Ni Liquids
NASA Technical Reports Server (NTRS)
Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Bradshaw, R. C.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.
2004-01-01
If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, T(sub l), finally 'freezing' into a glass below a characteristic temperature called the glass transition temperature, T(sub g). In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of H2O and Si. Such phase transitions have been predicted in some stable liquids, ie. above T(sub l) at atmospheric pressure, for SiO2 and BeF2, but these have not been verified experimentally. They have been observed in liquids of P, Si and C, but only under high pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity metallic liquid that is driven by an approach to a constant entropy configuration state and correlated with a growing icosahedral order in the liquid. A maximum in the specific heat at constant pressure, similar to what is normally observed near T(sub g), is reported for undercooled liquids of quasicrystal-forming Ti-Zr-Ni alloys. A two-state excitation model that includes cooperativity by incorporating a temperature-dependent excitation energy, fits the specific heat data well, signaling a phase transition. An inflection in the liquid density with decreasing temperature instead of a discontinuity indicates that this is not a typical first order phase transition; it could be a weakly first order or higher order transition. While showing many similarities to a glass transition, this liquid-liquid phase transition occurs in a mobile liquid, making it novel.
Kumar Mahata, Manoj; Koppe, Tristan; Kumar, Kaushal; Hofsäss, Hans; Vetter, Ulrich
2016-01-01
A dual mode rare-earth based vanadate material (YVO4: Ho3+/Yb3+), prepared through ethylene glycol assisted hydrothermal method, demonstrating both downconversion and upconversion, along with systematic investigation of the luminescence spectroscopy within 12–300 K is presented herein. The energy transfer processes have been explored via steady-state and time-resolved spectroscopic measurements and explained in terms of rate equation description and temporal evolution below room temperature. The maximum time for energy migration from host to rare earth (Ho3+) increases (0.157 μs to 0.514 μs) with the material’s temperature decreasing from 300 K to 12 K. The mechanism responsible for variation of the transients’ character is discussed through thermalization and non-radiative transitions in the system. More significantly, the temperature of the nanocrystals was determined using not only the thermally equilibrated radiative intra-4f transitions of Ho3+ but also the decay time and rise time of vanadate and Ho3+ energy levels. Our studies show that the material is highly suitable for temperature sensing below room temperature. The maximum relative sensor sensitivity using the rise time of Ho3+ energy level (5F4/5S2) is 1.35% K−1, which is the highest among the known sensitivities for luminescence based thermal probes. PMID:27805060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh
Simultaneous high-pressure X-ray diffraction and electrical resistance measurements have been carried out on a PbO-type {alpha}-FeSe{sub 0.92} compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source. A ambient temperature, a structural phase transition from a tetragonal (P4/nmm) phase to an orthorhombic (Pbnm) phase is observed at 11 GPa and the Pbnm phase persists up to 74 GPa. The superconducting transition temperature (T{sub c}) increases rapidly with pressure reaching a maximum of {approx}28 K at {approx}6 GPa and decreases at higher pressures, disappearing completely at 14.6 GPa. Simultaneous pressure-dependent X-raymore » diffraction and resistance measurements at low temperatures show superconductivity only in a low-pressure orthorhombic (Cmma) phase of the {alpha}-FeSe{sub 0.92}. Upon increasing pressure at 10 K near T{sub c}, crystalline phases change from a mixture of orthorhombic (Cmma) and hexagonal (P63/mmc) phases to a high-pressure orthorhombic (Pbnm) phase near 6.4 GPa where T{sub c} is maximum.« less
Iridium/Rhenium Parts For Rocket Engines
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Harding, John T.; Wooten, John R.
1991-01-01
Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.
Magnetocaloric Effect in Ni50Mn36Sb14- x Z x (Z = Al, Ge; x = 0, 2) Heusler Alloys
NASA Astrophysics Data System (ADS)
Emelyanova, S. M.; Bebenin, N. G.; Dyakina, V. P.; Chistyakov, V. V.; Dyachkova, T. V.; Tyutyunnik, A. P.; Wang, R. L.; Yang, C. P.; Sauerzopf, F.; Marchenkov, V. V.
2018-02-01
The temperature dependences of the electrical resistivity and magnetization of the Ni50Mn36Sb14- x Z x (Z = Al, Ge; x = 0; 2) alloys have been used to determine the characteristic phase transition temperatures. The isothermal entropy change Δ S was determined using Maxwell's equation and the field dependences of magnetization. The partial substitution of Ge for Sb has been shown to result in a slight increase in Δ S and a shift in the Δ S maximum to the low-temperature range. The substitution of Al for Sb leads to a decrease in the effect and shift in the Δ S maximum to the high-temperature range. It has been found that the maximum magnetocaloric effect has been observed for the Ni50Mn36Sb12Ge2 composition and is equal to Δ S = 1.3 J/(kg K) in a field change of 10 kOe.
Yiin, Chung Loong; Yusup, Suzana; Quitain, Armando T; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya
2018-05-01
The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Efficiency of a thermodynamic motor at maximum power
NASA Astrophysics Data System (ADS)
Moreau, M.; Gaveau, B.; Schulman, L. S.
2012-02-01
Several recent theories address the efficiency of a macroscopic thermodynamic motor at maximum power and question the so-called Curzon-Ahlborn (CA) efficiency. Considering the entropy exchanges and productions in an n-sources motor, we study the maximization of its power and show that the controversies are partly due to some imprecision in the maximization variables. When power is maximized with respect to the system temperatures, these temperatures are proportional to the square root of the corresponding source temperatures, which leads to the CA formula for a bithermal motor. On the other hand, when power is maximized with respect to the transition durations, the Carnot efficiency of a bithermal motor admits the CA efficiency as a lower bound, which is attained if the duration of the adiabatic transitions can be neglected. Additionally, we compute the energetic efficiency, or “sustainable efficiency,” which can be defined for n sources, and we show that it has no other universal upper bound than 1, but that in certain situations, which are favorable for power production, it does not exceed ½.
Efficiency of a thermodynamic motor at maximum power.
Moreau, M; Gaveau, B; Schulman, L S
2012-02-01
Several recent theories address the efficiency of a macroscopic thermodynamic motor at maximum power and question the so-called Curzon-Ahlborn (CA) efficiency. Considering the entropy exchanges and productions in an n-sources motor, we study the maximization of its power and show that the controversies are partly due to some imprecision in the maximization variables. When power is maximized with respect to the system temperatures, these temperatures are proportional to the square root of the corresponding source temperatures, which leads to the CA formula for a bithermal motor. On the other hand, when power is maximized with respect to the transition durations, the Carnot efficiency of a bithermal motor admits the CA efficiency as a lower bound, which is attained if the duration of the adiabatic transitions can be neglected. Additionally, we compute the energetic efficiency, or "sustainable efficiency," which can be defined for n sources, and we show that it has no other universal upper bound than 1, but that in certain situations, which are favorable for power production, it does not exceed ½. © 2012 American Physical Society
Kreck, Cara A; Mancera, Ricardo L
2014-02-20
Molecular dynamics simulations allow detailed study of the experimentally inaccessible liquid state of supercooled water below its homogeneous nucleation temperature and the characterization of the glass transition. Simple, nonpolarizable intermolecular potentials are commonly used in classical molecular dynamics simulations of water and aqueous systems due to their lower computational cost and their ability to reproduce a wide range of properties. Because the quality of these predictions varies between the potentials, the predicted glass transition of water is likely to be influenced by the choice of potential. We have thus conducted an extensive comparative investigation of various three-, four-, five-, and six-point water potentials in both the NPT and NVT ensembles. The T(g) predicted from NPT simulations is strongly correlated with the temperature of minimum density, whereas the maximum in the heat capacity plot corresponds to the minimum in the thermal expansion coefficient. In the NVT ensemble, these points are instead related to the maximum in the internal pressure and the minimum of its derivative, respectively. A detailed analysis of the hydrogen-bonding properties at the glass transition reveals that the extent of hydrogen-bonds lost upon the melting of the glassy state is related to the height of the heat capacity peak and varies between water potentials.
Fragile-to-strong transition in liquid silica
NASA Astrophysics Data System (ADS)
Geske, Julian; Drossel, Barbara; Vogel, Michael
2016-03-01
We investigate anomalies in liquid silica with molecular dynamics simulations and present evidence for a fragile-to-strong transition at around 3100 K-3300 K. To this purpose, we studied the structure and dynamical properties of silica over a wide temperature range, finding four indicators of a fragile-to-strong transition. First, there is a density minimum at around 3000 K and a density maximum at 4700 K. The turning point is at 3400 K. Second, the local structure characterized by the tetrahedral order parameter changes dramatically around 3000 K from a higher-ordered, lower-density phase to a less ordered, higher-density phase. Third, the correlation time τ changes from an Arrhenius behavior below 3300 K to a Vogel-Fulcher-Tammann behavior at higher temperatures. Fourth, the Stokes-Einstein relation holds for temperatures below 3000 K, but is replaced by a fractional relation above this temperature. Furthermore, our data indicate that dynamics become again simple above 5000 K, with Arrhenius behavior and a classical Stokes-Einstein relation.
Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses
NASA Astrophysics Data System (ADS)
Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.
2015-08-01
Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.
Solanki, Prem K; Bischof, John C; Rabin, Yoed
2017-06-01
Cryopreservation by vitrification is the only promising solution for long-term organ preservation which can save tens of thousands of lives across the world every year. One of the challenges in cryopreservation of large-size tissues and organs is to prevent fracture formation due to the tendency of the material to contract with temperature. The current study focuses on a pillow-like shape of a cryobag, while exploring various strategies to reduce thermo-mechanical stress during the rewarming phase of the cryopreservation protocol, where maximum stresses are typically found. It is demonstrated in this study that while the level of stress may generally increase with the increasing amount of CPA filled in the cryobag, the ratio between width and length of the cryobag play a significant role. Counterintuitively, the overall maximum stress is not found when the bag is filled to its maximum capacity (when the filled cryobag resembles a sphere). Parametric investigation suggests that reducing the initial rewarming rate between the storage temperature and the glass transition temperature may dramatically decrease the thermo-mechanical stress. Adding a temperature hold during rewarming at the glass transition temperature may reduce the thermo-mechanical stress in some cases, but may have an adverse effect in other cases. Finally, it is demonstrated that careful incorporation of volumetric heating by means on nanoparticles in an alternating magnetic field, or nanowarming, can dramatically reduce the resulting thermo-mechanical stress. These observations display the potential benefit of a thermo-mechanical design of the cryopreservation protocols in order to prevent structural damage. Copyright © 2017 Elsevier Inc. All rights reserved.
Enhanced thermoelectric figure-of-merit in environmentally benign BaxSr2-xTiCoO6 double perovskites
NASA Astrophysics Data System (ADS)
Saxena, Mandvi; Roy, Pinku; Acharya, Megha; Bose, Imon; Tanwar, Khagesh; Maiti, Tanmoy
2016-12-01
Environmental friendly, non-toxic double perovskite BaxSr2-xTiCoO6 compositions with 0 ≤ x ≤ 0.2 were synthesized using solid-state reaction route for high temperature thermoelectric (TE) applications. XRD and SEM studies confirmed the presence of single-phase solid solution with highly dense microstructure for all the oxide compositions. Temperature dependent electrical conductivity measurement showed semiconductor to metal (M-S) transition in these double perovskites. Incorporation of barium in Sr2TiCoO6 pushed M-S transition to higher temperature making it a potential candidate for high temperature TE applications. Conductivity behaviors of these oxides were explained by small polaron model. Furthermore, these oxides exhibit a glass like behavior resulting in low thermal conductivity. Low temperature dielectric measurement revealed relaxor ferroelectric behavior in these oxides below room temperature. Transition of these relaxors into a glassy state beyond Burns temperature (TD) was found responsible for having low thermal conductivity in these oxides. Maximum dimensionless TE figure-of-merit ZT = 0.29 at 1223 K was achieved for BaxSr2-xTiCoO6 composition with x = 0.2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Errandonea, D., E-mail: daniel.errandonea@uv.es; García-Domene, B.; Gomis, O.
We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2–0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous applicationmore » of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO{sub 4}. Room-temperature pressure-volume equations of state are reported. BiPO{sub 4} was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO{sub 4}. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO{sub 4}. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (0 1 0) plane at approximately 15° (21°) to the a axis for the case of our experimental (theoretical) study.« less
NASA Astrophysics Data System (ADS)
Phuong, Vu Thanh; Coltelli, Maria-Beatrice; Anguillesi, Irene; Cinelli, Patrizia; Lazzeri, Andrea
2014-05-01
In order to improve the thermal stability of PLA based materials the strategy of blending it with poly(carbonate) of bisphenol A (PC), having a higher glass transition temperature, was followed and PLA/PC blends with different compositions, obtained also in the presence of an interchange reaction catalyst, Tetrabutylammonium tetraphenylborate (TBATPB) and triacetin were prepared by melt extrusion. The dynamical mechanical characterization showed an interesting change of the storage modulus behavior in the PLA glass transition region, evident exclusively in the catalyzed blends. In particular, a new peak in the Tanδ trend at a temperature in between the one of PLA and the one of PC was observed only in the blends obtained in the presence of triacetin and TBATPB. The height and maximum temperature of the peak was different after the annealing of samples at 80°C. The data, showing an interesting improvement of thermal stability above the PLA glass transition, were explained keeping into account the formation of PLA-PC copolymer during the reactive extrusion. Furthermore, the glass transition temperature of the copolymer as a function of composition was studied and the obtained trend was discussed by comparing with literature models developed for copolymers.
Estimating Arrhenius parameters using temperature programmed molecular dynamics.
Imandi, Venkataramana; Chatterjee, Abhijit
2016-07-21
Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.
NASA Astrophysics Data System (ADS)
Vasilevskiy, D.; Keshavarz, M. K.; Simard, J.-M.; Masut, R. A.; Turenne, S.; Snyder, G. J.
2018-06-01
Some materials such as Cu2-xSe, Cu1.97Ag0.03Se, and SnSe have attracted attention by demonstrating a significant enhancement of their thermoelectric performance, which is associated with a phase transition. This phenomenon, observed in a limited temperature ( T) interval, results in sharp changes of the Seebeck coefficient ( S), the electrical resistivity ( ρ), and the thermal conductivity ( κ), which may render the correct evaluation of the dimensionless figure of merit (ZT) difficult. We report the thermoelectric properties of a polycrystalline Cu2-xSe sample which is known to undergo a phase transition near 410 K, containing a mixture of α- and β-phases at room temperature, as determined by x-ray diffraction measurements. We have used a Harman-based setup (TEMTE Inc.), which assures the direct measurement of ZT at all temperatures, including the phase transition region. This approach ensures that κ( T) is determined under steady-state conditions at any given temperature, including points arbitrarily close to the transition temperature which cannot be guaranteed by previously used techniques such as laser flash. We have observed a sharp maximum for κ( T) near 410 K, similar to the reported specific heat variation, with a ZT peak value of 0.2 at 400 K. The expected gain in ZT related to the phase transition is reduced because the increase in S is counterbalanced by the increase in κ( T). Thus, our detailed assessment of the temperature variation of the individual thermoelectric properties accurately evaluates the performance enhancement associated to a structural phase transition and helps to elucidate this complex phenomenon.
Hot and solid gallium clusters: too small to melt.
Breaux, Gary A; Benirschke, Robert C; Sugai, Toshiki; Kinnear, Brian S; Jarrold, Martin F
2003-11-21
A novel multicollision induced dissociation scheme is employed to determine the energy content for mass-selected gallium cluster ions as a function of their temperature. Measurements were performed for Ga(+)(n) (n=17 39, and 40) over a 90-720 K temperature range. For Ga+39 and Ga+40 a broad maximum in the heat capacity-a signature of a melting transition for a small cluster-occurs at around 550 K. Thus small gallium clusters melt at substantially above the 302.9 K melting point of bulk gallium, in conflict with expectations that they will remain liquid to below 150 K. No melting transition is observed for Ga+17.
Domain wall formation in late-time phase transitions
NASA Technical Reports Server (NTRS)
Kolb, Edward W.; Wang, Yun
1992-01-01
We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.
The quark-hadron transition in cosmology and astrophysics.
Olive, K A
1991-03-08
A transition from normal hadronic matter (such as protons and neutrons) to quark-gluon matter is expected at both high temperatures and densities. In physical situations, this transition may occur in heavy ion collisions, the early universe, and in the cores of neutron stars. Astrophysics and cosmology can be greatly affected by such a phase transition. With regard to the early universe, big bang nucleosynthesis, the theory describing the primordial origin of the light elements, can be affected by inhomogeneities produced during the transition. A transition to quark matter in the interior by neutron stars further enhances our uncertainties regarding the equation of state of dense nuclear matter and neutron star properties such as the maximum mass and rotation frequencies.
Superconductivity in Weyl semimetal candidate MoTe2.
Qi, Yanpeng; Naumov, Pavel G; Ali, Mazhar N; Rajamathi, Catherine R; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R J; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A
2016-03-14
Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.
Superconductivity in Weyl semimetal candidate MoTe2
Qi, Yanpeng; Naumov, Pavel G.; Ali, Mazhar N.; Rajamathi, Catherine R.; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R. J.; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A.
2016-01-01
Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics. PMID:26972450
Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide
Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea; Shukla, Abhay
2015-01-01
Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 1014 cm−2 in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ≈10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach. PMID:26525386
Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.
2010-01-01
Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.
Characterization of structural response to hypersonic boundary-layer transition
Riley, Zachary B.; Deshmukh, Rohit; Miller, Brent A.; ...
2016-05-24
The inherent relationship between boundary-layer stability, aerodynamic heating, and surface conditions makes the potential for interaction between the structural response and boundary-layer transition an important and challenging area of study in high-speed flows. This paper phenomenologically explores this interaction using a fundamental two-dimensional aerothermoelastic model under the assumption of an aluminum panel with simple supports. Specifically, an existing model is extended to examine the impact of transition onset location, transition length, and transitional overshoot in heat flux and fluctuating pressure on the structural response of surface panels. Transitional flow conditions are found to yield significantly increased thermal gradients, and theymore » can result in higher maximum panel temperatures compared to turbulent flow. Results indicate that overshoot in heat flux and fluctuating pressure reduces the flutter onset time and increases the strain energy accumulated in the panel. Furthermore, overshoot occurring near the midchord can yield average temperatures and peak displacements exceeding those experienced by the panel subject to turbulent flow. Lastly, these results suggest that fully turbulent flow does not always conservatively predict the thermo-structural response of surface panels.« less
USDA-ARS?s Scientific Manuscript database
The Choptank basin and estuary are located on the Mid-Atlantic coastal plain on the Delmarva Peninsula. The regional hydrology is characterized by nearly uniform rainfall, but large seasonal variations in temperature and evapotranspiration (maximum in summer) drive large seasonal changes in groundwa...
NASA Astrophysics Data System (ADS)
Kumar, K. Ramesh; Nair, Harikrishnan S.; Christian, Reinke; Thamizhavel, A.; Strydom, André M.
2016-11-01
Single crystals of Frank-Kasper compounds RTM2Al20 (R = Eu, Gd and La; TM = V and Ti) were grown by self-flux method and their physical properties were investigated through magnetization (M), magnetic susceptibility (χ), specific heat (C P) and electrical resistivity (ρ) measurements. Powder x-ray diffraction studies and structural analysis showed that these compounds crystallize in the cubic crystal structure with the space group Fd\\bar{3}m . The magnetic susceptibility for the compounds EuTi2Al20 and GdTi2Al20 showed a sudden jump below the Néel temperature T N indicative of plausible double magnetic transition. Specific heat (C P) and electrical resistivity (ρ) measurements also confirm the first-order magnetic transition (FOMT) and possible double magnetic transitions. Temperature variation of heat capacity showed a sharp phase transition and huge C P value for the (Eu/Gd)Ti2Al20 compounds’ full width at half-maximum (FWHM) (<0.2 K) which is reminiscent of a first-order phase transition and a unique attribute among RTM2Al20 compounds. In contrast, linear variation of C P is observed in the ordered state for (Eu/Gd)V2Al20 compounds suggesting a λ-type transition. We observed clear anomaly between heating and cooling cycle in temperature-time relaxation curve for the compounds GdTi2Al20 (2.38 K) and EuTi2Al20 (3.2 K) which is indicating a thermal arrest due to the latent heat. The temperature variation of S mag for GdTi2Al20 saturates to a value 0.95R\\ln 8 while the other magnetic systems exhibited still lower entropy saturation values in the high temperature limit. ≤ft({{C}\\text{P}}-γ T\\right)/{{T}3} versus T plot showed a maximum near 27 K for all the compounds indicating the presence of low frequency Einstein modes of vibrations. Resistivity measurements showed that all the samples behave as normal Fermi liquid type compounds and ρ (T) due to electron-phonon scattering follows Bloch-Grüneisen-Mott relation in the paramagnetic region.
Low temperature stabilization process for production of carbon fiber having structural order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; McGuire, Michael Alan; More, Karren Leslie
A method for producing a carbon fiber, the method comprising: (i) subjecting a continuous carbon fiber precursor having a polymeric matrix in which strength-enhancing particles are incorporated to a stabilization process during which the carbon fiber precursor is heated to within a temperature range ranging from the glass transition temperature to no less than 20.degree. C. below the glass transition temperature of the polymeric matrix, wherein the maximum temperature employed in the stabilization process is below 400.degree. C., for a processing time within said temperature range of at least 1 hour in the presence of oxygen and in the presencemore » of a magnetic field of at least 1 Tesla, while said carbon fiber precursor is held under an applied axial tension; and (ii) subjecting the stabilized carbon fiber precursor, following step (i), to a carbonization process. The stabilized carbon fiber precursor, resulting carbon fiber, and articles made thereof are also described.« less
Figueroa, Yetzury; Guevara, Marvilan; Pérez, Adriana; Cova, Aura; Sandoval, Aleida J; Müller, Alejandro J
2016-08-01
This work studies how sucrose (S) addition modifies the thermal properties of cassava starch (CS). Neat CS and CS-S blends with 4, 6 and 8% sugar contents (CS-S-4%, CS-S-6% and CS-S-8%) were prepared and analyzed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), in a wide range of moisture levels (2-20%). In equilibrated samples with moisture contents lower than 10%, twoendothermic steps were observed during first DSC heating scans and two corresponding relaxation maxima in tan δ were detected by DMTA. The first transition, detected at around 45-55°C by both DSC and DMTA, is frequently found in starchy foods, while the second observed at higher temperatures is associated to the glass transition temperature of the blends. At higher moisture contents, only one thermal transition was observed. Samples analyzed immediately after cooling from the melt (i.e., after erasing their thermal history), exhibited a single glass transition temperature, regardless of their moisture content. Addition of sugar promotes water plasticization of CS only at high moisture contents. In the low moisture content range, anti-plasticization was observed for both neat and sugar-added CS samples. Addition of sugar decreases the moisture content needed to achieve the maximum value of the glass transition temperature before plasticization starts. The results of this work may be valuable for the study of texture establishment in low moisture content extruded food products. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mueller, H. J.; Schilling, F. R.; Lauterjung, J.; Lathe, C.
2001-12-01
The high pressure SiO2-polymorph coesite seems to be an important mineral in the subduction process including crustal material (Chopin, 1984; Schreyer, 1995). The quartz to coesite transition is thus of fundamental importance to understand the processes within a subducting crust. Furthermore, the nature of the quartz to coesite transition is discussed controversially, because high pressure XRD-studies suggest an intermediate phase during the transformation process (Zinn et al., 1997). For the combined determination of elastic properties and structure a cubic multi-anvil high pressure apparatus (MAX80) was used. For the maximum sample volume of 20 mm3 the pressure limit is about 7GPa. The pressure is measured by use of NaCl as an internal pressure marker with calibrated PVT-data. The maximum temperature of about 2,000K is generated by an internal graphite heater and controlled by a thermocouple. The synchrotron beam (100x100 microns) is guided by a collimator through the sample between the anvils. For energy-dispersive X-ray diffraction, a Ge-solid state detector analyses the diffracted white beam at a fixed angle. The compressional and shear wave velocities were determined simultaneously by ultrasonic interferometry inside MAX80. Two of the six anvils are equipped with overtone polished lithium niobate transducers at their rear side, outside the volume under pressure, for generation and detection of ultrasonic waves between 10 and 60 MHz. Different buffer - reflector combinations and transducer arrangements were used to optimize the critical interference between both sample echoes. Therefore MAX80 is equipped for asymmetrical and symmetrical interferometric set-ups, i.e. compressional and shear waves are generated from the same or from two anvils, opposite to each other. We used for our transient measurements 3 natural fine-grained quartzites from Turkey and Germany. As a first step the pressure was increased gradually up to 4GPa at ambient temperature. At each pressure Vp and Vs was measured by ultrasonic interferometry. After reaching a given pressure, temperature was increased. At 4.5GPa and 800\\deg C the phase transition to coesite took place in less than 2 minutes. The fast kinetic of transformation was observed by synchrotron radiation. The compressional wave velocity increased by 30% and the shear wave velocity by 10% during the phase transition. The kinetic of the transition was varied by choosing different pressure and temperature conditions. The transformation with lower kinetic was studied in detail by XRD and ultrasonic interferometry. At 4.2 GPa the transformation could not be observed even above 950\\deg C. At 4.5 GPa and 750\\deg C the transition stopped at about 50% transformation, but transforms complete while increasing temperature to 800\\deg C. After the phase transition monitored by X-ray scattering the sample was quenched and Vp and Vs of coesite was measured at ambient temperatures up to the maximum pressure. Small differences in grain size, shape and in minor graphite contents did not change systematically the PT-conditions and kinetics. In addition to the kinetic and change of elastic properties the pressure and temperature derivatives of elastic properties of coesite will be presented.\\Chopin, C., Contr. Min. Petrol., 86 (1984), 107-118\\Schreyer, W., J. Geophys. Res., 100 (1995), 8,353-8,366\\Zinn P., Lauterjung J., Wirth R. & Hinze E. Zeitschrift für Kristallographie, 212 (1997), 691-698.
NASA Astrophysics Data System (ADS)
Kaya, M.; Elerman, Y.; Dincer, I.
2018-07-01
The effect of heat treatment on the structural, magnetic and magnetocaloric properties of Ni43Mn46In11 melt-spun ribbons was systematically investigated using X-ray powder diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), magnetic force microscope (MFM) and magnetic measurements. From the XRD studies, tetragonal and cubic phases were detected at room temperature for as-spun, quenched and slow-cooled ribbons. Furthermore, it was observed, upon annealing martensite transition temperatures increased when compared to the as-spun ribbon. To avoid magnetic hysteresis losses in the vicinity of the structural transition region, the magnetic entropy changes-ΔS m of the investigated ribbons were evaluated from temperature-dependent magnetisation-M(T) curves on cooling for different applied magnetic fields. The maximum ΔS m value was found to be 6.79 J kg-1 K-1 for the quenched ribbon in the vicinity of structural transition region for a magnetic field change of 50 kOe.
Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics
NASA Technical Reports Server (NTRS)
Monk, Joshua D.; Lawson, John W.
2016-01-01
Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.
NASA Astrophysics Data System (ADS)
Volk, M.; Gilder, S.; Feinberg, J. M.
2016-12-01
Monoclinic pyrrhotite (Fe7S8) is an important mineral on earth as well as in some meteorites. It owes its ferrimagnetism to an ordered array of Fe vacancies. Its magnetic properties change markedly around 30 K, in what is known as the Besnus transition. Plausible explanations for the Besnus transition are either due to changes in crystalline anisotropy from a transformation in crystal symmetry or from the establishment of a two-phase system with magnetic interaction between the two phases. To help resolve this discrepancy, we measured hysteresis loops every 5° and back field curves every 10° in the basal plane of an oriented single crystal of monoclinic pyrrhotite at 300 K and at 21 temperature steps from 50 K through the Besnus transition until 20 K. Between 50 and 30 K, hysteresis loops possess double inflections between crystallographic a-axes and only a single inflection parallel to the a-axes. The second inflection phenomenon and relative differences of the loops show a six-fold symmetry in this temperature range. The Besnus transition is best characterized by changes in magnetic remanence and coercivity over a 6° temperature span with a maximum rate of change at 30 K. A surprising yet puzzling finding is that the coercivity ratio becomes less than unity below the transition when four-fold symmetry arises. The saturation magnetization of natural pyrrhotite cycled from room temperature to successively lower temperatures through the Besnus transition decreases 2-4 times less than equivalent grain sizes of magnetite, with less than a 10% loss in remanence between 300 K and 150 K in pseudo-single domain pyrrhotite. As pseudo-single domain monoclinic pyrrhotite carries the magnetic remanence in some meteorites, it is likely that low temperature cycling in space to the Earth's surface will have only a minor influence on paleointensity values derived from those meteorites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C. Q.; Peng, L.; Jiang, K.
2015-06-15
The phase transitions of Pb{sub 1−x}Sr{sub x}(Al{sub 1/3}Nb{sub 2/3}){sub 0.1}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.9}O{sub 3} (Sr-modified PAN-PZT) ceramics with Sr compositions of x = 2%, 5%, 10% and 15% have been investigated using X-ray diffraction (XRD), temperature dependent dielectric permittivity and Raman scattering. The XRD analysis show that the phase transition occurs between Sr composition of 5% and 10%. Based on the broad dielectric peaks at 100 Hz, the diffused phase transition from tetragonal (T) to cubic (C) structure shifts to lower temperature with increasing Sr composition. The dramatic changes of wavenumber and full width at half-maximum (FWHM) for E(TO{sub 4})′more » softing mode can be observed at morphotropic phase boundary (MPB). Moreover, the MPB characteristic shows a wider and lower trend of temperature region with increasing Sr composition. It could be ascribed to the diminishment of the energy barrier and increment of A-cation entropy. Therefore, the Sr-modified PAN-PZT ceramics unambiguously undergo two successive structural transitions (rhombohedral-tetragonal-cubic phase) with temperature from 80 to 750 K. Correspondingly, the phase diagram of Sr-modified PAN-PZT ceramics can be well depicted.« less
Material For Self-Q-Switching Mirrors For Solid State Laser (MSMSSL)
NASA Astrophysics Data System (ADS)
Wolf, L.; Walocha, J.; Drobnik, A.
1983-09-01
Vanadium dioxide (V02) film exhibits semiconductor-to-metal transition at temperature, Tt near 340 K. The transition is accompanied by changes in optical transmission and relection. In this paper the reflected light spectra were experimentally determined at the two temperatures below and above Tt (300 and 360 K) using film thickness as the parameter. Then we calculated the ratio, Kλ , of reflection coefficient, Rm, in metallic phase to reflection coefficient, Rsc, in semiconductor phase. The film for which the maximum Kλ was observed at λ =1.06μm applied as a mirror in Nd:glass laser. The laser generated giant pulse with duration time at about 50 ns.
Cumillaf, Juan P.; Blanc, Johnny; Paschke, Kurt; Gebauer, Paulina; Díaz, Fernando; Re, Denisse; Chimal, María E.; Vásquez, Jorge; Rosas, Carlos
2016-01-01
ABSTRACT Optimum temperatures can be measured through aerobic scope, preferred temperatures or growth. A complete thermal window, including optimum, transition (Pejus) and critical temperatures (CT), can be described if preferred temperatures and CT are defined. The crustacean Hemigrapsus crenulatus was used as a model species to evaluate the effect of acclimation temperature on: (i) thermal preference and width of thermal window, (ii) respiratory metabolism, and (iii) haemolymph proteins. Dependant on acclimation temperature, preferred temperature was between 11.8°C and 25.2°C while CT was found between a minimum of 2.7°C (CTmin) and a maximum of 35.9°C (CTmax). These data and data from tropical and temperate crustaceans were compared to examine the association between environmental temperature and thermal tolerance. Temperate species have a CTmax limit around 35°C that corresponded with the low CTmax limit of tropical species (34–36°C). Tropical species showed a CTmin limit around 9°C similar to the maximum CTmin of temperate species (5–6°C). The maximum CTmin of deep sea species that occur in cold environments (2.5°C) matched the low CTmin values (3.2°C) of temperate species. Results also indicate that the energy required to activate the enzyme complex (Ei) involved in respiratory metabolism of ectotherms changes along the latitudinal gradient of temperature. PMID:26879464
Giant field-induced adiabatic temperature changes in Ni-Mn-In-based Heusler alloys
NASA Astrophysics Data System (ADS)
Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Blinov, Mikhail; Prudnikov, Valerii; Rodionov, Igor; Granovsky, Alexander; Stadler, Shane; Ali, Naushad
Direct measurements of the adiabatic temperature change (ΔTAD) of Ni50Mn35In14.5B0.5 have been done using an adiabatic magnetocalorimeter in a temperature range of 250-350 K, and with magnetic field changes up to ΔH =1.8 T. The initial susceptibility in the low magnetic field region drastically increases with temperature starting at about 300 K. Magnetocaloric effects (MCE) parameters were found to be a linear function of H2 / 3 in the vicinity of the second order transitions (SOT), whereas the first order transitions (FOT) do not obey the H2 / 3 law due to the discontinuity of the transition. The relative cooling power (RCP) based on the adiabatic temperature change for a magnetic field change of 1.8 T has been estimated. Maximum values of ΔTAD = -2.6 K and 1.7 K were observed at FOT and SOT for ΔH =1.8 T, respectively. Acknowledgement: This work was supported by the Office of Basic Energy Sciences, Material Science Division of the U.S. Department of Energy, DOE Grant No. DE-FG02-06ER46291 (SIU) and DE-FG02-13ER46946 (LSU).
Ambarkhane, Ameet V; Pincott, Kim; Buckton, Graham
2005-04-27
The aim of this study was to measure the glass transition of amorphous lactose under well-controlled temperature and humidity, using inverse gas chromatography (IGC) and to relate these data to gravimetric vapour sorption experiments. Amorphous lactose (spray-dried) was exposed to a stepwise increment in the relative humidity (%RH) under isothermal conditions in an IGC. At the end of each conditioning step a decane injection was made, and the retention volumes were calculated using the maximum peak height (V(max)) method. The pressure drop across the column was recorded using the pressure transducers. These measurements were performed at various temperatures from 25 to 40 degrees C. The extent of water sorption at identical humidity (%RH) and temperature conditions was determined gravimetrically using dynamic vapour sorption (DVS). At each T, it was possible to determine: (1) a transition at low RH relating to the onset of mobility; (2) changes in retention volume relating to the point, where T(g) = T; (3) changes in pressure drop, which were related to the sample collapse. The rate and extent of water sorption was seen to alter at T(g) and also at a collapse point. Combinations of temperature and critical %RH (%cRH required to lower the dry glass transition temperature to the experimental temperature) obtained from IGC were comparable to those obtained from DVS. It was shown that at each T, the sample spontaneously crystallised, when T(g) was 32 degrees C below T. Inverse gas chromatograph can be used in this novel way to reveal the series of transitions that occur in amorphous materials.
Magnetic, electronic transport and magneto-transport behaviours of (Co1-xMnx)2P compounds
NASA Astrophysics Data System (ADS)
Sun, N. K.; Zhang, Y. Q.; Li, Y. B.; Li, D.; Li, W. F.; Liu, W.; Zhao, X. G.; Zhang, Z. D.
2006-10-01
Magnetic, electronic transport and magneto-transport behaviours of (Co1-xMnx)2P (0.55 <= x <= 0.675) compounds have been systematically investigated. A typical metallic-conductivity behaviour is observed in the ferromagnetic compound (Co0.45Mn0.55)2P. The increase in the Mn concentration gives rise to dramatic changes in magnetic, electronic transport and magneto-transport behaviours. With increasing temperature, a first-order phase transition from antiferromagnetism to ferromagnetism takes place at about 145 K, 185 K and 240 K for x = 0.60, 0.625 and 0.65, respectively. (Co0.4Mn0.6)2P and (Co0.375Mn0.625)2P compounds experience a metal-insulator transition (Anderson transition) with decreasing temperature. An external magnetic field of 5 T strongly influences the Anderson transition, lowering the transition temperature from 80 to 55 K for (Co0.4Mn0.6)2P and from 115 to 70 K for (Co0.375Mn0.625)2P. In contrast with this metal-insulator transition, an insulating behaviour appears in the temperature range from 10 to 300 K for (Co0.35Mn0.65)2P and (Co0.325Mn0.675)2P compounds. Below the antiferromagnetic-ferromagnetic transition temperature TAF-F, a metamagnetic transition can be induced by an external magnetic field. The metamagnetic transition is accompanied by a maximum magnetoresistance ratio of -7%, -6.3% or -3.7% at 5 T in the (Co0.4Mn0.6)2P, (Co0.375Mn0.625)2P or (Co0.35Mn0.65)2P compound at 10 K. The mechanisms of magnetoresistive behaviours are discussed in terms of the formation of a super-zone gap in the antiferromagnetic state.
Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi
2015-12-24
Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.
Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.
2018-05-01
The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).
Pressure induced change in the electronic state of Ta 4 Pd 3 Te 16
Jo, Na Hyun; Xiang, Li; Kaluarachchi, Udhara S.; ...
2017-04-24
Here, we present measurements of superconducting transition temperature, resistivity, magnetoresistivity, and temperature dependence of the upper critical field of Ta 4 Pd 3 Te 16 under pressures up to 16.4 kbar. All measured properties have an anomaly at ~ 2 $-$ 4 kbar pressure range; in particular there is a maximum in T c and upper critical field, H c2 ( 0 ), and minimum in low temperature, normal state resistivity. Qualitatively, the data can be explained considering the density of state at the Fermi level as a dominant parameter.
Melting line of polymeric nitrogen
NASA Astrophysics Data System (ADS)
Yakub, L. N.
2013-05-01
We made an attempt to predict location of the melting line of polymeric nitrogen using two equations for Helmholtz free energy: proposed earlier for cubic gauche-structure and developed recently for liquid polymerized nitrogen. The P-T relation, orthobaric densities and latent heat of melting were determined using a standard double tangent construction. The estimated melting temperature decreases with increasing pressure, alike the temperature of molecular-nonmolecular transition in solid. We discuss the possibility of a triple point (solid-molecular fluid-polymeric fluid) at ˜80 GPa and observed maximum of melting temperature of nitrogen.
Estimating Arrhenius parameters using temperature programmed molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imandi, Venkataramana; Chatterjee, Abhijit, E-mail: abhijit@che.iitb.ac.in
2016-07-21
Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight variousmore » aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.« less
Two-way shape memory behavior of semi-crystalline elastomer under stress-free condition
NASA Astrophysics Data System (ADS)
Qian, Chen; Dong, Yubing; Zhu, Yaofeng; Fu, Yaqin
2016-08-01
Semi-crystalline shape memory polymers exhibit two-way shape memory effect (2W-SME) under constant stresses through crystallization-induced elongation upon cooling and melting-induced constriction upon heating. The applied constant stress influenced the prediction and usability of 2W-SME in practical applications without any external force. Here the reversible shape transition in EVA-shaped memory polymer was quantitative analyzed under a suitable temperature range and external stress-free condition. The fraction of reversible strain increased with increasing upper temperature (T high) within the temperature range and reached the maximum value of 13.62% at 70 °C. However, reversible strain transition was almost lost when T high exceeded 80 °C because of complete melting of crystalline scaffold, known as the latent recrystallization template. The non-isothermal annealing of EVA 2W-SMP under changing circulating temperatures was confirmed. Moreover, the orientation of crystallization was retained at high temperatures. These findings may contribute to design an appropriate shape memory protocol based on application-specific requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xian, Fenglin; Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra 2601; Ye, Jiandong, E-mail: yejd@nju.edu.cn
In this work, anion alloying is engineered in ZnON nanocrystalline films, and the resultant evolution of the structural transition, subgap states, and carrier transport is investigated. A broad distribution of sub-gap states above the valence band maximum is introduced by nitrogen due to the hybridization of N 2p and O 2p orbitals. The phase transition from partially amorphous states to full crystallinity occurs above a characteristic growth temperature of 100 °C, and the localized states are suppressed greatly due to the reduction of nitrogen composition. The electronic properties are dominated by grain boundary scattering and electron transport across boundary barriers throughmore » thermal activation at band edge states at high temperatures. The conductivity below 130 K exhibits a weak temperature dependence, which is a signature of variable-range hopping conduction between localized states introduced by nitrogen incorporation.« less
Pseudogap Behavior of the Nuclear Spin-Lattice Relaxation Rate in FeSe Probed by 77Se-NMR
NASA Astrophysics Data System (ADS)
Shi, Anlu; Arai, Takeshi; Kitagawa, Shunsaku; Yamanaka, Takayoshi; Ishida, Kenji; Böhmer, Anna E.; Meingast, Christoph; Wolf, Thomas; Hirata, Michihiro; Sasaki, Takahiko
2018-01-01
We conducted 77Se-nuclear magnetic resonance studies of the iron-based superconductor FeSe in magnetic fields of 0.6 to 19 T to investigate the superconducting and normal-state properties. The nuclear spin-lattice relaxation rate divided by the temperature (T1T)-1 increases below the structural transition temperature Ts but starts to be suppressed below T*, well above the superconducting transition temperature Tc(H), resulting in a broad maximum of (T1T)-1 at Tp(H). This is similar to the pseudogap behavior in optimally doped cuprate superconductors. Because T* and Tp(H) decrease in the same manner as Tc(H) with increasing H, the pseudogap behavior in FeSe is ascribed to superconducting fluctuations, which presumably originate from the theoretically predicted preformed pair above Tc(H).
NASA Astrophysics Data System (ADS)
Kulakhmetov, Marat; Gallis, Michael; Alexeenko, Alina
2016-05-01
Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O2 + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociation exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500-20 000 K temperature range. The VRT model captures 80 × 106 state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000-15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.
Magnetic properties and magnetocaloric effect of HoCo3B2 compound
NASA Astrophysics Data System (ADS)
Zheng, X. Q.; Xu, J. W.; Zhang, H.; Zhang, J. Y.; Wang, S. G.; Zhang, Y.; Xu, Z. Y.; Wang, L. C.; Shen, B. G.
2018-05-01
A sample of HoCo3B2 compound was synthesized, and the magnetic and MCE properties were investigated. Compound shows a change corresponding to R-R (R = rare earth) sublattice magnetic order transition and the transition temperature is determined to be 11.8 K (TC). The characteristic of Arrott plots with positive slope around TC was observed, indicating a second-order phase transition. Based on isothermal magnetization data, together with Maxwell's relationship, the magnetic entropy change (-ΔSM) was calculated. The maximum -ΔSM reaches 7.8, 12.7 and 14.4 J/kg K for field range of 0-2 T, 0-5 T and 0-7 T, respectively. Accordingly, the value of RC (refrigerant capacity) is 99, 289 and 432 J/kg for above field ranges. The large MCE of HoCo3B2 compound indicates its potential application for magnetic refrigeration in low temperature range.
Fusion silicide coatings for tantalum alloys.
NASA Technical Reports Server (NTRS)
Warnock, R. V.; Stetson, A. R.
1972-01-01
Calculation of the performance of fusion silicide coatings under simulated atmospheric reentry conditions to a maximum temperature of 1810 K (2800 F). Both recently developed and commercially available coatings are included. Data are presented on oxidation rate with and without intentional defecting, the influence of the coatings on the ductile-brittle bend transition temperature, and the mechanical properties. Coatings appear capable of affording protection for at least 100 simulated cycles to 2600 F and 63 cycles to 2800 F.
NASA Astrophysics Data System (ADS)
Panagoulia, Dionysia; Vlahogianni, Eleni I.
2018-06-01
A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to effective proactive management of extreme phenomena. The impacts of the findings on the predictability of the extreme daily mean areal temperature patterns are also commented.
Lyons, John; Zorn, Troy; Stewart, Jana S.; Seelbach, Paul W.; Wehrly, Kevin; Wang, Lizhu
2009-01-01
Coolwater streams, which are intermediate in character between coldwater “trout” streams and more diverse warmwater streams, occur widely in temperate regions but are poorly understood. We used modeled water temperature data and fish assemblage samples from 371 stream sites in Michigan and Wisconsin to define, describe, and map coolwater streams and their fish assemblages. We defined coolwater streams as ones having summer water temperatures suitable for both coldwater and warmwater species and used the observed distributions of the 99 fish species at our sites to identify coolwater thermal boundaries. Coolwater streams had June-through-August mean water temperatures of 17.0–20.5°C, July mean temperatures of 17.5–21.0°C, and maximum daily mean temperatures of 20.7–24.6°C. We delineated two subclasses of coolwater streams: “cold transition” (having July mean water temperatures of 17.5–19.5°C) and “warm transition” (having July mean temperatures of 19.5–21.0°C). Fish assemblages in coolwater streams were variable and lacked diagnostic species but were generally intermediate in species richness and overlapped in composition with coldwater and warmwater streams. In cold-transition streams, coldwater (e.g., salmonids and cottids) and transitional species (e.g., creek chub Semotilus atromaculatus, eastern blacknose dace Rhynichthys atratulus, white sucker Catostomus commersonii, and johnny darter Etheostoma nigrum) were common and warmwater species (e.g., ictalurids and centrarchids) were uncommon; in warm-transition streams warmwater and transitional species were common and coldwater species were uncommon. Coolwater was the most widespread and abundant thermal class in Michigan and Wisconsin, comprising 65% of the combined total stream length in the two states (cold-transition streams being more common than warm-transition ones). Our approach can be used to identify and characterize coolwater streams elsewhere in the temperate region, benefiting many aspects of fisheries management and environmental protection.
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.; Wilder, M. C.
2006-01-01
The latest developments in a research effort to advance techniques for measuring surface temperatures and heat fluxes and determining transition locations on projectiles in hypersonic free flight in a ballistic range are described. Spherical and hemispherical titanium projectiles were launched at muzzle velocities of 4.6-5.8 km/sec into air and nitrogen at pressures of 95-380 Torr. Hemisphere models with diameters of 2.22 cm had maximum pitch and yaw angles of 5.5-8 degrees and 4.7-7 degrees, depending on whether they were launched using an evacuated launch tube or not. Hemisphere models with diameters of 2.86 cm had maximum pitch and yaw angles of 2.0-2.5 degrees. Three intensified-charge-coupled-device (ICCD) cameras with wavelength sensitivity ranges of 480-870 nm (as well as one infrared camera with a wavelength sensitivity range of 3 to 5 microns), were used to obtain images of the projectiles in flight. Helium plumes were used to remove the radiating gas cap around the projectiles at the locations where ICCD camera images were taken. ICCD and infrared (IR) camera images of titanium hemisphere projectiles at velocities of 4.0-4.4 km/sec are presented as well as preliminary temperature data for these projectiles. Comparisons were made of normalized temperature data for shots at approx.190 Torr in air and nitrogen and with and without the launch tube evacuated. Shots into nitrogen had temperatures 6% lower than those into air. Evacuation of the launch tube was also found to lower the projectile temperatures by approx.6%.
Cumillaf, Juan P; Blanc, Johnny; Paschke, Kurt; Gebauer, Paulina; Díaz, Fernando; Re, Denisse; Chimal, María E; Vásquez, Jorge; Rosas, Carlos
2016-02-15
Optimum temperatures can be measured through aerobic scope, preferred temperatures or growth. A complete thermal window, including optimum, transition (Pejus) and critical temperatures (CT), can be described if preferred temperatures and CT are defined. The crustacean Hemigrapsus crenulatus was used as a model species to evaluate the effect of acclimation temperature on: (i) thermal preference and width of thermal window, (ii) respiratory metabolism, and (iii) haemolymph proteins. Dependant on acclimation temperature, preferred temperature was between 11.8°C and 25.2°C while CT was found between a minimum of 2.7°C (CTmin) and a maximum of 35.9°C (CTmax). These data and data from tropical and temperate crustaceans were compared to examine the association between environmental temperature and thermal tolerance. Temperate species have a CTmax limit around 35°C that corresponded with the low CTmax limit of tropical species (34-36°C). Tropical species showed a CTmin limit around 9°C similar to the maximum CTmin of temperate species (5-6°C). The maximum CTmin of deep sea species that occur in cold environments (2.5°C) matched the low CTmin values (3.2°C) of temperate species. Results also indicate that the energy required to activate the enzyme complex (Ei) involved in respiratory metabolism of ectotherms changes along the latitudinal gradient of temperature. © 2016. Published by The Company of Biologists Ltd.
Anisotropic magnetocaloric effect in single crystals of CrI3
NASA Astrophysics Data System (ADS)
Liu, Yu; Petrovic, C.
2018-05-01
We report a systematic investigation of dc magnetization and ac susceptibility, as well as anisotropic magnetocaloric effect in bulk CrI3 single crystals. A second-stage magnetic transition was observed just below the Curie temperature Tc, indicating a two-step magnetic ordering. The low temperature thermal demagnetization could be well fitted by the spin-wave model rather than the single-particle model, confirming its localized magnetism. The maximum magnetic entropy change -Δ SMmax˜5.65 J kg-1K-1 and the corresponding adiabatic temperature change Δ Tad˜2.34 K are achieved from heat capacity analysis with the magnetic field up to 9 T. Anisotropy of Δ SM(T ,H ) was further investigated by isothermal magnetization, showing that the difference of -Δ SMmax between the a b plane and the c axis reaches a maximum value ˜1.56 J kg-1K-1 with the field change of 5 T. With the scaling analysis of Δ SM , the rescaled Δ SM(T ,H ) curves collapse onto a universal curve, indicating a second-order type of the magnetic transition. Furthermore, the -Δ SMmax follows the power law of Hn with n =0.64 (1 ) , and the relative cooling power depends on Hm with m =1.12 (1 ) .
NASA Astrophysics Data System (ADS)
Diez-Jimenez, E.; Perez-Diaz, J. L.; Ferdeghini, C.; Canepa, F.; Bernini, C.; Cristache, C.; Sanchez-Garcia-Casarrubios, J.; Valiente-Blanco, I.; Ruiz-Navas, E. M.; Martínez-Rojas, J. A.
2018-04-01
An increasing number of cryogenic devices may benefit from the use of Nd2Fe14B permanent magnets. However, it is necessary to precisely know their behavior because magnetization varies significantly due to Spin Reorientation Transition. In this work, magnetic and morphological characterization of Nd2Fe14B commercial polycrystalline magnets with different quality grades from 5 to 300 K is provided. A set of magnets ranging from N35 to N52 quality have been analyzed. Mean grain dimension as well as material composition elements are provided. Higher quality magnets show smaller mean grain dimensions. Regarding cryogenic temperatures, the well know spin transition effect appears in all the magnets as expected, however, the transition temperature occurs at different temperatures in a range from 112 to 120 K which is lower than those obtained for single crystal samples. Moreover, the relative variation of the remanence from 300 to 5 K is lower than 4% while the maximum expected variation is in average 11%. As extra information, the same analyzes are provided for additional quality grades N40M, N40S, N40SH and N40UH.
Applications of a New England stream temperature model to ...
We have applied a statistical stream network (SSN) model to predict stream thermal metrics (summer monthly medians, growing season maximum magnitude and timing, and daily rates of change) across New England nontidal streams and rivers, excluding northern Maine watersheds that extend into Canada (Detenbeck et al., in review). We excluded stream temperature observations within one kilometer downstream of dams from our model development, so our predictions for those reaches represent potential thermal regimes in the absence of dam effects. We used stream thermal thresholds for mean July temperatures delineating transitions between coldwater, transitional coolwater, and warmwater fish communities derived by Beauchene et al. (2014) to classify expected stream and river thermal regimes across New England. Within the model domain and based on 2006 land-use and air temperatures, the model predicts that 21.8% of stream + river kilometers would support coldwater fish communities (mean July water temperatures 22.3 degrees C mean July temperatures). Application of the model allows us to assess potential condition given full riparian zone restoration as well as potential loss of cold or coolwater habitat given loss of riparian shading. Given restoration of all ripa
NASA Astrophysics Data System (ADS)
Eisenberg, David P.; Steif, Paul S.; Rabin, Yoed
2014-11-01
This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.
NASA Astrophysics Data System (ADS)
Basso, Vittorio; Russo, Florence; Gerard, Jean-François; Pruvost, Sébastien
2013-11-01
We investigated the entropy change in poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) films in the temperature range between -5 ∘C and 60 ∘C by direct heat flux calorimetry using Peltier cell heat flux sensors. At the electric field E = 50 MVm-1 the isothermal entropy change attains a maximum of |Δs|=4.2 Jkg-1K-1 at 31∘C with an adiabatic temperature change ΔTad=1.1 K. At temperatures below the maximum, in the range from 25 ∘C to -5 ∘C, the entropy change |Δs | rapidly decreases and the unipolar P vs E relationship becomes hysteretic. This phenomenon is interpreted as the fact that the fluctuations of the polar segments of the polymer chain, responsible for the electrocaloric effect ECE in the polymer, becomes progressively frozen below the relaxor transition.
T-p phase diagrams and the barocaloric effect in materials with successive phase transitions
NASA Astrophysics Data System (ADS)
Gorev, M. V.; Bogdanov, E. V.; Flerov, I. N.
2017-09-01
An analysis of the extensive and intensive barocaloric effect (BCE) at successive structural phase transitions in some complex fluorides and oxyfluorides was performed. The high sensitivity of these compounds to a change in the chemical pressure allows one to vary the succession and parameters of the transformations (temperature, entropy, baric coefficient) over a wide range and obtain optimal values of the BCE. A comparison of different types of schematic T-p phase diagrams with the complicated T( p) dependences observed experimentally shows that in some ranges of temperature and pressure the BCE in compounds undergoing successive transformations can be increased due to a summation of caloric effects associated with distinct phase transitions. The maximum values of the extensive and intensive BCE in complex fluorides and oxyfluorides can be realized at rather low pressure (0.1-0.3 GPa). In a narrow temperature range around the triple points conversion from conventional BCE to inverse BCE is observed, which is followed by a gigantic change of both \\vertΔ S_BCE\\vert and \\vertΔ T_AD\\vert .
NASA Astrophysics Data System (ADS)
Akdoǧan, E. K.; Kerman, K.; Abazari, M.; Safari, A.
2008-03-01
We study the temperature dependence of dielectric constant (K) and spontaneous polarization (Ps) in the range of -95-200°C. Cubic (C)-tetragonal (T) and T-orthorhombic (O) transitions are observed at 264 and 25°C, respectively. The Curie-Weiss temperature of C-T transition is 249°C, indicating it is first order. X-ray data indicate T-O phase coexistence at 25°C. A singularity in Ps at 25°C and a T-O phase coexistence spanning 25-31°C was observed, wherein Ps increases from 17×10-2C /m2 at 31°Cto23×10-2C/m2 25°C. The transition at 25°C appears diffusionless and polymorphic with martensite start and finish temperatures of 31 and 25°C, respectively. The maximum in d33 is 345pC/N and is attributed to the instability at 25°C, where Ps and K show singularity.
Enhanced electrocaloric effect in displacive-type organic ferroelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, L. J., E-mail: dinglinjie82@126.com; Zhong, Y.; Fan, S. W.
2015-08-07
We explore the intrinsic feature of electrocaloric effect (ECE) accompanied by ferroelectric (FE)-paraelectric (PE) transition for displacive-type organic ferroelectrics using Green's function theory. It is demonstrated that decreasing elastic constant K or increasing spin-lattice coupling λ can enhance the ECE, as well as polarization P and transition temperature T{sub C}. Indeed, one expects that the optimal operating temperature for solid-state refrigeration is around room temperature, at which the ECE achieves its maximum. As T{sub C} is tuned to ∼310 K, it presents larger ECE response and remanent polarization with lower coercive field for smaller K value, suggesting that well flexible displacive-typemore » organic ferroelectrics are excellent candidates both for electric cooling and data storage in the design of nonvolatile FE random-access memories. Furthermore, in an electric field, it provides a bridge between a Widom line that denotes FE-PE crossover above T{sub C} and a metaelectric transition line below T{sub C} that demonstrates an FE switching behavior with an antiparallel field.« less
Antiferromagnetism and phase diagram in ammoniated alkali fulleride salts
Takenobu; Muro; Iwasa; Mitani
2000-07-10
Intercalation of neutral ammonia molecules into trivalent face-centered-cubic (fcc) fulleride superconductors induces a dramatic change in electronic states. Monoammoniated alkali fulleride salts (NH3)K3-xRbxC60, forming an isostructural orthorhombic series, undergo an antiferromagnetic transition, which was found by the electron spin resonance experiment. The Neel temperature first increases with the interfullerene spacing and then decreases for (NH3)Rb3C60, forming a maximum at 76 K. This feature is explained by the generalized phase diagram of Mott-Hubbard transition with an antiferromagnetic ground state.
Spectral functions at small energies and the electrical conductivity in hot quenched lattice QCD.
Aarts, Gert; Allton, Chris; Foley, Justin; Hands, Simon; Kim, Seyong
2007-07-13
In lattice QCD, the maximum entropy method can be used to reconstruct spectral functions from Euclidean correlators obtained in numerical simulations. We show that at finite temperature the most commonly used algorithm, employing Bryan's method, is inherently unstable at small energies and gives a modification that avoids this. We demonstrate this approach using the vector current-current correlator obtained in quenched QCD at finite temperature. Our first results indicate a small electrical conductivity above the deconfinement transition.
The Blume-Capel model on hierarchical lattices: Exact local properties
NASA Astrophysics Data System (ADS)
Rocha-Neto, Mário J. G.; Camelo-Neto, G.; Nogueira, E., Jr.; Coutinho, S.
2018-03-01
The local properties of the spin one ferromagnetic Blume-Capel model defined on hierarchical lattices with dimension two and three are obtained by a numerical recursion procedure and studied as functions of the temperature and the reduced crystal-field parameter. The magnetization and the density of sites in the configuration S = 0 state are carefully investigated at low temperature in the region of the phase diagram that presents the phenomenon of phase reentrance. Both order parameters undergo transitions from the ferromagnetic to the ordered paramagnetic phase with abrupt discontinuities that decrease along the phase boundary at low temperatures. The distribution of magnetization in a typical profile was determined on the transition line presenting a broad multifractal spectrum that narrows towards the fractal limit (single point) as the discontinuities of the order parameters grow towards a maximum. The amplitude of the order-parameter discontinuities and the narrowing of the multifractal spectra were used to delimit the low temperature interval for the possible locus of the tricritical point.
Studies on Se75Te25-x In x chalcogenide glasses; a material for phase change memory
NASA Astrophysics Data System (ADS)
Srivastava, Archana; Tiwari, S. N.; Alvi, M. A.; Khan, Shamshad A.
2018-01-01
This research paper describes the non-isothermal crystallization during phase transformation in Se75Te25-x In x glasses synthesized by melt quenching method. For crystallization studies in these glasses, non-isothermal differential scanning calorimetry (DSC) measurements was done at constant heating rates of 5, 10, 15, 20 and 25 K min-1 in air atmosphere. The glass transition temperature (T g), on-set crystallization temperature (T c), peak crystallization temperature (T p) and melting temperatures (T m) were derived by DSC thermograms. Using various thermal parameters the activation energy of glass transition and crystallization were determined by using Kissinger, Moynihan and Ozawa approaches and found to be in good agreement. The value of the activation energy of glass transition (ΔE t) was found to be minimum for Se75Te19In6 alloys confirming its maximum probability of transition in a metastable state. Thermal stability parameters of Se75Te25-x In x were determined and found to be increased with indium content. High resolution x-ray diffraction and field emission scanning electron microscopy studies were employed for the study of phase transformation in Se75Te25-x In x glasses. The outcome of these studies shows that the investigated materials may be suitable for phase change memory devices.
USSR Report, Physics and Mathematics.
1987-01-14
polarization distribution in these crystals at a temperature above the 70°C phase transition point corresponding to maximum dielectric permittivity ...are derived theoretically and matched with experimental data. The theory is based on the relation between complex dielectric permittivity and...Kramers-Heisenberg relation for polarizability. Both real and imaginary parts of dielectric permittivity are evaluated, assuming a valence band fully
Analysis of crystallographic preferred orientations of experimentally deformed Black Hills Quartzite
NASA Astrophysics Data System (ADS)
Kilian, Rüdiger; Heilbronner, Renée
2017-10-01
The crystallographic preferred orientations (textures) of three samples of Black Hills Quartzite (BHQ) deformed experimentally in the dislocation creep regimes 1, 2 and 3 (according to Hirth and Tullis, 1992) have been analyzed using electron backscatter diffraction (EBSD). All samples were deformed to relatively high strain at temperatures of 850 to 915 °C and are almost completely dynamically recrystallized. A texture transition from peripheral [c] axes in regime 1 to a central [c] maximum in regime 3 is observed. Separate pole figures are calculated for different grain sizes, aspect ratios and long-axis trends of grains, and high and low levels of intragranular deformation intensity as measured by the mean grain kernel average misorientation (gKAM). Misorientation relations are analyzed for grains of different texture components (named Y, B, R and σ grains, with reference to previously published prism, basal, rhomb and σ1 grains). Results show that regimes 1 and 3 correspond to clear end-member textures, with regime 2 being transitional. Texture strength and the development of a central [c]-axis maximum from a girdle distribution depend on deformation intensity at the grain scale and on the contribution of dislocation creep, which increases towards regime 3. Adding to this calculations of resolved shear stresses and misorientation analysis, it becomes clear that the peripheral [c]-axis maximum in regime 1 is not due to deformation by basal a slip. Instead, we interpret the texture transition as a result of different texture forming processes, one being more efficient at high stresses (nucleation or growth of grains with peripheral [c] axes), the other depending on strain (dislocation glide involving prism and rhomb a slip systems), and not as a result of temperature-dependent activity of different slip systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulakhmetov, Marat, E-mail: mkulakhm@purdue.edu; Alexeenko, Alina, E-mail: alexeenk@purdue.edu; Gallis, Michael, E-mail: magalli@sandia.gov
Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O{sub 2} + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociationmore » exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500–20 000 K temperature range. The VRT model captures 80 × 10{sup 6} state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000–15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.« less
On relaxation nature of glass transition in amorphous materials
NASA Astrophysics Data System (ADS)
Sanditov, Damba S.; Ojovan, Michael I.
2017-10-01
A short review on relaxation theories of glass transition is presented. The main attention is paid to modern aspects of the glass transition equation qτg = C, suggested by Bartenev in 1951 (q - cooling rate of the melt, τg - structural relaxation time at the glass transition temperature Tg). This equation represents a criterion of structural relaxation at transition from liquid to glass at T = Tg (analogous to the condition of mechanical relaxation ωτ = 1, where the maximum of mechanical loss is observed). The empirical parameter С = δTg has the meaning of temperature range δTg that characterizes the liquid-glass transition. Different approaches of δTg calculation are reviewed. In the framework of the model of delocalized atoms a modified kinetic criterion of glass transition is proposed (q/Tg)τg = Cg, where Cg ≅ 7·10-3 is a practically universal dimensionless constant. It depends on fraction of fluctuation volume fg, which is frozen at the glass transition temperature Cg = fg/ln(1/fg). The value of fg is approximately constant fg ≅ 0.025. At Tg the process of atom delocalization, i.e. its displacement from the equilibrium position, is frozen. In silicate glasses atom delocalization is reduced to critical displacement of bridge oxygen atom in Si-O-Si bridge necessary to switch a valence bond according to Muller and Nemilov. An equation is derived for the temperature dependence of viscosity of glass-forming liquids in the wide temperature range, including the liquid-glass transition and the region of higher temperatures. Notion of (bridge) atom delocalization is developed, which is related to necessity of local low activation deformation of structural network for realization of elementary act of viscous flow - activated switch of a valence (bridge) bond. Without atom delocalization (;trigger mechanism;) a switch of the valence bond is impossible and, consequently, the viscous flow. Thus the freezing of atom delocalization process at low temperatures, around Tg, leads to the cease of the viscous flow and transition of a melt to a glassy state. This occurs when the energy of disordered lattice thermal vibrations averaged to one atom becomes equal or less than the energy of atom delocalization. The Bartenev equation for cooling rate dependence of glass transition temperature Tg = Tg(q) is discussed. The value of fg calculated from the data on the Tg(q) dependence coincides with result of the fg calculation using the data on viscosity near the glass transition. Derivation of the Bartenev equation with the account of temperature dependence of activation energy of glass transition process is considered. The obtained generalized relation describes the Tg(q) dependence in a wider interval of the cooling rate compared Bartenev equation. Experimental data related to standard cooling rate q = 3 K/min were used in this work.
Transition Experiments on Large Bluntness Cones with Distributed Roughness in Hypersonic Flight
NASA Technical Reports Server (NTRS)
Reda, Daniel. C.; Wilder, Michael C.; Prabhu, Dinesh K.
2012-01-01
Large bluntness cones with smooth nosetips and roughened frusta were flown in the NASA Ames hypersonic ballistic range at a Mach number of 10 through quiescent air environments. Global surface intensity (temperature) distributions were optically measured and analyzed to determine transition onset and progression over the roughened surface. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted to predict values of key dimensionless parameters used to correlate transition on such configurations in hypersonic flow. For these large bluntness cases, predicted axial distributions of the roughness Reynolds number showed (for each specified freestream pressure) that this parameter was a maximum at the physical beginning of the roughened zone and decreased with increasing run length along the roughened surface. Roughness-induced transition occurred downstream of this maximum roughness Reynolds number location, and progressed upstream towards the beginning of the roughened zone as freestream pressure was systematically increased. Roughness elements encountered at the upstream edge of the roughened frusta thus acted like a finite-extent trip array, consistent with published results concerning the tripping effectiveness of roughness bands placed on otherwise smooth surfaces.
Lifshitz transition and thermoelectric properties of bilayer graphene
NASA Astrophysics Data System (ADS)
Suszalski, Dominik; Rut, Grzegorz; Rycerz, Adam
2018-03-01
This is a numerical study of thermoelectric properties of ballistic bilayer graphene in the presence of a trigonal warping term in the effective Hamiltonian. We find, in the mesoscopic samples of the length L >10 μ m at sub-Kelvin temperatures, that both the Seebeck coefficient and the Lorentz number show anomalies (the additional maximum and minimum, respectively) when the electrochemical potential is close to the Lifshitz energy, which can be attributed to the presence of the van Hove singularity in a bulk density of states. At higher temperatures the anomalies vanish, but measurable quantities characterizing the remaining maximum of the Seebeck coefficient still unveil the presence of massless Dirac fermions and make it possible to determine the trigonal warping strength. Behavior of the thermoelectric figure of merit (Z T ) is also discussed.
Early warming of tropical South America at the last glacial-interglacial transition.
Seltzer, G O; Rodbell, D T; Baker, P A; Fritz, S C; Tapia, P M; Rowe, H D; Dunbar, R B
2002-05-31
Glaciation in the humid tropical Andes is a sensitive indicator of mean annual temperature. Here, we present sedimentological data from lakes beyond the glacial limit in the tropical Andes indicating that deglaciation from the Last Glacial Maximum led substantial warming at high northern latitudes. Deglaciation from glacial maximum positions at Lake Titicaca, Peru/Bolivia (16 degrees S), and Lake Junin, Peru (11 degrees S), occurred 22,000 to 19,500 calendar years before the present, several thousand years before the Bølling-Allerød warming of the Northern Hemisphere and deglaciation of the Sierra Nevada, United States (36.5 degrees to 38 degrees N). The tropical Andes deglaciated while climatic conditions remained regionally wet, which reflects the dominant control of mean annual temperature on tropical glaciation.
NASA Astrophysics Data System (ADS)
Futko, S. I.; Shulitski, B. G.; Labunov, V. A.; Ermolaevaa, E. M.
2015-03-01
On the basis of the kinetic model of synthesis of carbon nanotubes on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons, the parametric dependences of characteristics of arrays of vertically oriented nanotubes on the temperature of their synthesis, the concentration of acetylene in a reactor, and the diameter of the catalyst nanoparticles were investigated. It is shown that the maximum on the temperature dependence of the rate of growth of carbon nanotubes, detected in experiments at a temperature of ~700oC is due to the competing processes of increasing the catalytic activity of iron nanoparticles and decreasing the acetylene concentration because of the signifi cant gas-phase decomposition of acetylene in the reactor before it enters the substrate with the catalyst. Our calculations have shown that the indicated maximum arises near the transition point separating the low-temperature region where multiwall nanotubes are predominantly synthesized from the higher-temperature region of generation of single-wall nanotubes in the process of chemical vapor deposition of hydrocarbons.
Pressure-induced superconductivity in a three-dimensional topological material ZrTe5
Zhou, Yonghui; Wu, Juefei; Ning, Wei; Li, Nana; Du, Yongping; Chen, Xuliang; Zhang, Ranran; Chi, Zhenhua; Wang, Xuefei; Zhu, Xiangde; Lu, Pengchao; Ji, Cheng; Wan, Xiangang; Yang, Zhaorong; Sun, Jian; Yang, Wenge; Tian, Mingliang; Zhang, Yuheng; Mao, Ho-kwang
2016-01-01
As a new type of topological materials, ZrTe5 shows many exotic properties under extreme conditions. Using resistance and ac magnetic susceptibility measurements under high pressure, while the resistance anomaly near 128 K is completely suppressed at 6.2 GPa, a fully superconducting transition emerges. The superconducting transition temperature Tc increases with applied pressure, and reaches a maximum of 4.0 K at 14.6 GPa, followed by a slight drop but remaining almost constant value up to 68.5 GPa. At pressures above 21.2 GPa, a second superconducting phase with the maximum Tc of about 6.0 K appears and coexists with the original one to the maximum pressure studied in this work. In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopy combined with theoretical calculations indicate the observed two-stage superconducting behavior is correlated to the structural phase transition from ambient Cmcm phase to high-pressure C2/m phase around 6 GPa, and to a mixture of two high-pressure phases of C2/m and P-1 above 20 GPa. The combination of structure, transport measurement, and theoretical calculations enable a complete understanding of the emerging exotic properties in 3D topological materials under extreme environments. PMID:26929327
Alpizar-Reyes, E; Castaño, J; Carrillo-Navas, H; Alvarez-Ramírez, J; Gallardo-Rivera, R; Pérez-Alonso, C; Guadarrama-Lezama, A Y
2018-03-01
Freeze-dried faba bean ( Vicia faba L.) protein adsorption isotherms were determined at 25, 35 and 40 °C and fitted with the Guggenheim-Anderson-de Boer model. The pore radius of protein was in the range of 0.87-6.44 nm, so that they were considered as micropores and mesopores. The minimum integral entropy ranged between 4.33 and 4.44 kg H 2 O/100 kg d.s., was regarded as the point of maximum of stability. The glass transition temperature of the protein equilibrated at the different conditions of storage was determined, showing that the protein remained in glassy state for all cases. The protein showed compact and rigid structures, evidenced by microscopy analysis.
Simpson, James J.; Hufford, Gary L.; Fleming, Michael D.; Berg, Jared S.; Ashton, J.B.
2002-01-01
Mean monthly climate maps of Alaskan surface temperature and precipitation produced by the parameter-elevation regression on independent slopes model (PRISM) were analyzed. Alaska is divided into interior and coastal zones with consistent but different climatic variability separated by a transition region; it has maximum interannual variability but low long-term mean variability. Pacific decadal oscillation (PDO)- and El Nino Southern Oscillation (ENSO)-type events influence Alaska surface temperatures weakly (1-2/spl deg/C) statewide. PDO has a stronger influence than ENSO on precipitation but its influence is largely localized to coastal central Alaska. The strongest influence of Arctic oscillation (AO) occurs in northern and interior Alaskan precipitation. Four major ecosystems are defined. A major eco-transition zone occurs between the interior boreal forest and the coastal rainforest. Variability in insolation, surface temperature, precipitation, continentality, and seasonal changes in storm track direction explain the mapped ecosystems. Lack of westward expansion of the interior boreal forest into the western shrub tundra is influenced by the coastal marine boundary layer (enhanced cloud cover, reduced insolation, cooler surface and soil temperatures).
NASA Astrophysics Data System (ADS)
Rolandone, F.; Bürgmann, R.; Nadeau, R.; Freed, A.
2003-12-01
We have demonstrated that in the aftermath of large earthquakes, the depth extent of aftershocks shows an immediate deepening from pre-earthquake levels, followed by a time-dependent postseismic shallowing. We use these seismic data to constrain the variation of the depth of the seismic-aseismic transition with time throughout the earthquake cycle. Most studies of the seismic-aseismic transition have focussed on the effect of temperature and/or lithology on the transition either from brittle faulting to viscous flow or from unstable to stable sliding. They have shown that the maximum depth of seismic activity is well correlated with the spatial variations of these two parameters. However, little has been done to examine how the maximum depth of seismogenic faulting varies locally, at the scale of a fault segment, during the course of the earthquake cycle. Geologic and laboratory observations indicate that the depth of the seismic-aseismic transition should vary with strain rate and thus change with time throughout the earthquake cycle. We quantify the time-dependent variations in the depth of seismicity on various strike-slip faults in California before and after large earthquakes. We specifically investigate (1) the deepening of the aftershocks relative to the background seismicity, (2) the time constant of the postseismic shallowing of the deepest earthquakes, and (3) the correlation of the time-dependent pattern with the coseismic slip distribution and the expected stress increase. Together with geodetic measurements, these seismological observations form the basis for developing more sophisticated models for the mechanical evolution of strike-slip shear zones during the earthquake cycle. We develop non-linear viscoelastic models, for which the brittle-ductile transition is not fixed, but varies with assumed temperature and calculated stress gradients. We use them to place constraints on strain rate at depth, on time-dependent rheology, and on the partitioning of deformation between brittle faulting and distributed viscous flow associated with the earthquake cycle.
Condensation of an ideal gas obeying non-Abelian statistics.
Mirza, Behrouz; Mohammadzadeh, Hosein
2011-09-01
We consider the thermodynamic geometry of an ideal non-Abelian gas. We show that, for a certain value of the fractional parameter and at the relevant maximum value of fugacity, the thermodynamic curvature has a singular point. This indicates a condensation such as Bose-Einstein condensation for non-Abelian statistics and we work out the phase transition temperature in various dimensions.
Brown, Justin L; Nair, Lakshmi S; Laurencin, Cato T
2008-08-01
Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter, and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from -8 to 41 degrees C and poly (lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1 mum, respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3 MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. (c) 2007 Wiley Periodicals, Inc.
Brown, Justin L.; Nair, Lakshmi S.; Laurencin, Cato T.
2009-01-01
Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from −8°C to 41oC and poly(lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1µm respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. PMID:18161819
Temperature dependence of electroresistance for La0.67Ba0.33MnO3 manganite
NASA Astrophysics Data System (ADS)
Kumar, Rajesh; Gupta, Ajai K.; Kumar, Vijay; Bhalla, G. L.; Khare, Neeraj
2007-12-01
The influence of dc biasing current on temperature dependence of resistance of La0.67Ba0.33MnO3 bulk sample is reported. A decrease in the resistance (electroresistance) on the application of higher bias current is observed. The electroresistance is maximum at metal insulator transition temperature (TMI) and decreases when the temperature is either increased or decreased from TMI. A two-phase model is proposed to explain the occurrence of electroresistance. The higher bias current leads to an increase in alignment of spins and thus, in turn, leads to an increase in spin stiffness coefficient and decrease in the resistance at TMI.
Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe
NASA Technical Reports Server (NTRS)
Abbott, M. R.; Denman, K. L.; Powell, T. M.; Richerson, P. J.; Richards, R. C.; Goldman, C. R.
1984-01-01
Chlorophyll-temperature profiles were measured across Lake Tahoe about every 10 days from April through July 1980. Analysis of the 123 profiles and associated productivity and nutrient data identified three important processes in the formation and dynamics of the deep chlorophyll maximum (DCM): turbulent diffusion, nutrient supply rate, and light availability. Seasonal variation in these three processes resulted in three regimes: a diffusion-dominated regime with a weak DCM, a variable-mixing regime with a pronounced, nutrient supply-dominated DCM, and a stable regime with a deep, moderate light availability-dominated DCM. The transition between the first two regimes occurred in about 10 days, the transition between the last two more gradually over about 3 weeks. The degree of spatial variability of the DCM was highest in the second regime and lowest in the third. These data indicate that the DCM in Lake Tahoe is constant in neither time nor space.
NASA Technical Reports Server (NTRS)
Lewis, T. L.; Banner, R. D.
1971-01-01
A flush-mounted microphone on the vertical fin of an X-15 airplane was used to investigate boundary layer transition phenomenon during flights to peak altitudes of approximately 70,000 meters. The flight results were compared with those from wind tunnel studies, skin temperature measurements, and empirical prediction data. The Reynolds numbers determined for the end of transition were consistent with those obtained from wind tunnel studies. Maximum surface-pressure-fluctuation coefficients in the transition region were about an order of magnitude greater than those for fully developed turbulent flow. This was also consistent with wind tunnel data. It was also noted that the power-spectral-density estimates of the surface-pressure fluctuations were characterized by a shift in power from high frequencies to low frequencies as the boundary layer changed from turbulent to laminar flow. Large changes in power at the lowest frequencies appeared to mark the beginning of transition.
A Bayesian Interpretation of First-Order Phase Transitions
NASA Astrophysics Data System (ADS)
Davis, Sergio; Peralta, Joaquín; Navarrete, Yasmín; González, Diego; Gutiérrez, Gonzalo
2016-03-01
In this work we review the formalism used in describing the thermodynamics of first-order phase transitions from the point of view of maximum entropy inference. We present the concepts of transition temperature, latent heat and entropy difference between phases as emergent from the more fundamental concept of internal energy, after a statistical inference analysis. We explicitly demonstrate this point of view by making inferences on a simple game, resulting in the same formalism as in thermodynamical phase transitions. We show that analogous quantities will inevitably arise in any problem of inferring the result of a yes/no question, given two different states of knowledge and information in the form of expectation values. This exposition may help to clarify the role of these thermodynamical quantities in the context of different first-order phase transitions such as the case of magnetic Hamiltonians (e.g. the Potts model).
Transition in the equilibrium distribution function of relativistic particles.
Mendoza, M; Araújo, N A M; Succi, S; Herrmann, H J
2012-01-01
We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.
Transition in the Equilibrium Distribution Function of Relativistic Particles
Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.
2012-01-01
We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed. PMID:22937220
The effect of combination of magnetic field and low temperature on doped quantum wells
NASA Astrophysics Data System (ADS)
de P. Abreu, E.; Serra, R. M.; Emmel, P. D.
2001-10-01
In this work, we study in the optical absorption of lightly doped and compensated GaAs-GaAlAs quantum wells in the presence of applied magnetic field at low temperatures. The maximum values of magnetic field and temperature are chosen to be 10 T and 5 K, respectively. The wave functions and energies of electrons bound to impurities are calculated variationally using hydrogen-like functions. The absorption coefficient is computed through the use of Fermi golden rule and the statistics of this system is made by a self-consistent calculation of the electrostatic potential generated by ionized impurities, while the convergence parameter is the electronic chemical potential. We focus our attention on 1s→2p ± transitions. The results show that the range of frequency absorbed by the system stays unaltered in 1s→2p - transition and changes for the 1s→2p + transition, presenting a shift to higher frequencies as the magnetic field increases. Another important result is the decrease of the absorption coefficient for the lowest part of the frequency range as the temperature decreases, turning the material almost transparent for those frequencies. This kind of information may be useful for further diagnosis of quantum well systems.
Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures
Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.
2012-01-01
Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256
Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.
Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L
2012-09-04
Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Yukio; Abe, Akihisa; Tokushima, Koji
The aim of this study is to examine the difference between shock temperatures predicted by an equation for temperature inside a steady wave front and the Walsh-Christian equation. Calculations are for yttria-doped tetragonal zirconia, which shows an elastic-plastic and a phase transition: Thus the shock waves treated are multiple structure waves composed of one to three steady wave fronts. The evaluated temperature was 3350K at the minimum specific volume of 0.1175 cm{sup 3}/g (or maximum Hugoniot shock pressure of 140GPa) considered in the present examination, while the temperature predicted by the Walsh-Christian equation under identical conditions was 2657K. The causemore » of the large temperature discrepancy is considered to be that the present model treats nonequilibrium states inside steady waves.« less
A room-temperature phase transition in maximum microcline - Heat capacity measurements
Openshaw, R.E.; Hemingway, B.S.; Robie, R.A.; Krupka, K.M.
1979-01-01
The thermal hysteresis in heat capacity measurements recently reported (Openshaw et al., 1976) for a maximum microcline prepared from Amelia albite by fused-salt ion-exchange is described in detail. The hysteresis is characterized by two limiting and reproducible curves which differ by 1% of the measured heat capacities. The lower curve, denoted curve B, represents the values obtained before the sample had been cooled below 300 K. Measurements made immediately after cooling the sample below 250 K followed a second parallel curve, curve A, to at least 370 K. Values intermediate to the two limiting curves were also obtained. The transitions from the B to the A curve were rapid and observed to occur three times. The time required to complete the transition from the A to the B curve increased from 39 h to 102 h in the two times it was observed to occur. The hysteresis is interpreted as evidence of a phase change in microcline at 300??10 K The heat effect associated with the phase change has not been evaluated. ?? 1979 Springer-Verlag.
Magnetic field and pressure dependant resistivity behaviour of MnAs
NASA Astrophysics Data System (ADS)
Satya, A. T.; Amaladass, E. P.; Mani, Awadhesh
2018-04-01
The studies on the effect of magnetic field and external pressure on temperature dependant electrical resistivity behaviour of polycrystalline MnAs have been reported. At ambient pressure, ρ(T) shows a first order magnetic transition associated with change in sign of the temperature coefficient of resistivity from positive in the ferromagnetic (FM) phase to negative in the paramagnetic (PM) phase. The magneto resistance is negative and shows a peak at the FM transition temperature (T C ). The first order hysteresis width decreases with increase in magnetic field and the intersection of extrapolated linear variations of T C with field for the cooling and warming cycles enabled determination of the tricritical point. At high pressures, ρ(T) displays non monotonic variation exhibiting a low temperature minimum ({T}\\min L) and a high temperature maximum ({T}\\max H) accompanying broad thermal hysteresis above {T}\\min L. It is surmised that spin disorder scattering is responsible for the resistivity behaviour above {T}\\min L and the essential features of ρ(T) are qualitatively explained using Kasuya theoretical model. Below the {T}\\min L, ρ(T) follows linear logarithmic temperature dependence similar to the effect occurring due to Kondo type of scattering of conduction electrons with localised moments.
Effects of temperature distribution on boundary layer stability for a circular cone at Mach 10
NASA Astrophysics Data System (ADS)
Rigney, Jeffrey M.
A CFD analysis was conducted on a circular cone at 3 degrees angle of attack at Mach 10 using US3D and STABL 3D to determine the effect of wall temperature on the stability characteristics that lead to laminar-to-turbulent transition. Wall temperature distributions were manipulated while all other flow inputs and geometric qualities were held constant. Laminar-to-turbulent transition was analyzed for isothermal and adiabatic wall conditions, a simulated short-duration wind tunnel case, and several hot-nose temperature distributions. For this study, stability characteristics include maximum N-factor growth and the corresponding frequency range, disturbance spatial amplification rate and the corresponding modal frequency, and stability neutral point location. STABL 3D analysis indicates that temperature distributions typical of those in short-duration hypersonic wind tunnels do not result in any significant difference on the stability characteristics, as compared to an isothermal wall boundary condition. Hypothetical distributions of much greater temperatures at and past the nose tip do show a trend of dampening of second-mode disturbances, most notably on the leeward ray. The most pronounced differences existed between the isothermal and adiabatic cases.
Superconductivity-related insulating behavior.
Sambandamurthy, G; Engel, L W; Johansson, A; Shahar, D
2004-03-12
We present the results of an experimental study of superconducting, disordered, thin films of amorphous indium oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (B). We find that the high-B insulator exhibits activated transport with a characteristic temperature, TI. TI has a maximum value (TpI) that is close to the superconducting transition temperature (Tc) at B=0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. Tp(I) and Tc display opposite dependences on the disorder strength.
Temperature and electrical memory of polymer fibers
NASA Astrophysics Data System (ADS)
Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe
2014-05-01
We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.
Thermostable ferroelectric capacitors based on graded films of barium strontium titanate
NASA Astrophysics Data System (ADS)
Tumarkin, A. V.; Razumov, S. V.; Volpyas, V. A.; Gagarin, A. G.; Odinets, A. A.; Zlygostov, M. V.; Sapego, E. N.
2017-10-01
The influence of the pressure of working gas during the ion-plasma sputtering on properties of deposited ferroelectric barium strontium titanate coatings has been experimentally studied. Variations in the of pressure of the working gas during deposition allows the component composition of the deposited layer to be changed, which leads to the diffusion of the phase transition and the improvement of temperature stability of properties of ferroelectric film. The gradation of layers has an impact on the temperature of the dielectric permittivity maximum, the shape of the dependence of the capacity on temperature, and the capacitance-voltage characteristics of the capacitor structures.
Low-temperature thermal conductivity of ferroelastic Gd 2(MoO 4) 3
NASA Astrophysics Data System (ADS)
Mielcarek, S.; Mróz, B.; Tylczyński, Z.; Piskunowicz, P.; Trybuła, Z.; Bromberek, M.
2001-05-01
Thermal conductivity, k, of GMO crystal has been measured in temperatures from 0.5 to 80 K. The maximum of k appears at 18 K and its value depends on the current domain state of the sample. The ferroelastic domain walls and antiphase boundaries, characterised by elastic inhomogeneities, are responsible for additional phonon scattering and a decrease in the thermal conductivity. The deviation of the temperature dependence of thermal conductivity from the classical Debye theory observed below 4 K is related to the anomalous behaviour of specific heat in the region of the antiferromagnetic transition at T N=0.3 K .
NASA Astrophysics Data System (ADS)
O'Bannon, E. F., III; Vennari, C.; Beavers, C. C. G.; Williams, Q. C.
2015-12-01
Lawsonite (CaAl2Si2O7(OH)2.H2O) is a hydrous mineral with a high overall water content of ~11.5 wt.%. It is a significant carrier of water in subduction zones to depths greater than ~150 km. The structure of lawsonite has been extensively studied under room temperature, high-pressure conditions. However, simultaneous high-pressure and high-temperature experiments are scarce. We have conducted synchrotron-based simultaneous high-pressure and temperature single crystal experiments on lawsonite up to a maximum pressure of 8.4 GPa at ambient and high temperatures. We used a natural sample of lawsonite from Valley Ford, California (Sonoma County). At room pressure and temperature lawsonite crystallizes in the orthorhombic system with Cmcm symmetry. Room temperature compression indicates that lawsonite remains in the orthorhombic Cmcm space group up to ~9.0 GPa. Our 5.0 GPa crystal structure is similar to the room pressure structure, and shows almost isotropic compression of the crystallographic axes. Unit cell parameters at 5.0 GPa are a- 5.7835(10), b- 8.694(2), and c- 13.009(3). Single-crystal measurements at simultaneous high-pressure and temperature (e.g., >8.0 GPa and ~100 oC) can be indexed to a monoclinic P-centered unit cell. Interestingly, a modest temperature increase of ~100 oC appears to initiate the orthorhombic to monoclinic phase transition at ~0.6-2.4 GPa lower than room temperature compression studies have shown. There is no evidence of dehydration or H atom disorder under these conditions. This suggests that the orthorhombic to monoclinic transition could be kinetically impeded at 298 K, and that monoclinic lawsonite could be the dominant water carrier through much of the depth range of upper mantle subduction processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vázquez, Santiago; Davyt, Sebastián; Basbus, Juan F.
2015-08-15
Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} (LSFCu) material was synthetized by combustion method using EDTA as fuel/chelating agent and NH{sub 4}NO{sub 3} as combustion promoter. Structural characterization using thermodiffraction data allowed to determine a reversible phase transition at 425 °C from a low temperature R-3c phase to a high temperature Pm-3m phase and to calculate the thermal expansion coefficient (TEC) of both phases. Important characteristics for cathode application as electronic conductivity and chemical compatibility with Ce{sub 0.9}Gd{sub 0.1}O{sub 2−δ} (CGO) electrolyte were evaluated. LSFCu presented a p-type conductor behavior with maximum conductivity of 135 S cm{sup −1} at 275more » °C and showed a good stability with CGO electrolyte at high temperatures. This work confirmed that as prepared LSFCu has excellent microstructural characteristics and an electrical conductivity between 100 and 60 S cm{sup −1} in the 500–700 °C range which is sufficiently high to work as intermediate temperature Solid Oxide Fuel Cells (IT-SOFCs) cathode. However a change in the thermal expansion coefficient consistent with a small oxygen loss process may affect the electrode-electrolyte interface during fabrication and operation of a SOFC. - Graphical abstract: Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} was prepared by gel combustion and characterized by X-ray thermodiffraction and its conductivity was determined. The phase shows a reversible rhombohedral to cubic structural phase transition at 425 °C and a semiconductor to metallic phase transition at 275 °C. - Highlights: • LSFCu was prepared by gel combustion route using EDTA and NH{sub 4}NO{sub 3}. • LSFCu shows a reversible phase transition at 425 °C from R-3c to Pm-3m phase. • The sample has a maximum conductivity value of 135 S cm{sup −1} at 275 °C. • LSFCu shows a good chemical compatibility with CGO at 900 °C.« less
NASA Astrophysics Data System (ADS)
Das, Soma; Dey, T. K.
2006-08-01
The magnetocaloric effect (MCE) in fine grained perovskite manganites of the type La1-xKxMnO3 (0
The glass and jamming transitions in dense granular matter
NASA Astrophysics Data System (ADS)
Coulais, Corentin; Candelier, Raphaël; Dauchot, Olivier
2013-06-01
Everyday life tells us that matter acquires rigidity either when it cools down, like lava flows which turn into solid rocks, or when it is compacted, like tablets simply formed by powder compression. As suggested by these examples, solidification is not the sole privilege of crystals but also happens for disordered media such as glass formers, granular media, foams, emulsions and colloidal suspensions. Fifteen years ago the "Jamming paradigm" emerged to encompass in a unique framework the glass transition and the emergence of yield stress, two challenging issues in modern condensed matter physics. One must realize how bold this proposal was, given that the glass transition is a finite temperature transition governing the dynamical properties of supercooled liquids, while Jamming is essentially a zero temperature, zero external stress and purely geometric transition which occurs when a given packing of particles reaches the maximum compression state above which particles start to overlap. More recently, the observation of remarkable scaling properties on the approach to jamming led to the conjecture that this zero temperature "critical point" could determine the properties of dense particle systems within a region of the parameter space to be determined, which in principle could include thermal and stressed systems. Fifteen years of intense theoretical and experimental work later, what have we learned about Jamming and glassy dynamics? In this paper, we discuss these issues in the light of the experiments we have been conducting with vibrated grains.
Lipid order, saturation and surface property relationships: a study of human meibum saturation.
Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S
2013-11-01
Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum suggests greater film stability especially under the high shear stress of a blink. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pressure-induced itinerant electron metamagnetism in UCo0.995Os0.005Al ferromagnet
NASA Astrophysics Data System (ADS)
Mushnikov, N. V.; Andreev, A. V.; Arnold, Z.
2018-05-01
The effect of external hydrostatic pressure on magnetic properties is studied for the UCo0.995Os0.005Al single crystal. At ambient pressure, the ground state is ferromagnetic. Even lowest applied pressure 0.11 GPa is sufficient to suppress ferromagnetism. A sharp metamagnetic transition is observed only in magnetic fields along the c axis of the crystal, similar to previously studied itinerant electron metamagnet UCoAl. Temperature dependence of the susceptibility for various pressures shows a broad maximum at Tmax 20 K. The experimental data are analyzed with the theory of itinerant electron metamagnetism, which considers anisotropic thermal fluctuations of the uranium magnetic moment. The observed pressure dependence of the susceptibility at Tmax and the temperature for the disappearance of the first-order metamagnetic transition are explained with the theory.
Magnetic properties and large reversible magnetocaloric effect in Er3Pd2
NASA Astrophysics Data System (ADS)
Maji, Bibekananda; Ray, Mayukh K.; Modak, M.; Mondal, S.; Suresh, K. G.; Banerjee, S.
2018-06-01
The magnetic properties and magnetocaloric effect (MCE) of binary intermetallic compound Er3Pd2 were studied. It exhibits a paramagnetic (PM) to antiferromagnetic (AFM) transition at Néel temperature (TN) = 10 K. A large reversible MCE was observed which is related to a second order magnetic transition from PM to AFM state. The values of maximum magnetic entropy change (- Δ SMmax) and adiabatic temperature change (Δ Tadmax) reach 8.9 J/kg-K and 2.9 K respectively for the field change of 50 kOe with no obvious hysteresis loss. The effective magnetic moment was determined to be 10.16 μB/Er3+, which is notably higher than that of free ion value of Er3+ (9.59 μB), suggests that Pd ions also have considerable amount of magnetic moments in this compound.
Magnetic field dependence of Griffith phase and magnetocaloric effect in Ca0.85Dy0.15MnO3
NASA Astrophysics Data System (ADS)
Nag, Ripan; Sarkar, Bidyut; Pal, Sudipta
2018-03-01
Temperature and Magnetic field dependent magnetization properties of electron doped polycrystalline sample Ca0.85Dy0.15MnO3 (CDMO) prepared by solid state reaction method have been studied. The sample undergoes ferromagnetic to paramagnetic phase transition at about 111k. From the study of magnetic properties in terms of Arrot plots it is observed that the phase transition is of 2nd order. The Griffith phase behavior of the sample is suppressed with the increase of the applied magnetic field strength H. We have estimated the magnetic entropy change from experimental magnetization and temperature data. For a magnetic field change of 8000 Oe, the maximum value of magnetic entropy change arrives at a value of 1.126 J-kg-1 k-1 in this magnetocaloric material.
Correcting Borehole Temperture Profiles for the Effects of Postglacial Warming
NASA Astrophysics Data System (ADS)
Rath, V.; Gonzalez-Rouco, J. F.
2010-09-01
Though the investigation of observed borehole temperatures has proved to be a valuable tool for the reconstruction of ground surface temperature histories, there are many open questions concerning the signifcance and accuracy of the reconstructions from these data. In particular, the temperature signal of the warming after the Last glacial Maximum (LGM) is still present in borehole temperature proiles. It also influences the relatively shallow boreholes used in current paleoclimate inversions to estimate temperature changes in the last centuries. This is shown using Monte Carlo experiments on past surface temperature change, using plausible distributions for the most important parameters, i.e.,amplitude and timing of the glacial-interglacial transition, the prior average temperature, and petrophysical properties. It has been argued that the signature of the last glacial-interglacial transition could be responsible for the high amplitudes of millennial temperature reconstructions. However, in shallow boreholes the additional effect of past climate can reasonably approximated by a linear variation of temperature with depth, and thus be accommodated by a "biased" background heat flow. This is good news for borehole climatology. A simple correction based on subtracting an appropriate prior surface temperature history shows promising results reducing these errors considerably, in particular with deeper boreholes, where the warming signal in heat flow can no longer be approximated linearly. We will show examples from North America and Eurasia, comparing temperatures reduced the proposed algoritm with AOGCM modeling results.
Electronic Structure and Magnetic Phase Transition in Helicoidal Fe1 - x Co x Si Ferromagnets
NASA Astrophysics Data System (ADS)
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2018-02-01
LSDA + U + SO calculations of the electronic structure of helicoidal Fe1 - x Co x Si ferromagnets within the virtual crystal approximation have been supplemented with the consideration of the Dzyaloshinski-Moriya interaction and ferromagnetic fluctuations of the spin density of collective d electrons with the Hubbard interactions at Fe and Co atoms randomly distributed over sites. The magnetic-state equation in the developed model describes helicoidal ferromagnetism and its disappearance accompanied by the occurrence of a maximum of uniform magnetic susceptibility at temperature T C and chiral fluctuations of the local magnetization at T > T C . The reasons why the magnetic contribution to the specific heat at the magnetic phase transition changes monotonically and the volume coefficient of thermal expansion (VCTE) at low temperatures is negative and has a wide minimum near T C have been investigated. It is shown that the VCTE changes sign when passing to the paramagnetic state (at temperature T S ).
Superconductivity at 43K in SmFeAsO1-xFx
NASA Astrophysics Data System (ADS)
Chen, X. H.; Wu, T.; Wu, G.; Liu, R. H.; Chen, H.; Fang, D. F.
2008-06-01
Since the discovery of high-transition-temperature (high-Tc) superconductivity in layered copper oxides, extensive effort has been devoted to exploring the origins of this phenomenon. A Tc higher than 40K (about the theoretical maximum predicted from Bardeen-Cooper-Schrieffer theory), however, has been obtained only in the copper oxide superconductors. The highest reported value for non-copper-oxide bulk superconductivity is Tc = 39K in MgB2 (ref. 2). The layered rare-earth metal oxypnictides LnOFeAs (where Ln is La-Nd, Sm and Gd) are now attracting attention following the discovery of superconductivity at 26K in the iron-based LaO1-xFxFeAs (ref. 3). Here we report the discovery of bulk superconductivity in the related compound SmFeAsO1-xFx, which has a ZrCuSiAs-type structure. Resistivity and magnetization measurements reveal a transition temperature as high as 43K. This provides a new material base for studying the origin of high-temperature superconductivity.
NASA Astrophysics Data System (ADS)
Hegde, S. M.; Brown, Gail J.; Capano, Michael; Eyink, Kurt
1997-03-01
We have investigated MBE grown p-type, GaAs/AlGaAs QWIPs by photoluminescence spectroscopy. Excitation intensity, and temperature dependent photoluminescence spectra from 4.5K to 295K were studied. The PL-spectra were fitted with multiple gaussians to extract information on inter-subband (c1-hh1) peak loactions, full width at half maximum(FWHM), intensity and integrated intensity. A detailed analysis of the origin of the observed peaks and their thermal actiavtion energies was carried out. X-ray diffraction measurements were used to confirm the high qualiuty of the grown MQW structures and the Al-composition in the AlGaAs barriers. Temperature dependent photoconductivity measurements were used to measure the relative photoresponse from the hh1-to-continuum states in the valence subband transitions of these detector structures in the 10 micron region. It is found that high photoluminescence efficiency for the intersubband free-to-free transition at higher temperatures correl! ates with good photoresponse at th ose higher temperatures.
Gehler, Alexander; Pack, Andreas
2016-01-01
The Paleocene–Eocene Thermal Maximum (PETM) is a remarkable climatic and environmental event that occurred 56 Ma ago and has importance for understanding possible future climate change. The Paleocene–Eocene transition is marked by a rapid temperature rise contemporaneous with a large negative carbon isotope excursion (CIE). Both the temperature and the isotopic excursion are well-documented by terrestrial and marine proxies. The CIE was the result of a massive release of carbon into the atmosphere. However, the carbon source and quantities of CO2 and CH4 greenhouse gases that contributed to global warming are poorly constrained and highly debated. Here we combine an established oxygen isotope paleothermometer with a newly developed triple oxygen isotope paleo-CO2 barometer. We attempt to quantify the source of greenhouse gases released during the Paleocene–Eocene transition by analyzing bioapatite of terrestrial mammals. Our results are consistent with previous estimates of PETM temperature change and suggest that not only CO2 but also massive release of seabed methane was the driver for CIE and PETM. PMID:27354522
Velázquez-Gutiérrez, Sandra Karina; Figueira, Ana Cristina; Rodríguez-Huezo, María Eva; Román-Guerrero, Angélica; Carrillo-Navas, Hector; Pérez-Alonso, César
2015-05-05
Freeze-dried chia mucilage adsorption isotherms were determined at 25, 35 and 40°C and fitted with the Guggenheim-Anderson-de Boer model. The integral thermodynamic properties (enthalpy and entropy) were estimated with the Clausius-Clapeyron equation. Pore radius of the mucilage, calculated with the Kelvin equation, varied from 0.87 to 6.44 nm in the temperature range studied. The point of maximum stability (minimum integral entropy) ranged between 7.56 and 7.63kg H2O per 100 kg of dry solids (d.s.) (water activity of 0.34-0.53). Enthalpy-entropy compensation for the mucilage showed two isokinetic temperatures: (i) one occurring at low moisture contents (0-7.56 kg H2O per 100 kg d.s.), controlled by changes in water entropy; and (ii) another happening in the moisture interval of 7.56-24 kg H2O per 100 kg d.s. and was enthalpy driven. The glass transition temperature Tg of the mucilage fluctuated between 42.93 and 57.93°C. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Deeney, F. A.; O'Leary, J. P.
2009-01-01
We have used the recently developed method for rapid measurement of maximum density temperature to determine the rate at which hydrogen and deuterium isotope exchange takes place when a sample of heavy water is exposed to the atmosphere. We also provide a simple explanation for the observed linear rate of transition. (Contains 2 figures.)
Temperature Measurements in the Solar Transition Region Using N III Line Intensity Ratios
NASA Technical Reports Server (NTRS)
Doron, R.; Doschek, G. A.; Laming, J. M.; Feldman, U.; Bhatia, A. K.
2003-01-01
UV emission from B-like N and O ions a rather rare opportunity for recording spectral lines in a narrow wavelength range that can potentially be used to derive temperatures relevant to the solar transition region. In these ions, the line intensity ratios of the type (2s2p(sup 2) - 2p(sup 3)) / (2s(sup 2)2p - 2s2p(sup 2)) are very sensitive to the electron temperature. Additionally, the lines involving the ratios fall within a range of only - 12 A; in N III the lines fall in the 980 - 992 A range and in O IV in the 780 - 791 A range. In this work, we explore the use of these atomic systems, primarily in N III, for temperature diagnostics of the transition region by analyzing UV spectra obtained by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer flown on the Solar and Heliospheric Observatory (SOHO). The N III temperature-sensitive line ratios are measured in more than 60 observations. Most of the measured ratios correspond to temperatures in the range 5.7x10(exp 4) - 6.7x10(exp 4) K. This range is considerably lower than the calculated temperature of maximum abundance of N III, which is approx. 7.6x10(exp 4) K. Detailed analysis of the spectra further indicates that the measured ratios are probably somewhat overestimated due to resonant scattering effects in the 2s(sup 2)2p - 2s2p(sup 2) lines and small blends in the 2s2p(sup 2) - 2p3 lines. Actual lower ratios would only increase the disagreement between the ionization balance calculations and present temperature measurements based on a collisional excitation model. In the case of the O IV spectra, we determined that due to the close proximity in wavelength of the weak line (2s2p(sup 2)-2p3 transitions) to a strong Ne VIII line, sufficiently accurate ratio measurements cannot be obtained. Subject headings: atomic data --- atomic processes --- Sun: transition region --- Sun: U V radiation --- techniques: spectroscopic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Mikhail A
2010-01-01
A force-displacement trace of a Charpy impact test of a reactor pressure vessel (RPV) steel in the transition range has a characteristic point, the so-called force at the end of unstable crack propagation , Fa. A two-parameter Weibull probability function is used to model the distribution of the Fa in Charpy tests performed at ORNL on different RPV steels in the unirradiated and irradiated conditions. These data have a good replication at a given test temperature, thus, the statistical analysis was applicable. It is shown that when temperature is normalized to TNDT (T-TNDT) or to T100a (T-T100a), the median Famore » values of different RPV steels have a tendency to form the same shape of temperature dependence. Depending on normalization temperature, TNDT or T100a, it suggests a universal shape of the temperature dependence of Fa for different RPV steels. The best fits for these temperature dependencies are presented. These dependencies are suggested for use in estimation of NDT or T100a from randomly generated Charpy impact tests. The maximum likelihood methods are used to derive equations to estimate TNDT and T100a from randomly generated Charpy impact tests.« less
Transition edge sensors for quench localization in SRF cavity tests
NASA Astrophysics Data System (ADS)
Furci, H.; Kovács, Z.; Koettig, T.; Vandoni, G.
2017-12-01
Transition Edge Sensors (TES) are bolometers based on the gradual superconducting transition of a thin film alloy. In the frame of improvement of non-contact thermal mapping for quench localisation in SRF cavity tests, TES have been developed in-house at CERN. Based on modern photolithography techniques, a fabrication method has been established and used to produce TES from Au-Sn alloys. The fabricated sensors superconducting transitions were characterised. The sensitive temperature range of the sensors spreads over 100 mK to 200 mK and its centre can be shifted by the bias current applied between 1.5 K and 2.1 K. Maximum sensitivity being in the range of 0.5 mV/mK, it is possible to detect fast temperature variations (in the 50 μs range) below 1 mK. All these characteristics are an asset for the detection of second sound. Second sound was produced by heaters and the TES were able to distinctively detect it. The value of the speed of second sound was determined and corresponds remarkably with literature values. Furthermore, there is a clear correlation between intensity of the signal and distance, opening possibilities for a more precise signal interpretation in quench localisation.
Influence of disorder on the superconducting critical temperature in indium-opal nanocomposites
NASA Astrophysics Data System (ADS)
Zakharchuk, I.; Januzaj, A.; Mikhailin, N. Yu.; Traito, K. B.; Chernyaev, A. V.; Romanov, S. G.; Safonchik, M.; Shamshur, D. V.; Lähderanta, E.
2018-06-01
Transport properties of bulk indium-opal and indium-porous glass superconducting nanocomposites possessing moderate and strong disorder are investigated. A strongly nonmonotonous dependence of the global critical temperature Tc versus normal state conductivity of samples is found. The maximum, which is observed at moderate disorder, has Tc higher than that of clean bulk indium. The increasing part can be explained by the Eliashberg equations with disorder and an additional mechanism of interaction between superconducting and dielectric granules. The descending part of the maximum at higher disorder can be explained by the increasing of long-range Coulomb repulsion due to diffusion of charges. Negative slope in magnetic field dependence of resistivity and a peak in the temperature dependence of resistivity, observed in the sample near the proximity to the disorder-induced superconductor-insulator transition (SIT). A large difference between the onset temperature of superconducting fluctuations, Tcon , and global critical temperature Tc is found and considered in the framework of the weak multifractal theory. Slow time-logarithmic relaxation of the resistivity between Tc and Tcon is observed, which assumes existence of the precursor state near the SIT. This unusual state is discussed in the scope of the many-body localization theory.
Successive disorder to disorder phase transitions in ionic liquid [HMIM][BF4] under high pressure
NASA Astrophysics Data System (ADS)
Zhu, Xiang; Yuan, Chaosheng; Li, Haining; Zhu, Pinwen; Su, Lei; Yang, Kun; Wu, Jie; Yang, Guoqiang; Liu, Jing
2016-02-01
In situ high-pressure Raman spectroscopy and synchrotron X-ray diffraction have been employed to investigate the phase behavior of ionic liquid, 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM][BF4]) under high pressure up to 20 GPa at room temperature. With increasing pressure, some characteristic bands of [HMIM][BF4] disappear, and some characteristic bands of [HMIM][BF4] display non-monotonic pressure-induced frequency shift and non-monotonic variation of full width at half-maximum. Two successive phase transitions at ˜1.7 GPa and 7.3 GPa have been corroborated by the results above. The glass transition pressure (Pg) of [HMIM][BF4] at ˜7.3 GPa has been obtained by ruby R1 line broadening measurements and analysis of synchrotron X-ray diffraction patterns, and its glass transition mechanism is also analyzed in detail. These facts are suggestive of two successive disorder to disorder phase transitions induced by compression, that is, [HMIM][BF4] serves as a superpressurized glass under the pressure above 7.3 GPa, which is similar to the glassy state at low temperature, and a compression-induced liquid to liquid phase transition in [HMIM][BF4] occurs at ˜1.7 GPa. Besides, the conformational equilibrium of the GAAA conformer and AAAA conformer was converted easily in liquid [HMIM][BF4], while it was difficult to be influenced in glassy state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, D. V., E-mail: Dmitri.Alexandrov@usu.ru; Ivanov, A. A.
2009-05-15
The process of solidification of ternary systems in the presence of moving phase transition regions has been investigated theoretically in terms of the nonlinear equation of the liquidus surface. A mathematical model is developed and an approximate analytical solution to the Stefan problem is constructed for a linear temperature profile in two-phase zones. The temperature and impurity concentration distributions are determined, the solid-phase fractions in the phase transition regions are obtained, and the laws of motion of their boundaries are established. It is demonstrated that all boundaries move in accordance with the laws of direct proportionality to the square rootmore » of time, which is a general property of self-similar processes. It is substantiated that the concentration of an impurity of the substance undergoing a phase transition only in the cotectic zone increases in this zone and decreases in the main two-phase zone in which the other component of the substance undergoes a phase transition. In the process, the concentration reaches a maximum at the interface between the main two-phase zone and the cotectic two-phase zone. The revealed laws of motion of the outer boundaries of the entire phase transition region do not depend on the amount of the components under consideration and hold true for crystallization of a multicomponent system.« less
The effect of temperature on ferroelectric properties of CaCu3Ti4O12 ceramic
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Ahlawat, Neetu; Punia, Suman
2014-04-01
CaCu3Ti4O12 (CCTO) ceramic was synthesized by conventional solid-state reaction technique and sintered at 1353K for 10 hours. The dielectric properties of CCTO were analyzed in 1Hz-5 MHz frequency range, from room temperature to 413K. The ferroelectric properties of CCTO were analyzed at various frequencies viz. 50 Hz, 100 Hz and 200 Hz at temperatures (298K to 413K). Result of these investigation points that with increasing temperature the values of coercive field (Ec) and remnant polarization (Pr) decrease while maximum polarization (Pmax) increases non-linearly. P-E hysteresis loop of CCTO goes to slimed and a ferroelectric to Para-electric phase transition is observed at 403K.
Thermal response of large area high temperature superconducting YBaCuO infrared bolometers
NASA Technical Reports Server (NTRS)
Khalil, Ali E.
1991-01-01
Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.
Exploration of New Magnetocaloric and Multifunctional Magnetic Materials
NASA Astrophysics Data System (ADS)
Quetz, Abdiel
The magnetic properties of NiMnGe1-xAlx, Ni50Mn35(In1-xBx)15 , Ni50Mn35In14.5B0.5 (Bulk, As-Solidified and Annealed melt-spun ribbon) and RE-Infuse Carbon Nanotubes, have been studied by x-ray diffraction, differential scanning calorimetry (DSC), and magnetization measurements. Partial substitution of Al for Ge in NiMnGe1-xAl x results in a first-order magnetostructural transition (MST) from a hexagonal ferromagnetic to an orthorhombic antiferromagnetic phase at 186 K (for x = 0.09). A large magnetic entropy change of DeltaSM = -17.6 J/kg K for DeltaH = 5 T was observed in the vicinity of TM = 186 K for x = 0.09. This value is comparable to those of well-known giant magnetocaloric materials, such as Gd5Si2Ge 2, MnFeP0.45As0.55, and Ni50Mn 37Sn13. The values of the latent heat (L = 6.6 J/g) and corresponding total entropy changes (DeltaST = 35 J/kg K) have been evaluated for the MST using DSC measurements. Large negative values of DeltaS M of -5.8 and -4.8 J/kg K for DeltaH = 5 T and up to 9T in the vicinity of TC were observed for x = 0.09 and 0.085, respectively. The impact of B substitution in Ni50Mn35In 15-xBx Heusler alloys on the structural, magnetic, transport, and parameters of the magnetocaloric effect (MCE) has been studied by means of room-temperature X-ray diffraction and thermomagnetic measurements (in magnetic fields (H) up to 5 T, and in the temperature interval 5-400 K ). Direct adiabatic temperature change (DeltaTAD) measurements have been carried out for an applied magnetic field change of 1.8 T. The transition temperatures (T-x) phase diagram has been constructed for H = 0.005 T. The MCE parameters were found to be comparable to those observed in other MCE materials such as Ni50Mn34.8In14.2B and Ni 50Mn35In14X (X=In, Al, and Ge) Heusler alloys. The maximum absolute value of DeltaTAD = 2.5 K was observed at the magnetostructural transition for Ni50Mn35In 14.5B0.5. The structural phase transition temperatures, phase structure, and parameters of the magnetocaloric effect (MCE) of Ni50Mn35In 14.5B0.5 as Bulk, As-Solidified and Annealed melt-spun ribbon has been studied by means of room-temperature X-ray diffraction and thermomagnetic measurements (in magnetic fields (muoH) up to 5 T, and in the temperature interval 5-400 K). Magnetic and structural transitions in Ni50Mn35In14.5B0.5 as ribbons were found to coincide in Ni50Mn35In14.5B 0.5 bulk sample, leading to a large magnetocaloric effects associated with the first-order magnetostructural phase transition. In comparison to the bulk Ni50Mn35In14.5B0.5 alloys, both the martensitic transition temperature (TM) and Curie temperature (TC) shifted to lower temperatures. The ribbons undergo a structure transformation similar to the bulk material at the martensitic transformation. The temperature of the transformation depends strongly on lattice parameters of the ribbons. MST shows a weak broad magnetic transition at TCM 160 K, while the Curie temperature of AST TCA is 297 K. The MCE parameters were found to be comparable to those observed in other MCE materials such as Ni50Mn34.8In14.2B and Ni50Mn 35In14X (X = In, Al, and Ge) Heusler alloys. These results suggest the possibility to control the martensitic transition in Ni50 Mn35In14.5B0.5 through rapid solidification process. A comparison of magnetic properties and magnetocaloric effects in Ni50Mn35In14.5B0.5 alloys as Bulk, As-Solidified and Annealed ribbons is discussed. The magnetic properties of carbon nanotube (CNT)/Gd composites were obtained by the joining and annealing of Gd metal and CNTs at 850°C for 48h. Energy dispersive X-ray analysis shows the presence of Gd intermingled with the CNT walls with maximum and average Gd concentrations of about 20% and 4% (by weight), respectively. The Gd clusters have a non-uniform distribution and are mostly concentrated at the ends of the CNTs. A ferromagnetic-type transition at T C 320K, accompanied by jump like change in magnetization and temperature hysteresis typical for the temperature induced first order phase transitions has been observed by magnetization measurements. Gd infused into the CNTs by the annealing results in a first order paramagnetic-ferromagnetic transition at TC = 320K. (Abstract shortened by ProQuest.).
Pyrolysis Pathways of Sulfonated Polyethylene, an Alternative Carbon Fiber Precursor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A
2013-01-01
Sulfonated polyethylene is an emerging precursor for the production of carbon fibers. Pyrolysis of sulfonated polyethylene was characterized by thermogravimetric analysis (TGA). n-heptane-4-sulfonic acid (H4S) was selected as a model compound for the study of sulfonated polyethylene. Density functional theory and conventional transition state theory were used to determine the rate constants of pyrolysis for H4S from 300-1000 K. Multiple reaction channels from two different mechanisms were explored: 1) internal five-centered elimination (Ei 5) and 2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain TGA plots that compared favorably to experiment. Wemore » observed that at tem- peratures < 550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial OH radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440-460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene ( 31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOSO2 became competitive to H abstraction by HOSO2, making OH the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures > 600 K. Low-scale carbonization utilizes temperatures < 620 K; thus, internal elimination will not be competitive. Ei5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids. Nonlinear Arrhenius plots were found for all bimolecular reactions. The most significant nonlinear behavior was observed for reactions where the barrier was small. For reactions with low activation barriers, nonlinearity was traced to conflicting trends between the exponential temperature dependence of the energetic term and the temperature dependence of the vibrational partition function of the transitional modes.« less
Preparation and Characterization of BaTiO3-PbZrTiO3 Coating for Pyroelectric Energy Harvesting
NASA Astrophysics Data System (ADS)
Raghavendra, R. M.; Praneeth, K. P. S. S.; Dutta, Soma
2017-01-01
Harvesting energy from waste heat is a promising field of research as there are significant energy recovery opportunities from various waste thermal energy sources. The present study reports pyroelectric energy harvesting using thick film prepared from a (x)BaTiO3-(1 - x)PbZr0.52Ti0.48O3 (BT-PZT) solid solution. The developed BT-PZT system is engineered to tune the ferro to paraelectric phase transition temperature of it in-between the phase transition temperature of BaTiO3 (393 K) and PbZrTiO3 (573 K) with higher pyroelectric figure-of-merit (FOM). The temperature-dependent dielectric behavior of the material has revealed the ferro- to paraelectric phase transition at 427 K with a maximum dielectric constant of 755. The room-temperature (298 K) pyroelectric coefficient (Pi) of the material was obtained as 738.63 μC/m2K which has yielded a significantly high FOM of 1745.8 J m-3 K-2. The enhancement in pyroelectric property is attributed to the morphotopic phase transition between tetragonal and rhombohedral PZT phases in the BT-PZT system. The developed BT-PZT system is capable of generating a power output of 1.3 mW/m2 near the Curie temperature with a constant rate (0.11 K/s) of heating. A signal conditioning circuit has been developed to rectify the time-varying current and voltage signals obtained from the harvester during heating cycles. The output voltage generated by the pyroelectric harvester has been stored in a capacitor for powering wearable electronics.
Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser
NASA Astrophysics Data System (ADS)
Cornacchia, F.; Parisi, D.; Bernardini, C.; Toncelli, A.; Tonelli, M.
2004-05-01
In this work we report the spectroscopy and laser results of several Thulium doped BaY2F8 single crystals grown using the Czochralski technique. The doping concentration is between 2at.% and 18at.%. We performed room temperature laser experiments pumping the samples with a laser diode at 789 nm obtaining 61% as maximum optical-to-optical efficiency with a maximum output power of 290 mW and a minimum lasing threshold of 26 mW. The lasing wavelength changed with the dopant concentration from 1927 nm up to 2030 nm and the nature of the transition changed from purely electronic to vibronic, accordingly.
Electronic structure and magnetism in transition metals doped 8-hydroxy-quinoline aluminum.
Baik, Jeong Min; Shon, Yoon; Lee, Seung Joo; Jeong, Yoon Hee; Kang, Tae Won; Lee, Jong-Lam
2008-10-15
We report the room-temperature ferromagnetism in transition metals (Co, Ni)-doped 8-hydroxy-quinoline aluminum (Alq3) by thermal coevaporation of high purity metal and Alq3 powders. For 5% Co-doped Alq3, a maximum magnetization of approximately 0.33 microB/Co at 10 K was obtained and ferromagnetic behavior was observed up to 300 K. The Co atoms interact chemically with O atoms and provide electrons to Alq3, forming new states acting as electron trap sites. From this, it is suggested that ferromagnetism may be associated with the strong chemical interaction of Co atoms and Alq3 molecules.
NASA Astrophysics Data System (ADS)
Stolpe, Moritz; Jonas, Isabell; Wei, Shuai; Evenson, Zach; Hembree, William; Yang, Fan; Meyer, Andreas; Busch, Ralf
2016-01-01
Using high energy synchrotron x-ray radiation combined with electrostatic levitation, in situ structural analysis of a bulk metallic glass forming liquid is performed from above the liquidus temperature down to the glass transition. The data indicate a liquid-liquid transition (LLT) in the deeply undercooled state at T /Tg˜1.2 which manifests as a maximum in the heat capacity and an abrupt shift in the first peak position of the total structure factor in the absence of a pronounced density change. Analysis of the corresponding real-space data shows that the LLT involves changes in short- and medium-range order. The structural changes on the length scale of medium-range order imply a fragile-strong transition in agreement with experimental viscosity data.
Structural, magnetic and electrical properties of a new double-perovskite LaNaMnMoO6 material.
Borchani, Sameh Megdiche; Koubaa, Wissem Cheikh-Rouhou; Megdiche, Makrem
2017-11-01
Structural, magnetic, magnetocaloric, electrical and magnetoresistance properties of an LaNaMnMoO 6 powder sample have been investigated by X-ray diffraction (XRD), magnetic and electrical measurements. Our sample has been synthesized using the ceramic method. Rietveld refinements of the XRD patterns show that our sample is single phase and it crystallizes in the orthorhombic structure with Pnma space group. Magnetization versus temperature in a magnetic applied field of 0.05 T shows that our sample exhibits a paramagnetic-ferromagnetic transition with decreasing temperature. The Curie temperature T C is found to be 320 K. Arrott plots show that all our double-perovskite oxides exhibit a second-order magnetic phase transition. From the measured magnetization data of an LaNaMnMoO 6 sample as a function of the magnetic applied field, the associated magnetic entropy change |-ΔSM| and the relative cooling power (RCP) have been determined. In the vicinity of T C , |-ΔSM| reached, in a magnetic applied field of 8 T, a maximum value of ∼4 J kg -1 K -1 . Our sample undergoes a large magnetocaloric effect at near-room temperature. Resistivity measurements reveal the presence of an insulating-metal transition at Tρ = 180 K. A magnetoresistance of 30% has been observed at room temperature for 6 T, significantly larger than that reported for the A 2 FeMoO 6 (A = Sr, Ba) double-perovskite system.
NASA Technical Reports Server (NTRS)
Wilder, M. C.; Bogdanoff, D. W.
2005-01-01
A research effort to advance techniques for determining transition location and measuring surface temperatures on graphite-tipped projectiles in hypersonic flight in a ballistic range is described. Projectiles were launched at muzzle velocities of approx. 4.7 km/sec into air at pressures of 190-570 Torr. Most launches had maximum pitch and yaw angles of 2.5-5 degrees at pressures of 380 Torr and above and 3-6 degrees at pressures of 190-380 Torr. Arcjet-ablated and machined, bead-blasted projectiles were launched; special cleaning techniques had to be developed for the latter class of projectiles. Improved methods of using helium to remove the radiating gas cap around the projectiles at the locations where ICCD (intensified charge coupled device) camera images were taken are described. Two ICCD cameras with a wavelength sensitivity range of 480-870 nm have been used in this program for several years to obtain images. In the last year, a third camera, with a wavelength sensitivity range of 1.5-5 microns [in the infrared (IR)], has been added. ICCD and IR camera images of hemisphere nose and 70 degree sphere-cone nose projectiles at velocities of 4.0-4.7 km/sec are presented. The ICCD images clearly show a region of steep temperature rise indicative of transition from laminar to turbulent flow. Preliminary temperature data for the graphite projectile noses are presented.
Estimating surface temperature in forced convection nucleate boiling - A simplified method
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Papell, S. S.
1977-01-01
A simplified expression to estimate surface temperatures in forced convection boiling was developed using a liquid nitrogen data base. Using the principal of corresponding states and the Kutateladze relation for maximum pool boiling heat flux, the expression was normalized for use with other fluids. The expression was applied also to neon and water. For the neon data base, the agreement was acceptable with the exclusion of one set suspected to be in the transition boiling regime. For the water data base at reduced pressure greater than 0.05 the agreement is generally good. At lower reduced pressures, the water data scatter and the calculated temperature becomes a function of flow rate.
NASA Astrophysics Data System (ADS)
Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae
2016-04-01
The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.
NASA Astrophysics Data System (ADS)
Griniene, R.; Liu, L.; Tavgeniene, D.; Sipaviciute, D.; Volyniuk, D.; Grazulevicius, J. V.; Xie, Z.; Zhang, B.; Leduskrasts, K.; Grigalevicius, S.
2016-01-01
Polyethers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic routes. Full characterization of their structures is presented. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the range of 56-658 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting layer. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometric efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m2.
Free energy reconstruction from steered dynamics without post-processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athenes, Manuel, E-mail: Manuel.Athenes@cea.f; Condensed Matter and Materials Division, Physics and Life Sciences Directorate, LLNL, Livermore, CA 94551; Marinica, Mihai-Cosmin
2010-09-20
Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-{alpha}. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, wemore » accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.« less
High thermal stability fluorene-based hole-injecting material for organic light-emitting devices
NASA Astrophysics Data System (ADS)
Li, Lu; Jiao, Bo; Li, Sanfeng; Ma, Lin; Yu, Yue; Wu, Zhaoxin
2016-03-01
Novel N1,N3,N5-tris(9,9-diphenyl-9H-fluroen-2-yl)-N1,N3,N5-triphenylbenzene-1,3,5-triamine (TFADB) was synthesized and characterized as a hole-injecting material (HIM) for organic light-emitting devices (OLEDs). By incorporating fluorene group TFADB shows a high glass-transition temperature Tg > 168 °C, indicative of excellent thermal stability. TFADB-based devices exhibited the highest performance in terms of the maximum current efficiency (6.0 cd/A), maximum power efficiency (4.0 lm/W), which is improved than that of the standard device based on 4-4‧-4″Tris(N-(naphthalene-2-yl)-N-phenyl-amino)triphenylamine (2T-NATA) (5.2 cd/A, 3.6 lm/W). This material could be a promising hole-injecting material, especially for the high temperature applications of OLEDs and other organic electronic devices.
Electroactive polymers containing 3-arylcarbazolyl units as hole transporting materials for OLEDs
NASA Astrophysics Data System (ADS)
Krucaite, G.; Liu, L.; Tavgeniene, D.; Peciulyte, L.; Grazulevicius, J. V.; Xie, Z.; Zhang, B.; Grigalevicius, S.
2015-04-01
Monomers and their polymers containing 3-arylcarbazolyl electrophores have been synthesized by the multi-step synthetic route. The materials were characterized by thermo-gravimetric analysis, differential scanning calorimetry and electron photoemission technique. The polymers represent materials of high thermal stability having initial thermal degradation temperatures in the range of 331-411 °C. The glass transition temperatures of the amorphous polymeric materials were in the rage of 148-175 °C. The electron photoemission spectra of thin layers of monomers showed ionization potentials in the range of 5.6-5.65 eV. Hole-transporting properties of the polymers were tested in the structures of organic light emitting diodes with Alq3 as the green emitter. The device containing hole-transporting layers of polyether with 3-naphthylcarbazolyl groups exhibited the best overall performance with a maximum current efficiency of 3.3 cd/A and maximum brightness of about 1000 cd/m2.
Superconductivity in multiple phases of compressed GeS b2T e4
NASA Astrophysics Data System (ADS)
Greenberg, E.; Hen, B.; Layek, Samar; Pozin, I.; Friedman, R.; Shelukhin, V.; Rosenberg, Y.; Karpovski, M.; Pasternak, M. P.; Sterer, E.; Dagan, Y.; Rozenberg, G. Kh.; Palevski, A.
2017-02-01
Here we report the discovery of superconductivity in multiple phases of the compressed GeS b2T e4 (GST) phase change memory alloy, which has attracted considerable attention for the last decade due to its unusual physical properties with many potential applications. Superconductivity is observed through electrical transport measurements, both for the amorphous (a -GST) and for the crystalline (c -GST) phases. The superconducting critical temperature Tc continuously increases with applied pressure, reaching a maximum Tc=6 K at P =20 GPa for a -GST, whereas the critical temperature of the cubic phase reaches a maximum Tc=8 K at 30 GPa. This material system, exhibiting a superconductor-insulator quantum phase transition, has an advantage over disordered metals since it has a continuous control of the crystal structure and the electronic properties using pressure as an external stimulus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griniene, Raimonda; Tavgeniene, Daiva, E-mail: daiva.tavgen@gmail.com; Grigalevičius, Saulius
2016-05-18
Polymers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic route. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the rage of 56–65 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq 3 as the green emitter. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometricmore » efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m{sup 2}.« less
Glass-Glass Transitions by Means of an Acceptor-Donor Percolating Electric-Dipole Network
NASA Astrophysics Data System (ADS)
Zhang, Le; Lou, Xiaojie; Wang, Dong; Zhou, Yan; Yang, Yang; Kuball, Martin; Carpenter, Michael A.; Ren, Xiaobing
2017-11-01
We report the ferroelectric glass-glass transitions in KN (K+/Nb5 +) -doped BaTiO3 ferroelectric ceramics, which have been proved by x-ray diffraction profile and Raman spectra data. The formation of glass-glass transitions can be attributed to the existence of cubic (C )-tetragonal (T )-orthorhombic (O )-rhombohedral (R ) ferroelectric transitions in short-range order. These abnormal glass-glass transitions can perform very small thermal hysteresis (approximately 1.0 K ) with a large dielectric constant (approximately 3000), small remanent polarization Pr , and relative high maximum polarization Pm remaining over a wide temperature range (220-350 K) under an electrical stimulus, indicating the potential applications in dielectric recoverable energy-storage devices with high thermal reliability. Further phase field simulations suggest that these glass-glass transitions are induced by the formation of a percolating electric defect-dipole network (PEDN). This proper PEDN breaks the long-range ordered ferroelectric domain pattern and results in the local phase transitions at the nanoscale. Our work may further stimulate the fundamental physical theory and accelerate the development of dielectric energy-storing devices.
Hyper- and hypobaric processing of Tl-Ba-Ca-Cu-O superconductors
NASA Astrophysics Data System (ADS)
Goretta, K. C.; Routbort, J. L.; Shi, Donglu; Chen, J. G.; Hash, M. C.
1989-11-01
Tl-based superconductors of initial composition Tl:Ca:Ba:Cu equal to 2:2:2:3 and 1:3:1:3 were heated in oxygen at pressures of 10(sup 4) to 6 (times) 10(sup 5) Pa. The 2:2:2:3 composition formed primarily the 2-layer superconductor with zero resistance from 77 to 104 K. The 1:3:1:3 composition formed nearly phase pure 3-layer superconductor with a maximum zero resistance temperature of 120 K. Application of hyperbaric pressure influenced phase purities and transition temperatures slightly; phase purities decreased significantly with application of hypobaric pressures.
Influence of entanglements on glass transition temperature of polystyrene
NASA Astrophysics Data System (ADS)
Ougizawa, Toshiaki; Kinugasa, Yoshinori
2013-03-01
Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.
Effective vortex mass from microscopic theory
NASA Astrophysics Data System (ADS)
Han, Jung Hoon; Kim, June Seo; Kim, Min Jae; Ao, Ping
2005-03-01
We calculate the effective mass of a single quantized vortex in the Bardeen-Cooper-Schrieffer superconductor at finite temperature. Based on effective action approach, we arrive at the effective mass of a vortex as integral of the spectral function J(ω) divided by ω3 over frequency. The spectral function is given in terms of the quantum-mechanical transition elements of the gradient of the Hamiltonian between two Bogoliubov-deGennes (BdG) eigenstates. Based on self-consistent numerical diagonalization of the BdG equation we find that the effective mass per unit length of vortex at zero temperature is of order m(kfξ0)2 ( kf=Fermi momentum, ξ0=coherence length), essentially equaling the electron mass displaced within the coherence length from the vortex core. Transitions between the core states are responsible for most of the mass. The mass reaches a maximum value at T≈0.5Tc and decreases continuously to zero at Tc .
Resistivity in the Vicinity of a van Hove Singularity: Sr2RuO4 under Uniaxial Pressure
NASA Astrophysics Data System (ADS)
Barber, M. E.; Gibbs, A. S.; Maeno, Y.; Mackenzie, A. P.; Hicks, C. W.
2018-02-01
We report the results of a combined study of the normal-state resistivity and superconducting transition temperature Tc of the unconventional superconductor Sr2 RuO4 under uniaxial pressure. There is strong evidence that, as well as driving Tc through a maximum at ˜3.5 K , compressive strains ɛ of nearly 1% along the crystallographic [100] axis drive the γ Fermi surface sheet through a van Hove singularity, changing the temperature dependence of the resistivity from T2 above, and below the transition region to T1.5 within it. This occurs in extremely pure single-crystals in which the impurity contribution to the resistivity is <100 n Ω cm , so our study also highlights the potential of uniaxial pressure as a more general probe of this class of physics in clean systems.
Lavrentiev, M Yu; Mergia, K; Gjoka, M; Nguyen-Manh, D; Apostolopoulos, G; Dudarev, S L
2012-08-15
We present a combined experimental and computational study of high temperature magnetic properties of Fe-Cr alloys with chromium content up to about 20 at.%. The magnetic cluster expansion method is applied to model the magnetic properties of random Fe-Cr alloys, and in particular the Curie transition temperature, as a function of alloy composition. We find that at low (3-6 at.%) Cr content the Curie temperature increases with the increase of Cr concentration. It is maximum at approximately 6 at.% Cr and then decreases for higher Cr content. The same feature is found in thermo-magnetic measurements performed on model Fe-Cr alloys, where a 5 at.% Cr alloy has a higher Curie temperature than pure Fe. The Curie temperatures of 10 and 15 at.% Cr alloys are found to be lower than the Curie temperature of pure Fe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasutake, Nobutoshi; Kashiwa, Kouji
2009-02-15
We study the structures of hybrid stars with leptons at finite temperature under beta equilibrium. For the quark phase, we use the three flavor Nambu-Jona-Lasinio (NJL) model. For the hadron phase, we adopt the nuclear equation of state (EOS) by Shen et al.. This EOS is in the framework of the relativistic mean field theory including the tree body effects. For the hadron-quark phase transition, we impose the bulk Gibbs construction or the Maxwell construction to take into account uncertainties by finite-size effects. We find that the pure quark phase does not appear in stable star cores in all cases.more » With the phase transition, the maximum masses increase {approx}10% for high lepton fraction. On the contrary, without the transition, they decrease {approx}10%. We also find that, in the NJL model, the lepton fraction is more important for structures of unstable stars than the temperature. This result is important for many astrophysical phenomena such as the core collapse of massive stars.« less
A Definition of the Magnetic Transition Temperature Using Valence Bond Theory.
Jornet-Somoza, Joaquim; Deumal, Mercè; Borge, Juan; Robb, Michael A
2018-03-01
Macroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature T C for magnetic systems is associated with a maximum in the energy-based heat capacity C p (T). Here a more broadly applicable definition of the magnetic transition temperature T C is described using the spin moment expectation value (i.e., applying the spin exchange density operator) instead of energy. Namely, the magnetic capacity C s (T) reflects variation in the spin multiplicity as a function of temperature, which is shown to be related to ∂[χT(T)]/∂T. Magnetic capacity C s (T) depends on long-range spin interactions that are not relevant in the energy-based heat capacity C p (T). Differences between C s (T) and C p (T) are shown to be due to spin order/disorder within the crystal that can be monitored via a Valence Bond analysis of the corresponding magnetic wave function. Indeed the concept of the Boltzmann spin-alignment order is used to provide information about the spin correlation between magnetic units. As a final illustration, the critical temperature is derived from the magnetic capacity for several molecular magnets presenting different magnetic topologies that have been experimentally studied. A systematic shift between the transition temperatures associated with C s (T) and C p (T) is observed. It is demonstrated that this shift can be attributed to the loss of long-range spin correlation. This suggests that the magnetic capacity C s (T) can be used as a predictive tool for the magnetic topology and thus for the synthetic chemists.
Sputtered magnesium diboride thin films: Growth conditions and surface morphology
NASA Astrophysics Data System (ADS)
O'Brien, April; Villegas, Brendon; Gu, J. Y.
2009-01-01
Magnesium diboride (MgB 2) thin films were deposited on C-plane sapphire substrates by sputtering pure B and Mg targets at different substrate temperatures, and were followed by in situ annealing. A systematic study about the effects of the various growth and annealing parameters on the physical properties of MgB 2 thin films showed that the substrate temperature is the most critical factor that determines the superconducting transition temperature ( Tc), while annealing plays a minor role. There was no superconducting transition in the thin films grown at room temperature without post-annealing. The highest Tc of the samples grown at room temperature after the optimized annealing was 22 K. As the temperature of the substrate ( Ts) increased, Tc rose. However, the maximum Ts was limited due to the low magnesium sticking coefficient and thus the Tc value was limited as well. The highest Tc, 29 K, was obtained for the sample deposited at 180 °C, annealed at 620 °C, and was subsequently annealed a second time at 800 °C. Three-dimensional (3D) AFM images clearly demonstrated that the thin films with no transition, or very low Tc, did not have the well-developed MgB 2 grains while the films with higher Tc displayed the well-developed grains and smooth surface. Although the Tc of sputtered MgB 2 films in the current work is lower than that for the bulk and ex situ annealed thin films, this work presents an important step towards the fabrication of MgB 2 heterostructures using rather simple physical vapor deposition method such as sputtering.
Temperature dependence of tris(2,2'-bipyridine) ruthenium (II) device characteristics
NASA Astrophysics Data System (ADS)
Slinker, Jason D.; Malliaras, George G.; Flores-Torres, Samuel; Abruña, Héctor D.; Chunwachirasiri, Withoon; Winokur, Michael J.
2004-04-01
We have investigated the temperature dependence of the current, radiance, and efficiency from electroluminescent devices based on [Ru(bpy)3]2+(PF6-)2, where bpy is 2,2'-bipyridine. We find that the current increases monotonically with temperature from 200 to 380 K, while the radiance reaches a maximum near room temperature. For temperatures greater than room temperature, an irreversible, current-induced degradation occurs with thermal cycling that diminishes both the radiance and the photoluminescence (PL) quantum yield, but does not affect the current. The temperature dependence of the external quantum efficiency is fully accounted for by the dependence of the PL quantum yield as measured from the emissive area of the device. This implies that the contacts remain ohmic throughout the temperature range investigated. The quenching of the PL with temperature was attributed to thermal activation to a nonradiative d-d transition. The temperature dependence of the current shows a complex behavior in which transport appears to be thermally activated, with distinct low-temperature and high-temperature regimes.
Jin, Li; Huo, Renjie; Guo, Runping; Li, Fei; Wang, Dawei; Tian, Ye; Hu, Qingyuan; Wei, Xiaoyong; He, Zhanbing; Yan, Yan; Liu, Gang
2016-11-16
The electrostrictive effect has some advantages over the piezoelectric effect, including temperature stability and hysteresis-free character. In the present work, we report the diffuse phase transitions and electrostrictive properties in lead-free Fe 3+ -doped 0.5Ba(Zr 0.2 Ti 0.8 )O 3 -0.5(Ba 0.7 Ca 0.3 )TiO 3 (BZT-0.5BCT) ferroelectric ceramics. The doping concentration was set from 0.25 to 2 mol %. It is found that by introducing Fe 3+ ion into BZT-0.5BCT, the temperature corresponding to permittivity maximum T m was shifted toward lower temperature monotonically by 37 °C per mol % Fe 3+ ion. Simultaneously, the phase transitions gradually changed from classical ferroelectric-to-paraelectric phase transitions into diffuse phase transitions with a weak relaxor characteristic. Purely electrostrictive responses with giant electrostrictive coefficient Q 33 between 0.04 and 0.05 m 4 /C 2 are observed from 25 to 100 °C for the compositions doped with 1-2 mol % Fe 3+ ion. The Q 33 of Fe 3+ -doped BZT-0.5BCT ceramics is almost twice the Q 33 of other ferroelectric ceramics. These observations suggest that the present system can be considered as a potential lead-free material for the applications in electrostrictive area and that BT-based ferroelectric ceramics would have giant electrostrictive coefficient over other ferroelectric systems.
Mars Science Laboratory Heatshield Aerothermodynamics: Design and Reconstruction
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Hollis, Brian R.; Johnston, Christopher O.; Bose, Deepak; White, Todd R.; Mahzari, Milad
2013-01-01
The Mars Science Laboratory heatshield was designed to withstand a fully turbulent heat pulse based on test results and computational analysis on a pre-flight design trajectory. Instrumentation on the flight heatshield measured in-depth temperatures in the thermal protection system. The data indicate that boundary layer transition occurred at 5 of 7 thermocouple locations prior to peak heating. Data oscillations at 3 pressure measurement locations may also indicate transition. This paper presents the heatshield temperature and pressure data, possible explanations for the timing of boundary layer transition, and a qualitative comparison of reconstructed and computational heating on the as-flown trajectory. Boundary layer Reynolds numbers that are typically used to predict transition are compared to observed transition at various heatshield locations. A uniform smooth-wall transition Reynolds number does not explain the timing of boundary layer transition observed during flight. A roughness-based Reynolds number supports the possibility of transition due to discrete or distributed roughness elements on the heatshield. However, the distributed roughness height would have needed to be larger than the pre-flight assumption. The instrumentation confirmed the predicted location of maximum turbulent heat flux near the leeside shoulder. The reconstructed heat flux at that location is bounded by smooth-wall turbulent calculations on the reconstructed trajectory, indicating that augmentation due to surface roughness probably did not occur. Turbulent heating on the downstream side of the heatshield nose exceeded smooth-wall computations, indicating that roughness may have augmented heating. The stagnation region also experienced heating that exceeded computational levels, but shock layer radiation does not fully explain the differences.
NASA Astrophysics Data System (ADS)
Inoue, T.; Yurimoto, H.
2012-12-01
Water is the most important volatile component in the Earth, and affects the physicochemical properties of mantle minerals, e.g. density, elastic property, electrical conductivity, thermal conductivity, rheological property, melting temperature, melt composition, element partitioning, etc. So many high pressure experiments have been conducted so far to determine the effect of water on mantle minerals. To clarify the maximum water storage capacity in nominally anhydrous mantle minerals in the mantle transition zone and lower mantle is an important issue to discuss the possibility of the existence of water reservoir in the Earth mantle. So we have been clarifying the maximum water storage capacity in mantle minerals using MA-8 type (KAWAI-type) high pressure apparatus and SIMS (secondary ion mass spectroscopy). Upper mantle mineral, olivine can contain ~0.9 wt% H2O in the condition just above 410 km discontinuity in maximum (e.g. Chen et al., 2002; Smyth et al., 2006). On the other hand, mantle transition zone mineral, wadsleyite and ringwoodite can contain significant amount (about 2-3 wt.%) of H2O (e.g. Inoue et al., 1995, 1998, 2010; Kawamoto et al., 1996; Ohtani et al., 2000). But the lower mantle mineral, perovskite can not contain significant amount of H2O, less than ~0.1 wt% (e.g. Murakami et al., 2002; Inoue et al., 2010). In addition, garnet and stishovite also can not contain significant amount of H2O (e.g. Katayama et al., 2003; Mookherjee and Karato, 2010; Litasov et al., 2007). On the other hand, the water storage capacities of mantle minerals are supposed to be significantly coupled with Al by a substitution with Mg2+, Si4+ or Mg2+ + Si4+, because Al3+ is the trivalent cation, and H+ is the monovalent cation. To clarify the degree of the substitution, the water contents and the chemical compositions of Al-bearing minerals in the mantle transition zone and the lower mantle were also determined in the Al-bearing systems with H2O. We will introduce the recent results on the maximum water storage capacities in nominally anhydrous minerals in the mantle transition zone and lower mantle from the high pressure experimental point of view.
Transitional properties of supersolitons in a two electron temperature warm multi-ion plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varghese, Steffy S., E-mail: steffy13@iigs.iigm.res.in; Ghosh, S. S., E-mail: sukti@iigs.iigm.res.in
The existence domain of an ion acoustic supersoliton and its transition to a regular kind of solitary wave have been explored in detail using Sagdeev pseudopotential technique for a two electron temperature warm multi-ion plasma having two species of ions. It was found that both the cold to hot electron temperature ratio and their respective ambient densities play a deterministic role for the existence of a supersoliton, as well as its transitional processes to a regular solitary wave. Analogous to a double layer solution, which often marks the boundary of the existence domain of a regular solitary wave, a “curvemore » of inflection” determines the boundary of the existence domain of a supersoliton. The characteristics of the “curve of inflection,” in turn, depend on the respective concentrations of the two ion species. It is observed that the supersolitons are actually a subset of a more general kind of solutions which are characterized by a fluctuation in the corresponding charge separation which precedes their maximum amplitude. It is also observed that these novel kinds of solitary structures, including supersolitons, occur only for a very narrow range of parameters near constant amplitude beyond which the wave breaks.« less
Superconductor-insulator transition on annealed complex networks.
Bianconi, Ginestra
2012-06-01
Cuprates show multiphase and multiscale complexity that has hindered physicists search for the mechanism of high T{c} for many years. Recently the interest has been addressed to a possible optimum inhomogeneity of dopants, defects, and interstitials, and the structural scale invariance of dopants detected by scanning micro-x-ray diffraction has been reported to promote the critical temperature. In order to shed light on critical phenomena on granular materials, here we propose a stylized model capturing the essential characteristics of the superconducting-insulator transition of a highly dynamical, heterogeneous granular material: the random transverse Ising model (RTIM) on annealed complex network. We show that when the networks encode for high heterogeneity of the expected degrees described by a power-law distribution, the critical temperature for the onset of the superconducting phase diverges to infinity as the power-law exponent γ of the expected degree distribution is less than 3, i.e., γ<3. Moreover we investigate the case in which the critical state of the electronic background is triggered by an external parameter g that determines an exponential cutoff in the power-law expected degree distribution characterized by an exponent γ. We find that for g=g{c} the critical temperature for the superconducting-insulator transition has a maximum if γ>3 and diverges if γ<3.
Thermal vibrations and polymorphic β → γ transition in cerium
NASA Astrophysics Data System (ADS)
Agafonov, S. S.; Blanter, M. S.; Glazkov, V. P.; Somenkov, V. A.; Shushunov, M. N.
2010-10-01
Method of neutron diffraction was used to determine the temperature dependence of the Debye-Waller factor and the related thermal atomic displacements for two polymorphic modifications of cerium, namely, for β-Ce with a double hexagonal closed-packed (dhcp) structure and for γ-Ce with a face-centered cubic (fcc) structure. It has been shown that the phase transition does not lead to substantial changes in the root-mean-square thermal atomic displacements and that the Debye temperatures of the two modifications are close: 131 K for β-Ce and 127 K for γ-Ce. However, the relative (with respect to the lattice parameters) displacements along the axes change considerably. The transition from the anisotropic hexagonal to the isotropic cubic modification leads, because of a redistribution of thermal atomic displacements along the crystallographic axes, to a decrease in the maximum values of these quantities and to a weakening of their temperature dependence. It has also been shown that a change in the thermal atomic vibrations and in the vibrational contribution to the entropy of the polymorphic transformations is connected with the sign of the volume effect of the transformation (stronger upon a positive effect and weaker, upon a negative one). The reasons for this behavior are discussed.
Dynamics of upper mantle rocks decompression melting above hot spots under continental plates
NASA Astrophysics Data System (ADS)
Perepechko, Yury; Sorokin, Konstantin; Sharapov, Victor
2014-05-01
Numeric 2D simulation of the decompression melting above the hot spots (HS) was accomplished under the following conditions: initial temperature within crust mantle section was postulated; thickness of the metasomatized lithospheric mantle is determined by the mantle rheology and position of upper asthenosphere boundary; upper and lower boundaries were postulated to be not permeable and the condition for adhesion and the distribution of temperature (1400-2050°C); lateral boundaries imitated infinity of layer. Sizes and distribution of lateral points, their symmetry, and maximum temperature varied between the thermodynamic condition for existences of perovskite - majorite transition and its excess above transition temperature. Problem was solved numerically a cell-vertex finite volume method for thermo hydrodynamic problems. For increasing convergence of iterative process the method of lower relaxation with different value of relaxation parameter for each equation was used. The method of through calculation was used for the increase in the computing rate for the two-layered upper mantle - lithosphere system. Calculated region was selected as 700 x (2100-4900) km. The time step for the study of the asthenosphere dynamics composed 0.15-0.65 Ma. The following factors controlling the sizes and melting degree of the convective upper mantle, are shown: a) the initial temperature distribution along the section of upper mantleb) sizes and the symmetry of HS, c) temperature excess within the HS above the temperature on the upper and lower mantle border TB=1500-2000oC with 5-15% deviation but not exceed 2350oC. It is found, that appearance of decompression melting with HS presence initiate primitive mantle melting at TB > of 1600oC. Initial upper mantle heating influence on asthenolens dimensions with a constant HS size is controlled mainly by decompression melting degree. Thus, with lateral sizes of HS = 400 km the decompression melting appears at TB > 1600oC and HS temperature (THS) > 1900oC asthenolens size ~700 km. When THS = of 2000oC the maximum melting degree of the primitive mantle is near 40%. An increase in the TB > 1900oC the maximum degree of melting could rich 100% with the same size of decompression melting zone (700 km). We examined decompression melting above the HS having LHS = 100 km - 780 km at a TB 1850- 2100oC with the thickness of lithosphere = 100 km.It is shown that asthenolens size (Lln) does not change substantially: Lln=700 km at LHS = of 100 km; Lln= 800 km at LHS = of 780 km. In presence of asymmetry of large HS the region of advection is developed above the HS maximum with the formation of asymmetrical cell. Influence of lithospheric plate thicknesses on appearance and evolution of asthenolens above the HS were investigated for the model stepped profile for the TB ≤ of 1750oS with Lhs = 100km and maximum of THS =2350oC. With an increase of TB the Lln difference beneath lithospheric steps is leveled with retention of a certain difference to melting degrees and time of the melting appearance a top of the HS. RFBR grant 12-05-00625.
NASA Astrophysics Data System (ADS)
Roy, Pinku; Maiti, Tanmoy
2018-02-01
Double perovskite materials have been studied in detail by many researchers, as their magnetic and electronic properties can be controlled by the substitution of alkaline earth metals or lanthanides in the A site and transition metals in the B site. Here we report the temperature-driven, p-n-type conduction switching assisted, large change in thermopower in La3+-doped Sr2TiFeO6-based double perovskites. Stoichiometric compositions of La x Sr2-x TiFeO6 (LSTF) with 0 ⩽ x ⩽ 0.25 were synthesized by the solid-state reaction method. Rietveld refinement of room-temperature XRD data confirmed a single-phase solid solution with cubic crystal structure and Pm\\bar{3}m space group. From temperature-dependent electrical conductivity and Seebeck coefficient (S) studies it is evident that all the compositions underwent an intermediate semiconductor-to-metal transition before the semiconductor phase reappeared at higher temperature. In the process of semiconductor-metal-semiconductor transition, LSTF compositions demonstrated temperature-driven p-n-type conduction switching behavior. The electronic restructuring which occurs due to the intermediate metallic phase between semiconductor phases leads to the colossal change in S for LSTF oxides. The maximum drop in thermopower (ΔS ~ 2516 µV K-1) was observed for LSTF with x = 0.1 composition. Owing to their enormous change in thermopower of the order of millivolts per kelvin, integrated with p-n-type resistance switching, these double perovskites can be used for various high-temperature multifunctional device applications such as diodes, sensors, switches, thermistors, thyristors, thermal runaway monitors etc. Furthermore, the conduction mechanisms of these oxides were explained by the small polaron hopping model.
Elevated temperature mechanical properties of line pipe steels
NASA Astrophysics Data System (ADS)
Jacobs, Taylor Roth
The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow strength and strain hardening occurred increased with increasing strain rate. Strain rate sensitivities were measured using flow stress data from multiple tensile tests and strain rate jump tests on single tensile samples. In flow stress strain rate sensitivity measurements, a transition from negative to positive strain rate sensitivity was observed in the X52 steel at approximately 275--300 °C, and negative strain rate sensitivity was observed at all elevated temperature testing conditions in the X70 steels. In jump test strain rate sensitivity measurements, all four steels exhibited a transition from negative to positive strain rate sensitivity at approximately 250--275 °C. Anisotropic deformation in the X70 steels was observed by measuring the geometry of the fracture surfaces of the tensile samples. The degree of anisotropy changed as a function of temperature and minima in the degree of anisotropy was observed at approximately 300 °C for all three X70 steels. DSA was verified as an active strengthening mechanism at elevated temperatures for all line pipe steels tested resulting in serrated yielding, a minimum in ductility as a function of temperature, a maximum in flow strength as a function of temperature, a maximum in average strain hardening rate as a function of temperature, and negative strain rate sensitivities. Mechanical properties of the X70 steels exhibited different functionality with respect to temperature compared to the X52 steels at temperatures greater than 250 ºC. Changes in the acicular ferrite microstructure during deformation such as precipitate coarsening, dynamic precipitation, tempering of martensite in martensite-austenite islands, or transformation of retained austenite could account for differences in tensile property functionality between the X52 and X70 steels. Long term aging under load (LTA) testing of the X70 steels resulted in increased yield strength compared to standard elevated temperature tensile tests at all temperatures as a result of static strain aging. LTA specimen ultimate tensile strengths (UTS) increased slightly at 200 °C, were comparable at 275 °C, and decreased significantly at 350 °C when compared to as-received (standard) tests at 350 °C. Observed reductions in UTS were a result of decreased strain hardening in the LTA specimens compared to standard tensile specimens. Ideal elevated temperature operating conditions (based on tensile properties) for the X70 line pipe steels in the temperature range relevant to the steam assisted gravity drainage process are around 275--325 °C at the strain rates tested. In the temperature range of 275--325 °C the X70 steels exhibited continuous plastic deformation, a maximum in ductility, a maximum in flow stress, improved strain hardening compared to intermediate temperatures, reduced anisotropic deformation, and after extended use at elevated temperatures, yield strength increases with little change in UTS.
Imboden, Matthias; Williams, Oliver A; Mohanty, Pritiraj
2013-09-11
We report the observation of nonlinear dissipation in diamond nanomechanical resonators measured by an ultrasensitive heterodyne down-mixing piezoresistive detection technique. The combination of a hybrid structure as well as symmetry breaking clamps enables sensitive piezoresistive detection of multiple orthogonal modes in a diamond resonator over a wide frequency and temperature range. Using this detection method, we observe the transition from purely linear dissipation at room temperature to strongly nonlinear dissipation at cryogenic temperatures. At high drive powers and below liquid nitrogen temperatures, the resonant structure dynamics follows the Pol-Duffing equation of motion. Instead of using the broadening of the full width at half-maximum, we propose a nonlinear dissipation backbone curve as a method to characterize the strength of nonlinear dissipation in devices with a nonlinear spring constant.
Initial fuel temperature effects on burning rate of pool fire.
Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien
2011-04-15
The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs. Copyright © 2011 Elsevier B.V. All rights reserved.
Thermal shock effect on Mechanical and Physical properties of pre-moisture treated GRE composite
NASA Astrophysics Data System (ADS)
Chakraverty, A. P.; Panda, A. B.; Mohanty, U. K.; Mishra, S. C.; Biswal, B. B.
2018-03-01
Many practical situations may be encountered under which a GFRP (Glass fibre reinforced polymer) composite, during its service life, is exposed to the severities of sudden temperature fluctuations. Moisture absorption of GRE (Glass fibre reinforced epoxy) composites followed by various gradients of temperature fluctuations may cause thermo- mechanical degradation. It is on this context, the hand layed GRE composite samples are exposed to up-thermal shock (-40°C to +50°C) and down-thermal shock (+50°C to -40°C) for various time interval after several periods of moisture (hydrothermal/hygrothermal) conditioning. The thermally shocked GRE specimens are put to 3-point bend test to divulge inter laminar shear strength (ILSS). Least ILSS values are recorded for the samples with maximum period of moisture treatments under with both up-thermal and down-thermal shock conditions. Lower glass transition temperature (Tg) values, as revealed through the low temperature DSC test, are exhibited at maximum durations of both up-thermal and down-thermal shock for the samples with higher periods of hygrothermal/hydrothermal treatments. SEM fractographs of representative GRE specimens after optimum period of moisture treatments and thermal shock show the various modes of failures.
Wen, Jinsheng; Xu, Zhijun; Xu, Guangyong; ...
2012-04-12
The superconducting system La 2-xBa xCuO₄ is known to show a minimum in the transition temperature T c at x=1/8 where maximal stripe order is pinned by the anisotropy within the CuO₂ planes that occurs in the low-temperature-tetragonal (LTT) crystal structure. For x=0.095, where T c reaches its maximum value of 32 K, there is a roughly coincident structural transition to a phase that is very close to LTT. Here, we present a neutron scattering study of the structural transition, and demonstrate how features of it correlate with anomalies in the magnetic susceptibility, electrical resistivity, thermal conductivity, and thermoelectric power.more » We also present measurements on a crystal with 1% Zn substituted for Cu, which reduces T c to 17 K, enhances the spin stripe order, but has much less effect on the structural transition. We make the case that the structural transition correlates with a reduction of the Josephson coupling between the CuO₂ layers, which interrupts the growth of the superconducting order. We also discuss evidence for two-dimensional superconducting fluctuations in the normal state, analyze the effective magnetic moment per Zn impurity, and consider the significance of the anomalous thermopower often reported in the stripe-ordered phase.« less
The magnetic phase transition in Mn{sub 1.1}Fe{sub 0.9}P{sub 1−x}Ge{sub x} magnetocaloric alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X.; Ramanujan, R. V., E-mail: ramanujan@ntu.edu.sg
Mn-Fe-P-Ge alloys are promising, low cost, high performance candidates for magnetic cooling applications based on the magnetocaloric effect. These alloys undergo a magnetic phase transition which induces a large entropy change (ΔS). Experimental and modeling studies were conducted to study this transition for varying Ge content. Landau theory and the Bean-Rodbell model were applied to Mn{sub 1.1}Fe{sub 0.9}P{sub 1−x}Ge{sub x} (x = 0.26, 0.3, and 0.32) melt spun ribbons to model the phase transition and the associated entropy change. The critical behavior of these alloys was studied. The critical composition range at which the cross over from first order to second ordermore » magnetic transition occurs was determined. The calculated thermodynamic values and critical temperatures were in good agreement with our experimental results. A high maximum entropy change (ΔS) of ∼44.9 J kg{sup −1} K{sup −1} was observed in Mn{sub 1.1}Fe{sub 0.9}P{sub 0.74}Ge{sub 0.26} in a 5 T applied magnetic field. The results suggest that Mn-Fe-P-Ge alloys are very attractive materials for near room temperature magnetic cooling.« less
On the symmetry and crystal structures of Ba{sub 2}LaIrO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, W.T., E-mail: w.fu@chem.leidenuniv.n; Goetz, R.J.; IJdo, D.J.W.
2010-02-15
Accurate profile analysis of X-ray diffraction data was carried out to settle recent dispute on the symmetry and crystal structures of the double perovskite Ba{sub 2}LaIrO{sub 6}. Even through careful comparison of the full-width at half-maximum values, we found no evidence for Ba{sub 2}LaIrO{sub 6} adopting either monoclinic (I2/m) or mixed rhombohedral (R3-bar) and monoclinic (I2/m) structures at room temperature, becoming triclinic (I1-bar) at below about 200 K. The correct space group is just R3-bar at temperatures between 82 and 653 K. Furthermore, the R3-bar->Fm3-barm phase transition does occur in Ba{sub 2}LaIrO{sub 6}, but the transition temperature is found tomore » be much higher than the reported value. - Graphical abstract: Observed (crosses) and calculated (continuous line) profiles of Ba{sub 2}LaIrO{sub 6} at some selected temperature showing the region containing the basic (222), (321) and (400) reflections. Tick marks below indicate the positions of the allowed Bragg's reflections.« less
Phase diagram of the itinerant helical magnet MnSi at high pressures and strong magnetic fields
NASA Astrophysics Data System (ADS)
Stishov, Sergei
We performed a series of resistivity, heat capacity and ultrasound speed measurements of a MnSi single crystal at high pressures and strong magnetic fields [1-3]. Two notable features of the phase transition in MnSi that disappear on pressure increasin are a sharp peak marking the first order phase transition and a shallow maximum, situated slightly above the critical temperature and pointing to the domain of prominent helical fluctuations. The longitudinal and transverse ultrasound speeds and attenuation were measured in a MnSi single crystal in the temperature range of 2-40 K and magnetic fields to 7 Tesla. The magnetic phase transition in MnSi in zero magnetic field is signified by a quasi-discontinuity in the c11 elastic constant, which almost vanishes at the skyrmion - paramagnetic transition at high magnetic fields. The powerful fluctuations at the minima of c11 make the mentioned crossing point of the minima and the phase transition lines similar to a critical end point, where a second order phase transition meets a first order one.
Effect of praseodymium on the electrical resistance of YВа2Сu3О7-δ single crystals
NASA Astrophysics Data System (ADS)
Vovk, R. V.; Vovk, N. R.; Khadzhai, G. Ya.; Goulatis, I. L.; Chroneos, A.
2014-07-01
The electrical resistivity in the ab-plane of the Y1-yPryВа2Сu3О7-δ single crystals with high degree of perfection in the interval of Тc - 300 K was investigated. The increasing of praseodymium content leads to the reduction of the critical temperature (Tc) from 92 to 30 K. The experimental results can be approximated by the expression, taking into account the scattering of electrons by phonons, defects, the fluctuation conductivity in the 3D Aslamazov-Larkin model, as well as the transition to a "semiconductor" type behavior of the resistivity at the high praseodymium concentrations. The concentration dependences of all fitting parameters indicate a structural transition in the region 0.35≤у≤0.43. In particular, the Debye temperature changes in this range from 350 to 550 K, and the transverse coherence length passes through a maximum ξС(0)≈5 Å. The concentration dependence of the critical temperature testifies the d-pairing of the BCS model.
High Performance Shape Memory Epoxy/Carbon Nanotube Nanocomposites.
Liu, Yayun; Zhao, Jun; Zhao, Lingyu; Li, Weiwei; Zhang, Hui; Yu, Xiang; Zhang, Zhong
2016-01-13
A series of shape memory nanocomposites based on diglycidyl ether of bisphenol A (DGEBA) E51/methylhexahydrophthalic anhydride (MHHPA)/multiwalled carbon nanotube (MWCNT) with various stoichiometric ratios (rs) of DGEBA/MHHPA from 0.5 to 1.2 and filler contents of 0.25 and 0.75 wt % are fabricated. Their morphology, curing kinetics, phase transition, mechanical properties, thermal conduction, and shape memory behaviors are systematically investigated. The prepared materials show a wide range of glass transition temperatures (Tg) of ca. 65-140 °C, high flexural modulus (E) at room temperature up to ca. 3.0 GPa, high maximum stress (σm) up to ca. 30 MPa, high strain at break (εb) above 10%, and a fast recovery of 32 s. The results indicate that a small amount of MWCNT fillers (0.75 wt %) can significantly increase all three key mechanical properties (E, σm, and εb) at temperatures close to Tg, the recovery rate, and the repetition stability of the shape memory cycles. All of these remarkable advantages make the materials good candidates for the applications in aerospace and other important fields.
Complex magnetic properties and large magnetocaloric effects in RCoGe (R=Tb, Dy) compounds
NASA Astrophysics Data System (ADS)
Zhang, Yan; Dong, Qiaoyan; Zheng, Xinqi; Liu, Yanli; Zuo, Shulan; Xiong, JieFu; Zhang, Bo; Zhao, Xin; Li, Rui; Liu, Dan; Hu, Feng-xia; Sun, Jirong; Zhao, Tongyun; Shen, Baogen
2018-05-01
Complicated magnetic phase transitions and Large magnetocaloric effects (MCEs) in RCoGe (R=Tb, Dy) compounds have been reported in this paper. Results show that the TbCoGe compounds have a magnetic phase transition from antiferromagnetic to paramagnetic (AFM-PM) at TN˜16 K, which is close to the value reported by neutron diffraction. The DyCoGe compound undergoes complicated phase changes from 2 K up to 300 K. The peak at 10 K displays a phase transition from antiferromagnetic to ferromagnetic (AFM-FM). In particular, a significant ferromagnetic to paramagnetic (FM-PM) phase transition was found at the temperature as high as 175 K and the cusp becomes more abrupt with the magnetic field increasing from 0.01 T to 0.1 T. The maximum value of magnetic entropy change of TbCoGe and DyCoGe compounds achieve 14.5 J/kg K and 11.5 J/kg K respectively for a field change of 0-5 T. Additionally, the correspondingly considerable refrigerant capacity value of 260 J/kg and 242 J/kg are also obtained respectively, suggesting that both TbCoGe and DyCoGe compounds could be considered as good candidates for low temperature magnetic refrigerant.
Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.
Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir
2017-08-04
Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.
NASA Astrophysics Data System (ADS)
Craciun, F.
2010-05-01
A sudden increase in the electrostrictive coefficient Q13 when temperature decreases is seen in three different types of ferroelectric relaxors (PLZT 9/65/35, PLZT 22/20/80, and PMN-PT) starting from ˜50K above the dielectric permittivity maximum temperature, Tm . The temperature dependence is attributed to the softening of the quasilocal mode occurring near dopants or charge-transfer sites. The steep increase when the temperature decreases could be related to the transition of polar nanoregions from dynamic to quasistatic regime, which introduces an intermediate temperature scale T∗ [W. Dmowski, S. B. Vakhrushev, I.-K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami, Phys. Rev. Lett. 100, 137602 (2008); B. Dkhil, P. Gemeiner, A. Al-Barakaty, L. Bellaiche, E. Dul’kin, E. Mojaev, and M. Roth, Phys. Rev. B 80, 064103 (2009)], besides Burns temperature TB and freezing temperature Tf . Possible consequences for nonequilibrium phenomena, including high-temperature memory found in relaxors, are conjectured.
NASA Astrophysics Data System (ADS)
Hsu, J. W. P.; Mitzi, D. B.; Kapitulnik, A.; Lee, Mark
1991-10-01
Measurements of the in-plane resistive transition of Bi2Sr2CaCu2O(8+delta) single crystals in perpendicular magnetic fields reveal that in oxygen-reduced samples a giant resistance maximum evolves with field. This is not seen in oxygenated samples with similar metallic normal resistivities. As the peak resistivity may exceed the normal resistivity, it cannot arise from ordinary vortex-motion dissipation. A model is proposed where the excess resistance results from nonrigid vortex motion coupling the out-of-plane dissipation to the in-plane resistance at temperatures where pinning effects are negligible.
NASA Astrophysics Data System (ADS)
Aryal, Anil; Quetz, Abdiel; Pandey, Sudip; Dubenko, Igor; Stadler, Shane; Ali, Naushad
2018-05-01
The structural, magnetic, magnetocaloric, and transport properties of Ni50Mn35In15-xBix (x = 0, 0.25, 0.5, 1, 1.5) compounds has been studied through X-ray diffraction (XRD), differential scanning calorimetry, and magnetization measurements. A mixture of high temperature austenite phase (AP) and low temperature martensitic phase (MP) was observed from the XRD at room temperature. The saturation magnetization MS at 10 K was found to decrease with increasing Bi content. A shift in the martensitic transition temperature (TM) relative to the parent compound was observed with a maximum shift of ˜ 36 K for x = 1.5. Abnormal shifts in TC and TM to higher temperatures were observed at high field for x ≥ 0.5. Large magnetic entropy changes (ΔSM) of about 40 J/kg K (x = 0) and 34 J/kg K (x = 0.25) were observed at TM with H = 5 T, which reduced significantly for higher Bi concentrations. The doping of small amounts of Bi in the In sites increased the peak width of the ΔSM curves at the second order transition, leading to larger values of relative cooling power. A significant magnetoresistance (-30%) was observed near TM with ΔH = 5T for x = 0.5.
Electric field induced metal-insulator transition in VO2 thin film based on FTO/VO2/FTO structure
NASA Astrophysics Data System (ADS)
Hao, Rulong; Li, Yi; Liu, Fei; Sun, Yao; Tang, Jiayin; Chen, Peizu; Jiang, Wei; Wu, Zhengyi; Xu, Tingting; Fang, Baoying
2016-03-01
A VO2 thin film has been prepared using a DC magnetron sputtering method and annealing on an F-doped SnO2 (FTO) conductive glass substrate. The FTO/VO2/FTO structure was fabricated using photolithography and a chemical etching process. The temperature dependence of the I-V hysteresis loop for the FTO/VO2/FTO structure has been analyzed. The threshold voltage decreases with increasing temperature, with a value of 9.2 V at 20 °C. The maximum transmission modulation value of the FTO/VO2/FTO structure is 31.4% under various temperatures and voltages. Optical modulation can be realized in the structure by applying an electric field.
Heat transfer from Atlantic waters to sea ice in the Arctic Ocean: Evidence from dissolved argon
NASA Astrophysics Data System (ADS)
Moore, R. M.; Spitzer, W.
1990-11-01
In an attempt to determine whether the temperature and salinity properties of Arctic Ocean waters above the Atlantic water temperature maximum are the result of heat transfer to sea-ice, dissolved Ar has been measured as a temperature tracer. Consistent with such a hypothesis, it is found that there is a transition from supersaturation of Ar in the upper waters to undersaturation below a depth of 275m. Using the known dependence of the solubility of Ar on T and S, and assuming that the water was originally equilibrated with the atmosphere at 760mm Hg, it has been calculated that ca. 0.6° C of cooling can be attributed to transfer of heat to sea-ice.
Structural, magnetic and electrical properties of a new double-perovskite LaNaMnMoO6 material
Borchani, Sameh Megdiche; Koubaa, Wissem Cheikh-Rouhou; Megdiche, Makrem
2017-01-01
Structural, magnetic, magnetocaloric, electrical and magnetoresistance properties of an LaNaMnMoO6 powder sample have been investigated by X-ray diffraction (XRD), magnetic and electrical measurements. Our sample has been synthesized using the ceramic method. Rietveld refinements of the XRD patterns show that our sample is single phase and it crystallizes in the orthorhombic structure with Pnma space group. Magnetization versus temperature in a magnetic applied field of 0.05 T shows that our sample exhibits a paramagnetic–ferromagnetic transition with decreasing temperature. The Curie temperature TC is found to be 320 K. Arrott plots show that all our double-perovskite oxides exhibit a second-order magnetic phase transition. From the measured magnetization data of an LaNaMnMoO6 sample as a function of the magnetic applied field, the associated magnetic entropy change |−ΔSM| and the relative cooling power (RCP) have been determined. In the vicinity of TC, |−ΔSM| reached, in a magnetic applied field of 8 T, a maximum value of ∼4 J kg−1 K−1. Our sample undergoes a large magnetocaloric effect at near-room temperature. Resistivity measurements reveal the presence of an insulating-metal transition at Tρ = 180 K. A magnetoresistance of 30% has been observed at room temperature for 6 T, significantly larger than that reported for the A2FeMoO6 (A = Sr, Ba) double-perovskite system. PMID:29291087
NASA Astrophysics Data System (ADS)
Zou, Yunlong; Holmes, Russell
2013-03-01
Transition metal oxides including molybdenum oxide (MoOx) are characterized by large work functions and deep energy levels relative to the organic semiconductors used in photovoltaic cells (OPVs). These materials have been used in OPVs as interlayers between the indium-tin-oxide anode and the active layers to increase the open-circuit voltage (VOC) and power conversion efficiency. We examine the role of MoOx in determining the maximum achievable VOC in planar heterojunction OPVs based on the donor-acceptor pairing of boron subphthalocyanine chloride (SubPc) and C60. While causing minor changes in VOC at room temperature, the inclusion of MoOx significantly changes the temperature dependence of VOC. Devices containing no interlayer show a maximum VOC\\ of 1.2 V, while devices containing MoOx show no saturation in VOC, reaching a value of >1.4 V at 110 K. We propose that the MoOx-SubPc interface forms a dissociating Schottky junction that provides an additional contribution to VOC at low temperature. Separate measurements of photoluminescence confirm that excitons in SubPc can be quenched by MoOx. Charge transfer at this interface is by hole extraction from SubPc to MoOx, and this mechanism favors donors with a deep highest occupied molecular orbital (HOMO) energy level. Consistent with this expectation, the temperature dependence of VOC for devices constructed using a donor with a shallower HOMO level, e.g. copper phthalocyanine, is independent of the presence of MoOx.
A study of low-dimensional quaternary mixed-transition metal chalcogenides
NASA Astrophysics Data System (ADS)
Oledzka, Magdalena Agata
New quaternary alkali metal mixed-transition metal sulfides: ACuMSsb2 (A = K, Rb, Cs; M = Mn, Fe, Co) and KCosb{2-x}Cusb{x}Ssb2 (0.5 ≤ x ≤ 1.5) were prepared by CSsb2/Nsb2 sulfurization of a mixture of oxide or sulfide and carbonate precursors of the corresponding metals. All of the phases form in the tetragonal ThCrsb2Sisb2-type structure in space group I4/mmm. The ACoCuSsb2 phases are semiconducting, with room temperature resistivities rhosbRT˜ 10sp{-2}Omega {*}cm;\\ KCosb{0.5}CUsb{1.5}Ssb2 is metallic with a metal-to-nonmetal transition at ˜120 K. Seebeck measurements indicate that the majority of charge carriers are holes. The temperature dependence of magnetic susceptibility shows an anomalous transition to the ferromagnetic state in the ACoCuSsb2 phases. The electrical and magnetic properties of the new quaternary phases are compared to those of ternary ACosb2Ssb2 (A = K, Rb, Cs). The quaternary sulfides ACuFeSsb2 show semiconducting behavior. Magnetic susceptibility data indicate the presence of localized magnetic moment arising from the di- and trivalent iron ions. The semiconducting properties observed in this system are in contrast to the metallic behavior predicted by theoretical calculations. Investigations of the electrical properties of the sulfides ACuMnSsb2 revealed semiconducting behavior with a broad anomaly at ≈70 K. In the temperature range 100-300 K, the molar magnetic susceptibility of all the samples shows a weak maximum consistent with localized antiferromagnetic exchange of isolated two-dimensional manganese cluster nets. The divergence of the FC and ZFC molar susceptibilities at low temperatures, for all the samples, suggests spin-glass-type behavior with a well defined freezing temperature of ≈35 K. Single phase polycrystalline quaternary selenides ACuMnSesb2 (A = K, Rb, Cs) were prepared for the first time by the reduction of the mixture containing corresponding alkali metal carbonates, copper oxide, manganese and selenium powders. p-Type semiconducting behavior was observed for the samples with rhosbRT of {˜}10sp{-1}Omega{*}cm, and Esba˜ 0.1 eV. The relatively high values of magnetic susceptibility and the weak maximum in the temperature dependence of the magnetic susceptibility above 100 K was attributed to short-range antiferromagnetic interactions. New quaternary layered sulfides: NaCuMSsb2 (M = Mn, Fe, Co, Zn) crystallize in the trigonal CaAlsb2Sisb2-type structure in space group P{bar 3}m1. All the new phases are semiconducting, with rhosb{RT} varying from 6.2× 10sp{-1} to 5× 10sp{-2}Omega{*}cm, depending upon the transition metal M. Magnetic susceptibility measurements indicate the presence of localized Mnsp{2+} ions in NaCuMnSsb2. The NaCuMSsb2 (M = Fe, Co) phases display temperature independent paramagnetism whereas the NaCuZnSsb2 phase is diamagnetic, as expected. In addition, detailed low-temperature magnetic studies of the NaCuFeSsb2 phase revealed spin-glass-type behavior with the freezing temperature Tsbf˜ 50 K.
Influence of water mist on propagation and suppression of laminar premixed flame
NASA Astrophysics Data System (ADS)
Belyakov, Nikolay S.; Babushok, Valeri I.; Minaev, Sergei S.
2018-03-01
The combustion of premixed gas mixtures containing micro droplets of water was studied using one-dimensional approximation. The dependencies of the burning velocity and flammability limits on the initial conditions and on the properties of liquid droplets were analyzed. Effects of droplet size and concentration of added liquid were studied. It was demonstrated that the droplets with smaller diameters are more effective in reducing the flame velocity. For droplets vaporizing in the reaction zone, the burning velocity is independent of droplet size, and it depends only on the concentration of added liquid. With further increase of the droplet diameter the droplets are passing through the reaction zone with completion of vaporization in the combustion products. It was demonstrated that for droplets above a certain size there are two stable stationary modes of flame propagation with transition of hysteresis type. The critical conditions of the transition are due to the appearance of the temperature maximum at the flame front and the temperature gradient with heat losses from the reaction zone to the products, as a result of droplet vaporization passing through the reaction zone. The critical conditions are similar to the critical conditions of the classical flammability limits of flame with the thermal mechanism of flame propagation. The maximum decrease in the burning velocity and decrease in the combustion temperature at the critical turning point corresponds to predictions of the classical theories of flammability limits of Zel'dovich and Spalding. The stability analysis of stationary modes of flame propagation in the presence of water mist showed the lack of oscillatory processes in the frames of the assumed model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.
2014-01-28
The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B{sub 2}O{sub 3}-10SiO{sub 2} were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T{sub g}) and of the maximum crystallization temperature (T{sub p}) on the heating rate was used to determine the activation energy associated with the glass transition (E{sub g}), the activation energy for crystallization (E{sub c}), and the Avrami exponent (n). X-ray diffractionmore » (XRD) revealed that barium borate (β-BaB{sub 2}O{sub 4}) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba{sub 5}Si{sub 8}O{sub 21}). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E{sub c}(χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures.« less
NASA Astrophysics Data System (ADS)
Mancuso, S.; Giordano, S.; Raymond, J. C.
2016-06-01
In this work, we derive the O VI 1032 Å luminosity profiles of 58 flares, during their impulsive phase, based on off-limb measurements by the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the SOlar and Heliospheric Observatory (SOHO). The O VI luminosities from the transition region plasma (here defined as the region with temperatures 5.0 ≤ log T (K) ≤ 6.0) were inferred from the analysis of the resonantly scattered radiation of the O VI coronal ions. The temperature of maximum ionization for O VI is log Tmax (K) = 5.47. By comparison with simultaneous soft X-ray measurements, we investigate the likely source (chromospheric evaporation, footpoint emission, or heated prominence ejecta) for the transition region emission observed during the impulsive phase. In our study, we find evidence of the main characteristics predicted by the evaporation scenario. Specifically, most O VI flares precede the X-ray peaks typically by several minutes with a mean of 3.2 ± 0.1 min, and clear correlations are found between the soft X-ray and transition region luminosities following power laws with indices ~ 0.7 ± 0.3. Overall, the results are consistent with transition region emission originating from chromospheric evaporation; the thermal X-ray emission peaks after the emission from the evaporation flow as the loops fill with hot plasma. Finally, we were able to infer flow speeds in the range ~20-100 km s-1 for one-third of the events, 14 of which showed speeds between 60 and 80 km s-1. These values are compatible with those found through direct spectroscopic observations at transition region temperatures by the EUV Imaging Spectrometer (EIS) on board Hinode.
NASA Astrophysics Data System (ADS)
Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter
2017-05-01
Curvatures of bit transitions on granular media are a serious problem for the read-back process. We address this fundamental issue and propose a possibility to efficiently reduce transition curvatures with state-of-the-art heat-assisted magnetic recording heads. We compare footprints of conventional with those of the proposed head design on different media, consisting of exchange coupled and single phase grains. Additionally, we investigate the impact of various recording parameters, such as the full width at half maximum (FWHM) of the applied heat pulse and the coercivity gradient near the write temperature of the recording grains. The footprints are calculated with a coarse grained model, based on the Landau-Lifshitz-Bloch equation. The presented simulations show a transition curvature reduction of up to 40%, in the case of a medium with exchange coupled grains and a heat pulse with a FWHM of 40 nm. We further give the reason for the straightening of the bit transitions, by means of basic considerations with regard to the effective recording time window of the write process. Besides the transition curvature reduction, the proposed head design yields an improvement of the transition jitter in both down-track and off-track directions.
Matschegewski, Claudia; Zetzsche, Holger; Hasan, Yaser; Leibeguth, Lena; Briggs, William; Ordon, Frank; Uptmoor, Ralf
2015-01-01
Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature-dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r2 = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature-regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars. PMID:26442034
Estimating Past Temperature Change in Antarctica Based on Ice Core Stable Water Isotope Diffusion
NASA Astrophysics Data System (ADS)
Kahle, E. C.; Markle, B. R.; Holme, C.; Jones, T. R.; Steig, E. J.
2017-12-01
The magnitude of the last glacial-interglacial transition is a key target for constraining climate sensitivity on long timescales. Ice core proxy records and general circulation models (GCMs) both provide insight on the magnitude of climate change through the last glacial-interglacial transition, but appear to provide different answers. In particular, the magnitude of the glacial-interglacial temperature change reconstructed from East Antarctic ice-core water-isotope records is greater ( 9 degrees C) than that from most GCM simulations ( 6 degrees C). A possible source of this difference is error in the linear-scaling of water isotopes to temperature. We employ a novel, nonlinear temperature-reconstruction technique using the physics of water-isotope diffusion to infer past temperature. Based on new, ice-core data from the South Pole, this diffusion technique suggests East Antarctic temperature change was smaller than previously thought. We are able to confirm this result using a simple, water-isotope fractionation model to nonlinearly reconstruct temperature change at ice core locations across Antarctica based on combined oxygen and hydrogen isotope ratios. Both methods produce a temperature change of 6 degrees C for South Pole, agreeing with GCM results for East Antarctica. Furthermore, both produce much larger changes in West Antarctica, also in agreement with GCM results and independent borehole thermometry. These results support the fidelity of GCMs in simulating last glacial maximum climate, and contradict the idea, based on previous work, that the climate sensitivity of current GCMs is too low.
NASA Astrophysics Data System (ADS)
Nagpal, V.; Kumar, P.; Sudesh, Patnaik, S.
2018-04-01
We have studied the resistivity and magnetoresistance (MR) properties of the recently predicted type-II Weyl semimetal WP2. Polycrystalline WP2 is synthesized using solid state reaction and crystallizes in an orthorhombic structure with the Cmc21 spacegroup. The temperature dependent resistivity is enhanced with the application of magnetic field and a resistivity plateau is observed at low temperatures. We find a small dip in resistivity around 30K at 5T field suggesting that there might be a metal-insulator-like transition at higher magnetic fields. A non-saturating magnetoresistance is observed at low temperatures with maximum MR ˜ 94% at 2K and 6T. The value of MR decreases with the increase in temperature. We see a deviation from Kohler's power law which implies that the system comprises of two types of charge carriers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L. H.; Hu, L.; Yang, S. J.
2016-01-21
The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni{sub 7}Zr{sub 2} alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni{sub 7}Zr{sub 2} has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni{sub 7}Zr{sub 2} alloy fitted by Vogel–Fulcher–Tammann law yields amore » fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni{sub 7}Zr{sub 2} compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s{sup −1} at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s{sup −1}.« less
Anomalous Change of Hall Coefficient in Overdoped La2-xSrxCu1-yZnyO4 around x = 0.2
NASA Astrophysics Data System (ADS)
Tonishi, Jun; Suzuki, Takao; Goto, Takayuki
2006-09-01
The Hall coefficient (RH) has been measured in 0.5% Zn-doped La2-xSrxCu0.995Zn0.005O4 under high magnetic fields up to 12 T. With decreasing temperature, RH increases and begins to decrease below a temperature TRH. This characteristic temperature TRH has the local maximum around x = 0.195, and this Sr-concentration coincides with that the superconducting transition temperature is slightly suppressed. This behavior is quite similar to the phenomena observed in the stripe phase in x ˜ 0.12. These results suggest that the anomalous decrease of RH around x = 0.195 observed in this study is responsible for the "1/4"-anomaly [as reported by Kakinuma et al., Phys. Rev. B 59, 1491 (1999).].
Brownian ratchets: How stronger thermal noise can reduce diffusion
NASA Astrophysics Data System (ADS)
Spiechowicz, Jakub; Kostur, Marcin; Łuczka, Jerzy
2017-02-01
We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a non-monotonic dependence of the diffusion coefficient on temperature: for low temperature, it initially increases as the temperature grows, passes through its local maximum, next starts to diminish reaching its local minimum, and finally it monotonically increases in accordance with the Einstein linear relation. Particularly interesting is the temperature interval in which diffusion is suppressed by the thermal noise, and we explain this effect in terms of transition rates of a three-state stochastic model.
Brownian ratchets: How stronger thermal noise can reduce diffusion.
Spiechowicz, Jakub; Kostur, Marcin; Łuczka, Jerzy
2017-02-01
We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a non-monotonic dependence of the diffusion coefficient on temperature: for low temperature, it initially increases as the temperature grows, passes through its local maximum, next starts to diminish reaching its local minimum, and finally it monotonically increases in accordance with the Einstein linear relation. Particularly interesting is the temperature interval in which diffusion is suppressed by the thermal noise, and we explain this effect in terms of transition rates of a three-state stochastic model.
Liquid-liquid phase transition and anomalous diffusion in simulated liquid GeO 2
NASA Astrophysics Data System (ADS)
Hoang, Vo Van; Anh, Nguyen Huynh Tuan; Zung, Hoang
2007-03-01
We perform molecular dynamics (MD) simulation of diffusion in liquid GeO 2 at the temperatures ranged from 3000 to 5000 K and densities ranged from 3.65 to 7.90 g/cm 3. Simulations were done in a model containing 3000 particles with the new interatomic potentials for liquid and amorphous GeO 2, which have weak Coulomb interaction and Morse-type short-range interaction. We found a liquid-liquid phase transition in simulated liquid GeO 2 from a tetrahedral to an octahedral network structure upon compression. Moreover, such phase transition accompanied with an anomalous diffusion of particles in liquid GeO 2 that the diffusion constant of both Ge and O particles strongly increases with increasing density (e.g. with increasing pressure) and it shows a maximum at the density around 4.95 g/cm 3. The possible relation between anomalous diffusion of particles and structural phase transition in the system has been discussed.
NASA Astrophysics Data System (ADS)
Tian, Yongshang; Gong, Yansheng; Meng, Dawei; Li, Yuanjian; Kuang, Boya
2015-08-01
Lead-free ceramics 0.50Ba0.9Ca0.1TiO3-0.50BaTi1- x Zr x O3 (BCT-BZT) were prepared via sintering BCT and BZT nanoparticles, which were synthesized using a modified Pechini polymeric precursor method, at a low temperature of 1260°C. The relative densities of the ceramics prepared with different zirconium contents ( x) were all above 95.3%, reaching a maximum of 97% when x = 0.08. X-ray diffraction results confirmed the onset of phase transformation from orthorhombic to rhombohedral symmetry with increasing zirconium contents, and the polymorphic phase transition was observed at x = 0.10. The dielectric dispersion, diffuse phase transition (DPT), and relaxor-like ferroelectric characteristics as a function of zirconium content were thoroughly studied. Optimum physical properties, remnant polarization ( P r) = 16.4 μC/cm2, piezoelectric constant ( d 33) = ~240 pC/N, and electromechanical coupling factor ( k p) = 0.22, were obtained at x = 0.10. The findings of the current DPT behavior study of BCT-BZT ceramics are believed to be insightful to the development of ferroelectric materials.
Response of mantle transition zone thickness to plume buoyancy flux
NASA Astrophysics Data System (ADS)
Das Sharma, S.; Ramesh, D. S.; Li, X.; Yuan, X.; Sreenivas, B.; Kind, R.
2010-01-01
The debate concerning thermal plumes in the Earth's mantle, their geophysical detection and depth characterization remains contentious. Available geophysical, petrological and geochemical evidence is at variance regarding the very existence of mantle plumes. Utilizing P-to-S converted seismic waves (P receiver functions) from the 410 and 660 km discontinuities, we investigate disposition of these boundaries beneath a number of prominent hotspot regions. The thickness of the mantle transition zone (MTZ), measured as P660s-P410s differential times (tMTZ), is determined. Our analyses suggest that the MTZ thickness beneath some hotspots correlates with the plume strength. The relationship between tMTZ, in response to the thermal perturbation, and the strength of plumes, as buoyancy flux B, follows a power law. This B-tMTZ behavior provides unprecedented insights into the relation of buoyancy flux and excess temperature at 410-660 km depth below hotspots. We find that the strongest hotspots, which are located in the Pacific, are indeed plumes originating at the MTZ or deeper. According to the detected power law, even the strongest plumes may not shrink the transition zone by significantly more than ~40 km (corresponding to a maximum of 300-400° excess temperature).
NASA Astrophysics Data System (ADS)
Sundar, Shyam; Mosqueira, J.; Alvarenga, A. D.; Sóñora, D.; Sefat, A. S.; Salem-Sugui, S., Jr.
2017-12-01
Isothermal magnetic field dependence of magnetization and magnetic relaxation measurements were performed for the H\\parallel {{c}} axis on a single crystal of Ba(Fe0.935 Co0.065)2As2 pnictide superconductor having T c = 21.7 K. The second magnetization peak (SMP) for each isothermal M(H) was observed in a wide temperature range from T c to the lowest temperature of measurement (2 K). The magnetic field dependence of relaxation rate R(H), showed a peak (H spt) between H on (onset of SMP in M(H)) and H p (peak field of SMP in M(H)), which is likely to be related to a vortex-lattice structural phase transition, as suggested in the literature for a similar sample. In addition, the magnetic relaxation measured for magnetic fields near H spt showed some noise, which might be the signature of the structural phase transition of the vortex lattice. Analysis of the magnetic relaxation data using Maley’s criterion and the collective pinning theory suggested that the SMP in the sample was due to the collective (elastic) to plastic creep crossover, which was also accompanied by a rhombic to square vortex lattice phase transition. Analysis of the pinning force density suggested a single dominating pinning mechanism in the sample, which did not showing the usual δ {l} and δ {T}{{c}} nature of pinning. The critical current density (J c), estimated using the Bean critical state model, was found to be 5 × 105 A cm- 2 at 2 K in the zero magnetic field limit. Surprisingly, the maximum of the pinning force density was not responsible for the maximum value of the critical current density in the sample.
Good News for Borehole Climatology
NASA Astrophysics Data System (ADS)
Rath, Volker; Fidel Gonzalez-Rouco, J.; Goosse, Hugues
2010-05-01
Though the investigation of observed borehole temperatures has proved to be a valuable tool for the reconstruction of ground surface temperature histories, there are many open questions concerning the significance and accuracy of the reconstructions from these data. In particular, the temperature signal of the warming after the Last glacial Maximum (LGM) is still present in borehole temperature profiles. It influences the relatively shallow boreholes used in current paleoclimate inversions to estimate temperature changes in the last centuries. This is shown using Monte Carlo experiments on past surface temperature change, using plausible distributions for the most important parameters, i.e.,amplitude and timing of the glacial-interglacial transition, the prior average temperature, and petrophysical properties. It has been argued that the signature of the last glacial-interglacial transition could be responsible for the high amplitudes of millennial temperature reconstructions. However, in shallow boreholes the additional effect of past climate can reasonably approximated by a linear variation of temperature with depth, and thus be accommodated by a "biased" background heat flow. This is good news for borehole climate, but implies that the geological heat flow values have to be interpreted accordingly. Borehole climate reconstructions from these shallow are most probably underestimating past variability due to the diffusive character of the heat conduction process, and the smoothness constraints necessary for obtaining stable solutions of this ill-posed inverse problem. A simple correction based on subtracting an appropriate prior surface temperature history shows promising results reducing these errors considerably, also with deeper boreholes, where the heat flow signal can not be approximated linearly, and improves the comparisons with AOGCM modeling results.
Anisotropic nanocrystalline MnBi with high coercivity at high temperature
NASA Astrophysics Data System (ADS)
Yang, J. B.; Yang, Y. B.; Chen, X. G.; Ma, X. B.; Han, J. Z.; Yang, Y. C.; Guo, S.; Yan, A. R.; Huang, Q. Z.; Wu, M. M.; Chen, D. F.
2011-08-01
Magnetic hard nanocrystalline MnBi has been prepared by melt spinning and subsequent low temperature annealing. A coercivity of 2.5 T can be achieved at 540 K for MnBi with an average grain size of about 20-30 nm. The coercivity iHc, mainly controlled by the coherent magnetization rotation, shows a strong dependence on the time of grinding and exhibits a positive temperature coefficient from 100 up to 540 K. The unique temperature dependent behavior of the coercivity (magnetocrystalline anisotropy) has a relationship with the variations in the crystal lattice ratio of c/a with temperatures. In addition, discontinuity can not be found in the lattice parameters of a, c, and c/a ratio at the magnetostructural transition temperature. The nanocrystalline MnBi powder fixed in an epoxy resin and under an applied magnetic field of 24 kOe shows a maximum energy product of 7.1 MGOe at room temperature and shows anisotropic characteristics with high Mr/Ms ratio up to 560 K.
Electro-active polymers containing pendent 2,7-diarylfluorene fragments as materials for OLEDs
NASA Astrophysics Data System (ADS)
Krucaite, G.; Tavgeniene, D.; Peciulyte, L.; Buika, G.; Liu, L.; Zhang, B.; Xie, Z.; Grigalevicius, S.
2016-05-01
Poly[2-phenyl-7-(4-vinylphenyl)-9,9-diethylfluorene)], poly[2-(1-naphtyl)-7-(4-vinylphenyl)-9,9-diethylfluorene)] and poly[2-(4-biphenyl)-7-(4-vinylphenyl)-9,9-diethylfluorene)] were synthesized and characterized by NMR spectroscopy, elemental analysis and gel permeation chromatography. The derivatives represent materials of high thermal stability with initial thermal destruction temperatures from 390°C to 400 °C. The glass transition temperatures of the amorphous materials were 182 °C, 151 °C and 159 °C respectively. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting material. The device containing hole-transporting layers of polymer with 2-(4-biphenyl)-7-(4-vinylphenyl)-9,9-diethylfluorene moieties exhibited the best overall performance with turn on voltage of 3.6 V, a maximum photometric efficiency of 3.1 cd/A and maximum brightness of about 5300 cd/m2.
Shock-induced superheating and melting curves of geophysically important minerals
NASA Astrophysics Data System (ADS)
Luo, Sheng-Nian; Ahrens, Thomas J.
2004-06-01
Shock-state temperature and sound-speed measurements on crystalline materials, demonstrate superheating-melting behavior distinct from equilibrium melting. Shocked solid can be superheated to the maximum temperature, Tc'. At slightly higher pressure, Pc, shock melting occurs, and induces a lower shock temperature, Tc. The Hugoniot state, ( Pc, Tc), is inferred to lie along the equilibrium melting curve. The amount of superheating achieved on Hugoniot is, ΘH+= Tc'/ Tc-1. Shock-induced superheating for a number of silicates, alkali halides and metals agrees closely with the predictions of a systematic framework describing superheating at various heating rates [Appl. Phys. Lett. 82 (12) (2003) 1836]. High-pressure melting curves are constructed by integration from ( Pc, Tc) based on the Lindemann law. We calculate the volume and entropy changes upon melting at ( Pc, Tc) assuming the R ln 2 rule ( R is the gas constant) for the disordering entropy of melting [J. Chem. Phys. 19 (1951) 93; Sov. Phys. Usp. 117 (1975) 625; Poirier, J.P., 1991. Introduction to the Physics of the Earth's Interior. Cambridge University Press, Cambridge, 102 pp.]. ( Pc, Tc) and the Lindemann melting curves are in excellent accord with diamond-anvil cell (DAC) results for NaCl, KBr and stishovite. But significant discrepancies exist for transition metals. If we extrapolate the DAC melting data [Phys. Rev. B 63 (2001) 132104] for transition metals (Fe, V, Mo, W and Ta) to 200-400 GPa where shock melting occurs, shock temperature measurement and calculation would indicate ΘH+˜0.7-2.0. These large values of superheating are not consistent with the superheating systematics. The discrepancies could be reconciled by possible solid-solid phase transitions at high pressures. In particular, this work suggests that Fe undergoes a possible solid-solid phase transition at ˜200 GPa and melts at ˜270 GPa upon shock wave loading, and the melting temperature is ˜6300 K at 330 GPa.
NASA Astrophysics Data System (ADS)
Charikova, T. B.; Shelushinina, N. G.; Petukhov, D. S.; Kharus, G. I.; Petukhova, O. E.; Ivanov, A. A.
2017-12-01
The Hall resistance and the magnetoresistance in the mixed state of the Nd2 - x Ce x CuO4 + δ quasi-two-dimensional system near the antiferromagnetic-superconductor (AF-SC) phase transition have been measured at doping levels x = 0.14 and 0.15, and a correlation has been established. This correlation can be analyzed using the following power relationship: ρ xy ( B) [ρ xx ( B)]β. It was found that index β varied from 0.94 ± 0.03 in the region of AF and SC coexistence ( x = 0.14) to 0.6 ± 0.1 in the SC region with the maximum critical temperature ( x = 0.15) at low temperatures and weak magnetic fields. This reduction suggests that the symmetry of carrier pairing changes at the boundary of the transition from the phase of antiferromagnetic ordering and spin density waves to the superconducting phase in the presence of antiferromagnetic spin fluctuations.
Fundamental Boiling and RP-1 Freezing Experiments
NASA Technical Reports Server (NTRS)
Goode, Brian
2002-01-01
The prestart thermal conditioning of the hardware in LOX (liquid oxygen) systems involve heat transfer between LOX and metal where boiling plays a large role. Information is easily found on nucleate boiling, maximum heat flux, minimum heat flux and film boiling for common fluids like water. After looking at these standard correlations it was felt more data was needed for the cool down side transition boiling for the LN2 and LOX. In particular interest is the film boiling values, the temperature at which transition begins and the slope as peak heat flux is approached. The ultimate goal is an array of boiling heat transfer coefficient as a function of surface temperature which can be used in the chilldown model of the feed system, engine and bleed system for X-34. The first experiment consisted of an actual MC-1 LOX Impeller which had been machined backwards, that was instrumented with 17 surface thermocouples and submerged in liquid nitrogen. The thermocouples were installed on metal thicknesses varying from the thin inducer to the thick hub.
Magnetocaloric effect in Gd1-x Ndx Zn2
NASA Astrophysics Data System (ADS)
Matsumoto, Keisuke T.; Hiraoka, Koichi
2017-09-01
The magnetization of Gd1-xNdxZn2 (0 < x ⩽ 1) was measured to study the effect of Nd substitution in GdZn2 with a Curie temperature of 85 K and a spin-reorientation transition temperature of 58 K on the magnetocaloric effect. The Nd counterpart NdZn2 shows antiferromagnetic order at 23 K. Samples of Gd1-xNdxZn2 (0 < x ⩽ 1) were prepared by the melt-growth method. In Nd-substituted systems, the anomaly due to spin-reorientation disappeared. For x ⩾ 0.6 , field-induced metamagnetic transitions were observed, indicating an antiferromagnetic ground state. This complex magnetism may originate from competition between ferromagnetic and antiferromagnetic interactions. Magnetic entropy change ΔSm was calculated based on the magnetization measurements. ΔSm was suppressed by Nd substitution for x values up to 0.6. For x = 1 (NdZn2), the maximum value of ΔSm was -9 J/K kg, which is almost the same as those of other Nd-based magnetocaloric materials.
The Ronda peridotite (Spain): A natural template for seismic anisotropy in subduction wedges
NASA Astrophysics Data System (ADS)
Précigout, Jacques; Almqvist, Bjarne S. G.
2014-12-01
The origin of seismic anisotropy in mantle wedges remains elusive. Here we provide documentation of shear wave anisotropy (AVs) inferred from mineral fabric across a lithosphere-scale vestige of deformed mantle wedge in the Ronda peridotite. As predicted for most subduction wedges, this natural case exposes a transition from A-type to B-type olivine fabric that occurs with decreasing temperature and enhanced grain boundary sliding at the expense of dislocation creep. We show that B-type fabric AVs (maximum of 6%) does not support geophysical observations and modeling, which requires 8% AVs. However, an observed transitional olivine fabric (A/B) develops at intermediate temperatures (800-1000°C) and can generate AVs ≥ 8%. We predict that the A/B-type fabric can account for shear wave splitting in contrasting subduction settings, exemplified by the Ryukyu and Honshu subduction wedges. The Ronda peridotite therefore serves as a natural template to decipher the mantle wedge deformation from seismic anisotropy.
Mobility of icy sand packs, with application to Martian permafrost
Durham, W.B.; Pathare, A.V.; Stern, L.A.; Lenferink, H.J.
2009-01-01
[1] The physical state of water on Mars has fundamental ramifications for both climatology and astrobiology. The widespread presence of "softened" Martian landforms (such as impact craters) can be attributed to viscous creep of subsurface ground ice. We present laboratory experiments designed to determine the minimum amount of ice necessary to mobilize topography within Martian permafrost. Our results show that the jammed-to-mobile transition of icy sand packs neither occurs at fixed ice content nor is dependent on temperature or stress, but instead correlates strongly with the maximum dry packing density of the sand component. Viscosity also changes rapidly near the mobility transition. The results suggest a potentially lower minimum volatile inventory for the impact-pulverized megaregolith of Mars. Furthermore, the long-term preservation of partially relaxed craters implies that the ice content of Martian permafrost has remained close to that at the mobility transition throughout Martian history. Copyright 2009 by the American Geophysical Union.
Transitions between refrigeration regions in extremely short quantum cycles
NASA Astrophysics Data System (ADS)
Feldmann, Tova; Kosloff, Ronnie
2016-05-01
The relation between the geometry of refrigeration cycles and their performance is explored. The model studied is based on a coupled spin system. Small cycle times, termed sudden refrigerators, develop coherence and inner friction. We explore the interplay between coherence and energy of the working medium employing a family of sudden cycles with decreasing cycle times. At the point of maximum coherence the cycle changes geometry. This region of cycle times is characterized by a dissipative resonance where heat is dissipated both to the hot and cold baths. We rationalize the change of geometry of the cycle as a result of a half-integer quantization which maximizes coherence. From this point on, increasing or decreasing the cycle time, eventually leads to refrigeration cycles. The transition point between refrigerators and short circuit cycles is characterized by a transition from finite to singular dynamical temperature. Extremely short cycle times reach a universal limit where all cycles types are equivalent.
A Compact, Continuous Adiabatic Demagnetization Refrigerator with High Heat Sink Temperature
NASA Technical Reports Server (NTRS)
Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Tuttle, J. G.
2003-01-01
In the continuous adiabatic demagnetization refrigerator (ADR), the existence of a constant temperature stage attached to the load breaks the link between the requirements of the load (usually a detector array) and the operation of the ADR. This allows the ADR to be cycled much faster, which yields more than an order of magnitude improvement in cooling power density over single-shot ADRs. Recent effort has focused on developing compact, efficient higher temperature stages. An important part of this work has been the development of passive gas-gap heat switches that transition (from conductive to insulating) at temperatures around 1 K and 4 K without the use of an actively heated getter. We have found that by carefully adjusting available surface area and the number of He-3 monolayers, gas-gap switches can be made to operate passively. Passive operation greatly reduces switching time and eliminates an important parasitic heat load. The current four stage ADR provides 6 micro W of cooling at 50 mK (21 micro W at 100 mK) and weighs less than 8 kg. It operates from a 4.2 K heat sink, which can be provided by an unpumped He bath or many commercially available mechanical cryocoolers. Reduction in critical current with temperature in our fourth stage NbTi magnet presently limits the maximum temperature of our system to approx. 5 K. We are developing compact, low-current Nb3Sn magnets that will raise the maximum heat sink temperature to over 10 K.
NASA Astrophysics Data System (ADS)
Devidas, T. R.; Abhirami, S.; Sharma, Shilpam; Amaladas, E. P.; Mani, Awadhesh
2018-03-01
Studies on the electrical transport properties of the 3D topological insulators Bi2Se3 under iso-electronic substitution of Te at Se sites and the application of external pressure have been performed to understand the evolution of its ground-state properties and to explore possible electronic phase transitions in Bi2Se3‑x Te x (x=0\\text{--}3 ) systems. While the external pressure suppresses the metallic behaviour of Bi2Se3 arising from defect charge carriers leading ultimately to non-metal behaviour, the effect of pressure on Te-doped samples x=1\\text{--}2 seems to be more striking, and causes multiple electronic phase transitions such as an insulator-to-metal transition (MIT) followed by pressure-induced superconducting transition at higher pressures. All the critical parameters such as critical pressure for the occurrence of MIT (PMIT}) , superconductivity (PSC}) and maximum pressure induced superconducting transition temperature (Tc,max}) for given compositions are seen to exhibit maxima at x=1.6 which is the composition that exhibits the most insulating behaviour with least concentration of defect charge carriers among the samples of Bi2Se3‑x Te x (x=0\\text{--}3 ) series. The superconducting transition temperature (Tc}) decreases with increasing pressure in x=1\\text{--}2 samples, while it remains nearly constant for Bi2Te3. Based on the analysis of the experimental data it is surmised that the pressure-induced superconductivity seen in these systems is of conventional (BCS) type.
Step-induced deconstruction and step-height evolution of the Au(110) surface
NASA Astrophysics Data System (ADS)
Romahn, U.; von Blanckenhagen, P.; Kroll, C.; Göpel, W.
1993-05-01
We use temperature-dependent high-resolution low-energy electron diffraction and spot-profile analysis low-energy electron diffraction to study the Au(110) surface at room temperature up to 786 K. The experimental data were analyzed within the framework of the kinematic theory. Oscillations were determined of the positions of half order and fundamental Bragg peaks as well as of the full width at half maximum of the specular peak as a function of perpendicular momentum transfer. Evidence of mono- atomic steps occurring in the [001] direction was found below and around the (2×1)-->(1×1) transition at Tc. Above Tc, the surface gets smoother in the [001] direction; at the roughening temperature, TR, the evolution of multiple-height steps starts in both symmetry directions.
Greenhouse models of the atmosphere of Titan.
NASA Technical Reports Server (NTRS)
Pollack, J. B.
1973-01-01
The greenhouse effect is calculated for a series of Titanian atmosphere models with different proportions of methane, hydrogen, helium, and ammonia. A computer program is used in temperature-structure calculations based on radiative-convective thermal transfer considerations. A brightness temperature spectrum is derived for Titan and is compared with available observational data. It is concluded that the greenhouse effect on Titan is generated by pressure-induced transitions of methane and hydrogen. The helium-to-hydrogen ratio is found to have a maximum of about 1.5. The surface pressure is estimated to be at least 0.4 atm, with a daytime temperature of about 155 K at the surface. The presence of methane clouds in the upper troposphere is indicated. The clouds have a significant optical depth in the visible, but not in the thermal, infrared.
Pressure dependence of the electrical properties of GaBi solidified in low gravity
NASA Technical Reports Server (NTRS)
Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Curreri, P. A.; Chu, C. W.
1987-01-01
Immiscible GaBi alloys were solidified during free fall in the NASA Marshall Space Flight Center drop tower, which provides about 4.5 seconds of low gravity. The electrical resistivity and magnetic susceptibility were measured as a function of pressure (up to 18 kbar) and temperature (300 K to 4.2 K) of drop tower (DT) and ground control (GC) samples prepared under identical conditions, except for gravity. At ambient pressure the electrical resistance of the DT sample exhibits a broad maximum at 100 K, while that of GC sample decreases rapidly as temperature decreases. Both DT and GC samples become superconducting at 7.7 K. However, a minor second superconducting phase with a transition temperature at 8.3 K is observed only in the DT samples.
NASA Astrophysics Data System (ADS)
Liang, L. L.; Arcus, V. L.; Heskel, M.; O'Sullivan, O. S.; Weerasinghe, L. K.; Creek, D.; Egerton, J. J. G.; Tjoelker, M. G.; Atkin, O. K.; Schipper, L. A.
2017-12-01
Temperature is a crucial factor in determining the rates of ecosystem processes such as leaf respiration (R) - the flux of plant respired carbon dioxide (CO2) from leaves to the atmosphere. Generally, respiration rate increases exponentially with temperature as modelled by the Arrhenius equation, but a recent study (Heskel et al., 2016) showed a universally convergent temperature response of R using an empirical exponential/polynomial model whereby the exponent in the Arrhenius model is replaced by a quadratic function of temperature. The exponential/polynomial model has been used elsewhere to describe shoot respiration and plant respiration. What are the principles that underlie these empirical observations? Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state theory for chemical kinetics, is equivalent to the exponential/polynomial model. We re-analyse the data from Heskel et al. 2016 using MMRT to show this equivalence and thus, provide an explanation based on thermodynamics, for the convergent temperature response of R. Using statistical tools, we also show the equivalent explanatory power of MMRT when compared to the exponential/polynomial model and the superiority of both of these models over the Arrhenius function. Three meaningful parameters emerge from MMRT analysis: the temperature at which the rate of respiration is maximum (the so called optimum temperature, Topt), the temperature at which the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf) and the overall curvature of the log(rate) versus temperature plot (the so called change in heat capacity for the system, ). The latter term originates from the change in heat capacity between an enzyme-substrate complex and an enzyme transition state complex in enzyme-catalysed metabolic reactions. From MMRT, we find the average Topt and Tinf of R are 67.0±1.2 °C and 41.4±0.7 °C across global sites. The average curvature (average negative) is -1.2±0.1 kJ.mol-1K-1. MMRT extends the classic transition state theory to enzyme-catalysed reactions and scales up to more complex processes including micro-organism growth rates and ecosystem processes.
Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides
NASA Technical Reports Server (NTRS)
Collins, J.; Rosner, D. E.; Castillo, J.
1992-01-01
A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.
NASA Astrophysics Data System (ADS)
Kim, Seyong; Petreczky, Peter; Rothkopf, Alexander
2015-03-01
We investigate the properties of S - and P -wave bottomonium states in the vicinity of the deconfinement transition temperature. The light degrees of freedom are represented by dynamical lattice quantum chromodynamics (QCD) configurations of the HotQCD collaboration with Nf=2 +1 flavors. Bottomonium correlators are obtained from bottom quark propagators, computed in nonrelativistic QCD under the background of these gauge field configurations. The spectral functions for the 3S1 (ϒ ) and 3P1 (χb 1) channel are extracted from the Euclidean time correlators using a novel Bayesian approach in the temperature region 140 MeV ≤T ≤249 MeV and the results are contrasted to those from the standard maximum entropy method. We find that the new Bayesian approach is far superior to the maximum entropy method. It enables us to study reliably the presence or absence of the lowest state signal in the spectral function of a certain channel, even under the limitations present in the finite temperature setup. We find that χb 1 survives up to T =249 MeV , the highest temperature considered in our study, and put stringent constraints on the size of the medium modification of ϒ and χb 1 states.
Modification of the acid/base properties of γ-Al2O3 by oxide additives: An ethanol TPD investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Ja Hun; Lee, Jaekyoung; Szanyi, Janos
2016-02-26
The electronic properties of oxide-modified γ Al2O3 surfaces were investigated by using ethanol TPD. Ethanol TPD showed remarkable sensitivity toward the surface structures and electronic properties of the aluminas modified by various transition metal oxides. Maximum desorption rates for the primary product of ethanol adsorption, ethylene, were observed at 225 °C on non-modified γ-Al2O3. Desorption temperature of ethanol over a γ Al2O3 samples with different amounts of BaO linearly increased with increasing loading. On the contrary, ethanol desorption temperature on Pt modified γ-Al2O3 after calcined at 500 oC linearly decreased with increasing Pt loading. These results clearly suggested that themore » acid/base properties of the γ-Al2O3 surface can be strongly affected by ad-atoms. For confirming these arguments, we performed ethanol TPD experiments on various oxide modified γ-Al2O3 and normalized the maximum desorption temperatures based on the same number of oxide dopants. These normalized ethanol desorption temperatures linearly correlate with the electronegativity of the metal atom in the oxide. This linear relationship clearly demonstrates that the acidic properties of alumina surfaces can be systematically changed by ad-atoms.« less
Transition and separation process in brine channels formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berti, Alessia, E-mail: alessia.berti@unibs.it; Bochicchio, Ivana, E-mail: ibochicchio@unisa.it; Fabrizio, Mauro, E-mail: mauro.fabrizio@unibo.it
2016-02-15
In this paper, we discuss the formation of brine channels in sea ice. The model includes a time-dependent Ginzburg-Landau equation for the solid-liquid phase change, a diffusion equation of the Cahn-Hilliard kind for the solute dynamics, and the heat equation for the temperature change. The macroscopic motion of the fluid is also considered, so the resulting differential system couples with the Navier-Stokes equation. The compatibility of this system with the thermodynamic laws and a maximum theorem is proved.
Iron-Doped Zinc Selenide: Spectroscopy and Laser Development
2014-03-27
guidance, Dr. Ken Schepler for many hours of discussion about transition- metal lasers, and Dr. Patrick Berry for direct, hands-on support of this work...lifetime of this material to approach 105 µs near 100 K. This measurement is consistent with De- loach [51] and Jeĺınková [52] (see Figure 22...However, Myoung et al. have reported maximum values of no more than 65 µs at the same temperature [21]. Adams, De- loach , and Jeĺınková measured the
Structural, magnetic, and magnetocaloric properties of bilayer manganite La1.38Sr1.62Mn2O7
NASA Astrophysics Data System (ADS)
Yang, Yu-E.; Xie, Yunfei; Xu, Lisha; Hu, Dazhi; Ma, Chunlan; Ling, Langsheng; Tong, Wei; Pi, Li; Zhang, Yuheng; Fan, Jiyu
2018-04-01
In this study, we investigated the structural, magnetic phase transition, and magnetocaloric properties of bilayer perovskite manganite La1.38Sr1.62Mn2O7 based on X-ray diffraction, electron paramagnetic resonance, and temperature-/magnetic field-dependent magnetization measurements. The structural characterization results showed the prepared sample had a tetragonal structure with the space group I4/mmm. The Curie temperature was determined as 114 K in the magnetization studies and a second-order paramagnetic-ferromagnetic transition was confirmed by the Arrott plot, which showed that the slopes were positive for all the curves. According to the variation in the electron paramagnetic resonance spectrum, we detected obvious electronic phase separation across a broad temperature range from 220 to 80 K in this magnetic material, thereby indicating that the paramagnetic and ferromagnetic phases coexist above as well as below the Curie temperature. Based on a plot of the isothermal magnetization versus the magnetic applied field, we deduced the maximum magnetic entropy change, which only reached 1.89 J/kg.K under an applied magnetic field of 7.0 T. These theoretical investigations indicated that in addition to the magnetoelastic couplings and electron interaction, electronic phase separation and anisotropic exchange interactions also affect the magnetic entropy changes in this bilayer manganite.
NASA Astrophysics Data System (ADS)
Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang
2018-05-01
The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.
Structural changes and fluctuations of proteins. I. A statistical thermodynamic model.
Ikegami, A
1977-01-01
A general theory of the structural changes and fluctuations of proteins has been proposed based on statistical thermodynamic considerations at the chain level. The "structure" of protein was assumed to be characterized by the state of secondary bonds between unique pairs of specific sites on peptide chains. Every secondary bond changes between the bonded and unbonded states by thermal agitation and the "structure" is continuously fluctuating. The free energy of the "structural state" that is defined by the fraction of secondary bonds in the bonded state has been expressed by the bond energy, the cooperative interaction between bonds, the mixing entropy of bonds, and the entropy of polypeptide chains. The most probable "structural state" can be simply determined by graphical analysis and the effect of temperature or solvent composition on it is discussed. The temperature dependence of the free energy, the probability distribution of structural states and the specific heat have been calculted for two examples of structural change. The theory predicts two different types of structural changes from the ordered to disorderd state, a "structured transition" and a "gradual structural change" with rising temperature. In the "structural transition", the probability distribution has two maxima in the temperature range of transition. In the "gradual structural change", the probabilty distribution has only one maximum during the change. A considerable fraction of secondary bonds is in the unbounded state and is always fluctuating even in the ordered state at room temperature. Such structural flucutations in a single protein molecule have been discussed quantitatively. The theory is extended to include small molecules which bind to the protein molecule and affect the structural state. The changes of structural state caused by specific and non-specific binding and allosteric effects are explained in a unified manner.
NASA Astrophysics Data System (ADS)
Vadnala, Sudharshan; Asthana, Saket
2018-01-01
In this study, we have investigated magnetic behavior, magnetocaloric effect and critical exponent analysis of La0.7-xEuxSr0.3MnO3 (x = 0.0, 0.1, 0.2, 0.3) manganites synthesized through solid state reaction route. The crystallographic data obtained from refinement of X-ray diffraction patterns reveal that crystal structure changes from rhombohedral (for x = 0.0) to orthorhombic (for x ≥ 0.1). The average ionic radius of A-site is decreased from 1.384 Å (for x = 0.0) to 1.360 Å (for x = 0.3) with Eu3+ substitution which in turn decreases the Mn-O-Mn bond angles. Magnetization measurements are performed in the vicinity of TC to determine magnetocaloric effect (MCE) and critical field behavior. The maximum magnetic entropy change (Δ SMmax) (for μ0ΔH = 6T) increases with the Eu3+ substitution from 3.88 J/kg K (for x = 0.0) to 5.03 J/kg K (for x = 0.3) at the transition temperature. The critical field behaviour of compounds was analysed using various methods such as modified Arrott plots, Kouvel-Fisher method and critical isotherm to determine critical temperature and critical exponents (β, γ and δ). The obtained critical exponents are in good accordance with scaling relation. The temperature dependence of the order parameter n, for different magnetic fields, is studied using the relation ΔSMαHn. The values of n are found to obey the Curie-Weiss law for temperatures above the transition temperature. The rescaled change in entropy data for all compounds collapses into the same universal curve, revealing a second order phase transition.
Magnetocaloric effect in cubic spinel Co(Cr0.95Fe0.05)2O4
NASA Astrophysics Data System (ADS)
Kumar, Ram; Rayaprol, S.; Xiao, Y.; Ji, W.; Siruguri, V.; Pal, D.
2018-04-01
The crystal structure, magnetic properties and magnetocaloric effect (MCE) of Co(Cr0.95Fe0.05)2O4 have been studied. Co(Cr0.95Fe0.05)2O4 synthesized by solid-state reaction method, crystallizes in normal cubic spinel structure with Fd-3m space group. Neutron powder diffraction (NPD) and magnetic measurements when compared to the undoped CoCr2O4, show that the compound is ferrimagnetic (FIM) and transition temperature (TC) is enhanced due to Fe substitution. Analysis of structural and magnetic properties shows the existence of two different sites of magnetic clusters due to Fe/Cr cation disorder. The competition between the moments of the two different sub-lattices gives rise to the temperature induced magnetization reversal at compensation tempearature (Tcomp) = 44 K. The magnetocaloric effect (simply the change in magnetic entropy i.e, -ΔSM) has been observed in Co(Cr0.95Fe0.05)2O4 with different applied magnetic fields (max. H = 90 kOe). We found maximum change of magnetic entropy ˜1.2 J/kg K, for a field change of 90 kOe at FIM transition temperature (TC˜110 K) with relative cooling power (RCP) of ˜13 J/kg. Moreover, the sign change of -ΔSM across the compensation temperature (Tcomp˜ 44 K) shows another phase transition across Tcomp in Co(Cr0.95Fe0.05)2O4. The values of MCE and RCP are also appreciable so as to consider Co(Cr0.95Fe0.05)2O4 as a magnetic refrigerant above liquid nitrogen temperature.
NASA Astrophysics Data System (ADS)
Sutjarittangtham, Krit; Intatha, Uraiwan; Eitssayeam, Sukum
2015-05-01
This work studied the effects of seed nano-crystal on the electrical properties and the phase transition behaviors of Ba0.85Sr0.15Ti0.90Zr0.10O3 (BSZT) ceramics. The BSZT ceramics were prepared by the seed-induced method. The seed nano-crystal were prepared by the molten salt technique, and NaCl-KCl (1:1 by mole) eutectic mixtures were used as the flux.[1] The ceramic powders were prepared by using a conventional method which added seed nano-crystals at various ratios. Results indicated that seed nano-crystals enhanced the electrical properties of ceramics. The sample with a 20 wt. % seed nano crystals has excellent value of dielectric constant ( µ r ) of 34698 at maximum temperature. The phase transition temperature was observed at 60°C. The morphology was found that the grain size increasing significantly with an increased of seed nano crystals. The relaxor ferroelectric phase transition behavior was shown by a diffuseness parameter ( ³). An increase in the BSZT-seed showed a decreased in ³ value from 1.61 to 1.44. Thus the ferroelectric of the BSZT ceramics can be confirmed by hysteresis loop.[Figure not available: see fulltext.
Atomic Data and Spectral Line Intensities for NI XVII
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Landi, E.
2011-01-01
Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XVII. We include in the calculations the 23 lowest configurations, corresponding to 159 fine-structure levels: 3l3l', 3l4l0'' , and 3s5l0''' , with l,l' = s,p,d, l'' = s,p,d, f, and l''' = s,p,d. Collision strengths are calculated at five incident energies for all transitions at varying energies above the threshold of each transition. One additional energy, very close to the threshold of each transition, has also been included. Calculations have been carried out using the Flexible Atomic Code in the distorted wave approximation. Additional calculations have been performed with the University College London suite of codes for comparison. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8) - 10(exp 14) / cubic cm and at an electron temperature of logT(sub e)e(K) = 6.5, corresponding to the maximum abundance of Ni XVII. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database
Atomic Data and Spectral Line Intensities for Ca IX
NASA Technical Reports Server (NTRS)
Landi, E.; Bhatia, A. K.
2012-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca IX. We include in the calculations the 33 lowest configurations in the n = 3, 4, 5 complexes, corresponding to 283 fine structure levels in the 3l3l ', 3l4l'' and 3l4l''' configurations, where l,l' = s, p, d, l '' = s, p, d, f and l''' = s, p, d, f, g. Collision strengths are calculated at five incident energies for all transitions: 5.8, 13.6, 24.2, 38.6 and 57.9 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.0055 Ry and 0.23 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cubic cm range and at an electron temperature of log T(sub e)(K)=5.8, corresponding to the maximum abundance of Ca IX. Spectral line intensities are calculated, and their diagnostic relevance is discussed.
Highs and lows, ups and downs: Meteorology and mood in bipolar disorder.
Bullock, Ben; Murray, Greg; Meyer, Denny
2017-01-01
Seasonal variation of manic and depressive symptoms is a controversial topic in bipolar disorder research. Several studies report seasonal patterns of hospital admissions for depression and mania and variation in symptoms that appear to follow a seasonal pattern, whereas others fail to report such patterns. Differences in research methodologies, data analysis strategies, and temporal resolution of data may partly explain the variation in findings between studies. The current study adds a novel perspective to the literature by investigating specific meteorological factors such as atmospheric pressure, hours of sunshine, relative humidity, and daily maximum and minimum temperatures as more proximal predictors of self-reported daily mood change in people diagnosed with bipolar disorder. The results showed that daily maximum temperature was the only meteorological variable to predict clinically-relevant mood change, with increases in temperature associated with greater odds of a transition into manic mood states. The mediating effects of sleep and activity were also investigated and suggest at least partial influence on the prospective relationship between maximum temperature and mood. Limitations include the small sample size and the fact that the number and valence of social interactions and exposure to natural light were not investigated as potentially important mediators of relationships between meteorological factors and mood. The current data make an important contribution to the literature, serving to clarify the specific meteorological factors that influence mood change in bipolar disorder. From a clinical perspective, greater understanding of seasonal patterns of symptoms in bipolar disorder will help mood episode prophylaxis in vulnerable individuals.
Structural study of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Yuto; Matsushita, Yoshitaka; Oda, Migaku
Single crystals of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} were synthesized and the crystal structures at 293 K and 113 K were studied using X-ray diffraction experiments. We found a structural phase transition from the room-temperature crystal structure with space group C2/c to a low-temperature structure with space group P2{sub 1}/c, resulting from a rotational displacement of SiO{sub 4} tetrahedra. The temperature dependence of magnetic susceptibility shows a broad maximum around 116 K, suggesting an opening of the Haldane gap expected for one-dimensional antiferromagnets with S=1. However, an antiferromagnetic long-range order was developed below 24 K, probably caused by amore » weak inter-chain magnetic coupling in the compound. - Graphical abstract: Low temperature crystal structure of LiVSi{sub 2}O{sub 6} and an orbital arrangement within the V-O zig-zag chain along the c-axis. - Highlights: • A low temperature structure of LiVSi{sub 2}O{sub 6} was determined by single crystal X-ray diffraction measurements. • The origin of the structural transition is a rotational displacement of SiO{sub 4} tetrahedra. • The uniform orbital overlap in the V-O zigzag chain makes the system a quasi one-dimensional antiferromagnet.« less
NASA Astrophysics Data System (ADS)
Ahlawat, Anju; Satapathy, S.; Deshmukh, Pratik; Shirolkar, M. M.; Sinha, A. K.; Karnal, A. K.
2017-12-01
In this letter, studies on structural transitions and the effect of electric field poling on magnetoelectric (ME) properties in 0.65Pb (Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT)/NiFe2O4 (NFO) nanocomposites are reported. The composite illustrates dramatic changes in the NFO crystal structure across ferroelectric transition temperature [Curie temperature (Tc) ˜ 450 K] of PMN-PT, while pure NFO does not exhibit any structural change in the temperature range (300 K-650 K). Synchrotron based X-ray diffraction analysis revealed the splitting of NFO peaks across the Tc of PMN-PT in the PMN-PT/NFO composite. Consequently, the anomalies are observed in temperature dependent magnetization of the NFO phase at the Tc of PMN-PT, establishing ME coupling in the PMN-PT/NFO composite. Furthermore, the composite exhibits drastic modification in ME coupling under electrically poled and unpoled conditions. A large self-biased ME effect characterized by non-zero ME response at zero Hbias was observed in electrically poled composites, which was not observed in unpoled PMN-PT/NFO. These results propose an alternative mechanism for intrinsic converse ME effects. The maximum magnetoelectric output was doubled after electrical poling. The observed self-biased converse magnetoelectric effect at room temperature provides potential applications in electrically controlled memory devices and magnetic flux control devices.
Nuclear pasta in hot dense matter and its implications for neutrino scattering
NASA Astrophysics Data System (ADS)
Roggero, Alessandro; Margueron, Jérôme; Roberts, Luke F.; Reddy, Sanjay
2018-04-01
The abundance of large clusters of nucleons in neutron-rich matter at subnuclear density is found to be greatly reduced by finite-temperature effects when matter is close to β equilibrium, compared to the case where the electron fraction is fixed at Ye>0.1 , as often considered in the literature. Large nuclei and exotic nonspherical nuclear configurations called pasta, favored in the vicinity of the transition to uniform matter at T =0 , dissolve at a relatively low temperature Tu as protons leak out of nuclei and pasta. For matter at β equilibrium with a negligible neutrino chemical potential we find that Tuβ≃4 ±1 MeV for realistic equations of state. This is lower than the maximum temperature Tmaxβ≃9 ±1 MeV at which nuclei can coexist with a gas of nucleons and can be explained by a change in the nature of the transition to uniform matter called retrograde condensation. An important new finding is that coherent neutrino scattering from nuclei and pasta makes a modest contribution to the opacity under the conditions encountered in supernovas and neutron star mergers. This is because large nuclear clusters dissolve at most relevant temperatures, and at lower temperatures, when clusters are present, Coulomb correlations between them suppress coherent neutrino scattering off individual clusters. Implications for neutrino signals from galactic supernovas are briefly discussed.
The Effect of Acidity Coefficient on Crystallization Behavior of Blast Furnace Slag Fibers
NASA Astrophysics Data System (ADS)
Tian, Tie-Lei; Zhang, Yu-Zhu; Xing, Hong-wei; Li, Jie; Zhang, Zun-Qian
2018-01-01
The chemical structure of mineral wool fiber was investigated by using Fourier Transform Infrared Spectroscopy (FTIR). Next, the glass transition temperature and the crystallization temperature of the fibers were studied. Finally, the crystallization kinetics of fiber was studied. The results show that the chemical bond structure of fibers gets more random with the increase of acidity coefficient. The crystallization phases of the fibers are mainly melilites, and also a few anorthites and diopsides. The growth mechanism of the crystals is three dimensional. The fibers with acidity coefficient of 1.2 exhibit the best thermal stability and is hard to crystallize as it has the maximum aviation energy of crystallization kinetics.
Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN
NASA Astrophysics Data System (ADS)
Gunning, Brendan; Lowder, Jonathan; Moseley, Michael; Alan Doolittle, W.
2012-08-01
Highly p-type GaN films with hole concentrations exceeding 6 × 1019 cm-3 grown by metal-modulated epitaxy are electrically characterized. Temperature-dependent Hall effect measurements at cryogenic temperatures reveal minimal carrier freeze-out in highly doped samples, while less heavily doped samples exhibited high resistivity and donor-compensated conductivity as is traditionally observed. Effective activation energies as low as 43 meV were extracted, and a maximum Mg activation efficiency of 52% was found. In addition, the effective activation energy was found to be negatively correlated to the hole concentration. These results indicate the onset of the Mott-Insulator transition leading to impurity band conduction.
Effect of temperature on the population dynamics of Aedes aegypti
NASA Astrophysics Data System (ADS)
Yusoff, Nuraini; Tokachil, Mohd Najir
2015-10-01
Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.
Temperature estimation from hydroxyl airglow emission in the Venus night side mesosphere
NASA Astrophysics Data System (ADS)
Migliorini, A.; Snels, M.; Gérard, J.-C.; Soret, L.; Piccioni, G.; Drossart, P.
2018-01-01
The temperature of the night side of Venus at about 95 km has been determined by using spectral features of the hydroxyl airglow emission around 3 μm, recorded from July 2006 to July 2008 by VIRTIS onboard Venus Express. The retrieved temperatures vary from 145.5 to about 198.1 K with an average value of 176.3 ± 14.3 K and are in good agreement with previous ground-based and space observations. The variability with respect to latitude and local time has been studied, showing a minimum of temperature at equatorial latitudes, while temperature values increase toward mid latitudes with a local maximum at about 35°N. The present work provides an independent contribution to the temperature estimation in the transition region between the Venus upper mesosphere and the lower thermosphere, by using the OH emission as a thermometer, following the technique previously applied to the high-resolution O2(a1Δg) airglow emissions observed from ground.
Ren, Jingli; Chen, Cun; Wang, Gang; ...
2017-03-22
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Smith, Geoff; Arshad, Muhammad Sohail; Polygalov, Eugene; Ermolina, Irina
2014-06-01
The study aims to investigate the impact of annealing hold time and temperature on the primary drying rate/duration of a 10% (w/v) solution of maltodextrin with an emphasis on how the mechanisms of annealing might be understood from the in-vial measurements of the ice crystal growth and the glass transition. The electrical impedance of the solution within a modified glass vial was recorded between 10 and 10(6) Hz during freeze-drying cycles with varying annealing hold times (1-5 h) and temperatures. Primary drying times decreased by 7%, 27% and 34% (1.1, 4.3 and 5.5 h) with the inclusion of an annealing step at temperatures of -15°C, -10°C and -5°C, respectively. The glass transition was recorded at approximately -16°C during the re-heating and re-cooling steps, which is close to the glass transition (Tg ') reported for 10% (w/v) maltodextrin and therefore indicates that a maximum freeze concentration (∼86%, w/w, from the Gordon-Taylor equation) was achieved during first freezing, with no further ice being formed on annealing. This observation, coupled to the decrease in electrical resistance that was observed during the annealing hold time, suggests that the reduction in the drying time was because of improved connectivity of ice crystals because of Ostwald ripening rather than devitrification. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Zhao, Lichao; Zhang, Yong; He, Liping; Dai, Weijie; Lai, Yingyi; Yao, Xueyi; Cao, Yong
2014-04-09
On the basis of previous single-factor experiments, extraction parameters of soy sauce residue (SSR) oil extracted using a self-developed continuous phase transition extraction method at low temperature was optimized using the response surface methodology. The established optimal conditions for maximum oil yield were n-butane solvent, 0.5 MPa extraction pressure, 45 °C temperature, 62 min extraction time, and 45 mesh raw material granularity. Under these conditions, the actual yield was 28.43% ± 0.17%, which is relatively close to the predicted yield. Meanwhile, isoflavone was extracted from defatted SSR using the same method, but the parameters and solvent used were altered. The new solvent was 95% (v/v) ethanol, and extraction was performed under 1.0 MPa at 60 °C for 90 min. The extracted isoflavones, with 0.18% ± 0.012% yield, mainly comprised daidzein and genistein, two kinds of aglycones. The novel continuous phase transition extraction under low temperature could provide favorable conditions for the extraction of nonpolar or strongly polar substances. The oil physicochemical properties and fatty acids compositions were analyzed. Results showed that the main drawback of the crude oil was the excess of acid value (AV, 63.9 ± 0.1 mg KOH/g) and peroxide value (POV, 9.05 ± 0.3 mmol/kg), compared with that of normal soybean oil. However, through molecular distillation, AV and POV dropped to 1.78 ± 0.12 mg KOH/g and 5.9 ± 0.08 mmol/kg, respectively. This refined oil may be used as feedstuff oil.
Mass and energy flow in prominences
NASA Technical Reports Server (NTRS)
Poland, Arthur I.
1990-01-01
Mass and energy flow in quiescent prominences is considered based on the hypothesis that active region prominences have a different structure and thus different mass and energy flow characteristics. Several important physical parameters have been plotted using the computational model, representing the evolutionary process after the prominence formation. The temperature, velocity, conductive flux, and enthalpy flux are plotted against distance from the highest point in the loop to the coolest part of the prominence. It is shown that the maximum velocity is only about 5 km/s. The model calculations indicate that the transition region of prominences is dominated by complex processes. It is necessary to take into account mass flow at temperatures below 200,000 K, and both mass flow and optical depth effects in hydrogen at temperatures below 30,000 K. Both of these effects lead to a less steep temperature gradient through the prominence corona interface than can be obtained from the conduction alone.
Li, W.; Claassen, M.; Chang, Cui -Zu; ...
2016-09-07
The experimental realization of the quantum anomalous Hall (QAH) effect in magnetically-doped (Bi, Sb) 2Te 3 films stands out as a landmark of modern condensed matter physics. However, ultra-low temperatures down to few tens of mK are needed to reach the quantization of Hall resistance, which is two orders of magnitude lower than the ferromagnetic phase transition temperature of the films. Here, we systematically study the band structure of V-doped (Bi, Sb) 2Te 3 thin films by angle-resolved photoemission spectroscopy (ARPES) and show unambiguously that the bulk valence band (BVB) maximum lies higher in energy than the surface state Diracmore » point. Finally, our results demonstrate clear evidence that localization of BVB carriers plays an active role and can account for the temperature discrepancy.« less
NASA Technical Reports Server (NTRS)
Imoto, Naoko; Bandler, SImon; Brekosky, Regis; Chervenak, James; Figueroa-Felicano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Porter, Frederick; Sadleir, Jack;
2007-01-01
We are developing large, close-packed arrays of x-ray transition-edge sensor (TES) microcalorimeters. In such a device, sufficient heat sinking is important to to minimize thermal cross talk between pixels and to stabilize the bath temperature for all pixels. We have measured cross talk on out 8 x 8 arrays and studied the shape and amount of thermal crosstalk as a function of pixel location and efficiency of electrothermal feedback. In this presentation, we will compare measurements made on arrays with and without a backside, heat-sinking copper layer, as well as results of devices on silicon-nitride membranes and on solid substrates, and we will discuss the implications for energy resolution and maximum count rate. We will also discuss the dependence of pulse height upon bath temperature, and the measured and required stability of the bath temperature.
NASA Astrophysics Data System (ADS)
Biswas, Sayari; Kar, Asit Kumar
2018-02-01
Titanium dioxide (TiO2) thin films were synthesized by hydrothermal assisted sol-gel dip coating method on quartz substrate. The sol was prepared by hydrothermal method at 90 °C. Dip coating method was used to deposit the thin films. Later films were annealed at four different temperatures -600 °C, 800 °C, 1000 °C and 1200 °C. XRD study showed samples annealed at 600 °C are almost amorphous. At 800 °C, film turns into anatase phase and with further increment of annealing temperature they turn into rutile phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60% was observed in the visible region for the sample annealed at the lowest temperature. Band gap of the prepared films varies from 2.9 eV to 3.5 eV.
Diez-Berart, Sergio; López, David O.; Sebastián, Nerea; de la Fuente, María Rosario; Salud, Josep; Robles-Hernández, Beatriz; Pérez-Jubindo, Miguel Ángel
2014-01-01
We report an experimental study on confined systems formed by butyloxybenzylidene octylaniline liquid crystal (4O.8) + γ-alumina nanoparticles. The effects of the confinement in the thermal and dielectric properties of the liquid crystal under different densities of nanoparticles is analyzed by means of high resolution Modulated Differential Scanning Calorimetry (MDSC) and broadband dielectric spectroscopy. First, a drastic depression of the N-I and SmA-N transition temperatures is observed with confinement, the more concentration of nanoparticles the deeper this depression is, driving the nematic range closer to the room temperature. An interesting experimental law is found for both transition temperatures. Second, the change in shape of the heat capacity peaks is quantified by means of the full width half maximum (FWHM). Third, the confinement does not noticeably affect the molecular dynamics. Finally, the combination of nanoparticles and the external applied electric field tends to favor the alignment of the molecules in metallic cells. All these results indicate that the confinement of liquid crystals by means of γ-alumina nanoparticles could be optimum for liquid crystal-based electrooptic devices. PMID:28788528
Magnetic and magnetocaloric properties of HoCr0.75Fe0.25O3 compound
NASA Astrophysics Data System (ADS)
Kotnana, Ganesh; Babu, P. D.; Jammalamadaka, S. Narayana
2018-05-01
We report on the magnetic and magnetocaloric properties of HoCr0.75Fe0.25O3 compound around the Néel temperature (TN), which is due to Cr3+ ordering. Susceptibility (χ) vs. temperature (T) graph of HoCr0.75Fe0.25O3 compound infer two transitions due to the ordering of Cr3+ moments (TN ˜ 155 K) and Ho3+ moments (TNHo ˜ 8 K). Magnetic entropy (-ΔSM) value of 1.14 J kg-1 K-1 around 157.5 K with a magnetic field (H) of 90 kOe is attributed to antiferromagnetic (AFM) ordering of Cr3+ moments. A maximum value of adiabatic temperature (ΔTad) ˜ 0.41 K around TN is obtained and is found to increases with applied magnetic field. Negative slope for H/M vs. M2 graph is evident for HoCr0.75Fe0.25O3 compound below TN, which indicates the first order phase transition. Quantified values of -ΔSM and ΔTad open the way to explore rare earth orthochromites for the MCE properties and refrigeration applications.
NASA Astrophysics Data System (ADS)
Bose, Esa; Taran, S.; Karmakar, S.; Chaudhuri, B. K.; Pal, S.; Sun, C. P.; Yang, H. D.
2007-07-01
A ferromagnetic/ferroelectric composite system, viz. (100- x)La 0.7Ca 0.3 MnO 3 [LCMO]/( x) BaTiO 3 [BTO] (with x=0.0%, 1.0%, 5.0%, 7.5%, 10.0% and 15.0%, in wt%) has been synthesized and the temperature-dependent DC magnetization M( T), resistivity ρ( T), magnetoresistance (MR), and thermoelectric power S( T) have been studied. Both metal-insulator transition temperature ( TMI) and the corresponding Curie temperature ( TC) decrease whereas peak resistivity at TMI increases as x is enhanced from 0.0% to 10.0%. For x>10.0%, this trend of variation is reversed. A maximum three-fold increase of magnetoresistance (MR) is observed (for sample with x=10.0%) due to the addition of ferroelectric (non-magnetic) perovskite BTO (compared to the mother compound LCMO). Interestingly, thermoelectric power S( T) shows a pronounced depression (dip) near the magnetic transition region for the composite samples. The above results have been analyzed considering strain induced by the LCMO/BTO grain boundary layer (BL).
NASA Astrophysics Data System (ADS)
Tateiwa, Naoyuki; Haga, Yoshinori; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Ōnuki, Yoshichika; Fisk, Zachary
2013-08-01
We have studied the high-pressure magnetic property in UGe2 where ferromagnetic superconductivity appears under high pressure. In this study, we focus on the magnetic property at pressures above the ferromagnetic critical pressure P c =1.6 GPa. The temperature and magnetic field dependences of the dc-magnetization have been measured under high pressures up to 5.1 GPa by using a ceramic anvil high pressure cell. At pressures above P c , the magnetic susceptibility x shows a broad maximum around T χmax and the magnetization at 2.0 K shows an abrupt increase (metamagnetic transition) at H c . With increasing pressure, the peak structure in x becomes broader, and the peak position T χmax moves to the higher temperature region. The metamagnetic field H c increases rapidly with increasing pressure. At pressures above 4.1 GPa, x shows a simple temperature dependence, and the magnetization increases linearly with increasing field. These phenomena in UGe2 resemble to those in the intermetallic compounds of 3 d transition metals such as Co(S1- x Se x ) and YCo2. We discuss the experimental results by using the phenomenological spin-fluctuation theory.
Magnetic properties and magnetocaloric effect at room temperature of Ni50- x Ag x Mn37Sn13 alloys
NASA Astrophysics Data System (ADS)
Thanh, Tran Dang; Mai, Nguyen Thi; Dan, Nguyen Huy; Phan, The-Long; Yu, Seong-Cho
2014-11-01
In this work, we present a detailed study of the magnetic properties and the magnetocaloric effect at room temperature of Ni50- x Ag x Mn37Sn13 alloys with x = 1, 2, and 4, which were prepared by using an arc-melting method. Experimental results reveal that a partial replacement of Ag for Ni leads to a decrease in the anti-FM phase in the alloys. In addition, the martensitic-austenitic phase transition shifts towards lower temperature and is broaded. The Curie temperature ( T C A ) for the austenitic phase also shifts toward to lower temperature, but not by much. The Curie temperature was found to be 308, 305, and 298 K for x = 1, 2, and 4, respectively. The magnetic entropy change (Δ S m ) of the samples was calculated by using isothermal magnetization data. Under an applied magnetic field change of 10 kOe, the maximum value of Δ S m (|Δ S max |) was achieved at around room temperature and did not change much (~0.8 J·kg-1·K-1) with increasing Ag-doping concentration. Particularly, the M 2 vs. H/ M curves prove that all the samples exhibited a second-order magnetic phase transition. Based on Landau's phase-transition theory and careful analyses of the magnetic data around the T C A , we have determined the critical parameters β, γ, δ, and T C . The results show that the β values are located between those expected for the 3D-Heisenberg model ( β = 0.365) and mean-field theory ( β = 0.5). Such a result proves the coexistence of short-range and long-range ferromagnetic interactions in Ni50- x Ag x Mn37Sn13 alloys. The nature of the changes in the critical parameters and the |Δ S max | is thoroughly discussed by means of structural analyses.
Thorpe, A.N.; Senftle, F.E.; Finkelman, R.B.; Dulong, F.T.; Bostick, N.H.
1998-01-01
Magnetization measurements have been made on natural coke-coal samples collected at various distances from a felsic porphyry dike in a coal seam in Dutch Creek Mine, Colorado to help characterize the nature and distribution of the iron-bearing phases. The magnetization passes through a maximum at the coke-to-coal transition about 31 cm from the dike contact. The magnetic measurements support the geochemical data indicating that magmatic fluids along with a high-temperature gas pulse moved into the coal bed. Interaction of the magmatic fluids with the coal diminished the reducing power of the thermal gas pulse from the dike to a point about 24 cm into the coal. The hot reducing gas penetrated further and produced a high temperature (~400-525??C) zone (at about 31 cm) just ahead of the magmatic fluids. Metallic iron found in this zone is the principal cause of the observed high magnetization. Beyond this zone, the temperature was too low to alter the coal significantly.Magnetization measurements have been made on natural coke-coal samples collected at various distances from a felsic porphyry dike in a coal seam in Dutch Creek Mine, Colorado to help characterize the nature and distribution of the iron-bearing phases. The magnetization passes through a maximum at the coke-to-coal transition about 31 cm from the dike contact. The magnetic measurements support the geochemical data indicating that magmatic fluids along with a high-temperature gas pulse moved into the coal bed. Interaction of the magmatic fluids with the coal diminished the reducing power of the thermal gas pulse from the dike to a point about 24 cm into the coal. The hot reducing gas penetrated further and produced a high temperature (approximately 400-525 ??C) zone (at about 31 cm) just ahead of the magmatic fluids. Metallic iron found in this zone is the principal cause of the observed high magnetization. Beyond this zone, the temperature was too low to alter the coal significantly.
Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert
2014-04-24
Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic incoherent neutron scattering (IINS) spectra were calculated by the DFT method and quite a good agreement with the experimental data was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Polgar, Gianluca; Khang, Tsung Fei; Chua, Teddy; Marshall, David J
2015-01-01
The relationship between acute thermal tolerance and habitat temperature in ectotherm animals informs about their thermal adaptation and is used to assess thermal safety margins and sensitivity to climate warming. We studied this relationship in an equatorial freshwater snail (Clea nigricans), belonging to a predominantly marine gastropod lineage (Neogastropoda, Buccinidae). We found that tolerance of heating and cooling exceeded average daily maximum and minimum temperatures, by roughly 20°C in each case. Because habitat temperature is generally assumed to be the main selective factor acting on the fundamental thermal niche, the discordance between thermal tolerance and environmental temperature implies trait conservation following 'in situ' environmental change, or following novel colonisation of a thermally less-variable habitat. Whereas heat tolerance could relate to an historical association with the thermally variable and extreme marine intertidal fringe zone, cold tolerance could associate with either an ancestral life at higher latitudes, or represent adaptation to cooler, higher-altitudinal, tropical lotic systems. The broad upper thermal safety margin (difference between heat tolerance and maximum environmental temperature) observed in this snail is grossly incompatible with the very narrow safety margins typically found in most terrestrial tropical ectotherms (insects and lizards), and hence with the emerging prediction that tropical ectotherms, are especially vulnerable to environmental warming. A more comprehensive understanding of climatic vulnerability of animal ectotherms thus requires greater consideration of taxonomic diversity, ecological transition and evolutionary history. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiao-Hang; Wei, Yong O.; Wang, Shuo; Xie, Hongen; Kao, Tsung-Ting; Satter, Md. Mahbub; Shen, Shyh-Chiang; Douglas Yoder, P.; Detchprohm, Theeradetch; Dupuis, Russell D.; Fischer, Alec M.; Ponce, Fernando A.
2015-03-01
We studied temperature dependence of crystalline quality of AlN layers at 1050-1250 °C with a fine increment step of around 18 °C. The AlN layers were grown on c-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVD) and characterized by X-ray diffraction (XRD) ω-scans and atomic force microscopy (AFM). At 1050-1068 °C, the templates exhibited poor quality with surface pits and higher XRD (002) and (102) full-width at half-maximum (FWHM) because of insufficient Al atom mobility. At 1086 °C, the surface became smooth suggesting sufficient Al atom mobility. Above 1086 °C, the (102) FWHM and thus edge dislocation density increased with temperatures which may be attributed to the shorter growth mode transition from three-dimension (3D) to two-dimension (2D). Above 1212 °C, surface macro-steps were formed due to the longer diffusion length of Al atoms than the expected step terrace width. The edge dislocation density increased rapidly above 1212 °C, indicating this temperature may be a threshold above which the impact of the transition from 3D to 2D is more significant. The (002) FWHM and thus screw dislocation density were insensitive to the temperature change. This study suggests that high-quality AlN/sapphire templates may be potentially achieved at temperatures as low as 1086 °C which is accessible by most of the III-nitride MOCVD systems.
NASA Astrophysics Data System (ADS)
Folkerts, Timothy John
A systematic study of Ba_ {1-x}K_ xBiO_3 (BKBO) in the range 0 <= x <= 0.5 is presented in this work, concentrating especially on the superconducting range 0.35 <= x <= 0.5. Samples were studied using powder x-ray diffraction, thermal analysis, magnetization as a function of both temperature and applied field, and resistivity as a function of both temperature and pressure. Particular effort went into producing high quality samples. This proved difficult because of the moisture sensitivity of the starting materials and of the intermediate products, and because of the tendency of the material to phase separate into regions of varying potassium concentrations. Once synthesis techniques were developed which allowed production of high quality samples, systematic studies could be undertaken. The sharpness of the powder x-ray diffraction peaks, along with least squares fits, were used to determine phase purity and to exclude poor quality samples. The lattice parameters of the remaining samples were seen to obey Vegard's Law. Magnetization studies as a function of temperature were used to determine the superconducting transition temperature (T_ c). Onsets for superconductivity were observed as high as 30 K for samples with broad transitions, although samples with sharp transitions had a maximum T_ c of only 28.8 K. This high T_ c, as well as the crystal structure clearly link BKBO to the high T_ c superconductors. Hysteresis measurements were undertaken to determine the upper and lower critical fields, critical currents, and the normal state susceptibility. Estimates of the coherence length, penetration depth, and the electronic contribution to the specific heat based on these measurements agree well with BCS theory. Resistivity data are quit dependent on sample quality, as well as potassium doping. At low potassium concentrations, the material is semiconducting, while at higher potassium concentrations where the material is superconducting, the normal state resistivity of Ba_ {1-x}K_ xBiO_3 is nearly temperature independent. This is in contrast to other oxide superconductors, which typically show metallic behavior. We conclude that the BCS theory adequately describes the properties of Ba_{1-x }K_ xBiO_3, as determined in this study.
High-Temperature Adhesive Strain Gage Developed
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Roberts, Gary D.
1997-01-01
Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clough, Malcolm; Jackson, Austin
2012-07-01
This investigation required the selection of a suitable cask and development of a device to hold and transport irradiated targets from a foreign nuclear reactor to the Chalk River Laboratories in Ontario, Canada. The main challenge was to design and validate a target holder to protect the irradiated HEU-Al target pencils during transit. Each of the targets was estimated to have an initial decay heat of 118 W prior to transit. As the targets have little thermal mass the potential for high temperature damage and possibly melting was high. Thus, the primary design objective was to conceive a target holdermore » to dissipate heat from the targets. Other design requirements included securing the targets during transportation and providing a simple means to load and unload the targets while submerged five metres under water. A unique target holder (patent pending) was designed and manufactured together with special purpose experimental apparatus including a representative cask. Aluminum dummy targets were fabricated to accept cartridge heaters, to simulate decay heat. Thermocouples were used to measure the temperature of the test targets and selected areas within the target holder and test cask. After obtaining test results, calculations were performed to compensate for differences between experimental and real life conditions. Taking compensation into consideration the maximum target temperature reached was 231 deg. C which was below the designated maximum of 250 deg. C. The design of the aluminum target holder also allowed generous clearance to insert and unload the targets. This clearance was designed to close up as the target holder is placed into the cavity of the transport cask. Springs served to retain and restrain the targets from movement during transportation as well as to facilitate conductive heat transfer. The target holder met the design requirements and as such provided data supporting the feasibility of transporting targets over a relatively long period of time. A suitable transport cask was selected and a device for housing irradiated targets for loading, unloading and transportation has been designed, built and validated. The device was successful in meeting all design requirements for this feasibility study. Experiments were conducted with a custom test facility to confirm that the design met the maximum temperature requirements during shipping. Results from tests showed that the peak temperature in the apparatus was 300 deg. C. By compensating for experimental considerations, such as reduced thermal conductivity of the test cask versus that of the actual cask the expected maximum target temperature reduces to 231 deg. C. This is below the designated peak value of 250 deg. C. It can therefore be concluded, based on the content of this paper and from a heat-removal standpoint, the feasibility of transporting targets from a foreign nuclear reactor to Canada is possible, although further testing with irradiated targets and a full size cask would be a recommended next step. (authors)« less
NASA Astrophysics Data System (ADS)
Devarajan, U.; Kannan, M.; Thiyagarajan, R.; Manivel Raja, M.; Rama Rao, N. V.; Singh, Sanjay; Venkateshwarlu, D.; Ganesan, V.; Ohashi, M.; Arumugam, S.
2016-02-01
In the present work, the magnetocaloric and transport properties of Ni2.2Mn0.72-x V x Ga1.08 (x = 0.0, 0.04, 0.08, 0.12) magnetic shape memory alloys are investigated. The alloys show a coupled magnetostructural transition from paramagnetic austenite to ferromagnetic martensite in a composition range of 0 ⩽ x ⩽ 0.08. For higher V substitution (x = 0.12), the martensite transition is lower than the conventional ferromagnetic transition. Large magnetic entropy change values of about 12.4, 16.2 and 19 J kg-1 K-1 and corresponding refrigeration capacities of 60.6, 82.5, and 103 J kg-1 were observed for x = 0, 0.04 and 0.08 alloys, respectively. The above two parameters linearly increase with increasing magnetic field. The indirect adiabatic temperature change calculated from the heat capacity measurement is found to be at its maximum for x = 0.12 at H = 8 T. The magnetoresistance is observed to increase from 0% (x = 0.12) to 28% (x = 0) at the maximum field of 8 T. The Sommerfeld coefficients are almost the same for the parent and a V-doped sample, which reveals a low free electron density, and the Debye coefficients decrease with an increase in V doping, confirming the phenomenon of electron-phonon scattering. The critical exponents at second order magnetic transition for x = 0.12 are calculated as β = 0.482, γ = 1.056, δ = 3.021, which agrees closely with mean field theory.
Dielectric determination of the glass transition temperature (T sub g)
NASA Technical Reports Server (NTRS)
Ries, Heidi R.
1990-01-01
The objective is to determine the glass transition temperature of a polymer using a dielectric dissipation technique. A peak in the dissipation factor versus temperature curve is expected near the glass transition temperature T sub g. It should be noted that the glass transition is gradual rather than abrupt, so that the glass transition temperature T sub g is not clearly identifiable. In this case, the glass transition temperature is defined to be the temperature at the intersection point of the tangent lines to the dissipation factor versus temperature curve above and below the transition region, as illustrated.
Laboratory earthquakes triggered during eclogitization of lawsonite-bearing blueschist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Incel, Sarah; Hilairet, Nadège; Labrousse, Loïc
The origin of intermediate-depth seismicity has been debated for decades. A substantial fraction of these events occurs within the upper plane of Wadati–Benioff double seismic zones believed to represent subducting oceanic crust. We deformed natural lawsonite-rich blueschist samples under eclogite-facies conditions (1.52.5 GPa to maximum temperatures ranging from 762 to 1073 K, during which lawsonite and glaucophane became gradually unstable while entering the stability field of lawsonite–eclogite and the breakdown reaction of lawsonite was only crossed in case of the highest final temperature; ii) heating while deforming at a pressure <2 GPa to a maximum temperature of 1121 K associatedmore » with crossing the breakdown reaction of lawsonite and successively entering the stability fields of epidote–blueschist and eclogite–amphibolite but not of lawsonite–eclogite. Upon entering the Lws-Ecl stability field samples exhibited brittle failure, accompanied by the radiation of AEs. In-situ X-ray diffraction and microstructural analysis demonstrate that fractures are topologically related to the formation of omphacite. Amorphous material was detected along the fractures by transmission-electron microscopy without evidence for free-water. Since the newly formed omphacite crystals are small compared to the initial grains, we interpret the observed mechanical instability as a transformation-induced runaway under stress triggered during the transition from lawsonite–blueschist to lawsonite–eclogite. In contrast, we find no microstructural evidence that the breakdown of lawsonite, and hence the liberation of water leads to the fracturing in samples that experienced the highest quench temperatures of 1073 and 1121 K, although some AEs were detected during an experiment performed at 1.5 GPa. Our experimental results challenge the concept of “dehydration embrittlement”, which ascribes the genesis of intermediate-depth earthquakes to the breakdown of hydrous phases in the subducting oceanic plate. Instead we suggest that grain-size reduction (transformational faulting) during the transition from lawsonite–blueschist to lawsonite–eclogite leads to brittle failure of the deviatorically loaded samples.« less
Gong, Shaolong; Zhao, Yongbiao; Wang, Meng; Yang, Chuluo; Zhong, Cheng; Qin, Jingui; Ma, Dongge
2010-09-03
Two new bipolar compounds, N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-4,4''-diamine (1) and N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-3,3''-diamine (2), were synthesized and characterized, and their thermal, photophysical, and electrochemical properties were investigated. Compounds 1 and 2 possess good thermal stability with high glass-transition temperatures of 109-129 degrees C and thermal decomposition temperatures of 501-531 degrees C. The fluorescence quantum yield of 1 (0.52) is higher than that of 2 (0.16), which could be attributed to greater pi conjugation between the donor and acceptor moieties. A nondoped deep-blue fluorescent organic light-emitting diode (OLED) using 1 as the blue emitter displays high performance, with a maximum current efficiency of 2.2 cd A(-1) and a maximum external efficiency of 2.9 % at the CIE coordinates of (0.17, 0.07) that are very close to the National Television System Committee's blue standard (0.15, 0.07). Electrophosphorescent devices using the two compounds as host materials for green and red phosphor emitters show high efficiencies. The best performance of a green phosphorescent device was achieved using 2 as the host, with a maximum current efficiency of 64.3 cd A(-1) and a maximum power efficiency of 68.3 lm W(-1); whereas the best performance of a red phosphorescent device was achieved using 1 as the host, with a maximum current efficiency of 11.5 cd A(-1), and a maximum power efficiency of 9.8 lm W(-1). The relationship between the molecular structures and optoelectronic properties are discussed.
NASA Astrophysics Data System (ADS)
Oreshkina, K. V.; Dubrovin, V. D.; Ignat'ev, A. I.; Nikonorov, N. V.
2017-10-01
The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses is studied. Multicomponent photosensitive glasses of the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, antimony, silver) and halogenides (fluorine and bromine) are synthesized. Ultraviolet irradiation and thermal treatment below the glass-transition temperature of the glasses cause the formation of silver molecular clusters, which exhibit luminescence in the visible and infrared regions. UV irradiation and thermal treatment of glasses above the glass-transition temperature lead to the growth of silver nanoparticles with plasmon resonance peak in the region of 420 nm. Further thermal treatment of glasses above the glass-transition temperature shifts the plasmon-resonance maximum by 70 nm to longer wavelengths, which is related to the growth of a crystalline shell consisting of mixed silver and sodium bromides on nanoparticles. This formation of a crystalline phase on colloidal centers results in a local increase in the refractive index of the irradiated region by +Δ n 900 ppm compared to the nonirradiated region. Photo-thermo-refractive glasses with increased silver concentration are promising photosensitive materials for creating holographic optical elements and devices for line narrowing and stabilizing filters, spectral beam combiners, and filters for increasing the spectral brightness of laser diodes. A positive change in the refractive index of Photo-thermo-refractive glasses provides the possibility of recording in them 3D waveguide and integrated-optical structures.
NASA Astrophysics Data System (ADS)
Miller, P.; Rabinowitz, H. S.; Saffer, D. M.; Savage, H. M.
2017-12-01
The slip behavior of subduction megathrusts is controlled by the mechanical and frictional properties of the material entrained along the plate interface. The shallow reaches of subduction thrusts (i.e. <20 km) commonly exhibit a stability transition from an updip aseismic zone, where earthquakes typically do not nucleate, to a deeper seismogenic zone. Recent observations indicate that the transitional region hosts a spectrum of slow earthquake phenomena, including Slow Slip Events (SSE's), tremor, and very low frequency earthquakes (VLFE). However, there remain few detailed experimental studies of relevant fault materials under in situ conditions to probe the connections between rock frictional properties and fault slip behavior. To quantitatively understand the evolution of frictional properties along the upper part of the megathrust, we conducted a suite of shearing experiments at pressures and temperatures similar to in situ conditions, using exhumed subduction zone fault rocks composed of metamorphosed clay-rich sediments from Kodiak Island, Alaska. The metasediments we tested have experienced maximum burial depths ranging from 4-6 to 10-15 km, and peak temperatures ranging from 100-125 to 280 oC, making them ideal analogs for investigating the evolution of friction across the stability transition and into the seismogenic zone. These samples were powdered and sheared in a triaxial deformation apparatus at conditions ranging from 25 MPa and 20 oC, to 195 MPa and 200 oC. Preliminary results at room temperature show steady state friction values of 0.56 and rate strengthening behavior (a-b 0.002) with Dc of 19 mm. Ongoing work is characterizing the frictional properties across the stability transition in greater detail.
Variation of optical properties of gel-derived VO2 thin films with temperature
NASA Astrophysics Data System (ADS)
Hou, Lisong; Lu, Song W.; Gan, Fuxi
1991-11-01
VO2 thin films are prepared on three kinds of substrates by the sol-gel dip-coating method followed by heat treatment under vacuum conditions. The IR and UV-visible spectra of the films are studied during heating and cooling between room temperature and 100 degree(s)C. The experimental results show that the films exhibit thermally-induced reversible phase transition and, as a result, the maximum changes in transmittance and reflectivity are 58% and 25%, respectively, in the case of vacuum heat treatment at 400 degree(s)C and silica glass substrates. The refractive index n decreases and the extinction coefficient k increases when heating these films from room temperature to 100 degree(s)C, and vice versa. The reasons why the optical constants and IR absorption spectra change so remarkably are discussed.
Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland
NASA Astrophysics Data System (ADS)
Eugster, Werner; Emmel, Carmen; Wolf, Sebastian; Buchmann, Nina; McFadden, Joseph P.; Whiteman, Charles David
2017-12-01
The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8-70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET). Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF) sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE). A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports), with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range ≈ 1700-2700 m a. s. l., but not at lower elevations of the Swiss Plateau. This contrasts with an earlier theory that the anticyclonic outflow should reach as far as ≈ 2400 km from the center of the eclipse, which would have included all of Switzerland during the 2015 eclipse. Thus, measurable effects of penumbral shading on the local wind system could be even found at ≈ 2000 km from the path of the eclipse (that is, Switzerland during the 2015 eclipse), and our results tend to lend support to a newer theory that the anticyclonic cold-air outflow from the center of the eclipse only extends ≈ 1600 km outwards, with cyclonic flow beyond that distance.
The behavior of gain and saturation characteristics versus temperature in a copper bromide laser
NASA Astrophysics Data System (ADS)
Mohammadpour Lima, S.; Behrouzinia, S.; Salem, M. K.; Elahei, M.; Khorasani, K.; Dorranian, D.
2017-05-01
A pair of copper bromide lasers in an oscillator-amplifier configuration was used to investigate the temperature dependence of the small-signal gain, saturation intensity, and output power of the laser. The observations were explained in terms of the electron temperature and energy levels of transition. An optimum electrical input power of 1.6 kW and a corresponding operational temperature of 510 °C were determined for the maximum values of these parameters. The balance between the microscopic parameters, such as stimulated emission cross-section, laser upper-level lifetime, and population inversion, which determine the behavior of the amplifying parameters and laser output power with respect to the operational temperature, has been investigated. We used the steady-state rate equation from the Hargrove model to determine the amplifying parameters, instead of the Frantz-Nodvik formula. The power extracted from the amplifier exceeds that achieved with the same device as the oscillator by more than 60%.
NASA Astrophysics Data System (ADS)
Sharma, Som; Kumar, Prashant; Vaishnav, Rajesh; Jethva, Chintan; Bencherif, Hassan
2018-03-01
The transition regions in thermal structure viz. Tropopause, stratopause and mesopause play a vital role in the vertical coupling of the Earth's atmosphere. For the first time, inter-hemispheric characteristics of the transition regions over two subtropical regions are studied using temperature observations from the SABER onboard TIMED satellite and the ERA Interim reanalysis during year 2002 to 2015. Results show that tropopause height is higher over Reunion Island (21.11°S, 55.53°E) in the Southern Hemisphere (SH) as compared to Mt. Abu region (24.59°N, 72.70°E) in the Northern Hemisphere (NH). Temporal variation of tropopause temperature reveals a decreasing ( 4 K) trend from year 2002 to 2008 and beyond this, an increasing ( 1.5 K) trend is found in tropopause temperature. These features are reinforcing for Mesopause as compared to tropopause temperature. The SH shows stronger variations in Mesopause temperature ( 7 K) compared to NH during year 2002 to 2008. The occurrence frequency of mesopause and stratopause height shows that the maximum occurrence frequency ( 60%) of mesopause at 100 km in NH, while frequency is found to be 55% in the SH. Results show that stratopause (mesopause) is cooler (warmer) in NH as compared SH. Moreover, Lomb Scargle Periodogram and wavelet transform techniques are used to investigate the periodicity of mesopause, stratopause and tropopause temperatures and heights. Investigations revealed prominent annual oscillations in the tropopause and stratopause temperatures in both hemispheres. These findings will be of immense use for the vertical and inter-hemispheric atmospheric coupling studies.
High-Pressure Polymorphism in Orthoamphiboles
NASA Astrophysics Data System (ADS)
Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.
2017-12-01
Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.
The effect of Co substitution on the magnetic and magnetocaloric properties of Gd3Ru
NASA Astrophysics Data System (ADS)
Shang, Y. F.; Cao, Y. T.; Agurgo Balfour, E.; Fu, H.; Zhong, X. C.; El-Gendy, Ahmed A.; Hadimani, R. L.; Luo, Y.
2018-04-01
The effects of Co substitution on the structure, magnetic properties, and magnetocaloric effect of Gd3Ru1-xCox (0.05 ≤ x ≤ 0.20) alloys have been investigated by X-ray diffraction and magnetization measurements. The Curie temperatures varied between 60 K and 92 K with Co substitution for Ru. With an applied magnetic field change (ΔH) of 50 kOe, the maximum values of magnetic entropy change (-ΔSM) were determined to be 25.8, 23.1, 19.4, and 10.8 J/kg K for compositions with x = 0.05, 0.10, 0.15, and 0.20, respectively. The corresponding refrigeration capacities (RCs) for the alloys were reasonably large and calculated to be 495, 475, 467, and 517 J/kg. The magnetic phase transitions in the Gd3Ru1-xCox (0.05 ≤ x ≤ 0.15) alloys are of first-order. In the Gd3Ru0.80Co0.20, the first-order magnetic phase transition disappears and the transition is broadened hence it increases in RC. The high -ΔSM values and accompanying large RCs for the Gd3Ru1-xCox (0.05 ≤ x ≤ 0.20) alloys qualify them as potential candidates for magnetic refrigeration applications near liquid nitrogen temperature.
Direct Evidence for Maser Emission from the 36.2 GHz Class I Transition of Methanol in NGC253
NASA Astrophysics Data System (ADS)
Chen, Xi; Ellingsen, Simon P.; Shen, Zhi-Qiang; McCarthy, Tiege P.; Zhong, Wei-Ye; Deng, Hui
2018-04-01
Observations made with the Jansky Very large Array (JVLA) at an angular resolution of ∼0.″1 have detected class I methanol maser emission from the 36.2 GHz transition toward the starburst galaxy NGC 253. The methanol emission is detected toward four sites which lie within the regions of extended methanol emission detected in previous lower angular resolution (a few arcseconds) observations. The peak flux densities of the detected compact components are in the range 3–9 mJy beam‑1. Combining the JVLA data with single-dish observations from the Shanghai Tianma Radio Telescope (TMRT) and previous interferometric observations with the Australia Telescope Compact Array (ATCA), we show that the 36.2 GHz class I methanol emission consists of both extended and compact structures, with typical scales of ∼6″ (0.1 kpc) and ∼0.″05 (1 pc), respectively. The strongest components have a brightness temperature of >103 K, much higher than the maximum kinetic temperature (∼100 K) of the thermal methanol emission from NGC 253. Therefore, these observations conclusively demonstrate for the first time the presence of maser emission from a class I methanol transition in an external galaxy.
Tunable magnetic properties and magnetocaloric effect of off-stoichiometric LaMnO3 nanoparticles
NASA Astrophysics Data System (ADS)
Tola, P. S.; Kim, H. S.; Kim, D. H.; Phan, T. L.; Rhyee, J. S.; Shon, W. H.; Yang, D. S.; Manh, D. H.; Lee, B. W.
2017-12-01
The crystal and electronic structures and the magnetic and magnetocaloric properties of off-stoichiometric LaMnO3 nanoparticles (NPs) with various particle sizes D = 20-100 nm were studied. The Rietveld refinement revealed that all NPs were crystallized in the rhombohedral structure, with varied structural parameters dependent on D. Magnetization (M) measurements indicated a considerable difference between zero-field-cooled and field-cooled magnetizations at temperatures below ferromagnetic-paramagnetic (FM-PM) phase transition, particularly for the samples with D = 25-40 nm. These results are ascribed to spin-glass-like behaviors and magnetic inhomogeneity. We also found the possibility of tuning the FM-PM phase transition temperature (TC) from 77 to 262 K, which is dependent on both D and W (the eg-electron bandwidth). Under an applied field of H = 50 kOe, the absolute maximum magnetic entropy change that achieved around TC can be improved from 4.02 J kg-1 K-1 for D = 40 nm to 6.36 Jṡ kg-1ṡ K-1 for D = 100 nm, corresponding to the relative-cooling-power values of 241-245 Jṡ kg-1. We also analyzed the data of M and magnetic entropy change based on theoretical models to further understand the magnetic property and phase-transition type of the NP samples.
Wang, Yonggang; Ying, Jianjun; Zhou, Zhengyang; Sun, Junliang; Wen, Ting; Zhou, Yannan; Li, Nana; Zhang, Qian; Han, Fei; Xiao, Yuming; Chow, Paul; Yang, Wenge; Struzhkin, Viktor V; Zhao, Yusheng; Mao, Ho-Kwang
2018-05-15
The discovery of iron-based superconductors (FeSCs), with the highest transition temperature (T c ) up to 55 K, has attracted worldwide research efforts over the past ten years. So far, all these FeSCs structurally adopt FeSe-type layers with a square iron lattice and superconductivity can be generated by either chemical doping or external pressure. Herein, we report the observation of superconductivity in an iron-based honeycomb lattice via pressure-driven spin-crossover. Under compression, the layered FePX 3 (X = S, Se) simultaneously undergo large in-plane lattice collapses, abrupt spin-crossovers, and insulator-metal transitions. Superconductivity emerges in FePSe 3 along with the structural transition and vanishing of magnetic moment with a starting T c ~ 2.5 K at 9.0 GPa and the maximum T c ~ 5.5 K around 30 GPa. The discovery of superconductivity in iron-based honeycomb lattice provides a demonstration for the pursuit of transition-metal-based superconductors via pressure-driven spin-crossover.
Unveiling the Dependence of Glass Transitions on Mixing Thermodynamics in Miscible Systems
NASA Astrophysics Data System (ADS)
Tu, Wenkang; Wang, Yunxi; Li, Xin; Zhang, Peng; Tian, Yongjun; Jin, Shaohua; Wang, Li-Min
2015-02-01
The dependence of the glass transition in mixtures on mixing thermodynamics is examined by focusing on enthalpy of mixing, ΔHmix with the change in sign (positive vs. negative) and magnitude (small vs. large). The effects of positive and negative ΔHmix are demonstrated based on two isomeric systems of o- vs. m- methoxymethylbenzene (MMB) and o- vs. m- dibromobenzene (DBB) with comparably small absolute ΔHmix. Two opposite composition dependences of the glass transition temperature, Tg, are observed with the MMB mixtures showing a distinct negative deviation from the ideal mixing rule and the DBB mixtures having a marginally positive deviation. The system of 1, 2- propanediamine (12PDA) vs. propylene glycol (PG) with large and negative ΔHmix is compared with the systems of small ΔHmix, and a considerably positive Tg shift is seen. Models involving the properties of pure components such as Tg, glass transition heat capacity increment, ΔCp, and density, ρ, do not interpret the observed Tg shifts in the systems. In contrast, a linear correlation is revealed between ΔHmix and maximum Tg shifts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.
2013-02-05
Strontium lithium bismuth borate glasses (SLBiB) doped with various concentrations of Er{sup 3+} were prepared using conventional melt quench technique and investigated their optical properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra at room temperature. Judd-Ofelt (J-O) theory has been applied for the f.f transitions of Er{sup 3+} ions to evaluate J-O intensity parameters, {Omega}{lambda} ({lambda} = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (A{sub R}), branching ratios ({beta})more » and radiative lifetimes ({tau}) are estimated for certain transitions. From the emission spectra, peak emission-cross sections ({sigma}{sub p}) and products of stimulated emission cross-section and full width at half maximum ({sigma}{sub p} Multiplication-Sign FWHM) were calculated for the observed emission transition, {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}.« less
NASA Astrophysics Data System (ADS)
Rifai, S. W.; Anderson, L. O.; Bohlman, S.
2015-12-01
Blowdowns, which are large tree mortality events caused by downbursts, create large pulses of carbon emissions in the short term and alter successional dynamics and species composition of forests, thus affecting long term biogeochemical cycling of tropical forests. Changing climate, especially increasing temperatures and frequency of extreme climate events, may cause changes in the frequency of blowdowns, but there has been little spatiotemporal analysis to associate the interannual variation in the frequency of blowdowns with annual climate parameters. We mapped blowdowns greater than 25 ha using a time series of Landsat images from 1984-2012 in the northwestern Amazon to estimate the annual size distribution of these blowdowns. The difference in forest area affected by blowdowns between the years with the highest and lowest blowdown activity were on the order of 10 - 30 times greater depending on location. Spatially, we found the probability of large blowdowns to be higher in regions with higher annual rainfall. Temporally, we found a positive correlation between the probability of large blowdown events and maximum dry season air temperature (R2 = 0.1-0.46). Mean and maximum blowdown size also increased with maximum dry season air temperature. The strength of these relationships varied between scene locations which may be related to cloud cover obscuring the land surface in the satellite images, or biophysical characteristics of the sites. Potentially, elevated dry season temperatures during the transition from the dry season to the wet season (October - December) may exacerbate atmospheric instabilities, which promote downburst occurrences. Most global circulation models predict dry season air temperatures to increase 2-5 ℃ in the northwestern Amazon by 2050. Should the blowdown disturbance regime continue increasing with elevated dry season temperatures, the northwestern Amazon is likely to experience more catastrophic tree mortality events which has direct consequences for both the carbon emissions and carbon storage capacity of the northwestern Amazon.
Effects of the bond polarity on the structural and dynamical properties of silica-like liquids
NASA Astrophysics Data System (ADS)
Pafong Sanjon, E.; Drossel, B.; Vogel, M.
2018-03-01
Silica is a network-forming liquid that shares many properties with water due to its tetrahedral structure. It undergoes a transition from a fragile to a strong liquid as the temperature is decreased, which is accompanied by a structural change to lower density and higher tetrahedral order. In order to disentangle the effects of Coulomb and van der Waals interactions on the structure and dynamics of liquid silica, we modify the bond polarity by changing the partial charges assigned to each atom. Using molecular dynamics simulations, we show that density, tetrahedral order, and structural relaxation times decrease when reducing bond polarity. Moreover, we find that the density maximum and the fragile-to-strong transition move to lower temperatures until they eventually vanish when the partial charges are decreased below approximately 75% of their regular value. Irrespective of whether strong or fragile behavior exists, structural relaxation is governed by hopping motion at sufficiently low temperatures. As long as there is a strong regime, the energy barrier associated with strong dynamics decreases with decreasing partial charges, but the dependence on the bond polarity differs from that of the activation energy in the Arrhenius regime at high temperatures. We show that the fragile-to-strong transition is associated with structural changes occurring between the first and second coordination shells that lead to a decrease in density and an increase in tetrahedral order. In particular, independent of the value of the partial charges, the distribution of the local structures is the same at this dynamic crossover, but we find no evidence that the effect occurs upon crossing the Widom line. In the fragile regime at intermediate temperatures, the relaxation times are well described by a previously proposed model which decomposes the apparent activation energy into a constant single-particle contribution and a temperature-dependent collective contribution. However, our results for silica-like melts do not obey several common relations of the model parameters reported for molecular glass formers.
High-Temperature Thermal Diffusivity Measurements of Silicate Glasses
NASA Astrophysics Data System (ADS)
Pertermann, M.; Hofmeister, A. M.; Whittington, A. G.; Spera, F. J.; Zayac, J.
2005-12-01
Transport of heat in geologically relevant materials is of great interest because of its key role in heat transport, magmatism and volcanic activity on Earth. To better understand the thermal properties of magmatic materials at high temperatures, we measured the thermal diffusivity of four synthetic end-member silicate glasses with the following compositions: albite (NaAlSi3O8), orthoclase (KAlSi3O8), anorthite (CaAl2Si2O8), and diopside (CaMgSi2O6). Thermal diffusivity measurements were conducted with the laser-flash technique and data were acquired from room temperature to a maximum temperature near 1100°C, depending on the glass transition temperature. The presence of sub-mm sized bubbles in one of the orthoclase samples had no discernable effect on measured diffusivities. At room temperature, the three feldspar-type glasses have thermal diffusivity (D) values of 0.58-0.61 mm2/s, whereas the diopside glass has 0.52 mm2/s. With increasing temperature, D decreases by 5-10% (relative) for all samples and becomes virtually constant at intermediate temperatures. At higher temperatures, the anorthite and diopside glasses exhibit significant drops in thermal diffusivity over a 50-100°C interval, correlating with previously published heat capacity changes near the glass transition for these compositions. For anorthite, D (in mm2/s) decreases from 0.48 at 750-860°C to 0.36 at 975-1075°C; for diopside, D changes from 0.42 at 630-750°C to 0.30 at 850-910°C, corresponding to relative drops of 24 and 29%, respectively. Albite and orthoclase glasses do not exhibit this change and also lack significant changes in heat capacity near the glass transition. Instead, D is constant at 400-800°C for albite, and for orthoclase values go through a minimum at 500-600°C before increasing slightly towards 1100°C but it never exceeds the room temperature D. Our data on thermal diffusivity correlate closely with other thermophysical properties. Thus, at least in case of simple compositions, measurement of thermal diffusivity of glasses above the glass transition may closely approximate the behavior of magmatic liquids. For the orthoclase composition, our new data show that the thermal diffusivity of glass in the range of 20-1100°C is clearly lower than that of orthoclase single crystals (Hoefer and Schilling, 2002, Phys Chem Minerals, 29, 571-584).
Analytical model of ground-state lasing phenomenon in broadband semiconductor quantum dot lasers
NASA Astrophysics Data System (ADS)
Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Omelchenko, Alexander V.; Maximov, Mikhail V.
2013-05-01
We introduce an analytical approach to the description of broadband lasing spectra of semiconductor quantum dot lasers emitting via ground-state optical transitions of quantum dots. The explicit analytical expressions describing the shape and the width of lasing spectra as well as their temperature and injection current dependences are obtained in the case of low homogeneous broadening. It is shown that in this case these dependences are determined by only two dimensionless parameters, which are the dispersion of the distribution of QDs over the energy normalized to the temperature and loss-to-maximum gain ratio. The possibility of optimization of laser's active region size and structure by using the intentionally introduced disorder is also carefully considered.
Influence of iridium doping in MgB2 superconducting wires
NASA Astrophysics Data System (ADS)
Grivel, J.-C.
2018-04-01
MgB2 wires with iridium doping were manufactured using the in-situ technique in a composite Cu-Nb sheath. Reaction was performed at 700 °C, 800 °C or 900 °C for 1 h in argon atmosphere. A maximum of about 1.5 at.% Ir replaces Mg in MgB2. The superconducting transition temperature is slightly lowered by Ir doping. The formation of IrMg3 and IrMg4 secondary phase particles is evidenced, especially for a nominal stoichiometry with 2.0 at.% Ir doping. The critical current density and accommodation field of the wires are strongly dependent on the Ir content and are generally weakened in the presence of Ir, although the effect is less pronounced at lower temperatures.
Ferroelectric behavior of Al substituted InP
NASA Astrophysics Data System (ADS)
Park, C. S.; Lee, S. J.; Kang, T. W.; Fu, D. J.
2006-12-01
InP:Al was grown by the liquid phase epitaxy method on InP (100)substrates. X-ray diffraction confirmed the epitaxial growth along (100) of AlInP. Photoluminescence spectra showed the evident effect of Al content. Ferroelectric characterization of the sample revealed a clear hysteresis in its polarization-voltage curves. The remnant polarization of InP:Al amounts to 1.99μC/cm2 at 300Hz, and it decreases with increasing temperature in a continuous and diffusive manner. Resistance measurement demonstrated a maximum resistance at 160°C, tentatively consistent with the transition temperature of remnant polarization. The ferroelectricity is accounted by the collective interaction between nuclei having the microscopic instability from the cation size difference in InP:Al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delice, S., E-mail: sdelice@metu.edu.tr; Isik, M.; Gasanly, N.M.
2015-10-15
Highlights: • Optical and thermoluminescence properties of Ga{sub 4}S{sub 3}Se crystals were investigated. • Indirect and direct band gap energies were found as 2.39 and 2.53 eV, respectively. • The activation energy of the trap center was determined as 495 meV. - Abstract: Optical and thermoluminescence properties on GaS{sub 0.75}Se{sub 0.25} crystals were investigated in the present work. Transmission and reflection measurements were performed at room temperature in the wavelength range of 400–1000 nm. Analysis revealed the presence of indirect and direct transitions with band gap energies of 2.39 and 2.53 eV, respectively. TL spectra obtained at low temperatures (10–300more » K) exhibited one peak having maximum temperature of 168 K. Observed peak was analyzed using curve fitting, initial rise and peak shape methods to calculate the activation energy of the associated trap center. All applied methods were consistent with the value of 495 meV. Attempt-to-escape-frequency and capture cross section of the trap center were determined using the results of curve fitting. Heating rate dependence studies of the glow curve in the range of 0.4–0.8 K/s resulted with decrease of TL intensity and shift of the peak maximum temperature to higher values.« less
X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules
Fletcher, L. B.; Glenzer, S. H.; Kritcher, A.; ...
2013-05-24
Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules,more » with a maximum measured density of ρ > 6 g cm –3. Additionally, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.« less
Automated realization of the gallium melting and triple points
NASA Astrophysics Data System (ADS)
Yan, X.; Duan, Y.; Zhang, J. T.; Wang, W.
2013-09-01
In order to improve the automation and convenience of the process involved in realizing the gallium fixed points, an automated apparatus, based on thermoelectric and heat pipe technologies, was designed and developed. This paper describes the apparatus design and procedures for freezing gallium mantles and realizing gallium melting and triple points. Also, investigations on the melting behavior of a gallium melting point cell and of gallium triple point cells were carried out while controlling the temperature outside the gallium point cells at 30 °C, 30.5 °C, 31 °C, and 31.5 °C. The obtained melting plateau curves show dentate temperature oscillations on the melting plateaus for the gallium point cells when thermal couplings occurred between the outer and inner liquid-solid interfaces. The maximum amplitude of the temperature fluctuations was about 1.5 mK. Therefore, the temperature oscillations can be used to indicate the ending of the equilibrium phase transitions. The duration and amplitude of such temperature oscillations depend on the temperature difference between the setting temperature and the gallium point temperature; the smaller the temperature difference, the longer the duration of both the melting plateaus and the temperature fluctuations.
Thermodynamics in the vicinity of a relativistic quantum critical point in 2+1 dimensions.
Rançon, A; Kodio, O; Dupuis, N; Lecheminant, P
2013-07-01
We study the thermodynamics of the relativistic quantum O(N) model in two space dimensions. In the vicinity of the zero-temperature quantum critical point (QCP), the pressure can be written in the scaling form P(T)=P(0)+N(T(3)/c(2))F(N)(Δ/T), where c is the velocity of the excitations at the QCP and |Δ| a characteristic zero-temperature energy scale. Using both a large-N approach to leading order and the nonperturbative renormalization group, we compute the universal scaling function F(N). For small values of N (N~10) we find that F(N)(x) is nonmonotonic in the quantum critical regime (|x|~1) with a maximum near x=0. The large-N approach-if properly interpreted-is a good approximation both in the renormalized classical (x~-1) and quantum disordered (x>/~1) regimes, but fails to describe the nonmonotonic behavior of F(N) in the quantum critical regime. We discuss the renormalization-group flows in the various regimes near the QCP and make the connection with the quantum nonlinear sigma model in the renormalized classical regime. We compute the Berezinskii-Kosterlitz-Thouless transition temperature in the quantum O(2) model and find that in the vicinity of the QCP the universal ratio T(BKT)/ρ(s)(0) is very close to π/2, implying that the stiffness ρ(s)(T(BKT)(-)) at the transition is only slightly reduced with respect to the zero-temperature stiffness ρ(s)(0). Finally, we briefly discuss the experimental determination of the universal function F(2) from the pressure of a Bose gas in an optical lattice near the superfluid-Mott-insulator transition.
Nakajima, Yasuyuki; Wang, Renxiong; Metz, Tristin; ...
2015-03-09
Here, we report a high-pressure study of simultaneous low-temperature electrical resistivity and Hall effect measurements on high quality single-crystalline KFe 2As 2 using designer diamond anvil cell techniques with applied pressures up to 33 GPa. In the low pressure regime, we show that the superconducting transition temperature T c finds a maximum onset value of 7 K near 2 GPa, in contrast to previous reports that find a minimum T c and reversal of pressure dependence at this pressure. Upon applying higher pressures, this T c is diminished until a sudden drastic enhancement occurs coincident with a first-order structural phasemore » transition into a collapsed tetragonal phase. The appearance of a distinct superconducting phase above 13 GPa is also accompanied by a sudden reversal of dominant charge carrier sign, from hole- to electron-like, which agrees with our band calculations predicting the emergence of an electron pocket and diminishment of hole pockets upon Fermi surface reconstruction. Our results suggest the high-temperature superconducting phase in KFe 2As 2 is substantially enhanced by the presence of nested electron and hole pockets, providing the key ingredient of high-T c superconductivity in iron pnictide superconductors.« less
NASA Astrophysics Data System (ADS)
Yu, Lu; Ye, Linhua; Bao, Renjie; Zhang, Xianwei; Wang, Li-Gang
2018-03-01
Optical thermometry based on Y3Al5O12 (YAG) single crystal optical fiber with end Tm3+/Yb3+ co-doped is presented. The YAG crystal fiber with end Tm3+/Yb3+ co-doped was grown by laser heated pedestal growth (LHPG) method. Under a 976 nm laser diode excitation, the upconversion (UC) emissions, originating from 3F2,3 →3H6 and 3H4 →3H6 transitions of Tm3+ ions, were investigated in the temperature range from 333 K to 733 K. Interestingly, the UC emission intensity of 3F2,3 →3H6 transition was significantly enhanced with increase of temperature, as compared with the other Tm3+/Yb3+ co-doped materials. The temperature dependence of fluorescence intensity ratio (FIR) of these two emission bands (3F2,3/3H4 →3H6) suggests that this doped YAG crystal fiber can be used as a highly sensitive optical thermal probe, which demonstrates a high absolute sensitivity with the maximum value of 0.021 K-1 at 733 K. In addition, due to the compact structure, strong mechanical strength and high thermal stability, such thermal probe may be a more promising candidate for temperature sensor with a high spatial resolution.
NASA Astrophysics Data System (ADS)
Ren, Shaokai; Chen, Zhi; Yan, Tianxiang; Han, Feifei; Kuang, Xiaojun; Fang, Liang; Liu, Laijun
2018-07-01
Transition elements Nb, Mn and Zr were selected to substitute Ti of 0.4(Ba0.8Ca0.2)TiO3 -0.6Bi(Mg0.5Ti0.5)O3 (BCT-BMT) ceramic in order to extend its operation temperature and decrease its dielectric loss for the application of high-temperature capacitors. Nb and Mn play an opposite role on the defect compensation, decreasing and increasing the concentration of oxygen vacancies, respectively. The temperature of the maximum relative permittivity, Tm, decreases from 140 °C to 90 °C for the Nb and Zr modified BCT-BMT ceramics. The permittivity (εr) peak of the former exhibits a broad and stable relative permittivity ∼600 (±5% variation) from 50 °C to 520 °C with the dielectric loss ≤0.02 from 60 °C to 440 °C (1 kHz). The modified Curie-Weiss law indicates that the doping elements result in an enhancement of diffuse phase transition. Activation energies of relaxation frequency and conduction of the samples were characterized by the impedance spectroscopy. A clear relationship between the magnitude of activation energy and the concentration of oxygen vacancies was revealed.
Optical spectroscopy of Ce3+ ions in BaY2F8 single crystals
NASA Astrophysics Data System (ADS)
Francini, R.; Pinelli, S.; Baraldi, A.; Capelletti, R.; Sani, E.; Toncelli, A.; Tonelli, M.
In the present work we report on the spectroscopic properties of the Ce3+ ion in BaY2F8 single crystals. The absorption and excitation spectra of the emission centered at 340 nm have been measured in the temperature range 15-300 K. The 340 nm emission consists of two broad partially overlapping bands, peaking at 324 and 347 nm (at 15 K), respectively. The full width at half maximum is about 0.5 eV at room temperature. The absorption spectrum of the lowest in energy component of the f --> d transition of Ce3+ reveals at low temperature a marked vibronic structure. High resolution (0.02 cm(-1)) Fourier transform infrared spectroscopy in the wave number range 500-5000 cm(-1) and in the temperature range 9-300 K has been exploited to monitor the f level splitting. The absorption transitions from the three Stark components of the F-2(5/2) manifold to the four of the F-2(7/2) one, have been monitored in the wave number range 2000-3400 cm(-1) . The wave number separation at 9 K between the lowest level of the ground F-2(5/2) manifold and lowest one of the F-2 (7/2) manifold is found to be 2197.47 cm(-1) in good agreement with the splitting detected between the two components of the d --> f emission.
NASA Astrophysics Data System (ADS)
Sreenilayam, S. P.; Rodriguez-Lojo, D.; Panov, V. P.; Swaminathan, V.; Vij, J. K.; Panarin, Yu. P.; Gorecka, E.; Panov, A.; Stevenson, P. J.
2017-10-01
Calamitic liquid crystals based on 5-phenyl-pyrimidine derivatives have been designed, synthesized, and characterized. The 5-phenyl pyrimidine core was functionalized with a chiral (R,R)-2,3-epoxyhexoxy chain on one side and either siloxane or perfluoro terminated chains on the opposite side. The one involving a perfluorinated chain shows Sm A* phase over a wide temperature range of 82 °C, whereas the siloxane analog exhibits both Sm A* and Sm C* phases over a broad range of temperatures, and a weak first-order Sm A*-Sm C* transition is observed. For the siloxane analog, the reduction factor for the layer shrinkage R (relative to its thickness at the Sm A*-Sm C* transition temperature, TAC) is ˜0.373 , and layer shrinkage is 1.7% at a temperature of 13 °C below the TAC. This compound is considered to have "de Vries smectic" characteristics with the de Vries coefficient CdeVries of ˜0.86 on the scale of zero (maximum-layer shrinkage) to 1 (zero-layer shrinkage). A three-parameter mean-field model is introduced for the orientational distribution function (ODF) to reproduce the electro-optic properties. This model explains the experimental results and leads to the ODF, which exhibits a crossover from the sugar-loaf to diffuse-cone ODF some 3 °C above TAC.
The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors.
Hinton, J P; Thewalt, E; Alpichshev, Z; Mahmood, F; Koralek, J D; Chan, M K; Veit, M J; Dorow, C J; Barišić, N; Kemper, A F; Bonn, D A; Hardy, W N; Liang, Ruixing; Gedik, N; Greven, M; Lanzara, A; Orenstein, J
2016-04-13
In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic "pseudogap" phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO(4+δ) (Hg-1201) and YBa2Cu3O(6+x) (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.
The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors
Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barišić, N.; Kemper, A. F.; Bonn, D. A.; Hardy, W. N.; Liang, Ruixing; Gedik, N.; Greven, M.; Lanzara, A.; Orenstein, J.
2016-01-01
In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T ) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs. PMID:27071712
Atomic Data and Spectral Line Intensities for Ni XV
NASA Technical Reports Server (NTRS)
Landi, E.; Bhatia, A. K.
2011-01-01
Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XV.Weinclude in the calculations the 9 lowest configurations, corresponding to 126 fine structure levels: 3s23p2, 3s3p3, 3s23p3d, 3p4, 3s3p23d, and 3s2 3p4l with l =, s, p, d, f. Collision strengths are calculated at five incident energies for all transitions: 7.8, 18.5, 33.5, 53.5, and 80.2 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.004 and 0.28 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted-wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cu cm range and at an electron temperature of log T(sub e)(K) = 6.4, corresponding to the maximum abundance of Ni XV. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.
A stratocumulus thermodynamic analysis: July 5 case study
NASA Technical Reports Server (NTRS)
Austin, Philip
1990-01-01
On July 5 (NCAR Electra flight 4, Mission 186-G) the Electra flew a single aircraft mission which consisted of cross and along-wind legs at 6 different altitudes between 10:43 to 16:00 PDT (17:43 to 23:00 GMT). The leg length was kept short (8 to 10 minutes) to permit maximum vertical resolution, and there were 8 soundings. Observer notes report a thin, solid stratocumulus cloud deck which gradually became more broken in the afternoon. Winds were from the north at 10 to 13/ms throughout the night. Sea surface temperature measurements and conservative variable analyses for several of the July 5 legs are presented. These results are preliminary to a study of the thermodynamic budget on July 5; they indicate that: the sea surface temperature dropped more than 1 K (from 17.3 to 15.9 C) over the course of the flight (18:01 and at 21:51 GMT); mixing lines for each of the horizontal subcloud legs show the effect of a strong north-south gradient in SST; and there is a clear demarcation over a transition of 5 to 10 km between air to the south and cooler, moister air to the north. The FSSP measurements indicate there are small clouds/scud 250 m below cloud base on the cold northern side of this transition. The transition is seen in the saturation point diagrams at 984, 959, and 946 mb. There is no corresponding change in the horizontal wind across the transition regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharkovskiy, A. I., E-mail: akharkovskiy@inbox.ru; L.F. Vereshchagin Institute for High Pressure Physics RAS, 142190 Troitsk, Moscow; Shaldin, Yu. V.
2016-01-07
The direct nonlinear magnetoelectric (ME) effect and the magnetostriction of piezoelectric CsCuCl{sub 3} single crystals were comprehensively studied over a wide temperature range in stationary magnetic fields of up to 14 T. The direct nonlinear ME effect measurements were also performed in pulsed magnetic fields up to 31 T, at liquid helium temperature in the antiferromagnetic (AF) state for the crystallographic direction in which effect has the maximum value. The nonlinear ME effect was quadratic in the paramagnetic state for the whole range of magnetic fields. In the AF state the phase transition between different configurations of spins manifested itself as plateau-likemore » peculiarity on the nonlinear ME effect. The nonlinear ME effect was saturated by the phase transition to the spin-saturated paramagnetic state. Two contributions to the nonlinear ME effects in CsCuCl{sub 3} were extracted from the experimental data: the intrinsic ME effect originated from the magnetoelectric interactions, and the extrinsic one, which resulted from a magnetostriction-induced piezoelectric effect.« less
Unique sodium phosphosilicate glasses designed through extended topological constraint theory.
Zeng, Huidan; Jiang, Qi; Liu, Zhao; Li, Xiang; Ren, Jing; Chen, Guorong; Liu, Fude; Peng, Shou
2014-05-15
Sodium phosphosilicate glasses exhibit unique properties with mixed network formers, and have various potential applications. However, proper understanding on the network structures and property-oriented methodology based on compositional changes are lacking. In this study, we have developed an extended topological constraint theory and applied it successfully to analyze the composition dependence of glass transition temperature (Tg) and hardness of sodium phosphosilicate glasses. It was found that the hardness and Tg of glasses do not always increase with the content of SiO2, and there exist maximum hardness and Tg at a certain content of SiO2. In particular, a unique glass (20Na2O-17SiO2-63P2O5) exhibits a low glass transition temperature (589 K) but still has relatively high hardness (4.42 GPa) mainly due to the high fraction of highly coordinated network former Si((6)). Because of its convenient forming and manufacturing, such kind of phosphosilicate glasses has a lot of valuable applications in optical fibers, optical amplifiers, biomaterials, and fuel cells. Also, such methodology can be applied to other types of phosphosilicate glasses with similar structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weirich, P. M., E-mail: p.weirich@Physik.uni-frankfurt.de; Schwalb, C. H.; Winhold, M.
2014-05-07
We have prepared the new amorphous superconductor Mo{sub x}C{sub y}Ga{sub z}O{sub δ} with a maximum critical temperature T{sub c} of 3.8 K by the direct-write nano-patterning technique of focused (gallium) ion beam induced deposition (FIBID) using Mo(CO){sub 6} as precursor gas. From a detailed analysis of the temperature-dependent resistivity and the upper critical field, we found clear evidence for proximity of the samples to a disorder-induced metal-insulator transition. We observed a strong dependence of T{sub c} on the deposition parameters and identified clear correlations between T{sub c}, the localization tendency visible in the resistance data and the sample composition. By anmore » in-situ feedback-controlled optimization process in the FIB-induced growth, we were able to identify the beam parameters which lead to samples with the largest T{sub c}-value and sharpest transition into the superconducting state.« less
Electron transport and thermoelectric properties of layered perovskite LaBaCo(2)O(5.5).
Kundu, Asish K; Raveau, B; Caignaert, V; Rautama, E-L; Pralong, V
2009-02-04
We have investigated systematically the physical transport properties of layered 112-type cobaltite by means of electrical resistivity, magnetoresistance and thermopower measurements. In order to understand the complex transport mechanism of LaBaCo(2)O(5.5), the data have been analysed using different theoretical models. The compound shows an electronic transition between two semiconducting states around 326 K, which coincides with the ferromagnetic transition. Interestingly, the system also depicts a significant magnetoresistance (MR) effect near the ferro/antiferromagnetic phase boundary and the highest value of MR is close to 5% at 245 K under ± 7 T. The temperature dependence of thermopower, S(T), exhibits p-type conductivity in the 60 K≤T≤320 K range and reaches a maximum value of around 303 µV K(-1) (at 120 K). In the low temperature antiferromagnetic region the unusual S(T) behaviour, generally observed for the cobaltite series LnBaCo(2)O(5.5) (Ln = rare earth), is explained by the electron magnon scattering mechanism.
Nuclear pasta in hot dense matter and its implications for neutrino scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roggero, Alessandro; Margueron, Jerome; Roberts, Luke F.
The abundance of large clusters of nucleons in neutron-rich matter at subnuclear density is found to be greatly reduced by finite-temperature effects when matter is close to β equilibrium, compared to the case where the electron fraction is fixed at Y e > 0.1 , as often considered in the literature. Large nuclei and exotic nonspherical nuclear configurations called pasta, favored in the vicinity of the transition to uniform matter at T = 0 , dissolve at a relatively low temperature T u as protons leak out of nuclei and pasta. For matter at β-equilibrium with a negligible neutrino chemical potential we find that Tmore » $$β\\atop{u}$$ ≃ 4 ± 1 MeV for realistic equations of state. This is lower than the maximum temperature T$$β\\atop{max}$$ ≃ 9 ± 1 MeV at which nuclei can coexist with a gas of nucleons and can be explained by a change in the nature of the transition to uniform matter called retrograde condensation. An important new finding is that coherent neutrino scattering from nuclei and pasta makes a modest contribution to the opacity under the conditions encountered in supernovas and neutron star mergers. This is because large nuclear clusters dissolve at most relevant temperatures, and at lower temperatures, when clusters are present, Coulomb correlations between them suppress coherent neutrino scattering off individual clusters. Lastly, implications for neutrino signals from galactic supernovas are briefly discussed.« less
Nuclear pasta in hot dense matter and its implications for neutrino scattering
Roggero, Alessandro; Margueron, Jerome; Roberts, Luke F.; ...
2018-04-16
The abundance of large clusters of nucleons in neutron-rich matter at subnuclear density is found to be greatly reduced by finite-temperature effects when matter is close to β equilibrium, compared to the case where the electron fraction is fixed at Y e > 0.1 , as often considered in the literature. Large nuclei and exotic nonspherical nuclear configurations called pasta, favored in the vicinity of the transition to uniform matter at T = 0 , dissolve at a relatively low temperature T u as protons leak out of nuclei and pasta. For matter at β-equilibrium with a negligible neutrino chemical potential we find that Tmore » $$β\\atop{u}$$ ≃ 4 ± 1 MeV for realistic equations of state. This is lower than the maximum temperature T$$β\\atop{max}$$ ≃ 9 ± 1 MeV at which nuclei can coexist with a gas of nucleons and can be explained by a change in the nature of the transition to uniform matter called retrograde condensation. An important new finding is that coherent neutrino scattering from nuclei and pasta makes a modest contribution to the opacity under the conditions encountered in supernovas and neutron star mergers. This is because large nuclear clusters dissolve at most relevant temperatures, and at lower temperatures, when clusters are present, Coulomb correlations between them suppress coherent neutrino scattering off individual clusters. Lastly, implications for neutrino signals from galactic supernovas are briefly discussed.« less
Hetem, R S; de Witt, B A; Fick, L G; Fuller, A; Kerley, G I H; Maloney, S K; Meyer, L C R; Mitchell, D
2009-07-01
Angora goats are known to be vulnerable to cold stress, especially after shearing, but their thermoregulatory responses to shearing have not been measured. We recorded activity, and abdominal and subcutaneous temperatures, for 10 days pre-shearing and post-shearing, in 10 Angora goats inhabiting the succulent thicket of the Eastern Cape, South Africa, in both March (late summer) and September (late winter). Within each season, environmental conditions were similar pre-shearing and post-shearing, but September was an average 5°C colder than March. Shearing resulted in a decreased mean (P < 0.0001), minimum (P < 0.0001) and maximum daily abdominal temperature (P < 0.0001). Paradoxically, the decrease in daily mean (P = 0.03) and maximum (P = 0.01) abdominal temperatures, from pre-shearing to post-shearing, was greater in March than in September. Daily amplitude of body temperature rhythm (P < 0.0001) and the maximum rate of abdominal temperature rise (P < 0.0001) increased from pre-shearing to post-shearing, resulting in an earlier diurnal peak in abdominal temperature (P = 0.001) post-shearing. These changes in amplitude, rate of abdominal temperature rise and time of diurnal peak in abdominal temperature suggest that the goats' thermoregulatory system was more labile after shearing. Mean daily subcutaneous temperatures also decreased post-shearing (P < 0.0001), despite our index goat selecting more stable microclimates after shearing in March (P = 0.03). Following shearing, there was an increased difference between abdominal and subcutaneous temperatures (P < 0.0001) at night, suggesting that the goats used peripheral vasoconstriction to limit heat loss. In addition to these temperature changes, mean daily activity increased nearly two-fold after March shearing, but not September shearing. This increased activity after March shearing was likely the result of an increased foraging time, food intake and metabolic rate, as suggested by the increased water influx (P = 0.0008). Thus, Angora goats entered a heat conservation mode after shearing in both March and September. That the transition from the fleeced to the shorn state had greater thermoregulatory consequences in March than in September may provide a mechanistic explanation for Angora goats' vulnerability to cold in summer.
Rubber-Modified Epoxies. I. Cure, Transitions, and Morphology.
1984-10-01
thermosetting systems has been developed. An aromatic tetrafunctional diamine-cured diglycidyl ether of bis- phenol A epoxy resin [maximum glass transition...systems has been developed. An aromatic tetrafunctional diamine-cured digly- cidyl ether of bisphenol A epoxy resin [maximum glass transition...epoxy resins are brittle materials. The crack resistance can be improved by the addition of reactive liquid rubber to uncured neat epoxy systems (1-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Hongliang; Zhou Wancheng; Luo Fa
The (1-x)(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-x(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (KNN-BST) solid solution has been synthesized by conventional solid-state sintering in order to search for the new lead-free relaxor ferroelectrics for high temperature applications. The phase structure, dielectric properties, and relaxor behavior of the (1-x)KNN-xBST solid solution are systematically investigated. The phase structure of the (1-x)KNN-xBST solid solution gradually changes from pure perovskite phase with an orthorhombic symmetry to the tetragonal symmetry, then to the pseudocubic phase, and to the cubic phase with increasing addition of BST. The 0.90KNN-0.10BST solid solution shows a broad dielectric peak with permittivity maximum near 2500 andmore » low dielectric loss (<4%) in the temperature range of 100-250 deg. C. The result indicates that this material may have great potential for a variety of high temperature applications. The diffuse phase transition and the temperature of the maximum dielectric permittivity shifting toward higher temperature with increasing frequency, which are two typical characteristics for relaxor ferroelectrics, are observed in the (1-x)KNN-xBST solid solution. The dielectric relaxor behavior obeys a modified Curie-Weiss law and a Vogel-Fulcher relationship. The relaxor nature is attributed to the appearance of polar nanoregions owing to the formation of randon fields including local electric fields and elastic fields. These results confirm that the KNN-based relaxor ferroelectrics can be regarded as an alternative direction for the development of high temperature lead-free relaxor ferroelectrics.« less
NASA Astrophysics Data System (ADS)
McCammon, C. A.; Dubrovinsky, L. S.; Potapkin, V.; Glazyrin, K.; Prescher, C.; Kupenko, I.; Chumakov, A.; Rüffer, R.; Kantor, A.; Kantor, I.; Smirnov, G. V.; Popov, S.
2011-12-01
57Fe Mössbauer spectroscopy measured in the energy domain remains one of the best methods to determine iron valence and the nature of spin transitions in lower mantle phases, but up until now measurements at high P,T using a diamond anvil cell (DAC) could only be made using external heating and hence were limited to a maximum of around 800 K. Higher temperatures are possible through laser heating; however conventional radioactive sources have limited intensity and essentially no possibilities for focusing in a laboratory setting. To overcome these limitations we have developed an energy domain synchrotron Mössbauer source (SMS) on beamline ID18 at the European Synchrotron Radiation Facility, enabling rapid collection of high quality energy domain Mössbauer spectra. Combined with a portable double-sided laser heating system, SMS spectra can be collected on iron-containing phases at P,T conditions up to those close to the base of the lower mantle in less than one hour. In the current study we performed SMS measurements on several compositions of (Mg,Fe)(Si,Al)O3 perovskite (Pv) as well as Mg0.8Fe0.2O (Fp) up to 122 GPa and 2500 K. All Mössbauer spectra at high pressure and room temperature are consistent with previous observations: a high-spin (HS) to intermediate-spin (IS) transition of Fe2+(Pv) starting at around 30 GPa, a HS to low-spin (LS) transition of Fe2+(Fp) starting at around 50 GPa, and no spin transition in Fe3+(Pv) up to at least 100 GPa. At high temperature all Fe2+ components show the expected strong decrease in both centre shift and quadrupole splitting, which provides an independent measure of temperature based on the Debye model, and shows clearly the strong temperature gradient in one-sided versus double-sided laser heating experiments. Preliminary fitting of the high P,T Mössbauer spectra is consistent with predominantly IS Fe2+ (Pv), HS Fe3+ (Pv) and mixed HS-LS Fe2+ (Fp). The relative proportion of Fe3+ (Pv) does not appear to change significantly on heating, and all of the original Mössbauer spectra are recovered after cooling. Based on our results, Fe2+ in silicate perovskite is inferred to be predominantly in the IS state throughout the lower mantle while Fe3+ remains in the HS state, implying that seismic velocity anomalies in the main part of the lower mantle cannot be attributed to iron spin transitions in silicate perovskite.
Displacements of Metallic Thermal Protection System Panels During Reentry
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Blosser, Max L.; Wurster, Kathryn E.
2006-01-01
Bowing of metallic thermal protection systems for reentry of a previously proposed single-stage-to-orbit reusable launch vehicle was studied. The outer layer of current metallic thermal protection system concepts typically consists of a honeycomb panel made of a high temperature nickel alloy. During portions of reentry when the thermal protection system is exposed to rapidly varying heating rates, a significant temperature gradient develops across the honeycomb panel thickness, resulting in bowing of the honeycomb panel. The deformations of the honeycomb panel increase the roughness of the outer mold line of the vehicle, which could possibly result in premature boundary layer transition, resulting in significantly higher downstream heating rates. The aerothermal loads and parameters for three locations on the centerline of the windward side of this vehicle were calculated using an engineering code. The transient temperature distributions through a metallic thermal protection system were obtained using 1-D finite volume thermal analysis, and the resulting displacements of the thermal protection system were calculated. The maximum deflection of the thermal protection system throughout the reentry trajectory was 6.4 mm. The maximum ratio of deflection to boundary layer thickness was 0.032. Based on previously developed distributed roughness correlations, it was concluded that these defections will not result in tripping the hypersonic boundary layer.
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2018-04-01
Effect of lattice distortion on diffuse phase transition in BNBTO solid solutions near Morphotropic phase boundary (MPB) has been investigated. Solid solutions of (Bi0.5Na0.5)1-xBaxTiO3 (with mole % of x= 0.04, 0.05, 0.06, 0.07 and 0.08) were prepared by the planetary ball mill method in ethanol medium. Rietveld refinement technique with rhombohedral (R3c) and tetragonal (P4bm) crystal symmetry has been employed for structural as well as phase analysis of the solid solutions. Both rhombohedral and tetragonal lattice distortion (c/a) tends toward the pseudo-cubic crystal symmetry with the increase of mole fraction of Ba2+ near MPB (x= 6 mole %). Also, the average crystallite size and grain size decrease with increase of mole fraction of Ba2+ in BNT ceramic are due to larger ionic radius of Ba2+ and grain boundary pinning process in the solid solutions respectively. Additionally, depolarization temperature (Td) and maximum temperature (Tm) reduces due to the lattice distortion of both the phases in BNBTO solid solutions, which is explained extensively. Significant increase of dielectric constant has been observed near MPB composition (x=6%) in BNBTO solid solutions.
Homogeneous crystal nucleation in polymers.
Schick, C; Androsch, R; Schmelzer, J W P
2017-11-15
The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.
Electromechanical Materials for Cryogenic Use
NASA Technical Reports Server (NTRS)
Leidinger, Peter; Pilgrim, Steven M.
1996-01-01
Electromechanical materials can be used in smart sensor and actuator devices. Yet none performing at low temperatures are available. To meet this need, Pb((MgNi)(1/3)Ta(2/3))03 was synthesized as an electrostrictive ceramic for applications in cryogenic environments. Employing the columbite precursor route, samples with 0% to 100% Ni substitution for Mg were prepared, but only samples with Ni-substitutions less than or equal to 20% yielded primarily the desired perovskite phase. For these compositions the temperature of highest permittivity decreased linearly with increasing Ni content to yield a minimum value of -124 C for 20% Ni-substitution. This composition showed good relaxor dielectric behavior with a maximum relative permittivity of 5890 at 1 kHz. Additionally, in samples with excess MgO, the magnitude of permittivity doubled. In this effort, Pb((MgNi)(1/3)Ta(2/3))03 (PMNiTa) was fabricated to lower its transition temperature by substituting Ni for Mg successively.
The temperature-dependence of adenylate cyclase from baker's yeast.
Londesborough, J; Varimo, K
1979-01-01
The Michaelis constant of membrane-bound adenylate cyclase increased from 1.1 to 1.8 mM between 7 and 38 degrees C (delta H = 13 kJ/mol). Over this temperature range, the maximum velocity increased 10-fold, and the Arrhenius plot was nearly linear, with an average delta H* of 51 kJ/mol. The temperature-dependence of the reaction rate at 2 mM-ATP was examined in more detail: for Lubrol-dispersed enzyme, Arrhenius plots were nearly linear with average delta H* values of 45 and 68 kJ/mol, respectively, for untreated and gel-filtered enzymes; for membrane-bound enzyme, delta H changed from 40 kJ/mol above about 21 degrees C to 62 kJ/mol below 21 degrees C, but this behaviour does not necessarily indicate an abrupt, lipid-induced, transition in the reaction mechanism. PMID:391221
Optical sideband generation up to room temperature with mid-infrared quantum cascade lasers.
Houver, S; Cavalié, P; St-Jean, M Renaudat; Amanti, M I; Sirtori, C; Li, L H; Davies, A G; Linfield, E H; Pereira, T A S; Lebreton, A; Tignon, J; Dhillon, S S
2015-02-23
Mid-infrared (MIR) sideband generation on a near infrared (NIR) optical carrier is demonstrated within a quantum cascade laser (QCL). By employing an externally injected NIR beam, E(NIR), that is resonant with the interband transitions of the quantum wells in the QCL, the nonlinear susceptibility is enhanced, leading to both frequency mixing and sideband generation. A GaAs-based MIR QCL (E(QCL) = 135 meV) with an aluminum-reinforced waveguide was utilized to overlap the NIR and MIR modes with the optical nonlinearity of the active region. The resulting difference sideband (E(NIR) - E(QCL)) shows a resonant behavior as a function of NIR pump wavelength and a maximum second order nonlinear susceptibility, χ((2)), of ~1 nm/V was obtained. Further, the sideband intensity showed little dependence with the operating temperature of the QCL, allowing sideband generation to be realized at room temperature.
NASA Astrophysics Data System (ADS)
Mahmoudian, Ali Reza; Sadrnezhaad, S. K.; Manafi, Zahra
2014-08-01
A heat-transfer model was formulated to determine the distribution of temperature within a bioheap of chalcopyrite of Sarcheshmeh copper mine. Bioleaching employs mixed mesophilic and thermophilic microbes for Cu extraction. Thermophiles are better than mesophiles to dissolve CuFeS2. The solution irrigation and aeration rates were taken into account as the main operational factors. The model was validated by comparing the temperature profiles of test columns with those of bioheap. The model was used to find the optimal ratio of irrigation to aeration. It was found that when the solution was fed at a flow rate of 5 kg/m2 h and air was blown at a flow rate of 7.5 kg/m2 h, the transition from a mesophilic to thermophilic state inside the heap was possible. In this situation, the maximum temperature rise inside the heap was about 332 K (59 °C) after 60 days.
Pathways for tailoring the magnetostructural behavior of FeRh-based systems
NASA Astrophysics Data System (ADS)
Barua, Radhika
2014-03-01
The prediction of phase transition temperatures in functional materials provides dual benefits of supplying insight into fundamental drivers underlying the phase transition, as well as enabling new and improved technological applications that employ the material. In this work, studies focused on understanding the magnetostructural phase transition of FeRh as a function of elemental substitution, provides guidance for tailoring phase transitions in this compound, with possible extensions to other intermetallic-based magnetostructural compounds. Clear trends in the magnetostructural temperatures (Tt) of alloys of composition Fe(Rh1-xMx) or (Fe1-xMx) Rh (M = 3 d, 4 d or 5 d transition metals), as reported in literature since 1961, were identified and confirmed as a function of the valence band electron concentration ((s + d) electrons/atom) of the system. It is observed that substitution of 3 dor 4 delements (x <= 6.5 at%) into B2-ordered FeRh compounds causes Ttto increase to a maximum around a critical valence band electron concentration (ev *) of 8.50 electrons/atom and then decrease. Substitution of 5 delements echoes this trend but with an overall increase in Ttand a shift in ev * to 8.52 electrons/atom. For ev>8.65 electrons/atom, FeRh-based alloys cease to adopt the B2-ordered crystallographic structure in favor of the chemically disordered A1-type structure or the ordered L10-type structure. This phenomenological model has been confirmed through synthesis and characterization of FeRh alloys with Cu, Ni and Au additions. The success of this model in confirming existing data trends in chemically-substituted FeRh and predicting new composition-transition temperature correlations emphasizes the strong interplay between the electronic spin configuration, the electronic band structure, and crystal lattice of this system. Further these results provide pathways for tailoring the magnetostructural behavior and the associated functional response of FeRh-based systems for potential technological applications. Research was performed under the auspices of the U.S. Department of Energy (Contract No. DE-SC0005250).
Analysis of Benthic Foraminiferal Size Change During the Eocene-Oligocene Transition
NASA Astrophysics Data System (ADS)
Zachary, W.; Keating-Bitonti, C.
2017-12-01
The Eocene-Oligocene transition is a significant global cooling event with the first growth of continental ice on Antarctica. In the geologic record, the size of fossils can be used to indirectly observe how organisms respond to climate change. For example, organisms tend to be larger in cooler environments as a physiological response to temperature. This major global cooling event should influence organism physiology, resulting in significant size trends observed in the fossil record. Benthic foraminifera are protists and those that grow a carbonate shell are both well-preserved and abundant in marine sediments. Here, we used the foraminiferal fossil record to study the relationship between their size and global cooling. We hypothesize that cooler temperatures across the Eocene-Oligocene boundary promoted shell size increase. To test this hypothesis, we studied benthic foraminifera from 10 deep-sea cores drilled at Ocean Drilling Program Site 744, located in the southern Indian Ocean. We washed sediment samples over a 63-micron sieve and picked foraminifera from a 125-micron sieve. We studied the benthic foraminiferal genus Cibicidoides and its size change across this cooling event. Picked specimens were imaged and we measured the diameter of their shells using "imageJ". Overall, we find that Cibicidoides shows a general trend of increasing size during this transition. In particular, both the median and maximum sizes of Cibicidoides increase from the Eocene into the Oligocene. We also analyzed C. pachyderma and C. mundulus for size trends. Although both species increase in median size across the boundary, only C. pachyderma shows a consistent trend of increasing maximum, median, and minimum shell diameter. After the Eocene-Oligocene boundary, we observe that shell diameter decreases following peak cooling and that foraminiferal sizes remain stable into the early Oligocene. Therefore, the Eocene-Oligocene cooling event appears to have strong influence on shell size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Inmyong; Park, Jiho; Jeong, Sangkwon
2014-01-29
An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure andmore » the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi{sub 2}, Gd{sub 0.1}Dy{sub 0.9}Ni{sub 2}, Dy{sub 0.85}Er{sub 0.15}Al{sub 2}, Dy{sub 0.5}Er{sub 0.5}Al{sub 2}) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper.« less
NASA Astrophysics Data System (ADS)
Lin, Zhi; Wang, Yi; Xu, Bin; Cheng, Yongjie; Xu, Huiying; Cai, Zhiping
2015-12-01
We report on diode-end-pumped a-cut Nd:YLF laser on F→I transition. In a free-running regime, using an output coupler with a radius of curvature of 1000 mm, we obtain dual-wavelength laser operation at both π-polarized 1047 nm and σ-polarized 1053 nm with maximum output power of about 1.25 W and the highest slope efficiency of about 50.9% at pump power of 5.77 W at room temperature, for the first time to our knowledge. Furthermore, using a 0.1-mm glass plate as a wavelength selector, a dual-wavelength laser at 1047 and 1072 nm can also be yielded with the maximum output power of 0.34 W, which has not been reported before.
Upper transition height at European mid-latitudes for the years of 2010 and 2016: surprising changes
NASA Astrophysics Data System (ADS)
Kotov, Dmytro; Truhlík, Vladimír; Richards, Philip; Podolská, Kateřina; Bogomaz, Oleksandr; Chernogor, Leonid; Siusiuk, Maryna; Shulha, Maryna; Domnin, Igor
2017-04-01
Our previous studies with the Kharkiv incoherent scatter radar (49.6 N, 36.3 E) data in 2006-2010 revealed that the upper (O+ to H++He+) transition height at mid-latitudes is much more sensitive to the changes in solar and geomagnetic activity than was previously thought [1]. In 2016, solar activity was decreasing and both daily and average F10.7 indices were approaching those in 2010. Solar activity was 12% higher in June and 6% higher in September 2016. Geomagnetic activity was low for the measurements in both 2010 and 2016. Given the difference in solar activity, the 2016 nighttime upper transition heights would be expected to be 55 km higher in June and 30 km higher in September. On the contrary, the observed nighttime minimum of the upper transition heights were 18 km higher in June 2016 and 28 km lower in September 2016. This is a surprising result given that the measured ion temperatures indicate that the exospheric temperature in 2010 and 2016 were similar. The unexpectedly low values of the upper transition height in 2016 may be caused by reduced thermospheric hydrogen escape during the 2012-2014 solar maximum, which was notably weaker than previous maxima. We also show results of the upper transition height obtained from processing of the COSMIC electron density vertical profiles. A comparison with the latest version of the IRI ion composition model (TBT) is also presented. [1] Kotov, D. V., V. Truhlík, P. G. Richards, S. Stankov, O. V. Bogomaz, L. F. Chernogor, and I. F. Domnin (2015), Night-time light ion transition height behaviour over the Kharkiv (50°N, 36°E) IS radar during the equinoxes of 2006-2010, J. Atmos. Sol. Terr. Phys., 132, 1-12, doi:10.1016/j.jastp.2015.06.004.
Drag reducing properties of microalgal exopolymers.
Ramus, J; Kenney, B E; Shaughnessy, E J
1989-01-25
Dilute aqueous solutions of polymers released by marine phytoplankton (microalgae) were shown to effectively reduce drag in capillary pipe flow. Tests were performed in a capillary turbulent flow viscometer which extruded small samples under high pressures. In all, 22 species were screened, and the products of one chlorophyte and four rhodophyte species proved especially effective. The viscoelastic polymers produced by these species delayed the transition from laminar to turbulent flow to significantly higher Re. In general, polymeric regime segments come off the maximum drag reduction asymptote at characteristic retro-onset points, and come to lie approximately parallel to, but displaced upwards from the Prandtl-von Karman line. The delay to transition was shown to be dependent on additive polymer concentration, capillary diameter, and temperature. Ionic concentration, ionic composition, or pH had little effect on drag reducing properties.
NASA Astrophysics Data System (ADS)
Strnat, R. M. W.; Liu, S.; Strnat, K. J.
1982-03-01
Flux-loss characteristics during long-term air aging of four rare-earth-cobalt matrix magnet types were measured. Irreversible losses and reversible temperature coefficients on heating above room temperature are reported. Purely magnetic and permanent microstructure-related changes during aging were differentiated by measuring hysteresis curves before and after long-term exposure. Three commercial polymer-bonded magnets using different rare-earth-cobalt-transition metal alloys and a solder-matrix magnet with Sm(Co, Cu, Fe, Zr)7.4 were studied. They were cycled between 25 °C and maximum temperatures to 150 °C (25 ° intervals) as applicable. Aging data at 50 and 125 °C for an exposure time of 3300 h are reported. The 2-17 samples have a stability far superior to bonded 1-5. The soft metal binder imparts significantly better aging behavior on precipitation-hardened 2-17 magnet alloys above 100 °C than an epoxy resin matrix.
Molecular dynamics simulations of melting and the glass transition of nitromethane.
Zheng, Lianqing; Luo, Sheng-Nian; Thompson, Donald L
2006-04-21
Molecular dynamics simulations have been used to investigate the thermodynamic melting point of the crystalline nitromethane, the melting mechanism of superheated crystalline nitromethane, and the physical properties of crystalline and glassy nitromethane. The maximum superheating and glass transition temperatures of nitromethane are calculated to be 316 and 160 K, respectively, for heating and cooling rates of 8.9 x 10(9) Ks. Using the hysteresis method [Luo et al., J. Chem. Phys. 120, 11640 (2004)] and by taking the glass transition temperature as the supercooling temperature, we calculate a value of 251.1 K for the thermodynamic melting point, which is in excellent agreement with the two-phase result [Agrawal et al., J. Chem. Phys. 119, 9617 (2003)] of 255.5 K and measured value of 244.73 K. In the melting process, the nitromethane molecules begin to rotate about their lattice positions in the crystal, followed by translational freedom of the molecules. A nucleation mechanism for the melting is illustrated by the distribution of the local translational order parameter. The critical values of the Lindemann index for the C and N atoms immediately prior to melting (the Lindemann criterion) are found to be around 0.155 at 1 atm. The intramolecular motions and molecular structure of nitromethane undergo no abrupt changes upon melting, indicating that the intramolecular degrees of freedom have little effect on the melting. The thermal expansion coefficient and bulk modulus are predicted to be about two or three times larger in crystalline nitromethane than in glassy nitromethane. The vibrational density of states is almost identical in both phases.
Luminescence of III-IV-V thin film alloys grown by metalorganic chemical vapor deposition
NASA Astrophysics Data System (ADS)
Jia, Roger; Zhu, Tony; Bulović, Vladimir; Fitzgerald, Eugene A.
2018-05-01
III-IV-V heterovalent alloys have the potential to satisfy the need for infrared bandgap materials that also have lattice constants near GaAs. In this work, significant room temperature photoluminescence is reported for the first time in high quality III-IV-V alloys grown by metalorganic chemical vapor deposition. Pronounced phase separation, a characteristic suspected to quench luminescence in the alloys in the past, was successfully inhibited by a modified growth process. Small scale composition fluctuations were observed in the alloys; higher growth temperatures resulted in fluctuations with a striated morphology, while lower growth temperatures resulted in fluctuations with a speckled morphology. The composition fluctuations cause bandgap narrowing in the alloys—measurements of various compositions of (GaAs)1-x(Ge2)x alloys reveal a maximum energy transition of 0.8 eV under 20% Ge composition rather than a continuously increasing transition with the decreasing Ge composition. Additionally, luminescence intensity decreased with the decreasing Ge composition. The alloys appear to act as a Ge-like solid penetrating a GaAs lattice, resulting in optical properties similar to those of Ge but with a direct-bandgap nature; a decrease in the Ge composition corresponds to a reduction in the light-emitting Ge-like material within the lattice. An energy transition larger than 0.8 eV was obtained through the addition of silicon to the (GaAs)1-x(Ge2)x alloy. The results indicate significant promise for III-IV-V alloys as potential materials for small bandgap optical devices with previously unachievable lattice constants.
Large magnetoresistance in (La1-xCaxMnO3)1-y:ZrO2 composite
NASA Astrophysics Data System (ADS)
Das, D.; Saha, A.; Russek, S. E.; Raj, R.; Bahadur, D.
2003-05-01
Colossal magnetoresistance (CMR) composite materials have been synthesized to explore the possibility of improving magneto-transport and structural properties in CMR systems. In this work we describe (La1-xCaxMnO3)1-y (LCMO) (ZrO2)y (x≈0.3 and 0.0⩽y⩽0.40 mole %) composites that have been synthesized using a modified (non Pechini type) sol-gel technique. Magnetoresistivity of the composites was evaluated at 5 T field and in the temperature range 5-300 K. The composites show higher magnitude of MR compared to pure LCMO. The MR rises from a base value 76%, for the case y=0, to a maximum value of 93.8%, obtained at y=0.05. dc susceptibility measurements show a distinct ferromagnetic to paramagnetic transition in all composites. The ferromagnetic transition temperature (TC) drops from 225 K in pure LCMO (y=0) to 121 K in y=0.05 and then slowly rises to 157 K as y increases. The plots of zero field cooled susceptibility χZFC (T) and field cooled susceptibility χFC (T) diverge clearly below TC, indicating magnetic irreversibility. The composite exhibits a clear metal-insulator transition (TMI) at or just above the magnetic transition. The peak resistivity ρMI at the metal-insulator transition also exhibits interesting changes. For pure LCMO polycrystals, ρMI=102 Ω cm, but it increases to 228 Ω cm for y=0.05 and then gradually decreases to 1.94 Ω cm for y⩾0.10. The phase evolution in the LCMO:ZrO2 composites was studied by x-ray powder diffraction and correlated to the magnetic and electrical properties.
∼2 μm emission properties and non-radiative processes of Tm{sup 3+} in germanate glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Song; Liu, Xueqiang; Fan, Xiaokang
2014-11-07
In this paper, 80GeO{sub 2}-8Ga{sub 2}O{sub 3}-10BaO-2Nb{sub 2}O{sub 5}-6PbO (in mol%) glass samples with different Tm{sub 2}O{sub 3} concentrations (0, 0.5, 0.75, 1, 1.25, and 1.5 mol. %) were prepared by traditional melt-quenching method. According to the measurement of thermal properties of the host glass, the glass transition temperature is 596.7 °C and no crystallization peak is observed. Judd–Ofelt parameters Ω{sub t} (t = 2, 4, 6) and fluorescent lifetimes were obtained by Judd-Ofelt theory. The similar values of Judd–Ofelt parameters and the full-width at half-maximums of ∼1800 nm indicate the local environment of Tm{sup 3+} changes little with increment of Tm{sub 2}O{sub 3} concentrations.more » Maximum stimulated emission cross-section of ∼1800 nm is 6.22 × 10{sup −21} cm{sup 2} as calculated by Fuchtbauer–Ladenburg formula. Energy migration among Tm{sup 3+} ions was analyzed by the extended overlap integral method. The non-radiative transition rates between mainly energy levels of Tm{sup 3+} were calculated. Non-radiative transition rate of {sup 3}F{sub 4} energy level caused by OH was analyzed by rate equation and deduced by fitting the fluorescence decay curve.« less
Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping
NASA Astrophysics Data System (ADS)
Gómez, A.; Chavarriaga, E.; Supelano, I.; Parra, C. A.; Morán, O.
2018-04-01
The effect of Ni2+ doping on the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 manganites synthesized via the auto-combustion method is reported. The aim of studying Ni2+-substituted La0.7Ca0.3Mn1 - xNixO3 (x = 0 , 0.02 , 0.07, and 0.1) manganites was to explore the possibility of increasing the operating temperature range for the magnetocaloric effect through tuning of the magnetic transition temperature. X-ray diffraction analysis confirmed the phase purity of the synthesized samples. The substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice was also corroborated through this technique. The dependence of the magnetization on the temperature reveals that all the compositions exhibit a well-defined ferromagnetic to paramagnetic transition near the Curie temperature. A systematic decrease in the values of the Curie temperature is clearly observed upon Ni2+ doping. Probably the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and the magnetic moment in the samples. By using Arrott plots, it was found that the phase transition from ferromagnetic to paramagnetic is second order. The maximum magnetic entropy changes observed for the x = 0 , 0.02 , 0.07, and 0.1 composites was 0.85, 0.77, 0.63, and 0.59 J/kg K, respectively, under a magnetic field of 1.5 T. In general, it was verified that the magnetic entropy change achieved for La0.7Ca0.3Mn1 - xNixO3 manganites synthesized via the auto-combustion method is higher than those reported for other manganites with comparable Ni2+-doping levels synthesized via standard solid state reaction. The addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (∼60 J/kg) is found for a Ni-doping level of 2% around 230 K in a field of 1.5 T.
Recombination-pumped XUV lasing in capillary discharges and dynamic z-pinches
NASA Astrophysics Data System (ADS)
Pöckl, M.; Hebenstreit, M.; Fertner, R.; Neger, T.; Aumayr, F.
1996-08-01
A fully time-dependent collisional - radiative model is employed to calculate relevant population densities in a recombining carbon/hydrogen z-pinch plasma. In particular, the dependence of the small signal gain G on the maximum electron temperature and cooling rate, as well as the influence of Lyman-0022-3727/29/8/005/img8 reabsorption, are studied. Although in conditions typical for dynamic z-pinches the maximum electron temperature and cooling rates would, in principle, be sufficiently high, gain on the Balmer-0022-3727/29/8/005/img8 transition is strongly reduced by Lyman-0022-3727/29/8/005/img8 reabsorption. In order to investigate vacuum spark capillary discharges, the system of rate equations is coupled with balance equations of the plasma energy and the total number of heavy particles. The resulting set of equations is solved self-consistently. Results are presented that show the systematic dependence of the small signal gain on electrical input power, wall material, and capillary geometry. High gain coefficients 0022-3727/29/8/005/img11 could be achieved by modelling high-voltage discharges with short ringing periods through capillaries containing boron or carbon. While the maximum achievable gain coefficient for lithium is rather poor 0022-3727/29/8/005/img12 the duration of population inversion would be long enough (a few tens of nanoseconds) to make multi-pass operation possible.
Coarse-grained theory of a realistic tetrahedral liquid model
NASA Astrophysics Data System (ADS)
Procaccia, I.; Regev, I.
2012-02-01
Tetrahedral liquids such as water and silica-melt show unusual thermodynamic behavior such as a density maximum and an increase in specific heat when cooled to low temperatures. Previous work had shown that Monte Carlo and mean-field solutions of a lattice model can exhibit these anomalous properties with or without a phase transition, depending on the values of the different terms in the Hamiltonian. Here we use a somewhat different approach, where we start from a very popular empirical model of tetrahedral liquids —the Stillinger-Weber model— and construct a coarse-grained theory which directly quantifies the local structure of the liquid as a function of volume and temperature. We compare the theory to molecular-dynamics simulations and show that the theory can rationalize the simulation results and the anomalous behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, S. V.; Rumyantsev, V. V., E-mail: rumyantsev@ipmras.ru; Antonov, A. V.
2014-02-17
Photoluminescence (PL) and photoconductivity (PC) studies of Hg{sub 1−x}Cd{sub x}Te (0.19 ≤ x ≤ 0.23) epitaxial films are presented. Interband PL is observed at wavelengths from 26 to 6 μm and in the temperature range 18 K–200 K. The PL line full width at half maximum is about 6 meV (4kT) at 18 K and approaches its theoretical limit of 1.8kT at higher temperatures. Carrier recombination process is also investigated by time resolved studies of PL and PC at pulsed excitation. Radiative transitions are shown to be the dominating mechanism of carrier recombination at high excitation levels.
Superconductivity in solid benzene molecular crystal.
Zhong, Guo-Hua; Yang, Chun-Lei; Chen, Xiao-Jia; Lin, Hai-Qing
2018-06-20
Light-element compounds hold great promise of high critical temperature superconductivity judging from the theoretical perspective. A hydrogen-rich material, benzene, is such a kind of candidate but also an organic compound. A series of first-principles calculations are performed on the electronic structures, dynamics properties, and electron-phonon interactions of solid benzene at high pressures. Benzene is found to be dynamically stable in the pressure range of 180-200 GPa and to exhibit superconductivity with a maximum transition temperature of 20 K at 195 GPa. The phonon modes of carbon atoms are identified to mainly contribute to the electron-phonon interactions driving this superconductivity. The predicted superconductivity in this simplest pristine hydrocarbon shows a common feature in aromatic hydrocarbons and also makes it a bridge to organic and hydrogen-rich superconductors.
21-cm radiation: a new probe of variation in the fine-structure constant.
Khatri, Rishi; Wandelt, Benjamin D
2007-03-16
We investigate the effect of variation in the value of the fine-structure constant (alpha) at high redshifts (recombination > z > 30) on the absorption of the cosmic microwave background (CMB) at 21 cm hyperfine transition of the neutral atomic hydrogen. We find that the 21 cm signal is very sensitive to the variations in alpha and it is so far the only probe of the fine-structure constant in this redshift range. A change in the value of alpha by 1% changes the mean brightness temperature decrement of the CMB due to 21 cm absorption by >5% over the redshift range z < 50. There is an effect of similar magnitude on the amplitude of the fluctuations in the brightness temperature. The redshift of maximum absorption also changes by approximately 5%.
Neutron detection using a current biased kinetic inductance detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shishido, Hiroaki, E-mail: shishido@pe.osakafu-u.ac.jp; Miyajima, Shigeyuki; Ishida, Takekazu
2015-12-07
We demonstrate neutron detection using a solid state superconducting current biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line of 1 μm width and 40 nm thickness. {sup 10}B-enriched neutron absorber layer of 150 nm thickness is placed on top of the CB-KID. Our neutron detectors are able to operate in a wide superconducting region in the bias current–temperature diagram. This is in sharp contrast with our preceding current-biased transition edge detector, which can operate only in a narrow range just below the superconducting critical temperature. The full width at half maximum of the signals remains of the ordermore » of a few tens of ns, which confirms the high speed operation of our detectors.« less
Superconductivity in solid benzene molecular crystal
NASA Astrophysics Data System (ADS)
Zhong, Guo-Hua; Yang, Chun-Lei; Chen, Xiao-Jia; Lin, Hai-Qing
2018-06-01
Light-element compounds hold great promise of high critical temperature superconductivity judging from the theoretical perspective. A hydrogen-rich material, benzene, is such a kind of candidate but also an organic compound. A series of first-principles calculations are performed on the electronic structures, dynamics properties, and electron–phonon interactions of solid benzene at high pressures. Benzene is found to be dynamically stable in the pressure range of 180–200 GPa and to exhibit superconductivity with a maximum transition temperature of 20 K at 195 GPa. The phonon modes of carbon atoms are identified to mainly contribute to the electron–phonon interactions driving this superconductivity. The predicted superconductivity in this simplest pristine hydrocarbon shows a common feature in aromatic hydrocarbons and also makes it a bridge to organic and hydrogen-rich superconductors.
NASA Astrophysics Data System (ADS)
An, Chao; Chen, Xuliang; Wu, Bin; Zhou, Yonghui; Zhou, Ying; Zhang, Ranran; Park, Changyong; Song, Fengqi; Yang, Zhaorong
2018-05-01
Tetradymite-type topological insulator Sn-doped B i1.1S b0.9T e2S (Sn-BSTS), with a surface state Dirac point energy well isolated from the bulk valence and conduction bands, is an ideal platform for studying the topological transport phenomena. Here, we present high-pressure transport studies on single-crystal Sn-BSTS, combined with Raman scattering and synchrotron x-ray diffraction measurements. Over the studied pressure range of 0.7-37.2 GPa, three critical pressure points can be observed: (i) At ˜9 GPa, a pressure-induced topological insulator-to-metal transition is revealed due to closure of the bulk band gap, which is accompanied by changes in slope of the Raman frequencies and a minimum in c /a within the pristine rhombohedral structure (R -3 m ); (ii) at ˜13 GPa, superconductivity is observed to emerge, along with the R -3 m to a C 2 /c (monoclinic) structural transition; (iii) at ˜24 GPa, the superconducting transition onset temperature TC reaches a maximum of ˜12 K , accompanied by a second structural transition from the C 2 /c to a body-centered cubic I m -3 m phase.
He, Lianyi
2014-11-26
In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interactionmore » energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.« less
NASA Astrophysics Data System (ADS)
Krucaite, G.; Tavgeniene, D.; Xie, Z.; Lin, X.; Zhang, B.; Grigalevicius, S.
2018-02-01
Two polyethers containing electroactive pendent 4-(carbazol-2-yl)-7-arylbenzo[c]-1,2,5-thiadiazole moieties have been synthesized by the multi-step synthetic route. Full characterization of their structures is presented. The polymers represent derivatives of very high thermal stability with initial thermal degradation temperatures of 425 °C and 431 °C. Glass transition temperatures of the amorphous materials were also very high and reached values of 154 °C and 163 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of 5.84 eV and 5.93 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting material. An electroluminescent device containing hole-transporting layer (HTL) of the polymer with electroactive 4-carbazolyl-7-phenylbenzo[c]-1,2,5-thiadiazole moieties exhibited turn on voltage of 6.2 V, maximum photometric efficiency of 2.5 cd/A and maximum brightness exceeding 300 cd/m2. The device containing HTL of the polymer with 4-carbazolyl-7-(1-naphtyl)benzo[c]-1,2,5-thiadiazole moieties demonstrated turn on voltage of 5.2 V, maximum photometric efficiency of 1.6 cd/A and maximum brightness exceeding 1500 cd/m2. The efficiencies were about 30-90% higher than that of the device containing widely used hole transporting layers of poly(9-vinylcarbazole).
NASA Astrophysics Data System (ADS)
Sobczyk, Marcin
2013-04-01
Telluride glasses of the composition xNd2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2, where (0≤x≤7) were prepared by the melt quench technique. Some physical and optical properties of the glasses were evaluated. The thermal behavior i.e. glass transition and crystallization temperatures were studied by using TGA-DTA technique. Optical properties of Nd3+-doped telluride glasses were investigated between 298 and 700 K. Basing on the obtained values of J-O parameter values (×10-20 cm2: Ω2=4.49±0.84, Ω4=5.03±0.61, Ω6=4.31±0.73), the radiative transition probabilities (AT), radiative lifetimes (τR), fluorescence branching ratios (β) and emission cross-sections (σem) were calculated for the 4F3/2→4IJ/2 (where J=9, 11 and 13) transitions of Nd3+ ions. The τR value of the 4F3/2 level amount to 164 μs and is slightly higher than the measured decay time of 162 μs. With the increasing of Nd2O3 concentration from 0.5 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 162 to 5.6 μs. The estimated quantum efficiency amount to 100%, based on a comparison of τR and the experimental decay time of a slightly doped Nd3+ telluride glass. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The 4F3/2→4I9/2 and 4F5/2→4I9/2 transitions were analyzed with respect to the fluorescence intensity ratio (FIR) and were found to be temperature dependent. Infrared-to-visible up-conversion emissions with a maximum at 603.0 and 635.3 nm were observed at high temperatures using the 804 nm excitation and are due to the 4G5/2→4I9/2 and 4G5/2→4I11/2 transitions of Nd3+ ions, respectively. The near quadratic dependence of fluorescence on excitation laser power confirms that two photons contribute to up-conversion of the orange emissions. The temperature-stimulated up-conversion excitation processes have been analyzed in detail. The optical results indicate that the investigated glasses are potentially applicable as a 1063 nm laser host as well as an optical sensor for temperature measurements.
Temperature dependence of the enhanced inverse spin Hall voltage in Pt/Antiferromagnetic/ Y3Fe5O12
NASA Astrophysics Data System (ADS)
Brangham, J. T.; Lee, A. J.; Cheng, Y.; Yu, S. S.; Dunsiger, S. R.; Page, M. R.; Hammel, P. C.; Yang, F. Y.
The generation, propagation, and detection of spin currents are of intense interest in the field of spintronics. Spin current generation by FMR spin pumping using Y3Fe5O12 (YIG) and spin current detection by the inverse spin Hall effect (ISHE) in metals such as Pt have been well studied. This is due to YIG's exceptionally low damping and insulating behavior and the large spin Hall angle of Pt. Previously, our group showed that the ISHE voltages are significantly enhanced by adding a thin intermediate layer of an antiferromagnet (AFM) between Pt and YIG at room temperature. Recent theoretical work predicts a mechanism for this enhancement as well as the temperature dependence of the ISHE voltages of metal/AFM/YIG trilayers. The predictions show a maximum in the ISHE voltages for these systems near the magnetic phase transition temperature of the AFM. Here we present experimental results showing the temperature dependence for Pt/AFM/YIG structures with various AFMs. DOE Grant No. DE-SC0001304.
Phase Transformation and Shape Memory Effect of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Yamabe-Mitarai, Yoko; Takebe, Wataru; Shimojo, Masayuki
2017-12-01
To understand the potential of high-temperature shape memory alloys, we have investigated the phase transformation and shape memory effect of Ti-(50 - x)Pt- xPd-5Zr alloys ( x = 0, 5, and 15 at.%), which present the B2 structure in the austenite phase and B19 structure in the martensite phase. Their phase transformation temperatures are very high; A f and M f of Ti-50Pt are 1066 and 1012 °C, respectively. By adding Zr and Pd, the phase transition temperatures decrease, ranging between 804 and 994 °C for A f and 590 and 865 °C for M f. Even at the high phase transformation temperature, a maximum recovery ratio of 70% was obtained for one cycle in a thermal cyclic test. A work output of 1.2 J/cm3 was also obtained. The recovery ratio obtained by the thermal cyclic test was less than 70% because the recovery strain was < 1% and a large irrecoverable strain was obtained. The shape recovery was explained by the austenite strength. The training effect was also investigated.
Disordering and dynamic self-organization in stoichiometric UO2 at high temperatures
NASA Astrophysics Data System (ADS)
Annamareddy, Ajay; Eapen, Jacob
2017-01-01
Neutron scattering experiments show significant oxygen disorder in UO2 at temperatures above 2000 K. The nature of the disorder, however, has not been ascertained with certainty. Using atomistic simulations and metrics from statistical mechanics we show that the oxygen anions predominantly hop from one native (tetrahedral) lattice site to another, above a characteristic temperature Tα (∼2000 K). Interestingly, we discover two types of disorder - the first one, which is a measure of the fraction of anions that are displaced from their native sites, portrays a monotonic increase with temperature and shows excellent conformity to neutron scattering data. The second metric based on the mean square displacement of the anions in an isoconfigurational ensemble demonstrates a dynamic self-organization behavior in which the anions are spatially correlated to those with similar mobility. This dynamic self-organization, however, experiences a non-monotonic variation with temperature depicting a maximum near the Bredig or λ-transition. We further establish that the thermodynamic metric cp/T, which is equal to the rate of change of entropy with temperature, is a key entropic indicator of the dynamic self-organization among the oxygen anions in UO2 at high temperatures.
Banuprasad, Theneyur Narayanaswamy; Vinay, Thamarasseril Vijayan; Subash, Cherumannil Karumuthil; Varghese, Soney; George, Sajan D; Varanakkottu, Subramanyan Namboodiri
2017-08-23
In spite of the reported temperature dependent tunability in wettability of poly(N-isopropylacrylamide) (PNIPAAm) surfaces for below and above lower critical solution temperature (32 °C), the transport of water droplets is inhibited by the large contact angle hysteresis. Herein, for the first time, we report on-demand, fast, and reconfigurable droplet manipulation over a PNIPAAm grafted structured polymer surface using temperature-induced wettability gradient. Our study reveals that the PNIPAAm grafted on intrinsically superhydrophobic surfaces exhibit hydrophilic nature with high contact angle hysteresis below 30 °C and superhydrophobic nature with ultralow contact angle hysteresis above 36 °C. The transition region between 30 and 36 °C is characterized by a large change in water contact angle (∼100°) with a concomitant change in contact angle hysteresis. By utilizing this "transport zone" wherein driving forces overcome the frictional forces, we demonstrate macroscopic transport of water drops with a maximum transport velocity of approximately 40 cm/s. The theoretical calculations on the force measurements concur with dominating behavior of driving forces across the transport zone. The tunability in transport velocity by varying the temperature gradient along the surface or the inclination angle of the surface (maximum angle of 15° with a reduced velocity 0.4 mm/s) is also elucidated. In addition, as a practical application, coalescence of water droplets is demonstrated by using the temperature controlled wettability gradient. The presented results are expected to provide new insights on the design and fabrication of smart multifunctional surfaces for applications such as biochemical analysis, self-cleaning, and microfluidics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ye; Qin, Fei; Wu, Xiang
2017-08-01
We investigated Fe-free and Fe-bearing CF phases using nuclear forward scattering and X-ray diffraction coupled with diamond anvil cells up to 80 GPa at room temperature. Octahedral Fe3+ ions in the Fe-bearing CF phase undergo a high-spin to low-spin transition at 25–35 GPa, accompanied by a volume reduction of ~2.0% and a softening of bulk sound velocity up to 17.6%. Based on the results of this study and our previous studies, both the NAL and CF phases, which account for 10–30 vol % of subducted MORB in the lower mantle, are predicted to undergo a spin transition of octahedral Fe3+more » at lower mantle pressures. Spin transitions in these two aluminous phases result in an increase of density of 0.24% and a pronounced softening of bulk sound velocity up to 2.3% for subducted MORB at 25–60 GPa and 300 K. The anomalous elasticity region expands and moves to 30–75 GPa at 1200 K and the maximum of the VΦ reduction decreases to ~1.8%. This anomalous elastic behavior of Fe-bearing aluminous phases across spin transition zones may be relevant in understanding the observed seismic signatures in the lower mantle.« less
Jarlborg, Thomas; Bianconi, Antonio
2016-04-20
While 203 K high temperature superconductivity in H3S has been interpreted by BCS theory in the dirty limit here we focus on the effects of hydrogen zero-point-motion and the multiband electronic structure relevant for multigap superconductivity near Lifshitz transitions. We describe how the topology of the Fermi surfaces evolves with pressure giving different Lifshitz-transitions. A neck-disrupting Lifshitz-transition (type 2) occurs where the van Hove singularity, vHs, crosses the chemical potential at 210 GPa and new small 2D Fermi surface portions appear with slow Fermi velocity where the Migdal-approximation becomes questionable. We show that the neglected hydrogen zero-point motion ZPM, plays a key role at Lifshitz transitions. It induces an energy shift of about 600 meV of the vHs. The other Lifshitz-transition (of type 1) for the appearing of a new Fermi surface occurs at 130 GPa where new Fermi surfaces appear at the Γ point of the Brillouin zone here the Migdal-approximation breaks down and the zero-point-motion induces large fluctuations. The maximum Tc = 203 K occurs at 160 GPa where EF/ω0 = 1 in the small Fermi surface pocket at Γ. A Feshbach-like resonance between a possible BEC-BCS condensate at Γ and the BCS condensate in different k-space spots is proposed.
NASA Astrophysics Data System (ADS)
Hujeirat, A.; Camenzind, M.
2000-10-01
We present the first 2D quasi-stationary radiative hydrodynamical calculations of accretion flows onto BHs taking into account cooling via Bremsstrahlung, Compton, Synchrotron and conduction. The effect of enhanced Coulomb coupling is investigated also. Based on the numerical results obtained, we find that two-temperature (2T) accretion flows are best suited to describe hard states, and one-temperature (1T) in the soft states, with transition possibly depending on the accretion rate. In the 2T case, the ion-conduction enlarges the disk-truncation-radius from 5 to 9 Schwarzschild radii (RS). The ion-pressure powers outflows, hence substantially decreasing the accretion rate with decreasing radius. The spectrum is partially modified BB with hard photons emitted from the inner region and showing a cutoff at 100 keV. In the 1T case, conduction decreases the truncation radius from 7 to 5 RS and lowers the maximum gas temperature. The outflows are weaker, the spectrum is pre-dominantly modified BB and the emitted photons from the inner region are much harder (up to 175 keV). In both cases, the unsaturated Comptonization region coincides with the transition region between the disk and the advective torus. When gradually enhancing the Coulomb coupling, we find that the ion-temperature Ti decreases and the electron temperature Te increases, asymptotically converging to 1T flows. However, once the dissipated energy goes into heating the ions, ion-electron thermal decoupling is inevitable within the last stable orbit (RMS) even when the Coulomb interaction is enhanced by an additional two orders of magnitude.
Laboratory earthquakes triggered during the eclogitization of lawsonite bearing blueschist
NASA Astrophysics Data System (ADS)
Incel, S.; Hilairet, N.; Labrousse, L.; John, T.; Deldicque, D.; Ferrand, T. P.; Wang, Y.; Renner, J.; Morales, L. F. G.; Schubnel, A.
2016-12-01
The origin of intermediate-depth seismicity has been debated for decades. A substantial fraction of these events occur within the upper plane of Wadati-Benioff double seismic zones believed to represent subducting oceanic crust. We deformed natural lawsonite-rich blueschist samples under eclogite-facies conditions (1 < P < 3.5 GPa; 583 K < T < 1121 K), using a D-DIA apparatus installed at a synchrotron beam line continuously monitoring stress, strain, phase content, and acoustic emissions (AEs). Two distinct eclogitization paths were followed: i) a cold path (maximum temperatures of 762 to 927 K), during which lawsonite and glaucophane went gradually unstable at higher pressure; ii) a hot path (maximum temperatures of 1073 to 1121 K) during which the complete breakdown of lawsonite at high temperature was triggered, but glaucophane or amphibole in general remained stable. Brittle failure of the sample, accompanied by the radiation of AEs, occurred for the cold path. In-situ XRD and post-mortem microstructural analysis demonstrate that fractures are topologically related to the growth of omphacite. Amorphous material was detected along the fractures by transmission electron microscopy without evidence for free-water. Since the growth of omphacite is associated with grain-size reduction, we interpret the observed mechanical instability as a transformation-induced thermal runaway under stress (or transformational faulting) triggered during the transition from lawsonite-blueschist to lawsonite-eclogite. In contrast, we find no microstructural evidence that the breakdown of lawsonite, and hence the liberation of water leads to the fracturing of the sample along the hot path, although some AEs were detected during an experiment performed at 1.5 GPa. Our experimental results challenge the concept of "dehydration embrittlement", which ascribes the genesis of intermediate-depth earthquakes to the breakdown of hydrous phases in the subducting oceanic plate. Instead our results demonstrate that grain-size reduction (transformational faulting) during the transition from lawsonite-blueschist to lawsonite-eclogite leads to the brittle failure of the samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorev, M.V., E-mail: gorev@iph.krasn.ru; Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk; Flerov, I.N.
2016-05-15
Heat capacity, Mössbauer and Raman spectra as well as magnetic properties of fluoride CsFe{sub 2}F{sub 6} with defect pyrochlore structure were studied. In addition to recently found above room temperature three successive structural transformations Pnma-Imma-I4{sub 1}amd-Fd-3m, phase transition of antiferromagnetic nature with the 13.7 K Neel temperature and a broad heat capacity anomaly with a maximum at about 30 K were observed. The room temperature symmetry Pnma is unchanged at least down to 7 K. Simple model of indirect bond used to estimate the exchange interactions and to propose a magnetic structure model. - Graphical abstract: The ordered arrangement ofmore » Fe{sup 2+} and Fe{sup 3+} ions in high-spin states as well as antiferromagnetic phase transition followed by significant magnetic frustrations were found in pyrocholore-related CsFe{sup 2+}Fe{sup 3+}F{sub 6}. A magnetic structure was proposed using a simple model of indirect bonds. - Highlights: • The Pnma structure in pyrocholore CsFe{sub 2}F{sub 6} is stable down to helium temperature. • Mössbauer spectra confirmed the ordering of Fe{sup 2+} and Fe{sup 3+} ions. • Antiferromagnetic transformation and significant magnetic frustrations are found. • Experimental magnetic entropy agrees with entropy for Fe ions in high-spin state. • Superexchange interactions were calculated and a magnetic structure was proposed.« less
Imide Oligomers Containing Pendent and Terminal Phenylethynyl Groups-2
NASA Technical Reports Server (NTRS)
Connell, J. W.; Smith, J. G., Jr.; Hergenrother, P. M.
1998-01-01
As part of a program to develop high-performance/high-temperature structural resins for aeronautical applications, imide oligomers containing pendent and terminal phenylethynyl groups were prepared, characterized and the cured resins evaluated as composite matrices. The oligomers were prepared at a calculated number-average molecular weight of 5000 g/mol and contained 15-20 mol% pendent phenylethynyl groups. In previous work, an oligomer containing pendent and terminal phenylethynyl groups exhibited a high glass transition temperature (approximately 313 C), and laminates therefrom exhibited high compressive properties, but processability, fracture toughness, microcrack resistance and damage tolerance were less than desired. In an attempt to improve these deficiencies, modifications in the oligomeric backbone involving the incorporation of 1,3-bis(3-aminophenoxy)benzene were investigated as a means of improving processability and toughness without detracting from the high glass transition temperature and high compressive properties. The amide acid oligomeric solutions were prepared in N-methyl-2-pyrrolidinone and were subsequently processed into imide powder, thin films, adhesive tape and carbon fiber prepreg. Neat resin plaques were fabricated from imide powder by compression moulding. The maximum processing pressure was 1.4 MPa and the cure temperature ranged from 350 to 371 C for 1 h for the mouldings, adhesives, films and composites. The properties of the 1,3-bis(3-aniinophenoxy)benzene modified cured imide oligomers containing pendent and terminal phenylethynyl groups are compared with those of previously prepared oligomers containing pendent and terminal phenylethynyl groups of similar composition and molecular weight.
The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors
Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; ...
2016-04-13
In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature T c, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime,more » τ qp, as a function of temperature and magnetic field in underdoped HgBa 2CuO 4+δ (Hg-1201) and YBa 2Cu 3O 6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τ qp(T) exhibits a local maximum in a small temperature window near T c that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that T c marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Lastly, our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.« less
Investigation of phase transitions in LiK 1- x(NH 4) xSO 4 mixed crystal
NASA Astrophysics Data System (ADS)
Freire, P. T. C.; Paraguassu, W.; Silva, A. P.; Pilla, O.; Teixeira, A. M. R.; Sasaki, J. M.; Mendes Filho, J.; Guedes, I.; Melo, F. E. A.
1999-02-01
We present Raman scattering results on LiK 1- x(NH 4) xSO 4 mixed crystal for temperatures between 100 and 300 K. We observed that in this temperature range the crystal undergoes two different phase transitions, which we call Bansal and Tomaszewski phase transitions. The introduction of ammonium ions in the potassium sites increases the C 66→C 3v4 (Bansal) phase transition temperature and decreases the Tomaszewski phase transition temperature. Finally, the most impressive effect of the presence of ammonium impurity in the LiKSO 4 structure is the decrease in the temperature hysteresis of Bansal phase transition and the almost complete destruction of hysteresis in the Tomaszewski phase transition, leading to a high temperature range of stability of the trigonal phase.
Lee, Michael S; Olson, Mark A
2011-06-28
Temperature-based replica exchange (T-ReX) enhances sampling of molecular dynamics simulations by autonomously heating and cooling simulation clients via a Metropolis exchange criterion. A pathological case for T-ReX can occur when a change in state (e.g., folding to unfolding of a protein) has a large energetic difference over a short temperature interval leading to insufficient exchanges amongst replica clients near the transition temperature. One solution is to allow the temperature set to dynamically adapt in the temperature space, thereby enriching the population of clients near the transition temperature. In this work, we evaluated two approaches for adapting the temperature set: a method that equalizes exchange rates over all neighbor temperature pairs and a method that attempts to induce clients to visit all temperatures (dubbed "current maximization") by positioning many clients at or near the transition temperature. As a test case, we simulated the 57-residue SH3 domain of alpha-spectrin. Exchange rate equalization yielded the same unfolding-folding transition temperature as fixed-temperature ReX with much smoother convergence of this value. Surprisingly, the current maximization method yielded a significantly lower transition temperature, in close agreement with experimental observation, likely due to more extensive sampling of the transition state.
NASA Astrophysics Data System (ADS)
Modi, Anchit; Gaur, N. K.
2017-11-01
In the present paper we have studied the effect of Sm doping on the magnetic and magnetocaloric properties of La0.7-xSmxBa0.3MnO3 (0 ≤ x ≤ 0.2) compounds. These sample have been synthesized by conventional solid state reaction method. The analysis of synthesized samples by X-ray diffraction showed that the formation of single phase compositions and doping of La3+ by Sm3+ ion converted the chemical structure form rhombohedral (R-3C) to orthorhombic (Imma). The magnetic study measurement specified that the ferromagnetic double exchange interaction is weakened with increasing Sm content as a consequence of the curie temperature (Tc) shift in lower temperature from 340 K for x = 0, 290 K for x = 0.1 and 225 K for x = 0.2 compounds. Using the Banerjee's criterion plots, it is found that the phase transition for all samples in the second-order. All reported compounds exhibit a maximum and large magneto-caloric effect near the Curie temperature (Tc). The magnitude of the maximum magnetic entropy change is found to be decrease with increasing of Sm doping content i.e. 4.39 J/kg K for x = 0, 4.22 J/kg K for x = 0.1 and 2.48 J/kg K for x = 0.2 in applied field change of 5T. The trend of large entropy change and the convenient adjustment of the Curie temperature make these oxides useful for magnetic refrigeration in an extended high and low temperature even at near room temperature.
Laboratory earthquakes triggered during eclogitization of lawsonite-bearing blueschist
NASA Astrophysics Data System (ADS)
Incel, Sarah; Hilairet, Nadège; Labrousse, Loïc; John, Timm; Deldicque, Damien; Ferrand, Thomas; Wang, Yanbin; Renner, Jörg; Morales, Luiz; Schubnel, Alexandre
2017-02-01
The origin of intermediate-depth seismicity has been debated for decades. A substantial fraction of these events occurs within the upper plane of Wadati-Benioff double seismic zones believed to represent subducting oceanic crust. We deformed natural lawsonite-rich blueschist samples under eclogite-facies conditions (1.5 < P < 3.5 GPa; 583 K < T < 1121 K), using a D-DIA apparatus installed at a synchrotron beamline continuously monitoring stress, strain, phase changes, and acoustic emissions (AEs). Two distinct paths were investigated: i) heating during deformation at pressures >2.5 GPa to maximum temperatures ranging from 762 to 1073 K, during which lawsonite and glaucophane became gradually unstable while entering the stability field of lawsonite-eclogite and the breakdown reaction of lawsonite was only crossed in case of the highest final temperature; ii) heating while deforming at a pressure <2 GPa to a maximum temperature of 1121 K associated with crossing the breakdown reaction of lawsonite and successively entering the stability fields of epidote-blueschist and eclogite-amphibolite but not of lawsonite-eclogite. Upon entering the Lws-Ecl stability field samples exhibited brittle failure, accompanied by the radiation of AEs. In-situ X-ray diffraction and microstructural analysis demonstrate that fractures are topologically related to the formation of omphacite. Amorphous material was detected along the fractures by transmission-electron microscopy without evidence for free-water. Since the newly formed omphacite crystals are small compared to the initial grains, we interpret the observed mechanical instability as a transformation-induced runaway under stress triggered during the transition from lawsonite-blueschist to lawsonite-eclogite. In contrast, we find no microstructural evidence that the breakdown of lawsonite, and hence the liberation of water leads to the fracturing in samples that experienced the highest quench temperatures of 1073 and 1121 K, although some AEs were detected during an experiment performed at 1.5 GPa. Our experimental results challenge the concept of "dehydration embrittlement", which ascribes the genesis of intermediate-depth earthquakes to the breakdown of hydrous phases in the subducting oceanic plate. Instead we suggest that grain-size reduction (transformational faulting) during the transition from lawsonite-blueschist to lawsonite-eclogite leads to brittle failure of the deviatorically loaded samples.
NASA Astrophysics Data System (ADS)
Mallick, Md. Mofasser; Vitta, Satish
2018-06-01
Co-oxides with a layered structure are of interest for high-temperature thermoelectric applications as they can be tuned to enhance their electrical conductivity while retaining their low thermal conductivity. The figure-of-merit of Na y CoO2 has been enhanced using the combined effects of Na-non-stoichiometry and non-isoelectronic Co-substitution. A series of compounds Na0.7Co1- x Ni x O2 with x ≤ 0.1 have been synthesized using conventional techniques. Structural analysis using x-ray diffraction and Rietveld refinement shows the formation of a γ-NaCoO2-type phase in all the compounds. The presence of a small amount of NiO for x > 0.05 indicates that the solubility limit of Ni in Na0.7CoO2 is 5 at.%. All the compounds have been found to be p-type with the thermopower reaching a maximum of 220 μV K-1 at 1023 K for x = 0.1. The thermopower has been found to vary linearly with temperature for all the compounds; a degenerate metallic behavior. The electrical resistivity varies between 3 and 10 mΩ cm at all temperatures and has a metallic temperature dependence in agreement with the thermopower results. The power factor for the x = 0.1 compound reaches a maximum value of 0.55 mW m-1 K-2 at ˜ 900 K compared to 0.45 mW m-1 K-2 for the compound with no substitution. The thermal conductivity at 1023 K decreases from 1.2 to 0.9 W m-1 K-1 for x = 0.1. These factors lead to an increase of the figure-of-merit, zT, to 0.58 at 1023 K for x = 0.1, an increase of 57% compared to the unsubstituted compound. The magnetic studies show that Na0.7CoO2 is paramagnetic with an antiferromagnetic transition at ˜ 36 K. Substitution of Ni2+ for Co3+ has been found to induce a ferromagnetic-like transition at ˜ 240 K which is suppressed at high fields.
NASA Astrophysics Data System (ADS)
Mallick, Md. Mofasser; Vitta, Satish
2018-03-01
Co-oxides with a layered structure are of interest for high-temperature thermoelectric applications as they can be tuned to enhance their electrical conductivity while retaining their low thermal conductivity. The figure-of-merit of Na y CoO2 has been enhanced using the combined effects of Na-non-stoichiometry and non-isoelectronic Co-substitution. A series of compounds Na0.7Co1-x Ni x O2 with x ≤ 0.1 have been synthesized using conventional techniques. Structural analysis using x-ray diffraction and Rietveld refinement shows the formation of a γ-NaCoO2-type phase in all the compounds. The presence of a small amount of NiO for x > 0.05 indicates that the solubility limit of Ni in Na0.7CoO2 is 5 at.%. All the compounds have been found to be p-type with the thermopower reaching a maximum of 220 μV K-1 at 1023 K for x = 0.1. The thermopower has been found to vary linearly with temperature for all the compounds; a degenerate metallic behavior. The electrical resistivity varies between 3 and 10 mΩ cm at all temperatures and has a metallic temperature dependence in agreement with the thermopower results. The power factor for the x = 0.1 compound reaches a maximum value of 0.55 mW m-1 K-2 at ˜ 900 K compared to 0.45 mW m-1 K-2 for the compound with no substitution. The thermal conductivity at 1023 K decreases from 1.2 to 0.9 W m-1 K-1 for x = 0.1. These factors lead to an increase of the figure-of-merit, zT, to 0.58 at 1023 K for x = 0.1, an increase of 57% compared to the unsubstituted compound. The magnetic studies show that Na0.7CoO2 is paramagnetic with an antiferromagnetic transition at ˜ 36 K. Substitution of Ni2+ for Co3+ has been found to induce a ferromagnetic-like transition at ˜ 240 K which is suppressed at high fields.
Simultaneous Solar Maximum Mission and Very Large Array (VLA) observations of solar active regions
NASA Technical Reports Server (NTRS)
Lang, K. R.
1985-01-01
Simultaneous observations of solar active regions with the Solar Maximum Mission (SMM) Satellite and the Very Large Array (VLA) have been obtained and analyzed. Combined results enhance the scientific return for beyond that expeted from using either SMM or VLA alone. A total of two weeks of simultaneous SMM/VLA data were obtained. The multiple wavelength VLA observations were used to determine the temperature and magnetic structure at different heights within coronal loops. These data are compared with simultaneous SMM observations. Several papers on the subject are in progress. They include VLA observations of compact, transient sources in the transition region; simultaneous SMM/VLA observations of the coronal loops in one active region and the evolution of another one; and sampling of the coronal plasma using thermal cyclotron lines (magnetic field - VLA) and soft X ray spectral lines (electron density and electron temperaure-SMM).
Analytic Scattering and Refraction Models for Exoplanet Transit Spectra
NASA Astrophysics Data System (ADS)
Robinson, Tyler D.; Fortney, Jonathan J.; Hubbard, William B.
2017-12-01
Observations of exoplanet transit spectra are essential to understanding the physics and chemistry of distant worlds. The effects of opacity sources and many physical processes combine to set the shape of a transit spectrum. Two such key processes—refraction and cloud and/or haze forward-scattering—have seen substantial recent study. However, models of these processes are typically complex, which prevents their incorporation into observational analyses and standard transit spectrum tools. In this work, we develop analytic expressions that allow for the efficient parameterization of forward-scattering and refraction effects in transit spectra. We derive an effective slant optical depth that includes a correction for forward-scattered light, and present an analytic form of this correction. We validate our correction against a full-physics transit spectrum model that includes scattering, and we explore the extent to which the omission of forward-scattering effects may bias models. Also, we verify a common analytic expression for the location of a refractive boundary, which we express in terms of the maximum pressure probed in a transit spectrum. This expression is designed to be easily incorporated into existing tools, and we discuss how the detection of a refractive boundary could help indicate the background atmospheric composition by constraining the bulk refractivity of the atmosphere. Finally, we show that opacity from Rayleigh scattering and collision-induced absorption will outweigh the effects of refraction for Jupiter-like atmospheres whose equilibrium temperatures are above 400-500 K.
NASA Astrophysics Data System (ADS)
Ponciano-Ojeda, F.; Hernández-Gómez, S.; López-Hernández, O.; Mojica-Casique, C.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.
2015-10-01
Direct evidence of excitation of the 5 p3 /2→6 p3 /2 electric-dipole-forbidden transition in atomic rubidium is presented. The experiments were performed in a room-temperature rubidium cell with continuous-wave external cavity diode lasers. Optical-optical double-resonance spectroscopy with counterpropagating beams allows the detection of the nondipole transition free of Doppler broadening. The 5 p3 /2 state is prepared by excitation with a laser locked to the maximum F cyclic transition of the D2 line, and the forbidden transition is produced by excitation with a 911 nm laser. Production of the forbidden transition is monitored by detection of the 420 nm fluorescence that results from decay of the 6 p3 /2 state. Spectra with three narrow lines (≈13 MHz FWHM) with the characteristic F -1 , F , and F +1 splitting of the 6 p3 /2 hyperfine structure in both rubidium isotopes were obtained. The results are in very good agreement with a direct calculation that takes into account the 5 s →5 p3 /2 preparation dynamics, the 5 p3 /2→6 p3 /2 nondipole excitation geometry, and the 6 p3 /2→5 s1 /2 decay. The comparison also shows that the electric-dipole-forbidden transition is a very sensitive probe of the preparation dynamics.
Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli
2015-01-01
We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094
Oxide segregation and melting behavior of transient heat load exposed beryllium
NASA Astrophysics Data System (ADS)
Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.
2016-10-01
In the experimental fusion reactor ITER, beryllium will be applied as first wall armor material. However, the ITER-like wall project at JET already experienced that the relatively low melting temperature of beryllium can easily be exceeded during plasma operation. Therefore, a detailed study was carried out on S-65 beryllium under various transient, ITER-relevant heat loads that were simulated in the electron beam facility JUDITH 1. Hereby, the absorbed power densities were in the range of 0.15-1.0 GW m-2 in combination with pulse durations of 1-10 ms and pulse numbers of 1-1000. In metallographic cross sections, the emergence of a transition region in a depth of ~70-120 µm was revealed. This transition region was characterized by a strong segregation of oxygen at the grain boundaries, determined with energy dispersive x-ray spectroscopy element mappings. The oxide segregation strongly depended on the maximum temperature reached at the end of the transient heat pulse in combination with the pulse duration. A threshold for this process was found at 936 °C for a pulse duration of 10 ms. Further transient heat pulses applied to specimens that had already formed this transition region resulted in the overheating and melting of the material. The latter occurred between the surface and the transition region and was associated with a strong decrease of the thermal conductivity due to the weakly bound grains across the transition region. Additionally, the transition region caused a partial separation of the melt layer from the bulk material, which could ultimately result in a full detachment of the solidified beryllium layers from the bulk armor. Furthermore, solidified beryllium filaments evolved in several locations of the loaded area and are related to the thermally induced crack formation. However, these filaments are not expected to account for an increase of the beryllium net erosion.
MIR imaging of the transitional disk source Oph IRS48
NASA Astrophysics Data System (ADS)
Honda, Mitsuhiko
2015-06-01
We propose to make 25 mum mid-infrared imaging of the transitional disk around the young star Oph IRS 48 to derive the temperature of the emitting dust in this disk. Recently, ALMA observation revealed the apparent difference of the infrared (18.7 mum) and radio (440 mum) dust continuum of this system and implied that the large mm-sized grains are trapped and accumulated to the local pressure maximum, which may eventually form planetesimals/planets. However, there can be other explanations to such apparent difference in the different wavelengths. To verify such interpretation, new 25 mum imaging can provide some clues, since it is the wavelength between the previous 18.7 mum and the 440 mum observations. Furthermore, multi-wavelength study of the disk is a natural step towards detailed understanding of disk structure, and new 25 mum image can be complemental to forthecoming ALMA and NIR polarimetric data.
MIR imaging of the transitional disk source Oph IRS48
NASA Astrophysics Data System (ADS)
Honda, Mitsuhiko
2014-01-01
We propose to make 25 micron mid-infrared imaging of the transitional disk around the young star Oph IRS 48 to derive the temperature of the emitting dust in this disk. Recently, ALMA observation revealed the apparent difference of the infrared (18.7 micron) and radio (440 micron) dust continuum of this system and implied that the large mm-sized grains are trapped and accumulated to the local pressure maximum, which may eventually form planetesimals/planets. However, there can be other explanations to such apparent difference in the different wavelengths. To verify such interpretation, new 25 micron imaging can provide some clues, since it is the wavelength between previous 18.7 micron and 440 micron observations. Furthermore, multi-wavelength study of the disk is a natural step towards detailed understanding of disk structure, and new 25 micron image can be complemental to forthecoming ALMA and NIR polarimetric data.
Optical transitions of Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 glass.
Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Gao, Yuan
2005-10-01
Optical absorption and emission properties of the Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 (TWB) glass has been investigated. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. The broad 1.5 microm fluorescence was observed under 970 nm excitation, and its full width at half maximum (FWHM) is 77 nm. The emission cross-section is calculated using the McCumber theory, and the peak emission cross-section is 1.03 x 10(-21) cm2 at 1.531 microm. This value is much larger than those of the silicate and phosphate glasses. Efficient green and weak red upconversion luminescence from Er3+ centers in the glass sample was observed at room temperature, and the upconversion excitation processes have been analyzed.
Temperature initiated passive cooling system
Forsberg, Charles W.
1994-01-01
A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.
NASA Astrophysics Data System (ADS)
Gómez, Adrián; Chavarriaga, Edgar; Supelano, Iván; Parra, Carlos Arturo; Morán, Oswaldo
2018-05-01
A systematic study of the dependence of the magnetization on the magnetic field around the ferromagnetic-paramagnetic phase transition temperature is carried out on La0.7Ca0.3Mn1-xNixO3 (x=0, 0.02, 0.07, and 1) samples synthesized by auto-combustion method. The successful substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice is corroborated by X-ray diffraction technique. Banerjees criteria, Arrott plots, and the scaling hypothesis are used to analyze the experimental data. It is verified that the Ni-doping increases the operating temperature range for magnetocaloric effect through tuning of the magnetic transition temperature. Probably, the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and magnetic moment in the samples. The Arrott plots suggest that the phase transition from ferromagnetic to paramagnetic in the nano-sized manganite is of second order. The analysis of the magnetization results show that the maximum magnetic entropy changes observed for x=0, 0.02, 0.07, and 0.1 compositions are 0.85, 0.77, 0.63, and 0.59 J/kg K, under a magnetic field of 1.5 T. These values indicate that the magnetic entropy change achieved for La0.7Ca0.3Mn1-xNixO3 manganites synthesized by auto-combustion method is higher than those reported for other manganites with comparable Ni-doping levels but synthesized by standard solid state reaction. It is also observed that the addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (˜60 J/kg) is found for a Ni-doping level of 2 % around 230 K in a field of 1.5 T.
Cui, Shaoying; Li, Li; Wang, Qi
2018-07-01
Improving glass transition temperature (T g ) and mechanical property of the environment-friendly poly(propylene carbonate) via intermacromolecular complexation through hydrogen bonding is attractive and of great importance. A novel and effective strategy to prepare (polypropylene carbonate/nanocrystalline cellulose)/polyvinyl alcohol ((PPC/NCC)/PVA) composites with inner-outer double constrained structure was reported in this work. Outside the PPC phase, PVA, as a strong skeleton at microscale, could constrain the movement of PPC molecular chains by forming hydrogen bonding with PPC at the interface of PPC and PVA phases; inside the PPC phase, the rod-like NCC could restrain the flexible molecular chains of PPC at nanoscale by forming multi-hydrogen bonding with PPC. Under the synergistic effect of this novel inner-outer double constrained structure, T g , mechanical properties and thermal stability of (PPC/NCC)/PVA composite were significantly increased, e.g. T g of the composite researched the maximum value of 49.6 °C, respectively 15.6 °C, 5.7 °C and 4.2 °C higher than that of PPC, PPC/NCC and PPC/PVA composite. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju
2016-01-01
The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.
Deformation of the Wineglass Welded Tuff and the timing of caldera collapse at Crater Lake, Oregon
Kamata, H.; Suzuki-Kamata, K.; Bacon, C.R.
1993-01-01
Four types of deformation occur in the Wineglass Welded Tuff on the northeast caldera rim of Crater Lake: (a) vertical tension fractures; (b) ooze-outs of fiamme: (c) squeeze-outs of fiamme; and (d) horizontal pull-apart structures. The three types of plastic deformation (b-d) developed in the lower part of the Wineglass Welded Tuff where degree of welding and density are maximum. Deformation originated from concentric normal faulting and landsliding as the caldera collapsed. The degree of deformation of the Wineglass Welded Tuff increases toward the northeast part of the caldera, where plastic deformation occurred more easily because of a higher emplacement temperature probably due to proximity to the vent. The probable glass transition temperature of the Wineglass Welded Tuff suggests that its emplacement temperature was ???750??C where the tuff is densely welded. Calculation of the conductive cooling history of the Wineglass Welded Tuff and the preclimactic Cleetwood (lava) flow under assumptions of a initially isothermal sheet and uniform properties suggests that (a) caldera collapse occurred a maximum of 9 days after emplacement of the Wineglass Welded Tuff, and that (b) the period between effusion of the Cleetwood (lava) flow and onset of the climactic eruption was <100 years. If cooling is controlled more by precipitation during quiescent periods than by conduction, these intervals must be shorter than the calculated times. ?? 1993.
Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.
Yamakov, V; Wolf, D; Phillpot, S R; Mukherjee, A K; Gleiter, H
2004-01-01
Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.
Best, Heather; McNamara, J.P.; Liberty, Lee M.
2005-01-01
We collected ground-penetrating radar data at 10 sites along the Kuparuk River and its main tributary, the Toolik River, to detect unfrozen water beneath river ice. We used 250 MHz and 500 MHz antennas to image both the ice-water interface and the river channel in late April 2001, when daily high temperatures were consistently freezing and river ice had attained its maximum seasonal thickness. The presence of water below the river ice appears as a strong, horizontal reflection observed in the radar data and is confirmed by drill hole data. A downstream transition occurs from ice that is frozen to the bed, called bedfast ice, to ice that is floating on unfrozen water, called floating ice. This transition in ice type corresponds to a downstream change in channel size that was detected in previously conducted hydraulic geometry surveys of the Kuparuk River. We propose a conceptual model wherein the downstream transition from bedfast ice to floating ice is responsible for an observed step change in channel size due to enhanced bank erosion in large channels by floating ice.
NASA Astrophysics Data System (ADS)
Pacaud, F.; Micoulaut, M.
2015-08-01
The thermodynamic, dynamic, structural, and rigidity properties of densified liquid germania (GeO2) have been investigated using classical molecular dynamics simulation. We construct from a thermodynamic framework an analytical equation of state for the liquid allowing the possible detection of thermodynamic precursors (extrema of the derivatives of the free energy), which usually indicate the possibility of a liquid-liquid transition. It is found that for the present germania system, such precursors and the possible underlying liquid-liquid transition are hidden by the slowing down of the dynamics with decreasing temperature. In this respect, germania behaves quite differently when compared to parent tetrahedral systems such as silica or water. We then detect a diffusivity anomaly (a maximum of diffusion with changing density/volume) that is strongly correlated with changes in coordinated species, and the softening of bond-bending (BB) topological constraints that decrease the liquid rigidity and enhance transport. The diffusivity anomaly is finally substantiated from a Rosenfeld-type scaling law linked to the pair correlation entropy, and to structural relaxation.
Low-temperature magnetic study of naturally and experimentally shocked pyrrhotite
NASA Astrophysics Data System (ADS)
Mang, C.; Kontny, A. M.; Hecht, L.
2011-12-01
The most intriguing observation from the suevite unit of the 35 Ma old Chesapeake Bay impact structure (CBIS), Virginia, USA, is the occurrence of "shocked pyrrhotite", which might provide clues for a better understanding of the acquisition of shock-induced remagnetization during an impact event. A large range of differently strong deformed and melted components are mixed in the suevite and maximum shock pressures up to 35 GPa are reported (Wittmann et al. 2009). Pyrrhotite occurs as grains and grain clusters within the suevite matrix and rarely in melt fragments, and abundant lattice defects in pyrrhotite prove a shock-induced deformation. The shocked mineral is characterized by a significant loss of iron and the stoichiometric formula lies between Fe0.808S and Fe0.811S. This composition falls significantly below the Fe/S ratio of regular pyrrhotite (Fe>0.875) and is similar to the one of smythite (Fe9S11). The Curie temperature (TC) is above that of the ferrimagnetic 4C modification (320°C) and lies between 350 and 365°C. However, a transition at 30 K (Rochette et al. 1990), visible in low temperature remanence curves, confirms the presence of ferrimagnetic monoclinic 4C pyrrhotite.The present work aims at the question if all these different features observed in the natural pyrrhotite from the CBIS suevite are impact-related. Therefore we experimentally shocked a pyrrhotite ore from the Cerro de Pasco mine, Peru at 3, 5, 8, 20 and 30 GPa using a high pressure gun and high explosive devices. The obtained samples have been investigated by low-temperature AC susceptibility and remanence measurements (LT). In addition, we determined TC using AC susceptibility as function of temperature. LT experiments of the pyrrhotite ore unfortunately do not only show magnetic transition temperatures related to pure pyrrhotite but additionally of accessory magnetic mineral phases like magnetite (Fe3O4) and pyrophanite (MnTiO3). The contribution of those phases makes especially the LT in-phase and out-of-phase susceptibility measurements hard to interpret. A general feature with increasing shock pressure, however, is a broadening of the temperature interval where transition temperatures occur, as well in the LT remanence and HT susceptibility curves. In the remanence curves of the experimentally shocked samples this behaviour is accompanied by an earlier onset of the 30 K transition. The transition is only visible as a slight bending in the susceptibility curves and with increasing shock pressure this bending disappears continuously and is no longer visible at 8 GPa. Samples shocked above 8 GPa also show a slightly stronger frequency dependency of AC suceptibility. Further TEM studies will show if these observations might give some clues on the lattice defect concentration of pyrrhotite and can be used as shock indicators. Rochette, P.et al., 1990. Earth Planet. Sci. Lett., 98, 319 - 328. Wittmann, A. et al., 2009, Geol. Soc. Am. Spec. Pap. 458, 377 - 396
CHARACTERIZATION OF GLOVEBOX GLOVES FOR THE SAVANNAH RIVER SITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korinko, P.
A task was undertaken to characterize glovebox gloves that are currently used in the facilities at Savannah River Site (SRS) as well as some experimental and advanced compound gloves that have been proposed for use. Gloves from four manufacturers were tested for permeation in hydrogen and air, thermal stability, tensile properties, puncture resistance and dynamic mechanical response. The gloves were compared to each other within the type and also to the butyl rubber glove that is widely used at the SRS. The permeation testing demonstrated that the butyl compounds from three of the vendors behaved similarly and exhibited hydrogen permeabilitiesmore » of .52‐.84 x10{sup ‐7} cc H{sub 2}*cm / (cm{sup 2}*atm). The Viton glove performed at the lower edge of this bound, while the more advanced composite gloves exhibited permeabilities greater than a factor of two compared to butyl. Thermogravimetric analysis was used to determine the amount of material lost under slightly aggressive conditions. Glove losses are important since they can affect the life of glovebox stripper systems. During testing at 90, 120, and 150°C, the samples lost most of the mass in the initial 60 minutes of thermal exposure and as expected increasing the temperature increased the mass loss and shortened the time to achieve a steady state loss. The ranking from worst to best was Jung butyl‐Hypalon with 12.9 %, Piercan Hypalon with 11.4 %, and Jung butyl‐Viton with 5.2% mass loss all at approximately 140°C. The smallest mass losses were experienced by the Jung Viton and the Piercan polyurethane. Tensile properties were measured using a standard dog bone style test. The butyl rubber exhibited tensile strengths of 11‐15 MPa and elongations or 660‐843%. Gloves made from other compounds exhibited lower tensile strengths (5 MPa Viton) to much higher tensile strengths (49 MPa Urethane) with a comparable range of elongation. The puncture resistance of the gloves was measured in agreement with an ASTM standard. The Butyl gloves exhibited puncture resistance from 183 - 296 lbs/in for samples of 0.020 - 0.038 thick. Finally, the glass transition temperature and the elastic and viscoelastic properties as a function of temperature up to maximum use temperature were determined for each glove material using Dynamic Mechanical Analysis. The glass transition temperatures of the gloves were ‐60°C for butyl, ‐30°C for polyurethane, ‐ 16°C Hypalon, ‐16°C for Viton, and ‐24°C for polyurethane‐Hypalon. The glass transition was too complex for the butyl‐Hypalon and butyl‐Viton composite gloves to be characterized by a single glass transition temperature. All of the glass transition temperatures exceed the vendor projected use temperatures.« less
Specific heat of the chiral-soliton-lattice phase in Yb(Ni0.94Cu0.06)3Al9
NASA Astrophysics Data System (ADS)
Ninomiya, Hiroki; Sato, Takaaki; Inoue, Katsuya; Ohara, Shigeo
2018-05-01
We have studied the monoaxial-chiral helimagnet YbNi3Al9 and its-substituted analogue Yb(Ni0.94Cu0.06)3Al9. These compounds belong to a chiral space group R32. In Yb(Ni0.94Cu0.06)3Al9 with the magnetic ordering temperature TM = 6.4 K , only when the magnetic field is applied perpendicular to the helical axis, the chiral soliton lattice is observed below Hc = 10 kOe . YbNi3Al9 with TM = 3.4 K exhibits a metamagnetic transition at Hc = 1 kOe in 2 K. To study the formation of chiral helimagnetic state and chiral soliton lattice, we have measured the specific heat in magnetic fields applied parallel and perpendicular to the helical axis. In zero field, with decreasing temperature, specific heat shows λ-type phase transition from paramagnetic state to chiral helimagnetic one. At the temperature where the chiral soliton lattice emerges, we have found that the specific heat shows a sharp peak. In addition, at around the crossover between paramagnetic state and forced-ferromagnetic one, a broad maximum has been observed. We have determined the magnetic phase diagrams of YbNi3Al9 and Yb(Ni0.94Cu0.06)3Al9.
Computation of the Transmitted and Polarized Scattered Fluxes by the Exoplanet HD 189733b in X-Rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin, Frédéric; Grosso, Nicolas, E-mail: frederic.marin@astro.unistra.fr
2017-02-01
Thousands of exoplanets have been detected, but only one exoplanetary transit was potentially observed in X-rays from HD 189733A. What makes the detection of exoplanets so difficult in this band? To answer this question, we run Monte-Carlo radiative transfer simulations to estimate the amount of X-ray flux reprocessed by HD 189733b. Despite its extended evaporating atmosphere, we find that the X-ray absorption radius of HD 189733b at 0.7 keV, which is the mean energy of the photons detected in the 0.25–2 keV energy band by XMM-Newton , is ∼1.01 times the planetary radius for an atmosphere of atomic hydrogen andmore » helium (including ions), and produces a maximum depth of ∼2.1% at ∼±46 minutes from the center of the planetary transit on the geometrically thick and optically thin corona. We compute numerically in the 0.25–2 keV energy band that this maximum depth is only of ∼1.6% at ∼±47 minutes from the transit center, and not very sensitive to the metal abundance, assuming that adding metals in the atmosphere would not dramatically change the density–temperature profile. Regarding a direct detection of HD 189733b in X-rays, we find that the amount of flux reprocessed by the exoplanetary atmosphere varies with the orbital phase, spanning between three and five orders of magnitude fainter than the flux of the primary star. Additionally, the degree of linear polarization emerging from HD 189733b is <0.003%, with maximums detected near planetary greatest elongations. This implies that both the modulation of the X-ray flux with the orbital phase and the scatter-induced continuum polarization cannot be observed with current X-ray facilities.« less
Sharma, Sachin; Kumar Poddar, Maneesh; Moholkar, Vijayanand S
2017-05-01
This study reports synthesis and characterization of poly(MMA-co-BA)/Cloisite 30B (organo-modified montmorillonite clay) nanocomposites by ultrasound-assisted in-situ emulsion polymerization. Copolymers have been synthesized with MMA:BA monomer ratio of 4:1, and varying clay loading (1-5wt% monomer). The poly(MMA-co-BA)/Cloisite 30B nanocomposites have been characterized for their thermal and mechanical properties. Ultrasonically synthesized nanocomposites have been revealed to possess higher thermal degradation resistance and mechanical strength than the nanocomposites synthesized using conventional techniques. These properties, however, show an optimum (or maxima) with clay loading. The maximum values of thermal and mechanical properties of the nanocomposites with optimum clay loading are as follows. Thermal degradation temperatures: T 10% =320°C (4wt%), T 50 =373°C (4wt%), maximum degradation temperature=384°C (4wt%); glass transition temperature=64.8°C (4wt%); tensile strength=20MPa (2wt%), Young's modulus=1.31GPa (2wt%), Percentage elongation=17.5% (1wt%). Enhanced properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites are attributed to effective exfoliation and dispersion of clay nanoparticles in copolymer matrix due to intense micro-convection induced by ultrasound and cavitation. Clay platelets help in effective heat absorption with maximum surface interaction/adhesion that results in increased thermal resistivity of nanocomposites. Hindered motion of the copolymer chains due to clay platelets results in enhancement of tensile strength and Young's modulus of nanocomposite. Rheological (liquid) study of the nanocomposites reveals that nanocomposites have higher yield stress and infinite shear viscosity than neat copolymer. Nonetheless, nanocomposites still display shear thinning behavior - which is typical of the neat copolymer. Copyright © 2016 Elsevier B.V. All rights reserved.
Schlegel, Ralf; Williams, Katherine; Voyloy, Dimitry; ...
2016-03-30
We present the synthesis and characterization of a new class of high temperature thermoplastic elastomers composed of polybenzofulvene–polyisoprene–polybenzofulvene (FIF) triblock copolymers. All copolymers were prepared by living anionic polymerization in benzene at room temperature. Homopolymerization and effects of additives on the glass transition temperature (T g) of polybenzofulvene (PBF) were also investigated. Among all triblock copolymers studied, FIF with 14 vol % of PBF exhibited a maximum stress of 14.3 ± 1.3 MPa and strain at break of 1390 ± 66% from tensile tests. The stress–strain curves of FIF-10 and 14 were analyzed by a statistical molecular approach using amore » nonaffine tube model to estimate the thermoplastic elastomer behavior. Dynamic mechanical analysis showed that the softening temperature of PBF in FIF was 145 °C, much higher than that of thermoplastic elastomers with polystyrene hard blocks. Microphase separation of FIF triblock copolymers was observed by small-angle X-ray scattering, even though long-range order was not achieved under the annealing conditions employed. Additionally, the microphase separation of the resulting triblock copolymers was examined by atomic force microscopy.« less
NASA Astrophysics Data System (ADS)
Ruan, Jiaping
2017-04-01
A variety of biomarkers were examined from Ocean Drilling Program (ODP) core 1202B to reconstruct temperature and phytoplankton community structures in the southern Okinawa Trough for the past ca. 20000 years. Two molecular temperature proxies (Uk37 and TEX86) show 5-6 ℃ warming during the glacial/interglacial transition. Prior to the Holocene, the Uk37-derived temperature was generally 1-4 ℃ higher than TEX86-derived temperature. This difference, however, was reduced to <1 ℃ in the Holocene when the Kuroshio Current was intensified. Correspondingly, the phytoplankton biomarkers (e.g., C37:2 alkenone, brassicasterol, C30 1,15-diols and dinosterol) suggest a shift of planktonic community assemblages with coccolithophorids becoming more abundant in the Holocene at the expense of diatoms/dinoflagellates. Such a shift is related to the variability of nutrient, temperature and salinity in the Okinawa Trough, controlled by the sea level and the intensity of Kuroshio Current. The phytoplankton community change may have profound implications on atmospheric CO2 fluctuations during glacial/interglacial cycles since diatoms and dinoflagellates have a higher efficiency of biological pump than coccolithophorids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlegel, Ralf; Williams, Katherine; Voyloy, Dimitry
We present the synthesis and characterization of a new class of high temperature thermoplastic elastomers composed of polybenzofulvene–polyisoprene–polybenzofulvene (FIF) triblock copolymers. All copolymers were prepared by living anionic polymerization in benzene at room temperature. Homopolymerization and effects of additives on the glass transition temperature (T g) of polybenzofulvene (PBF) were also investigated. Among all triblock copolymers studied, FIF with 14 vol % of PBF exhibited a maximum stress of 14.3 ± 1.3 MPa and strain at break of 1390 ± 66% from tensile tests. The stress–strain curves of FIF-10 and 14 were analyzed by a statistical molecular approach using amore » nonaffine tube model to estimate the thermoplastic elastomer behavior. Dynamic mechanical analysis showed that the softening temperature of PBF in FIF was 145 °C, much higher than that of thermoplastic elastomers with polystyrene hard blocks. Microphase separation of FIF triblock copolymers was observed by small-angle X-ray scattering, even though long-range order was not achieved under the annealing conditions employed. Additionally, the microphase separation of the resulting triblock copolymers was examined by atomic force microscopy.« less
Adverse Climatic Conditions and Impact on Construction Scheduling and Cost
1988-01-01
ABBREVIATIONS ABS MAX MAX TEMP ...... Absolute maximum maximum temperature ABS MIN MIN TEMP ...... Absolute minimum minimum temperature BTU...o Degrees Farenheit MEAN MAX TEMP o.................... Mean maximum temperature MEAN MIN TEMP...temperatures available, a determination had to be made as to whether forecasts were based on absolute , mean, or statistically derived temperatures
NASA Astrophysics Data System (ADS)
Cui, Lifang; Wang, Lunche; Qu, Sai; Singh, Ramesh P.; Lai, Zhongping; Yao, Rui
2018-05-01
Recently, extreme climate variation has been studied in different parts of the world, and the present study aims to study the impacts of climate extremes on vegetation. In this study, we analyzed the spatiotemporal variations of temperature and precipitation extremes during 1960-2015 in the Yangtze River Basin (YRB) using the Mann-Kendall (MK) test with Sen's slope estimator and kriging interpolation method based on daily precipitation (P), maximum temperature (T max), and minimum temperature (T min). We also analyzed the vegetation dynamics in the YRB during 1982-2015 using Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) datasets and investigated the relationship between temperature and precipitation extremes and NDVI using Pearson correlation coefficients. The results showed a pronounced increase in the annual mean maximum temperature (T nav) and mean minimum temperature (T xav) at the rate of 0.23 °C/10 years and 0.15 °C/10 years, respectively, during 1960-2015. In addition, the occurrence of warm days and warm nights shows increasing trends at the rate of 1.36 days/10 years and 1.70 days/10 years, respectively, while cold days and cold nights decreased at the rate of 1.09 days/10 years and 2.69 days/10 years, respectively, during 1960-2015. The precipitation extremes, such as very wet days (R95, the 95th percentile of daily precipitation events), very wet day precipitation (R95p, the number of days with rainfall above R95), rainstorm (R50, the number of days with rainfall above 50 mm), and maximum 1-day precipitation (RX1day), all show pronounced increasing trends during 1960-2015. In general, annual mean NDVI over the whole YRB increased at the rate of 0.01/10 years during 1982-2015, with an increasing transition around 1994. Spatially, annual mean NDVI increased in the northern, eastern, and parts of southwestern YRB, while it decreased in the YRD and parts of southern YRB during 1982-2015. The correlation coefficients showed that annual mean NDVI was closely correlated with temperature extremes during 1982-2015 and 1995-2015, but no significant correlation with precipitation extremes was observed. However, the decrease in NDVI was correlated with increasing R95p and R95 during 1982-1994.
Temperature initiated passive cooling system
Forsberg, C.W.
1994-11-01
A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.
Disordered ferromagnetism in Ho2NiMnO6 double perovskite
NASA Astrophysics Data System (ADS)
Chakraborty, Tirthankar; Nair, Harikrishnan S.; Nhalil, Hariharan; Kumar, K. Ramesh; Strydom, André M.; Elizabeth, Suja
2017-01-01
Magnetic and dielectric properties of the double perovskite Ho2NiMnO6 are reported. The compound is synthesized by nitrate route and is found to crystallize in monoclinic P21/n space group. Lattice parameters obtained by refining powder x-ray diffraction data are; a = 5.218(2) Å, b = 5.543(2) Å, c = 7.480(3) Å and the monoclinic angle is β ={{90.18}\\circ} (4). A phase transition is observed at {{T}\\text{C}}=86 K in the temperature-dependent magnetization curve, M(T). The inverse magnetic susceptibility, (1/χ (T) ) fits reasonably well with modified Curie-Weiss law by incorporating the paramagnetic response of Ho3+. 1/χ (T) manifests as an upward deviation from ideal Curie-Weiss behaviour well above the ferromagnetic transition. Signs of inherent Griffiths phase pertaining to the Ni/Mn subsystem are visible when one subtracts the Ho3+ paramagnetic contribution from total susceptibility and does the power-law analysis. The magnetic hysteresis at 2 K gives the maximum value of magnetization {{M}\\text{max}}≈ 15 {μ\\text{B}} /f.u. at 50 kOe. Field-derivative of magnetization at 2 K shows discontinuities which indicates the existence of metamagnetic transitions in this compound. This needs to be probed further. Out of the two dielectric relaxations observed, the one at low temperature may be attributed to phononic frequencies and that at higher temperature may be due to Maxwell-Wagner relaxation. A correlation between magnetic and lattice degrees of freedom is plausible since the anomaly in dielectric constant coincides with T C.
Metal-Insulator Transition in Copper Oxides Induced by Apex Displacements
NASA Astrophysics Data System (ADS)
Acharya, Swagata; Weber, Cédric; Plekhanov, Evgeny; Pashov, Dimitar; Taraphder, A.; Van Schilfgaarde, Mark
2018-04-01
High temperature superconductivity has been found in many kinds of compounds built from planes of Cu and O, separated by spacer layers. Understanding why critical temperatures are so high has been the subject of numerous investigations and extensive controversy. To realize high temperature superconductivity, parent compounds are either hole doped, such as La2 CuO4 (LCO) with Sr (LSCO), or electron doped, such as Nd2 CuO4 (NCO) with Ce (NCCO). In the electron-doped cuprates, the antiferromagnetic phase is much more robust than the superconducting phase. However, it was recently found that the reduction of residual out-of-plane apical oxygen dramatically affects the phase diagram, driving those compounds to a superconducting phase. Here we use a recently developed first-principles method to explore how displacement of the apical oxygen (AO) in LCO affects the optical gap, spin and charge susceptibilities, and superconducting order parameter. By combining quasiparticle self-consistent GW (QS GW) and dynamical mean-field theory (DMFT), we show that LCO is a Mott insulator, but small displacements of the apical oxygen drive the compound to a metallic state through a localization-delocalization transition, with a concomitant maximum in d -wave order parameter at the transition. We address the question of whether NCO can be seen as the limit of LCO with large apical displacements, and we elucidate the deep physical reasons why the behavior of NCO is so different from the hole-doped materials. We shed new light on the recent correlation observed between Tc and the charge transfer gap, while also providing a guide towards the design of optimized high-Tc superconductors. Further, our results suggest that strong correlation, enough to induce a Mott gap, may not be a prerequisite for high-Tc superconductivity.
Uniaxial Pressure and High-Field Effects on Superconducting Single-Crystal CeCoIn5
NASA Astrophysics Data System (ADS)
Johnson, Scooter David
We have measured the a.c. susceptibility response of single-crystal CeCoIn 5 under uniaxial pressure up to 4.07 kbar and in d.c. field parallel to the c axis up to 5 T. From these measurements we report on several pressure and field characteristics of the superconducting state. The results are divided into 3 chapters: (1) We find a non-linear dependence of the superconducting transition temperature Tc on pressure, with a maximum close to 2 kbar. The transition also broadens significantly as pressure increases. We model the broadening as a product of non-uniform pressure and discuss its implications for the pressure dependence of the transition temperature. We relate our measurements to previous theoretical work. (2) We provided evidence and pressure dependence for the FFLO phase with field and pressure along the c axis. The FFLO phase boundary is temperature independent and tracks with the suppression to lower fields of the upper critical field with pressure. We also report the strengthening of the Pauli-limited field in this orientation by calculating the increase of the orbitally-limited field with uniaxial pressure. (3) We extract the critical current using the Bean critical state model and compare it to the expected Ginzberg-Landau behavior. We find that the exponent of the critical current depends on uniaxial pressure and d.c. field. Within a d.c. field the pressure dependence of the exponent may be obscured by the field effect. We have also measured resistivity, susceptibility, and specific heat of high-quality single-crystal YIn3 below 1 K and present a refinement of Tc from previous measurements. We make suggestions for experimental comparisons to the heavy fermion family CeXIn5, (X = Rh, Ir, Co) and the parent compound CeIn3.
Optimization of β-casein stabilized nanoemulsions using experimental mixture design.
Maher, Patrick G; Fenelon, Mark A; Zhou, Yankun; Kamrul Haque, Md; Roos, Yrjö H
2011-10-01
The objective of this study was to determine the effect of changing viscosity and glass transition temperature in the continuous phase of nanoemulsion systems on subsequent stability. Formulations comprising of β-casein (2.5%, 5%, 7.5%, and 10% w/w), lactose (0% to 20% w/w), and trehalose (0% to 20% w/w) were generated from Design of Experiments (DOE) software and tested for glass transition temperature and onset of ice-melting temperature in maximally freeze-concentrated state (T(g) ' & T(m) '), and viscosity (μ). Increasing β-casein content resulted in significant (P < 0.0001) increases in viscosity and T(m) ' (P= 0.0003), and significant (P < 0.0001) decreases in T(g) '. A mixture design was used to predict the optimum levels of lactose and trehalose required to attain the minimum and maximum T(g) ' and viscosity in solution at fixed protein contents. These mixtures were used to form the continuous phase of β-casein stabilized nanoemulsions (10% w/w sunflower oil) prepared by microfluidization at 70 MPa. Nanoemulsions were analyzed for T(g) ' & T(m) ', as well as viscosity, mean particle size, and stability. Increasing levels of β-casein (2.5% to 10% w/w) resulted in a significant (P < 0.0001) increase in viscosity (5 to 156 mPa.s), significant increase in particle size (P= 0.0115) from 186 to 199 nm, and significant decrease (P= 0.0001) in T(g) ' (-45 to -50 °C). Increasing the protein content resulted in a significant (P < 0.0001) increase in nanoemulsion stability. A mixture DOE was successfully used to predict glass transition and rheological properties for development of a continuous phase for use in nanoemulsions. © 2011 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Hinatsu, Yukio; Doi, Yoshihiro
2017-06-01
The phase transition of ternary rare earth niobates Ln3NbO7 (Ln = Pr, Sm, Eu) was investigated by the measurements of high-temperature and low-temperature X-ray diffraction, differential scanning calorimetry (DSC) and differential thermal analysis (DTA). These compounds crystallize in an orthorhombic superstructure derived from the structure of cubic fluorite (space group Pnma for Ln = Pr; C2221 for Ln = Sm, Eu). Sm3NbO7 undergoes the phase transition when the temperature is increased through ca. 1080 K and above the transition temperature, its structure is well described with space group Pnma. For Eu3NbO7, the phase transition was not observed up to 1273 K Pr3NbO7 indicates the phase transition when the temperature is increased through ca. 370 K. The change of the phase transition temperature against the Ln ionic radius for Ln3NbO7 is quite different from those for Ln3MO7 (M = Mo, Ru, Re, Os, or Ir), i.e., no systematic relationship between the phase transition temperature and the Ln ionic radius has been observed for Ln3NbO7 compounds.
Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory
NASA Astrophysics Data System (ADS)
Nandi, Manoj Kumar; Banerjee, Atreyee; Dasgupta, Chandan; Bhattacharyya, Sarika Maitra
2017-12-01
In a recent study, we have found that for a large number of systems the configurational entropy at the pair level Sc 2, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature Tc. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to Tc. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.
Amplification of spontaneous emission on sodium D-lines using nonresonance broadband optical pumping
NASA Astrophysics Data System (ADS)
Petukhov, T. D.; Evtushenko, G. S.; Tel'minov, E. N.
2018-04-01
This work describes an experimental study of obtaining the amplified spontaneous emission (ASE) on sodium D-lines using nonresonance broadband optical pumping. ASE is observed at transitions D2 and D1 line: 589 nm (32 P3/2 - 32 S1/2) and 589.6 nm (32 P1/2 - 32 S1/2). The active medium was pumped by the dye laser with FWHM of 5 nm, maximum radiation in the range 584.5-586.5 nm, and pulse energy above 2 mJ. The working temperature of the active medium was 260 °C, initial pressure of buffer gas-helium was 300 torr (operating pressure - 500 torr). A change in the absorption spectra at D lines at different temperatures of the active medium and buffer gas pressures was observed
Anisotropic stress inhibits crystallization in Cu-Zr glass-forming liquids
NASA Astrophysics Data System (ADS)
Pang, H. H.; Bi, Q. L.; Huang, H. S.; Lü, Y. J.
2017-12-01
Liquids attain a metastable state without crystallizing by cooling rapidly to a given temperature below the melting point. With increasing supercooling, the nucleation rate would show an increase based on the prediction of the classical nucleation theory. It is generally thought that the nucleation rate will reach the maximum upon approaching the glass transition temperature, Tg, for glass-forming liquids. We report that there exists a supercooled region above Tg in which the crystallization has actually been severely suppressed. Our molecular dynamics simulations show that the growth of embryos in the supercooled Cu60Zr40 melt is subjected to a strong anisotropic stress associated with the dynamic heterogeneity. Its long-range effect drives the embryo to grow into a ramified morphology so that the interface energy dominates over the embryo growth, leading to the suppression of nucleation.
Pavan Kumar, V; Barbier, T; Lemoine, P; Raveau, B; Nassif, V; Guilmeau, E
2017-02-14
Bornite Cu 5 FeS 4-x Se x (0 ≤ x ≤ 0.6) compounds have been synthesized, using mechanical alloying, combined with spark plasma sintering (SPS). High temperature in situ neutron powder diffraction data collected on pristine Cu 5 FeS 4 from room temperature up to 673 K show that SPS enables the stabilization of the intermediate cubic (IC) semi-ordered form (Fm3[combining macron]m, a IC ∼ 10.98 Å) at the expense of the ordered orthorhombic form (Pbca, a O ∼ 10.95 Å, b O ∼ 21.86 Å, c O ∼ 10.95 Å) in the 300-475 K temperature range, whereas above 475 K the IC form coexists with the high temperature cubic (C) form (Fm3[combining macron]m, a C ∼ 5.50 Å). The ability of Se for S substitution to induce disorder and consequently to enhance the IC phase formation is also emphasized. This disordering effect is explained by the high quenching efficiency of the SPS method compared to conventional heating. The existence of topotactic phase transformations, as well as Se for S substitution is shown to have a significant effect on the transport properties. As expected, electrical transport properties indicate a change towards a more metallic behaviour with increasing Se content. The electrical resistivity reduces from ∼21.4 mΩ cm for the pristine Cu 5 FeS 4 to ∼3.95 mΩ cm for Cu 5 FeS 3.4 Se 0.6 at room temperature. A maximum power factor of 4.9 × 10 -4 W m -1 K -2 is attained at 540 K for x = 0.4 composition. The influence of selenium substitution on the carrier effective mass and mobility is discussed based on single parabolic band approximation. Furthermore, a detailed investigation of the thermal conductivity by this isovalent anion substitution reveals a significant reduction of the lattice thermal conductivity due to the alloying effect. Finally, the important role of structural transitions in the thermoelectric properties is addressed. A maximum ZT of 0.5 is attained at 540 K for Cu 5 FeS 3.8 Se 0.2 composition.
Garrahan, Juan P
2014-03-01
A key open question in the glass transition field is whether a finite temperature thermodynamic transition to the glass state exists or not. Recent simulations of coupled replicas in atomistic models have found signatures of a static transition as a function of replica coupling. This can be viewed as evidence of an associated thermodynamic glass transition in the uncoupled system. We demonstrate here that a different interpretation is possible. We consider the triangular plaquette model, an interacting spin system which displays (East model-like) glassy dynamics in the absence of any static transition. We show that when two replicas are coupled, there is a curve of equilibrium phase transitions, between phases of small and large overlap, in the temperature-coupling plane (located on the self-dual line of an exact temperature-coupling duality of the system) which ends at a critical point. Crucially, in the limit of vanishing coupling the finite temperature transition disappears, and the uncoupled system is in the disordered phase at all temperatures. We discuss an interpretation of atomistic simulations in light of this result.
2015-01-01
TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...illustrated the difficulties inherent in measurement of the glass transition temperature of this high-temperature thermosetting polymer via dynamic...copyright protection in the United States. EFFECT OF IN-SITU CURE ON MEASUREMENT OF GLASS TRANSITION TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING
NASA Astrophysics Data System (ADS)
Villar, M.; Garnier, C.; Chabert, F.; Nassiet, V.; Samélor, D.; Diez, J. C.; Sotelo, A.; Madre, M. A.
2018-07-01
The temperature field along the thickness of the specimens has been measured during transmission laser welding. Polyetherketoneketone (PEKK) is a very high performance thermoplastic with tunable properties. We have shown that this grade of PEKK can be turned to quasi-amorphous or semi-crystalline material, due to its slow kinetics of crystallization. Its glass transition temperature is 150 °C. The effect of its crystalline rate directly impacts its optical properties: the transmittance of quasi-amorphous PEKK is about 60% in the NIR region (wavelength range from 0.4 to 1.2 μm) whereas it is less than 3% for the semi-crystalline material. The welding tests have been carried out with an 808 nm laser diode apparatus. The heat field is recorded during the welding experiment by infrared thermography with the camera sensor perpendicular to the lasersheet and to the sample's length to focus on the welded interface. The study is divided in two steps: firstly, a single specimen is irradiated with an energy density of 22 J.mm-²: the whole sample thickness is heated up, the maximum temperature reaches 222 ± 7 °C. This temperature corresponds to about Tg + 70 °C, but the polymer does not reach its melting temperature. After that, welding tests were performed: a transparent (quasi-amorphous) sample as the upper part and an opaque (semi-crystalline) one as the lower part were assembled in static conditions. The maximum temperature reached at the welded interface is about 295 °C when the upper specimen is irradiated for 16 s with an energy density of 28 J.mm-². The temperature at the welded interface stays above Tg during 55 s and reached the melting temperature during 5 s before rapid cooling. These parameters are suitable to assemble both polymeric parts in a strong weld. This work shows that infrared thermography is an appropriate technique to improve the reliability of laser welding process of high performance thermoplastics.
Deglacial Warming and Wetting of Northern Alaska
NASA Astrophysics Data System (ADS)
Daniels, W.; Russell, J. M.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Morrill, C.; Huang, Y.
2015-12-01
Aeolian sand dunes swept across northern Alaska during the last glacial maximum. Today, summer temperatures are moderate and soils can remain waterlogged all summer long. How did the transition from a cold and dry glacial to a warm and wet interglacial take place? To answer this question we reconstructed temperature and precipitation changes during the last deglaciation using biomarker hydrogen isotopes from a new 28,000 year-long sediment core from Lake E5, located in the central Brooks Range of Alaska. We use terrestrial leaf waxes (dDterr, C28-acid), informed by dD measurements of modern vegetation, to infer dD of precipitation, an indicator of relative temperature change. Biomarkers from aquatic organisms (dDaq, C18-acid) are used as a proxy for lake water isotopes. The offset between the two (eterr-aq) is used to infer relative changes in evaporative enrichment of lake water, and by extension, moisture balance. dDterr during the last glacial period was -282‰ compared to -258‰ during the Holocene, suggesting a 5.6 ± 2.7 °C increase in summer temperature using the modern local temperature-dD relationship. Gradual warming began at ~18.5 ka, and temperature increased abruptly at 11.5 ka, at the end of the Younger Dryas. Warming peaked in the early Holocene from 11.5 to 9.1 ka, indicating a Holocene thermal maximum associated with peak summer insolation. The eterr-aq supports a dry LGM and moist Holocene. Other sediment proxies (TIC, TOC, redox-sensitive elements) support the eterr-aq, and reveal a shift to more positive P-E beginning around 17 ka, suggesting rising temperature led increases in precipitation during the last deglaciation. Moreover, differing patterns of dDterr and eterr-aq during the deglaciation suggest that the relationship between temperature and precipitation changed through time. Such decoupling, likely due to regional atmospheric reorganization as the Laurentide ice sheet waned, illustrates the importance of atmospheric dynamics in controlling Alaskan climate.
NASA Technical Reports Server (NTRS)
Manney, Gloria L.; Krueger, Kirstin; Pawson, Steven; Schwartz, Michael J.; Daffer, William H.; Livesey, Nathaniel J.; Remsberg, Ellis E.; Mlynczak, Martin G.; Russell, James M., III; Waters, Joe W.
2007-01-01
Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data show the polar stratopause, usually higher than and separated from that at midlatitudes, dropping from <55-60 to near 30 km, and cooling dramatically in January 2006 during a major stratospheric sudden warming (SSW). After a nearly isothermal period, a cool stratopause reforms near 75 km in early February, then drops to <55 km and warms. The stratopause is separated in longitude as well as latitude, with lowest temperatures in the transition regions between higher and lower stratopauses. Operational assimilated meteorological analyses, which are not constrained by data at stratopause altitude, do not capture a secondary temperature maximum that overlies the stratopause or the very high stratopause that reforms after the SSW; they underestimate the stratopause altitude variation during the SSW. High-quality daily satellite temperature measurements are invaluable in improving our understanding of stratopause evolution and its representation in models and assimilation systems.
Controllable Growth of Monolayer MoS2 and MoSe2 Crystals Using Three-temperature-zone Furnace
NASA Astrophysics Data System (ADS)
Zheng, Binjie; Chen, Yuanfu
2017-12-01
Monolayer molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) have attracted a great attention for their exceptional electronic and optoelectronic properties among the two dimensional family. However, controllable synthesis of monolayer crystals with high quality needs to be improved urgently. Here we demonstrate a chemical vapor deposition (CVD) growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. Systematical study of the effects of growth pressure, temperature and time on the thickness, morphology and grain size of crystals shows the good controllability. The photoluminescence (PL) characterizations indicate that the as-grown monolayer MoS2 and MoSe2 crystals possess excellent optical qualities with very small full-width-half-maximum (FWHM) of 96 me V and 57 me V, respectively. It is comparable to that of exfoliated monolayers and reveals their high crystal quality. It is promising that our strategy should be applicable for the growth of other transition metal dichalcogenides (TMDs) monolayer crystals.
Growth and patterning of laser ablated superconducting YBa2Cu3O7 films on LaAlO3 substrates
NASA Technical Reports Server (NTRS)
Warner, J. D.; Bhasin, K. B.; Varaljay, N. C.; Bohman, D. Y.; Chorey, C. M.
1989-01-01
A high quality superconducting film on a substrate with a low dielectric constant is desired for passive microwave circuit applications. In addition, it is essential that the patterning process does not effect the superconducting properties of the thin films to achieve the highest circuit operating temperatures. YBa2Cu3O7 superconducting films were grown on lanthanum aluminate substrates using laser ablation with resulting maximum transition temperature (T sub c) of 90 K. The films were grown on a LaAlO3 which was at 775 C and in 170 mtorr of oxygen and slowly cooled to room temperature in 1 atm of oxygen. These films were then processed using photolithography and a negative photoresist with an etch solution of bromine and ethanol. Results are presented on the effect of the processing on T(sub c) of the film and the microwave properties of the patterned films.
Dey, Riya; Kumar Rai, Vineet
2017-03-22
Optical temperature sensing in Er 3+ -Tm 3+ -Yb 3+ codoped CaMoO 4 phosphor prepared by chemical co-precipitation route based on the near infrared (NIR) to green upconversion emission from Er 3+ ion is reported. The variation with respect to external temperature in emission intensity ratio of the green emissions around 530 nm and 552 nm, corresponding to the 2 H 11/2 → 4 I 15/2 and 4 S 3/2 → 4 I 15/2 transitions respectively, under 980 nm excitation has been studied in detail, to report the sensing property of the prepared material; the maximum sensor sensitivity ∼0.0182 K -1 was attained at 413 K. The laser induced optical heating within the prepared phosphor has been explored and the heat generation caused by the laser effect has been verified by comparison of experimental and calculated data.
Sun, Bing; Fang, Fang; Zhang, Zuxing; Xu, Jing; Zhang, Lin
2018-03-15
A high-sensitivity and low-temperature fiber-optic magnetic field sensor based on a tapered two-mode fiber (TTMF) sandwiched between two single-mode fibers has been proposed and demonstrated. The section of TTMF has a specifically designed transition region as an efficient tool to filter higher-order modes, where the uniform modal interferometer just involved with LP 01 and LP 11 modes is achieved. The transmission spectral characteristics and the magnetic response of the proposed sensors have been investigated. The experimental results show that a maximum sensitivity of 98.2 pm/Oe within a linear magnetic field intensity ranging from 0 to 140 Oe can be achieved. Significantly, the temperature cross-sensitivity problem can be resolved owing to the lower thermal expansion coefficient of the TTMF. Finally, with its low insertion loss, compactness, and ease of fabrication, the proposed sensor would find potential applications in the measurement of a magnetic field.
NASA Astrophysics Data System (ADS)
Sadowski, W.; Hagemann, H.; François, M.; Bill, H.; Peter, M.; Walker, E.; Yvon, K.
1990-09-01
We report on the growth of Nd 2- xCe xCuO 4- δ single crystals (0< x<0.2) from Cu 2O flux. Free separated crystals with maximum size of 5x8x0.15 nm 3 have been obtained. Magnetic AC susceptibility measurements show a sharp superconducting transition at temperatures up to 23 K. The temperature dependence of the lattice parameters has been measured by means of X-ray powder diffraction between 10 K ( a=3.9413(3) Å, c=12.0290(18) Å) and 290 K ( a=3.9482(3) Å, c=12.0590(18) Å). Room temperature Raman spectra reveal a new band at 320 cm -1 which is not observed in Nd 2CuO 4. Raman spectra of crystals with Tc ranging from 7 to 22 K show a systematic intensity change of the broad band at 590 cm -1.
Obraztsov, V V; Selishcheva, A A; Danilov, V S
1975-01-01
The absorption velocity of ferricytochrome c on the surface of liposomes from egg lecithin containing 10% of lauric acid was studied. Liposomes were prepared from lecithin of three fractions which differed by the composition of fatty acids, unsaturation and the lipid interaction decreased at the temperature below T phi pi for lecithin fractions containing larger quantity of saturated fatty acids. An opposite tendency was observed for the temperature above T phi pi. In the phase transition region of lecithin of refractory fraction the local maximum of protein-lipid interaction was observed. Judging by the character of the changes of the values of energy activation, small additions of cholesterol in the membrane loosen the bilayer at the temperature below T phi pi and condense it at above T phi pi. The data obtained are discussed in terms of the effect of the state of molecule hydrophobic part on the velocity of protein-lipid interaction.
Thermal evaluation of laser exposures in an in vitro retinal model by microthermal sensing
NASA Astrophysics Data System (ADS)
Choi, Tae Y.; Denton, Michael L.; Noojin, Gary D.; Estlack, Larry E.; Shrestha, Ramesh; Rockwell, Benjamin A.; Thomas, Robert; Kim, Dongsik
2014-09-01
A temperature detection system using a micropipette thermocouple sensor was developed for use within mammalian cells during laser exposure with an 8.6-μm beam at 532 nm. We have demonstrated the capability of measuring temperatures at a single-cell level in the microscale range by inserting micropipette-based thermal sensors of size ranging from 2 to 4 μm into the membrane of a live retinal pigment epithelium (RPE) cell subjected to a laser beam. We setup the treatment groups of 532-nm laser-irradiated single RPE cell and in situ temperature recordings were made over time. Thermal profiles are given for representative cells experiencing damage resulting from exposures of 0.2 to 2 s. The measured maximum temperature rise for each cell ranges from 39 to 73°C the RPE cells showed a signature of death for all the cases reported herein. In order to check the cell viability, real-time fluorescence microscopy was used to identify the transition of pigmented RPE cells between viable and damaged states due to laser exposure.
NASA Astrophysics Data System (ADS)
Takeuchi, Takashi; Hayashi, Kyosuke; Umeo, Kazunori; Takabatake, Toshiro
2018-05-01
We report magnetic, transport, and specific-heat measurements for single crystals of the antiferromagnetic (AFM) Kondo semiconductor alloy series Ce(Ru1-xOsx)2Al10 (0 ≤ x ≤ 1), which crystallize into an orthorhombic structure. The specific-heat and resistivity data show that the isoelectronic substitution does not damage the hybridization gap or the AFM transition. The Kondo temperature TK increases linearly with x, whereas the Néel temperature TN exhibits a maximum value of 29.2 K for x = 0.71. Under increasing uniaxial pressure P || a, TN increases for x = 0 but decreases for x = 1, while TK increases in the entire range of x. Under P || b, in contrast, TN increases steadily in the whole range of x while TK remains unchanged for each x. The strongly anisotropic change in TN indicates the presence of another mechanism to enhance TN in this system in addition to the anisotropic hybridization of the 4f state with conduction bands.
NASA Astrophysics Data System (ADS)
Dutkiewicz, E. M.; Suchanicz, J.; Bovtun, V.; Konieczny, K.; Czaja, P.; Kluczewska, K.; Handke, B.; Antonova, M.; Sternberg, A.
2016-08-01
Thermal expansion, Raman and dielectric properties of the lead-free (1-x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramic solid solutions, fabricated by the conventional solid-state reaction method, were investigated. The Sr-doping results in an increase of the dielectric permittivity, broadening of the permittivity maximum, enhancement of the relaxation near depolarization temperature, broadening of the Raman bands and shift of all anomalies toward lower temperatures. The observed effects are attributed to an increase of the degree of cationic disorder and enhancement of the relaxor-like features. Anomalies in the thermal expansion strain were observed at the temperatures corresponding to the dielectric anomalies but not related to any phase transitions. These anomalies are supposed to follow changes of the averaged unit cell volume in the temperature interval of tetragonal and rhombohedral phase coexistence.
Thermophysical Properties of Liquid Te: Density, Electrical Conductivity, and Viscosity
NASA Technical Reports Server (NTRS)
Li, C.; Su, C.; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.
2004-01-01
The thermophysical properties of liquid Te, namely, density, electrical conductivity, and viscosity, were determined using the pycnometric and transient torque methods from the melting point of Te (723 K) to approximately 1150 K. A maximum was observed in the density of liquid Te as the temperature was increased. The electrical conductivity of liquid Te increased to a constant value of 2.89 x 10(exp 5 OMEGA-1m-1) as the temperature was raised above 1000 K. The viscosity decreased rapidly upon heating the liquid to elevated temperatures. The anomalous behaviors of the measured properties are explained as caused by the structural transitions in the liquid and discussed in terms of Eyring's and Bachiskii's predicted behaviors for homogeneous liquids. The Properties were also measured as a function of time after the liquid was coded from approximately 1173 or 1123 to 823 K. No relaxation phenomena were observed in the properties after the temperature of liquid Te was decreased to 823 K, in contrast to the relaxation behavior observed for some of the Te compounds.
Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics
NASA Astrophysics Data System (ADS)
Tanwar, Amit; Sreenivas, K.; Gupta, Vinay
2009-04-01
High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.
Observation of magnetization reversal behavior in Sm0.9Gd0.1Cr0.85Mn0.15O3 orthochromites
NASA Astrophysics Data System (ADS)
Panwar, Neeraj; Joby, Jostin P.; Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Kumar, Nitu; Palai, Ratnakar; Singhal, Rahul; Katiyar, Ram S.
2018-05-01
Impact of co-doping (Gd and Mn) on the magnetic properties has been systematically investigated in SmCrO3 compound. For the synthesized compound Sm0.9Gd0.1Cr0.85Mn0.15O3 (SGCMO), below the Neel transition temperature and under low applied magnetic field, temperature induced magnetization reversal at 105 K (crossover temperature) was noticed in the field cooled magnetization curve. Magnetization reversal attained maximum value of -1.03 emu/g at 17 K where spin reorientation occurred. The magnetization reversal disappeared under higher applied field. From the M-H plots an enhancement in the magnetization was observed due to Gd doping. Magnetocaloric effect at low temperatures measured through the magnetic entropy change was found sixteen times higher for this compound as compared to pristine SmCrO3 and twice to that of SmCr0.85Mn0.15O3 compound. The study reveals the importance of co-doping in tailoring the magnetic properties of rare-earth chromites.
Spectral measurement of nonequilibrium arc-jet free-stream flow
NASA Technical Reports Server (NTRS)
Gopaul, Nigel K. J. M.
1993-01-01
Spectra of radiation emitted by the free-stream flow of air in an arcjet wind tunnel at NASA-Ames Research Center were studied experimentally. The arcjet produces a high energy gaseous flow that is expanded to low density and low temperature to produce high velocities in the free-stream for simulating atmospheric entry conditions. The gamma and the delta band systems of nitric oxide emitted by the free stream were measured in the second order. The NO-beta band system, which is in the same spectral region as the NO-gamma and NO-delta band systems, was not present in the data. Only transitions from the lowest vibrational level of the upper state of both the NO-gamma and NO-delta band systems were observed. The rotational temperature determined from these band systems was 660 +/- 50 deg K. The maximum possible vibrational temperature was determined to be less than 850 +/- 50 deg K. The electronic temperature determined from the ratio of the intensities of the NO-gamma and NO-delta band systems was 7560 +/- 340 K. The results indicate that the arcjet free-stream flow is in thermal nonequilibrium.
Atomic Data and Spectral Line Intensities for CA XVII
NASA Technical Reports Server (NTRS)
Bhatia, A.K.; Landi, E.
2007-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca XVII. The configurations used are 2s(sup 2), 2s2p, 2p(sup 2), 2l3l', 214l' and 2s5l', with l = s,p and l' = s,p, d giving rise to 92 fine-structure levels in intermediate coupling. Collision strengths are calculated at seven incident energies (15, 30, 75, 112.5, 150, 187.5 and 225 Ry) for the transitions within the three lowest configurations corresponding to the 10 lowest energy levels, and five incident energies (75, 112.5, 150, 187.5 and 225 Ry) for transitions between the lowest five levels and the n = 3,4,5 configurations. Calculations have been carried out using the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, and R-Matrix results for the 2s2, 2s2p, 2p2 configurations available in the literature, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14)/cu cm at an electron temperature of log Te(K)=6.7, corresponding to the maximum abundance of Ca XVII. Spectral line intensities are calculated, and their diagnostic relevance L; discussed. This dataset will be made available in the next version of the CHIANTI database.
Zhou, Xiaoping; Wang, Xiaoke; Tong, Lei; Zhang, Hongxing; Lu, Fei; Zheng, Feixiang; Hou, Peiqiang; Song, Wenzhi; Ouyang, Zhiyun
2012-01-01
The significant warming in urban environment caused by the combined effects of global warming and heat island has stimulated widely development of urban vegetations. However, it is less known of the climate feedback of urban lawn in warmed environment. Soil warming effect on net ecosystem exchange (NEE) of carbon dioxide during the transition period from winter to spring was investigated in a temperate urban lawn in Beijing, China. The NEE (negative for uptake) under soil warming treatment (temperature was about 5 degrees C higher than the ambient treatment as a control) was -0.71 micromol/(m2 x sec), the ecosytem was a CO2 sink under soil warming treatment, the lawn ecosystem under the control was a CO2 source (0.13 micromol/(m2 x sec)), indicating that the lawn ecosystem would provide a negative feedback to global warming. There was no significant effect of soil warming on nocturnal NEE (i.e., ecosystem respiration), although the soil temperature sensitivity (Q10) of ecosystem respiration under soil warming treatment was 3.86, much lower than that in the control (7.03). The CO2 uptake was significantly increased by soil warming treatment that was attributed to about 100% increase of alpha (apparent quantum yield) and Amax (maximum rate of photosynthesis). Our results indicated that the response of photosynthesis in urban lawn is much more sensitive to global warming than respiration in the transition period.
Kim, Jaai; Lee, Changsoo
2016-02-01
Temperature is a crucial factor that significantly influences the microbial activity and so the methanation performance of an anaerobic digestion (AD) process. Therefore, how to control the operating temperature for optimal activity of the microbes involved is a key to stable AD. This study examined the response of a continuous anaerobic reactor to a series of temperature shifts over a wide range of 35-65 °C using a dairy-processing byproduct as model wastewater. During the long-term experiment for approximately 16 months, the reactor was subjected to stepwise temperature increases by 5 °C at a fixed HRT of 15 days. The reactor showed stable performance within the temperature range of 35-45 °C, with the methane production rate and yield being maximum at 45 °C (18% and 26% greater, respectively, than at 35 °C). However, the subsequent increase to 50 °C induced a sudden performance deterioration with a complete cessation of methane recovery, indicating that the temperature range between 45 °C and 50 °C had a critical impact on the transition of the reactor's methanogenic activity from mesophilic to thermophilic. This serious process perturbation was associated with a severe restructuring of the reactor microbial community structure, particularly of methanogens, quantitatively as well as qualitatively. Once restored by interrupted feeding for about two months, the reactor maintained fairly stable performance under thermophilic conditions until it was upset again at 65 °C. Interestingly, in contrast to most previous reports, hydrogenotrophs largely dominated the methanogen community at mesophilic temperatures while acetotrophs emerged as a major group at thermophilic temperature. This implies that the primary methanogenesis route of the reactor shifted from hydrogen- to acetate-utilizing pathways with the temperature shifts from mesophilic to thermophilic temperatures. Our observations suggest that a mesophilic digester may not need to be cooled at up to 45 °C in case of undesired temperature rise, for example, by excessive self-heating, which offers a possibility to reduce operating costs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Eichinger, Roland; Shaffer, Gary; Albarrán, Nelson; Rojas, Maisa; Lambert, Fabrice
2017-09-01
Interactions between the land biosphere and the atmosphere play an important role for the Earth's carbon cycle and thus should be considered in studies of global carbon cycling and climate. Simple approaches are a useful first step in this direction but may not be applicable for certain climatic conditions. To improve the ability of the reduced-complexity Danish Center for Earth System Science (DCESS) Earth system model DCESS to address cold climate conditions, we reformulated the model's land biosphere module by extending it to include three dynamically varying vegetation zones as well as a permafrost component. The vegetation zones are formulated by emulating the behaviour of a complex land biosphere model. We show that with the new module, the size and timing of carbon exchanges between atmosphere and land are represented more realistically in cooling and warming experiments. In particular, we use the new module to address carbon cycling and climate change across the last glacial transition. Within the constraints provided by various proxy data records, we tune the DCESS model to a Last Glacial Maximum state and then conduct transient sensitivity experiments across the transition under the application of explicit transition functions for high-latitude ocean exchange, atmospheric dust, and the land ice sheet extent. We compare simulated time evolutions of global mean temperature, pCO2, atmospheric and oceanic carbon isotopes as well as ocean dissolved oxygen concentrations with proxy data records. In this way we estimate the importance of different processes across the transition with emphasis on the role of land biosphere variations and show that carbon outgassing from permafrost and uptake of carbon by the land biosphere broadly compensate for each other during the temperature rise of the early last deglaciation.
Atomic Data and Spectral Line Intensities for Ni XI
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Landi, E.
2010-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XI. We include in the calculations the 10 lowest configurations, corresponding to 164 fine structure levels: 3s(sup 2)3p(sup 6), 3s(sup 2)3p(sup 5)3d, 3s(sup 2)3p(sup 4)3d(sup 2), 3s3p(sup 6)3d, 3s(sup 2)3p(sup 5)4l and 3s3p6 4l with l =.s, p, d. Collision strengths are calculated at five incident energies for all transitions: 7.1, 16.8, 30.2, 48.7 and 74.1 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.06 Ry and 0.25 Ry depending on the lower level. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, combined with Close Coupling collision excitation rate coefficient available in the literature for the lowest 17 levels, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14) cu cm range and at an electron temperature of logT(sub c)(K)=6.1, corresponding to the maximum abundance of Ni XI. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.
NASA Astrophysics Data System (ADS)
Zhang, Linfang; Wang, Jingmin; Hua, Hui; Jiang, Chengbao; Xu, Huibin
2014-09-01
Some off-stoichiometric Ni-Mn-Ga alloys undergo a coupled magnetostructural transition from ferromagnetic martensite to paramagnetic austenite, giving rise to the large magnetocaloric effect. However, the magnetostructural transitions of Ni-Mn-Ga alloys generally take place at temperatures higher than room temperature. Here, we report that by the partial substitution of In for Ga, the paramagnetic austenite phase is well stabilized, and the magnetostructural transition can be tailored around room temperature. Sizable magnetic entropy change and adiabatic temperature change were induced by magnetic field change in the vicinity of the magnetostructural transition of the In-doped Ni-Mn-Ga alloys.
A universal reduced glass transition temperature for liquids
NASA Technical Reports Server (NTRS)
Fedors, R. F.
1979-01-01
Data on the dependence of the glass transition temperature on the molecular structure for low-molecular-weight liquids are analyzed in order to determine whether Boyer's reduced glass transition temperature (1952) is a universal constant as proposed. It is shown that the Boyer ratio varies widely depending on the chemical nature of the molecule. It is pointed out that a characteristic temperature ratio, defined by the ratio of the sum of the melting temperature and the boiling temperature to the sum of the glass transition temperature and the boiling temperature, is a universal constant independent of the molecular structure of the liquid. The average value of the ratio obtained from data for 65 liquids is 1.15.
Microscopic Description of Thermodynamics of Lipid Membrane at Liquid-Gel Phase Transition
NASA Astrophysics Data System (ADS)
Kheyfets, B.; Galimzyanov, T.; Mukhin, S.
2018-05-01
A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid-gel phase transition. We demonstrate that liquid-gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase of lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.
Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory.
Nandi, Manoj Kumar; Banerjee, Atreyee; Dasgupta, Chandan; Bhattacharyya, Sarika Maitra
2017-12-29
In a recent study, we have found that for a large number of systems the configurational entropy at the pair level S_{c2}, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature T_{c}. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to T_{c}. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.
Hco+ in the Coma of Comet Hale-Bopp
NASA Astrophysics Data System (ADS)
Lovell, A. J.; Schloerb, F. P.; Bergin, E. A.; Dickens, J. E.; De Vries, C. H.; Senay, M. C.; Irvine, W. M.
1997-05-01
Maps of comet C/1995 O1 (Hale-Bopp) in the millimeter-wave emission of the ion HCO^+ revealed a local minimum near the nucleus position, with a maximum about 100,000 km in the antisolar direction. These observed features of the HCO^+ emission require a low abundance of HCO^+ due to enhanced destruction in the inner coma of the comet, within a region of low electron temperature (T_e). To set constraints on the formation of HCO^+ in the coma, as well as the location and magnitude of the transition to higher T_e, the data are compared with the results of ion-molecule chemistry models.
HCO+ in the coma of comet Hale-Bopp
NASA Technical Reports Server (NTRS)
Lovell, A. J.; Schloerb, F. P.; Bergin, E. A.; Dickens, J. E.; Devries, C. H.; Senay, M. C.; Irvine, W. M.; Ferris, J. P. (Principal Investigator)
1997-01-01
Maps of comet C/1995 O1 (Hale-Bopp) in the millimeter-wave emission of the ion HCO+ revealed a local minimum near the nucleus position, with a maximum about 100,000 km in the antisolar direction. These observed features of the HCO+ emission require a low abundance of HCO+ due to enhanced destruction in the inner coma of the comet, within a region of low electron temperature (Te). To set constraints on the formation of HCO+ in the coma, as well as the location and magnitude of the transition to higher Te, the data are compared with the results of ion-molecule chemistry models.
NASA Astrophysics Data System (ADS)
Okumura, Hisashi; Heyes, David M.
2006-12-01
We compare the results of three-dimensional molecular-dynamics (MD) simulations of a Lennard-Jones (LJ) liquid with a hydrostatic (HS) solution of a high temperature liquid channel which is surrounded by a fluid at lower temperature. The maximum temperature gradient, dT/dx , between the two temperature regions ranged from ∞ (step function) to dT/dx=0.1 (in the usual LJ units). Because the systems were in stationary-nonequilibrium states with no fluid flow, both MD simulation and the HS solution gave flat profiles for the normal pressure in all temperature-gradient cases. However, the other quantities showed differences between the two methods. The MD-derived density was found to oscillate over the length of ca. 8 LJ particle diameters from the boundary plane in the system with the infinite temperature gradient, while the HS-derived density showed simply a stepwise profile. The MD simulation also showed another anomaly near the boundary in potential energy. We have found systems in which the HS treatment works well and those where the HS approach breaks down, and therefore established the minimum length scale for the HS treatment to be valid. We also compare the kinetic temperature and the configurational temperature in these systems, and show that these can differ in the transition zone between the two temperatures.
Okumura, Hisashi; Heyes, David M
2006-12-01
We compare the results of three-dimensional molecular-dynamics (MD) simulations of a Lennard-Jones (LJ) liquid with a hydrostatic (HS) solution of a high temperature liquid channel which is surrounded by a fluid at lower temperature. The maximum temperature gradient, dT/dx , between the two temperature regions ranged from infinity (step function) to dT/dx=0.1 (in the usual LJ units). Because the systems were in stationary-nonequilibrium states with no fluid flow, both MD simulation and the HS solution gave flat profiles for the normal pressure in all temperature-gradient cases. However, the other quantities showed differences between the two methods. The MD-derived density was found to oscillate over the length of ca. 8 LJ particle diameters from the boundary plane in the system with the infinite temperature gradient, while the HS-derived density showed simply a stepwise profile. The MD simulation also showed another anomaly near the boundary in potential energy. We have found systems in which the HS treatment works well and those where the HS approach breaks down, and therefore established the minimum length scale for the HS treatment to be valid. We also compare the kinetic temperature and the configurational temperature in these systems, and show that these can differ in the transition zone between the two temperatures.
Evaluation of Ultra High Pressure (UHP) Firefighting in a Room-and-Contents Fire
2017-03-15
Burn Room and Hangar Temperature Prior to Ignition ............................................... 18 Figure 12. Effect of Temperature on Normalized...Figure 20. Maximum Average Temperature and Heat Flux ......................................................... 22 Figure 21. Effect of Maximum Average...Aspirated Ceiling Temperature .................................... 23 Figure 22. Effect of Maximum Average Floor Heat Flux on Extinguishment Quantity
NASA Astrophysics Data System (ADS)
Linard, Yannick; Wilding, Martin C.; Navrotsky, Alexandra
2008-01-01
The enthalpies of solution of La2O3, TiO2, HfO2, NiO and CuO were measured in sodium silicate melts at high temperature. When the heat of fusion was available, we derived the corresponding liquid-liquid enthalpies of mixing. These data, combined with previously published work, provide insight into the speciation reactions in sodium silicate melts. The heat of solution of La2O3 in these silicate solvents is strongly exothermic and varies little with La2O3 concentration. The variation of heat of solution with composition of the liquid reflects the ability of La(III) to perturb the transient silicate framework and compete with other cations for oxygen. The enthalpy of solution of TiO2 is temperature-dependent and indicates that the formation of Na-O-Si species is favored over Na-O-Ti at low temperature. The speciation reactions can be interpreted in terms of recent spectroscopic studies of titanium-bearing melts which identify a dual role of Ti4+ as both a network-former end network-modifier. The heats of solution of oxides of transition elements (Ni and Cu) are endothermic, concentration-dependent and reach a maximum with concentration. These indicate a charge balanced substitution which diminishes the network modifying role of Na+ by addition of Ni2+ or Cu2+. The transition metal is believed to be in tetrahedral coordination, charge balanced by the sodium cation in the melts.
Pugliese, P; Conde, M M; Rovere, M; Gallo, P
2017-11-16
A very recent experimental paper importantly and unexpectedly showed that water in carbon nanotubes is already in the solid ordered phase at the temperature where bulk water boils. The water models used so far in literature for molecular dynamics simulations in carbon nanotubes show freezing temperatures lower than the experiments. We present here results from molecular dynamics simulations of water inside single walled carbon nanotubes using an extremely realistic model for both liquid and icy water, the TIP4P/ICE. The water behavior inside nanotubes of different diameters has been studied upon cooling along the isobars at ambient pressure starting from temperatures where water is in a liquid state. We studied the liquid/solid transition, and we observed freezing temperatures higher than in bulk water and that depend on the diameter of the nanotube. The maximum freezing temperature found is 390 K, which is in remarkable agreement with the recent experimental measurements. We have also analyzed the ice structure called "ice nanotube" that water forms inside the single walled carbon nanotubes when it freezes. The ice forms observed are in agreement with previous results obtained with different water models. A novel finding, a partial proton ordering, is evidenced in our ice nanotubes at finite temperature.
Vega-Gálvez, Antonio; Ah-Hen, Kong; Chacana, Marcelo; Vergara, Judith; Martínez-Monzó, Javier; García-Segovia, Purificación; Lemus-Mondaca, Roberto; Di Scala, Karina
2012-05-01
The aim of this work was to study the effect of temperature and air velocity on the drying kinetics and quality attributes of apple (var. Granny Smith) slices during drying. Experiments were conducted at 40, 60 and 80°C, as well as at air velocities of 0.5, 1.0 and 1.5ms(-1). Effective moisture diffusivity increased with temperature and air velocity, reaching a value of 15.30×10(-9)m(2)s(-1) at maximum temperature and air velocity under study. The rehydration ratio changed with varying both air velocity and temperature indicating tissue damage due to processing. The colour difference, ΔE, showed the best results at 80°C. The DPPH-radical scavenging activity at 40°C and 0.5ms(-1) showed the highest antioxidant activity, closest to that of the fresh sample. Although ΔE decreased with temperature, antioxidant activity barely varied and even increased at high air velocities, revealing an antioxidant capacity of the browning products. The total phenolics decreased with temperature, but at high air velocity retardation of thermal degradation was observed. Firmness was also determined and explained using glass transition concept and microstructure analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H
2015-11-01
A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.
On simulated annealing phase transitions in phylogeny reconstruction.
Strobl, Maximilian A R; Barker, Daniel
2016-08-01
Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R
2016-06-09
The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.
Pressure-induced metal-insulator transitions in chalcogenide NiS2-xSex
NASA Astrophysics Data System (ADS)
Hussain, Tayyaba; Oh, Myeong-jun; Nauman, Muhammad; Jo, Younjung; Han, Garam; Kim, Changyoung; Kang, Woun
2018-05-01
We report the temperature-dependent resistivity ρ(T) of chalcogenide NiS2-xSex (x = 0.1) using hydrostatic pressure as a control parameter in the temperature range of 4-300 K. The insulating behavior of ρ(T) survives at low temperatures in the pressure regime below 7.5 kbar, whereas a clear insulator-to-metallic transition is observed above 7.5 kbar. Two types of magnetic transitions, from the paramagnetic (PM) to the antiferromagnetic (AFM) state and from the AFM state to the weak ferromagnetic (WF) state, were evaluated and confirmed by magnetization measurement. According to the temperature-pressure phase diagram, the WF phase survives up to 7.5 kbar, and the transition temperature of the WF transition decreases as the pressure increases, whereas the metal-insulator transition temperature increases up to 9.4 kbar. We analyzed the metallic behavior and proposed Fermi-liquid behavior of NiS1.9Se0.1.
Non-equilibrium phase transitions in a liquid crystal
NASA Astrophysics Data System (ADS)
Dan, K.; Roy, M.; Datta, A.
2015-09-01
The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the anisotropy, goes to zero from nematic to isotropic phase. To a point below the transition temperature, the order parameter is constant but decreases linearly with increase in temperature below that indicating the dependence of nematic ordering on the initial temperature during heating consistent with the non-equilibrium nature of nematic-isotropic phase transition.
Grasmeijer, N; Stankovic, M; de Waard, H; Frijlink, H W; Hinrichs, W L J
2013-04-01
The aim of this study was to elucidate the role of the two main mechanisms used to explain the stabilization of proteins by sugar glasses during drying and subsequent storage: the vitrification and the water replacement theory. Although in literature protein stability is often attributed to either vitrification or water replacement, both mechanisms could play a role and they should be considered simultaneously. A model protein, alkaline phosphatase, was incorporated in either inulin or trehalose by spray drying. To study the storage stability at different glass transition temperatures, a buffer which acts as a plasticizer, ammediol, was incorporated in the sugar glasses. At low glass transition temperatures (<50°C), the enzymatic activity of the protein strongly decreased during storage at 60°C. Protein stability increased when the glass transition temperature was raised considerably above the storage temperature. This increased stability could be attributed to vitrification. A further increase of the glass transition temperature did not further improve stability. In conclusion, vitrification plays a dominant role in stabilization at glass transition temperatures up to 10 to 20°C above storage temperature, depending on whether trehalose or inulin is used. On the other hand, the water replacement mechanism predominantly determines stability at higher glass transition temperatures. Copyright © 2013 Elsevier B.V. All rights reserved.
Reynolds analogy for the Rayleigh problem at various flow modes.
Abramov, A A; Butkovskii, A V
2016-07-01
The Reynolds analogy and the extended Reynolds analogy for the Rayleigh problem are considered. For a viscous incompressible fluid we derive the Reynolds analogy as a function of the Prandtl number and the Eckert number. We show that for any positive Eckert number, the Reynolds analogy as a function of the Prandtl number has a maximum. For a monatomic gas in the transitional flow regime, using the direct simulation Monte Carlo method, we investigate the extended Reynolds analogy, i.e., the relation between the shear stress and the energy flux transferred to the boundary surface, at different velocities and temperatures. We find that the extended Reynolds analogy for a rarefied monatomic gas flow with the temperature of the undisturbed gas equal to the surface temperature depends weakly on time and is close to 0.5. We show that at any fixed dimensionless time the extended Reynolds analogy depends on the plate velocity and temperature and undisturbed gas temperature mainly via the Eckert number. For Eckert numbers of the order of unity or less we generalize an extended Reynolds analogy. The generalized Reynolds analogy depends mainly only on dimensionless time for all considered Eckert numbers of the order of unity or less.
NASA Astrophysics Data System (ADS)
Islam, Ashraful; Ikeda, Noriaki; Nozaki, Koichi; Ohno, Takeshi
1998-09-01
The lowest 3(dπ-dσ*) excited states of both cis- and trans-isomers of [Rh(en)2Cl2]X (en=ethylenediamine; X=PF6-, NO3-) and the deuteriated crystal of trans-[Rh(en-d4)2Cl2]PF6 have been investigated in the solid state and in a wide temperature range of 5-497 K by means of emission spectra, lifetime and quantum yield measurements. Emission spectral simulation of trans-[Rh(en)2Cl2]PF6 shows that the emission from the lowest 3(dπ-dσ*) excited state exhibits a progression of a low-frequency metal-chloride stretching vibration (250 cm-1) with a large Huang-Rhys factor (S) of 21 and a progression of a high-frequency N-H stretching vibration (3000 cm-1). The increasing full-width at half maximum (2200 cm-1→4400 cm-1) with increasing temperature (77 K→468 K) is ascribed to hot bands from the excited levels of low-frequency vibration. The luminescence quantum yields of the crystal samples are determined to 0.0008 at 298 K and 0.003 at 80 K for trans-[Rh(en)2Cl2]PF6 and 0.18 at 298 K and 0.40 at 80 K for trans-[Rh(en-d4)2Cl2]PF6. From a combination of lifetime and emission quantum yield measurements, values for kr and knr have been obtained. The observed temperature dependence of nonradiative decay rates of trans-[Rh(en-d4)2Cl2]PF6 in a low-temperature region (<300 K) is possible to reconstitute by using the emission spectral fitting parameters and assuming nuclear tunneling mechanism. The temperature effect and deuteriation effect on the nonradiative rate definitively establishes that the dominant "accepting" modes in the nonradiative transition are a highly displaced (S=21) vibrational mode of low-frequency Cl-Rh-Cl stretching and a weakly displaced (S=0.1) vibrational mode of high-frequency N-D stretching. The nonradiative transition in a high-temperature region occurs via barrier passing along a displaced coordinate of Cl-Rh-Cl vibration with a pre-exponential factor of 1011s-1 and is relatively insensitive to the high-frequency vibrational mode. The crystal of cis-[Rh(en)2Cl2]NO3 shows a red shift of the emission peak energy and an increase in the full-width at half maximum with increasing temperature. The results of temperature-dependent decay and spectra of emission can be interpreted in terms of two 3(dπ-dσ*) emitting states model.
[Monitoring of brightness temperature fluctuation of water in SHF range].
Ivanov, Yu D; Kozlov, A F; Galiullin, R A; Tatu, V Yu; Vesnin, S G; Ziborov, V S; Ivanova, N D; Pleshakova, T O
2017-01-01
The purpose of the research consisted in detection of fluctuation of brightness temperature (TSHF) of water in the area of the temperature Т = 42°С (that is critical for human) during its evaporation by SHF radiometry. Methods: Monitoring of the changes in brightness temperature of water in superhigh frequency (SHF) range (3.8-4.2 GHz) near the phase transition temperature of water Т = 42°С during its evaporation in the cone dielectric cell. The brightness temperature measurements were carried out using radiometer. Results: Fluctuation with maximum of brightness temperature was detected in 3.8-4.2 GHz frequency range near at the temperature of water Т = 42°С. It was characteristic for these TSHF fluctuations that brightness temperature rise time in this range of frequencies in ~4°С temperature range with 0.05-15°С/min gradient and a sharp decrease during 10 s connected with measuring vapor conditions. Then nonintensive fluctuation series was observed. At that, the environment temperature remained constant. Conclusion: The significant increasing in brightness temperature of water during its evaporation in SHF range near the temperature of Т ~42°С were detected. It was shown that for water, ТSHF pull with the amplitude DТSHF ~4°C are observed. At the same time, thermodynamic temperature virtually does not change. The observed effects can be used in the development of the systems for diadnostics of pathologies in human and analytical system.
Antiferromagnetic inclusions in lunar glass
Thorpe, A.N.; Senftle, F.E.; Briggs, Charles; Alexander, Corrine
1974-01-01
The magnetic susceptibility of 11 glass spherules from the Apollo 15, 16, and 17 fines and two specimens of a relatively large glass spherical shell were studied as a function of temperature from room temperature to liquid helium temperatures. All but one specimen showed the presence of antiferromagnetic inclusions. Closely spaced temperature measurements of the magnetic susceptibility below 77 K on five of the specimens showed antiferromagnetic temperature transitions (Ne??el transitions). With the exception of ilmenite in one specimen, these transitions did not correspond to any transitions in known antiferromagnetic compounds. ?? 1974.
NASA Astrophysics Data System (ADS)
Chung, Seok-Hwan
This work focuses on two largely unexplored phenomena in micromagnetics: the temperature-driven paramagnetic insulator to ferromagnetic (FM) metallic phase transition in perovskite manganite and ballistic magnetoresistance in spin-polarized nanocontacts. To investigate the phase transition, an off-the-shelf commercial scanning force microscope was redesigned for operation at temperatures from 350 K to 100 K. This adaptation is elaborated in this thesis. Using this system, both ferromagnetic and charge-ordered domain structures of (La 1-xPrx)0.67Ca0.33MnO3 thin film were observed by magnetic force microscopy (MFM) and electric force microscopy (EFM) operated in the vicinity of the peak resistance temperature (Tp). Predominantly in-plane oriented FM domains of sub-micrometer size emerge below Tp and their local magnetic moment increased as the temperature is reduced. Charge-ordered insulating regions show a strong electrostatic interaction with an EFM tip at a few degrees above Tp and the interaction correlates well with the temperature dependence of resistivity of the film. Cross-correlation analysis between topography and magnetic structure on several substrates indicates FM domains form on the flat regions of the surface, while charge ordering occurs at surface protrusions. In the investigation of ballistic magnetoresistance, new results on half-metallic ferromagnets formed by atomic or nanometer contacts of CrO2-CrO 2 and CrO2-Ni are presented showing magnetoconductance as high as 400%. Analysis of the magnetoconductance versus conductance data for all materials known to exhibit so-called ballistic magnetoresistance strongly suggests that magnetoconductance of nanocontacts follows a universal mechanism. If the maximum magnetoconductance is normalized to unity and the conductance is scaled with the resistivity of the material, then all data points fall onto a universal curve independent of the contact material and the transport mechanism. The analysis has been applied to all available magnetoconductance data of magnetic nanocontacts in the literature. The results are in agreement with a theory that takes into account only the spin-scattering within a magnetic domain wall and are independent of whether the transport is ballistic or diffusive.
Critical temperature for shape transition in hot nuclei within covariant density functional theory
NASA Astrophysics Data System (ADS)
Zhang, W.; Niu, Y. F.
2018-05-01
Prompted by the simple proportional relation between critical temperature for pairing transition and pairing gap at zero temperature, we investigate the relation between critical temperature for shape transition and ground-state deformation by taking even-even Cm-304286 isotopes as examples. The finite-temperature axially deformed covariant density functional theory with BCS pairing correlation is used. Since the Cm isotopes are the newly proposed nuclei with octupole correlations, we studied in detail the free energy surface, the Nilsson single-particle (s.p.) levels, and the components of s.p. levels near the Fermi level in 292Cm. Through this study, the formation of octupole equilibrium is understood by the contribution coming from the octupole driving pairs with Ω [N ,nz,ml] and Ω [N +1 ,nz±3 ,ml] for single-particle levels near the Fermi surfaces as it provides a good manifestation of the octupole correlation. Furthermore, the systematics of deformations, pairing gaps, and the specific heat as functions of temperature for even-even Cm-304286 isotopes are discussed. Similar to the relation between the critical pairing transition temperature and the pairing gap at zero temperature Tc=0.6 Δ (0 ) , a proportional relation between the critical shape transition temperature and the deformation at zero temperature Tc=6.6 β (0 ) is found for both octupole shape transition and quadrupole shape transition for the isotopes considered.
Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; ...
2015-02-26
A long standing puzzle regarding the disparity of local and long range CuO₆ octahedral tilt correlations in the underdoped regime of La₂₋ xBa xCuO₄ is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO₆ tilt order with orthogonally inequivalent Cu-O bonds in the CuO₂ planes in the low temperature tetragonal (LTT) phase is succeeded on warming through the low-temperature transition by one with orthogonally equivalent bonds in the low temperature orthorhombic (LTO) phase. In contrast, the signatures of LTT-type tilts in the instantaneous local atomic structure persist on heating throughout the LTOmore » crystallographic phase on the nanoscale, although becoming weaker as temperature increases. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO phase and their 3D character. The doping dependence of relevant structural parameters indicates that the magnitude of the Cu-O bond anisotropy has a maximum at x = 1/8 doping where bulk superconductivity is most strongly suppressed, suggesting that the structural anisotropy might be influenced by electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to be remarkably subtle, with no anomalous bond length disorder at low temperature, placing an upper limit on any in-plane Cu-O bondlength anisotropy. The results further reveal that although appreciable octahedral tilts persist through the high-temperature transition and into the high temperature tetragonal (HTT) phase, there is no significant preference between different tilt directions in the HTT regime. As a result, this study also exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.« less
Correa, A M; Bezanilla, F; Latorre, R
1992-01-01
The gating kinetics of batrachotoxin-modified Na+ channels were studied in outside-out patches of axolemma from the squid giant axon by means of the cut-open axon technique. Single channel kinetics were characterized at different membrane voltages and temperatures. The probability of channel opening (Po) as a function of voltage was well described by a Boltzmann distribution with an equivalent number of gating particles of 3.58. The voltage at which the channel was open 50% of the time was a function of [Na+] and temperature. A decrease in the internal [Na+] induced a shift to the right of the Po vs. V curve, suggesting the presence of an integral negative fixed charge near the activation gate. An increase in temperature decreased Po, indicating a stabilization of the closed configuration of the channel and also a decrease in entropy upon channel opening. Probability density analysis of dwell times in the closed and open states of the channel at 0 degrees C revealed the presence of three closed and three open states. The slowest open kinetic component constituted only a small fraction of the total number of transitions and became negligible at voltages greater than -65 mV. Adjacent interval analysis showed that there is no correlation in the duration of successive open and closed events. Consistent with this analysis, maximum likelihood estimation of the rate constants for nine different single-channel models produced a preferred model (model 1) having a linear sequence of closed states and two open states emerging from the last closed state. The effect of temperature on the rate constants of model 1 was studied. An increase in temperature increased all rate constants; the shift in Po would be the result of an increase in the closing rates predominant over the change in the opening rates. The temperature study also provided the basis for building an energy diagram for the transitions between channel states. PMID:1318096
Towards bridging the gap between climate change projections and maize producers in South Africa
NASA Astrophysics Data System (ADS)
Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus
2018-05-01
Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.
Jiang, Qi; Zeng, Huidan; Liu, Zhao; Ren, Jing; Chen, Guorong; Wang, Zhaofeng; Sun, Luyi; Zhao, Donghui
2013-09-28
Sodium borophosphate glasses exhibit intriguing mixed network former effect, with the nonlinear compositional dependence of their glass transition temperature as one of the most typical examples. In this paper, we establish the widely applicable topological constraint model of sodium borophosphate mixed network former glasses to explain the relationship between the internal structure and nonlinear changes of glass transition temperature. The application of glass topology network was discussed in detail in terms of the unified methodology for the quantitative distribution of each coordinated boron and phosphorus units and glass transition temperature dependence of atomic constraints. An accurate prediction of composition scaling of the glass transition temperature was obtained based on topological constraint model.
Effect of thienorphine on intestinal transit and isolated guinea-pig ileum contraction.
Zhou, Pei-Lan; Li, Yu-Lei; Yan, Ling-Di; Yong, Zheng; Yu, Gang; Dong, Hua-Jin; Yan, Hui; Su, Rui-Bin; Gong, Ze-Hui
2013-03-07
To evaluate the effect of thienorphine on small intestinal transit in vivo and on guinea-pig ileum (GPI) contraction in vitro. The effects of thienorphine on intestinal transit were examined in mice and in isolated GPI. Buprenorphine and morphine served as controls. The distance traveled by the head of the charchol and the total length of the intestine were measured in vivo. Gastrointestinal transit was expressed as a percentage of the distance traveled by the head of the marker relative to the total length of the small intestine. The isolated GPI preparations were connected to an isotonic force transducer and equilibrated for at least 1 h before exposure to drugs. Acetylcholine was used for muscle stimulation. Thienorphine (0.005-1.0 mg/kg, ig) or buprenorphine (0.005-1.0 mg/kg, sc) dose-dependently significantly inhibited gut transit compared with saline. Thienorphine inhibited gut transit less than buprenorphine. The maximum inhibition by thienorphine on the intestinal transit was 50%-60%, whereas the maximum inhibition by morphine on gut transit was about 100%. Thienorphine also exhibited less inhibition on acetylcholine-induced contraction of GPI, with a maximum inhibition of 65%, compared with 93% inhibition by buprenorphine and 100% inhibition by morphine. Thienorphine induced a concentration-dependent decrease in the basal tonus of spontaneous movement of the GPI, the effect of which was weaker than that with buprenorphine. The duration of the effect of thienorphine on the GPI was longer than that with buprenorphine. Thienorphine had less influence, but a longer duration of action on GPI contraction and moderately inhibited intestinal transit.
Popova, V A; Surovtsev, N V
2014-09-01
The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.
Mobility restrictions and glass transition behaviour of an epoxy resin under confinement.
Djemour, A; Sanctuary, R; Baller, J
2015-04-07
Confinement can have a big influence on the dynamics of glass formers in the vicinity of the glass transition. Already 40 to 50 K above the glass transition temperature, thermal equilibration of glass formers can be strongly influenced by the confining substrate. We investigate the linear thermal expansion and the specific heat capacity cp of an epoxy resin (diglycidyl ether of bisphenol A, DGEBA) in a temperature interval of 120 K around the glass transition temperature. The epoxy resin is filled into controlled pore glasses with pore diameters between 4 and 111 nm. Since DGEBA can form H-bonds with silica surfaces, we also investigate the influence of surface silanization of the porous substrates. In untreated substrates a core/shell structure of the epoxy resin can be identified. The glass transition behaviours of the bulk phase and that of the shell phase are different. In silanized substrates, the shell phase disappears. At a temperature well above the glass transition, a second transition is found for the bulk phase - both in the linear expansion data as well as in the specific heat capacity. The cp data do not allow excluding the glass transition of a third phase as being the cause for this transition, whereas the linear expansion data do so. The additional transition temperature is interpreted as a separation between two regimes: above this temperature, macroscopic flow of the bulk phase inside the porous structure is possible to balance the mismatch of thermal expansion coefficients between DGEBA and the substrate. Below the transition temperature, this degree of freedom is hindered by geometrical constraints of the porous substrates. Moreover, this second transition could also be found in the linear expansion data of the shell phase.
Spin injection and spin transport in paramagnetic insulators
Okamoto, Satoshi
2016-02-22
We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above magnetic transition temperatures and magnetic states at low temperatures. It is predicted that the spin injection at an interface with a normal metal is rather insensitive to temperatures above the magnetic transition temperature. On the other hand below the transition temperature, it decreases monotonically and disappears at zero temperature. We also analyze the bulk spin conductance. We show that the conductance becomes zero at zero temperature as predictedmore » by linear spin wave theory but increases with temperature and is maximized around the magnetic transition temperature. These findings suggest that the compromise between the two effects determines the optimal temperature for spintronics applications utilizing magnetic insulators.« less
NASA Astrophysics Data System (ADS)
Yan, Tiezhu; Shen, Zhenyao; Heng, Lee; Dercon, Gerd
2016-04-01
Future climate change information is important to formulate adaptation and mitigation strategies for climate change. In this study, a statistical downscaling model (SDSM) was established using both NCEP reanalysis data and ground observations (daily maximum and minimum temperature) during the period 1971-2010, and then calibrated model was applied to generate the future maximum and minimum temperature projections using predictors from the two CMIP5 models (MPI-ESM-LR and CNRM-CM5) under two Representative Concentration Pathway (RCP2.6 and RCP8.5) during the period 2011-2100 for the Haihe River Basin, China. Compared to the baseline period, future change in annual and seasonal maximum and minimum temperature was computed after bias correction. The spatial distribution and trend change of annual maximum and minimum temperature were also analyzed using ensemble projections. The results shows that: (1)The downscaling model had a good applicability on reproducing daily and monthly mean maximum and minimum temperature over the whole basin. (2) Bias was observed when using historical predictors from CMIP5 models and the performance of CNRM-CM5 was a little worse than that of MPI-ESM-LR. (3) The change in annual mean maximum and minimum temperature under the two scenarios in 2020s, 2050s and 2070s will increase and magnitude of maximum temperature will be higher than minimum temperature. (4) The increase in temperature in the mountains and along the coastline is remarkably high than the other parts of the studies basin. (5) For annual maximum and minimum temperature, the significant upward trend will be obtained under RCP 8.5 scenario and the magnitude will be 0.37 and 0.39 ℃ per decade, respectively; the increase in magnitude under RCP 2.6 scenario will be upward in 2020s and then decrease in 2050s and 2070s, and the magnitude will be 0.01 and 0.01℃ per decade, respectively.
A Thermal Diode Based on Nanoscale Thermal Radiation.
Fiorino, Anthony; Thompson, Dakotah; Zhu, Linxiao; Mittapally, Rohith; Biehs, Svend-Age; Bezencenet, Odile; El-Bondry, Nadia; Bansropun, Shailendra; Ben-Abdallah, Philippe; Meyhofer, Edgar; Reddy, Pramod
2018-05-23
In this work we demonstrate thermal rectification at the nanoscale between doped Si and VO 2 surfaces. Specifically, we show that the metal-insulator transition of VO 2 makes it possible to achieve large differences in the heat flow between Si and VO 2 when the direction of the temperature gradient is reversed. We further show that this rectification increases at nanoscale separations, with a maximum rectification coefficient exceeding 50% at ∼140 nm gaps and a temperature difference of 70 K. Our modeling indicates that this high rectification coefficient arises due to broadband enhancement of heat transfer between metallic VO 2 and doped Si surfaces, as compared to narrower-band exchange that occurs when VO 2 is in its insulating state. This work demonstrates the feasibility of accomplishing near-field-based rectification of heat, which is a key component for creating nanoscale radiation-based information processing devices and thermal management approaches.
Qualitative change in structural dynamics of some glass-forming systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, Vladimir N.; Sokolov, Alexei P.
2015-12-14
Analysis of the temperature dependence of the structural relaxation time Τα(T) in supercooled liquids revealed a qualitatively distinct feature a sharp, cusplike maximum in the second derivative of log Τα(T) at some T max. It suggests that the super-Arrhenius temperature dependence of Τα(T) in glass-forming liquids eventually crosses over to an Arrhenius behavior at T < T max, and there is no divergence of Τα(T) at nonzero T . T max can be above or below T g, depending on the sensitivity of τ(T) to a change in the liquid's density quantified by the exponent γ in the scaling Τα(T)more » ~exp(A/Tρ –γ). Lastly, these results might turn the discussion of the glass transition in a different direction toward the origin of the limiting activation energy for structural relaxation at low T.« less
Overcharge tolerant high-temperature cells and batteries
Redey, Laszlo; Nelson, Paul A.
1989-01-01
In a lithium-alloy/metal sulfide high temperature electrochemical cell, cell damage caused by overcharging is avoided by providing excess lithium in a high-lithium solubility phase alloy in the negative electrode and a specified ratio maximum of the capacity of a matrix metal of the negative electrode in the working phase to the capacity of a transition metal of the positive electrode. In charging the cell, or a plurality of such cells in series and/or parallel, chemical transfer of elemental lithium from the negative electrode through the electrolyte to the positive electrode provides sufficient lithium to support an increased self-charge current to avoid anodic dissolution of the positive electrode components above a critical potential. The lithium is subsequently electrochemically transferred back to the negative electrode in an electrochemical/chemical cycle which maintains high self-discharge currents on the order of 3-15 mA/cm.sup.2 in the cell to prevent overcharging.
NASA Astrophysics Data System (ADS)
Li, Lingwei; Xu, Chi; Yuan, Ye; Zhou, Shengqiang
2018-05-01
In this work, we have fabricated the Al27Cu18Er55 amorphous ribbon with good glassy formation ability by melt-spinning technology. A broad paramagnetic (PM) to ferromagnetic (FM) transition (second ordered) together with a large reversible magnetocaloric effect (MCE) in Al27Cu18Er55 amorphous ribbon was observed around the Curie temperature TC ∼ 11 K. Under the magnetic field change (ΔH of 0-7 T, the values of MCE parameter of the maximum magnetic entropy change (-ΔSMmax) and refrigerant capacity (RC) for Al27Cu18Er55 amorphous ribbon reach 21.4 J/kg K and 599 J/kg, respectively. The outstanding glass forming ability as well as the excellent magneto-caloric properties indicate that Al27Cu18Er55 amorphous could be a good candidate for low temperature magnetic refrigeration.
Mechanical Stability of Flexible Graphene-Based Displays.
Anagnostopoulos, George; Pappas, Panagiotis-Nektarios; Li, Zheling; Kinloch, Ian A; Young, Robert J; Novoselov, Kostya S; Lu, Ching Yu; Pugno, Nicola; Parthenios, John; Galiotis, Costas; Papagelis, Konstantinos
2016-08-31
The mechanical behavior of a prototype touch panel display, which consists of two layers of CVD graphene embedded into PET films, is investigated in tension and under contact-stress dynamic loading. In both cases, laser Raman spectroscopy was employed to assess the stress transfer efficiency of the embedded graphene layers. The tensile behavior was found to be governed by the "island-like" microstructure of the CVD graphene, and the stress transfer efficiency was dependent on the size of graphene "islands" but also on the yielding behavior of PET at relatively high strains. Finally, the fatigue tests, which simulate real operation conditions, showed that the maximum temperature gradient developed at the point of "finger" contact after 80 000 cycles does not exceed the glass transition temperature of the PET matrix. The effect of these results on future product development and the design of new graphene-based displays are discussed.
Mechanical Stability of Flexible Graphene-Based Displays
2016-01-01
The mechanical behavior of a prototype touch panel display, which consists of two layers of CVD graphene embedded into PET films, is investigated in tension and under contact-stress dynamic loading. In both cases, laser Raman spectroscopy was employed to assess the stress transfer efficiency of the embedded graphene layers. The tensile behavior was found to be governed by the “island-like” microstructure of the CVD graphene, and the stress transfer efficiency was dependent on the size of graphene “islands” but also on the yielding behavior of PET at relatively high strains. Finally, the fatigue tests, which simulate real operation conditions, showed that the maximum temperature gradient developed at the point of “finger” contact after 80 000 cycles does not exceed the glass transition temperature of the PET matrix. The effect of these results on future product development and the design of new graphene-based displays are discussed. PMID:27494211
Boron-tuning transition temperature of vanadium dioxide from rutile to monoclinic phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. J.; He, H. Y.; Xie, Y.
2014-11-21
The effect of the doped boron on the phase transition temperature between the monoclinic phase and the rutile phase of VO{sub 2} has been studied by performing first-principles calculations. It is found that the phase transition temperature decreases linearly with increasing the doping level of B in each system, no matter where the B atom is in the crystal. More importantly, the descent of the transition temperature is predicted to be as large as 83 K/at. % B, indicating that the boron concentration of only 0.5% can cause the phase transition at room temperature. These findings provide a new routinemore » of modulating the phase transition of VO{sub 2} and pave a way for the practicality of VO{sub 2} as an energy-efficient green material.« less
Heat Stable Polymers: Polyphenylene and Other Aromatic Polymers
1977-01-01
crystalline transition temperature . Model reactions on 4- and 6-phienyl-2-pyrones show that this monomer type is unsuitable for the syntheses of... temperature to a rod-like molecule with a high glass transition temperature . The polymerization reaction is acid catalyzed, but is carried out most...Polymerization Reactions...................24 Solution Properties......................27 Phase Transition Temperatures , Thermal Stability and Thermomechanical